
Modular Integration Platform for Printed Electronics

Seiya Ono
Ana Claudia Arias, Ed.
Prabal Dutta, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-156
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-156.html

August 13, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Modular Integration Platform for Printed Electronics

By Seiya Ono

Research Project

Submitted to the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, in partial satisfaction of the
requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

(Date)

* * * * * * *

Professor Prabal Dutta
Second Reader

(Date)

August 7th, 2020

Professor Ana Claudia Arias
Research Advisor

August 6th, 2020

Modular Integration Platform for Printed Electronics

by

Seiya Ono

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ana Claudia Arias, Chair
Professor Prabal Dutta

Spring 2020

Modular Integration Platform for Printed Electronics

Copyright 2020
by

Seiya Ono

1

Abstract

Modular Integration Platform for Printed Electronics

by

Seiya Ono

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ana Claudia Arias, Chair

The field of flexible and printed electronics has been on the rise, with an increasing demand
for low cost, physically robust, conformal sensors and devices to be used in a variety of
applications in the age of edge computing. It would be unreasonable, however, to expect
all of these flexible organic electronics to perform at remotely similar orders of magnitude
with respect to solid state electronics - this introduces a need for flexible hybrid electronics
that integrate the speed and power efficiency of solid state electronics with flexible, printed
electronics to occupy the middle ground between the two.

The development of flushed out hybrid electronics systems is often seen to be the end goal,
utilizing new, ground breaking fabrication technology to make new sensors, in conjunction
with high performance, solid state electronics for small form factor, well packaged final
products. While this does make for very beautiful end products, the amount of prototyping
and research effort put into making the flexible electronics interface, the data collection, the
enclosure, and every perfectly tuned parameter is something that becomes very repetitive,
akin to “reinventing the wheel”.

I propose that a modular design approach could help alleviate much of the repetitive aspects
pertaining to the prototyping efforts in flexible hybrid electronics. I will present my new
integration tool, the Modular Integration Platform for Printed Electronics (MIPPE), and
demonstrate the effectiveness of a modular approach to design through the use of the various
platforms for development available in MIPPE and some of its example use cases. By
distilling the most common variations of flexible electronic interfaces into interchangeable,
reusable hardware blocks, the R&D time would be reduced, increasing research productivity
in the field of flexible and printed electronics.

i

Contents

Contents i

List of Figures ii

Listings ii

1 Trade-offs of Organic Electronics 1
1.1 Organic Electronics . 1
1.2 Printing Techniques and Implications on Manufacturability 1
1.3 Augmenting Shortcomings with Solid State Electronics 3

2 Past Integration Projects 5
2.1 Force Calibration . 5
2.2 Wound Stimulation & Bioimpedance Monitoring 7
2.3 Integrated Wound Monitoring . 9
2.4 Developer Notes . 10

3 Modular Integration Platform for Printed Electronics 13
3.1 Initial Ideas and Concepts . 13
3.2 Firmware Platform . 14
3.3 Hardware Platform . 15
3.4 Small Scale Manufacturing Choices . 17
3.5 Final Conceptualization . 18
3.6 Modularity in Design . 21
3.7 Application Information . 23

4 Future Work & Conclusion 29
4.1 More Powerful, Reliable Hardware . 29
4.2 Scalable Firmware Environments . 30
4.3 GUI & Software Optimization . 30
4.4 Final Words . 31

Bibliography 32

ii

List of Figures

1.1 Printing Techniques12 . 3

2.1 Force Calibration System Schematic . 6
2.2 Impedance Analyzer & Adjustable Current Source System Schematic1,2,3 8
2.3 Fully Integrated System with Printed Electrodes and Organic Oximeter1,7 11

3.1 Bootloader Burn-In Tool . 16
3.2 Various Implementations of Atmel Microcontrollers on Custom Hardware 17
3.3 First System Overview . 18
3.4 Leader-Follower Configuration for UART5 . 19
3.5 Cardboard Prototype of Module-Motherboard Interconnects 21
3.6 Final System Design . 22
3.7 Design Modularity of MIPPE Modules . 23
3.8 MIPPE User Interface Example . 27
3.9 MIPPE Data Visualizer Example . 28

Listings

3.1 Follower side Motherboard-Module Communication Standard 20
3.2 Generic MIPPE Module class . 25

iii

Acknowledgments

Before I begin, I must first thank my advisor, Professor Ana Claudia Arias, for her endless
support and enthusiasm for my work. There were many periods where I felt lost, lacking
motivation, or stunned at the challenges that were presented to me - Professor Arias was
always reassuring in my worries while providing realistic, yet optimistic views that got me
back up to continue pressing forwards. Thank you for all of the opportunities and resources
you have provided me.

Huge thank you to Yasser for, on a whim, inviting me to attend one of the group meetings,
effectively kicking off my research adventure with that kind gesture. To everyone I’ve had
the pleasure of working with in the group, thank you for giving me the chance to participate
in your outstanding work. Every time I listen to each of you present on your work, I
am repeatedly amazed at what you all can accomplish. Thank you Mahsa, Yasser, Ting,
Jasmine, Juan, Xiaodong, Maggie, and Matt for being so patient with me when training me
on the equipment. To the fifth floor crew, I will miss our lunches together - the short break
in the middle of the day with you all was something I always looked forward to. Thanks to
Cher, Jasmine, and Natalie for being the fun, short lived, first year cohort that I never knew
I wanted.

Outside the lab, I would like to thank my friends I have made during my five years at
Berkeley; whether we crossed paths in Pioneers in Engineering, EE16A course staff, or just
by chance, I appreciate all of you for the times we spent together cooking, eating, playing
games, and adventuring, freeing my mind from the stresses and responsibilities that came
with school.

I could not close this without thanking my parents who always encouraged my pursuit
of education, being accepting when I couldn’t come home for breaks, and giving me a com-
fortable, stress free space to work at home during the pandemic. Without their support, I
would not be where I am today. I am eternally grateful.

1

Chapter 1

Trade-offs of Organic Electronics

1.1 Organic Electronics

Traditionally, electronics have been confined to a rigid platform, utilizing non-conformal,
inflexible mediums. These limitations have proven to be quite cumbersome to deal with, as
the new frontier of technology demands similar performance on flexible platforms to enable
point of application sensing and computation. Unfortunately, silicon as well as its medium,
the printed circuit board (PCB) does not perform well under mechanical stress, flexing, and
stretching, if at all, making these two options, solid state electronics and PCBs, very limiting
when aiming for conformal sensors and computation. Hence, organic electronics.

Organic electronics utilize non-rigid, solution processable polymers as the semiconducting
layer. Together with conductive inks, flexible plastic substrates, and a polymer encapsulation
layer, the devices can be fabricated to be fully printed and fully flexible. Additionally, the
same fabrication technology can be used to create sensors, enabling the sensing mechanism,
front end conditioning, and computation to occur on the same flexible medium. While in the
present day this may be a stretch, fully flexible and printed integrated devices may not be a
too distant future. In order to get there, we must first understand its technological niche.

1.2 Printing Techniques and Implications on

Manufacturability

Those familiar with fabrication technology pertaining to solid state electronics might under-
stand more the intertwined nature of various fabrication techniques, materials, and device
performances, not to even mention cost. Many hours go into optimization methods to try and
get the highest performing devices by understanding the limitations of a particular process,
be it deposition, lithography, or etching. The various process steps have even further impli-
cations on how different types of errors propagate and affect the end device performance; for
solid state, these steps can be quite expensive and difficult to scale.

