
Sharing without Showing: Building Secure Collaborative
Systems

Wenting Zheng

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-149
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-149.html

August 13, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Sharing without Showing: Building Secure Collaborative Systems

by

Wenting Zheng

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Raluca Ada Popa, Co-chair
Professor Ion Stoica, Co-chair
Professor Deirdre Mulligan

Summer 2020

Sharing without Showing: Building Secure Collaborative Systems

Copyright 2020
by

Wenting Zheng

1

Abstract

Sharing without Showing: Building Secure Collaborative Systems

by

Wenting Zheng

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Raluca Ada Popa, Co-chair

Professor Ion Stoica, Co-chair

The recent revolution in advanced data analytics gave rise to a growing demand among
organizations for high quality data. However, in many domains such as finance and medicine,
organizations have encountered obstacles in data acquisition because their target applications
need sensitive data that reside across multiple parties. One promising solution to this data
scarcity problem is collaborative computation, where several organizations pool together their
data and compute on the joint dataset. This type of computation enables parties to acquire
a larger volume of data, as well as more diverse data. Unfortunately, organizations are often
unwilling or unable to share their data in plaintext due to business competition or government
regulation.

My dissertation focuses on solving this problem by enabling organizations to run complex
computations on the joint dataset without revealing their sensitive input to the other parties.
This dissertation presents four systems that utilize hardware enclaves as well as advanced
cryptographic techniques for secure computation on workloads that range from SQL analytics
to machine learning. By utilizing a wide range of tools from both systems and cryptography
and also innovating on them, my systems provide strong and provable security guarantees
and are often orders of magnitude faster compared to prior work or the more straightforward
ways of integrating cryptography into systems.

i

To my parents, friends, mentors, and colleagues

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Secure collaborative computation . 2
1.3 Overview of thesis . 2
1.4 Adoption . 3

2 Background 4
2.1 Hardware Enclaves . 4
2.2 Cryptographic approach . 5
2.3 Comparison . 5

3 MiniCrypt 7
3.1 Overview . 8
3.2 Key packing . 13
3.3 Read operations . 14
3.4 Writes in the generic mode . 16
3.5 The APPEND mode . 18
3.6 Implementation . 23
3.7 Evaluation . 23
3.8 Related work . 29
3.9 Conclusion . 30

4 Opaque 31
4.1 Background . 32
4.2 Overview . 33
4.3 Opaque’s encryption mode . 37
4.4 Oblivious execution . 39

iii

4.5 Query planning . 45
4.6 Implementation . 52
4.7 Evaluation . 52
4.8 Related work . 57
4.9 Conclusion . 58

5 Helen 59
5.1 Background . 60
5.2 System overview . 64
5.3 Cryptographic Gadgets . 67
5.4 Input preparation phase . 69
5.5 Model compute phase . 73
5.6 Extensions to Other Models . 76
5.7 Evaluation . 77
5.8 Related work . 83
5.9 ADMM derivations . 85
5.10 Security proofs . 86
5.11 Conclusion . 96

6 Cerebro 97
6.1 Overview of Cerebro . 98
6.2 Programming and Execution Model . 100
6.3 Policies and auditing . 107
6.4 Implementation . 113
6.5 Evaluation . 114
6.6 Related work . 120
6.7 Security proofs . 121
6.8 Physical planning . 125
6.9 Conclusion . 127

7 Conclusion 128

Bibliography 130

iv

List of Figures

3.1 System architecture for a typical encrypted key-value store and MiniCrypt. A lock
indicates an encrypted item. Orange indicates a compressed item. MiniCrypt’s
values consist of compressed and encrypted packs. 10

3.2 Compression ratios for different datasets. Note the x-axis is log-scale. The table
summarizes the trend for each dataset using the zlib compression algorithm. For
each dataset, it lists the total number of rows, the average size of the value in each
row, the maximum compression ratio achieved (on the entire dataset), and the
average number of rows that must be in a single pack to achieve a compression
ratio that is ≥ 75% of the maximum compression ratio. 13

3.3 get pseudocode. 15
3.4 get by range pseudocode . 15
3.5 put pseudocode . 17
3.6 split pseudocode . 18
3.7 APPEND mode timeline. 18
3.8 APPEND mode: an illustrated timeline showing the key constraints in each epoch.

Let k1.x be the first key in epoch x, and kmin.x be the minimum key in epoch x.
The epoch time is designed to be large enough to provide guarantees that k1.e+1

is less than all keys in epochs e+ 2 and beyond. This implies that kmin.e+1 is also
less than all keys in epochs e+ 2 and beyond. We can also guarantee that kmin.e
is greater than all keys in epochs less than e− 1, since k1.e is greater than all keys
in those epochs. From this, we can guarantee that all keys between kmin.e and
kmin.e+1 occur in e− 1, e and e+ 1. 19

3.9 Point queries on (a) SSD (b) disk; range queries on (c) SSD (d) disk 24
3.10 GENERIC mode 100% write . 25
3.11 APPEND mode 100% write . 25
3.12 APPEND mode 100% write, long run . 25
3.13 APPEND mode 50% read, 50% write . 25
3.14 Pack size versus maximum throughput. 29

4.1 Opaque’s architecture overview. 33
4.2 Example task DAG. 33

v

4.3 Column sort, used in the distributed setting. Each column represents a single
partition, and we assume that each machine only has one partition. The algorithm
has eight steps. Steps 1, 3, 5, 7 are sorts, and the rest are shuffle operations. . . 40

4.4 Stages 2 - 4 of oblivious aggregation . 43
4.5 Stages 2–4 of oblivious join. 43
4.6 Catalyst oblivious query planning. 46
4.7 Example medical schema. 48
4.8 Join reordering in mixed sensitivity mode. 50
4.9 Sort microbenchmarks. Figure 4.9a Non-oblivious sort in SGX. Exceeding EPC

size causes a dramatic slowdown. Figure 4.9b Oblivious sort in SGX. Larger
blocks improve performance until the EPC limit in HW mode, or indefinitely in
simulation mode. 53

4.10 Figure 4.10a: Encryption mode is competitive with Spark SQL. Obliviousness
(including network and memory obliviousness) adds up to 46x overhead. Fig-
ure 4.10b: Comparison across a wide range of queries. Hatched areas represent
time spent sorting. Figure 4.10c: Single iteration of PageRank for various graph
sizes. 54

4.11 Query planning benchmarks. Figure 4.11a: Our cost model closely approximates
the empirical results for oblivious joins across a range of input sizes. Figure 4.11b:
Join reordering provides up to 5x speedup for some queries. 56

5.1 Architecture overview of Helen. Every red shape indicates secret information
known only to the indicated party, and black indicates public information visible to
everyone (which could be private information in encrypted form). For participant
m, we annotate the meaning of each quantity. 65

5.2 Helen’s scaling as we increase the number of dimensions. The number of parties
is fixed to be 4, and the number of samples per party is 100, 000. 79

5.3 Helen’s two phases as we increase the number of parties. The dimension is set to
be 10, and the number of samples per party is 100, 000. 80

5.4 Helen and baseline performance on the gas sensor data. The gas sensor data
contained over 4 million data points; we partitioned into 4 partitions with varying
number of sample points per partition to simulate the varying number of samples
per party. The number of parties is 4, and the number of dimensions is 16. . . . 82

5.5 Helen and baseline performance on the song prediction data, as we vary the
number of samples per party. The number of parties is 4, and the number of
dimensions is 90. 82

5.6 Helen comparison with SGD . 82

vi

5.7 Insufficiency of existing cryptographic approaches. “n-party” refers to
whether the n(>2) organizations can perform the computation with equal trust
(thus not including the two non-colluding servers model). We answer the prac-
ticality question only for maliciously-secure systems. We note that a few works
that we marked as not coopetitive and not maliciously secure discuss at a high
level how one might extend their work to such a setting, but they did not flesh
out designs or evaluate their proposals. 83

6.1 The Cerebro workflow. 98
6.2 A sample program written in Cerebro’s DSL . 101
6.3 Cerebro architecture, showing choices we can make under the semi-honest threat

model. 103
6.4 The arrows show the aggregation communication pattern for a single multiplication

triple. The shaded nodes represent coordinators. 107
6.5 Example validation-based release policy . 108
6.6 Choosing linear vs. quadratic protocol for preprocessing arithmetic circuits. . . 114
6.7 Flat vs. two-level linear protocol for 9-party vs. 3-party bipartite network layout

with varied cross-region total bandwidth (2Gbps intra-region per-party bandwidth). 115
6.8 Experiments on machine-learning applications (2Gbps network). 117

vii

List of Tables

3.1 Comparison between MiniCrypt’s modes, including the pack maintenance opera-
tion. 12

5.1 Theoretical scaling (complexity analysis) for SGD baseline and Helen. m is the
number of parties, n is the number of samples per party, d is the dimension. . . 79

5.2 Select errors for gas sensor (due to space), comparing Helen with a baseline that
uses sklearn to train on all plaintext data. L2 error is the squared norm; MAE is
the mean average error. Errors are calculated after post-processing. 80

5.3 Errors for song prediction, comparing Helen with a baseline that uses sklearn
to train on all plaintext data. L2 error is the squared norm; MAE is the mean
average error. Errors are calculated after post-processing. 80

6.1 Comparison with prior work in categories that are necessary in a collaborative
learning platform. There is a lot of prior work in specialized MPC protocols [162,
97, 219, 146, 127, 186, 202, 168, 112, 93, 55, 10], generic MPC [24, 103, 215, 69,
211], and MPC compilers [210, 145, 196, 183, 46, 41, 11, 217, 164, 85, 74, 85,
207]. Since the work space is so broad, we use “3/ 7” to indicate that only some
systems in this category support that feature. 98

6.2 Rules for defining a function’s execution mode 113
6.3 Time for applying the privacy policy or the validation policy to a logistic regression

model. 119

viii

Acknowledgments

This dissertation would not have been possible without the support of many people.
First, I want to thank my two advisors for their guidance and support during graduate

school. I would not be here without them.
Raluca Ada Popa: I first saw Raluca when she was giving her job talk at MIT. I was
taking my first security class that semester and was immediately fascinated by her work. I
came to Berkeley in the fall and was happy to discover that Raluca had joined as well! I was
very fortunate to be able to collaborate with her on my first research project here at Berkeley.
Even though I came in with zero experience in cryptography, she was still willing to take me
on as a student. She has been a tremendous help on every single paper that I have written
with her, and guided me every step of the way from technical parts of research, to writing
papers and giving talks.
Ion Stoica: Ion was the person I wanted to work with the most when I was applying to
graduate school. I first met Ion during visit days and immediately knew that I wanted to
come to Berkeley. Ion is full of wisdom on a surprisingly large number of both academic and
personal topics. Over the years, he has taught me to become a better systems researcher,
and to not only come up with good technical solution, but also focus on the bigger picture.

I also was very fortunate to have worked with other faculty at Berkeley and University
of Washington, including Alessandro Chiesa, Joseph E. Gonzalez, Arvind Krishnamurthy
and Scott Shenker. These faculty gave me valuable feedback on my work, and inspired my
research to be more interdisciplinary.

Throughout my six years at Berkeley, I also met many people who became close collabo-
rators and friends:
Ankur Dave: I first met Ankur at OSDI 2014, and we later became close collaborators
on Opaque [221]. It was very fun working with him, and I enjoyed the many hours of pair
programming that we did in the fishbowl room.
Grant Ho: I roomed with Grant for my first two years in Berkeley, though somehow we
managed to become even closer later on in grad school. Grant is not only an excellent security
researcher, but also a humorous and supportive friend. Grant also has always has the best
comebacks!
Pratyush Mishra: I knew of Pratyush from the classes we took together, in which he was
very active and had many interesting technical insights to share. We eventually became
friends as well as collaborators on Delphi [161]. I especially enjoyed the intense and polarizing
political discussions.
Aurojit Panda: I met Panda my first day in the NetSys lab, and we quickly became
close friends. Panda is one of the smartest people I know, and also has interesting opinions
and views on literally almost every topic that one can think of. I’m very happy to have
collaborated with him on multiple projects ([175, 218]) and have learned so much from
him. He’s also a food connoisseur and I can always rely on him to give the best restaurant
recommendations!

ix

Rishabh Poddar: Rishabh and I did not meet each other until my third year, but we
quickly became inseparable, mostly due to the amount of time we spend bantering with one
another. We always grab lunch together (so much so that people on Euclid would recognize
us!) and would also shame each other into going to the gym! One big regret: we never wrote
a paper together despite having many interesting technical discussions.
Shivaram Venkataraman: I first met Shivaram during visit days, when he took the new
admits on a quest to find a mysterious waterfall. Though the end goal was ultimately never
achieved, what was important was the journey itself, during which we were all able to take in
the beauty of Berkeley nature and have interesting discussions. Over the years, we became
close friends – he was a tremendous source of support and also shared a common interest for
classical music (with a soft spot for Shasti).
Yifan Wu: Yifan and I met in my second year and went on many enjoyable long walks
near the lab. We ended up rooming together at the end of my second year and have been
roommates ever since. I always enjoyed and will miss the satirical roommate banter.

I have also worked closely with a number of other collaborators, listed here in alphabetical
order: Rachit Agarwal, Jethro Beekman, Weikeng Chen, Ryan Deng, Ryan Lemkuhl, Frank
Li, Akshayaram Srinivasan, Xin Wang, and Howard Wu.

I also had the privilege of interacting with many cool people in NetSys and the RISE
lab, including Moustafa Abdelbaky, Peter Bailis, Michael Chang, Emma Dauterman, Vivian
Fang, Silvery Fu, Yuncong Hu, Sukrit Kalra, Anurag Khandelwal, Sam Kumar, Chester
Leung, Lydia Liu, Horia Mania, Nathan Malkin, Murphy McCauley, Radhika Mittal, Robert
Nishihara, Kay Ousterhout, Ashwinee Panda, Qifan Pu, Gur-Eyal Sela, Justine Sherry,
Jeongseok Son, Vikram Sreekanti, Amin Tootoonchian, Chia-Che Tsai, Stephen Tu, Stephanie
Wang, Jean-Luc Watson, Michael Whittaker, Chenggang Wu, Rashmi Vinayak, Neeraja
Yadwadkar, Zongheng Yang, and Wen Zhang.

I also want to thank my best friend C.J. (whom I’ve known for more than 10 years!) for
always being supportive and understanding. She is always willing to listen to any complaint
I have!

Last but not least, I want to thank my parents for their continuous support and encour-
agement throughout grad school!

1

Chapter 1

Introduction

1.1 Motivation
The recent revolution in advanced data analytics gave rise to a growing demand among

organizations for high quality data. A large amount of such data, when fed into increasingly
advanced data analytics and machine learning techniques, can significantly enhance the
capabilities of existing applications. Though there has been much progress on developing
faster and more intelligent analytics systems, there is still a glaring problem at hand: how
can organizations acquire even more high quality data than they currently have?

One promising solution to this data scarcity problem is collaborative computation, where
several organizations pool their data together and compute on the joint dataset in order
to mutually benefit from the results. This type of computation enables parties to acquire
a larger volume of high quality data, as well as more diverse data. Unfortunately, many
organizations are often unwilling or unable to share their data in plaintext due to business
competition or government regulation. This obstacle not only hinders organizations from
improving their existing applications, but also prevents any growth of new applications that
can only be enabled by cross-institutional data sharing. Below, I analyze two use cases in
this setting that were shared with us by our close industry collaborators.

The first use case arose out of two North American banks’ need to effectively detect money
laundering activities. Recent development in machine learning classification algorithms
could identify such activities, and thus enhance the banks’ yields by multiple orders of
magnitude [190]. Since criminals often hide their traces by moving assets across different
financial institutions, an accurate model would require training on multiple banks’ customer
transaction dataset. Unfortunately, even though such a model would benefit all participating
banks, they are not willing to share their customers’ data in plaintext because of privacy
regulations and business competition.

The second use case was shared with us by a major healthcare provider who needs to
distribute vaccines during the annual flu cycle. In order to launch an effective vaccination
campaign (e.g., sending vans to vaccinate people in remote areas), this organization would like

CHAPTER 1. INTRODUCTION 2

to identify areas that have high probabilities of flu outbreaks using machine learning. Once
again, such training is impossible at this moment because the seven organizations cannot
share their patient data with each other due to privacy regulations.

1.2 Secure collaborative computation
My dissertation work aims to solve the problem of collaborative computation among

mutually distrusting parties by building systems that enable such computation on encrypted
data. My systems allow multiple organizations to collaboratively run complex computations
on their joint dataset without revealing their sensitive input data to each other. The security
guarantees are formulated to emulate an ideal trusted third party (but without using such
a physical trusted entity). At the end of the protocol, the parties should only additionally
learn the final output of the secure computation. In fact, none of the intermediate results is
revealed.

The past few decades have seen much progress towards making secure collaborative
computation a reality. Currently, there are two main techniques for securing computation
and emulating a trusted third party: hardware enclaves and secure multi-party computation
(MPC). Hardware enclaves [155, 129, 140] – or trusted execution environments (TEEs) – are
special hardware mechanisms that can be used to create isolated environments on untrusted
machines. By leveraging a trusted processor that is able to store encrypted data in memory
(and decrypt only within the on-chip cache), this isolated execution environment protects
against even a malicious privileged piece of software (such as the operating system). The
second approach is via leveraging purely cryptographic techniques such as secure multi-party
computation (MPC) [24, 103, 215]. Using MPC, parties can collaboratively compute with
each other in a completely decentralized manner. The parties only exchanges encrypted
messages and executes encrypted local computation, and no specialized hardware is needed
at all. These two techniques are quite different, and also have different performance, security,
and usability trade offs (see a detailed comparison in Chapter 2). Therefore, there is no single
technique that works for all applications, and an application (and the application developer)
must choose the right approach based on its needs.

1.3 Overview of thesis
My dissertation uses both of the above approaches to build secure and practical systems

that enable parties to share their data for collaborative computation, but not show their
data in the plaintext to the other participants. Although the field of secure collaborative
computation has made amazing progress over the past decades, these advances are still
lacking in achieving the goal of combining security, functionality, and performance. On the
one hand, though the enclave approach is performant and functional, it is lacking in security
guarantees because it is prone to an important type of side-channel attack called access

CHAPTER 1. INTRODUCTION 3

pattern leakage [214, 171]. An adversary can infer the underlying encrypted data from only
observing memory and network access patterns. On the other hand, while MPC is quite
secure, it is still difficult to execute more complex functionalities efficiently. Moreover, most
prior MPC systems only work within the honest-but-curious threat model, and does not
defend against an adversary who can choose to deviate from the protocol. Finally, many of
the advances in MPC over the past decades have been purely theoretical and have not been
incorporated into practical systems that are programmable and easy to use.

My approach to solving this problem is via a co-design of systems and cryptography.
By bridging the gap between theory and practice, as well as taking a systems-oriented
approach that is backed by a deep understanding of cryptography, I build systems for secure
collaborative computation that are secure, functional, and performant. Throughout my work,
I not only utilize a wide range of tools from both systems and cryptography, but also innovate
on them to make practical solutions possible. My systems provide strong and provable
security guarantees and are often orders of magnitude faster compared to prior work or the
more straightforward ways of integrating cryptography into systems.

For my thesis, I decided to secure two important workloads: SQL analytics and machine
learning. The rest of this dissertation has a detailed presentation of my research work and
will be arranged as follows. Chapter 2 first presents some background information on the
two approaches for secure computation as well as their trade-offs. The next two chapters are
focused on systems that secure the SQL analytics workload: Chapter 3 presents MiniCrypt,
an encrypted and compressed cloud-based key-value store that can aid data analytics by
enabling secure and efficient storage capabilities; Chapter 4 presents Opaque, an encrypted
SQL analytics system built on top of Spark SQL and hardware enclaves, and also efficiently
provides data access pattern protection by using oblivious computation. The following two
chapters are focused on systems that secure machine learning: Chapter 5 presents Helen,
an MPC-based system for training regularized linear models in the multi-party, dishonest
majority and maliciously secure setting, where the system is able to defend against an
adversary who can deviate from the protocol; Chapter 6 presents Cerebro, a programmable,
end-to-end system for executing collaborative machine learning training and inference on
MPC, and supports various levels of threat models. Finally, Chapter 7 concludes this thesis.

The technical material is adapted from existing published or co-authored works. Chapter 2
has some material adapted from [219, 222]. Chapter 3 is adapted from [220], chapter 4 is
adapted from [222], chapter 5 is adapted from [219], and chapter 6 is adapted from [218].

1.4 Adoption
As a system security researcher, one of my goals is to design, build, and open source

system artifacts that provide strong security guarantees. For example, Opaque (see Chapter 4)
is open sourced, and IBM Research deployed the system for a volunteer matching application.
Alibaba and Ericsson have used it in internal use cases. It was also used in a proof-of-concept
by Scotiabank and Microsoft on an anti-money laundering use case.

4

Chapter 2

Background

This chapter presents some background on the two main approaches for secure collaborative
computation. The first approach is via utilizing hardware enclaves such as Intel SGX [155],
The second approach is by using a purely cryptographic approach like secure multi-party
computation. This chapter will first introduce these two approaches in Section 2.1 and
Section 2.2. Both of these approaches are valuable because they have different security and
performance trade offs, and a comparison of the two techniques will be discussed in Section 2.3.

2.1 Hardware Enclaves
Secure enclaves are a recent advance in computer processor technology providing three

main security properties: fully isolated execution, sealing, and remote attestation. The exact
implementation details of these properties vary by platform (e.g. Intel SGX [154] or AMD
Memory Encryption [129]), but the general concepts are the same.

The general notion of an enclave has several properties. First, isolated execution of an
enclave process restricts access to a subset of memory such that only that particular enclave
can access it. No other process on the same processor, not even the OS, hypervisor, or system
management module, can access that memory. Additional security measures may be provided
by the platform such as memory encryption or a separate memory bank used solely for secure
enclaves. Generally, as part of the isolated execution, the enclaves have no or limited access to
the I/O system. This isolation dramatically reduces the Trusted Computing Base (TCB) for
the enclave, which comprises of only the enclave code itself and the secure enclave platform.
This is a break from the traditional hierarchical kernel–userspace privilege model, in which
the entire operating system kernel is generally considered to be part of the TCB of a user
process. Second, sealing enables encrypting and authenticating the enclave’s data such that
no process other than the exact same enclave can decrypt or modify it (undetectably). This
enables other parties, such as the operating system, to store information on behalf of the
enclave. Third, remote attestation is the ability to prove that the desired code is indeed
running securely and unmodified within the enclave of a particular device.

CHAPTER 2. BACKGROUND 5

While hardware enclaves are very powerful, they are also prone to various side-channel
attacks such as data access pattern leakage. This will be explained more in Section 4.1.

2.2 Cryptographic approach
The second approach for secure collaborative computation is a purely cryptographic

approach. This section will focus on secure multi-party computation (MPC) instead of fully
homomorphic encryption [94] because, while the latter has seen much improvement over the
years, it is still mainly used for linear workloads and cannot efficiently handle non-linear
workloads.

MPC enables multiple participants to emulate an ideal trusted third party who can help
the participants compute a function f over P parties’ private inputs xi∈[1...P]. The private
input xi is only known to party i and is never directly revealed to any other party. The
computation’s final result is often released in plaintext to every participant.

There are two main MPC paradigms for generic computations: arithmetic MPC [24,
69] and boolean MPC (in particular, garbled circuits [215, 211]). In arithmetic MPC, data
is represented as finite field elements, and the only supported operations are addition and
multiplication (called “gates”). On the other hand, boolean MPC represents data as boolean
values, and the only supported operations are XOR and AND.

One interesting commonality between these two frameworks is that they are both split
into two phases: preprocessing and online execution. At a high level, both frameworks use
preprocessing to improve the online execution time for certain gates. In arithmetic circuits,
addition gates can be computed locally without communication, while multiplication gates are
much more expensive to compute. Similarly, in boolean circuits, XOR is fast to compute while
AND is much slower to compute. The preprocessing phase for these frameworks precomputes
a majority of the cost of executing multiplication/AND gates. Furthermore, the preprocessing
phase can execute without knowing the input ; it only needs to know the functionality.

The online execution for both arithmetic MPC and boolean MPC requires the parties
to input their private data. At the end of this phase, the secure protocol will generate an
encrypted output. All parties jointly decrypt this encrypted output to get the plaintext
result.

2.3 Comparison
In this section, I analyze these two approaches’ trade offs in terms of setup, security

guarantees, and performance.

Setup In secure collaborative computation, the application usually requires access to
multiple parties’ data. The parties have two different setups to choose from. The first is to
utilize a cloud provider as an aid for secure computation. Utilizing the cloud can be very

CHAPTER 2. BACKGROUND 6

beneficial because it can provide elastic resources, and clients do not have to hire dedicated
IT to manage their on-prem resources. However, we do not want the cloud provider to see the
plaintext data, so the cloud needs to support some kind of platform for secure computation
such that it only sees encrypted data. In this scenario, hardware enclaves are a perfect fit
since the cloud can more easily obtain and upgrade its hardware, and a purely cryptographic
solution is either too slow or does not fit the setup very well.

The second setup is a completely decentralized model where the parties collaboratively
compute among themselves and without the aid of a cloud. If this is the setup, then MPC’s
execution model works very well. Enclaves can also be utilized if a subset of the parties can
procure the necessary hardware, but this may not be easy to accomplish. Such hardware
updates can usually be delegated to the cloud instead.

Security guarantees Hardware enclaves and a purely cryptographic approach have very
different security guarantees. Enclave’s threat model does need to rely on the hardware
being trustworthy. For example, if Intel SGX is used for computation on encrypted data,
then by default the threat model assumes that SGX’s hardware cannot be compromised, the
implementation is correct, and that Intel is trustworthy. Enclaves are additionally prone to
side-channel attacks [214, 171], where the adversary can learn additional information about
the encrypted data from observing information such as data access patterns or power usage
of a computation. Utilizing cryptography does not have the extra hardware assumption,
though the cryptographic implementation would also need to be trusted. However, many
MPC systems also only defend against an honest-but-curious adversary (i.e., an eavesdropper)
in order to improve performance, while hardware enclaves have integrity protection that is
useful against a malicious attacker who has compromised the operating system.

Performance Performance varies greatly for these two approaches. Since trusted proces-
sors are able to decrypt encrypted data inside an isolated environment, it can run secure
computation at near-processor speed. The performance will be slower if the enclave compu-
tation is augmented with protection against data access pattern leakage, but it will still be
faster than utilizing MPC. MPC relies on complex mathematical operations on big integers
for processing secure computation and are thus often orders of magnitude slower than their
plaintext counterparts.

7

Chapter 3

MiniCrypt

This chapter is the first of two chapters that focus on systems that enable secure collab-
orative analytics. As mentioned in the background, many users who wish to utilize cloud
resources for secure computation also store their sensitive data in cloud-hosted storage [156,
184, 72, 163, 47, 57, 138, 6, 133] for easy retrieval. However, the current set of solutions is
problematic because the users store their sensitive data in plaintext and must trust the cloud
providers. Therefore, applications need data storage systems that are able to preserve data
confidentiality by only operating on encrypted data while also handling common workloads
very efficiently.

In this chapter we present MiniCrypt, the first cloud-based key-value store that achieves the
benefits of both compression and encryption. Many big data stores employ compression [135,
47] to significantly increase performance, sometimes by up to an order of magnitude [6, 133].
Compression is effective at providing performance gains because it enables servers to fit more
data in main memory, thus decreasing the number of accesses to persistent storage. At the
same time, a common technique for protecting data confidentiality is to encrypt the data
stored on servers [181, 30, 99, 128] and keep the key at the client.

Unfortunately, existing systems choose either compression or encryption – but not both –
because there is a fundamental tension between encryption and compression. Compressing
encrypted data (which is randomized) is not viable because pseudorandom data is not
compressible. Second, while encrypting compressed data works well in some systems, it is
problematic in the database setting. Compressing a single row of data typically provides
limited compression ratio, while compressing multiple rows together means the server cannot
maintain fine-grained access to these rows/attributes and makes it more difficult to maintain
correct semantics. There are a range of effective database compression techniques [3, 27, 114]
that also permit querying data, but their layouts leak significant information about the data.

MiniCrypt is able to address this problem by first making an empirical observation that,
while compressing a single row does not produce a good compression ratio, compressing
together only relatively few key-value rows can actually achieve a compression ratio that
is close to compressing the entire dataset. As we discuss in Section 3.2, we observed this
behavior for a wide range of datasets that could be stored in key-value stores, such as data

CHAPTER 3. MINICRYPT 8

from Github, genomics, Twitter, gas sensors, Wikipedia, and anonymized user data from
Conviva (internet-scale video access logs) [56]. Based on this observation, MiniCrypt’s design
works by packing few key-value pairs and compressing and encrypting these packs. Of course,
this introduces some significant challenges because encrypting packs removes the server’s
ability to to manage the individual key-value pairs within the same pack since the server
does not have the key to decrypt these packs. MiniCrypt solves these challenges by using an
efficient client-centric design to maintain the same semantics.

3.1 Overview

3.1.1 Model and threat model

We adopt a cloud-hosting model, consisting of two roles: the hosting service (the server,
which can be distributed), and the company/organization that uses the hosting service (the
customer). The customer consists of one or more client machines within the same trust
domain; these share a single encryption key, which is not available to the server. The server
hosts the encrypted key-value store, and the clients issue queries to the server.

MiniCrypt protects against an attacker who manages to gain access to the server, can
see all server side data (including messages from the clients), and attempts to exfiltrate the
data. MiniCrypt considers a passive attacker, which follows the MiniCrypt protocol (e.g.,
a curious system administrator). In particular, it does not corrupt the data and does not
provide incorrect query results. We also assume that the clients are trusted and allowed to
see all server-side data (e.g., because the customer is the data owner). For MiniCrypt, we
are concerned only with protecting the data from a server attacker. As a consequence, we
assume that the attacker cannot control any client and hence cannot execute any queries
through the client (e.g., insert, delete, get).

Many applications implement finer grained client access control to ensure that certain
clients have access to only part of the data. Such access control can be implemented in various
ways in a MiniCrypt setup and is complementary to MiniCrypt. For example, the customer
can add a proxy between the clients and the server and the proxy acts as a MiniCrypt client:
the proxy restricts access to queries and query results to the clients. Another way is to let
the clients maintain different keys for each group of data with the same access permissions,
essentially running a separate MiniCrypt instance for each group. Since pack compression is
done on the client side, the client can pack data with different permissions in separate packs.
Although both of these designs can be easily integrated into MiniCrypt, client access control
is not the focus of MiniCrypt – MiniCrypt is concerned with protecting the data from the
cloud provider.

Finally, access patterns (e.g., which keys are being retrieved) or timing attacks are out of
scope for MiniCrypt.

CHAPTER 3. MINICRYPT 9

Function Description
get (key) returns value associated with key
put (key, val) sets the value for key to val
delete (key) deletes the record with key key
get (low, high) returns all the (key, value) pairs

where low ≤ key ≤ high

3.1.2 Goals

MiniCrypt has the following design goals. First, MiniCrypt aims to provide end-to-end
encryption for the values in the key-value store. Second, MiniCrypt aims to provide significant
compression, which promises better performance in many situations. For example, MiniCrypt
should achieve higher read throughput than a standard encrypted service without compression,
because MiniCrypt can fit more data in memory. Third, MiniCrypt aims to work as a layer
on top of unmodified key-value stores. This makes it easier to adopt MiniCrypt into different
key-value stores and enables MiniCrypt to benefit from their performance and fault tolerance.
Finally, MiniCrypt aims to provide eventual consistency guarantees, which is often utilized in
big data key-value stores due to its performance.

3.1.3 System API

MiniCrypt exposes the basic key-value store API, as well as support for range queries.
Range queries (in the form of get (low, high)) are common for time-series big data [150, 45].
MiniCrypt supports the following API:

3.1.4 Strawman designs

Compression is a widely studied topic in databases [3, 27, 114, 6]. We briefly discuss two
compression strawman designs and show their limitations.

The first approach is utilizing compression techniques that allow queries to be run on
the compressed data [3, 114, 6]. Directly adding encryption will leak significant information
about the data due to the data layout and the data access patterns. For example, run-length
encoding (RLE) [3], commonly used in column-oriented databases, encodes runs of values
(a contiguous sequence of the same values) together. Ten consecutive rows with the value
“female" are encoded as (“female", 10). One possible way to integrate encryption is to encrypt
the run value (e.g., “female”) separately, while leaving the run length (e.g., 10) in plaintext.
This allows the server to answer a get (key) query, during which it can use the run length
information to return the correct value. However, this arrangement easily leaks important
information such as data frequency. For example, if the column is gender (F/M) or letter
grades (A, B, C) and is sorted by this value, the server-side attacker can learn which row has
what grade or gender by observing the run lengths that are stored in the plaintext.

CHAPTER 3. MINICRYPT 10

clients

server
key value

1
2

4

8
9

alice..

ben..

chris..

dan..

eve..

(a) Typical setup with encryption.

server
pack ID value

1

8

1 alice..
2 ben..
4 chris..

8 dan..
9 eve..

clients
key value

(b) MiniCrypt’s setup (encryption and compres-
sion).

Figure 3.1: System architecture for a typical encrypted key-value store and MiniCrypt. A
lock indicates an encrypted item. Orange indicates a compressed item. MiniCrypt’s values
consist of compressed and encrypted packs.