CHAPTER 1. TRADE-OFFS OF ORGANIC ELECTRONICS 2

To name a few critical processes difficult to scale: projection lithography needs to utilize
rastering, limiting exposure throughput; Deep Reactive-Ion Etching (DRIE) utilizes many
cycles of gas flow, limiting etch throughput; Atomic Layer Deposition (ALD) also cycles
precursors and target gas to deposit extremely conformal, tunable thin films, which once
again, limits deposition throughput. Throughput, though a very surface level analysis, can
be used to quickly determine cost effectiveness of a fabrication technique. The solid state
electronics industry can sacrifice a small loss in throughput, as the performance gains from
the aforementioned fabrication steps pays off the time loss by many fold - there also lacks any
alternative techniques that can produce devices remotely close to the cutting edge technolo-
gies that use said fabrication steps; thus, with the lack of options and massive performance
gains, the small sacrifice in throughput is an easy choice to make.

These fabrication techniques may yield higher performance per cost, but are mostly
optimized solely for solid state electronics, and are often incompatible and are lacking in
perspective if directly translated to work with organic electronics. So starting with the
easier to digest one, compatibility. Many processes designed around solid state electronics
have a large thermal budget, with temperatures often exceeding 300oC - temperatures that
would easily burn most thin films of polymers and lead to deformation. Many lithography
processes would also be dismissed, due to the high amounts of energy shot at potentially
semi-transparent organic layers that can ruin device performance. The composition of various
polymers used in organic electronics do not lend themselves to be exposed to the harsh nature
of solid state fabrication techniques. Moving to the second point of lacking perspective. Due
to the performance shortcomings of organic electronics, it makes no sense to try and optimize
them for extremely expensive fabrication technologies - any cost increase in the fabrication
process for organic electronics takes away from one of their most promising features: cost.
Additionally, even in the best case vision where the fabrication techniques are fully optimized
to net absolute maximum performance, the already expensive fabrication methods taken from
solid state foundries are often not large area compatible, and even less compatible in roll-to-
roll manufacturing, nullifying the other two great features of organic electronics: large area
scalability and roll-to-roll manufacturing. To preserve these two upsides, it is infeasible to
try and optimize traditionally high performance fabrication techniques present in solid state
fabrication. Instead, we should turn towards much cheaper fabrication techniques that can
be scaled up to harness the strength of organic electronics.

The goal is to make organic devices using cost optimized methods with equipment that is
easy to use and compatible with the previously mentioned large area or roll-to-roll manufac-
turing, while utilizing, at best, fully solution processable materials and with purely additive
deposition. This way, material can be saved, waste can be minimized, and costs can be
brought down. Here is a quick overview of the various printing techniques that are used
in our lab, with figures and printing properties outlined in figure 1.1. In inkjet printing,
a MEMS nozzle can precisely and accurately place drops of a solution onto a substrate to
create patterns. Similar to regular household inkjet printers, they can be very slow, lim-
ited by the nozzle efficiency and the viscosity of the solution. Screen printing is a similar
process to graphic T-shirt printing, where a squeegee is pushed along the screen that holds

CHAPTER 1. TRADE-OFFS OF ORGANIC ELECTRONICS 3

the pattern, and deposits the material only where the screen is open. Gravure printing is a
rolling application of material, where the pattern is on the spinning wheel and gets applied
to the substrate below. Blade coating is a method of applying a solution at a very controlled
thickness across a large area using a doctor blade and an actuator to push the blade across a
substrate very steadily. It can be imagined like a knife spreading butter on toast. Patterns
can be applied by altering the surface energy of the substrate to create hydrophobic and
hydrophilic regions. Finally, spray coating uses a nozzle that sprays the solution onto a
mask to pattern the solution.

Figure 1.1: Printing Techniques12

Much like the various steps in solid state fabrication, each printing technique has its
own unique trade-offs and compatibilities with different materials, and need to be optimized
for specific processes. In short, the strengths of organic electronics lie in their flexibility,
scalability, and cost - and with almost everything in this world, these metrics come with
trade offs.

1.3 Augmenting Shortcomings with Solid State

Electronics

Solid state electronics may not be the focus of this paper, but it is always important to
compare alternatives, as it gives a more realistic perspective when designing for application.

CHAPTER 1. TRADE-OFFS OF ORGANIC ELECTRONICS 4

To begin, organic transistors do not compare to the performance metrics of solid state elec-
tronics. When comparing, for example, organic thin film transistors13 and Intel’s Trigate
Transistor4 figures of merit, the operating voltage can be almost ten times higher, the clock-
ing frequency can be five orders apart, with on/off ratios being less than ideal. The Trigate
transistors have an estimated ten year lifetime, where organic electronics are stuck generally
to a few weeks at their best. As an aside, though much of the comparisons that have been
made between solid state and organic electronics have been in the context of transistors,
the fabrication and cost comparisons can be extended beyond transistors, including photo-
voltaics, photonics, and more. This vast difference in performance makes direct competition
in the computational world impossible, but organic electronics can often find niches in the
sensor realm, where immense speeds are not required and can be further augmented with
solid state technology.

To overcome the major limitations of organic electronics, that is, high power consump-
tion, less than ideal performance, and short lifetime, researchers have turned to a different
approach: Flexible Hybrid Electronics.10 Instead of optimizing one or the other, the approach
is to combine both and utilize each of their strengths for versatile, semi-flexible sensing plat-
forms with computation power of solid state electronics. This does, however, introduce a
different type of complexity, in the form of integration. With organic and solid state elec-
tronics working side by side, there comes with it, compatibility issues, development time,
and prototyping costs which may also burden the researchers. In many scenarios, there are
often a very limited pool of interfacing hardware, creating a sense of repetition and monotony
each time a new system is required for a particular sensing application. While certainly some
optimizations can be made between each sensor’s back end hardware interface, the focus of
the research is largely not the back end hardware interface, but more a proof of concept for
the front end sensor.

5

Chapter 2

Past Integration Projects

2.1 Force Calibration

A force calibration system was needed to test the durability, hysteresis characteristics, and
longevity of one of our newly developed pressure sensors. It needed to precisely apply force
to a surface and cycle the measurement an arbitrary number of times through an easy to
use, minimal user interface to help calibrate and characterize the sensor. The new pressure
sensor was fabricated on a thin flexible substrate and translated a change in pressure to a
change in resistance when a normal stress was applied against the sensor. This meant that
the force application had to happen similar to a clamping motion by pressing the sensor
between two rigid bodies in a controlled, repeatable manner.

The approach was to use a stepper motor to control a linear actuator to move a rigid
body to clamp down the sensor against a separate immoving structure. This way, the motion
could be very finely controlled with repeatable outcomes. The stepper motor was controlled
through a high power motor driver, driven by a microcontroller with firmware that could
interface with a laptop through a serial connection. An important quantity to keep in mind
for a stepper motor application is the precision of each “tick”. The operating principle of a
stepper motor involves open loop control, sending pulses to a motor driver that can move
the stepper motor one tick, where a tick is defined by the structure and gear ratio of the
stepper motor. This is translated into a linear motion through a gear box. The system was
measured to have a resolution of 1.6µm per tick.

With the physical system complete, the next step was developing a user interface that
could take in the user parameters and be left to run on its own. Processing was used to
develop a minimal user interface for this project.

The UI has three main capabilities - (1) selecting the serial interface (2) programming
a routine (3) starting and stopping the routine. Selecting the serial interface is straight
forward: it lists all the available COM ports and gives the user the option to select the
correct one that corresponds to the force calibration device. The programmable routine
consists of three different inputs: the distance to cover, the speed to travel the distance,

CHAPTER 2. PAST INTEGRATION PROJECTS 6

Figure 2.1: Force Calibration System Schematic

and the number of cycles it will operate. For example, the UI pictured in figure 2.1 has the
base traveling 50 centimeters at a velocity of 5 centimeters per second, and will cycle 50
centimeters forward and 50 centimeters backwards a total of 10 cycles.

This system became a part of our characterization lab, enabling researchers to test the
durability and repeatability of a variety of sensors and devices,14 being able to program many
thousands of cycles at repeatable intervals. It was used to characterize strain and pressure
sensors, and also used for bend tests for a variety of flexible devices to test performance
under non-planar conditions. While this project did not outline the integration difficulties
that came along with flexible hybrid electronics, it gave me a taste of what it would be
like to try and realize a product that fit the needs for flexible electronics, whether it be
communication, broad expertise and know-how, or the general understanding for flexible
electronic operating principles. Implementation details can be found here.

https://github.com/onibrow/arg-calibration

CHAPTER 2. PAST INTEGRATION PROJECTS 7

2.2 Wound Stimulation & Bioimpedance Monitoring

A collaboration project with UCSD led to the development of a prototype platform to test
wound stimulation for accelerated healing and bioimpedance wound monitoring using our
printed flexible electrodes. The goal was to have a monitoring system that could collect
impedance data from an array of electrodes placed on a wound, while simultaneously stim-
ulating the healing process by applying a small current through the tissue.

The deliverable was split into two distinct parts: the impedance analyzer for monitoring
and the current source for stimulation. Each had to be able to interface with the same
electrode array of fifteen individually addressable contacts. An impedance analyzer should
be able to have a programmable frequency sweep that takes impedance measurements at
each point to string together an array of data that describes a material’s real and imaginary
resistances. To accomplish this, I built a small proof of concept system that included an
impedance analyzer front end chip, the AD5933.1 This chip was capable of operating pro-
grammable frequency sweeps up to 100kHz, with adjustable excitation voltages while being
able to measure complex resistances up to 100MΩ. The chip was outputting a DC biased
sine wave and using that as the input for an Op-Amp inverting amplifier topology, with the
characteristic impedance taking the place of the input resistor. This had implications on
saturation and precision, as all Analog to Digital Converters (ADCs) must deal with. This
then has limitations on the range of impedances that this could measure for any given refer-
ence resistor set by the user. If the user chosen reference resistor was too many orders larger
than the target impedance, the ADC in the AD5933 would saturate, leading to inaccurate
readings. To accommodate for this, I asked the researchers at UCSD to send me data on
previous wound impedance measurements that were conducted using a lab bench impedance
analyzer which would be much too bulky for a deployable application. I chose the reference
resistance to be the same magnitude as the smaller range of impedances as to avoid any
saturation problem.

The second half of the design was the tunable current source for wound stimulating to
promote accelerated healing. Sourcing current is difficult due to the limitations that come
with Ohm’s law - any amount of current going through a large impedance requires a huge
potential to drive said current. Looking at the previous data for wound impedances, the
specification that the research had in mind was shown to be impossible to hit without the
use of very expensive boost converters. With the power restriction, I was able to a hit a
few hundred microamps of current for loads up to 100kΩ using LM1343 Texas Instrument
adjustable current source, supplemented with two digital potentiometers, AD84002 in 1kΩ
and 10kΩ variants to control the closed loop tunable current source.

Combining these two halves was yet another challenge, as both have non-infinite output
resistances, effectively loading each other if not explicitly separated. One approach was to
use an analog multiplexor that could select either of the two outputs to be presented with
a mystery load. This would entail a two step process, the first of which to measure the
impedance of the attached load, and then switch to the current source to stimulate the load
if needed. A simple double-pole-double-throw switch was used to accomplish this. While

CHAPTER 2. PAST INTEGRATION PROJECTS 8

this approach assumed only one load, given the context, this would need to be expanded
to fit the larger fifteen array printed electrode schema. Additional hardware, namely more
multiplexors, would be needed in order to address two specific electrodes to take impedance
measurements from and drive. Given that the maximum number of electrodes was fifteen,
I utilized two sixteen by one multiplexors to be able to address each end point electrode
individually. The output of these two electrode addressing multiplexors could then be fed into
the double pole double throw switch that could be addressed to select either the impedance
analyzer or current source. Figure 2.2 illustrates an overview of the system with the electrode
multiplexors omitted.

Figure 2.2: Impedance Analyzer & Adjustable Current Source System Schematic1,2,3

This project was the first to introduce an application specific system, which simultane-

CHAPTER 2. PAST INTEGRATION PROJECTS 9

ously imposed stricter limitations and gave clear goals for exactly what should be measurable.
The flexible device in question, the printed electrodes, proved again how important it was
to be able to integrate more powerful solid state electronics, namely the analog front end
for frequency sweeping and impedance measurements, to create systems that could keep up
with researchers’ demands.

2.3 Integrated Wound Monitoring

The integrated wound monitoring project was in part with NextFlex, and required a deliver-
able that integrated various organic electronics into a flexible hybrid electronics system that
could monitor both wounded tissue impedance as well as oxygenation levels using photo-
plethysmogram (PPG) measurements. It featured our printed flexible electrodes to monitor
wounded tissue and our organic optoelectronics, 2 OLEDs and 1 OPD, for the pulse oxime-
try. The goal was to have both of the monitoring electronics integrated into one small system
that could be deployed as a wearable. As I have touched on our printed electrodes previously
as well as the impedance analysis in section 2.2, I will focus mainly on the oximeter design
for PPG measurements.

I will first go over the working principle of oximeters and how our optoelectronics play a
role in the design. Pulse oximetry is a non-invasive method to measure oxygenation in blood.
This is done by measuring the difference in absorption of two different wavelengths of light
through body tissue to back calculate the oxygen content in blood. In a traditional solid state
pulse oximeter, there are three key devices at play: two light emitting diodes (LED) and one
photodiode, as well as a transimpedance amplifier to read out the photodiode output. The
photodiode is responsible for measuring the light that gets transmitted through the blood,
while the LEDs are responsible for producing the two different wavelengths of light. Because
oxygen content in the blood affects the absorption of the two wavelengths differently, it is
important to use wavelengths that are most sensitive to the change in oxygen content; the
two most commonly used wavelengths are red and near infrared (NIR).

We had previously demonstrated the use of its organic LEDs (OLED) and organic pho-
todiodes (OPD) in pulse oximeter applications.6,8,9,11 Using these works as reference, I was
able to reproduce my own pulse oximeter with the use of an analog front end AFE44907 from
Texas Instruments. This chip was capable of driving LEDs at the needed thirty cycles per
second while taking measurements from the photodiode to construct PPG waveforms. The
difficulty of this subpart of the project was actually validating the hardware. The chip was
packaged in a 40-pin VQFN, or Very thin Quad Flat No Lead, that hid away its contacts un-
derneath the chip, making system fabrication and contact verification quite difficult. Many
hours were spent closely inspecting contacts under a microscope to ensure good connection.
After inspection, I tested communication and responsiveness of the system while connected
to solid state optoelectronics, yielding promising results when stepping up to high power
organic optoelectronics.

To transition from the prototyped systems into a full fledged deliverable, I had to first

CHAPTER 2. PAST INTEGRATION PROJECTS 10

combine the two halves and gather data using a hardware backend that could send data over
to a computer for processing. Unfortunately, combining systems is not as simple as lining
them up nicely next to each other on a single PCB - there are a few key factors to think about
before proceeding. The easy check is to make sure that there are enough communication
channels available on the hardware backend to interface with both subsystems. This would
entail simply counting the number of channels needed and cross checking both to make sure
certain digital communication protocol buses do not overlap, and if they do, have a way
to distinguish between the two. An example of this would be a shared Serial Peripheral
Interface (SPI) bus which consists of four channels: host data, peripheral data, a clock,
and a chip select. Each peripheral needs to use a separate chip select, else data from the
host would go to peripherals that should not necessarily be listening, as they might execute
commands that are unexpected, yielding unintended, non-deterministic outcomes. The data
rate for both subsystems had a minimum sample requirement, which implied that important
data could be lost if not sampled at a rate faster than the minimum. Unfortunately, the
discrepancy between the two subsystems (impedance analyzer and pulse oximeter) was very
large - the impedance analyzer had to operate very long frequency sweeps infrequently on
the order of 1Hz, while the pulse oximeter had to take many measurements per second, on
the order of 100Hz. This makes for scheduling challenges on a single threaded single core
microcontroller when trying to avoid starvation while keeping up with the strict sampling
requirement for the oximeter. Luckily, the goal was to make a system for long term, periodic
monitoring, so the slowness would be acceptable, as the two operations could be separated
in time, alleviating the necessity to interweave a scheduler to run both tasks simultaneously.