Dictionary encoding [27] is another common compression technique. The clients share a
compression table that maps uncompressed values to compressed codes. To compress, the
clients look up specific values in this table and construct the correct compressed version.
To decompress, the clients refer to the same shared table and translate the compressed
values back into the correct uncompressed text. The advantage of this design is that it
combines compression and encryption without introducing the complexity of packs. However,
this approach has significant disadvantages. First, dictionary encoding works well for some
columns (such as columns with few distinct values), but it does not work well in general. As an
example, we ran this technique on Conviva data and found that, even though the compression
rate was very high for some columns, the overall compression ratio was only 1.6. Second, each
client needs to use the compression table for both reads and updates. If the table is stored
on the server side, each client must do extra reads in order to decompress and compress,
which will reduce the read throughput as well as leak significant information through access
patterns on this shared table. Storing the table at the client imposes performance overhead.
The compression table can be very big: for example, for Conviva, the table was 80% of the
entire compressed data. Finally, as data gets modified, the contents of the table change over
time. The database must provide a protocol for synchronizing the compression table stored
on different clients, adding further complexity. Not updating the dictionary table might result
in an out-of-date dictionary table that wastes space storing past encodings.

MiniCrypt aims to be a generalized system that can handle both reads and updates on a
variety of data types while providing strong confidentiality guarantees. Our packing technique
is independent of workloads, data types, and compression algorithms.

3.1.5 MiniCrypt’s design overview

Figure 3.1 summarizes MiniCrypt’s architecture in comparison to a regular key-value store
that provides encryption in a straightforward way. This is a logical baseline for MiniCrypt
because it provides similar security. The data in MiniCrypt is stored in packs, where each
pack is a group of key-value pairs, compressed together and encrypted. The keys in a pack

CHAPTER 3. MINICRYPT 11

represent a contiguous range in a sequence sorted on the keys.
Each pack has a packID. We choose the packID to be the smallest key in the pack, and

assume there is a sorted index on the packID. This means that to find a given key, we simply
need to retrieve the pack with the largest ID smaller than or equal to the key. Each pack
also has some metadata information such as a hash of its value and status messages (to be
introduced in later sections).

To read a key, a client fetches the corresponding pack, decrypts and decompresses it. To
write a key, a client updates a pack. As keys get deleted or inserted, some packs become too
small or too large; in this case, MiniCrypt merges or splits them to maintain performance.
Security guarantees. MiniCrypt protects each pack with a strong and standard encryption
scheme (AES-256 in CBC mode), which provides semantic security. The clients never send
the decryption key to the server. Thus, this encryption protects the values in the original
key-value store. The encryption leaks nothing about the contents of the pack, except for
the size of each compressed pack. While MiniCrypt reveals the size of a compressed pack,
it does not reveal the sizes of the original rows within the pack, which are revealed by the
vanilla system. MiniCrypt enables reducing the information leaked by the size of the pack by
padding the encrypted packs to a tier of a few possible sizes. MiniCrypt allows the customer
to specify the padding tiers, such as small-medium-large or exponential scale, and pads each
pack to the smallest tier value that is at least the pack size. This strategy provides a tradeoff
between compression and security. Note that, in our threat model, an attacker does not
have the ability to issue write queries to the storage through the client, which prevents the
attacker from doing injection attacks that exploit pack size.

The keys in a key-value store are often not sensitive (e.g., random identifiers, counters,
timestamps). However, if the keys are deemed sensitive, then the packIDs should be encrypted
since a packID reveals the lowest key in the pack. Note that the rest of the keys are
automatically encrypted by MiniCrypt as part of a pack. MiniCrypt supports packID
encryption only in GENERIC mode and for a system that does not perform range queries, as
follows. MiniCrypt applies a pseudorandom function [100] to the packIDs, keyed using a
different symmetric key for each table, and treats that as the new packID. While this is a
deterministic encryption scheme, it is essentially as secure as randomized encryption because
the keys in a key-value store are unique. This determinism allows MiniCrypt to proceed as
normal by maintaining a sorted index on the encrypted keys and allows the clients to directly
query on them. MiniCrypt does not support range queries or APPEND mode in this case,
because there is currently no encryption scheme that enables ranges while providing semantic
security and being efficient in our setting. A number of different schemes for range queries on
encrypted data exist, trading off either security or efficiency. For example, order-preserving
encryption (OPE) schemes [32, 180] enable efficient range queries on encrypted data in
exchange for revealing the order of packIDs to the server. In the rest of the chapter, we treat
packIDs as unencrypted for simplicity, but our evaluation uses encrypted packIDs. Finally,
MiniCrypt does not hide the number of rows/packs in the database or the structure of the
database (e.g., number of tables).

CHAPTER 3. MINICRYPT 12

Mode Type of write Pack op. Perfor. note

Generic all types split put uses
(get, delete) update-if

Append append, put, merge fast
no delete appends

Table 3.1: Comparison between MiniCrypt’s modes, including the pack maintenance operation.

3.1.5.1 The underlying key-value store

To achieve the goal of working on top of unmodified key-value stores, MiniCrypt should
not rely on specialized or expensive primitives that are not supported by most key-value
stores. For example, most key-value stores do not support transactions covering multiple keys.
The few that do (e.g. Redis and Cassandra) support them with limitations and significant
performance overhead.

In fact, MiniCrypt can work on top of any key-value store that supports an ordered index
on keys and provides a conditional atomic update (update-if) primitive for a single row. The
first property enables MiniCrypt to support range queries and to efficiently locate the packID
for a given key, as discussed in Section 3.3.1 and Section 3.3.2. Most key-value stores support
an index on the key and many of these enable ordered clustering or range queries on this key.

The second property is a lightweight transactional primitive that executes an update on
a single row at the server only if the condition is true. This primitive can be of the form
“UPDATE ... IF condition” or “INSERT ... IF NOT EXISTS”. This type of transaction is
relatively lightweight because (1) it operates on a single row and (2) it contains only one
statement as opposed to a multi-statement procedure. Most key-value stores support such
transactions. For example, in Cassandra, these are called lightweight transactions [81].

MiniCrypt maintains the semantics of the underlying store for eventual consistency, which
is commonly used in the key-value store setting. MiniCrypt also benefits from the fault
tolerance and replication mechanisms of the underlying store.

3.1.5.2 Modes of operation

MiniCrypt provides two modes of operation: GENERIC and APPEND. Table 3.1 compares
the two modes.

The GENERIC mode applies to any application: clients can update, insert, and delete
key-value pairs. Writes use the update-if primitive to prevent clients from overwriting each
other’s updates. When a pack becomes too large, it is split. Since supporting both split and
merge at the same time is overly complex, MiniCrypt does not support merging packs in this
mode.

The APPEND mode supports applications in which writes are appends of new keys, and
there are no deletes. Many big data applications are append-only. For example, a common

CHAPTER 3. MINICRYPT 13

101 102 103 104 105 106

Pack size (avg # of values)

0

1

2

3

4

5

6

7

8

C
o
m

p
re

ss
io

n
 r

a
ti

o

lzma

snappy

zlib

bz2

lz4

(a) Conviva

101 102 103 104 105 106

Pack size (avg # of values)

0

1

2

3

4

5

6

7

8

C
o
m

p
re

ss
io

n
 r

a
ti

o

lzma

snappy

zlib

bz2

lz4

(b) Genomics
All datasets Total number of rows Average value size Max compression ratio Pack size (rows)
Conviva 8.7M 1.1KB 5.1 25
Genomics 1.6M 1.3KB 4.8 14.5
Twitter 2.5M 5.5KB 8.3 4.2

Gas Sensor 4.2M 135B 3.4 75
GitHub 50.8K 11.6KB 4.5 2.5

Wikipedia 202.5K 13.2KB 3.1 1.4

Figure 3.2: Compression ratios for different datasets. Note the x-axis is log-scale. The table
summarizes the trend for each dataset using the zlib compression algorithm. For each dataset,
it lists the total number of rows, the average size of the value in each row, the maximum
compression ratio achieved (on the entire dataset), and the average number of rows that must
be in a single pack to achieve a compression ratio that is ≥ 75% of the maximum compression
ratio.

pattern for big data is time-series data [150, 45], where the keys are timestamps, while values
are typically actions or measurements. In this mode, MiniCrypt delivers high performance
for appends, essentially as fast as the underlying system. Appends get inserted directly into
the key-value store and not into packs. Then, background processes running on clients merge
these keys in packs.

3.2 Key packing
In this section, we empirically justify the observation that compressing a relatively small

number of key-value pairs together yields a compression ratio that is a significant fraction of
the compression ratio obtained when compressing an entire dataset into one unfunctional
blob.

The six datasets we examined are: anonymized Conviva time-series data on user behavior,
genomics data where each entry consists of an identifier and a partial sequence of the genome,

CHAPTER 3. MINICRYPT 14

time-series Twitter data consisting of tweets and metadata, time-series data from gas sensors,
Wikipedia files, and Github files from the Linux source code. We examined 5 different
compression algorithms (bz2, zlib, lzma, lz4, snappy), which provide different tradeoffs in
compression ratio and speed. For each pair of dataset and compression algorithm (30 pairs),
we plotted the compression ratio against the number of rows in the pack. We first re-format
each dataset into key-value pairs, then group the values into packs by adjusting a maximum
threshold (in bytes) for each pack and calculate the average number of values present in each
pack for a given pack size.

Figure 3.2 shows the results. We include here the graphs for Conviva and genomics with
a table summary of the other datasets. The x-axis shows the average number of values, while
the y-axis shows the compression ratio. We can see from Figure 3.2 that the compression
ratio grows very fast as the number of rows increases, then quickly plateaus close to the
maximum compression ratio achieved when compressing the entire dataset. For example, for
Conviva, compressing 1 row yields a compression ratio of 1.6, compressing 50 rows yields
a compression ratio of 4.6, and compressing the entire dataset of 1.5 million rows yields a
compression ratio of 5.1. Hence, a relatively small number of rows per pack suffices for a
significant compression ratio. We explain how MiniCrypt determines the pack size for a given
dataset and system parameters in Section 3.7.3.

As surveyed in [71], there is a sharp tradeoff between compression ratio and the speed of
compression/decompression. For example, bz2 and lzma have high compression ratios but poor
compression/decompression speed, which affects client latency in MiniCrypt. Considering
this tradeoff, we chose to use zlib in MiniCrypt as it achieves both a good compression ratio
and good compression/decompression speeds.

3.3 Read operations
In this section, we describe read operations in MiniCrypt, which work the same in both

the GENERIC and APPEND modes.

3.3.1 Get

Since key-value pairs are packed and encrypted in MiniCrypt, clients can only fetch at
the granularity of a pack. A question is: how does a client know the packID given to the key
of interest? One option is to maintain a table mapping keys to packIDs at the server. This
strategy is undesirable because it increases server side space usage and query latency, and is
difficult to keep consistent with the main data table during concurrent updates and client
failures.

Instead, MiniCrypt enables clients to fetch the correct pack without knowing the packID.
Since the packID is chosen to be smaller than or equal to the smallest key in the pack, the
pack corresponding to a key k is the pack with the highest ID from all the packIDs that are at
most k. This query can be run efficiently at the server because the underlying key-value

CHAPTER 3. MINICRYPT 15

store keeps an ordered index on packID. To find the right pack, the server simply locates
k by retrieving the packID immediately preceding it. Once the client receives the result of
this query, it decrypts and decompresses the pack. It then scans the content and retrieves
the value for the key k. Figure 3.3 presents the overall procedure. The hash is a hash of the
encrypted pack.

1: procedure get(key)
2: Fetch data from server:

3:
SELECT packID, value, hash FROM table

WHERE packID ≤ key
ORDER BY packID DESC LIMIT 1

4: Decrypt and decompress value
5: Return the entire row

Figure 3.3: get pseudocode.

3.3.2 Range queries

Range queries fit easily into MiniCrypt’s design. In fact, for large range queries that
touch many keys, MiniCrypt utilizes less network bandwidth than a regular key-value store
because MiniCrypt compresses multiple keys together based on the query range. MiniCrypt
performs a range query on packIDs using a key range [low, high]. Since a packID indicates
the lowest key in the pack, a MiniCrypt client fetches the packIDs in [low, high]. If low
is not equal to the smallest packID in the results, then MiniCrypt needs to fetch the pack
that potentially contains keys from low to the smallest packID. The packs that contain key
low and key high will need to be filtered by the MiniCrypt client as they can contain keys
outside of the range [low, high]. The pseudocode for range queries is in Figure 3.4.

1: procedure get(low, high)
2: Fetch range from server:

3:
res ← SELECT packID, value, hash

FROM table
WHERE low ≤ packID ≤ high

4: Decrypt and decompress each value in res
5: if low < smallest packID in res then
6: Run get(low) and add to res

7: Filter out keys not in [low, high] from res
8: return res

Figure 3.4: get by range pseudocode

CHAPTER 3. MINICRYPT 16

3.4 Writes in the generic mode
In the GENERIC mode, clients can perform any type of write from the API in Section 3.1.3.

MiniCrypt additionally supports pack splitting because a pack may grow too large if there
are repeated inserts, and retrieving overly large packs will increase bandwidth usage and hurt
performance.

3.4.1 Put

Writes are more challenging than reads in MiniCrypt. Since the server cannot update
an individual key in a pack due to encryption, each client has to retrieve an entire pack to
execute a write. The client updates the value of the specific key in the pack, compresses the
pack, encrypts it and writes it back to the database. However, if designed naïvely, concurrent
clients may overwrite each other’s updates if they are all modifying the same pack.

To prevent such contention, we rely on the update-if primitive explained in Section 3.1.5.1.
We use this primitive and hashes to ensure that clients do not overwrite changes from each
other as follows. Consider a client C1 who wants to update a key in a pack. The client
reads the pack and records its hash h. C1 then updates the contents of the pack and issues
an update-if at the server, specifying that the value should be updated only if the hash of
the pack is still h. If the hash is no longer h, it means that another client C2 has recently
updated the pack. Thus, C1 should not perform the update because it can overwrite C2’s
update. Instead, C1 will retry the update by performing a read of the current pack value.
Figure 3.5 presents the overall procedure.

Another possible design that preserves eventual consistency is to do a blind write of the
pack without any update-if mechanism. However, a read of the pack is still necessary to
decrypt and modify the pack. As we show in the evaluation section, the extra read incurs
significantly more cost than the update-if mechanism. Hence, we chose to use update-if
because its cost on top of the extra read is not significant and it preserves better the original
data store’s semantics.

3.4.2 Split

Pack splitting is useful when there are inserts in the system that cause packs to grow
large.

When to split a pack Whenever a client runs put or delete, the client first checks the
size of the retrieved pack after reading the pack. If the pack contains more than max_keys,
the client proceeds to split the pack. The parameter max_keys is a system-wide constant,
and can be set to 1.5 · n, where n is the desired number of keys in a pack. The client can
proceed with the original operation once a split successfully completes.

CHAPTER 3. MINICRYPT 17

1: procedure put(key, value)
2: repeat
3: (packID, pvalue, h) ← get (key)
4: if # keys in pvalue > max_keys then
5: Do split as in Section 3.4.2. continue
6: Inside pvalue, set key’s value to value
7: Compress and encrypt pvalue
8: Compute its hash phash

9:
ok ← UPDATE table SET value = pvalue,

hash = phash
WHERE packID = packID IF hash = h

10: until ok

Figure 3.5: put pseudocode

How to split a pack Figure 3.6 shows the pseudocode for split (packID, pack, h), where
pack and the hash h are the retrieved values from reading packID. During split, the client
divides the pack by creating a left pack from the first half of the keys (rounded up) and a
right pack from the rest of the keys. Note that we require this operation to be deterministic
so that every client that reads the same pack will divide the pack in exactly the same way.
The client then compresses each pack and encrypts it as usual. It inserts the right pack and
then the left pack, both using the update-if primitive.

The split procedure is safe in the presence of multiple clients as well as client failures.
For example, two clients, A and B, may attempt to split the same pack. These clients will
read the same pack, and then split in a deterministic way, resulting in the same left and right
packs. If client A inserts the new right pack into the database first, client B will attempt to
insert the same right pack. The second insert operation will fail because client A’s insert has
succeeded.

What if a client fails in the middle of a split operation? As an example, let’s assume
that a client fails its split right before step 5 of Figure 3.6. This means there are two copies
of the new right pack’s rows in the database: one copy in the newly inserted right pack, and
one (stale) copy in the original pack. This is still safe because a new client that attempts to
read/modify those keys will retrieve the newly inserted right pack instead of the stale copies.
Any client that attempts to modify the original pack will execute the split procedure. Note
that the new right pack will not be overwritten since we do not delete packs.

3.4.3 Delete operations

delete is similar to put except that the key is removed from the pack. The ID of the
pack does not change even when the lowest key in the pack gets removed. We do not remove
packs when they become empty. The protocol for removing an pack is very complex because
a split might reinsert a right half of the pack that was deleted.

CHAPTER 3. MINICRYPT 18

1: procedure split(packID, pack, h)

2:
Assemble the right half of the pack:
right_pack with rightID and hash rh

3:
INSERT INTO table VALUES (rightID,

right_pack, rh) IF NOT EXISTS
4: Assemble left_pack with hash lh

5:
UPDATE table SET value = left_pack, hash = lh

WHERE packID = packID
IF hash = h

Figure 3.6: split pseudocode

!me$

NOW$epochs:$epoch$0$$ …$

… merge$completed$
(packsinepoch$0)$

mergein
progress$

TΔ$
packs$

Figure 3.7: APPEND mode timeline.

3.4.4 Correctness

Recall that our notion of correctness was that MiniCrypt maintains the eventual consistency
and liveness of the underlying key-value store. We will provide an intuition here.

The algorithm is safe when the operations are read-only. Updates that do not split
the packs are also safe because of the hash check. The situation is trickier when there are
concurrent updates with split operations. However, any client that issues a put or delete
to a pack that has a number of keys greater than max_keys will block, since that client will
choose to run split first. This allows concurrent modifications to safely co-exist with split.
Furthermore, synchronization mechanisms such as “insert if not exists” and “update-if” ensure
that concurrent splits on the same pack are safe. A client that is delayed during its split will
not overwrite changes made after the split finished (due to other clients) to either of the two
resulting packs. Finally, the liveness property is maintained because a client will not be stuck
in an infinite loop — at least one live client will succeed to do a put or complete a split.

3.5 The APPEND mode
In APPEND mode, data is inserted into the system in order of roughly increasing keys.

Clients can read keys, but no keys are updated or deleted once a certain time has elapsed
since a key’s first insertion. This mode fits applications whose writes are appends and enables
these writes to be very fast. There are many APPEND mode use cases. For example, a common
pattern for big data is time-series data [150, 45], where the keys are timestamps while the
values are actions or events.

Let us define concretely MiniCrypt’s assumption in this setting. First, MiniCrypt assumes
that the keys are roughly inserted in order, but not in a perfectly increasing manner. MiniCrypt

CHAPTER 3. MINICRYPT 19

Epoch eEpoch e-1 Epoch e+1

K1.e+1

Time

Kmin.e Kmin.e+1

K > K1.e+1 > Kmin.e+1 K < Kmin.e

Figure 3.8: APPEND mode: an illustrated timeline showing the key constraints in each epoch.
Let k1.x be the first key in epoch x, and kmin.x be the minimum key in epoch x. The epoch
time is designed to be large enough to provide guarantees that k1.e+1 is less than all keys in
epochs e+ 2 and beyond. This implies that kmin.e+1 is also less than all keys in epochs e+ 2
and beyond. We can also guarantee that kmin.e is greater than all keys in epochs less than
e− 1, since k1.e is greater than all keys in those epochs. From this, we can guarantee that all
keys between kmin.e and kmin.e+1 occur in e− 1, e and e+ 1.

allows for a time lag in which keys do not appear (to get operations) in increasing order and
requires that there is an upper bound on this lag denoted as T∆. Let key k be a key inserted
at time tk. The assumption is, for every key k, that no key less than k is inserted beyond
tk + T∆; similarly, no key greater than k is inserted before tk − T∆.

What is T∆? T∆ should be a conservative upper bound on the sum of the relevant time
bounds, which include a bound on the time lag in which keys can arrive out of order (which
could be due to the client), a bound on the network transfer time (the time it takes for a
client request to reach the servers), and a bound on the server side time delay for new updates
to be propagated to all available servers.

In the following section, we first present a basic design for the APPEND mode. We follow
up with various improvements that can be made on the base design.

3.5.1 Design

The put operation is slow in the generic mode because MiniCrypt clients perform an
extra read per put and employ synchronization (using update-if) to avoid overwrites due to
concurrent put operations. To enable put to be fast in APPEND mode, MiniCrypt executes a
put directly into the database (by compressing and encrypting a single row), and arranges for
the clients to merge these inserts into packs in the background. In principle, this is possible
because no key is updated or deleted once a certain amount of time has elapsed since it was
first inserted, and a new key is not inserted between two such keys. In append mode, put
should be very fast compared to regular put operations that do not operate on packs.

The main challenge that we face in APPEND mode is that the merge process can be
expensive, but must keep the same rate as puts. Clients must be in charge of merging packs
since the server cannot decrypt data. This means that the clients must read and delete a lot
of keys, and that multiple clients might attempt to merge the same keys (potentially causing
pack overwrites) while leaving other keys unmerged.

CHAPTER 3. MINICRYPT 20

MiniCrypt addresses this challenge through a careful design of the system in APPEND
mode. First, MiniCrypt groups keys into monotonically increasing epochs, which are useful
in enabling batch processing. Each insert or update belongs to a single epoch. In many
key-value stores, retrieving an entire epoch (e.g., if it is a partition as in Cassandra) and
deleting the entire epoch is much faster than performing many server-side operations for
reading and deleting each key.

We create a service called the epoch management (EM) service to manage epochs and the
associated metadata. The EM service maintains a global epoch that is periodically increased.
Each epoch is EPOCH seconds long. Clients periodically synchronize their local epochs with
the global epoch. We define Tdrift to be the maximum amount of time any client can be out
of sync with the current global epoch. To maintain correctness, we need to make sure that
EPOCH > T∆ + Tdrift. In practice, Tdrift is very small compared to EPOCH (we set it to be 10
seconds in our experiments), and we require any new/recovered client to synchronize its local
epoch before doing an insertion.

Clients merge at the granularity of epochs in a deterministic way: sort the keys in an
epoch and group them in packs of a given size starting with the smallest key. Thus, even if
two clients concurrently merge the same epoch, the results are the same. The merged packs
are placed in a special epoch 0, and the keys in the merged epochs are eventually deleted.
Figure 3.7 shows the timeline of merge operations.

One way for the clients to merge epochs is to randomly pick an epoch to merge. Even
though determinism ensures correctness, this method is inefficient because clients might do
wasted work by merging the same epochs. MiniCrypt attempts to avoid having many multiple
clients merge the same epoch by allowing the EM service to assign epochs to clients so that
only one client is merging an epoch. If a client fails, the EM service will assign new clients to
those potentially unmerged epochs.

3.5.1.1 The EM service

For availability, the EM service runs on the server. The EM does not see the contents of
the packs, but only manages information about what client should merge what packs; hence,
hosting the EM on the server does not pose a security issue within our threat model.

The EM maintains three pieces of information: the stats table, the clients table, and
g_epoch, which we explain below. All this information is stored in the server database, so
the EM is essentially a client of the underlying key-value store, and requires no changes to
this store.

The stats table contains an entry per epoch of the form: epoch ID, client ID (the
client that is in charge of merging the epoch), and status (current status of epoch, could
be NOT_MERGED, MERGED, or DELETED). When a new client comes online, the client updates
the clients table on the server by inserting its client ID and its local timestamp. Each
client periodically refreshes that timestamp to indicate that it is still alive. The EM service
periodically reads the clients table to assign clients to epochs, and to make sure that

CHAPTER 3. MINICRYPT 21

currently active clients are still alive. If a client times out, the EM service will scan through
the stats table and assign all unmerged epochs with the failed client’s ID to new clients.

The EM also maintains g_epoch, the current global epoch number, and updates it once
every every EPOCH seconds.

3.5.1.2 Put

A put operation in APPEND mode is simply a single-row insertion of the key-value pair.
When a client wishes to execute a put, it looks at its locally stored variable c_epoch for
the current global epoch. The client loosely synchronizes the c_epoch variable with the
server-side g_epoch by periodically querying g_epoch. In MiniCrypt, we adjust the period
to be short enough so that c_epoch is at most one epoch behind of g_epoch. The client
uses (c_epoch, key) as the new key and inserts ((c_epoch, key), value) into the table,
where value is compressed and encrypted.

3.5.1.3 Get

A get operation in APPEND mode is similar to the GENERIC mode get. A client first queries
epoch 0 using the GENERIC mode query method. If the key is not found in the retrieved pack,
the client retrieves the stats table, which additionally contains the minimum key for each
epoch. The client finds the epoch with the largest “minimum key” that is smaller than the
queried key. Let this epoch be e. Since the keys can be inserted roughly out of order, the
actual record could be in either epoch e or e− 1 (but not beyond e− 1 since each epoch is
long enough to cover T∆ + Tdrift). The client will execute get for at most two epochs. Note
that due to concurrent merges, one could miss the key if that key is merged right before
either of the queries. Therefore, if both reads miss, the client performs an extra read of epoch
0 to attempt to find the key. Note that there are still cases where the key exists but is not
found partly due to the fact that the underlying key-value store is itself eventually consistent,
so the client must retry after a delay.

3.5.1.4 Merge

Each client’s merge process periodically reads the stats table to find epochs that the
client is responsible for. Consider a client that is responsible for merging epoch e. Because of
the loose epoch synchronization on the client side and the fact that key inserts are also only
roughly increasing in order, we cannot take keys from epoch e, order by key, and directly
merge them into packs. We still wish to maintain the pack semantics – that each pack uses
the minimum key as its pack id, and that all key-value pairs reside in the correct pack. An
APPEND mode get should be able to use a range query to retrieve the correct pack for a
query key once that key-value pair has been inserted. Therefore, the merge process begins
by reading back all key-value pairs from e− 1, e, and e+ 1. We use the minimum key from
epochs e, e + 1 (denoted kmin.e, kmin.e+1), as markers for deciding which keys to merge: all
key-value pairs from e − 1, e, e + 1 with keys that are greater than or equal to kmin.e but

CHAPTER 3. MINICRYPT 22

less than kmin.e+1 are grouped together and merged. Once the correct key-value pairs are
retrieved, the merging process is easy: we simply order every key-value pair by key, then
split them into packs based on a pack threshold. These packs are then inserted into epoch 0.
After the packs have been inserted, the client updates the stats table with a status that the
epoch has been merged by setting status to MERGED.

Each client also periodically deletes epochs. An epoch e can be safely deleted if its status
is MERGED and epochs e− 1 and e+ 1 are either DELETED or MERGED. After deletion, e’s status
is set to DELETED.

3.5.2 Fault tolerance for the EM

There need only be one EM machine running at a time because the job of the EM is light.
For reliability, we distribute the EM service into multiple replicas. In our design, we assign
each server replica an EM instance. One of these instances is the master EM, which is in
charge of modifying the stats table and updating the global epoch. To survive EM master
failures, the server contains an entry EMreplica identifying which replica is the master EM.
The only task of the other EM replicas is to ping the master replica periodically to check if
the master is alive.

If a replica believes the master is down, it updates EMreplica to designate itself as the
master; this update is performed with an update-if, and thus relies on the underlying store’s
lightweight transactional mechanism to agree on the next replica to run the EM service.
Hence, every update to g_epoch and the other EM data structures is performed using an
update-if. This makes our design safe even if multiple EM replicas believe they are masters.
We assume that the EM replicas’ clocks are roughly synchronized (using a protocol such
as NTP [160]), which means that multiple masters can safely update the global epoch by
checking its local timestamp with the timestamp of the g_epoch. Since there is a further
timing overhead from synchronization, the epoch time needs to be adjusted appropriately.
Second, our merge protocol is deterministic, which means that it is safe even if multiple
clients attempt to merge the same epoch.

3.5.3 Correctness

We provide an intuition for the correctness of APPEND mode. MiniCrypt provides eventual
consistency guarantees because all replicas will eventually reach the same state after updates
stop. MiniCrypt’s protocols are also correct. The writes are regular single-key inserts, thus
inheriting the correctness of the underlying system. The merge process preserves correctness
for three reasons. First, there are no concurrent put and delete operations because clients
only merge epochs that are two epochs older than g_epoch. We carefully choose the epoch
time to ensure that the inserts/updates have settled and that the values will not change
further (essentially becoming immutable). Second, merge operations by two clients on the
same epoch result in the same outcome because the merge operation is deterministic. Since
the client always reads the stats table (executing a read that reads back the latest status)

CHAPTER 3. MINICRYPT 23

before attempting to merge epochs, it will never attempt to merge a partially deleted epoch
because the epoch’s status is always set to DELETED before the actual deletion begins. Finally,
the merge protocol first inserts keys in epoch 0 before deleting them; get-s are not affected
because a get queries epoch 0 as well as unmerged epochs.

Figure 3.8 also shows an explanation of our append mode’s correctness through an epoch
timeline analysis.

3.6 Implementation
We implemented MiniCrypt in approximately 5000 lines of C++ code on top of an existing

key-value store, Cassandra [138]. Cassandra is a widely used open-source key-value storage
system that is both scalable and highly available. Our implemented interface does not make
any internal modifications to Cassandra, and simply calls Cassandra’s C++ driver. We used
zlib to compress packs and OpenSSL AES-256-CBC to encrypt them.

Cassandra uses consistent hashing to distribute its data. Primary keys in Cassandra
consist of a partition key and optional clustering keys. To find a particular piece of data,
Cassandra simply hashes the partition key. Cassandra does not support range queries directly
on the partition key, but clients can order rows within a partition based on the clustering
keys. This allows for range queries within a Cassandra partition. MiniCrypt sorts data in
descending order to optimize for get queries.

To support a generic key-value store interface, MiniCrypt makes some small adjustments
to fit Cassandra’s design. For a key-value pair (key, value), MiniCrypt takes key and
hashes it to a hash value. Using this hash value, MiniCrypt is able to assign the keys to
N partitions. The default number of hash partitions is 8, though the user may adjust this
parameter. Therefore, the primary key used in Cassandra is a key pair (part_key, key)
where part_key = SHA256(key) mod N. Within each hash partition, the data is ordered by
key. If a user wishes to perform get(k), MiniCrypt will hash k to get a partition number,
then use the get operation described in Section 3.3.1. For range queries, MiniCrypt has to
make a range query request to each partition. In addition to a generic interface, MiniCrypt
also has the ability to support a compound primary key (partition key, clustering key)
(similar to what Cassandra supports). The primary key used in this situation is key pair
(part_key, key) where part_key = SHA56(partition key) mod N.

3.7 Evaluation
Our experiments were conducted on Amazon EC2. All benchmarks were run on a small

cluster of 3 c4.2xlarge instances, and each instance has 15 GB of memory and 8 cores. The
SSD experiments were run with 2 provisioned SSD drives per instance. The disk experiments
were run with 2 magnetic drives per instance. The Cassandra replication factor was set to 3.
All benchmarks use the Conviva dataset row values [56], consisting of approximately 1100

CHAPTER 3. MINICRYPT 24

0 10 20 30 40 50 60 70 80 90

Data Size in GB

0

5000

10000

15000

20000

25000

30000

35000

T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s

MiniCrypt
Baseline
Vanilla

0 10 20 30 40 50 60 70 80

Data Size in GB

0

5000

10000

15000

20000

25000

30000

35000

T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s

MiniCrypt
Baseline

(a) (b)

0 10 20 30 40 50 60 70 80 90

Data Size in GB

0

200

400

600

800

1000

1200

T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s

MiniCrypt
Baseline
Vanilla

0 10 20 30 40 50 60 70 80

Data Size in GB

0

200

400

600

800

1000

1200

T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s

MiniCrypt
Baseline

(c) (d)

Figure 3.9: Point queries on (a) SSD (b) disk; range queries on (c) SSD (d) disk

bytes of anonymized customer data. All experiments use one 8-byte integer as the key, and
one Conviva row as the value. Unless indicated otherwise, all MiniCrypt experiments (in
both APPEND and GENERIC modes) set pack size to 50 rows.

We compare the performance of MiniCrypt with a baseline encrypted client. The baseline
embodies a typical encrypted system that gives confidentiality guarantees by encrypting
each row individually. This client has similar security to MiniCrypt, but it does not have
the compression benefits of MiniCrypt. Nevertheless, we also use the same compression
algorithm on each row before encrypting it to give this client an advantage. The compression
ratio for single rows is roughly 1.6. Additionally, we compare MiniCrypt with a vanilla
Cassandra client that uses no encryption and no compression for the 100% read and range
query benchmarks.

CHAPTER 3. MINICRYPT 25

0 10 20 30 40 50 60 70 80

Total number of clients

102

103

104

105

106

T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s

Baseline
MiniCrypt w/o update-if
MiniCrypt
MiniCrypt w/ skew

Figure 3.10: GENERIC mode 100% write

0 10 20 30 40 50 60 70 80

Total number of clients

0

10000

20000

30000

40000

50000

T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s

MiniCrypt
Baseline

Figure 3.11: APPEND mode 100% write

0 100 200 300 400 500 600

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

#
 o

f
ke

y
s

1e7

Baseline puts
MiniCrypt puts
MiniCrypt merge
MiniCrypt delete

Figure 3.12: APPEND mode 100% write,
long run

0 10 20 30 40 50 60 70 80

Data Size in GB

0

5000

10000

15000

20000

25000

30000
T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s
MiniCrypt
Baseline

Figure 3.13: APPEND mode 50% read, 50%
write

3.7.1 Read performance

We ran a modified YCSB read workload on a small three-instance cluster. We pre-loaded
data into Cassandra and ran a 100% uniform read/range query workload on tables of different
sizes. We compare MiniCrypt with a baseline encrypted client that compresses and encrypts
each row separately, as well as a vanilla Cassandra client. The system was warmed up for 5
minutes for SSDs, and 10 minutes for disks. After warmup, each experiment was run for 60
seconds.

3.7.1.1 Point queries

Figure 3.9 plots the maximum server throughput (achieved by saturating the server with
as many clients as possible) against varying overall dataset sizes. The same experiment was

CHAPTER 3. MINICRYPT 26

run with both SSD and magnetic disks.
We first compare MiniCrypt with the encrypted baseline client. When the dataset’s size

is small, both MiniCrypt and the baseline client fit the data in memory. The baseline client
has a higher maximum throughput than MiniCrypt because the latter is retrieving more data
and does extra processing (decompression, decryption) on the client. As the dataset size is
slowly increased, the baseline client cannot fit in memory anymore. Once it starts accessing
persistent storage for reads, the throughput drops significantly. Because MiniCrypt achieves
higher data compression ratio, the same dataset that does not fit in memory for the baseline
client still fits in memory for a MiniCrypt client. Thus, MiniCrypt continues to maintain
high throughput until the compressed data can no longer fit in memory. In this situation,
MiniCrypt is able to achieve roughly 100x performance gain over the baseline client when
the server is backed by disk, and 9.2x performance gain when the server is backed by SSD. If
both clients cannot fit data in memory anymore, MiniCrypt still manages to maintain good
performance for a while because a large majority of the data it accesses is still in memory.
For larger data sizes, we expect a crossover point where the baseline client becomes better
than MiniCrypt because the query overhead starts to be dominated by accesses to persistent
storage. MiniCrypt is weak in this scenario because it accesses an entire pack for a single
point query. Compared to the SSD graph, the disk graph has much sharper drops. This
behavior is expected because disks have a significantly lower read throughput for uniform
access than SSDs.

MiniCrypt is also able to achieve roughly 6.2x performance gain over the vanilla Cassandra
client (SSD). The vanilla client’s graph is similar to the encrypted baseline’s graph, except
shifted to the right. Since Cassandra utilizes compression on the server side, it is able to
compress plaintext value to a certain extent. However, the compression ratio Cassandra
achieves is not as good as that of MiniCrypt. These graphs show that MiniCrypt provides a
significant throughput increase for a significant range of data sizes.

To compare latency numbers for both MiniCrypt and the baseline, we ran the same 100%
read benchmark on SSD for a MiniCrypt client and a baseline client (both of which are single
threaded) on a database size of 5 GB. This latency measurement is advantageous for the
baseline client because its data fits in memory. The baseline achieves 1.019 ms per query,
and MiniCrypt achieves 1.199 ms per query. MiniCrypt’s extra latency gains come from the
extra processing on the client.

3.7.1.2 Range queries

Range queries are very common in many workloads. For example, time series data (such
as session logs) are frequently append-only and immutable when inserted. The logs are later
retrieved by time range. The Conviva analytical query workload also retrieves customer data
within a time range, where the range can be as short as one hour and as long as one week.

MiniCrypt’s design makes range queries very efficient because MiniCrypt orders all key-
value pairs and groups them into packs. For a point query, the space overhead is (pack size /
compression ratio). For range queries (especially large scans that touch many records), the

CHAPTER 3. MINICRYPT 27

bandwidth overhead is reduced. For example, if the number of records queried is significantly
greater than the pack size, the baseline client will have more bandwidth overhead than
MiniCrypt (by a factor of C, where C is the ratio of MiniCrypt’s pack compression to a
single row’s compression).

Our range query experiments are based on YCSB’s short ranges workload. Each query
selects a key k uniformly from the keyspace, and attempts to query all items between
(k − 1000, k]. Figure 3.9 shows that MiniCrypt consistently experiences a significantly higher
maximum range query throughput compared to both the encrypted baseline client and the
vanilla client, both when the data fits in memory and when it does not. MiniCrypt is able to
achieve up to 5x performance gain over the encrypted baseline client. Note that the vanilla
client is slightly slower than the encrypted baseline client in the 100% range query experiment
for small database sizes. This is due to the vanilla client being bottlenecked by the network.
The vanilla client may achieve compression in memory, but still has to return the result in
uncompressed format. The baseline encrypted client is able to achieve some compression for
a single row, and can therefore return the result in the compressed format as well. As the
size of the database increases, disk becomes more of a bottleneck, and the vanilla client and
the encrypted baseline client converge to same throughput.

These experimental observations align with our analysis. Since our range is 1000 records,
MiniCrypt is able to achieve much better performance because the compressed data has a
higher compression ratio. When data can no longer fit in memory, the performance drops
because of disk accesses. The drop is more significant for disk than for SSD.

3.7.2 Write performance

Generic mode In GENERIC mode, each write has two overheads: an extra read and a
lightweight transaction (update-if). Figure 3.10 shows the result of running 100% uniform
random writes on a pre-loaded 10 GB database, with the y-axis on a log scale. Each
experiment ran for 120 seconds. The baseline client is fast because it is able to execute blind
writes. MiniCrypt GENERIC mode with update-if is slow, but is mainly dominated by the
extra read while the usage of the lightweight transaction introduces further stress to the
system. This experiment justifies our decision to use the update-if mechanism because it
gives much better guarantees of the system’s semantics. Even if we revert the system to do
blind writes, each write still requires an extra read, which is where the performance loss is
coming from. Figure 3.10 also shows a skewed workload that is generated using a Zipfian
distribution. The Zipfian parameter is set to 0.2 (with 0 being pure Zipfian, and 1 being
uniformly random). The skew has almost no effect on the write performance.

Append mode Our append mode writes increase the performance of put by several orders
of magnitude. We ran two sets of experiments in MiniCrypt APPEND mode: modified YCSB
100% write and 50% read/50% write. Under APPEND mode assumptions, all writes are actually
inserts where inserted keys are roughly increasing. Each experiment is run for 120 seconds
(except for the long 100% write).

CHAPTER 3. MINICRYPT 28

Write-only. We start with an empty database for both the encrypted baseline and
MiniCrypt. Figure 3.11 compares the baseline client with MiniCrypt in APPEND mode.
Compared to Figure 3.10, MiniCrypt is able to keep up with the baseline client’s put speed
much better because put in APPEND mode does not have an extra read and does not use
update-if. The difference between MiniCrypt’s and baseline’s throughput is due to the
overhead of the merge process. This overhead is not visible when the number of clients is
small, but it appears when the number of clients increases. The merge process has to read
back inserted keys, as well as re-insert them (though in a compressed format). This interferes
with regular inserts because of both disk reads and extra insertion costs. MiniCrypt settles
to about 40% of maximum write throughput achieved by baseline client.

Figure 3.12 shows the performance of MiniCrypt for a long run (approximately 10 minutes).
We scale up the number of clients to 72, which corresponds to the right most data point in
Figure 3.11. This graph plots cumulative number of keys against time. The baseline client
line shows cumulative number of keys inserted during the 10 minute run. MiniCrypt has
three different lines: “insert”, “merge”, and “delete”. Insert indicates the cumulative number
of keys inserted during the run; “merge” is the total number of keys merged from the inserted
keys; “delete” is the total number of keys deleted. This graph shows that the merge process is
able to keep up with key insertions, albeit at a lower insertion rate than that of the baseline
client.

Read/write mix. The read/write mix workload is aimed to emulate one of YCSB’s “read-
most-recent” workloads, which is a common case when a workload inserts new data. All of
the runs were executed on a pre-loaded 70 GB database. We adjust an “interval” parameter
that indicates the range of the keys read. For example, an interval of 5 GB will allow the
clients to read a uniformly random key from the most recently inserted 5 GB worth of data.
Both the baseline client and MiniCrypt were warmed up for 5 minutes before each run. Each
experiment runs for 120 seconds.

Figure 3.13 shows MiniCrypt’s performance for a 50% reads and 50% writes workload.
Since writes are faster than reads, the baseline’s performance settles to a point that is higher
than the baseline’s performance in Figure 3.9 (a). The performance of MiniCrypt APPEND
falls off as the size of the query interval increases because the merge process also needs to
read recently inserted values. If more values are read into memory in the normal benchmark,
the two processes will interfere with each other.

We also benchmarked the latency of the append MiniCrypt client as compared to the
baseline client (again using single-threaded clients) on 5 GB of data. The baseline achieves
a latency of 1.103 ms per read query, and 0.718 ms per write query. MiniCrypt achieves a
latency of 1.743 ms per read query, and 0.781 ms per write query. The writes are very fast
for both clients because both execute appends, while MiniCrypt’s read is slower because it
may have to do more work if an initial attempt to read misses.

CHAPTER 3. MINICRYPT 29

10 20 30 40 50 60 70 80 90 100

Pack size (# of rows)

0

5000

10000

15000

20000

25000

30000

35000

T
h
ro

u
g
h
p
u
t

in
 t

x
n
s/

s

MiniCrypt

Figure 3.14: Pack size versus maximum throughput.

3.7.3 Determining the pack size

Writing an equation for the optimal pack size is not feasible because there are too many
factors that affect this choice. Instead, MiniCrypt provides a tool to empirically determine a
good pack size. This tool takes in a representative dataset and workload and can generate a
graph of throughput plotted against various pack sizes. MiniCrypt then chooses the pack
size that provides the highest throughput. Figure 3.14 shows running YCSB 100% uniform
read workload for 50 GB of Conviva data. In our experiments, we noticed consistently that
the optimal pack size was the following: the smallest pack size for which the data fits in
memory, namely, argminn{compratio(n) ·data size < memory size}, where compratio(n) is the
compression ratio obtained when compressing a pack of size n.

We recommend using MiniCrypt when all or most of the data fits in memory when
compressed by MiniCrypt (i.e., fits in memory on each machine), but would not fit in memory
without MiniCrypt. We show in the previous sections that there is a significant data size
range when this is the case. If a significant fraction of the data does not fit in memory, we do
not recommend using MiniCrypt.

3.7.4 Network bandwidth

MiniCrypt’s network bandwidth overhead can be determined by (# of rows in each pack /
pack compression ratio). In our experiments, network bandwidth did not become a bottleneck.
We expect MiniCrypt to be used in a setting where the network is not the bottleneck.

3.8 Related work
We now discuss other related work in addition to the strawman designs described in

Section 3.1.4.
Key-Value Stores. Some key-value stores (e.g., Cassandra [138] and MongoDB [163])
compress and then encrypt the data at rest (in permanent storage). However, the decryption

CHAPTER 3. MINICRYPT 30

key is available to the server so that the server can decrypt and decompress the data when
a client requests a key. This strategy does not protect against a server compromise (e.g.,
hacker, administrator of the server) because the attacker can get access to the decrypted data
by compromising the server-side key. On the other hand, if a client inserts data encrypted
with a key unavailable to the server, the compression mechanisms in these systems become
ineffective due to the pseudorandom properties of the encryption. In comparison, MiniCrypt
provides a significant compression ratio even in this case.

A recent system, Succinct [6] supports compression for a key-value store, while enabling
rich search capabilities. However, Succinct does not support encryption. Adding encryption
directly on top of Succinct would cause significant data access pattern leakage.
Encrypted databases. A number of recent proposals in databases support queries on
encrypted data [181, 15, 222]. However, encryption introduces a significant storage overhead
compared to the unencrypted data (e.g., 5 times larger for [181]). These systems do not
support compression while executing queries on encrypted data. As presented in the MiniCrypt
evaluation, querying on data that does not fit in memory will cause a significant performance
hit.
Compressed databases. Compression is a common technique explore in databases [3, 70,
139, 6, 27, 114]. We discuss some simple strawman designs that utilize these techniques in
Section 3.1.4. MiniCrypt is a generalized system that does not rely on a particular compression
algorithm – users can choose any algorithm that fits their application requirements.

MiniCrypt differs from these two types of databases in two main ways. First, it focuses
on NoSQL stores and does not support the more generic SQL operations. Second, MiniCrypt
achieves both data confidentiality through encryption and a significant compression ratio.
File systems. There is previous work on designing encrypted file systems [30, 99, 128, 153]
to protect data confidentiality from an untrusted server. One can compress a file before
encrypting it. However, as discussed, compressing a single key-value pair alone does not
provide good performance.

3.9 Conclusion
This chapter presented MiniCrypt, the first big data key-value store that reconciles encryp-

tion and compression. MiniCrypt makes an empirical observation about data compression
trends and provides a set of distributed systems techniques for retrieving, updating, merging
and splitting encrypted packs while preserving consistency and performance. Our evaluation
shows that MiniCrypt can increase the server’s throughput by up to two orders of magnitude.
Such an encrypted key-value store is an important first step in providing secure computation
in the cloud, as the users can use it as a storage service for their sensitive data.

31

Chapter 4

Opaque

SQL is widely used to analyze vast amounts of sensitive data such as user information
(emails, social interactions, shopping history), medical data, and financial data because it
not only offers database analytics but also supports machine learning [157, 108] and graph
processing [107]. It is also useful for multi-party use cases such as money laundering and
fraud detection across multiple financial institutions where customer transaction patterns
must be traced. However, this cloud-based data analysis is currently done on plaintext data
today. Even if the data storage service can be secured at rest using encryption, this data
must be decrypted in memory for processing, which means that the cloud again sees the
sensitive plaintext data.

Recent innovation in trusted hardware enclaves (such as Intel SGX [154] and AMD
Memory Encryption [129]) promise support for arbitrary computation [22, 189] at processor
speeds while protecting the data. Unfortunately, enclaves still suffer from an important attack
vector: access pattern leakage [214, 171]. Such leakage occurs at the memory level and the
network level. Memory-level access pattern leakage happens when a compromised OS is able
to infer information about the encrypted data by monitoring an application’s page accesses.
Previous work [214] has shown that an attacker can extract hundreds of kilobytes of data
from confidential documents in a spellcheck application, as well as discernible outlines of
JPEG images from an image processing application running inside the enclave. Network-
level access pattern leakage occurs in the distributed setting because tasks (e.g., sorting or
hash-partitioning) can produce network traffic that reveals information about the encrypted
data (e.g., key skew), even if the messages sent over the network are encrypted. For example,
Ohrimenko et al [171] showed that an attacker who observes the metadata of network messages,
such as source and destination (but not their content), in a MapReduce computation can
identify the age group, marital status, and place of birth for some rows in a census database.
Therefore, to truly secure the data, the computation should be oblivious : i.e., it should not
leak any access patterns.

This chapter presents Opaque1, an oblivious and distributed data analytics platform.
Utilizing Intel SGX hardware enclaves, Opaque is able to provide strong security guarantees

1The name “Opaque” stands for Oblivious Platform for Analytic QUEries, as well as opacity, because

CHAPTER 4. OPAQUE 32

including computation integrity and computation obliviousness. The rest of this chapter
focuses on a system design where there is a single client. Nevertheless, such design also works
for the multi-party scenario because the parties can pool their data together on the cloud,
and Opaque can execute SQL queries over this combined data.

The main challenge that Opaque faced is the question of how to efficiently provide
protection against data access pattern leakage. To address this challenge, we propose a
two-part solution. First, we introduce a set of new distributed relational operators that
protect against both memory and network access pattern leakage at the same time. These
include operators for joins and group-by aggregates. The contribution of these relational
operators is to achieve obliviousness in a distributed and parallel setting. These operators also
come with computation integrity guarantees, called self-verifying computation, preventing an
attacker from affecting the computation result.

Second, we provide novel query planning techniques, both rule-based and cost-based,
to further improve the performance of oblivious computation. Oblivious SQL operators in
Opaque consist of fine-grained oblivious computation blocks called Opaque operators. We
observe that by taking a global view across these Opaque operators and applying Opaque-
specific rules, some operators can be combined or removed while preserving security. We also
develop a cost model for oblivious operators that lets us evaluate the cost of a physical plan.
This model introduces security as a new dimension to query optimization. We show that
it is possible to achieve significant performance gains by using join reordering to minimize
the number of oblivious operators. One key aspect used by our cost model is that not
all tables in a database are sensitive: some contain public information. Hence, we can
query such tables using non-oblivious operators to improve performance. Opaque allows
database administrators to specify which tables are sensitive. However, sensitive tables can
be related with seemingly insensitive tables. To protect the sensitive tables in this case,
Opaque leverages a technique in the database literature called inference detection [113, 73]
to propagate sensitivity through tables based on their schema information. Additionally,
Opaque propagates operator sensitivity as well for all operators that touch sensitive tables.

4.1 Background

4.1.1 Access pattern leakage attacks

To understand access pattern leakage concretely, consider an example query in the medical
setting:

SELECT COUNT(*) FROM patient WHERE age > 30 GROUP BY disease

The “group by” operation commonly uses hash bucketing: each machine iterates through its
records and assigns each record to a bucket. The records are then shuffled over the network

they system is able to hide sensitive information.

CHAPTER 4. OPAQUE 33

Spark workers

Catalyst
query planner

Opaque's
rules

job driver

Spark worker

enclave

verifier

compute
on data

encrypted
DAG

server-side / untrustedclient-side / trusted

schedulerjob DB

Figure 4.1: Opaque’s architecture overview.

partition
x8ab3

filter: age > 30;
group by disease;

count

E1

task 2

task 3

group by disease;
count

task 4 output 1

task 1

E2

E4

E3

E5 E7

E6

partition
x52ce

partition
x1e4b

Figure 4.2: Example task DAG.

so that records within the same bucket are sent to the same machine. For simplicity, assume
each bucket is assigned to a separate machine. By watching network packets, the attacker
sees the number of items sent to each machine. Combined with public knowledge about
disease likelihood, the attacker infers each bucket’s disease type.

Moreover, the attacker can learn the disease type for a specific database record, as
follows. By observing page access patterns, the attacker can track a specific record’s bucket
assignment. If the bucket’s disease type is known, then the record’s disease type is also
known. A combination of page-based access patterns and network-level access patterns thus
gives attackers a powerful tool to gain information about encrypted data.

4.1.2 Spark background

We implemented Opaque on top of Spark SQL [216, 16], a popular cluster computing
framework, and we use Spark terminology in our design for concreteness. We emphasize that
the design of Opaque is not tied to Spark or Spark SQL: the oblivious operators and query
planning techniques are applicable to other relational frameworks.

The design of Spark SQL [216, 16] is built around two components: master and workers.
The user interacts with the master which is often running with the workers in the cloud.
When a user issues a query to Spark SQL, the command is sent to the master which constructs
and optimizes a physical query plan in the form of a DAG (directed acyclic graph) whose
nodes are tasks and whose edges indicate data flow. The conversion of the SQL query into a
physical query plan is mediated by the Catalyst query optimizer.

4.2 Overview

4.2.1 Threat model and assumptions

In this section, we first describe the definitions and requirements of an ideal enclave and a
real world enclave implementation. We then discuss Opaque’s threat model. Opaque’s design
assumes and relies on the existence of an ideal enclave to fully provide obliviousness, but we
also explain the security implications of using a real world enclave implementation.

CHAPTER 4. OPAQUE 34

4.2.1.1 Ideal enclave vs. enclave implementation

Ideal enclave In an ideal enclave environment, the processor is trusted and what happens
inside the processor should be isolated from an attacker. This means that the attacker should
not be able to observe control flow information from uncleared registers, etc.

We define two regions of memory: internal and external. The properties of these memory
regions are:

1. Internal memory: this memory region should be completely isolated from the attacker
and the attacker cannot observe anything that happens in this region. This includes
which memory locations are accessed, how many memory accesses are executed, the
order of the accesses, the timing of each memory access, etc. An attacker should not be
able to use root-level software attacks to learn information about these statistics.

2. Secure external memory: all data in this region should be encrypted and authenticated
so that the attacker does not see the data content. However, the attacker could still
observe the memory access patterns.

3. Insecure external memory: the attacker can see all accessed data in plaintext.

This internal memory region should be large enough to contain all of the enclave code
binary plus the minimum amount of working space needed by the code. Once the code and
data pages are loaded in the internal memory region, the attacker cannot observe anything
that happens in this region.

Enclave implementation Real world enclave implementations do not have an internal
memory region. Using Intel SGX as an example, previous research [214] has shown that a
malicious operating system could utilize page faults to observe page-level memory accesses.
The cache is located within the package, but it does not provide any isolation. The enclave
memory, or the enclave page cache (EPC), can be considered as a secure external memory
because it is encrypted but still allows an attacker to observe memory accesses.

Nevertheless, recent work, such as Sanctum [61], GhostRider [143], and T-SGX [191],
propose enclave designs that protect against access patterns to the EPC. For example, T-SGX
uses Intel TSX to intercept page faults and protect against the controlled leakage attack [214].
Therefore, Opaque can utilize T-SGX to create a small pool of oblivious internal memory
that is safe from the controlled leakage attack. The rest of Opaque can protect access to the
untrusted memory and network using our own oblivious algorithms.

Note that Opaque inherits the prior work’s security properties. T-SGX also leaks up
to 10 page faults per transaction area because TSX cannot distinguish between page faults
from benign OS interrupts. T-SGX can be adjusted to leak fewer than 10 page faults per
transaction area, but there is a trade-off between security guarantees and functionality since
a lower threshold means more opportunities for aborting from false positives. If Opaque
utilizes T-SGX, Opaque will also inherit its leakage based on how T-SGX is configured.

CHAPTER 4. OPAQUE 35

Hardware mechanisms can also be used to create internal memory. For example, hardware-
enforced page pinning (a malicious OS cannot swap out pages) or superpages can be used to
provide isolation for page fault attacks.

For the rest of the chapter (other than the implementation and evaluation sections), we
assume that Opaque has access to ideal enclaves.

4.2.1.2 Threat model

We assume a powerful adversary who controls the cloud provider’s software stack. The
attacker may gain root access to the operating system, modify data or communications that
are not inside a secure enclave, and observe the content and order of memory accesses by
an enclave to the external memory. The adversary can observe and modify the network
traffic between different nodes in the cloud as well as between the cloud and the client. The
adversary may also perform a rollback attack that restores sealed data to a previous state.

We assume that the adversary cannot compromise the trusted hardware, relevant enclave
keys, or client software. In particular, the attacker cannot issue queries or change server-side
data through the client. We also assume that the adversary does not launch hardware based
attacks such as memory bus snooping.

4.2.1.3 Out of scope attacks

We assume that the attacker’s power is limited to what is stated in the previous section.
Therefore, the attacker does not use hardware attacks, software timing attacks, power analysis,
or any other side channel attack not included in the threat model. Opaque also does not
prevent denial-of-service attacks. A cloud provider may destroy all customer data or deny or
delay access to the service, but this is not in the provider’s interest because customers have
the option to choose a different provider. Side-channel attacks based on power analysis or
timing attacks (including those that measure the time spent in the enclave or the time when
queries arrive) are also out of scope for us.

4.2.2 Opaque’s architecture

Figure 4.1 shows Opaque’s architecture. Opaque does not change the layout of Spark
and Spark SQL, except for one aspect. Opaque moves the query planner to the client side
because a malicious cloud controlling the query planner can result in incorrect job execution.
However, we keep the scheduler on the server side, where it runs in the untrusted domain.
We augment Opaque with a computation verification mechanism (Section 4.3.2) to prevent
an attacker from corrupting the computation results.

The Catalyst planner resides in the job driver and is extended with Opaque optimization
rules. Given a job, the job driver outputs a task DAG and a unique job identifier JID for this
job. For example, the query from Section 4.1.1 translates to the DAG shown in Figure 4.2.

CHAPTER 4. OPAQUE 36

The job driver annotates each edge with an ID, e.g., E1, and each node with a task ID, e.g.,
task 4. The input data is split in partitions, each having its own identifier.

Oblivious memory parameter. Opaque can use prior work to establish an oblivious
pool of memory under certain threat model assumptions. Since the size of the oblivious pool
depends on the architecture used, we parameterize Opaque with a variable specifying the
size of the oblivious memory. This parameter can range from as small as the registers (plus
Opaque’s enclave code size) to as large as the entire EPC [61, 191] or main memory. Bigger
oblivious memory allows faster oblivious execution in Opaque.

4.2.3 Security guarantees

4.2.3.1 Encryption mode

In encryption mode, Opaque provides data encryption and authentication guarantees.
Opaque’s self-verifying integrity protocol (Section 4.3.2) guarantees that, if the client verifies
the received result of the computation successfully, then the result is correct, i.e., not affected
by a malicious attacker. The proof of security for the self-verifying integrity protocol is rather
straightforward, and similar to the proof for VC3 [189].

4.2.3.2 Oblivious modes

Opaque has two oblivious modes: oblivious mode and oblivious pad mode. Oblivious mode
hides the data access patterns of each SQL operator, but reveals the input/output sizes of
each operator. Oblivious pad mode, explained in Section 4.4.3, hides even this information
by pushing up all filters and padding the final output to a public upper bound, in exchange
for more performance overhead.

In this section, we will focus oblivious mode’s security properties; we expand on the two
modes. Opaque does not hide the computation/queries run at the server, the schema, or
other public information like the number of rows in each table. As stated before, we will
assume that Opaque has access to ideal enclaves.

In oblivious mode, Opaque provides oblivious SQL operator execution with respect to
memory and network accesses under the ideal enclave assumption. We can load both the
code and data pages into internal memory (defined in Section 4.2.1.1). Anything located
in the internal memory is isolated from the attacker (i.e., the attacker cannot passively or
actively observe data and data accesses).

The standard way to formalize that a system hides access patterns is to construct a
simulator that takes as input a query plan and data sizes but not the data content, yet is able
to produce the same trace of memory and network accesses as the system itself. Intuitively,
since the simulator’s input does not include the data content, the data accesses reveal nothing
about the content. The simulator’s input provides an upper bound on the system’s leakage.

CHAPTER 4. OPAQUE 37

To specify Opaque’s leakage, we first define the following (informal) notation. Let D
be a dataset and Q a query. Let Size(D) be the sizing information of D, which includes
the size of each table, row, column, attribute, the number of rows, the number of columns,
but does not include the value of each attribute. Let S be the schema information, which
includes table and column names in D, as well as the sensitive tables’ names (Opaque can
additionally hide table and column names via encryption). The sensitive tables include those
marked by the administrator, as well as those marked by Opaque after sensitivity propagation
(Section 4.5.3). Let IOSize(D, Q) be the input/output size of each SQL operator in Q when
run on D. We define P = OpaquePlanner(D, Q) as the physical plan generated by Opaque.
We define Trace as the trace of memory accesses and network traffic patterns (the source,
destination, execution stage, and size of each message) for sensitive operators.

Theorem 1. For all D, S, where D is a dataset and S is its schema, and for any
query Q, there exists a probabilistic polynomial-time simulator Sim such that, for P =
OpaquePlanner(D, Q),

Sim(Size(D), S, IOSize(D, Q), P) = Trace(D, P).

The existence of Sim demonstrates that access patterns of the execution are oblivious,
and that the attacker does not learn the data content D beyond sizing information and the
query plan. The fact that the planner chose a certain query plan over other possible plans
for the same query might leak some information about the statistics on the data maintained
by the planner. Nevertheless, the planner maintains only a small amount of such statistics
that contain much less information than the actual data content. Further, the attacker does
not see these statistics directly and does not have the power to change data or queries and
observe changes to the query plan.

Oblivious pad mode’s security guarantees are similar to the above, except that the
simulator no longer takes as input IOSize(D, Q), but instead only a public upper bound on
the size of a query’s final output.

Note that Opaque protects most constants in a query using semantic security: for example
it hides the constant in “age ≥ 30”, but not in “LIMIT 30”.

Coupling oblivious accesses with the fact that the content of every write to memory and
every network message is freshly encrypted with semantic security enables Opaque to provide
a strong degree of data confidentiality. In particular, Opaque protects against the memory
and network access patterns attacks presented in [214] and [171].

4.3 Opaque’s encryption mode
In this section, we describe Opaque’s encryption mode, which provides data encryption,

authentication and computation integrity.

CHAPTER 4. OPAQUE 38

4.3.1 Data encryption and authentication

Similar to previous designs [22, 189], Opaque uses remote attestation to ensure that
the correct code has been loaded into enclaves. A secure communication channel is then
established and used to agree upon a shared secret key k between the client and the enclaves.

All data in an enclave is automatically encrypted by the enclave hardware using the
processor key of that enclave. Before communicating with another enclave, an enclave always
encrypts its data with AuthEnc using the shared secret key k. AuthEnc encrypts data
with AES in GCM mode, a high-speed mode that provides authenticated encryption. In
addition to encryption, this mode also produces a 128-bit MAC to be used for checking
integrity.

4.3.2 Self-verifying computation

Ensuring computation integrity is necessary because a malicious OS could drop messages,
alter data or computation. We call our integrity checking strategy self-verifying computation
because the computation verifies itself as it proceeds. The mere fact that the computation
finished without aborting means that it was not tampered with.

Let us first discuss how to check that the input data was not corrupted. As in VC3 [189],
the identifier of a partition of input data is its MAC. The MAC acts as a self-certifying
identifier because an attacker cannot produce a different partition content for a given ID.
Finally, the job driver computes C ← AuthEnck(JID, DAG, P1, . . . , Pp), where P1, . . . , Pp
indicates the identifiers of the partitions to be taken as input. Every worker node receives C.
Opaque’s verifier running in the enclave decrypts and checks the authenticity of the DAG in
C.

Then, to verify the integrity of the computation, each task needs to check that the
computation up to it has proceeded correctly. First, if E1, . . . , Et are edges incoming into
task T in the DAG, the verifier checks that it has received authentic input on each edge from
the correct previous task and that it has received input for all edges. To ensure this invariant,
each node producing an output o for an edge E encrypts this output using AuthEnck(JID,
E, o). The receiving node can check the authenticity of this data and that it has received
data for every edge in the DAG. Second, the node will run the correct task T because the
enclave code was set up using remote attestation and task T is integrity-verified in the DAG.
Finally, each job ends with the job driver receiving the final result and checking its MAC.
The last MAC serves as a proof of correct completion of this task.

This protocol improves over VC3 [189], which requires an extra stage where all workers
send their inputs and outputs to a master which checks that they all received complete and
correct inputs. Opaque avoids the cost of this extra stage and performs the verification during
the computation, resulting in negligible cost.

Rollback attacks. Spark’s RDDs combined with our verification method implicitly defend
against rollback attacks, because the input to the workers is matched against the expected

CHAPTER 4. OPAQUE 39

MACs from the client and afterwards, the computation proceeds deterministically. The
computation result is the same even with rollbacks.

4.3.3 Fault tolerance

In Spark, if the scheduler notices that some machine is slow or unresponsive, it reassigns
that task to another machine. Opaque’s architecture facilitates this process because the
encrypted DAG is independent from the workers’ physical machines. As a result, the
scheduler can live entirely in the untrusted domain, and does not affect Opaque’s security if
compromised.

4.4 Oblivious execution
In this section, we describe Opaque’s oblivious execution design. We first present two

oblivious building blocks, followed by Opaque’s oblivious SQL operator designs.

4.4.1 Oblivious building blocks

Oblivious sorting is central to the design of oblivious SQL operators. Opaque adapts
existing oblivious sorting algorithms for both local and distributed sorting, which we now
explain.

4.4.1.1 Intra-machine oblivious sorting

Sorting networks [58] are abstract networks that consist of a set of comparators that
compare and swap two elements. Elements travel over wires from the input to comparators,
where they are sorted and output again over wires. Sorting networks are able to sort any
sequence of elements using a fixed set of comparisons.

Denote by OM, the oblivious memory available for query processing, as discussed in §4.2.2.
In the worst case, this is only a part of the registers. If the total size of the data to be
sorted on a single machine fits inside the OM, then it is possible to load everything into the
OM, sort using quicksort, then re-encrypt and write out the result. If the data cannot fit
inside the OM, Opaque will first partition the data into blocks. Each block is moved into the
OM and sorted using quicksort. We then run a sorting network called bitonic sort over the
blocks, treating each one as an abstract element in the network. Each comparator operation
loads two blocks into the enclave, decrypts, merges, and re-encrypts the blocks. The merge
operation only requires a single scan over the blocks.

4.4.1.2 Inter-machine oblivious sorting

A natural way to adapt the bitonic sorting network in the distributed setting is to treat
each machine as an abstract element in the sorting network. We can sort within each machine

CHAPTER 4. OPAQUE 40

3

5

6

10

14

17

1

4

8

11

15

16

0

2

7

9

12

13

3

10

1

11

0

9

5

14

4

15

2

12

6

17

8

16

7

13

0

1

3

9

10

11

2

4

5

12

14

15

6

7

8

13

16

17

row
1

row
2

6

14

10

3

17

5

15

4

1

16

8

11

12

7

13

9

2

0

 sort shuffle sort

0

2

6

1

4

7

3

5

8

9

12

13

10

14

16

11

15

17

0

1

2

4

6

7

3

5

8

9

12

13

10

11

14

15

16

17

15

16

17

0

1

2

4

6

7

3

5

8

9

12

13

10

11

14

row
3

row
4

row
5

row
6

 sort shuffle

column
1

column
2

column
3

 shuffle

 shuffle sort

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

1

2

15

16

17

3

4

5

6

7

8

9

10

11

12

13

14

Step 1: Step 2: Step 3:

Step 4: Step 5: Step 6:

Step 7: Step 8:

Figure 4.3: Column sort, used in the distributed setting. Each column represents a single
partition, and we assume that each machine only has one partition. The algorithm has eight
steps. Steps 1, 3, 5, 7 are sorts, and the rest are shuffle operations.

separately, then run the bitonic sorting network over the machines. However, each level of
comparators now corresponds to a network shuffling of data. Given n machines, the sorting
network will incur O(log2 n) number of shuffles, which is high.