Figure 2.3 shows the system integrated with both the bioimpedance analyzer printed
electrode array and pulse oximeter, fitted with a red OLED, NIR OLED, and an OPD. This
was by far the most difficult integration to date - similar to the force calibration device, it was
meant to go from end to end, from the device fitting and overlaying to the data collection on
a host computer. Each layer in the system stack introduced more complexity, and the lack of
device testing capabilities led to a starvation in tests until the day for full integration, leaving
much to be desired in the design process. Though the bioimpedance printed electrode array
analyzer was designed much earlier than this project’s deadline, the lack of specification,
testing equipment, and subjects led to uncertainty in the design, as stricter constraints
would mean a tighter, robust system design that would most likely be more power hungry
and expensive, affecting the choice of microcontroller. Another difficulty arose in the device
integration - because organic electronics do not have a particularly long lifetime, exposure
to the atmosphere would lead to performance degradation, both in the OLEDs and OPDs,
making it very difficult to pinpoint the cause of the system’s poor performance.

2.4 Developer Notes

For a moment, I would like to step back and give a personal perspective on what it feels like
to be the integration developer. The research in this field of flexible electronics is typically

CHAPTER 2. PAST INTEGRATION PROJECTS 11

(a) Different Iterations of PPG and Electrode Interfacing Subsystems

(b) Final Formfactor with OLEDs, OPD, and Printed Electrodes

Figure 2.3: Fully Integrated System with Printed Electrodes and Organic Oximeter1,7

driven by the people who are in the fabrication lab making the devices and electronics
first hand - the proposals and application focus can be guided by anyone, but the bulk of
the cutting edge research is being done by creating an application for the printed flexible
electronics. The supporting infrastructure is just as important, as there are no systems with
only the sensors and flexible electronics, but to draw an analogy, no one focuses on the new
plumbing and air conditioning systems in a new building - the immediate attention is brought
to the architecture, the front facing interior design and the utilities. This isn’t to say that
the plumbing is not interesting, but is often a detail often ignored and underappreciated,
as it is often the case that these systems have been constructed before without the flexible
electronics, making the design aspect of the solid state platform feel a bit like reinventing
the wheel.

Regardless of the interfacing flexible electronics, someone somewhere has made a system
very similar to the one that is being designed - there exists little form of accomplishment when
successful and crippling confusion when the system does not work the way a similar system
was used in a different paper. To add to this, the system methodology is often not outlined in
very much detail, glossed over in a few sentences and a system level diagram that can be quite
unhelpful when development goes awry. To make matters worse, all developers have their
own development environments that are curated to their own personal tastes, along with
their preferences in types of hardware, PCB manufacture, and parts distributors, making

CHAPTER 2. PAST INTEGRATION PROJECTS 12

the translation from one person’s work to your own that much more cumbersome. Though
each individual’s experience may be different, I am confident that they have experienced at
least a few of these points I have brought up.

After much contemplation, I decided to move forward with a new project of mine, a
project aimed at alleviating part of the development cycle related to integration. The dream
was to create a hardware platform that developers could use to prototype various systems
that could easily interface with flexible electronics. While such a system would not be as
streamlined or physically viable to be used as a final design, it would serve to give a starting
point and lift the ”proof of concept” step off of the developer and allow anyone to quickly test
their flexible electronics integration. On top of that, I wanted to stick with a platform that
could be further developed using environments that did not need personalized configuration,
giving templates throughout each step in the design process for a true open source experience.

13

Chapter 3

Modular Integration Platform for
Printed Electronics

3.1 Initial Ideas and Concepts

In the initial stages of conceptualization, I was weighing various aspects of the project that
would eventually come around - this included end user usability, ease of use, learning curve,
and effort that would need to be put in for someone other than myself, as well as my
own personal fulfillment, implementation, and scalability with regards to the project. Two
different approaches were conceptualized.

The first was a modular approach to design. Often, a huge time sink in design for
systems is the chip selection and testing that needs to be done. For example, if a researcher
requested a system with a quad channel differential ADC, I would need to peruse electronics
vendors to find something that meets the project specification, as well as some personal
preferences, including but not limited to package (ease of soldering and size), digital interface,
and required passives. Because I would be the one producing the boards at a small scale,
the chip packaging mattered a lot to me. Soldering QFNs over and over would not exactly
be good for my sanity, much less reliable; larger chips would also not be great to use for
systems that wanted to be made smaller. With the limited number of digital interfaces on a
microcontroller, I had a strong preference for addressable communication, in this case, SPI or
in some scenarios, Inter-integrated Circuit (I2C). In the former case, the number of chips on
the SPI line had to be limited to the number of available chip select pins as well as the data
rates to avoid congestion. In the latter case, if I wanted to have multiple of the same chip
on a single system, they needed to be addressable separately. The other important personal
preference was the required number of passives. While capacitors, inductors, and resistors
are quite small, it was often not preferable to have too many littered around a system, as it
would limit the flexibility of the design. With a carefully curated catalog of common types
of flexible electronic interfaces implemented in 2-D CAD software, the vision was to make
a module library that had the chips, their required peripherals, and firmware all packaged

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 14

in such a way that would allow designers to drag and drop premade layouts to put together
larger systems.

While there were good ideas pertaining to module design, the truth of the matter was
that it still did not fit in a tight enough mold, giving absolute freedom to the end designer
when it came to layout and sourcing - I needed to place more constraints so there were fewer
decisions that needed to be made. I held onto many of these design principles through my
project, but decided to move away from this in-CAD module design approach.

The second idea I had was a bit further from the design of the system, but a catch
all system that could aid in the characterization and paper writing for researchers in the
flexible electronics field. It would be closer to a lab device characterization data acquisition
tool that could also automatically generate plots over parametric sweeps and extract device
parameters. One of the immediate challenges that came to mind was the limitation on
device multiplicity; would the system be able to hand larger device substrates that held a
large number of devices? If the approach taken accommodated this requirement, it meant
that the end data acquisition tool would house a large number of electronics that would all
need to communicate to a singular host in some manner. This could potentially be a lot of
data being sent back and forth between a central host and its many peripherals, which would
inevitably become congested if not designed with the utmost worst case design. While this
problem can be solved by having an extensive project budget, that would go against the idea
of having open source and accessible hardware. The idea of creating flexibility for the end
user was an idea I held onto, but once again moved away from this idea as a whole.

3.2 Firmware Platform

There were a few subsystems that would definitely need to be flushed out before any final
product would be prototyped, namely the microcontroller and programming environment. I
had exposure to three different environments prior to this: Arduino, mbed, and Segger Stu-
dios. In my eyes, the difficulty ramp was in that order, Arduino being the token introduction-
to-embedded-systems platform and Segger Studios being catered to more experienced users
and industry. To briefly go over the three development environments, Arduino comes as an
install package that can quickly interface with any of its development boards and upload
sketches directly from the IDE, along with the ability to add user defined libraries and cores
to interface with non-Arduino enabled boards and chips. The process to do this is usually
as easy as finding a repository online and copy pasting one link into the IDE in order to add
it to the compile path for a particular board, which is done automatically. mbed features
an online compiler that can compile for any of its supported boards with any user library,
similar to Arduino, with the added benefit that it can all be hosted online, only requiring
the user to drag and drop a compiled output file into their local devices. Segger is aimed
more towards a streamlined, custom development environment like many software program-
ming IDEs, with many powerful compilation tools and access to a large library, but with
the downside of everything needing to be configured locally, making for local environments

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 15

to be tailored to each user’s needs. While this does have a place in large scale, industry
level development, I wanted something either Arduino or mbed could support, as they each
require very little setup that can be either exported or documented in a very simple manner.
The choice between the two came down to personal preference, as I had a decent amount of
experience in both - but the choice would not just affect myself, but anyone who wanted to
potentially use the platform to develop. Hence, I went with Arduino, being much more user
friendly, though often lacking in performance power with their user tailored libraries.