Instead, Opaque uses column sort [142], which sorts the data using a fixed number of
shuffles (5 in our experiments) by exploiting the fact that a single machine can hold many
items. Column sort works as follows: given a sequence of B input items, we split these
items into s partitions, where each partition has exactly r items (with padding if necessary).
Without loss of generality, we assume that each machine handles one partition. We treat each
partition as a column in column sort. The sorting algorithm has 8 steps: the odd-numbered
steps are per-column sorts (implemented as intra-machine oblivious sorting), and the even-
numbered steps shuffle the data deterministically. Figure 4.3 gives a visual example of how
column sort works. The sorting algorithm has the restriction that r ≥ 2(s−1)2, which applies
well to our setting because there are many records in a single partition/column.

An important property of column sort is that, as an oblivious operator, it preserves
the balance of the partitions. This means that after a sort, a partition will have exactly
the same number of items as before. Partition balance is required to avoid leaking any

CHAPTER 4. OPAQUE 41

information regarding the underlying data’s distribution. However, balanced partitioning is
incompatible with co-locating all records of a given group. Instead, records with identical
grouping attributes may be split across partitions. Operators that consume the output
of column sort must therefore be able to transfer information between adjacent partitions
obliviously and efficiently. We address this challenge in our descriptions of the oblivious
operators.

4.4.2 Oblivious operators

In this section, we show how to use the oblivious building blocks to construct oblivious
relational algebra operators. The three operators we present are filter, group-by, and join.
Opaque uses an existing oblivious filter operator [13], but provides new algorithms for the
join and group-by operators, required by the distributed and parallel setting.

In what follows, we focus only on the salient parts of these algorithms. We also assume
that during oblivious computation, every row is padded to the same size so that the sizing
information will not leak anything about the computation.

4.4.2.1 Oblivious filter

An oblivious filter ensures that the attacker cannot track which encrypted input rows
pass the filter. A naïve filter that streams data through the enclave to get rid of unwanted
rows will leak which rows have been filtered out because the attacker can keep track of which
input resulted in an output. Instead, the filter operator [13] first executes a projection by
scanning and marking each row with a “0” (record should be kept) or a “1” (record should be
filtered). It then obliviously sorts all rows with “0” before “1” and removes the “1” rows.

4.4.2.2 Oblivious Aggregate

Aggregation queries group items with equal grouping attributes and then aggregate them
using an aggregation function. For example, for the query in Section 4.1.1, the grouping
attribute is disease and the aggregation function is count.

A naïve aggregation implementation leaks information about group sizes (some groups
may contain more records than others), as well as the actual mapping from a record to a
group. For example, a reduce operation that sends all rows in the same group to a single
machine reveals which and how many rows are in the group. Prior work [171] showed that an
attacker can identify age group or place of birth from such protocols.

Opaque’s oblivious aggregation starts with an oblivious sort on the grouping attributes.
Once the sort is complete, all records that have the same grouping attributes are located next
to each other. A single scan might seem sufficient to aggregate and output a value for each
group, but this is incorrect. First, the number of groups per machine can leak the number of
values in each group. A further challenge (mentioned in Section 4.4.1.2) is that a set of rows

CHAPTER 4. OPAQUE 42

with the same grouping attributes might span multiple machines, leaking such information.
We need to devise a parallel solution because a sequential scan is too slow.

We solve the above problems by designing a distributed group-by operator that reveals
neither row-to-group mapping nor the size of each group. The logical unit for this algorithm
is a partition, which is assumed to fit on one machine. The intuition for this algorithm is
that we want to simulate a global sequential scan using per-partition parallel scans. If all
records in a group are in one partition, the group will be aggregated immediately. Once the
last record in that group has been consumed in the scan, the aggregation result is complete.
If records in a group are split across partitions, we want to pass information across partitions
efficiently and obliviously so that later partitions have the information they need to finish
the aggregation.

High-cardinality aggregation. This aggregation algorithm should be used when the
number of groups is large.
Stage 1 [sort]: Obliviously sort all records based on the grouping attributes.

Stages 2–4 are the boundary processing stages. These stages solve the problem of a
single group being split across multiple machines after column sort. Figure 4.4 illustrates an
example.
Stage 2 [per-partition scan 1]: Each worker scans its partition once to gather some
statistics, which include the partition’s first and last rows, as well as partial aggregates of
the last group in this partition. The partial aggregate consists of “grouping attributes” and
“aggregate values”. We define “grouping attributes” to be the grouping columns’ values, and
“aggregate values” to be the aggregated values.

In Figure 4.4, each column represents one partition. Each worker calculates statistics
including Ri, the partial aggregate. In partition 0, R0 = (C, 2) is the partial aggregate that
corresponds to the last row in that partition, C.
Stage 3 [boundary processing]: All of the statistics from stage 2 are collected into a single
partition. The worker assigned to this partition will scan all of the statistics and compute one
global partial aggregate (GPA) per partition. If the collected partial aggregates are all unique,
then each partition’s GPA should be given to the next partition. If the partial aggregates
from multiple partitions are the same, then they need to be aggregated together before being
passed onto the next partition. The middle partitions will receive dummy elements instead.
Finally, each partition passes its first row to the previous partition because this will identify
whether a particular group extends into the next partition.

Figure 4.4’s stage 3 shows an example of how the GPA is computed. The first partition
always receives a dummy GPA since it is not preceded by any other partition. Partition P1
receives (C, 2) from P0. With this information, P1 can correctly compute the aggregation
result for group C, even though the records are split across P0 and P1.
Stage 4 [per-partition scan 2]: Each partition receives a GPA. This GPA is used to do
aggregation. One record is output for every input record. The last record of a group outputs
the group’s aggregation results, while the other records output dummies.

CHAPTER 4. OPAQUE 43

A
A
B
C
C

C
C
D
E
E

R0 = (C, 2)

F
G
H
H
I

R1 = (E, 2) R2 = (I, 1)

R0 = (C, 2)
R1 = (E, 2)
R2 = (I, 1)

R'0 = dummy

R'1 = (C, 2)
R'2 = (E, 2)

P0 P1 P2
Stage 2: Stage 3:

C
C
D
E
E

Stage 4:

R'1 = (C, 2)
(C, -1)
(C, 4)
(D, 1)
(E, -1)
(E, 2)

Output:

Figure 4.4: Stages 2 - 4 of oblivious aggregation

Tp.a
Tf.a
Tf.a
Tp.b
Tf.b

d0 = Tp.b d1 = dummy d2 = Tp.d

d'0 = dummy
d'1 = Tp.b
d'2 = Tp.b

P0 P1 P2
Stage 2: Stage 3: Stage 4:

d'2 = Tp.b
Tf.b
Tf.b
Tf.b
Tf.b
Tf.b

Tf.b
Tp.c
Tf.c
Tp.d
Tf.d

d0 = Tp.b
d1 = dummy
d2 = Tp.d

Tf.b
Tp.c
Tf.c
Tp.d
Tf.d

Tp.b ⨝ Tf.b
dummy
Tp.c ⨝ Tf.c
dummy
Tp.d ⨝ Tf.d

Output:

Figure 4.5: Stages 2–4 of oblivious join.

Figure 4.4’s stage 4 shows how P1 can aggregate groups C, D and E using R′1.
Stage 5 [sort and filter]: Execute a projection that maps dummy records to “1”, and
other records to “0” Obliviously sort on the projected column and filter out the dummies.

Low-cardinality aggregation. If the number of groups is small (e.g., age groups, states),
Opaque provides an alternative algorithm that avoids the second oblivious sort.

4.4.2.3 Oblivious sort-merge join

Regular joins leak information about how many and which records are joined together on
the same join attributes. For example, a regular primary-foreign key join may sort the two
tables separately, maintain a pointer to each table, and merge the two tables together while
advancing the pointers. The pointer locations reveal information about how many rows have
the same join attributes and which rows are joined together.

We developed an oblivious equi-join algorithm based on the sort-merge join algorithm.
Let Tp be the primary key table, and Tf be the foreign key table.
Stage 1 [union and sort]: We union Tp with Tf , then obliviously sort them together based
on the join attributes. We break ties by ordering Tp records before Tf records.

As with oblivious aggregation, stages 2–4 are used to handle the case of a join group (e.g.,
a set of rows from Tp and Tf that are joined together) that is split across multiple machines.
We use Figure 4.5 to illustrate these three stages.

CHAPTER 4. OPAQUE 44

Stage 2 [per-partition scan 1]: Each partition is scanned once and the last row from Tp
in that partition, or a dummy (if there is no record from Tp on that machine) is returned.
We call this the boundary record.

Figure 4.5 explains stage 2 with an example, where Tp.x indicates a record from the
primary key table with join attribute x, and Tf.x indicates a record from the foreign key
table with join attribute x. In partition P0, Tp.b is the last record of Tp in that partition, so
the boundary record is set to Tp.b. P1 does not contain any row from Tp, so its boundary
record is set to a dummy value.
Stage 3 [boundary processing]: In stage 3, we want to generate primary key table records
to give back to each data partition so that all of the foreign key table records in each partition
(even if the information spans across multiple machines) can be joined with the corresponding
primary key record. We do so by first collecting all of the boundary records to one partition.
This list is scanned once, and we output a new boundary record for every partition. Each
output is set to the value of the most recently encountered non-dummy boundary.

For example, Figure 4.5’s stage 3 shows that three boundary records are collected. Partition
0 will always get a dummy record. Record Tp.b is passed from partition 0 to partitions 1
and 2 because d1 is a dummy. This ensures that any record from Tf with join attribute b
(e.g., the first record of partition 2) will be joined correctly.
Stage 4 [per-partition scan 2]: Stage 4 is similar to a normal sort-merge join, where the
worker linearly scans the tables and joins primary key records with the corresponding foreign
key records. There are some variations to preserve obliviousness. First, the initial record in
the primary key table should come from the boundary record received in stage 3 (except for
the first partition). Second, during the single scan, we need to make sure that one record is
output for every input record, outputting dummy records as necessary.

Figure 4.5’s stage 4 shows how the algorithm works on partition 2. The boundary record’s
value is Tp.b, which is successfully joined with the first row of partition 2. Since P2’s second
row is a new record from Tp, we change the boundary record to Tp.c, and a dummy is output.
Stage 5 [sort and filter]: Execute a projection that maps dummy records to “1”, and other
records to “0” Obliviously sort on the projected column and filter out the dummies.

4.4.3 Oblivious pad mode

Oblivious execution provides strong security guarantees and prevents access pattern
leakage. However, it does not hide the output size of each relational operator (i.e., how many
rows are in the output). This means that in a query with multiple relational operators, the
size of each intermediate result is leaked. To solve this problem, Opaque provides a stronger
variant of oblivious execution: oblivious with padding.

The idea is to never reduce the output size of a relational operator until the end of the
query. This can be easily achieved by using “filter push up.” For example, a query that has
a join followed by an aggregation will skip stage 5 of the join. After the aggregation, all
dummies will be filtered out in a single sort with filter. We also require the user to provide an

CHAPTER 4. OPAQUE 45

upper bound on the final result size, and Opaque will pad the final result to this size. In this
case, the query plan also no longer depends on data statistics, as we discuss in §Section 4.5.4.

Note that this mode is more inefficient because Opaque cannot take advantage of selectivity
(e.g., of filters). Therefore, we recommend using padding on extremely sensitive datasets.

4.5 Query planning
Even with parallelizable oblivious algorithms, obliviousness is still expensive. We now

describe Opaque’s query planner, which reduces obliviousness overheads by introducing novel
techniques that build on rule-based and cost-based optimization, as well as entity-relational
modeling. We first formalize a cost model for our oblivious operators to allow a standard
query planner to perform basic optimizations on oblivious plans. We then describe several
new optimizations specific to Opaque, enabled by a decomposition of oblivious relational
operators into lower-level Opaque operators. Finally, we describe a mixed sensitivity setting
where a database administrator can designate tables as sensitive. Opaque applies a technique
in databases known as second path analysis that uses foreign-key relationships in a data
model to identify tables that are not sensitive, accounting for inference attacks. We also
demonstrate that such sensitivity propagation occurs within a single query plan, allowing us
to substantially speed up certain queries using join reordering.

4.5.1 Cost model

Cost estimation in Opaque differs from that of a traditional SQL database because sorting,
the core database operation, is more costly in the oblivious setting than otherwise. Oblivious
sorting has very different algorithmic behavior from conventional sorting algorithms because
the sequence of comparisons can be constructed based only on the input size and not the
input data. Therefore, our cost model must accurately model oblivious sorting, which is the
dominant cost in our oblivious operators.

Similarly to a conventional sort, the cost of an oblivious sort depends on two factors: the
number of input items and the padded record size. Even for datasets that fit in memory, cost
modeling for an oblivious sort is similar to that of a traditional external sort because the
latency penalty incurred by the enclave for accessing pages outside of the oblivious memory
or EPC effectively adds a layer to the memory hierarchy. We therefore use a two-level
sorting scheme for oblivious sort, described in Section 4.4.1.1, having a runtime complexity
of O(n log2 n).

We now formalize the cost of oblivious sort and use this to model oblivious join. The
costs of other oblivious operators can be similarly modeled.

Let T be a relation, and r be a padded record. We denote |T | to be the size of the relation
T , and |r| to be the size of a padded record. Let |OMem| be the size of the oblivious memory,
and K a constant scale factor representing the cost of executing a compare-and-swap on
two records. We denote n to be the number of records per block, and B to be the required

CHAPTER 4. OPAQUE 46

SQL
Query

Logical
Plan

Physical
Plan

Encrypted
Physical

Plan

Spark
DAG

Opaque
Spark SQL

SELECT age, count(*)
FROM data
WHERE f1 > 3.14
GROUPBY age

Group By

Filter

Scan

Optimized
Physical

Plan

Obl. Group By

Filter

Obl. Sort

Scan

Obl. Sort

Obl. Sort
Filter

Prj-filter

Obl. Group By

Scan

Obl. Sort

Obl. Sort
Filter

Prj-filter

Filter

Figure 4.6: Catalyst oblivious query planning.

number of blocks. We can estimate n, B, and the resulting sort cost Co-sort and join cost
Co-join as follows:

n =
|OMem|

2 |r|
, B = |T | /n, Co-join ≈ 2 · Co-sort

Co-sort(|T | , |r|) =

K |T | log |T | if |T | · |r| ≤ |OMem|
K [Bn log n+ nB logB(1 + logB)/2]

otherwise

The number of records n per block follows from the fact that two blocks must fit in oblivious
memory at a time for the merge step. The expression for the sort cost follows from the
two-level sorting scheme. If the input fits inside the oblivious memory, we bypass the
sorting network and instead use quicksort within this memory, so the estimated cost is
simply the cost of quicksort. Otherwise, we sort each block individually using quicksort,
run a sorting network on the set of blocks and merge blocks pairwise. The sorting network
performs B logB(1 + logB)/4 merges, each incurring a cost of 2n to merge two blocks. We
experimentally verify this cost model in Section 4.7.4.

4.5.2 Oblivious query optimization

We now describe new optimization rules for a sequence of oblivious operators. Our rules
operate on the lower-level operations within each oblivious operator, which we call Opaque
operators.

4.5.2.1 Overview of the query planner

Before describing the Opaque operators, we provide an overview of the planning process,
illustrated in Figure 4.6. Opaque leverages the Catalyst query planner to transform a SQL
query into an operator graph encoding the logical plan. Opaque interposes in the planning
process to mark all logical operators that process sensitive data as oblivious. Catalyst can

CHAPTER 4. OPAQUE 47

apply standard relational optimizations to the logical plan such as filter pushdown and join
reordering.

Catalyst then generates a physical plan where each logical operator is mapped to one or
more physical operators representing the choice of execution strategy. For example, a logical
non-oblivious join operator could be converted to a physical hash join or a broadcast join
based on the input cardinalities. Oblivious operators are transformed into physical Opaque
operators at this stage, allowing us to express rules specific to combinations of oblivious
operators. Similar to Catalyst, generating these physical operators allows Opaque to select
from multiple implementations of the same logical operator based on table statistics. For
example, if column cardinality is available, Opaque may use it to decide which oblivious
aggregation algorithm to use. Catalyst then applies our Opaque rules to the physical plan.

The physical plan is then converted into an encrypted representation to hide information
such as column names, constants, etc. Finally, Catalyst transforms the encrypted physical
plan into a Spark DAG containing a graph of RDDs and executes it on the cluster.

4.5.2.2 Opaque operators

The following is a sampling of the physical Opaque operators generated during planning:

• SORT(C): obliviously sort on columns C

• FILTER: drop rows if predicate not satisfied

• PROJECT-f: similar to FILTER, but projects filtered out rows to 1, the rest to 0; preserves
input size

• HC-AGG: stages 2–4 of the aggregation algorithm

• SORT-MERGE-JOIN: steps 2–4 of the sort-merge join algorithm

4.5.2.3 Query optimization

In this section, we give an example of an Opaque-specific rule:

SORT(C2, FILTER(SORT(C1, PROJECT-f(C1)))) = FILTER(SORT(C1, C2, PROJECT-f(C1)))

Let us take a look at how this rule would work with a specific query. We use the example
query from Section 4.1.1, which translates to the following physical plan:

LC-AGG(disease,
SORT(disease, FILTER(dummy,

SORT(dummy_col, PROJECT-f(age, patient)))))

The filter will first do a projection based on the column age. To preserve obliviousness,
the projected column is sorted and a real filter is applied. Since a sort-based aggregation
comes after the filter, we need to do another sort on disease.

CHAPTER 4. OPAQUE 48

D_ID
AGE
NAME
P_ID

END_DATE
START_DATE

PID

COMMENT
DOCTOR

T_ID

DOSAGE
END_TIME
START_TIME

M_ID
T_ID

COMMENT

DATE

TR_ID

G_ID
NAME
D_ID

COST
D_ID
NAME
M_ID

COMMENT
NAME
G_ID

Patient (P_)

Treatment Plan
(TP_)

Treatment
Record (TR_)

Disease (D_) Medication (M_)

Gene (G_)

Figure 4.7: Example medical schema.

We make the observation that the second sort can be combined with the first sort into one
oblivious sort on multiple columns. Since PROJECT-f always projects a column that is binary
(i.e., the column contains only “0”s and “1”s), we can first sort on the binary column, then on
the second sort’s columns (in this example, the disease column). Therefore, the previous plan
becomes:

LC-AGG(disease, FILTER(dummy_col,
SORT({dummy_col, disease},

PROJECT-f(age, patient))))

This optimization is rule-based instead of cost-based. Furthermore, our rule is different
from what a regular SQL optimizer applies because it pushes up the filter, while a SQL
optimizer pushes down the filter. Filter push-down is unsafe because it does not provide
obliviousness guarantees. Applying the filter before sorting will leak which records are filtered
out.

4.5.3 Mixed sensitivity

Many applications operate on a database where not all of the tables are sensitive. For
example, a hospital may treat patient information as sensitive while information about drugs,
diseases, and various hospital services may be public knowledge (see Figure 4.7).

4.5.3.1 Sensitivity propagation

Propagation on tables. In a mixed sensitivity environment, tables that are not marked
as sensitive could still be sensitive if they reveal information about other sensitive tables.
Consider the example schema in Figure 4.7. The Disease, Medication, and Gene tables are
public datasets or have publicly known distributions in this example and therefore are not

CHAPTER 4. OPAQUE 49

sensitive. Meanwhile the Patient table would likely be marked as sensitive. But what about
Treatment Plan and Treatment Record? It turns out these tables are also sensitive because
they implicitly embed patient information. Each treatment record belongs to a single patient,
and each patient’s plan may contain multiple treatment records. If an attacker has some prior
knowledge, for example regarding what type of medication a patient uses, then observing only
the Treatment Record table may allow the attacker to use an inference attack to gain further
information about that patient such as their treatment frequency and other medication they
may be taking.

To prevent such attacks, we use a technique from database literature called second path
analysis [113]. The intuition for the inference attack is that information propagates along
primary-foreign key relations: since each treatment record belongs to one treatment plan and
one patient, the treatment record contains implicit information about patients. The disease
table is connected to the patient table as well, except it has a primary key pointing into
patient. This means that the disease table does not implicitly embed patient information.

Second path analysis accomplishes table sensitivity propagation by first directly marking
user-specified tables as sensitive. After this is done, it recursively marks all tables that are
reachable from every sensitive table via primary-foreign key relationships as sensitive as well.
As in Figure 4.7, such relationships are marked in an entity-relationship diagram using an
arrow from the primary key table to the foreign key table.

This approach has been generalized to associations other than explicit foreign keys and
implemented in automated tools [73]. We do not reimplement such analysis in Opaque,
instead referring to the existing work.

Propagation on operators. Another form of sensitivity propagation occurs when an
operator (e.g., join) involves a sensitive and a non-sensitive table. In this case, we must run
the entire operator obliviously. Additionally, for every leaf table that is marked sensitive in a
query plan, sensitivity propagates on the path from the leaf to the root, and Opaque runs all
the operators on this path obliviously.

4.5.3.2 Join reordering

Queries involving both sensitive and non-sensitive tables may contain a mix of oblivious
and non-oblivious operators. Due to sensitivity propagation on operators, some logical plans
may involve more oblivious operators than others. For example, a three-way join query where
one table is sensitive may involve two oblivious joins if the sensitive table is joined first, or
only one oblivious join if it is joined last (e.g., the non-sensitive tables are pushed down in
the join order).

Join reordering in a traditional SQL optimizer centers on performing the most selective
joins first, reducing the number of tuples that need to be processed. The statistics regarding
selectivity can be collected by running oblivious Opaque queries. In Opaque, mixed sensitivity
introduces another dimension to query optimization because of operator-level sensitivity

CHAPTER 4. OPAQUE 50

Patient Disease

⨝
Medication

⨝
ᵞ

(a) SQL join order

Patient

Disease

⨝

Medication

⨝ ᵞ
(b) Opaque join order

Figure 4.8: Join reordering in mixed sensitivity mode.

propagation and the fact that oblivious operators are much more costly than their non-
oblivious counterparts. Therefore, a join ordering that minimizes the number of oblivious
operators may in some cases be more efficient than one that only optimizes based on selectivity.

Consider the following query to find the least costly medication for each patient, using
the schema in Figure 4.7:

SELECT p_name, d_name, med_cost
FROM patient, disease,

(SELECT d_id, min(cost) AS med_cost
FROM medication
GROUP BY d_id) AS med

WHERE disease.d_id = patient.d_id
AND disease.d_id = med.d_id

We assume that the Patient table is the smallest, followed by Disease, then Medication
(|P | < |D| < |M |), as might occur when considering only currently hospitalized patients and
assuming there are multiple medications for each disease. The aggregation query reduces the
cardinality of Medication to that of Disease and ensures a one-to-one relationship between
the two tables.

Figure 4.8 shows two join orders for this query. A traditional SQL optimizer will execute
the most selective join first, joining Patient with Disease, then with Medication. The optimal
ordering for Opaque will instead delay joining Patient to reduce the number of oblivious joins.
To see this, we now analyze the costs for both join orders.

Let CSQL be the cost of this query using the SQL join order, COpaque the cost using the
Opaque join order, and R the padded row size for all input tables. Note that the size of the
Medication aggregate table is |D|.

CSQL = 2Co-join(|P |+ |D| , R)

COpaque = Cjoin(2 |D| , R) + Co-join(|P |+ |D| , R)

CHAPTER 4. OPAQUE 51

Assuming Cjoin � Co-join,

CSQL

COpaque
≤ 2Co-join(|P |+ |D| , R)

Co-join(|P |+ |D| , R)
= 2

Thus, this query will see at most 2x speedup from join reordering. However, other queries
can benefit still further from this optimization. Consider a three-way join of Patient, Disease,
and Gene to extract the gene mutation affecting each patient. We assume Gene is a very
large public dataset, so that |P | < |D| < |G|. Because Disease contains a foreign key into
Gene, the three-way join occurs only on primary-foreign key constraints with no need for
aggregation. As before, a traditional SQL optimizer would execute (P on D) on G while
Opaque will run (G on D) on P . The costs are as follows:

CSQL = Co-join(|P |+ |D| , R) + Co-join(|P |+ |G| , R)

COpaque = Cjoin(|G|+ |D| , R) + Co-join(|D|+ |P | , R)

Assuming Cjoin � Co-join and |P | < |D| � |G|,

CSQL

COpaque
=
Co-join(|P |+ |G| , R)

Cjoin(|G|+ |D| , R)
≈ Co-join(|G| , R)

Cjoin(|G| , R)

The maximum theoretical performance gain for this query therefore approaches the
performance difference between the Opaque and non-oblivious join operators. We demonstrate
this empirically in Figure 4.11b.

Limitations. Note that sensitivity propagation optimizes efficiently when the large tables in
a database are not sensitive. This makes intuitive sense because computation on larger tables
contributes more to the query runtime. If the larger tables are sensitive, then join reordering
cannot help because any join with these tables must always be made oblivious. Therefore,
the underlying schema will have a large impact on the effectiveness of our cost-based query
optimizations.

4.5.4 Query planning for oblivious pad mode

As discussed in Section 4.2.3, the fact that the planner chose a query plan over another
plan leaks some information about the selectivity of some operators. For example, generalized
inner joins’ costs depend on join selectivity information. This is not a problem for primary-
foreign key joins because these costs can be estimated using only the size of each table: the
output size of such a join is always the size of the foreign key table.

Oblivious pad mode does not leak such statistics information. All filters are pushed up
and combined together at the end of the query. The optimizer does not need to use selectivity
information because the overall size will not be reduced until the very end. Thus, our query
planning stage only needs to use publicly-known information such as the size of each table.

CHAPTER 4. OPAQUE 52

4.6 Implementation
Opaque is implemented on top of Spark SQL, a big data analytics framework. Our

implementation consists of 7000 lines of C++ enclave code and 3600 lines of Scala.
We implemented the Opaque operators and query optimization rules from Section 4.5

by extending Catalyst using its developer APIs with minimal modifications to Spark. Our
operators are written in Scala and execute in the untrusted domain, making trusted calls to the
enclave when necessary through JNI. For example, the SORT operator performs inter-machine
sorting using an RDD-based implementation of distributed column sort in the untrusted
domain (Section 4.4.1.2). Within each partition, the SORT operator serializes the encrypted
rows and passes them using JNI to the worker node’s enclave, which then performs the local
sort in the trusted domain (Section 4.4.1.1). Our implementation currently does not support
arbitrary user-defined functions (UDFs) due to the difficulty in making them oblivious.

Opaque encrypts and integrity-protects data on a block-level basis using AES in GCM
mode, which provides data confidentiality as well as integrity. We pad all rows within a table
to the same upper bound before encrypting. This is essential for tables with variable-length
attributes as it prevents an attacker from distinguishing between different rows as they move
through the system.

4.7 Evaluation
In this section, we demonstrate that Opaque represents a significant performance improve-

ment over the state of the art in oblivious computation, quantify its overhead compared to
an insecure baseline, and measure the gains from our query planning techniques. We evaluate
Opaque’s overhead without taking into account the overhead of T-SGX or other mechanisms
that are needed for obtaining an oblivious SIM.

4.7.1 Experimental setup

Single-machine experiments were run using SGX hardware on a machine with Intel Xeon
E3-1280 v5 (4 cores @ 3.70GHz, 8MiB cache) with 64GiB of RAM. This is the maximum
number of cores available on processors supporting SGX at the time of writing.

Distributed experiments were run on a cluster of 5 SGX machines with Intel Xeon E3-1230
v5 (4 cores @ 3.40GHz, 8MiB cache) with 64GiB of RAM.

4.7.2 Impact of oblivious memory size

We begin by studying the impact of the secure enclave memory size and show that
Opaque will benefit significantly from future enclave implementations with more memory.
SGX maintains an encrypted cache of memory pages called the Enclave Page Cache, which
is small compared to the size of main memory. Once a page is evicted from the EPC, it

CHAPTER 4. OPAQUE 53

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120

R
u
n
ti

m
e

(s
)

Array size (MiB)

no SGX (sort only)

SGX (EPC=30MiB)

SGX (EPC=60MiB)

SGX (EPC=90MiB)

decrypt+sort+encrypt

sort only

(a) Varying EPC size

0 20 40 60 80 100 120 140

Oblivious sort block size (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
u
n
ti

m
e
 o

f
o
b
liv

io
u
s

jo
in

 (
s)

HW mode

Simulation mode

(b) Oblivious sort block size

Figure 4.9: Sort microbenchmarks. Figure 4.9a Non-oblivious sort in SGX. Exceeding EPC
size causes a dramatic slowdown. Figure 4.9b Oblivious sort in SGX. Larger blocks improve
performance until the EPC limit in HW mode, or indefinitely in simulation mode.

is decrypted if it was not entirely in CPU cache, re-encrypted under a different key, and
stored in main memory. When an encrypted page in main memory is accessed, it needs to be
decrypted again. This paging in and out of the EPC introduces a large overhead. Current
implementations of SGX have a maximum effective EPC size of 93.5MiB, but this will be
significantly increased in upcoming versions of SGX.

Sorting is the core operation in Opaque, so we studied how SGX affected its performance.
In Figure 4.9a, we benchmark non-oblivious sorting (introsort) in SGX by sorting arrays of
64-bit integers of various sizes using EPCs of various sizes. We also measure the overhead
incurred by decrypting input data and encrypting output data before and after sorting using
AES-GCM-128. We see that exceeding the EPC size even by just a little incurs a 50 ∼ 60%
overhead. When below the EPC limit, the overhead of encryption for I/O is just 7.46%
on average. The overhead of the entire operation versus the insecure baseline is 31.7% on
average.

A larger internal memory improves performance radically. In Figure 4.9b, we call this
an oblivious block size, and benchmarked the performance of oblivious sort with varying
block sizes (Section 4.4.1.1). Within a block, regular quicksort can happen which speeds up
performance. The case when only the registers are oblivious (namely an oblivious block of
the same size as the available registers) did not fit in the graph: the overhead was 30x versus
when the L3 cache (8MB) is oblivious. We see that in hardware mode, more oblivious memory
improves performance until a sort block size of 40 MB, when the working set (two blocks for
merging) exceeds the hardware EPC size, causing thrashing, as occurred in Figure 4.9a near
EPC limits. In simulation mode, no thrashing occurs. In sum, Opaque’s performance will
improve significantly when run with more oblivious memory as a cache.

CHAPTER 4. OPAQUE 54

Spark SQL Opaque
encrypted

Opaque
oblivious

10-1

100

101

102

N
o
rm

a
liz

e
d
 r

u
n
ti

m
e

1.0

0.45

34

1.0

2.1

20

1.0

2.4

46BDB Q1

BDB Q2

BDB Q3

(a) Security mode comparison

BDB Q1 BDB Q2 BDB Q3 Least
squares

PageRank
10-2

10-1

100

101

102

R
u
n
ti

m
e
 (

s)

0.11

0.81

3.1

0.20

0.84

0.10

0.97
1.3

0.31

2.1

6.9
5.0

33

0.31

10

Single node (E3-1280 v5)

BDB Q1 BDB Q2 BDB Q3 Least
squares

PageRank

0.19

1.0
1.6

0.18

1.3

0.09

2.2

3.7

0.16

4.3
6.5

21

72

0.21

39

Cluster (5x E3-1230 v5)

Spark SQL Opaque (encrypted) Opaque (oblivious)

(b) Comparison to Spark SQL

28 29 210 211 212 213 214 215 216 217 218 219 220

Graph size (nodes+edges)

10-2

10-1

100

101

102

103

R
u
n
ti

m
e
 (

s)

 2300x

GraphSC

Opaque

(c) Comparison to GraphSC

Figure 4.10: Figure 4.10a: Encryption mode is competitive with Spark SQL. Obliviousness
(including network and memory obliviousness) adds up to 46x overhead. Figure 4.10b:
Comparison across a wide range of queries. Hatched areas represent time spent sorting.
Figure 4.10c: Single iteration of PageRank for various graph sizes.

CHAPTER 4. OPAQUE 55

4.7.3 System comparisons

4.7.3.1 Comparison with Spark SQL

We evaluated Opaque against vanilla Spark SQL, which provides no security guarantees,
on three different workloads: SQL, machine learning, and graph analytics.

For the SQL workload, we benchmarked both systems on three out of four queries of Big
Data Benchmark [12], a popular benchmark for big data SQL engines. The fourth query is
an external script query and is not supported by our system. The three queries cover filter,
aggregation (high cardinality), and join. For the machine learning workload, we chose least
squares regression on 2D data; this query uses projection and global aggregation. Finally, we
chose to benchmark PageRank for the graph analytics workload; this query uses projection
and aggregation.

We show our results in two graphs, Figure 4.10a and Figure 4.10b. Figure 4.10a shows the
performance of each of Opaque’s security modes on the Big Data Benchmark in the distributed
setting. Higher security naturally adds more overhead. Encryption mode is competitive with
Spark SQL (between 52% improvement and 2.4x slowdown). The performance gain comes
from the fact that Opaque runs C++ in the enclave, while Spark SQL incurs overhead from
the JVM. Opaque’s oblivious mode adds 20–46x overhead.

Figure 4.10b shows Opaque’s performance on five queries. Hatched areas show the time
spent in oblivious sort, the dominant cost. The left side of Figure 4.10b shows Opaque
running on a single machine using SGX hardware compared to Spark SQL, while the right
side shows the distributed setting. In the single-machine setting, Opaque’s encryption mode
performance varies from 58% performance gain to 2.5x performance loss when compared with
the Spark SQL baseline. The oblivious mode (both network and memory oblivious) slows
down the baseline by 1.6–62x. The right side shows Opaque’s performance on a distributed
SGX cluster. Encryption mode’s performance ranges from a 52% performance improvement
to a 3.3x slowdown, while oblivious mode adds 1.2–46x overhead. In these experiments,
Opaque was configured with 80 MB of oblivious memory. As discussed in Section 4.7.2, more
oblivious memory would give better performance, and such hardware proposals already exist
(see Section 4.2.2).

4.7.3.2 Comparison with GraphSC

We use the same PageRank benchmark to compare with the existing state-of-the-art
graph computation platform, GraphSC [166]. While Opaque is more general than graph
computation, we compared Opaque with GraphSC instead of its more generic counterpart
ObliVM [144], because ObliVM is about ten times slower than GraphSC.

We used data from GraphSC and ran the same experiment on both systems on our single
node machine, with Opaque running in hardware mode with obliviousness. Figure 4.10c
shows that Opaque is faster than GraphSC for all data sizes. For 8K graph size, Opaque
is 2300x faster than GraphSC. This is consistent with the ObliVM and GraphSC papers:
ObliVM reports a 9.3×106x slowdown, and GraphSC [166] a slowdown of 2×105x to 5×105x.

CHAPTER 4. OPAQUE 56

102 103 104 105 106 107

Join input size

0

5

10

15

20

25

30

35

R
u
n
ti

m
e
 (

s)

Estimated cost

Actual cost

(a) Accuracy of obl. join cost model

102 103 104 105 106 107

rows in sensitive table

1

2

3

4

5

6

S
p
e
e
d
u
p

Gene Query

Med. Query

(b) Speedup from join reordering

Figure 4.11: Query planning benchmarks. Figure 4.11a: Our cost model closely approximates
the empirical results for oblivious joins across a range of input sizes. Figure 4.11b: Join
reordering provides up to 5x speedup for some queries.

Though GraphSC and Opaque share the high-level threat model of an untrusted service
provider, they relax the threat model in different ways, explaining the performance gap.
Opaque relies on trusted hardware, while GraphSC relies on two servers that must not collude
and are semi-honest (do not cheat in the protocol) and so must use garbled circuits and
secure two-party computation, which are much slower for generic computation than trusted
hardware.

4.7.4 Query planning

We next evaluate the query planning techniques proposed in Section 4.5. First, we
evaluate the cost model presented in Section 4.5.1 using a single-machine microbenchmark.
We run an oblivious join and vary the input cardinality. We then fit the equation from
Section 4.5.1 to the empirical results. Figure 4.11a shows that our theoretical cost model
closely approximates the actual join costs.

Second, to evaluate the performance gain from join reordering, we run the two queries
from Section 4.5.3.2. Figure 4.11b shows the speedup from reordering each query with varying
sizes of the sensitive patient table. The medication query sees just under 2x performance gain
because two equal-sized oblivious joins are replaced by one oblivious and one non-oblivious
join. The gene query sees a 5x performance gain when the sensitive table is small because
the larger oblivious join is replaced with a non-oblivious join. As the sensitive table increases
in size, the benefit of join reordering approaches the same level as for the medication query.

CHAPTER 4. OPAQUE 57

4.8 Related work

4.8.1 Relevant cryptographic protocols

ORAM. Oblivious RAM [105, 198, 199, 197] is a cryptographic construct for protecting
against access pattern leakage. However, ORAM does not fit in Opaque’s setting because
it has an intrinsically different computation model: serving key-value pairs. We show this
problem by devising a simple strawman design using ORAM: put all data items in an
in-memory ORAM in Spark.

How can ORAM be utilized if we attempt to sort data, which is an essential operation in
SQL? One way to implement sorting on top of ORAM is to simply treat a sorting algorithm’s
compare-and-swap operation as two ORAM reads and two ORAM writes. This is not viable
for three reasons. First, making an ORAM access for each data item is very slow. Second,
current ORAM designs are not parallel and distributed, which means that the ORAM accesses
will be serialized. Third, we cannot use a regular sorting algorithm because the number
of comparisons may be different when run on different underlying data values. This could
leak something about the encrypted data and would not provide obliviousness. Therefore,
we must use a sorting network anyway, which means that adding ORAM will add an extra
polylog(n) factor of accesses.

Other protocols. Fully homomorphic encryption [94, 95] permits computing any function
on encrypted data, but is prohibitively slow. Oblivious protocols such as sorting and routing
networks [58] are more relevant to Opaque, and Opaque builds on these as discussed in
Section 4.4.1.

4.8.2 Non-oblivious systems

A set of database systems encrypt the data so that the service provider cannot see it.
These databases can be classified into two types. The first type are encrypted databases, such
as CryptDB [181], BlindSeer [178], Monomi [201], AlwaysEncrypted [159], and Seabed [177],
that rely on cryptographic techniques for computation. The second type are databases, such
as Haven [22], VC3 [189], TrustedDB [19], TDB [152] and GnatDb [206], that require trusted
hardware to execute computation.

The main drawback of these systems is that they do not hide access patterns (both in
memory and over the network) and hence leak data [214, 171]. Additionally, most of these
systems do not fit the distributed analytics setting.

4.8.3 Oblivious systems

Non-distributed systems. Cipherbase [14] uses trusted hardware to achieve generic
functionality for encrypted databases. The base Cipherbase design is not oblivious, but Arasu
and Kaushik [13] have proposed oblivious protocols for SQL queries. However, unlike Opaque,

CHAPTER 4. OPAQUE 58

their work does not consider the distributed setting. In particular, the proposed oblivious
operators are not designed for a parallel setting resulting in sequential execution in Opaque,
and do not consider boundary conditions. In addition, Cipherbase’s contribution is a design
proposal, while Opaque also provides a system and an evaluation.

Ohrimenko et al. [169] provide oblivious algorithms for common ML protocols such as
matrix factorization or neural networks, but do not support oblivious relational operators or
query optimization. Their focus is not on the distributed setting, and parts of the design (e.g.,
the choice of a sorting network) and the evaluation focus on single machine performance.

Distributed systems. ObliVM [144] is a platform for generic oblivious computation, and
GraphSC [166] is a platform specialized to distributed graph computations built on ObliVM.
As we show in Section 4.7.3, these systems are three orders of magnitude slower than Opaque.
As explained there, they have a different threat model and use different techniques resulting
in this higher overhead.

Ohrimenko et al. [171] and M2R [77] provide mechanisms for reducing network traffic
analysis leakage for MapReduce jobs. Their solutions do not suffice for Opaque’s setting
because they do not protect in-memory access patterns. Moreover, they are designed for
the simpler setting of a MapReduce job and do not suffice for Opaque’s relational operators;
further, they do not provide global query optimization of oblivious operators.

4.9 Conclusion
This chapter proposed Opaque, a distributed data analytics platform providing encryption,

oblivious computation, and integrity. Opaque contributes a set of distributed oblivious
relational operators as well as an oblivious query optimizer. Finally, we show that Opaque is
three orders of magnitude faster than state-of-the-art specialized oblivious protocols. While
Opaque is originally designed for the single party, it can be easily adapted to the collaborative
setting if each party encrypts its data and uploads the encrypted data to the cloud. Every
party can attest to all of the enclaves and give the enclaves its secret key during this process.
With the secret keys. Opaque can then run SQL queries on the joint dataset.

59

Chapter 5

Helen

The two previous chapters presented systems that enable secure collaborative SQL
analytics. In the next two chapters, we will explore systems that enable secure collaborative
machine learning among mutually untrusting parties in a decentralized setup (i.e., without
leveraging the aid of a third party like the cloud).

The motivation for this type of system comes from the fact that many organizations are
increasingly interested in collaborative training or inference over their combined sensitive
data. In the training scenario, the parties train on the joint dataset and also agree to release
the final model to every participant so that everyone can benefit from the training process. In
many existing applications, collaborative training is advantageous because training on more
data tends to yield higher quality models [111]. Even more exciting is the potential of enabling
new applications that are not possible to compute using a single party’s data because they
require training on complementary data from multiple parties (e.g., geographically diverse
data).

While the general setup of collaborative learning in a decentralized setup fits within
the cryptographic framework of secure multi-party computation (MPC) [24, 103, 215],
implementing training using generic MPC frameworks is extremely inefficient, so recent
training systems [167, 112, 162, 93, 55, 97, 10] opt for tailored protocols instead. However,
many of these systems rely on outsourcing to non-colluding servers, and all assume a passive
attacker who never deviates from the protocol. In practice, these assumptions are often not
realistic because they essentially require an organization to base the confidentiality of its
data on the correct behavior of other organizations. In fact, many parties such as financial
institutions informed us that they are not comfortable with trusting the behavior of their
competitors when it comes to sensitive business data.

Hence, we need a much stronger security guarantee: each organization should only trust
itself. This goal calls for maliciously secure MPC in the setting where m− 1 out of m parties
can fully misbehave.

This chapter presents Helen, the first specialized platform for maliciously secure collabora-
tive training. Helen supports regularized linear models, a significant slice of machine learning
and statistics problems. This family of models includes ordinary least squares regression, ridge

CHAPTER 5. HELEN 60

regression, and LASSO. Because these models are statistically robust and easily interpretable,
they are widely used in cancer research [134], genomics [65, 176], financial risk analysis [188,
49], and are the foundation of basis pursuit techniques in signals processing. By combining
insights from systems, cryptography, and machine learning, we show that it is possible to
reformulate the training process so that the expensive cryptographic computation scales
independently of the number of training samples. With our insights, Helen is able to achieve
up to four orders of magnitude of performance improvement when compared to a common
training protocol implemented using an existing state-of-the-art generic maliciously secure
MPC framework.

Our first insight is to leverage a classic but under-utilized technique in distributed convex
optimization called Alternating Direction Method of Multipliers (ADMM) [37]. The standard
algorithm for training models today is SGD, which optimizes an objective function by iterating
over the input dataset. Even though ADMM is less popular for training on plaintext data,
we show that it is much more efficient for cryptographic training than SGD.

However, merely expressing ADMM in MPC does not solve an inherent scalability problem.
As mentioned before, the malicious setting requires the protocol to ensure that the users’
behavior is correct. A naïve way of solving this problem is to have each party commit to the
entire input dataset and calculate the summaries using MPC. This is problematic because 1)
the cryptographic computation will scale linearly in the number of samples, and 2) calculating
the summaries would also require Helen to calculate complex matrix inversions within MPC
(similar to [168]). Instead, we make a second observation that each party can use singular
value decomposition (SVD) [106] to decompose its input summaries into small matrices that
scale only in the number of features.

Finally, one important aspect of ADMM is that it enables decentralized computation.
Expressing this computation directly in MPC would encode local optimization into a com-
putation that is done by every party, thus losing the decentralization aspect of the original
protocol. Instead, Helen uses partially homomorphic encryption to encrypt the global weights
so that each party can solve the local problems in a decentralized manner, and enables each
party to efficiently prove in zero-knowledge that it computed the local optimization problem
correctly.

5.1 Background

5.1.1 Preliminaries

In this section, we describe the notation we use for the rest of the chapter. Let P1, ..., Pm
denote the m parties. Let ZN denote the set of integers modulo N , and Zp denote the set of
integers modulo a prime p. Similarly, we use Z∗N to denote the multiplicative group modulo
N .

We use z to denote a scalar, z to denote a vector, and Z to denote a matrix. We use
EncPK(x) to denote an encryption of x under a public key PK. Similarly, DecSK(y) denotes a

CHAPTER 5. HELEN 61

decryption of y under the secret key SK.
Each party Pi has a feature matrix Xi ∈ Rn×d, where n is the number of samples per

party and d is the feature dimension. yi ∈ Rn×1 is the labels vector. The machine learning
datasets use floating point representation, while our cryptographic primitives use groups and
fields. Therefore, we represent the dataset using fixed point integer representation.

5.1.2 Cryptographic building blocks

5.1.2.1 Threshold partially homomorphic encryption

A partially homomorphic encryption scheme is a public key encryption scheme that
allows limited computation over the ciphertexts. For example, Paillier [173] is an additive
homomorphic encryption scheme: multiplying two ciphertexts together (in a certain group)
generates a new ciphertext such that its decryption yields the sum of the two original
plaintexts. Anyone with the public key can encrypt and manipulate the ciphertexts based on
their homomorphic property. This encryption scheme also acts as a perfectly binding and
computationally hiding homomorphic commitment scheme [110], another property we use in
Helen.

A threshold variant of such a scheme has some additional properties. While the public
key is known to everyone, the secret key is split across a set of parties such that a subset of
them must participate together to decrypt a ciphertext. If not enough members participate,
the ciphertext cannot be decrypted. The threshold structure can be altered based on the
adversarial assumption. In Helen, we use a threshold structure where all parties must
participate in order to decrypt a ciphertext.

5.1.2.2 Zero knowledge proofs

Informally, zero knowledge proofs are proofs that prove that a certain statement is true
without revealing the prover’s secret for this statement. For example, a prover can prove
that there is a solution to a Sudoku puzzle without revealing the actual solution. Zero
knowledge proofs of knowledge additionally prove that the prover indeed knows the secret.
Helen uses modified Σ-protocols [67] to prove properties of a party’s local computation. The
main building blocks we use are ciphertext proof of plaintext knowledge, plaintext-ciphertext
multiplication, and ciphertext interval proof of plaintext knowledge [62, 36], as we further
explain in Section 5.3. Note that Σ-protocols are honest verifier zero knowledge, but can be
transformed into full zero-knowledge using existing techniques [66, 82, 91]. We present our
protocol using the Σ-protocol notation.

5.1.2.3 Malicious MPC

We utilize SPDZ [69], a state-of-the-art malicious MPC protocol, for both Helen and the
secure baseline we evaluate against. Another recent malicious MPC protocol is authenticated
garbled circuits [211], which supports boolean circuits. We decided to use SPDZ for our

CHAPTER 5. HELEN 62

baseline because the majority of the computation in SGD is spent doing matrix operations,
which is not efficiently represented in boolean circuits. For the rest of this section we give an
overview of the properties of SPDZ.

An input a ∈ Fpk to SPDZ is represented as 〈a〉 = (δ, (a1, . . . , an), (γ(a)1, . . . , γ(a)n)),
where ai is a share of a and γ(a)i is the MAC share authenticating a under a SPDZ global key
α. Player i holds ai, γ(a)i, and δ is public. During a correct SPDZ execution, the following
property must hold: a =

∑
i ai and α(a + δ) =

∑
i γ(a)i. The global key α is not revealed

until the end of the protocol; otherwise the malicious parties can use α to construct new
MACs.

SPDZ has two phases: an offline phase and an online phase. The offline phase is
independent of the function and generates precomputed values that can be used during the
online phase, while the online phase executes the designated function.

5.1.3 Learning and Convex Optimization

Much of contemporary machine learning can be framed in the context of minimizing the
cumulative error (or loss) of a model over the training data. While there is considerable
excitement around deep neural networks, the vast majority of real-world machine learning
applications still rely on robust linear models because they are well understood and can be
efficiently and reliably learned using established convex optimization procedures.

In this work, we focus on linear models with squared error and various forms of regular-
ization resulting in the following set of multi-party optimization problems:

ŵ = arg min
w

1

2

m∑
i=1

‖Xiw − yi‖2
2 + λR(w), (5.1)

where Xi ∈ Rn×d and yi ∈ Rn are the training data (features and labels) from party i.
The regularization function R and regularization tuning parameter λ are used to improve
prediction accuracy on high-dimensional data. Typically, the regularization function takes
one of the following forms:

RL1(w) =
d∑
j=1

|wj|, RL2(w) =
1

2

d∑
j=1

w2
j

corresponding to Lasso (L1) and Ridge (L2) regression respectively. The estimated model
ŵ ∈ Rd can then be used to render a new prediction ŷ∗ = ŵTx∗ at a query point x∗. It is
worth noting that in some applications of LASSO (e.g., genomics [65]) the dimension d can
be larger than n. However, in this work we focus on settings where d is smaller than n, and
the real datasets and scenarios we use in our evaluation satisfy this property.

ADMM Alternating Direction Method of Multipliers (ADMM) [37] is an established
technique for distributed convex optimization. To use ADMM, we first reformulate Eq. 5.1

CHAPTER 5. HELEN 63

by introducing additional variables and constraints:

minimize:
{wi}mi=1, z

1

2

m∑
i=1

‖Xiwi − yi‖2
2 + λR(z),

such that: wi = z for all i ∈ {1, . . . , p} (5.2)

This equivalent formulation splits w into wi for each party i, but still requires that wi be
equal to a global model z. To solve this constrained formulation, we construct an augmented
Lagrangian:

L ({wi}mi=1, z,u) =
1

2

m∑
i=1

‖Xiwi − yi‖2
2 + λR(z)+

ρ
m∑
i=1

uTi (wi − z) +
ρ

2

m∑
i=1

||wi − z||22 , (5.3)

where the dual variables ui ∈ Rd capture the mismatch between the model estimated by party
i and the global model z and the augmenting term ρ

2

∑m
i=1 ||wi − z||22 adds an additional

penalty (scaled by the constant ρ) for deviating from z.
The ADMM algorithm is a simple iterative dual ascent on the augmented Lagrangian

of eq. (5.2). On the kth iteration, each party locally solves this closed-form expression:

wk+1
i ←

(
XT
i Xi + ρI

)−1 (
XT
i yi + ρ

(
zk − uki

))
(5.4)

and then shares its local model wk+1
i and Lagrange multipliers uki to solve for the new global

weights:

zk+1 ← arg min
z
λR(z) +

ρ

2

m∑
i=1

||wk+1
i − z + uki ||22. (5.5)

Finally, each party uses the new global weights zk+1 to update its local Lagrange multipliers

uk+1
i ← uki + wk+1

i − zk+1. (5.6)

The update equations (5.4), (5.5), and (5.6) are executed iteratively until all updates
reach a fixed point. In practice, a fixed number of iterations may be used as a stopping
condition, and that is what we do in Helen.

LASSO We use LASSO as a running example for the rest of the chapter in order to illustrate
how our secure training protocol works. LASSO is a popular regularized linear regression
model that uses the L1 norm as the regularization function. The LASSO formulation is
given by the optimization objective arg minw ‖Xw − y‖2

2 + λ‖w‖. The boxed section below
shows the ADMM training procedure for LASSO. Here, the quantities in color are quantities
that are intermediate values in the computation and need to be protected from every party,
whereas the quantities in black are private values known to one party.

CHAPTER 5. HELEN 64

The coopetitive learning task for LASSO

Input of party Pi: Xi,yi

1. Ai ←
(
XT
i Xi + ρI

)−1

2. bi ← XT
i yi

3. u0, z0,w0 ← 0

4. For k = 0, ADMMIterations-1:

a) wk+1
i ← Ai(bi + ρ

(
zk − uki

)
)

b) zk+1 ← Sλ/mρ
(

1
m

∑m
i=1

(
wk+1
i + uki

))
c) uk+1

i ← uki + wk+1
i − zk+1

Sλ/mρ is the soft the soft thresholding operator, where

Sκ(a) =

a− κ a > κ

0 |a| ≤ κ

a+ κ a < −κ
(5.7)

The parameters λ and ρ are public and fixed.

5.2 System overview
Figure 5.1 shows the system setup in Helen. A group of m participants (also called

parties) wants to jointly train a model on their data without sharing the plaintext data. As
mentioned in the introduction, the use cases we envision for our system consist of a few large
organizations (around 10 organizations), where each organization has a lot of data (n is on
the order of hundreds of thousands or millions). The number of features/columns in the
dataset d is on the order of tens or hundreds. Hence d� n.

We assume that the parties have agreed to publicly release the final model. As part of
Helen, they will engage in an interactive protocol during which they share encrypted data,
and only at the end will they obtain the model in decrypted form. Helen supports regularized
linear models including least squares linear regression, ridge regression, LASSO, and elastic
net. In the rest of the chapter, we focus on explaining Helen via LASSO, but we also provide
update equations for ridge regression in Section 5.6.

CHAPTER 5. HELEN 65

participant m

encrypted data summaries
from other parties

global public key

private share of global secret key

private database of this party,
input to coopetitive learning

[]
participant 1

[]

participant 2
[]

communication
exchanging

encrypted data

 . . .

Figure 5.1: Architecture overview of Helen. Every red shape indicates secret information
known only to the indicated party, and black indicates public information visible to everyone
(which could be private information in encrypted form). For participant m, we annotate the
meaning of each quantity.

5.2.1 Threat model

We assume that all parties have agreed upon a single functionality to compute and have
also consented to releasing the final result of the function to every party.

We consider a strong threat model in which all but one party can be compromised by a
malicious attacker. This means that the compromised parties can deviate arbitrarily from the
protocol, such as supplying inconsistent inputs, substituting their input with another party’s
input, or executing different computation than expected. In the flu prediction example, six
divisions could collude together to learn information about one of the medical divisions.
However, as long as the victim medical division follows our protocol correctly, the other
divisions will not be able to learn anything about the victim division other than the final
result of the function. We now state the security theorem.

Theorem 6. Helen securely evaluates an ideal functionality fADMM in the (fcrs, fSPDZ)-hybrid
model under standard cryptographic assumptions, against a malicious adversary who can
statically corrupt up to m− 1 out of m parties.

We formalize the security of Helen in the standalone MPC model. fcrs and fSPDZ are ideal
functionalities that we use in our proofs, where fcrs is the ideal functionality representing the
creation of a common reference string, and fSPDZ is the ideal functionality that makes a call
to SPDZ. We present the formal definitions as well as proofs in Section 5.10.2.
Out of scope attacks/complementary directions. Helen does not prevent a malicious
party from choosing a bad dataset for the coopetitive computation (e.g., in an attempt to
alter the computation result). In particular, Helen does not prevent poisoning attacks [124,
53]. MPC protocols generally do not protect against bad inputs because there is no way
to ensure that a party provides true data. Nevertheless, Helen will ensure that once a

CHAPTER 5. HELEN 66

party supplies its input into the computation, the party is bound to using the same input
consistently throughout the entire computation; in particular, this prevents a party from
providing different inputs at different stages of the computation, or mix-and-matching inputs
from other parties. Further, some additional constraints can also be placed in pre-processing,
training, and post-processing to mitigate such attacks, as we elaborate in Section 5.8.2.

Helen also does not protect against attacks launched on the public model, for example,
attacks that attempt to recover the training data from the model itself [192, 44]. The parties
are responsible for deciding if they are willing to share with each other the model. Our goal is
only to conduct this computation securely: to ensure that the parties do not share their raw
plaintext datasets with each other, that they do not learn more information than the resulting
model, and that only the specified computation is executed. Investigating techniques for
ensuring that the model does not leak too much about the data is a complementary direction
to Helen, and we expect that many of these techniques could be plugged into a system like
Helen. For example, Helen can be easily combined with some differential privacy tools that
add noise before model release to ensure that the model does not leak too much about an
individual record in the training data. We further discuss possible approaches in Section 5.8.3.

Finally, Helen does not protect against denial of service – all parties must participate in
order to produce a model.

5.2.2 Protocol phases

We now explain the protocol phases at a high level. The first phase requires all parties to
agree to perform the coopetitive computation, which happens before initializing Helen. The
other phases are run using Helen.

Agreement phase. In this phase, the m parties come together and agree that they are
willing to run a certain learning algorithm (in Helen’s case, ADMM for linear models)
over their joint data. The parties should also agree to release the computed model among
themselves.

The following discrete phases are run by Helen. We summarize their purposes here and
provide the technical design for each in the following sections.

Initialization phase. During initialization, them parties compute the threshold encryption
parameters [83] using a generic maliciously secure MPC protocol like SPDZ [69]. The public
output of this protocol is a public key PK that is known to everyone. Each party also receives
a piece (called a share) of the corresponding secret key SK: party Pi receives the i-th share of
the key denoted as [SK]i. A value encrypted under PK can only be decrypted via all shares
of the SK, so every party needs to agree to decrypt this value. Fig. 5.1 shows these keys.
This phase only needs to run once for the entire training process, and does not need to be
re-run as long as the parties’ configuration does not change.

CHAPTER 5. HELEN 67

Input preparation phase. In this phase, each party prepares its data for the coopetitive
computation. Each party Pi precomputes summaries of its data and commits to them by
broadcasting encrypted summaries to all other parties. The parties also need to prove that
they know the values inside these encryptions using zero-knowledge proofs of knowledge.
From this moment on, party Pi will not be able to use different inputs for the rest of the
computation.

By default, each party stores the encrypted summaries from other parties. This is a viable
solution since these summaries are much smaller than the data itself. It is possible to also
store all m summaries in a public cloud by having each party produce an integrity MAC of
the summary from each other party and checking the MAC upon retrieval which protects
against a compromised cloud.

Model compute phase. This phase follows the iterative ADMM algorithm, in which
parties successively compute locally on encrypted data, followed by a coordination step with
other parties using a generic MPC protocol.

Throughout this protocol, each party receives only encrypted intermediate data. No party
learns the intermediate data because, by definition, an MPC protocol should not reveal any
data beyond the final result. Moreover, each party proves in zero knowledge to the other
parties that it performed the local computation correctly using data that is consistent with the
private data that was committed in the input preparation phase. If any one party misbehaves,
the other parties will be able to detect the cheating with overwhelming probability.

Model release phase. At the end of the model compute phase, all parties obtain an
encrypted model. All parties jointly decrypt the weights and release the final model. However,
it is possible for a set of parties to not receive the final model at the end of training if other
parties misbehave (it has been proven that it is impossible to achieve fairness for generic
MPC in the malicious majority setting [54]). Nevertheless, this kind of malicious behavior is
easily detectable in Helen and can be enforced using legal methods.

5.3 Cryptographic Gadgets
Helen’s design combines several different cryptographic primitives. In order to explain the

design clearly, we split Helen into modular gadgets. In this section and the following sections,
we discuss (1) how Helen implements these gadgets, and (2) how Helen composes them in
the overall protocol.

For simplicity, we present our zero knowledge proofs as Σ-protocols, which require the
verifier to generate random challenges. These protocols can be transformed into full zero
knowledge with non-malleable guarantees with existing techniques [91, 82]. We explain one
such transformation in Section 5.10.2.

CHAPTER 5. HELEN 68

5.3.1 Plaintext-ciphertext matrix multiplication proof

Gadget 1. A zero-knowledge proof for the statement: “Given public parameters: public
key PK, encryptions EX, EY and EZ; private parameters: X,

• DecSK(EZ) = DecSK(EX) · DecSK(EY), and

• I know X such that DecSK(EX) = X.”

Gadget usage We first explain how Gadget 1 is used in Helen. A party Pi in Helen knows
a plaintext X and commits to X by publishing its encryption, denoted by EncPK(X). Pi
also receives an encrypted matrix EncPK(Y) and needs to compute EncPK(Z) = EncPK(XY)
by leveraging the homomorphic properties of the encryption scheme. Since parties in Helen
may be malicious, other parties cannot trust Pi to compute and output EncPK(Z) correctly.
Gadget 1 will help Pi prove in zero-knowledge that it executed the computation correctly.
The proof needs to be zero-knowledge so that nothing is leaked about the value of X. It also
needs to be a proof of knowledge so that Pi proves that it knows the plaintext matrix X.

Protocol Using the Paillier ciphertext multiplication proofs [62], we can construct a naïve
algorithm for proving matrix multiplication. For input matrices that are Rl×l, the naïve
algorithm will incur a cost of l3 since one has to prove each individual product. One way to
reduce this cost is to have the prover prove that tZ = (tX)Y for a randomly chosen t such
that ti = timodq (where t is a challenge from the verifier). For such a randomly chosen t, the
chance that the prover can construct a tZ

′
= tXY is exponentially small (see Theorem 4 for

an analysis).
As the first step, both the prover and the verifier apply the reduction to get the new

statement EncPK(tZ) = EncPK(tX)EncPK(Y). To prove this reduced form, we apply the
Paillier ciphertext multiplication proof in a straightforward way. This proof takes as input
three ciphertexts: Ea, Eb, Ec. The prover proves that it knows the plaintext a∗ such that
a∗ = DecSK(Ea), and that DecSK(Ec) = DecSK(Ea) · DecSK(Eb). We apply this proof to every
multiplication for each dot product in (tX) · Y. The prover then releases the individual
encrypted products along with the corresponding ciphertext multiplication proofs. The
verifier needs to verify that EncPK(tZ) = EncPK(tXY). Since the encrypted ciphers from
the previous step are encrypted using Paillier, the verifier can homomorphically add them
appropriately to get the encrypted vector EncPK(tXY). From a dot product perspective, this
step will sum up the individual products computed in the previous step. Finally, the prover
needs to prove that each element of tZ is equal to each element of tXY. We can prove this
using the same ciphertext multiplication proof by setting a∗ = 1.

5.3.2 Plaintext-plaintext matrix multiplication proof

CHAPTER 5. HELEN 69

Gadget 2. A zero-knowledge proof for the statement: “Given public parameters: public
key PK, encryptions EX, EY, EZ; private parameters: X and Y,

• DecSK(EZ) = DecSK(EX) · DecSK(EY), and

• I know X, Y, and Z such that DecSK(EX) = X, DecSK(EY) = Y, and DecSK(EZ) =
Z.”

Gadget usage This proof is used to prove matrix multiplication when the prover knows
both input matrices (and thus the output matrix as well). The protocol is similar to the
plaintext-ciphertext proofs, except that we have to do an additional proof of knowledge of Y.

Protocol The prover wishes to prove to a verifier that Z = XY without revealing X,Y,
or Z. We follow the same protocol as Gadget 1. Additionally, we utilize a variant of the
ciphertext multiplication proof that only contains the proof of knowledge component to show
that the prover also knows Y. The proof of knowledge for the matrix is simply a list of
element-wise proofs for Y. We do not explicitly prove the knowledge of Z because the matrix
multiplication proof and the proof of knowledge for Y imply that the prover knows Z as well.

5.4 Input preparation phase

5.4.1 Overview

In this phase, each party prepares data for coopetitive training. In the beginning of the
ADMM procedure, every party precomputes some summaries of its data and commits to them
by broadcasting encrypted summaries to all the other parties. These summaries are then
reused throughout the model compute phase. Some form of commitment is necessary in the
malicious setting because an adversary can deviate from the protocol by altering its inputs.
Therefore, we need a new gadget that allows us to efficiently commit to these summaries.

More specifically, the ADMM computation reuses two matrices during training: Ai =
(XT

i Xi + ρI)−1 and bi = XT
i yi from party i (see Section 5.1.3 for more details). These two

matrices are of sizes d× d and d× 1, respectively. In a semihonest setting, we would trust
parties to compute Ai and bi correctly. In a malicious setting, however, the parties can
deviate from the protocol and choose Ai and bi that are inconsistent with each other (e.g.,
they do not conform to the above formulations).

Helen does not have any control over what data each party contributes because the
parties must be free to choose their own Xi and yi. However, Helen ensures that each party
consistently uses the same Xi and yi during the entire protocol. Otherwise, malicious parties
could try to use different/inconsistent Xi and yi at different stages of the protocol, and thus
manipulate the final outcome of the computation to contain the data of another party.

CHAPTER 5. HELEN 70

One possibility to address this problem is for each party i to commit to its Xi in
EncPK(Xi) and yi in EncPK(yi). To calculate Ai, the party can calculate and prove XT

i X
using Section 5.3.2, followed by computing a matrix inversion computation within SPDZ.
The result Ai can be repeatedly used in the iterations. This is clearly inefficient because
(1) the protocol scales linearly in n, which could be very large, and (2) the matrix inversion
computation requires heavy compute.

Our idea is to prove using an alternate formulation via singular value decomposition
(SVD) [106], which can be much more succinct: Ai and bi can be decomposed using SVD to
matrices that scale linearly in d. Proving the properties of Ai and bi using the decomposed
matrices is equivalent to proving using Xi and yi.

5.4.2 Protocol

5.4.2.1 Decomposition of reused matrices

We first derive an alternate formulation for Xi (denoted as X for the rest of this section).
From fundamental linear algebra concepts we know that every matrix has a corresponding
singular value decomposition [106]. More specifically, there exists unitary matrices U and V,
and a diagonal matrix Γ such that X = UΓVT , where U ∈ Rn×n, Γ ∈ Rn×d, and V ∈ Rd×d.
Since X and thus U are real matrices, the decomposition also guarantees that U and V are
orthogonal, meaning that UTU = I and VTV = I. If X is not a square matrix, then the
top part of Γ is a diagonal matrix, which we will call Σ ∈ Rd×d. Σ’s diagonal is a list of
singular values σi. The rest of the Γ matrix are 0’s. If X is a square matrix, then Γ is simply
Σ. Finally, the matrices U and V are orthogonal matrices. Given an orthogonal matrix Q,
we have that QQT = QTQ = I.