3.3 Hardware Platform

With the firmware platform set, I created custom hardware that could interface with this
platform to define a set of chips I would use. The Atmel ATMega microcontroller was chosen
as a base. Looking through their datasheets and other open source projects that used them,
the first chip I wanted to create a scalable platform for was the ATMega328P. This chip is
used in a few of Arduino’s development boards as well, making the integration between my
hardware and Arduino as simple as flashing the special Arduino bootloader, which the IDE
can do for me after setting up special hardware connections, leaving me to resolve how I
was going to get the bootloader on the chips. Atmel AVR has a few solutions for this, using
either In-circuit Serial Programmer (ISP/ICSP) or Joint Test Action Group (JTAG) pins to
access the memory that holds the firmware. While these solutions are nice, it requires me to
place large pinouts on every single board that will only end up being used once, consuming
board area, vertical space, all at an increased cost. An argument could be made here that
these specific pinouts and flashing solutions also come with the added benefit of doubling as
debugging tools, but in the end, the formfactor was a higher priority, and without the use
of bulky connectors, could trim down the size of each subsystem. I needed an impermanent
solution that did not require populated components, and designed my own tool that utilized
ATMEL ISP and Arduino’s bootloader burning functionality.

As shown in Figure 3.1, I designed a self aligning ISP that can flash a bootloader on
any Atmel chip using pogo pins and contact pads. The burn in tool is a custom designed
Arduino Uno shield that is 3.3V safe, loaded with “Arduino as ISP” firmware, capable of
bootloading chips connected to its ISP pogo pin headers. This way, the contacts on the
bottom side of the board will not take up much board space with no need for a populated
component. The burn-in tool’s alignment holes and contact pads have been made into a
device that can be used in EAGLE 2D CAD for ease of development. As long as there are
few underside extrusions, contact can be made. As a side note, the ISP digital logic voltage
being set to 3.3V does not disallow it to flash 5V devices, unless the chip’s operating voltage
must be at 5V; the fuses are set during the operation and will not trigger a fault until the
device is powered at a later time. Once I had a firm grasp on how I would be able to flash
a bootloader onto my custom designed microcontroller boards, the next step was to design
around the burn-in tool.

Three different variants of the ATMega328 (328P-PU, 328P-AU, 328PB-AN) were chosen

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 16

Figure 3.1: Bootloader Burn-In Tool

where each require slightly different bootloaders, and the ATMega32u4-MU (see figure 3.2
for each of their design). An interesting thing to observe from the image is the ATMega328’s
lack of USB capabilities, adding the need for a USB to Transistor-to-Transistor Logic (TTL)
adapter. A very common choice for this is the Future Technology Devices International
(FTDI) chips that can convert USB 2.0 into serial data that can be read over serial Universal
Asynchronous Receiver-Transmitter (UART). Each of these boards were designed to have
the least number of components possible while getting most if not all the functionality out

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 17

of the microcontroller.

Figure 3.2: Various Implementations of Atmel Microcontrollers on Custom Hardware

3.4 Small Scale Manufacturing Choices

As discussed in chapter 2, the fabrication time that goes into designing solid state systems
is neither cutting edge or exciting, with the only possible outcomes being a short lived sense
of satisfaction or frustration that arises from faulty solder joints. In this section, I would like
to outline my manufacturing selection, the process specific to it, as well as its pros and cons.

A common service that industry and small scale developers use is turn-key PCB assembly.
Instead of ordering a PCB that comes unpopulated, the PCBs arrive with some if not all
components already soldered on; this comes at an additional cost that can get quite expensive
as well as an increase in turnaround time. My manufacturer and turnkey service is JLCPCB,
a fabrication foundry based in Hong Kong that offers a variety of services - I will be focusing
on their surface mount (SMT) assembly service.

JLCPCB sources their SMT catalog from LCSC, an electronics distributor based in Shen-
zhen, and houses a huge selection of parts, from standard passives to more application specific
IC’s. This leads to the second reason why I went with JLC, as they have the ability to pick
and place the ATMegas that I was planning on using. This opens the possibility for me to
use packages that are otherwise much more difficult to hand solder, such as ball gate arrays
(BGA) and quad flat no-leads (QFN). The smaller packages freed up more board space for
me to use in my designs with basically no additional cost. I decided on the 32 pin quad
flat package (QFP) for the ATMega328, and the 44 pin QFN for the ATMega32u4. Another
great feature of JLCzPCB was the ability to visualize the board and all the parts on it before
placing the order. If the component placement list (CPL) and bill of materials (BOM) files
are populated correctly, JLC will show all the parts and their orientations on a virtual render
of your board.

All the components were soldered with no problems, enabling me to go from unboxing
to flashing bootloader within ten minutes, only needing to populate a few components that
JLC did not offer. This fast paced development without the need to solder helped make my

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 18

boards much more reliable. All boards designed in the project were designed around JLC’s
manufacturing and turn-key service to enable quick development and expansion.

3.5 Final Conceptualization

In the final design, I explore the two approaches to find an agreeable middle ground in order
to help facilitate a design and prototyping platform that could help ease R&D efforts for
flexible and printed electronics researchers. The end product was a platform that could serve
to quickly test flexible printed electronics while simultaneously providing enough complexity
and robustness to create bulky but functional prototypes of envisioned systems that can
feature multiple types of flexible electronics working in tandem.

Revisiting the ideas from earlier, I evaluated the two design approaches: a modular design
platform and a catch-all solution device characterization device; both had their glaring flaws
that would prove to be too much to overlook, giving rise to a need of a good middle ground
that could inherit the good design principles from both, while easily understood and usable
by other researchers. The intermediate idea I had was to use the modularity in design,
but restrict it to the physical realm of hardware, not in CAD. This would entail being able
to physically move certain component groups around and rearrange them to make larger
systems. The envisioned system, pictured in figure 3.3, captures the overview of how I
imagined the system.

Figure 3.3: First System Overview

It would consist of largely two types of parts - the motherboard and the modules. The
motherboard is the larger PCB that has connectors that can house the different modules.
The motherboard would serve as some central hub where all the data would come through to
interface with a computer, aggregating and scheduling the various modules to collect data.
Because the motherboard would be interfacing with the computer, it was important for it to
have a USB connection; this made the ATMega32u4 a smarter choice for the motherboard.

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 19

At the time, I was not set on a particular type of physical or digital interface between the
motherboard and the modules, but I knew that I wanted to have the modules plug into the
motherboard for both power and communication.

Figure 3.4: Leader-Follower Configuration for UART5

Module Communication

Understanding the limitations of the digital communication hardware enabled on the micro-
controllers, I knew it would be difficult to set up a strict host and peripheral system like I2C
or SPI. For this reason, I settled on a peer-to-peer friendly communication protocol, UART.
UART traditionally can only support single end point communication, meaning that at most,
two chips can talk to each other. This is primarily due to the fact that UART only uses two
communication lines, a transmit and receive, named exactly for their purpose. Immediately,
this makes it sound like it would not work for a system that had a pseudo-host and multiple
peripheral modules. To create a distributed communication network using UART, I added
a host controlled 4:2 multiplexor so the leader could choose which module to talk to, shown
in figure 3.4. This actually introduces yet another problem - the peripherals are never al-
lowed to initiate meaningful communication with the host even though the protocol does
not explicitly disallow this. In other host-peripheral communication protocols, the only way
a peripheral can send information to the host is when the host asks for information; said
a different way, the peripheral cannot actually speak up on its own. In this UART multi-
plexed system, there is nothing prohibiting the modules from speaking up and losing data.
To build communication reliability, I had to implement my own standard for this system,
modeling it off of how I2C or SPI protocols are implemented. Every module’s firmware is
designed to handle UART interrupts in a manner that emulates the call-response nature of
the aforementioned communication schemes.