It turns out that XTX has some interesting properties:

XTX = (UΓVT)TUΓVT

= VΓTUTUΓVT

= VΓTΓVT

= VΣ2VT .

We now show that (XTX + ρI)−1 = VΘVT , where Θ is the diagonal matrix with diagonal

values
1

σ2
i + ρ

.

(XTX + ρI)VΘVT = V(Σ2 + ρI)VTVΘVT

= V(Σ2 + ρI)ΘVT

= VVT = I.

Using a similar reasoning, we can also derive that

XTy = VΓTUTy.

CHAPTER 5. HELEN 71

5.4.2.2 Properties after decomposition

The SVD decomposition formulation sets up an alternative way to commit to matrices
(XT

i Xi + ρI)−1 and Xiyi. For the rest of this section, we describe the zero knowledge proofs
that every party has to execute. For simplicity, we focus on one party and use X and y to
represent its data, and A and b to represent its summaries.

During the ADMM computation, matrices A = (XTX+ρI)−1 and b = XTy are repeatedly
used to calculate the intermediate weights. Therefore, each party needs to commit to A
and b. With the alternative formulation, it is no longer necessary to commit to X and y
individually. Instead, it suffices to prove that a party knows V, Θ, Σ (all are in Rd×d) and a
vector y∗ = (UTy)[1:d] ∈ Rd×1 such that:

1. A = VΘVT ,

2. b = VΣTy∗,

3. V is an orthogonal matrix, namely, VTV = I, and

4. Θ is a diagonal matrix where the diagonal entries are 1/(σ2
i + ρ). σi are the values on

the diagonal of Σ and ρ is a public value.

Note that Γ can be readily derived from Σ by adding rows of zeros. Moreover, both Θ
and Σ are diagonal matrices. Therefore, we only commit to the diagonal entries of Θ and Σ
since the rest of the entries are zeros.

The above four statements are sufficient to prove the properties of A and b in the new
formulation. The first two statements simply prove that A and b are indeed decomposed
into some matrices V, Θ, Σ, and y∗. Statement 3) shows that V is an orthogonal matrix,
since by definition an orthogonal matrix Q has to satisfy the equation QTQ = I. However,
we allow the prover to choose V. As stated before, the prover would have been free to choose
X and y anyway, so this freedom does not give more power to the prover.

Statement 4) proves that the matrix Θ is a diagonal matrix such that the diagonal values
satisfy the form above. This is sufficient to show that Θ is correct according to some Σ.
Again, the prover is free to choose Σ, which is the same as freely choosing its input X.

Finally, we chose to commit to y∗ instead of committing to U and y separately. Following
our logic above, it seems that we also need to commit to U and prove that it is an orthogonal
matrix, similar to what we did with V. This is not necessary because of an important
property of orthogonal matrices: U’s columns span the vector space Rn. Multiplying Uy,
the result is a linear combination of the columns of U. Since we also allow the prover to
pick its y, Uy essentially can be any vector in Rn. Thus, we only have to allow the prover
to commit to the product of U and y. As we can see from the derivation, b = VΓTUy,
but since Γ is simply Σ with rows of zeros, the actual decomposition only needs the first d
elements of Uy. Hence, this allows us to commit to y∗, which is d× 1.

Using our techniques, Helen commits only to matrices of sizes d×d or d×1, thus removing
any scaling in n (the number of rows in the dataset) in the input preparation phase.

CHAPTER 5. HELEN 72

5.4.2.3 Proving the initial data summaries

First, each party broadcasts EncPK(V), EncPK(Σ), EncPK(Θ), EncPK(y∗), EncPK(A), and
EncPK(b). To encrypt a matrix, the party simply individually encrypts each entry. The
encryption scheme itself also acts as a commitment scheme [110], so we do not need an extra
commitment scheme.

To prove these statements, we also need another primitive called an interval proof.
Moreover, since these matrices act as inputs to the model compute phase, we also need to
prove that A and b are within a certain range (this will be used by Gadget 4, described
in Section 5.5.5). The interval proof we use is from [36], which is an efficient way of proving
that a committed number lies within a certain interval. However, what we want to prove
is that an encrypted number lies within a certain interval. This can be solved by using
techniques from [68], which appends the range proof with a commitment-ciphertext equality
proof. This extra proof proves that, given a commitment and a Paillier ciphertext, both hide
the same plaintext value.

To prove the first two statements, we invoke Gadget 1 and Section 5.3.2. This allows
us to prove that the party knows all of the matrices in question and that they satisfy the
relations laid out in those statements.

There are two steps to proving statement 3. The prover will compute EncPK(VTV) and
prove it computed it correctly using Gadget 1 as above. The result should be equal to the
encryption of the identity matrix. However, since we are using fixed point representation
for our data, the resulting matrix could be off from the expected values by some small error.
VTV will only be close to I, but not equal to I. Therefore, we also utilize interval proofs to
make sure that VTV is close to I, without explicitly revealing the value of VTV.

Finally, to prove statement 4, the prover does the following:

1. The prover computes and releases EncPK(Σ2) because the prover knows Σ and proves
using Gadget 1 that this computation is done correctly.

2. The prover computes EncPK(Σ2 + ρI), which anyone can compute because ρ and I are
public. EncPK(Σ2) and EncPK(ρI) can be multiplied together to get the summation of
the plaintext matrices.

3. The prover now computes EncPK(Σ2 + ρI)× EncPK(Θ) and proves this encryption was
computed correctly using Gadget 1.

4. Similar to step 3), the prover ends this step by using interval proofs to prove that this
encryption is close to encryption of the identity matrix.

CHAPTER 5. HELEN 73

5.5 Model compute phase

5.5.1 Overview

In the model compute phase, all parties use the summaries computed in the input
preparation phase and execute the iterative ADMM training protocol. An encrypted weight
vector is generated at the end of this phase and distributed to all participants. The participants
can jointly decrypt this weight vector to get the plaintext model parameters. This phase
executes in three steps: initialization, training (local optimization and coordination), and
model release.

5.5.2 Initialization

We initialize the weights w0
i , z

0, and u0
i . There are two popular ways of initializing the

weights. The first way is to set every entry to a random number. The second way is to
initialize every entry to zero. In Helen, we use the second method because it is easy and
works well in practice.

5.5.3 Local optimization

During ADMM’s local optimization phase, each party takes the current weight vector and
iteratively optimizes the weights based on its own dataset. For LASSO, the update equation
is simply wk+1

i ← Ai(bi + ρ
(
zk − uki

)
), where Ai is the matrix (XT

i Xi + ρI)−1 and bi is
XT
i yi. As we saw from the input preparation phase description, each party holds encryptions

of Ai and bi. Furthermore, given zk and uki (either initialized or received as results calculated
from the previous round), each party can independently calculate wk+1

i by doing plaintext
scaling and plaintext-ciphertext matrix multiplication. Since this is done locally, each party
also needs to generate a proof proving that the party calculated wk+1

i correctly. We compute
the proof for this step by invoking Gadget 1.

5.5.4 Coordination using MPC

After the local optimization step, each party holds encrypted weights wk+1
i . The next

step in the ADMM iterative optimization is the coordination phase. Since this step contains
non-linear functions, we evaluate it using generic MPC.

5.5.4.1 Conversion to MPC

First, the encrypted weights need to be converted into an MPC-compatible input. To do
so, we formulate a gadget that converts ciphertext to arithmetic shares. The general idea
behind the protocol is inspired by arithmetic sharing protocols [62, 69].

CHAPTER 5. HELEN 74

Gadget 3. For m parties, each party having the public key PK and a share of the secret
key SK, given public ciphertext EncPK(a), convert a into m shares ai ∈ Zp such that
a ≡

∑
aimodp. Each party Pi receives secret share ai and does not learn the original

secret value a.

Gadget usage Each party uses this gadget to convert EncPK(wi) and EncPK(ui) into input
shares and compute the soft threshold function using MPC (in our case, SPDZ). We denote
p as the public modulus used by SPDZ. Note that all of the computation encrypted by
ciphertexts are dong within modulo p.

Protocol The protocol proceeds as follows:

1. Each party Pi generates a random value ri ∈ [0, 2|p|+κ] and encrypts it, where κ is a
statistical security parameter. Each party should also generate an interval plaintext
proof of knowledge of ri, then publish EncPK(ri) along with the proofs.

2. Each party Pi takes as input the published {EncPK(rj)}mj=1 and compute the product
with EncPK(a). The result is c = EncPK(a+

∑m
j=1 rj).

3. All parties jointly decrypt c to get plaintext b.

4. Party 0 sets a0 = b− r0modp. Every other party sets ai ≡ −rimodp.

5. Each party publishes EncPK(ai) as well as an interval proof of plaintext knowledge.

5.5.4.2 Coordination

The ADMM coordination step takes in wk+1
i and uki , and outputs zk+1. The z update

requires computing the soft-threshold function (a non-linear function), so we express it in
MPC. Additionally, since we are doing fixed point integer arithmetic as well as using a
relatively small prime modulus for MPC (256 bits in our implementation), we need to reduce
the scaling factors accumulated on wk+1

i during plaintext-ciphertext matrix multiplication.
We currently perform this operation inside MPC as well.

5.5.4.3 Conversion from MPC

After the MPC computation, each party receives shares of z and its MAC shares, as well
as shares of wi and its MAC shares. It is easy to convert these shares back into encrypted
form simply by encrypting the shares, publishing them, and summing up the encrypted shares.
We can also calculate uk+1

i this way. Each party also publishes interval proofs of knowledge
for each published encrypted cipher. Finally, in order to verify that they are indeed valid
SPDZ shares (the specific protocol is explained in the next section), each party also publishes
encryptions and interval proofs of all the MACs.

CHAPTER 5. HELEN 75

5.5.5 Model release

5.5.5.1 MPC conversion verification

Since we are combining two protocols (homomorphic encryption and MPC), an attacker
can attempt to alter the inputs to either protocol by using different or inconsistent attacker-
chosen inputs. Therefore, before releasing the model, the parties must prove that they
correctly executed the ciphertext to MPC conversion (and vice versa). We use another gadget
to achieve this.

Gadget 4. Given public parameters: encrypted value EncPK(a), encrypted SPDZ input
shares EncPK(bi), encrypted SPDZ MACs EncPK(ci), and interval proofs of plaintext
knowledge, verify that

1. a ≡
∑

i bimodp, and

2. bi are valid SPDZ shares and ci’s are valid MACs on bi.

Gadget usage We apply Gadget 4 to all data that needs to be converted from encrypted
ciphers to SPDZ or vice versa. More specifically, we need to prove that (1) the SPDZ input
shares are consistent with EncPK(wk+1

i) that is published from each party, and (2) the SPDZ
shares for wk+1

i and zk are authenticated by the MACs.

Protocol The gadget construction proceeds as follows:

1. Each party verifies that EncPK(a), EncPK(bi) and EncPK(ci) pass the interval proofs of
knowledge. For example, bi and ci need to be within [0, p].

2. Each party homomorphically computes EncPK(
∑

i bi), as well as Ed = EncPK(a−
∑

i bi).

3. Each party randomly chooses ri ∈ [0, 2|a|+|κ|], where κ is again a statistical security
parameter, and publishes EncPK(ri) as well as an interval proof of plaintext knowledge.

4. Each party calculates Ef = Ed
∏

i EncPK(ri)
p = EncPK((a−

∑
i bi) +

∑
i(ri · p)). Here

we assume that log |m|+ |p|+ |a|+ |κ| < |n|.

5. All parties participate in a joint decryption protocol to decrypt Ef obtaining ef .

6. Every party individually checks to see that ef is a multiple of p. If this is not the case,
abort the protocol.

7. The parties release the SPDZ global MAC key α.

8. Each party calculates EncPK(α(
∑
bi + δ)) and EncPK(

∑
ci).

CHAPTER 5. HELEN 76

9. Use the same method in steps 2 – 6 to prove that α(
∑
bi + δ) ≡

∑
cimodp.

The above protocol is a way for parties to verify two things. First, that the SPDZ shares
indeed match with a previously published encrypted value (i.e., Gadget 3 was executed
correctly). Second, that the shares are valid SPDZ shares. The second step is simply verifying
the original SPDZ relation among value share, MAC shares, and the global key.

Note that we cannot verify these relations by simply releasing the plaintext data shares
and their MACs since the data shares correspond to the intermediate weights. Furthermore,
the shares need to be equivalent in modulo p, which is different from the Paillier parameter
N . Therefore, we use an alternative protocol to test modulo equality between two ciphertexts,
which is the procedure described above in steps 2 to 6.

Since the encrypted ciphers come with interval proofs of plaintext knowledge, we can
assume that a ∈ [0, l]. If two ciphertexts encrypt plaintexts that are equivalent to each other,
they must satisfy that a ≡ bmodp or a = b+ ηp. Thus, if we take the difference of the two
ciphertexts, this difference must be ηp. We could then run the decryption protocol to test
that the difference is indeed a multiple of p.

If a ≡
∑

i bimodp, simply releasing the difference could still reveal extra information about
the value of a. Therefore, all parties must each add a random mask to a. In step 3, ri’s
are generated independently by all parties, which means that there must be at least one
honest party who is indeed generating a random number within the range. The resulting
plaintext thus statistically hides the true value of a−

∑
i bi with the statistical parameter

κ. If a 6≡
∑

i bimodp, then the protocol reveals the difference between a−
∑

i bimodp. This
is safe because the only way to reveal a−

∑
i bimodp is when an adversary misbehaves and

alters its inputs, and the result is independent from the honest party’s behavior.

5.5.5.2 Weight vector decryption

Once all SPDZ values are verified, all parties jointly decrypt z. This can be done by first
aggregating the encrypted shares of z into a single ciphertext. After this is done, the parties
run the joint decryption protocol from [83] (without releasing the private keys from every
party). The decrypted final weights are released in plaintext to everyone.

5.6 Extensions to Other Models
Though we used LASSO as a running example, our techniques can be applied to other

linear models like ordinary least-squares linear regression, ridge regression, and elastic net.
Here we show the update rules for ridge regression, and leave its derivation to the readers.

Ridge regression solves a similar problem as LASSO, except with L2 regularization. Given
a dataset (X,y) where X is the feature matrix and y is the prediction vector, ridge regression

CHAPTER 5. HELEN 77

optimizes arg minw

1

2
‖Xw − y‖2

2 + λ‖w‖2. The update equations for ridge regression are:

wk+1
i = (XT

i Xi + ρI)−1(XT
i yi + ρ(zk − uki))

+ (ρ/2)‖wi − zk + uki ‖2
2

zk+1 =
ρ

2λ/m+ ρ
(w̄k+1 + ūk)

uk+1
i = uki + xk+1

i − zk+1

The local update is similar to LASSO, while the coordination update is a linear operation
instead of the soft threshold function. Elastic net, which combines L1 and L2 regularization,
can therefore be implemented by combining the regularization terms from LASSO and ridge
regression.

5.7 Evaluation
We implemented Helen in C++. We utilize the SPDZ library [40], a mature library

for maliciously secure multi-party computation, for both the baseline and Helen. In our
implementation, we apply the Fiat-Shamir heuristic to our zero-knowledge proofs [82]. This
technique is commonly used in implementations because it makes the protocols non-interactive
and thus more efficient, but assumes the random oracle model.

We compare Helen’s performance to a maliciously secure baseline that trains using
stochastic gradient descent, similar to SecureML [162]. Since SecureML only supports
two parties in the semihonest setting, we implemented a similar baseline using SPDZ [69].
SecureML had a number of optimizations, but they were designed for the two-party setting.
We did not extend those optimizations to the multi-party setting. We will refer to SGD
implemented in SPDZ as the “secure baseline” (we explain more about the SGD training
process in Section 5.7.1). Finally, we do not benchmark Helen’s Paillier key setup phase. This
can be computed using SPDZ itself, and it is ran only once (as long as the party configuration
does not change).

5.7.1 Experiment setup

We ran our experiments on EC2 using r4.8xlarge instances. Each machine has 32 cores
and 244 GiB of memory. In order to simulate a wide area network setting, we created EC2
instances in Oregon and Northern Virginia. The instances are equally split across these two
regions. To evaluate Helen’s scalability, we used synthetic datasets that are constructed by
drawing samples from a noisy normal distribution. For these datasets, we varied both the
dimension and the number of parties. To evaluate Helen’s performance against the secure
baseline, we benchmarked both systems on two real world datasets from UCI [75].

CHAPTER 5. HELEN 78

Training assumptions. We do not tackle hyperparameter tuning in our work, and also
assume that the data has been normalized before training. We also use a fixed number of
rounds (10) for ADMM training, which we found experimentally using the real world datasets.
We found that 10 rounds is often enough for the training process to converge to a reasonable
error rate. Recall that ADMM converges in a small number of rounds because it iterates on
a summary of the entire dataset. In contrast, SGD iteratively scans data from all parties at
least once in order to get an accurate representation of the underlying distributions. This is
especially important when certain features occur rarely in a dataset. Since the dataset is
very large, even one pass already results in many rounds.

MPC configuration. As mentioned earlier, SPDZ has two phases of computation: an
offline phase and an online phase. The offline phase can run independently of the secure
function, but the precomputed values cannot be reused across multiple online phases. The
SPDZ library provides several ways of benchmarking different offline phases, including
MASCOT [131] and Overdrive [132]. We tested both schemes and found Overdrive to perform
better over the wide area network. Since these are for benchmarking purposes only, we
decided to estimate the SPDZ offline phase by dividing the number of triplets needed for
a circuit by the benchmarked throughput. The rest of the evaluation section will use the
estimated numbers for all SPDZ offline computation. Since Helen uses parallelism, we also
utilized parallelism in the SPDZ offline generation by matching the number of threads on
each machine to the number of cores available.

On the other hand, the SPDZ online implementation is not parallelized because the
API was insufficient to effectively express parallelism. We note two points. First, while
parallelizing the SPDZ library will result in a faster baseline, Helen also utilizes SPDZ, so any
improvement to SPDZ also carries over to Helen. Second, as shown below, our evaluation
shows that Helen still achieves significant performance gains over the baseline even if the
online phase in the secure baseline is infinitely fast.

Finally, the parameters we use for Helen are: 128 bits for the secure baseline’s SPDZ
configuration, 256 bits for the Helen SPDZ configuration, and 4096 bits for Helen’s Paillier
ciphertext.

5.7.2 Theoretic performance

table 5.1 shows the theoretic scaling behavior for SGD and Helen, where m is the number
of parties, n is the number of samples per party, d is the dimension, and C and ci are
constants. Note that ci’s are not necessarily the same across the different rows in the table.
We split Helen’s input preparation phase into three sub-components: SVD (calculated in
plaintext), SVD proofs, and MPC offline (since Helen uses SPDZ during the model compute
phase, we also need to run the SPDZ offline phase).

SGD scales linearly in n and d. If the number of samples per party is doubled, the number
of iterations is also doubled. A similar argument goes for d. SGD scales quadratic in m
because it first scales linearly in m due to the behavior of the MPC protocol. If we add more

CHAPTER 5. HELEN 79

Baseline Secure SGD C ·m2 · n · d
Helen SVD decomposition c1 · n · d2

SVD proofs c1 ·m · d2 + c2 · d3

MPC offline c1 ·m2 · d
Model compute c1 ·m2 · d+ c2 · d2 + c3 ·m · d

Table 5.1: Theoretical scaling (complexity analysis) for SGD baseline and Helen. m is the
number of parties, n is the number of samples per party, d is the dimension.

parties to the computation, the number of samples will also increase, which in turn increases
the number of iterations needed to scan the entire dataset.

Helen, on the other hand, scales linearly in n only for the SVD computation. We emphasize
that SVD is very fast because it is executed on plaintext data. The c1 part of the SVD proofs
formula scales linearly in m because each party needs to verify from every other party. It
also scales linearly in d2 because each proof verification requires d2 work. The c2 part of the
formula has d3 scaling because our matrices are d× d), and to calculate a resulting encrypted
matrix requires matrix multiplication on two d× d matrices.

The coordination phase from Helen’s model compute phase, as well as the corresponding
MPC offline compute phase, scale quadratic in m because we need to use MPC to re-scale
weight vectors from each party. This cost corresponds to the c1 part of the formula. The
model compute phase’s d2 cost (c2 part of the formula) reflects the matrix multiplication and
the proofs. The rest of the MPC conversion proofs scale linearly in m and d (c3 part of the
formula).

0 25 50 75 100
Number of dimensions

0

2000

4000

6000

T
im

e
(s

)

SVD proofs
MPC offline
Model compute

Figure 5.2: Helen’s scaling as we increase the number of dimensions. The number of parties
is fixed to be 4, and the number of samples per party is 100, 000.

CHAPTER 5. HELEN 80

2 4 6 8 10
Number of parties

0

500

1000

1500

T
im

e
(s

)

SVD proofs
MPC offline
Model compute

Figure 5.3: Helen’s two phases as we increase the number of parties. The dimension is set to
be 10, and the number of samples per party is 100, 000.

Samples per party 4000 6000 8000 10K 40K 100K 200K 400K 800K 1M
sklearn L2 error 8928.32 8933.64 8932.97 8929.10 8974.15 8981.24 8984.64 8982.88 8981.11 8980.35
Helen L2 error 8839.96 8828.18 8839.56 8837.59 8844.31 8876.00 8901.84 8907.38 8904.11 8900.37
sklearn MAE 58.07 58.04 58.10 58.05 58.34 58.48 58.55 58.58 58.56 58.57
Helen MAE 57.44 57.46 57.44 57.47 57.63 58.25 58.38 58.36 58.37 58.40

Table 5.2: Select errors for gas sensor (due to space), comparing Helen with a baseline that
uses sklearn to train on all plaintext data. L2 error is the squared norm; MAE is the mean
average error. Errors are calculated after post-processing.

Samples per party 1000 2000 4000 6000 8000 10K 20K 40K 60K 80K 100K
sklearn L2 error 92.43 91.67 90.98 90.9 90.76 90.72 90.63 90.57 90.55 90.56 90.55
Helen L2 error 93.68 91.8 91.01 90.91 90.72 90.73 90.67 90.57 90.54 90.57 90.55
sklearn MAE 6.86 6.81 6.77 6.78 6.79 6.81 6.80 6.79 6.79 6.80 6.80
Helen MAE 6.92 6.82 6.77 6.78 6.79 6.81 6.80 6.79 6.80 6.80 6.80

Table 5.3: Errors for song prediction, comparing Helen with a baseline that uses sklearn to
train on all plaintext data. L2 error is the squared norm; MAE is the mean average error.
Errors are calculated after post-processing.

5.7.3 Synthetic datasets

We want to answer two questions about Helen’s scalability using synthetic datasets: how
does Helen scale as we vary the number of features and how does it scale as we vary the
number of parties? Note that we are not varying the number of input samples because that
will be explored in Section 5.7.4 in comparison to the secure SGD baseline.

Figure 5.2 shows a breakdown of Helen’s cryptographic computation as we scale the
number of dimensions. The plaintext SVD computation is not included in the graph. The
SVD proofs phase is dominated by the matrix multiplication proofs, which scales in d2. The
MPC offline phase and the model compute phase are both dominated by the linear scaling in

CHAPTER 5. HELEN 81

d, which corresponds to the MPC conversion proofs.
Figure 5.3 shows the same three phases as we increase the number of parties. The SVD

proofs phase scales linearly in the number of parties m. The MPC offline phase scales
quadratic in m, but its effects are not very visible for a small number of parties. The model
compute phase is dominated by the linear scaling in m because the quadratic scaling factor
isn’t very visible for a small number of parties.

Finally, we also ran a microbenchmark to understand Helen’s network and compute costs.
The experiment used 4 servers and a synthetic dataset with 50 features and 100K samples
per party. We found that the network costs account for approximately 2% of the input
preparation phase and 22% of Helen’s model compute phase.

5.7.4 Real world datasets

We evaluate on two different real world datasets: gas sensor data [75] and the million
song dataset [26, 75]. The gas sensor dataset records 16 sensor readings when mixing two
types of gases. Since the two gases are mixed with random concentration levels, the two
regression variables are independent and we can simply run two different regression problems
(one for each gas type). For the purpose of benchmarking, we ran an experiment using the
ethylene data in the first dataset. The million song dataset is used for predicting a song’s
published year using 90 features. Since regression problems produce real values, the year can
be calculated by rounding the regressed value.

For SGD, we set the batch size to be the same size as the dimension of the dataset. The
number of iterations is equal to the total number of sample points divided by the batch
size. Unfortunately, we had to extrapolate the runtimes for a majority of the baseline online
phases because the circuits were too big to compile on our EC2 instances.

Figure 5.4 and Figure 5.5 compare Helen to the baseline on the two datasets. Note that
Helen’s input preparation graph combines the three phases that are run during the offline:
plaintext SVD computation, SVD proofs, and MPC offline generation. We can see that
Helen’s input preparation phase scales very slowly with the number of samples. The scaling
actually comes from the plaintext SVD calculation because both the SVD proofs and the
MPC offline generation do not scale with the number of samples. Helen’s model compute
phase also stays constant because we fixed the number of iterations to a conservative estimate.
SGD, on the other hand, does scale linearly with the number of samples in both the offline
and the online phases.

For the gas sensor dataset, Helen’s total runtime (input preparation plus model compute)
is able to achieve a 21.5x performance gain over the baseline’s total runtime (offline plus
online) when the number of samples is 1000. When the number of samples per party reaches
1 million, Helen is able to improve over the baseline by 20689x. For the song prediction
dataset, Helen is able to have a 9.1x performance gain over the baseline when the number
of samples is 1000. When the number of samples per party reaches 100K, Helen improves
over the baseline by 911x. Even if we compare Helen to the baseline’s offline phase only, we
find that Helen still has close to constant scaling while the baseline scales linearly with the

CHAPTER 5. HELEN 82

103 104 105 106

Number of samples per party

102

103

104

105

106

107

T
im

e
(s

)
30 minutes

1 day

1 week

1 month
3 months

Helen input prep
Helen model compute

Baseline offline extrapolated
Baseline online extrapolated

Figure 5.4: Helen and baseline performance on the gas sensor data. The gas sensor data
contained over 4 million data points; we partitioned into 4 partitions with varying number
of sample points per partition to simulate the varying number of samples per party. The
number of parties is 4, and the number of dimensions is 16.

103 104 105

Number of samples per party

104

105

106

107

T
im

e
(s

)

1.5 hours

1 day

1 week

1 month

3 months

Helen input prep
Helen model compute

Baseline offline extrapolated
Baseline online extrapolated

Figure 5.5: Helen and baseline performance on the song prediction data, as we vary the
number of samples per party. The number of parties is 4, and the number of dimensions is 90.

Figure 5.6: Helen comparison with SGD

number of samples. The performance improvement compared to the baseline offline phase is
up to 1540x for the gas sensor dataset and up to 98x for the song prediction dataset.

In table 5.2 and table 5.3, we evaluate Helen’s test errors on the two datasets. We compare
the L2 and mean average error for Helen to the errors obtained from a model trained using
sklearn (a standard Python library for machine learning) on the plaintext data. We did not
directly use the SGD baseline because its online phase does not compile for larger instances,
and using sklearn on the plaintext data is a conservative estimate. We can see that Helen
achieves similar errors compared to the sklearn baseline.

CHAPTER 5. HELEN 83

Work Functionality n-party? Malicious
security?

Practical?

Nikolaenko et al. [167] ridge regression no no –
Hall et al. [112] linear regression yes no –
Gascon et al. [92] linear regression no no –
Cock et al. [55] linear regression no no –
Giacomelli et al. [97] ridge regression no no –
Alexandru et al. [10] quadratic opt. no no –
SecureML [162] linear, logistic,

deep learning
no no –

Shokri&Shmatikov [193] deep learning not MPC
(heuristic)

no –

Semi-honest MPC [23] any function yes no –
Malicious MPC [69, 103,
31, 204]

any function yes yes no

Our proposal, Helen: regularized linear
models

yes yes yes

Figure 5.7: Insufficiency of existing cryptographic approaches. “n-party” refers to
whether the n(>2) organizations can perform the computation with equal trust (thus not
including the two non-colluding servers model). We answer the practicality question only for
maliciously-secure systems. We note that a few works that we marked as not coopetitive
and not maliciously secure discuss at a high level how one might extend their work to such a
setting, but they did not flesh out designs or evaluate their proposals.

5.8 Related work
We organize the related work section into related coopetitive systems and attacks.

5.8.1 Coopetitive systems

Coopetitive training systems In Figure 5.7, we compare Helen to prior coopetitive
training systems [167, 112, 93, 55, 97, 10, 162, 193]. The main takeaway is that, excluding
generic maliciously secure MPC, prior training systems do not provide malicious security.
Furthermore, most of them also assume that the training process requires outsourcing to two
non-colluding servers. At the same time, and as a result of choosing a weaker security model,
some of these systems provide richer functionality than Helen, such as support for neural
networks. As part of our future work, we are exploring how to apply Helen’s techniques to
logistic regression and neural networks.

Other coopetitive systems Other than coopetitive training systems, there are prior
works on building coopetitive systems for applications like machine learning prediction and

CHAPTER 5. HELEN 84

SQL analytics. Coopetitive prediction systems [35, 187, 185, 147, 98, 127] typically consist of
two parties, where one party holds a model and the other party holds an input. The two
parties jointly compute a prediction without revealing the input or the model to the other
party. Coopetitive analytics systems [20, 165, 33, 59, 28] allow multiple parties to run SQL
queries over all parties’ data. These computation frameworks do not directly translate to
Helen’s training workloads. Most of these works also do not address the malicious setting.
Recent work has also explored secure learning and analytics using separate compute nodes
and blockchains [89, 90]. The setup is different from that of Helen where we assume that the
data providers are malicious and are also performing and verifying the computation.

Trusted hardware based systems The related work presented in the previous two
sections all utilize purely software based solutions. Another possible approach is to use
trusted hardware [155, 60], and there are various secure distributed systems that could be
extended to the coopetitive setting [189, 116, 222]. However, these hardware mechanisms
require additional trust and are prone to side-channel leakages [136, 203, 141].

5.8.2 Attacks on machine learning

Machine learning attacks can be categorized into data poisoning, model leakage, parameter
stealing, and adversarial learning. As mentioned in §5.2.1, Helen tackles the problem of
cryptographically running the training algorithm without sharing datasets amongst the
parties involved, while defenses against these attacks are orthogonal and complementary to
our goal for Helen. Often, these machine learning attacks can be separately addressed outside
of Helen. We briefly discuss two relevant attacks related to the training stage and some
methods for mitigating them.

Poisoning Data poisoning allows an attacker to inject poisoned inputs into a dataset before
training [124, 53]. Generally, malicious MPC does not prevent an attacker from choosing
incorrect initial inputs because there is no way to enforce this requirement. Nevertheless,
there are some ways of mitigating arbitrary poisoning of data that would complement Helen’s
training approach. Before training, one can check that the inputs are confined within certain
intervals. The training process itself can also execute cross validation, a process that can
identify parties that do not contribute useful data. After training, it is possible to further
post process the model via techniques like fine tuning and parameter pruning [148].

Model leakage Model leakage [192, 44] is an attack launched by an adversary who tries
to infer information about the training data from the model itself. Again, malicious MPC
does not prevent an attacker from learning the final result. In our coopetitive model, we
also assume that all parties want to cooperate and have agreed to release the final model to
everyone.

CHAPTER 5. HELEN 85

5.8.3 Differential privacy

One way to alleviate model leakage is through the use of differential privacy [121, 5, 79].
For example, one way to add differential privacy is to add carefully chosen noise directly
to the output model [121]. Each party’s noise can be chosen directly using MPC, and the
final result can then be added to the final model before releasing. In Helen, differential
privacy would be added after the model is computed, but before the model release phase.
However, there are more complex techniques for differential privacy that involve modification
to the training algorithm, and integrating this into Helen is an interesting future direction to
explore.

5.9 ADMM derivations
Ridge regression solves a similar problem as LASSO, except with L2 regularization. Given

dataset (X,y) where X is the feature matrix and y is the prediction vector, ridge regression

optimizes arg minw

1

2
‖Xw − y‖2

2 + λ‖w‖2. Splitting the weights into w and z, we have

minimize
1

2
‖Xw − y‖2

2 + λ‖z‖2

subject to w − z = 0

We first find the augmented Lagrangian

L(w, z,v) =
1

2
‖Xw − y‖2

2 + λ‖z‖2

+ vT (w − z) +
ρ

2
‖w − z‖2

2

where w and z are the primal weight vectors, and v is the dual weight vector. To simply
the equations, we replace v with the scaled dual variable u where u = (1/ρ)v. The update
equations come out to

wk+1 = arg min
w

1

2
‖Xw − y‖2

2 + (ρ/2)‖w − zk + uk‖2
2)

zk+1 = arg min
z

λ‖z‖2
2 + (ρ/2)(wk+1 + z + uk)

uk+1 = uk + wk+1 + zk+1

Since our loss function is decomposable based on data blocks, we can apply the generic
global variable consensus ADMM algorithm and find

CHAPTER 5. HELEN 86

wk+1
i = arg min

wi

1

2
‖Xiw − y‖2

2 + (ρ/2)‖wi − zk + uk‖2
2)

zk+1 = arg min
z

λ‖z‖2
2 + (mρ/2)‖z− w̄k+1 − ūk‖2

2

uk+1 = uk + wk+1 − zk+1

Thus, the w update is

wk+1
i = (XT

i Xi + ρI)−1(XT
i yi + ρ(zk − uki))

+ (ρ/2)‖wi − zk + uki ‖2
2

zk+1 =
ρ

2λ/m+ ρ
(w̄k+1 + ūk)

uk+1
i = uki + xk+1

i − zk+1

Therefore, the wi update is the same as LASSO and can be computed using the same
techniques. The z update is actually linear and does not require comparisons, though
MPC is still required for reducing the scaling factors accumulated during fixed point integer
multiplications.