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 20

1 // Pars ing UART Int e r rup t − only t r i g g e r s on incoming data from l eade r
2 void s e r i a lEven t () {
3 s i z e t l en = S e r i a l . readBytesUnt i l (’ \n ’ , buf f , 50) ;
4 u i n t 8 t func = f i nd f un c (buf f , l en) ;
5
6 i f (strncmp (buf f , ” req ” , func) == 0) {
7 req () ;
8 } e l s e i f (strncmp (buf f , ” i n f o ” , func) == 0) {
9 i n f o () ;

10 } e l s e i f (strncmp (buf f , ” s t a r t ” , func) == 0) {
11 s t a r t () ;
12 }
13 }

Listing 3.1: Follower side Motherboard-Module Communication Standard

Module Interfaces

Each module would be enabled to support one specific type of device interface: for example,
one of the modules could support OPDs, having an adjustable reverse bias voltage tran-
simpedance amplifier with high sampling rates. By containerizing each device type, this
enables users to hand pick what types of device interfaces they want to use to test in paral-
lel. In principle, this is what I wanted to accomplish, but there was one larger flaw in this
system that I had to address. Because each module had one FFC on it, this meant that it
would be very difficult to test substrates that housed multiple devices. Additionally, because
the inter-PCB connections would already be set to specific pins on the FFC, it took away the
design freedom from the device research for where their device contacts would go. Though
I explained how certain freedoms were not favorable in this project, taking away freedoms
from the device architecture is not a compromise that research should need to make when
designing around a system whose goal is to provide a modular, flexible experience. Hence, a
larger change had to be put into place before designing the modules.

Resolving this issue took some back-to-the-basics physical prototyping that would be
best done using cutting edge prototyping equipment: cardboard. Before ordering expensive
PCB prints that would take more than a week to arrive, I went for the easiest, quickest way
to test out different approaches to solve this problem. The root of the problem was in the
FFC; if the end user did not have absolute control over how they wanted to define every
single interconnect, the development platform would basically be useless. Going back to the
OPD module example, if the user wanted the cathode to be 4 pins wide from pins 4 - 7
and the anode to be 2 pins wide from pins 10 - 11, they should be able to choose exactly
where each pin on the FFC should go. This level of flexibility is very difficult to implement
in hardware, as it requires all 32 pins of the FFC to be able to fan out to any pin on all
modules, which can have a varied number of pins. A quick calculation would show that for
32 pins connecting to three different modules that have four pins each would yield more than
10,000 permutations for how the end user would want the pins to be connected. This degree
of freedom was not something I was prepared for and did not want to deal with, so I put all
of that power in the hands of the user, shown by the cardboard prototypes in figure 3.5.

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 21

(a) Select Modules (b) Connect Devices

Figure 3.5: Cardboard Prototype of Module-Motherboard Interconnects

All pins of the FFC are broken out as exposed pins on the motherboard, allowing the
user to connect them to whichever pin on whatever module they would like, eliminating the
need for the system to handle the gross number of connection permutations. After briefly
consulting my lab mates about this design, I moved forward with form factor, with the
finalized system design coming out to figure 3.6. Here, the entire system has only one FFC
interface with its pins broken out, along with the familiar three module setup that can be
plugged in via five dual pin headers, delivering nine volts, ground, and UART that go to the
back end of the motherboard to talk to the host chip.

3.6 Modularity in Design

The completed system is indeed modular - the end user has full control over what modules
to use (albeit limited to using three of them) and still has full freedom over how the pins
on the FFC will be used. However, the true power of modular design should not end
at the application, but should also be embedded in the design. All three aspects of the
design process, hardware, firmware, and software, have been packaged nicely in a way that
allows new types of interfaces to go from prototypes to working modules on the system very
smoothly.

Hardware Design

To keep all the modules roughly the same design, there is a template layout that has all the
required components sans the analog front end that would interface with the devices. This
includes the exact form factor, connectors, ATMega328, as well as any required peripherals
that are needed for power and standard operation. To prevent the modules from getting too
large, the area for the analog front end is slightly limited, but has enough space to include a
few chips. On top of that, the board comes with a BOM and CPL file that can be directly

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 22

(a) Concept Render

(b) Implemented System

Figure 3.6: Final System Design

used with JLCPCB, making the design and order process much smoother. The designer can
prototype the analog front end on any generic ATMega328 Arduino development board and
translate it into a PCB with ease.

Firmware Design

Once the design is complete and the order is received, the module needs to be flashed
with the proper bootloader and firmware that would enable it to communicate with the
motherboard. There are, again, a few restrictions that come into play here to ensure a
stable communication, such as data transfer rates and latency. An example firmware file can
be found with guiding comments, making porting in previously used prototype code very
easy. After implementing the required functions, a new module can be ready to communicate
data back and forth between the host very quickly.

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 23

Software Design

Finally, when the entire module is prepped to be tested, it needs to have a way to talk to
the user interface of the entire system, thus the need for a modular software implementation
of the different types of modules. This is done all in Python through the use of inherited
classes; there exists a super class that serves as the baseline for what all module classes need
to implement to interface properly with the UI.

(a) Hardware (b) Firmware (c) Software

Figure 3.7: Design Modularity of MIPPE Modules

With proper scaffolding for all three design aspects, I hope that creating new modules can
be done at a much faster pace than developing individual systems for each application. This
way, designs can be shared across this platform eliminating the need for many developers to
reinvent the wheel.

3.7 Application Information

The user interface is written completely in Python, utilizing PySerial to handle all USB com-
munication, numpy and scipy packages for math and signal processing, sched for scheduling
events, along with other common packages (time, sys, glob) for utility. The physical sys-
tem is represented as class MIPPE(self, serial port, scheduler, csvfile) that takes
three different objects to hold as pointers for their respective tasks. During setup, it pings
all three of the modules for "info()", for which all modules are programmed to respond
with their module type (actpot, paspot, oled, tia). The MIPPE class then makes a module
object corresponding to the module that was discovered, which proceeds to walk through

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 24

its own setup. After all the loaded modules have been set up, the user can start the data
collection and let the system run.

Listing 3.2 demonstrates how a generic MIPPE module is implemented. There are a few
class specific attributes that the designer will have to define, including its full name, whether
or not a plot for it is necessary, and the name of the y-axis of said plot. When the module is
initialized, it goes through a setup, noted in the last line of the init function. Here, any
sort of user configuration can take place, from setting reference resistors, gain adjustments,
and naming the different channels. Here, the module also needs to write all of this user
configuration into the CSV file so that anyone viewing the data afterwards can still identify all
the channels. The other functions that need to be defined are req info(), next routine(),
start routine(), and parse vals(). req info() is a function that asks the module for
its module type. This is typically useful for hot plugging, if the user decides to swap out
the modules before refreshing the module list. next routine() and start routine() go
together, by sending the start flag to the modules to begin taking measurements and then
adding the routine to the scheduler to periodically request from the module’s data buffer.
Looking closely, next routine() will first add itself to the schedule again to run after a
whole second, and then request a data dump from the module. It reads the data line by line,
saving the data in the CSV file, preceded by its module number.