5.10 Security proofs

5.10.1 Definitions

We first define the MPC model. The full definitions are taken from [62, 43], so please
refer to those papers for more details.
Real world model. Let π be an n-party protocol. The protocol is executed on an open
broadcast network with static, active, and rushing adversary A (rushing means that the
adversaries can send their messages after seeing all of the honest parties’ messages). The
number of adversaries can be a majority of the participants. Let κ be the security parameter.
Each party Pi has public input xpi and secret input xsi , as well as public output ypi and secret
output ysi . The adversary A receives the public input and output of all parties.

Let x = (xs1, x
p
1, . . . , x

s
n, x

p
n) be the parties’ input, and let r = (r1, . . . , rn, rA) be the parties’

and the adversary’s private input randomness. Let C ⊂M be the corrupted parties, and let
a ∈ {0, 1}∗ be the adversary’s auxiliary input. Let H ⊂M be the honest parties. Therefore,
we have that H + C = M .

By ADVRπ,A(κ,x, C, a, r) and EXECπ,A(κ,x, C, a, r)i we denote the output of the adver-
sary A and the output of party Pi, respectively, after a real world execution of π with the

CHAPTER 5. HELEN 87

given input under attack from A. Let

EXECπ,A(κ,x, C, a, r) =(ADVRπ,A(k,x, C, a, r), (5.8)
EXECπ,A(κ,x, C, a, r)1, (5.9)
. . . , (5.10)
EXECπ,A(κ,x, C, a, r)n) (5.11)

This is simply the union of the different parties’ and the adversary’s real world output
distribution. Denote by EXECπ,A(κ,x, C, a) the random variable EXECπ,A(k,x, C, a, r),
where r is chosen uniformly random. We define the distribution ensemble with security
parameter κ and index (x, C, a) by

EXECπ,A = {EXECπ,A(κ,x, C, a, r)i}κ∈M,x∈({0,1}∗)2n,a∈{0,1}∗,i∈H (5.12)

Ideal world model. Let f : M×({0, 1}∗)2n×{0, 1}∗ → ({0, 1}∗)2n be a probabilistic n-party
function computable in probabilistic polynomial time (PPT). The inputs and outputs are
defined as (ys1, y

p
1, . . . , y

s
n, y

p
n)← f(κ, xs1, x

p
1, . . . , x

s
n, x

p
n, r), where κ is the security parameter

and r is the random input. In the ideal world, the parties send their inputs to a trusted third
party T that chooses a uniformly random r, computes f on these inputs and returns (ysi , y

p
i)

to Pi.
The active static ideal world adversary AI sees all xpi values, as well as xsi for all corrupted

parties. The adversary then substitutes the values (xsi , x
p
i) for the corrupted parties by values

of his choice (xs
′
i , x

p′

i). We set (xs
′
i , x

p′

i) = (xsi , x
p
i) for the honest parties. The ideal function

f is evaluated on (κ, xs
′

1 , x
p′

1 , . . . , x
s′
n , x

p′
n , r) via an oracle call. Each party receives output

(ysi , y
p
i), and the adversary sees ypi for all parties as well as ysi for all corrupted parties.

Similar to the real world execution, we define ADVRπ,Ai
(κ,x, C, a, r) and IDEALπ,Ai

(κ,x, C, a, r)i
we denote the output of the adversary Ai and the output of party Pi, respectively, after an
ideal world execution with the given input under attack from Ai. Let

IDEALf,AI
(κ,x, C, a, r) = (ADVRf,AI

(κ,x, C, a, r), (5.13)
IDEALf,AI

(κ,x, C, a, r)1, (5.14)
IDEALf,AI

(κ,x, C, a, r)2, (5.15)
. . . , (5.16)
IDEALf,AI

(κ,x, C, a, r)n) (5.17)

denote the collective output distribution of the parties and the adversary. Define a distribution
ensemble by

IDEALf,AI
= {IDEALf,AI

(κ,x, C, a)i}κ∈N,x∈({0,1}∗)2n,a∈{0,1}∗,i∈H (5.18)

Hybrid model. In the (g1, . . . , gl)-hybrid model, the execution of a protocol π proceeds in
the real-life model, except that the parties have access to a trusted party T for evaluating

CHAPTER 5. HELEN 88

the n-party functions g1, . . . , gl. These ideal evaluations proceed as in the ideal world model.
The distribution ensemble is

EXECg1,...,gl
π,A = {EXECg1,...,gl

π,A (κ,x, C, a)i}κ∈N,x∈({0,1}∗)2n,a∈{0,1}∗,i∈H (5.19)

Security can be defined by requiring a real world execution or a (g1, . . . , gl)-hybrid
execution of a protocol π for computing an ideal functionality f to reveal no more information
to an adversary than does an ideal execution of f . We can define the real world model by
the ()-hybrid model.

Definition 1. Let f be an n-party function, let π be an n-party protocol We say that π securely
evaluates f in the (g1, . . . , gl)-hybrid model if for any active static (g1, . . . , gl)-hybrid adversary
A, which corrupts only subsets of C, there exists a static active ideal-model adversary S such
that IDEALf,S ≈c EXECg1,...,glπ,A .

Finally, we utilize the modular composition operation that was defined in [43]. The modular
composition theorem (informally) states that if π Γ-securely evaluates f in the (g1, . . . , gl)-
hybrid model and πgi Γ-securely evaluates gi in the (g1, . . . , gi−1, gi+1, . . . , gl)-hybrid model,
then the protocol π′ , which follows protocol π except with oracle calls to gi replaced by
executions of the protocol πgi , Γ-securely evaluates f in the (g1, . . . , gi−1, gi+1, . . . , gl)-hybrid
model.

Next, we describe some essential lemmas and existing protocols that we use.

Theorem 2 (Schwartz-Zippel). Let P ∈ F [x1, x2, . . . , xn] be a non-zero polynomial of total
degree d > 0 over a field F . Let S be a finite subset of F and let r1, r2, . . . , rn be selected at

random independently and uniformly from S. Then Pr[P (r1, r2, . . . , rn) = 0] ≤ d

|S|
.

Lemma 1 (Smudging lemma). Let B1 = B1(κ), and B2 = B2(κ) be positive integers and
let ε1 ∈ [−B1, B1] be a fixed integer. Let e2 ∈R [−B2, B2] be chosen uniformly at random.
Then, the distribution of e2 is statistically indistinguishable from that of e2 + e1 as long as
B1/B2 = neg(κ).

Lemma 1 is used for arguing statistical indistinguishability between two distributions.
Next, we list three existing zero-knowledge proofs that serve as building blocks in our

system. They are all Σ protocols [67], which assume that the verifier is honest. However,
they can be transformed into full zero knowledge, as we explain in detail later. Since this is
taken from existing literature, we will not re-derive the simulators here, and instead assume
access to simulators for all three protocols.

Protocol 1 (Paillier proof of plaintext knowledge). A protocol for proving plaintext knowledge
of a Paillier ciphertext EncPK(a) [62].

Protocol 2 (Paillier multiplication proof). A protocol for: given EncPK(α), EncPK(a), EncPK(b),
prove that EncPK(b) indeed encrypts α · a and that the prover has plaintext knowledge of
EncPK(α) [62].

CHAPTER 5. HELEN 89

Protocol 3 (Encryption interval proof). An efficient interval proof that proves an encrypted
value lies within an interval.

Note that in order to construct Protocol 3, we combine two existing protocols together.
The first protocol is an interval proof for a committed value [36]. The second protocol
is an additional proof that proves the equality of plaintexts under a commitment and an
encryption [68].

To turn our honest verifier proofs into full zero knowledge (as well as non-malleable and
concurrent), we utilize an existing transformation [91]. Informally, the transformation does
two things. First, the random challenge in a Σ protocol is first generated by the verifier
giving a challenge, then the prover proves an OR protocol given this challenge. The OR
protocol consists of the actual statement to be proved, plus a signature proof. A simulator can
simply simulate the second protocol in the OR protocol, instead of the main proof. Second,
the witness for the proof is extracted via encrypting it under a public key generated from
the common reference string. During the simulation, the simulator is able to generate the
encryption key parameters, and can thus decrypt the encryption and extract an adversary’s
input. This means no rewinding is needed either for simulation or extraction. We denote
the parameter generation functionality as fcrs. In Helen’s design, we transform a Σ protocol
S using this method, then use the simulator Szk(S) and extractor Ezk(S) in our proofs for
simulation and extraction of the adversary’s secrets.

Finally, we assume that we have access to a threshold encryption scheme that can provably
decrypt a ciphertext for our threshold structure. The scheme is described in [83], and we do
not provide further proofs for this protocol. In our MPC simulation, we assume that we have
a simulator Sdec for the decryption protocol.

5.10.2 Proofs

Theorem 3. Protocol described in Section 5.3.1 is an honest verifier zero knowledge proof of
plaintext knowledge for a committed matrix EncPK(X).

Proof sketch. The Paillier ciphertext proof of plaintext knowledge is a Σ protocol. Correctness,
soundness, and simulation arguments are given in [62]. Using Szk and Ezk, we can achieve
full zero knowledge in the concurrent setting by simply proving knowledge for each element
in the matrix using the ciphertext proof of plaintext knowledge.

Theorem 4. Gadget 1, with applied transformation from [91], is a zero knowledge argument
for proving the following: given a public committed EncPK(X), an encrypted EncPK(Y), and
EncPK(Z) prove that the prover knows X and that Z = XY under standard cryptographic
assumptions.

Proof sketch. To prove this theorem, we first prove the security of the honest verifier version
of this protocol. The argument itself contains several parts. The first is a proof of plaintext
knowledge of the matrix X, which is applied straightforwardly from Theorem 3. This allows

CHAPTER 5. HELEN 90

us to extract the content of the commitment. The second is a matrix multiplication proof,
which consists of a reduction and ciphertext multiplication proofs.

Completeness is straightforward to see since we simply follow the computation of matrix
multiplication, except that Y is encrypted. If EncPK(Z) = XEncPK(Y), then tEncPK(Z) =
tXEncPK(Y). Soundness can be proved in two steps. The first step utilizes the Schwartz-
Zippel lemma Theorem 2. Given a random vector t ∈ [0, 2l] where l = |n| − 2|p| − logM ,
we will verify that tZ = tXY. This step reduces the problem to verifying matrix-vector
multiplication instead of matrix-matrix multiplication. Using the lemma, we can view this as
a multivariable polynomial equality testing problem. Therefore, an inequality will correctly
pass with probability d/|S|. Since the commitments to X, Y, and Z are homomorphic,
the prover and the verifier can calculate EncPK(tX) and EncPK(tZ) independently. The
second step of the soundness argument comes from the fact that after this transformation,
we execute individual ciphertext multiplication proofs, which are Σ protocols themselves.
These Σ-protocols are used for the individual products of a dot product (these are proved
independently), as well as for proving the summation of these individual products. The
summation itself can be computed by the verifier directly via the homomorphic properties
of the ciphertexts. Then the summation proof is another Σ-protocol. Σ-protocols satisfy
the special soundness property [67], which means that a cheating verifier can cheat with
probability 2−t, where t indicates the length of the challenge. Therefore, the probability of
cheating is overall negligible via union bound. To simulate the matrix multiplication proofs,
we first use the randomness on the verifier input tape to construct t. Assuming that the
simulator for Protocol 2 is Smult, we then use the challenges for the ciphertext multiplication
protocols and feed each into the simulator Smult that simulates the Σ-protocol for ciphertext
multiplication. Finally, to make this entire argument full zero knowledge, we apply the
protocol transformation from [91].

Theorem 5. Section 5.3.2, with applied transformation from [91], is a zero knowledge
argument for proving the following: given committed matrices EncPK(X), EncPK(Y), and
EncPK(Z), prove that XY = Z and that the prover knows the committed values X and Y
under standard cryptographic assumptions.

Proof sketch. The proof is a straightforward combination of Theorem 3 and Theorem 4.

Theorem 6. Gadget 3 has a simulator Sa such that Sa’s distribution is statistically indistin-
guishable from Gadget 3’s real world execution.

Proof sketch. First, we must construct such a simulator Sa. To do so, we modify a similar
simulator from [62]. Let M denote all of the parties in the protocol. The simulator runs the
following:

1. Let s be the smallest index of an honest party and let H ′ be the set of the remaining
honest parties. For each honest party in H ′ , generate ri and EncPK(ri) correctly. For
party s, choose r′s uniformly random from [0, 2|p|+κ], and let EncPK(rs) = EncPK(r

′
s− a).

CHAPTER 5. HELEN 91

2. Hand the values EncPK(ri)i∈H to the adversary and receive from the adversary EncPK(ri).

3. Run the augmented proofs of knowledge (Szk(Ppok)) from the adversaries and simulate
the proof for party s (since the simulator does not know the plaintext value of rs). If
any proof fails from the adversary, abort. Otherwise, continue and use the augmented
extractor (Ezk(Ppok))to extract the adversary’s inputs ri.

4. Compute e =
∑

i 6=s(ri) + r
′
s =

∑
i ri + a.

5. Simulate a call to decrypt using Sdec. Note that the decrypted value is exactly e due to
the relation described in the previous step.

6. Simulator computes the shares as indicated in the original protocol except for party s,
which sets its value to a′s = (as − a)modp.

We now prove that the simulator’s distribution is statistically indistinguishable from the
real world execution’s distribution.

Note that other than EncPK(rs), the rest of Sa’s simulation follows exactly from the real
world execution A, and thus is distributed exactly the same as the execution.

In simulation step 1, EncPK(rs) encrypts rs. Given a plaintext that is within [0, p),
using Lemma 1 we know that rs and r

′
s are statistically indistinguishable from each other.

This means that both rs’s and r
′
s’s distributions are statistically close to being uniformly drawn

from the interval [0, 2|p|+κ]. Since we always blind encryptions, this means that EncPK(rs)
is a random encryption of a statistically indistinguishable uniformly random element from
[0, 2|p|+κ]. Therefore, EncPK(ds)’s distribution in the simulator is statistically indistinguishable
from the corresponding distribution in the execution.

The distributions of the real world proofs and the simulated proofs follow straightforwardly
from [91].

Finally, we know that a′s = as − amodp. The real world execution’s share is as. Since rs
and r′s are statistically indistinguishable from the uniformly random distribution and a < p,
the rs’s and r

′
s’s distributions after applying modulo p are also statistically indistinguishable.

Therefore, the a′s and as distributions are also statistically indistinguishable.

Next, we first define fcrs and fSPDZ , two ideal functionalities.

1. fcrs: an ideal functionality that generates a common reference string, as well as secret
inputs to the parties. As mentioned before, this functionality is used for the augmented
proofs so that the extractor can extract the adversary’s inputs by simple decryption.

2. fSPDZ: an ideal functionality that computes the ADMM consensus phase using SPDZ.

Theorem 7. fADMM in the (fcrs, fSPDZ)-hybrid model under standard cryptographic assump-
tions, against a malicious adversary who can statically corrupt up to m− 1 out of m parties.

CHAPTER 5. HELEN 92

Proof sketch. To prove Helen’s security, we first start the proof by constructing a simulator
for Helen’s two phases: input preparation and model compute. Next, we prove that the
simulator’s distribution is indistinguishable from the real world execution’s distribution. Thus,
we prove security in the (fcrs, fSPDZ)-hybrid model.

First, we construct a simulator S that first simulates the input preparation phase, followed
by the model compute phase.

1. S simulates fcrs by generating the public key PKcrs and a corresponding secret key
SKcrs. These parameters are used for the interactive proof transformations so that we
are able to extract the secrets from the proofs of knowledge.

2. S next generates the threshold encryption parameters. The public key PK is handed
to every party. The secret key shares [SK]i are handed to each party as well. Discard
[SK]i for the honest parties.

3. Next, S starts simulating the input preparation phase. It receives matrix inputs, as
well as interval proofs of knowledge from the adversary A. It also generates dummy
inputs for the honest parties, e.g., encrypting vectors and matrices of 0.

4. If the proofs of knowledge from A pass, then S extracts the inputs using the augmented
extractors from Theorem 3. Otherwise, abort.

5. S hands the inputs from the adversary to the ideal functionality fADMM, which will
output the final weights wfinal to the simulator.

6. The first two steps in the input preparation phase utilize matrix plaintext multiplication
proofs. For each honest party, S simply proves using its dummy inputs and simulates
the appropriate proofs. S should also receive proofs from the adversary. If the proofs
pass, continue. Otherwise, abort the simulation.

7. The simulator continues to step 3 of the input preparation phase. This step has two
different proofs. The first proof is a matrix multiplication proof between VT and V.
This can be simulated like the previous steps. The next step is an element-wise interval
proof with respect to the identity matrix. The simulator can again simulate this step
using the simulator for the interval proof. Next, S verifies the proofs from the malicious
parties. If the proofs pass, move on. Otherwise, abort the simulation.

8. Something similar can be done to prove and verify the step 4 of input preparation phase
from each party, since the proofs utilized are similar to those used in step 3.

9. S now begins simulating the model compute phase.

10. Initialize the encrypted weights (w, z,u) to be the zero vector.

11. for i in admm_iters:

CHAPTER 5. HELEN 93

a) The first step in the iteration is the local compute phase. S simulates the honest
parties by correctly executing the matrix multiplications using the dummy input
matrices and the encrypted weight and produces both the encrypted results and
the multiplication proofs from Protocol 2. S also receives a set of encrypted results
and multiplication proofs from the adversary for the corrupted parties. S can
verify that A has indeed executed the matrix multiplication proofs correctly. If
any of the proofs doesn’t pass, the simulator aborts. If not all of the ciphertexts
are distinct, the simulator also aborts.

b) Now, S needs to simulate the additive sharing protocol for each party. This can
be done by invoking the simulator from Theorem 6.

c) After the secret sharing process is complete, all parties need to publish encryptions
of their secret shares. S publishes encryptions of these shares for the honest
parties and the appropriate interval proofs of knowledge. The malicious parties
also publish encrypted shares and their interval proofs of knowledge. If the interval
proofs of knowledge do not pass for the adversary, then abort the computation.
Otherwise, S extracts all of the encrypted shares from the adversary. Here, S also
calculates the expected shares from the adversary. This can be calculated because
S knows the randomness ri’s used by A.

d) S needs to now simulate a call to the fSPDZ oracle. The simulator first picks a
random α ∈ Zp, which serves as the global MAC key. Then it splits α into random
shares and gives one share to each party. If S is generating shares for the input
values, it will simply generate MACs γ(a)i for the shares it receives from running
Sa. Otherwise, S then generates random SPDZ shares and MAC shares γ(a)i. In
both cases, the values shares and the MAC shares satisfy the SPDZ invariant:
α(
∑

i ai)− (
∑

i γ(a)i).

e) Each party publishes encryptions of all SPDZ input and output shares, as well
as their MAC shares. The simulator S will simulate the honest parties’ output
by releasing those encryptions and interval proofs of knowledge. S also receives
the appropriate encryptions and interval proofs of knowledge from the adversary.
Run the extractor to extract the contents of the adversary. Again, keep track of
the shares distributed to the adversary, as well as the extracted shares that were
committed by the adversary.

f) If the iteration is the last iteration, then S simulates a call to SPDZ by splitting
the wfinal shares into random shares, as well as creating the corresponding MAC
shares to satisfy the relation with the global key α.

12. After the iterations, S needs to simulate the MPC checks described in Section 5.5.5,
where we need to prove modular equality for a set of encrypted values and shares. S
runs the following in parallel, for each equality equation that needs to be proven:

CHAPTER 5. HELEN 94

• In the original protocol, we have EncPK(a), EncPK(bi), EncPK(ci) where we want
to prove that a ≡

∑
i bimodp and α(

∑
i bi) ≡

∑
i cimodp. First, S simulates the

proof of the first equality. S follows the protocol by verifying the interval proofs
of knowledge from every party. If a malicious party’s proof fails, then abort.

• S computes the cipher EncPK(a −
∑

i bi) by directly operating on the known
ciphertexts.

• S follows the protocol described in Section 5.5.5 by following the protocol exactly.
S picks random si’s and generates interval proofs of knowledge. S also receives
EncPK(si) from the adversary and the corresponding interval proofs of knowledge.
Extract the EncPK(si) values from the adversary if the proofs are verified.

• Before S releases the decrypted value, it needs to know what value to release. To do
so, S needs to compare an encrypted value a and its secret shares bi (each party Pi
retains bi). We want to make sure that a ≡

∑
i bimodp. While the simulator does

not know a, it does know some information when a was first split into shares. More
specifically, S knows the adversary’s generated randomness during the additive
secret sharing, the decrypted number e, as well as the shares committed by the
adversary. The equation a+

∑
i ri ≡ emodp holds because everyone multiplies the

published EncPK(ri) with EncPK(a) to get EncPK(a+
∑

i ri), and the decryption
process is simulated and verified. This means that a ≡ e −

∑
i rimodp. Let’s

assume that an adversary alters one of its input shares bj to b
′
j for parties in set

A. Then the difference between a and the bi shares is simply

a−
∑
i 6⊂A

bi −
∑
i⊂A

b
′

imodp ≡ e−
∑
i

ri −
∑
i 6⊂A

bi −
∑
i⊂A

b
′

imodp

≡ (e− r0) +
∑
i 6=0

(−ri)−
∑
i 6⊂A

bi −
∑
i⊂A

b
′

imodp

≡ b0 +
∑
i 6=0

bi −
∑
i 6⊂A

bi −
∑
i⊂A

b
′

imodp

≡
∑
i

bi −
∑
i 6⊂A

bi −
∑
i⊂A

b
′

imodp

≡
∑
i⊂A

(bi − b
′

i)modp

Hence, the difference modulo p is simply the the difference in the changes in the
adversary’s shares, and is completely independent from the honest parties’ values.
Let this value be v.

• The next step is simple: S simply simulates Sdec and releases the value v+
∑

i(sip).

• S can follow a similar protocol for checking the SPDZ shares bi and the MACs ci.

CHAPTER 5. HELEN 95

13. Finally, if the previous step executes successfully, then the parties will release their
plaintext shares of wfinal by decommitting to the encrypted ciphers of those shares and
publishing their plaintext shares.

We now prove that the distribution of the simulator is statistically indistinguishable from
the distribution of the real world execution. To do so, we construct hybrid distributions.
Hybrid 1 This is the real world execution.
Hybrid 2 Same as hybrid 1, except replace the proofs from the input preparation phase
with simulators.

Hybrid 1 and 2 are indistinguishable because of the properties of the zero-knowledge
proofs we utilize (see Theorem 3 and Theorem 4).
Hybrid 3 Same as the previous hybrid, except the rest of the proofs are run with the
simulated proofs instead, and the secret sharing is replaced by the simulator Sa. However,
step 12 is still run with the real world execution.

Hybrid 2 and 3 are statistically indistinguishable because of the properties of the zero-
knowledge proofs (Theorem 3, Theorem 4), and the fact that the secret sharing is also
simulatable (Theorem 6).
Hybrid 4 Same as the previous hybrid, except swap out the real world execution with step 12
described by the simulator.

Hybrid 3 and 4 are statistically indistinguishable. The abort probabilities in step 12 are
based on the release values, so we just need to argue that the release value distributions are
statistically indistinguishable.

Since the simulator is always able to extract the adversary’s values, it will always be able
to calculate the correct answer in step 12. The real world execution, on the other hand, could
potentially have a different answer if any of the zero-knowledge proofs fails to correctly detect
wrong behavior. Therefore, if the zero-knowledge proofs are working correctly, then:

1. If the execution does not abort, then the decrypted values must be both divisible by p.
The two values are statistically indistinguishable because of Lemma 1.

2. If the execution does abort, then S’s output value would be v. If the proofs pass, then
from the argument made in step 12 where we know that the decrypted value modulo p
is exactly the same as v. Furthermore, if we subtract v from the two values, the new
values have the same distribution by the argument in the prior step.

If any proof does fail to detect a malicious adversary cheating, then the released answer
could be potentially different. However, this will happen with negligible probability because
of the properties of the zero-knowledge proofs we are using. Therefore, the hybrids are
statistically indistinguishable.
Hybrid 5 First, define � to be ciphertext addition, � to be ciphertext subtraction,
and � to be ciphertext multiplication. Replace the input encryptions of the honest par-
ties with encryptions where EncPK(xi) is transformed into EncPK(0) is transformed into
Blind(EncPK(0) � EncPK(b)) � (EncPK(xi) � (EncPK(1) � EncPK(b))), where b = 0. Hybrid 4

CHAPTER 5. HELEN 96

and 5 are computationally indistinguishable because the inputs used by the honest parties
have not changed from the previous hybrid. With the guarantees of the encryption algorithm,
the encrypted ciphers from the two hybrids are also indistinguishable.
Hybrid 6 Replace the input encryptions of the honest parties with encryptions of 0 (so
same as the simulator), except with additional randomizers such that the encryption of an
input EncPK(0) is transformed into Blind(EncPK(0) � EncPK(b)) � (EncPK(xi) � (EncPK(1) �
EncPK(b))), where b = 1.

Hybrid 5 and 6 are indistinguishable because one could use a distinguisher D to break
the underlying encryption scheme. Since the encrypted ciphertexts are randomized and only
differ by the value of b (whether it is 0 or 1), if one were to build such a distinguisher D, then
D can also distinguish whether b = 0 or b = 1. This breaks the semantic encryption scheme.
Hybrid 7 This is the simulator’s distribution.

Hybrid 6 and 7 are indistinguishable because the inputs are distributed exactly the same
(they are all 0’s).

This completes our proof.

5.11 Conclusion
In this chapter, we proposed Helen, a coopetitive system for training linear models.

Compared to prior work, Helen assumes a stronger threat model by defending against
malicious participants. This means that each party only needs to trust itself. Compared to a
baseline implemented with a state-of-the-art malicious framework, Helen is able to achieve
up to five orders of magnitude of performance improvement. Given the lack of efficient
maliciously secure training protocols, we hope that our work on Helen will lead to further
work on efficient systems with such strong security guarantees.

97

Chapter 6

Cerebro

While a system like Helen is able to train regularized linear models very efficiently, it does
not address two major obstacles faced by collaborative learning systems to be deployed in the
real world. The first obstacle is the tussle between generality and performance. Many recent
papers on MPC for collaborative learning [162, 97, 219, 146, 127, 186, 202, 168, 112, 93, 55,
10] focus on hand-tuning MPC for specific learning tasks. While these protocols are highly
optimized, this approach is not easily generalizable for a real world deployment. On the other
hand, there exist generic MPC protocols [24, 103, 215, 69, 211] that can execute arbitrary
programs. However, there are many such protocols (most of which can be divided into
sub-protocols [130, 132]), and choosing the right combination of tools as well as optimizations
that result in an efficient secure execution is a difficult and daunting task for users without a
deep understanding of MPC.

The second obstacle lies in the tussle between privacy and transparency. The platform
needs to ensure that it addresses the organizations’ incentives and constraints for participating
in the collaborative learning process. For example, in the secure collaborative training scenario,
while MPC guarantees that nothing other than the final model is revealed, this privacy property
is also problematic because the parties effectively lose some control over the computation.
They cannot observe the inputs or the computation’s intermediate outputs before seeing the
final result. In this case, some parties might worry that releasing a jointly trained model will
not increase accuracy over their own models, but instead help their competitors. They might
also have privacy concerns, such as whether the model itself contains too much information
about their sensitive data [44, 200, 87, 17, 86, 212, 194] or whether the model is poisoned
with backdoors [53].

This chapter presents Cerebro, a platform for multi-party cryptographic collaborative
learning using MPC. Cerebro’s goal is to address the above two obstacles via a holistic design
of an end-to-end learning platform, as illustrated in Figure 6.1. To address the aforementioned
challenges, Cerebro first exposes a Python-like domain specific language (DSL) and a machine
learning API to the users. Cerebro can then automatically compile an optimized secure
n-party protocol for any program written by the user in this DSL.

The second challenge is addressed by introducing a set of mechanisms that allows or-

CHAPTER 6. CEREBRO 98

System n-party DSL &
API

Policies Automated
optimiza-
tion

Multiple
backends

Auditing

Specialized ML protocols 3/ 7 7 7 7 3/ 7 7

Generic MPC 3 7 7 7 7 7

MPC compilers 3/ 7 3 7 3 3/ 7 7

Cerebro 3 3 3 3 3 3

Table 6.1: Comparison with prior work in categories that are necessary in a collaborative
learning platform. There is a lot of prior work in specialized MPC protocols [162, 97, 219,
146, 127, 186, 202, 168, 112, 93, 55, 10], generic MPC [24, 103, 215, 69, 211], and MPC
compilers [210, 145, 196, 183, 46, 41, 11, 217, 164, 85, 74, 85, 207]. Since the work space is
so broad, we use “3/ 7” to indicate that only some systems in this category support that
feature.

Agreement
phase

Result

DSL &  
ML API

…
Party 2

Automated
optimization

Multiple
backends Auditing

Auditor

- Custom learning
- Policies

Program
Optimized
program

Party 1 Party N

Fig. 6.1: The Cerebro workflow.

ganizations to ensure that their incentives and constraints are met before the result of a
learning task is available, and also enables participants to identify the source of malicious and
ill-formed input data. Our insight is that we can leverage cryptographic primitives to enable
this functionality without leaking additional data in the process. Based on this observation
we define two important mechanisms: compute policies and cryptographic auditing. Compute
policies allow parties to provide code that controls when and how the result of a learning task
is released; while cryptographic auditing allows parties to backtrack and audit the inputs
used during private computation, thus holding all parties accountable for their actions.

6.1 Overview of Cerebro

6.1.1 Threat model

We consider P parties who want to compute a learning function on their sensitive data.
The parties are unwilling or unable to share the plaintext data with each other, but want to
release the result of the function (e.g., a model or a prediction) according to some user-defined
policies. We assume that the parties come together in an agreement phase during which
they decide on the learning task to run, the results they want to disclose to each other, and
the policies they want to implement. We assume this agreement is enforced by an external

CHAPTER 6. CEREBRO 99

mechanism, e.g., through a legal agreement.
Cerebro allows the parties to choose what threat model applies to their use case by

supporting both semi-honest and malicious settings. In the semi-honest setting, Cerebro is
able to protect against an adversary who does not deviate from protocol execution. This
adversary can compromise up to P − 1 of the parties and analyze the data these parties
receive in the computation, in hopes of learning more information about the P -th honest
party’s data beyond the function result. In the malicious setting, the adversary can not only
compromise a majority of the parties, but also cause participants to deviate from the protocol.
The misbehavior includes altering the computation and using inconsistent inputs. Cerebro
is able to support both settings by utilizing different generic cryptographic backends. We
believe that it is useful to support a flexible threat model because different organizations’ use
cases result in different assumptions about the adversary. Moreover, as we show in Section 6.5,
the semi-honest protocol can be 61− 3300× faster than the malicious counterpart, so the
participants may not wish to sacrifice performance.

Recent work has described many attacks that target machine learning. One category is
data poisoning [53], attacks where the parties inject malicious data into the training process.
Another category is attacks on the released result, where an attacker learns about the training
dataset from the model [194, 195, 149] or steals model parameters from prediction results [200,
87, 17, 86, 212]. By definition, MPC does not protect against such attacks, and Cerebro
similarly cannot make formal guarantees about maliciously constructed inputs or leakage
from the result. However, we try to address these issues via an end-to-end design of the
system, where Cerebro provides a platform for users to program compute policies and add
cryptographic auditing (explained in Section 6.3).

6.1.2 System workflow

Cerebro’s pipeline is composed of multiple components, as illustrated in Figure 6.1. For
the rest of this section, we provide an overview of a user’s workflow using Cerebro.

Agreement phase This phase is executed before running Cerebro. During the agreement
phase, the potential participants come together and agree to participate in the computation.
We assume that the number of participants is on the order of tens of parties instead of
millions of parties. Parties need to agree on the computation (including the learning task
and any compute policies) to run and on the threat model. Parties should also establish a
public key infrastructure (PKI) to identify the participants.

Programming model Users make use of Cerebro’s Python-like domain-specific language
(DSL) to write their programs. Users can easily express custom learning tasks as well as
policies using our DSL and APIs. Cerebro also allows users to specify the computation
configuration parameters, such as the number of parties, how much data is contributed by
each party, etc.

CHAPTER 6. CEREBRO 100

Compute policies Cerebro supports user-defined compute policies via our DSL to handle
concerns arising from the complex economic relationships among the parties. Compute
policies can be generic logic for how results are obtained, or special release policies such that
the result of a computation is only revealed if the policy conditions are satisfied.

Cryptographic compiler Cerebro’s cryptographic compiler is able to generate an efficient
secure execution plan from a given program written in the Cerebro DSL. Our compiler first
applies logical optimization directly on the program written in our DSL (see Section 6.2.2).
Next, this optimized program is input to the physical planning stage (see Section 6.2.3) to
generate an efficient physical execution plan.

Secure computation In this phase, Cerebro executes the secure computation using the
compiler’s physical plan. When it finishes, the parties can jointly release the plaintext result.