One of the important points is how the data communication is scheduled - each module
is expected to have, implemented, a buffer that can hold at least one seconds worth of data.
This is to free up the application’s scheduler, as the simple scheduler that is implemented
cannot handle lateness, else it ends up in a perpetual state of lateness, unable to recover.
While it is true that this downside can be made a non-issue by either having it run on a
slightly more powerful computer or through the use of multi-threading, I wanted to make
the application very deterministic; this would make the debugging easier and thus, introduce
predictable issues if a new module is not implemented to standard.

Implemented Modules

Active Potentiometric Module

The active potentiometric module can directly measure potentials, such as on chemical sen-
sors that produce chemical potential between electrodes. It can measure up to eight channels
from −2.048V to 2.048V 10 times a second at 16 bit resolution.

Passive Potentiometric Module

The passive potentiometric module can measure resistive sensors using a voltage divider
setup. The reference resistor is a tunable eight bit digital potentiometer, with the voltage
division connected to the same ADC as the active potentiometric module. It can measure
similarly 10 times a second at 16 bit resolution, but for four channels.

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 25

1 c l a s s mippe module (ob j e c t) :
2 fu l l name = ’ Generic Mippe Module ’
3 p l o t = False
4 y ax i s = ’Data ’
5 per iod = 1
6 de f i n i t (s e l f , num, c e r ea l , s chedule r , c s v f i l e) :
7 s e l f . module num = s t r (num)
8 s e l f . c e r e a l = c e r e a l
9 s e l f . sched = schedu l e r

10 s e l f . c s v f i l e = c s v f i l e
11 s e l f . setup module ()
12
13 de f setup module (s e l f) :
14 p r i n t (” Se t t i ng up Generic Mippe Module”)
15
16 de f r e q i n f o (s e l f) :
17 s e l f . c e r e a l . wr i t e da ta (’ {} i n f o () \n ’ . format (s e l f . module num) . encode (” a s c i i ”))
18 s e r i a l d a t a = s e l f . c e r e a l . r e a d l i n e ()
19 re turn s e r i a l d a t a
20
21 de f n ex t r ou t i n e (s e l f) :
22 s e l f . sched . ente r (mippe module . per iod , 1 , s e l f . n ex t r ou t i n e)
23 s e l f . c e r e a l . wr i t e da ta (’ {} req \n ’ . format (s e l f . module num) . encode (” a s c i i ”))
24 t o w r i t e = ””
25 s e r i a l d a t a = s e l f . c e r e a l . r e a d l i n e ()
26 whi l e (s e r i a l d a t a != ’d ’) :
27 t o w r i t e += s e l f . module num + ” , ” + s e r i a l d a t a + ”\n”
28 s e r i a l d a t a = s e l f . c e r e a l . r e a d l i n e ()
29 s e l f . c s v f i l e . wr i t e (t o w r i t e)
30
31 de f s t a r t r o u t i n e (s e l f) :
32 s e l f . c e r e a l . wr i t e da ta (’ {} s t a r t () \n ’ . format (s e l f . module num) . encode (” a s c i i ”))
33 s e l f . sched . ente r (mippe module . per iod , 1 , s e l f . n ex t r ou t i n e)
34
35 de f p a r s e v a l s (va l s) :
36 re turn [x ∗ 1 .0 f o r x in va l s]

Listing 3.2: Generic MIPPE Module class

High Power Management Module

The high power management module is used to supply a high voltage to a device, namely
OLEDs. It goes through a calibration process that creates an eight bit mapping (256 values)
to applied voltage by operating a sweep. This way, the applied voltage can be set very
quickly after a calibration step, allowing for routines to be programmed to flash the OLEDs
at very regular intervals.

Transimpedance Amplifier Module

The transimpedance amplifier module, as the name implied, converts a current signal into
a voltage through an amplifier, whose output gets fed into a 10 bit ADC. It can accurately
measure from 50nA to 50µA ignoring noise. It can also supply a reverse bias voltage to an
OPD using a 12 bit DAC to up its sensitivity.

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 26

UI Demonstration

Figure 3.8 is an example use case for the system. It has loaded the active potentiometric
module, the transimpedance module, and the high power management module. As the UI
shows, each module is being detected on the fly, and goes through each of the module specific
setups. After the user hits enter, data collection can take place and is saved as a MIPPE
formatted CSV file that can be used to automatically generate plots.

The autoplotting functionality is done through the use of matplotlib, creating color
coded plots for multi-channel modules, auto labeling axis, and giving the user control over
which channels they would like to plot. As shown in figure 3.9, the plots can also be visualized
in an interactive format through Jupyter notebook, and then saved as images from there.
It works by checking the CSV file loaded in to make sure it is in the proper MIPPE format
that is autogenerated by the application, and then separates out all the data between the
modules. In this example, there was a passive potentiometric module, a transimpedance
amplifier module, and a high power management module powering LEDs attached to the
system, with the LEDs pointing at a photodiode connected to the transimpedance amplifier.
The routine can be observed on the transimpedance amplifier sensor module’s plot, noted by
the spikes in voltages, indicating that the LED was turned on. In the passive potentiometric
sensor module plot, two channels out of the four were used to measure the resistance at
the ends of a breadboardable potentiometer, showing the inverse relationship between the
voltages seen at the ends.

This concludes the reach of my project, following its development as well as my own
learning process through the year. I personally wanted to develop more modules for my
system, but due to the circumstances that arose during this time, my hours in the lab were
abruptly cut short and thus, shifted my focus to a more streamlined user interface that
would be much more scalable. In the final chapter, I will discuss further improvements and
possibilities for this project.

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 27

Figure 3.8: MIPPE User Interface Example

CHAPTER 3. MODULAR INTEGRATION PLATFORM FOR PRINTED
ELECTRONICS 28

Figure 3.9: MIPPE Data Visualizer Example

29

Chapter 4

Future Work & Conclusion

4.1 More Powerful, Reliable Hardware

Microcontroller Choice

There were not many options when it came down to choice of microcontroller, considering
the availability from the LCSC catalog as well as the availability of a development platform
that could interface with the Arduino IDE. That said, there are plenty of newer development
boards that have been released that support 32-bit ARM Cortex chips that have much more
program memory, dynamic memory, and speed when compared to the 8-bit microcontroller
that I had selected. This naturally comes with a slight increase in cost, but the trade-offs
that can be made are much too big to ignore. If the modules could be translated to use
larger, more powerful microcontrollers, this would give more flexibility in, for example, the
number of channels they could interface with, as well as the sampling speed that they could
achieve. An example of such a microcontroller could be the ATSAMD21, which can be found
on a variety of different development boards. It can also be bought and placed by JLCPCB,
making it a solid choice for any future development that can happen..

Power Management

At its current state, the MIPPE system as a whole uses the LM1343 to regulate its 9V input
down to 5V on the motherboard and all of the modules. While this linear DC-DC converter
is very precise and can provide high amounts of current, it gets very hot due to its lossy
step down conversion. To overcome this, there are a few methods that could more carefully
manage power - select a buck-boost configuration with switch capacitor ICs to regulate power
at higher efficiencies or USB-PD protocol to utilize the USB-C’s high power capabilities to
have do the power regulation as two examples.

CHAPTER 4. FUTURE WORK & CONCLUSION 30

More Modules

Some other modules I had in mind to implement include small scale impedance modules that
use signal generators to excite reactive elements to calculate impedance, a transimpedance
module that had a variable reference resistor and better filtering circuitry, an antennae mod-
ule that could interface with printed antennas for transceiving capabilities, and a three ter-
minal device parametric sweep to characterize and automatically plot different performance
curves for transistors.

4.2 Scalable Firmware Environments

As it stands, the firmware on the modules works to support their respective analog front
ends and sample data. However, these can be made faster and more reliable by reducing or
removing the necessity for dynamically allocated heap memory. Embedded systems do not
function too well utilizing a bi-directional growing stack, as memory abstraction does not
exist like in operating systems. Additionally, most libraries that are being used are simple
wrappers for chip to chip communication, save a few attribute variables that are kept for
reference, meaning the dynamic element can be removed to optimize performance.

The development environment is also still tied to the Arduino IDE - while this is nice for
a person getting into design for the first time, development environments can be packaged
nicely to work in self contained environments, assuming proper compiler tools exist on the
computer. Because of the limited selection of chips, the entire Make process can actually
be made much smaller than the existing compile target directories that come included with
Arduino. Creating a fast deploying programming environment is again something that can
be done to lower the entry barrier for people to write firmware.

4.3 GUI & Software Optimization

The software environment, on the other hand, is much easier to handle, as all it requires is
a few pip packages that can be included as a requirements file. However, it is all currently
implemented as a command line interface utility, which is not exactly most scalable and easy
to understand interface type. The creation of a dynamic graphical interface would make the
application much easier to use - the user would be able to select parameters from drop down
menus and text boxes rather than going through multiple layers of a command line.

The whole module scheduling is also not implemented in the most robust way, with a
scheduler that perpetually falls behind once the first deadline is missed and is not exactly
functioning as a scheduler. The data requests can be spread out utilizing multithreading,
with each module writing to its own CSV file to rid the need of a specialized CSV format
for the MIPPE Data Visualizer to read.

CHAPTER 4. FUTURE WORK & CONCLUSION 31

4.4 Final Words

My research adventure started with me stumbling into a new lab that I knew close to
nothing about, fascinated yet confused out of my mind with this organic electronics field
that I had never even heard of before. During my five semesters in the group, I watched
graduate students and postdocs present on their work, asking questions I felt were too basic,
frantically looking up polymers that I had never heard about. Over time, I learned about
the complexity, the trade-offs, and fabrication difficulty that came with printed electronics,
and began to fill a niche in the group, utilizing my previous experience with systems to help
develop integration platforms with their printed organic electronics.

After being asked to participate in a few projects, I began to wonder what would happen
once I had to leave, with no one to fill this role in the group. This thought soon developed
into the initial ideas for the project, and eventually came into fruition in the form of this
integration platform project. In a sense, I wanted to leave something for the group, something
that could be used to make their research lives just a bit easier. While at the current stage,
the project may not be complete enough to provide the amount of support I envisioned, but
with a bit more work, I would like to see this sit in the characterization lab, ready for the
next new revolution in printed electronics to come through the lab doors.

32

Bibliography

[1] 1 MSPS, 12-Bit Impedance Converter, Network Analyzer. AD5933. Analog Devices.
Sept. 2005.

[2] 1-/2-/4-Channel Digital Potentiometers. AD8400. Analog Devices. Nov. 2001.

[3] 3-Terminal Adjustable Current Sources. LM134. Texas Instruments. Mar. 2000.

[4] Mark Bohr and Kaizad Mistry. “Intel’s revolutionary 22 nm transistor technology”.
In: Intel website (2011). url: https://www.intel.se/content/dam/www/public/
us/en/documents/presentation/revolutionary-22nm-transistor-technology-

presentation.pdf.

[5] CMOS Single 8-Channel Analog Multiplexer/Demultiplexer With Logic-Level Conver-
sion. CD4052B. Texas Instruments. Aug. 1998.

[6] Donggeon Han et al. “Flexible Blade-Coated Multicolor Polymer Light-Emitting Diodes
for Optoelectronic Sensors”. In: Advanced Materials 29.22 (2017), p. 1606206. doi:
10.1002/adma.201606206. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/adma.201606206. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/adma.201606206.

[7] Integrated Analog Front-End for Pulse Oximeter. AFE4490. Texas Instruments. Dec.
2012.

[8] Y. Khan et al. “Organic Multi-Channel Optoelectronic Sensors for Wearable Health
Monitoring”. In: IEEE Access 7 (2019), pp. 128114–128124.

[9] Yasser Khan et al. “A flexible organic reflectance oximeter array”. In: Proceedings of
the National Academy of Sciences 115.47 (2018), E11015–E11024. issn: 0027-8424.
doi: 10.1073/pnas.1813053115. eprint: https://www.pnas.org/content/115/47/
E11015.full.pdf. url: https://www.pnas.org/content/115/47/E11015.

[10] Yasser Khan et al. “A New Frontier of Printed Electronics: Flexible Hybrid Elec-
tronics”. en. In: Advanced Materials n/a.n/a (), p. 1905279. issn: 1521-4095. doi:
10.1002/adma.201905279. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/adma.201905279 (visited on 04/13/2020).

https://www.intel.se/content/dam/www/public/us/en/documents/presentation/revolutionary-22nm-transistor-technology-presentation.pdf
https://www.intel.se/content/dam/www/public/us/en/documents/presentation/revolutionary-22nm-transistor-technology-presentation.pdf
https://www.intel.se/content/dam/www/public/us/en/documents/presentation/revolutionary-22nm-transistor-technology-presentation.pdf
https://doi.org/10.1002/adma.201606206
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201606206
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201606206
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201606206
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201606206
https://doi.org/10.1073/pnas.1813053115
https://www.pnas.org/content/115/47/E11015.full.pdf
https://www.pnas.org/content/115/47/E11015.full.pdf
https://www.pnas.org/content/115/47/E11015
https://doi.org/10.1002/adma.201905279
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201905279
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201905279

BIBLIOGRAPHY 33

[11] Claire M. Lochner et al. “All-organic optoelectronic sensor for pulse oximetry”. en.
In: Nature Communications 5.1 (Dec. 2014), pp. 1–7. issn: 2041-1723. doi: 10.1038/
ncomms6745. url: https://www.nature.com/articles/ncomms6745 (visited on
04/16/2020).

[12] Aminy Ostfeld. “Printed and Flexible Systems for Solar Energy Harvesting”. PhD
thesis. EECS Department, University of California, Berkeley, May 2017. url: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-19.html.

[13] Mahsa Sadeghi et al. “Printed Flexible Organic Transistors with Tunable Aspect Ra-
tios”. en. In: Advanced Electronic Materials 6.2 (2020), p. 1901207. issn: 2199-160X.
doi: 10.1002/aelm.201901207. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/aelm.201901207 (visited on 04/13/2020).

[14] Xiaodong Wu et al. “Large-Area Fabrication of High-Performance Flexible and Wear-
able Pressure Sensors”. In: Advanced Electronic Materials 6.2 (2020), p. 1901310. doi:
10.1002/aelm.201901310. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/aelm.201901310. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/aelm.201901310.

https://doi.org/10.1038/ncomms6745
https://doi.org/10.1038/ncomms6745
https://www.nature.com/articles/ncomms6745
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-19.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-19.html
https://doi.org/10.1002/aelm.201901207
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201901207
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201901207
https://doi.org/10.1002/aelm.201901310
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aelm.201901310
https://onlinelibrary.wiley.com/doi/pdf/10.1002/aelm.201901310
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201901310
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201901310

	seiya title page
	Seiya_Thesis
	Contents
	List of Figures
	Listings
	Trade-offs of Organic Electronics
	Organic Electronics
	Printing Techniques and Implications on Manufacturability
	Augmenting Shortcomings with Solid State Electronics

	Past Integration Projects
	Force Calibration
	Wound Stimulation & Bioimpedance Monitoring
	Integrated Wound Monitoring
	Developer Notes

	Modular Integration Platform for Printed Electronics
	Initial Ideas and Concepts
	Firmware Platform
	Hardware Platform
	Small Scale Manufacturing Choices
	Final Conceptualization
	Modularity in Design
	Application Information

	Future Work & Conclusion
	More Powerful, Reliable Hardware
	Scalable Firmware Environments
	GUI & Software Optimization
	Final Words

	Bibliography