Cryptographic auditing Even after the result is released, the learning life cycle is not
finished. Cerebro gives the parties the ability to audit each other’s inputs with a third-party
auditor in a post-processing phase (see Section 6.3.2).

6.2 Programming and Execution Model
In this section we describe Cerebro’s programming and execution model. Users specify

programs that Cerebro can execute using a domain-specific language (Section 6.2.1, which is
then used as input to the Cerebro compiler (Figure 6.3). The Cerebro compiler implements
two logical optimization passes, which reduce the amount of computation expressed in MPC
while preserving security guarantees. Finally, the Cerebro physical planner (Section 6.2.3)
takes the logical plan generated by the compiler, and uses information about the physical
deployment to instantiate and execute the plan.

6.2.1 Cerebro DSL

In Cerebro, users express training and inference algorithms, compute policies, and auditing
functions using a Python-like domain specific language (DSL). Our DSL supports a variety
of numerical data types that are commonly used in machine learning, data collections, and
generic functions that are useful for easily expressing training and inference algorithms.
Figure 6.2 shows an example program.

Data types Each variable in a Cerebro program is automatically tagged with a type
(integer, fixed-point, etc.) and a security level, the latter indicating which parties can access
the raw value of the variable. Cerebro currently supports three security levels:

• Public: the value is visible to all parties

CHAPTER 6. CEREBRO 101

1 # Set the fixed -point parameters
2 Params.set_params(p=64, f=32, k=64, num_parties =2)
3 # Decision tree prediction: party 0 inputs the model
4 tree = p_fix_mat.read_input(tree_size , 4, 0)
5 # Party 1 inputs the features
6 x = p_fix_array.read_input(dim , 1)
7 ...
8 for i in range(LEVELS -1):
9 # Load node information: index , split
10 ...
11 cond = (x[index] < split)
12 # This is a fused operation
13 root = secret_index_if(cond , tree , left_child , right_child)
14 reveal_to_all(root[1], "Prediction")

Fig. 6.2: A sample program written in Cerebro’s DSL

• Private: the value is visible to a single party

• Secret : the value is hidden from all parties

Our current implementation restricts private variables to being owned and visible to a
single party, and we represent a private value visible to the party i as private(i). The
security level of variables is automatically upgraded based on type inference rules, described
in Section 6.2.2.1. Programs can explicitly downgrade security levels by calling reveal.

Functions Our DSL provides a set of mathematical and logical operators to process tagged
data. Each operator can accept inputs with any security tag, and the output tag is determined
using a set of type inference rules (explained more in Section 6.2.2.1). Security annotations
also play an important role in enabling several of the optimizations employed by Cerebro.

Cerebro provides a variety of basic operators over data types including arithmetic opera-
tions and comparisons. Users can compose these basic operators to implement user-defined
learning algorithms. Cerebro also provides a set of higher-level mathematical operators
common to machine learning tasks (e.g., linear algebra operators, sigmoid), functions for
efficiently indexing into arrays or matrices, a set of branching operators, and a set of more
complex fused operators. Fused operators (explained in Section 6.2.2.2) provide Cerebro with
more opportunities to optimize complex code patterns.

6.2.2 Logical optimization

Given a program written in the Cerebro DSL, the Cerebro compiler is responsible for
generating a logical execution plan that minimizes runtime. In Cerebro we develop and
implement two logical optimization mechanisms that are particularly useful for machine
learning tasks: the first is program splitting, where a program Q is split into two portions

CHAPTER 6. CEREBRO 102

Q1 and Q2 such that Q1 can be executed in plaintext, while Q2 is executed using secure
computation. The second optimization is operator fusion, where the compiler tries to detect
pre-defined compound code patterns in Q2 and transforms them to more efficient fused
operations.

6.2.2.1 Program splitting

Program splitting is a type of logical optimization that delegates part of the secure com-
putation to one party which computes locally in plaintext. We can illustrate this optimization
by applying to sorting. If a program needs to sort training samples from all parties (e.g., in
decision tree training), then parties can instead pre-sort their data. This allows the MPC
computation to merely merge pre-sorted data, providing a significant speedup over a case
where it executes the entire sort algorithm in the secure computation.

In the semi-honest setting, Cerebro can automatically identify opportunities for local
computation within the code. As explained in Section 6.2, users write their programs using
Cerebro’s API’s, and the compiler automatically tags their data using Cerebro’s secure types.
Cerebro uses a set of rules (see table 6.2) to infer a function’s security level. If a function only
has public input, then the output should also be public since it can be inferred from inputs.
This type of computation can be executed in plaintext by any party. Similarly, if a function
only takes input from a single party i, party i can compute this function locally in plaintext.
However, if a function’s input includes private data from different parties or secret data, then
the function needs to be executed using MPC, and the output will also be tagged as secret.

However, in a malicious setting the criteria for secure local plaintext execution are more
complex because a compromised participant can arbitrarily deviate from the protocol and
substitute inconsistent/false data and/or compute a different function. Therefore, we cannot
assume that a party will compute correct values locally. Using the same sort example: we can
no longer trust the parties to correctly pre-sort their inputs. Therefore, secure computation
must add an extra step to ensure that the input from each party is sorted.

In general, automatically finding efficient opportunities for local plaintext computation
in the malicious setting is challenging. In Cerebro, we approach this problem by designing
pre-defined APIs with this optimization in mind. If a user uses our API, Cerebro will apply
program splitting appropriately while guaranteeing security in the malicious threat model.
For example, our sort API will automatically group the inputs into private inputs from
each party, followed by a local plaintext sort in plaintext at each party. However, since a
malicious party can still try to input unsorted data into the secure computation, the global
sort function will first check that the inputs from each party are sorted.

Using this optimization allows Cerebro to automatically generate an efficient MPC protocol
that has similar benefits to prior specialized work. For example, in [168], one of the techniques
is to have the parties pre-compute the covariance matrix locally, then sum up these matrices
using linearly homomorphic encryption. While Cerebro’s underlying cryptography is quite
different – hence resulting in a very different overall protocol – we are able to automatically
discover the same local computation splitting as is used by a specialized system written for

CHAPTER 6. CEREBRO 103

Program

Local compute

Q

Q1

Q2
Fused
operations

Q2’

Arithmetic

Boolean

Linear

Quadratic

Physical
planning

Logical
optimization

MPC Framework Algorithm

Online

Network layout

Preprocessing

Preprocessing

Online

costb,pre

costb,online
costb+ =

Global compute

costa,pre

costa,online

+

costa
=

Fig. 6.3: Cerebro architecture, showing choices we can make under the semi-honest threat
model.

ridge regression. We note that program splitting is compatible with cryptographic auditing
mentioned in Section 6.3.2.1 by committing to the precomputed local data instead of the
original input data.

6.2.2.2 Fused operations

Recognizing compound code patterns is crucial in MPC, since many compound operations
that are cheap in plain text incur significant performance penalties when executed securely.
For example, plaintext array indexing under the RAM model has a constant cost. In MPC,
while array indexing using a public index has constant cost, array indexing using a secret
variable takes time that is proportional to the length of the array. This is because when
executing secure computation, the structure of the function cannot depend on any private or
secret value, otherwise a party may infer the value from the structure of the computation.
Therefore, it is impossible to index an array using a secret value in constant time.

In Cerebro, as is common, we index arrays by linearly scanning the entire array, which is
an O(n) operation. 1 Next, consider a compound code pattern that occurs in programs like
decision tree prediction (see Figure 6.2): an if/else statement that wraps around multiple
secret accesses to the same array. In a circuit-based MPC, all branches of an if/else statement

1Cerebro can be augmented to use oblivious RAM (ORAM) for secret indexing, which has O(polylogn)
overhead for an array of size n. Prior work has shown that for smaller arrays, linear scanning is faster [209]
because ORAM needs to keep a non-trivial amount of state [101, 104].

CHAPTER 6. CEREBRO 104

need to be executed. Therefore, conditionally accessing an index can require several scans
through the same array.

For this scenario, Cerebro will combine the operators into a single fused operation
secret_index_if that can be used to represent such conditional access and minimizes the
number of array scans required during computation. Fused operators in Cerebro play the same
role as level 2 and level 3 [78] operations in BLAS [29] and MKL [117], and fused operations
generated by systems such as Weld [174], i.e., they provide optimized implementations of
frequently recurring complex code patterns. Since operator fusion only happens on code
expressed in MPC and preserves the functionality, it works for both the semi-honest and the
malicious settings.

6.2.3 Physical planning

Once a logical plan has been generated, Cerebro determines an efficient physical instanti-
ation of the computation, which can then be executed using one of Cerebro’s MPC backends.
We call this step physical planning (illustrated in Figure 6.3 on the right side) and describe
it in this section. When converting logical plans into physical implementations, Cerebro
must decide whether to use operations provided by existing boolean and arithmetic MPC
protocols or to use our special vectorized primitives (Section 6.2.3.2). To choose between
these implementation options, Cerebro uses a set of cost models (Section 6.2.3.3) to predict
the performance of different implementation choices and picks the best among these choices.
Finally, once a physical implementation has been selected, Cerebro decides where to place
(Section 6.2.3.4) computation among available nodes – this choice can significantly impact
performance in the wide area setting.

6.2.3.1 Notation

Let P denote the number of parties, and let Pi denote the i-th party. We use N to
represent the total number of gates in a circuit. Nm is the number of multiplication gates in
an arithmetic circuit; Na is the number of AND gates in a boolean circuit. B(·) represents
network bandwidth parameters and l(·) represents latency parameters. For a given type of
encryption algorithm C(·), we use |C(·)| to represent the number of bytes in a single ciphertext.
We use c to capture any constant cost in a cost model, like an initialization cost. The rest of
the cost can be categorized as compute (represented using fi functions) and network costs
(represented using gi functions).

6.2.3.2 Vectorization

Cerebro supports compilation to two main MPC backends: arithmetic [69] and boolean [211].
Both backends consist of two phases: preprocessing and online. During the preprocessing
phase, random elements are computed and can be used later during the online phase. Pre-

CHAPTER 6. CEREBRO 105

processing is also especially interesting because it can be executed before the parties’ private
inputs are available.

In arithmetic MPC preprocessing, parties need to compute multiplication triples, which
are used to speed up multiplication operations during the online phase. However, many
common machine learning tasks contain matrix multiplication, which is especially costly
because of the large number of multiplication operations. In this section, we introduce an
optimization for arithmetic MPC preprocessing that allows us to vectorize multiplication
triple generation. This idea was introduced in prior work for the semi-honest two party
setting [162], and here we generalize the algorithm to the n-party semi-honest setting.

The two-party vectorized protocol happens in the preprocessing phase where it computes
random matrix multiplication triples such that each Pi holds A(i)

j , B
(i)
j , C

(i)
j where

∑
i(A

(i)
j ·

B
(i)
j) =

∑
iC

(i)
j . For the sake of a simpler analysis, we assume that Bj is a vector b, and

that the relation is c = Ab. To generalize this to the multi-party setting, we can apply the
two-party protocol in a pairwise fashion to generate the triples. To compute the triple, it
suffices for each party to first sample random A(i) and b(i), then use the two-party protocol
to compute the pairwise products A(i) · b(j).

6.2.3.3 Cost models

In this section, we provide two examples of the different cost models in Cerebro (see Sec-
tion 6.8.1 for more).

Preprocessing planning As previously stated, Cerebro’s MPC backends consist of pre-
processing and online phases. Semi-honest arithmetic MPC has two different preprocessing
protocols: linear preprocessing and quadratic preprocessing [69, 132]. We describe the high-
level protocols in Section 6.8.2. These two methods can behave quite differently under
different setups, and we illustrate this by presenting their cost models. We define Cl to be the
encryption algorithm used in linear preprocessing, and Cq to be encryption algorithm used in
quadratic preprocessing. The per-party cost model for linear preprocessing is given by:

c+Nm(f1(|Cl|)

+
1

P
[f2(|Cl|)(P − 1) + f3(|Cl|) + g(B, |Cl|)(P − 1)])

(6.1)

The per-party cost model for quadratic preprocessing is:

c+Nm(P − 1)(f(|Cq|) + g(B, |Cq|)) (6.2)

In terms of the scaling in the number of parties, linear preprocessing is much better than
quadratic preprocessing. However, since |Cq| < |Cl|, quadratic preprocessing’s encryption
algorithm uses less computation and consumes less bandwidth.

CHAPTER 6. CEREBRO 106

Cost of vectorization The cost model to preprocess a matrix-vector multiplication for
(m,n)× (n, 1) is:

c+ f1(|Cq|)(n+m(P − 1)) + f2(|Cq|)m(P − 1)

+ g(B, |Cq|)(m+ n)(P − 1)
(6.3)

Comparing this cost model to eq. (6.2) (where we replace Nm with mn), the triple generation
load is reduced from mn to m or m + n. We note that vectorization not only speeds up
triple generation, but also introduces another planning opportunity if a program has a mix of
matrix multiplication and regular multiplication.

6.2.3.4 Layout optimization

In the wide area network setting, different physical layouts can significantly impact the
performance of a protocol. In this section, we give an example of layout optimization, where
Cerebro plans an alternative communication pattern for parties that span multiple regions.

In the semi-honest setting, linear preprocessing requires a set of coordinators that aggregate
data from all parties. The coordinators can be trivially load balanced among all parties by
evenly distributing the workload. However, this only works when the pairwise communication
costs are similar, and no longer works when the parties are located in different regions.

We make the observation that the underlying algorithm requires coordinators to perform
an aggregation operation. Therefore, we introduce two-level hierarchical layout, where the
coordination happens at both the intra-region and the inter-region levels. Each triple is still
assigned to a single global coordinator, and is also additionally assigned a regional coordinator
that is in charge of partially aggregating every party’s data from a single region and sending
the result to the global coordinator.

Assumptions We assume that the regions are defined by network bandwidth. The regions
can be manually determined based on location, or automatically identified by measuring
pairwise bandwidth and running a clustering algorithm. For a more detailed analysis (including
a walkthrough of the derivation for two parties, please see Section 6.8.3).

Given k regions, let Bij denote the bandwidth between regions i and j and let Bi denote
the bandwidth within region i. Let ni denote the number of triples assigned to each party in
region i and Pi be the number of parties in region i. As before, we have

∑k
i=1 ni · Pi = Nm.

The cost function can now be formulated as C = L′1 + L′2 + L′3 where the constants are
analogous to those in the previous example of two regions. We generalize the constants as
follows:

L′1 = max
(∑

j 6=i

(
nj ·Pj(Pi−1)

PiBi

))
i = 1, 2, ...k,

L′2 = max
(
ni·(Pi−1)

Bi

)
i = 1, 2, ..., k,

L′3 = max
(∑

j 6=i

(
nj ·Pj

Bij

))
i = 1, 2, ..., k

CHAPTER 6. CEREBRO 107

Flat Hierarchical

Fig. 6.4: The arrows show the aggregation communication pattern for a single multiplication
triple. The shaded nodes represent coordinators.

We can transform the optimization problem into a linear program by moving the max
into the constraints.

min(L′1 + L′2 + L′3) s.t.∑k
i=1 ni · Pi ≥ Nm

L′1 ≥
∑

j 6=i

(
nj ·Pj(Pi−1)

PiBi

)
i = 1, 2, ...k,

L′2 ≥
ni·(Pi−1)

Bi
i = 1, 2, ..., k,

L′3 ≥
∑

j 6=i
nj ·Pj

Bij
, i = 1, 2, ..., k

We loosen the first constraint to be an inequality rather than an exact equality to make
it easier to find feasible solutions since we require the ni’s to be integral. We solve this
optimization problem in cvxpy [76, 7]. As an example, a setting with five regions is solved in
roughly 100 milliseconds on a standard laptop computer.

6.3 Policies and auditing
In the collaborative learning setting, an end-to-end platform needs to take into account

the incentives and constraints of the participants. This is critical when competing parties
want to cooperate to train a model together. For example, the participants may be concerned
about each other’s behavior during training, as well as the costs and benefits of releasing
the final model to other parties. A party may want to make sure that the economic benefits
accrued by its competitors do not greatly outweigh its own benefits. Thus, a collaborative
learning platform needs to allow participants to specify their incentives and constraints and
also needs to ensure that both are met.

Cerebro addresses this problem by introducing the notion of user-defined compute policies
and a framework for enabling cryptographic auditing. Compute policies are executed as
part of the secure computation and are useful for integrating extra pre-computation and
post-computation checks before the result is released. Auditing is executed at a later time
after the result is released and can make parties accountable for their inputs to the original

CHAPTER 6. CEREBRO 108

1 def release_policy(prediction_fn , test_data , weights , tau):
2 score = prediction_fn(data , weights)
3 return (score > tau)
4 # Make a call to release_policy
5 if_release = release_policy(lr_prediction , vdata , weights , min_score)
6 # Set weights to 0 if if_release if false
7 final_weights = release(if_release , weights)
8 return final_weights

Fig. 6.5: Example validation-based release policy

secure computation. In the rest of this section, we give an overview of how users can use our
system to encode policies and audit cryptographically.

6.3.1 Compute policies

6.3.1.1 Overview

We first make the observation that secure computation can enable user-defined compute
policies that can be used to dictate how the result of a computation is released. In fact, MPC’s
security guarantees means that it can also be used to conditionally release the computation
result. This simple property is very powerful because users can Cerebro provides an easy
way for users to write an arbitrary release policy by first writing as a function that returns a
boolean value if_release. call our release API on this boolean value and the result of the
learning task. If if_release is true, then release will return the real result; otherwise it
will return 0 values, thus un-releasing the result. Figure 6.5 shows an example policy written
in Cerebro.

We assume that policy functions are public, and that all participants must agree on them
during the agreement phase. This workflow allows participants to verify that each other’s
policy conforms to some constraints before choosing to input private data and dedicate
resources for the secure computation. However, the constants/inputs for these policies can be
kept private using MPC (e.g., a training accuracy threshold).

Since our DSL is generic, the participants can program any type of policy. We focus on
two major categories of policies – validation-based policies and privacy policies – and how
they can be encoded in our DSL.

6.3.1.2 Validation-based policy

In training, model accuracy can be a good metric of economic gains/losses experienced by
a participant since it is usually the objective that a party seeks to improve via collaborative
learning. In a single party environment, the metric is commonly computed by measuring
the prediction accuracy on the trained model using a held-back dataset. When constructing

CHAPTER 6. CEREBRO 109

validation-based policies in Cerebro, each party provides a test dataset in addition to their
training dataset and provides a prediction function. We now describe some examples:

Threshold-based validation In this policy, party i wants to ensure that collaborative
training gives better accuracy than what it can obtain from its local model. The policy takes
in the model w, a test dataset Xt,i, as well as a minimum accuracy threshold τi. This policy
runs prediction on Xt,i and obtains an accuracy score. If this score is greater than τi, then
the policy returns true. See example code in Figure 6.5.

Accuracy comparison with other parties In this policy, party i’s decision to release
depends on how much its competitors’ test accuracy scores improve. Therefore, the inputs
to this policy are: the model w, every party’s test dataset Xt,j, every party’s local accuracy
scores aj, and a percentage x. The policy runs prediction on every party’s test dataset
and obtains accuracy scores bj. Then it checks bj against aj, and will only return true if
bj − aj < x(bi − ai) for all j 6= i.

Cross validation Since the parties cannot see each other’s training data, it is difficult to
know whether a party has contributed enough to the training process. All parties may agree
to implement a policy such that if a party does not contribute enough to training, then it
also does not receive the final model. Such a party can be found by running cross validation,
a common statistical technique for assessing model quality. In this setting, Cerebro treats
the different parties as different partitions of the overall training dataset and takes out a
different party every round. The training is executed on the leftover P − 1 parties’ data, and
an accuracy is obtained using everyone’s test data. At the end of P rounds, the policy can
find the round that results in the highest test accuracy. The party that is not included in
this round is identified as a party that contributed the least to collaborative training.

6.3.1.3 Privacy policy

For training tasks, the secure computation needs to compute and release the model in
plaintext to the appropriate participants. Since the model is trained on everyone’s private
input, it must also embed some information about this private input. Recent attacks [194]
have shown that it is possible to infer information about the training data from the model
itself. Even when parties do not actively misbehave (applicable in the semi-honest setting),
it is still possible to have unintended leakage embedded in the model. Therefore, parties may
wish to include privacy checks to ensure that the final model is not embedding too much
information about the training dataset. We list some possible example policies that can be
used to prevent leakage from the model.

Differential privacy Differential privacy [80] is a common technique for providing some
privacy guarantees in the scenario where a result has to be released to a semi-trusted party.

CHAPTER 6. CEREBRO 110

There are differential privacy techniques [48, 213, 122] for machine learning training, where
some amount of noise is added to the model before release. For example, one method requires
sampling from a public distribution and adding this noise directly to the weights. This can
be implemented in Cerebro by implementing the appropriate sampling algorithm and adding
the noise to the model before releasing it.

Model memorization Another possible method for dealing with leakage is to measure the
amount of training data memorization that may have occurred in a model. One particular
method [44] proposes injecting some randomness into the training dataset and measuring how
much this randomness is reflected in the final model. This technique can be implemented
by altering the training dataset Xi and programming the measurement function as a release
policy.

6.3.2 Cryptographic auditing

In the malicious setting, Cerebro can use a maliciously secure MPC protocol to protect
against deviations during the computation. However, even such an MPC protocol cannot
protect against any attack that happens before the computation begins; namely, a party can
inject carefully crafted malicious input into the secure computation. This is a big problem
for machine learning training. For example, prior work has shown that a party can inject
malicious training data that causes the released model to provide incorrect prediction results
for any input with an embedded backdoor [53]. Furthermore, Cerebro’s compute policies may
be insufficient to detect such attacks since either the policy writer has to be aware of the
chosen backdoor – which is unlikely – or the policies have to exhaustively check the input
domain – which is infeasible.

In Cerebro, we propose an auditing framework that aims to hold all parties accountable
for their original inputs even after the result has been released. Using the previous attack as
an example: one way to construct malicious samples is to embed a pattern into non-malicious
samples to alter the prediction results. If a poisoned model is triggered, the victim can
backtrack the examples that triggered the attack and identify the backdoor. The victim can
then use our auditing procedure to audit other parties’ input data and identify who input
the malicious training samples.

6.3.2.1 Auditing framework

When auditing a computation in Cerebro, we need to ensure that the audit procedure
has access to the same inputs as were used in the original computation. Otherwise, we run
the risk of having a malicious participant provide a sanitized input during the audit, thus
avoiding detection. Cerebro enforces that a participant cannot modify input data after the
fact using cryptographic commitments [38, 179], a cryptographic tool that ties a user to their
input values without revealing the actual input. A participant commits to its input data
by producing a randomized value that has two properties: binding and hiding. Informally,

CHAPTER 6. CEREBRO 111

binding means that a party who produces a commitment from its malicious dataset will
not be able to produce an alternate sanitized version later and claim that the commitment
matches this new dataset. At the same time, hiding ensures that the commitments do not
reveal information about the inputs.

Auditing API In order to abstract away the cryptographic complexity and to provide
users with an intuitive workflow, we design the following API:

• c, m = commit(X): returns c, the actual commitment, as well as m, the metadata used
in generation of the commitment. c is automatically published to every other party,
while m is a private output to the owner of X.

• audit(X, c, m): this function returns a boolean value based on whether the commit-
ment matches with the input data X.

Handling malicious aborts A serious concern during auditing is that a participant might
cause the secure computation to abort since maliciously secure MPC generally does not
protect against parties aborting computation. There are two types of aborts: a malicious
party can refuse to proceed with the computation or can maliciously alter its input to MPC
so that the computation will fail. The first type of abort is easy to catch, but the second is
sometimes impossible to detect. For example, arithmetic MPC uses secret sharing (where each
party’s data is randomly shared with all other parties) and information theoretic MACs on
those secret shares. If, at any time during the computation, a malicious party alters its share
of another party’s data, then the MAC check will fail, and the protocol cannot distinguish
who triggered the abort. Therefore, a party can maliciously fail during the auditing phase
and make it impossible to run an auditing function to track accountability.

To resolve this challenge, we introduce a third-party auditor into our auditing workflow.
We do not believe this is an onerous requirement, since audit processes often already involve
third-party arbitrators, e.g., courts, who help decide when to audit and how to use audit
results. We do not require the third-party to be completely honest, but instead assume that it
is honest-but-curious, does not collude with any of the participants, and does not try to abort
the computation. Under this assumption, we enable the auditor to audit a party without
forcing the party to release its data. This means that the auditor will not see any party’s
data in plaintext, since we still require the auditor to run the auditing process using MPC.

Auditing protocol Let A denote a separate auditor entity, and let Pi denote the parties
running the collaborative computation. We construct the following auditing protocol.

1. Using the established PKI, Pi’s have public keys corresponding to every participant in
the secure computation. Pi’s agree on the same unique number qid for this computation.

CHAPTER 6. CEREBRO 112

2. Pi computes a commitment of its data. Let the commitment be ci. Pi hashes the
commitments hi = hash(ci) and generates a signature σi = sign(qid, hi) using its secret
key. Pi publishes (ci, σi) to Pj 6=i.

3. All Pi’s run the secure computation, which encodes the original learning task and a
preprocessing stage that checks that Pi’s input data indeed commits to the public
commitments received by every party from Pi. If the check fails, then the computation
aborts. Note that we won’t know who is cheating in this stage, but the parties also
won’t get any result since the computation will abort before any part of the learning
task is executed.

4. During auditing, Pi will publish its signed commitments, along with the (cj, σj) received
from Pj, to A. A checks that all commitments received from Pj about Pi match. If
they do not, then Pi is detected as malicious.

5. A runs a two-party secure computation with each Pi separately. Pi inputs its data, and
A checks the data against the corresponding commitment. If there is a match, continue
with the auditing function. If this computation aborts, Pi is also detected as malicious.
Since the auditing is in secure computation, A will not directly see Pi’s input data.

Our auditing protocol is generic enough to be implemented with any commitment and
MPC design. In practice, there are ways of constructing efficient commitments that can also
be easily verified in MPC. Due to space constraints, we elaborate on optimizations below.

6.3.2.2 Commitment schemes

In this section, we describe some commitment schemes that integrate well with MPC, and
how to efficiently check these commitments.

Ajtai’s subset sum hash function Ajtai’s subset sum hash function [9, 102, 25, 42] is a
collision-resistant hash function from lattice hardness problems. We instantiate a type of
cryptographic commitment using this hash function. For p, d,m ∈ N, where p is a prime, the
hash function HM : {0, 1}m → Zdp maps an m-bit string x to

∑m
i=1 xiM(i), where M(i) is the

i-th column of a random matrix M ∈ Zd×mp . Choosing appropriate parameters of d and m to
achieve sufficient bit security [42], we can instantiate such a collision-resistant hash function.
By hashing a value with an appropriately chosen random value, we can make the hash a
randomized commitment scheme.

Pedersen commitment Verifying a commitment inside MPC can be expensive, especially
if we have to verify every data point separately because that would scale linearly with the
input data size. In this section, we provide a way of batch checking commitments in MPC
using a homomorphic commitment such as Pedersen [179]. We utilize the fact that our
arithmetic framework is reactive to construct such a scheme.

CHAPTER 6. CEREBRO 113

Input 1 Input 2 Output Compute
public public public local at all
public private(i) private(i) local at i

private(i) private(i) private(i) local at i
private(i) private(j) secret global

any secret secret global

Table 6.2: Rules for defining a function’s execution mode

Denote com(x; r) as the Pedersen commitment. The protocol is as follows:

1. As before, each Pi commits and publishes its commitments.

2. Pi’s start a SPDZ computation and inputs both its input data xi, as well as the
randomness used ri for the commitments.

3. Everyone releases a random number s from SPDZ.

4. Each Pi computes c̃j =
∑

k s
k ⊗ cj[k] for every Pj.

5. Pi’s input s as well as c̃j into the same SPDZ computation computed in Step 2.

6. The secure computation calculates x̃i =
∑

k s
k · xi[k] and r̃i =

∑
k s

k · ri[k]. Then it
checks that com(x̃i; r̃i) = c̃i.

For elliptic curve groups, the prime modulus will need to be on the order of 256 bits.

Tradeoffs While subset-sum can work with our standard benchmarking prime field of 170
bits, Pedersen commitments need the prime field to be at least 256 bits security. Therefore,
while Pedersen commitments are generally more efficient in terms of the number of triples
used, the larger bit size means offline generation can be more costly. Although if one needs
more precision for example, then the 256-bit prime field may seem more desirable as well.

Additionally, Pedersen commitments require a reactive framework such as SPDZ in order
for the batching to work properly in the secure computation phase. Cerebro’s planner takes
these circumstances into account, and chooses the best plan accordingly.

6.4 Implementation
We implemented Cerebro’s compiler on top of SCALE-MAMBA [11], an open source

framework for arithmetic MPC. Our DSL is inspired by and quite similar to that of SCALE-
MAMBA, though we have the notion of private types. In order to support both arithmetic
and boolean MPC, we added a boolean circuit generator based on EMP-toolkit [210]. Both
of these circuit generators are plugged into our DSL so that a user can write one program
that can be compiled into different secure computation representations.

CHAPTER 6. CEREBRO 114

2 4 6 8 10 12
parties in 2Gbps network

0

30000

60000

90000

120000

150000

#
re

gu
la

rm
ul

t/s

Linear
Quadratic

Linear (model)
Quadratic (model)

(a) Throughput of preprocessing
(2Gbps network).

2 4 6 8 10 12
parties in 2Gbps network

0

400000

800000

1200000

1600000

2000000

#
ve

ct
or

iz
ed

m
ul

t/s

Quadratic (n=100)
Quadratic (n=10)

Linear

(b) Throughput of vectorized
preprocessing (2Gbps network).

0 20 40 60 80 100
% of vectorized mult in 2Gbps network

0

150000

300000

450000

600000

750000

900000

av
g

#
m

ul
t/s

Quadratic (n = 100)
Quadratic (n = 10)

Linear

(c) Throughput when varying
% of vectorized multiplications
(P = 12, 2Gbps network).

2 4 6 8 10 12
parties in 100Mbps network

0

7000

14000

21000

28000

35000

#
re

gu
la

rm
ul

t/s

Linear
Quadratic

Linear (model)
Quadratic (model)

(d) Throughput of preprocessing
(100Mbps network).

2 4 6 8 10 12
parties in 100Mbps network

0

300000

600000

900000

1200000

1500000

#
ve

ct
or

iz
ed

m
ul

t/s

Quadratic (n = 100)
Quadratic (n = 10)

Linear

(e) Throughput of preprocess-
ing vectorized multiplications
(100Mbps network).

0 20 40 60 80 100
% of vectorized mult in 100Mbps network

0

70000

140000

210000

280000

350000

av
g

#
m

ul
t/s

Quadratic (n = 100)
Quadratic (n = 10)

Linear

(f) Throughput when varying
% of vectorized multiplications
(P = 12, 100Mbps network).

Fig. 6.6: Choosing linear vs. quadratic protocol for preprocessing arithmetic circuits.

Cerebro uses different cryptographic backends that support both semi-honest and malicious
security. We implemented Cerebro’s malicious cryptographic backend by using the two existing
state-of-the-art malicious frameworks – SPDZ [11] and AG-MPC [210]. Additionally, we
implemented Cerebro’s semi-honest cryptographic backend by modifying the two backends to
support semi-honest security.

6.5 Evaluation
We evaluate the effectiveness of Cerebro’s cryptographic compiler in terms of the perfor-

mance gained using our techniques. We use the two generic secure multiparty frameworks that
Cerebro uses as a baseline for evaluation, in both semi-honest and malicious settings. We do
not compare against plaintext learning systems because they cannot be used for collaborative
learning on sensitive data. Instead, we compare to what users would be doing today without
our system, which is choosing a generic MPC framework and implementing a learning task
using it. Our goal is to show that, without Cerebro’s compiler, users can experience orders
of magnitude worse performance if they choose the wrong framework and/or do not have our
optimizations.

CHAPTER 6. CEREBRO 115

200 400 600 800 1000 1200
cross-region bandwidth (Mbps)

0

20000

40000

60000

80000

#
re

gu
la

rm
ul

t/s

Flat Linear
2-level Linear

Flat Linear (model)
2-level Linear (model)

Fig. 6.7: Flat vs. two-level linear protocol for 9-party vs. 3-party bipartite network layout
with varied cross-region total bandwidth (2Gbps intra-region per-party bandwidth).

6.5.1 Evaluation setup

Our experiments were run on EC2 using r4.8xlarge instances. Each instance has 32 virtual
CPUs and 244GB of memory. In order to benchmark in a controlled environment, we use
tc and ifb to fix network conditions. Unless stated otherwise, we limit each instance to
2Gbps of upload bandwidth and 2Gbps of download bandwidth. We also adjust latency so
the round trip time (RTT) is 80ms between any two instances. According to [18], this is
roughly the RTT between the east-coast servers and west-coast servers of EC2 in the U.S.

6.5.2 Compiler evaluation

We evaluate Cerebro’s compiler by answering these questions:

1. Are Cerebro’s cost models accurate?

2. How do Cerebro’s logical optimizations impact performance?

3. For realistic setups, does Cerebro’s physical planning improve performance?

To answer these questions, we run a series of microbenchmarks as well as end-to-end
application-level benchmarks. We first curve fit our cost models and extrapolate against
experimental results. We then evaluate different planning points to show Cerebro’s gain
in performance. We focus our evaluation on planning in the semi-honest setting, but our
planning also supports the malicious setting.

6.5.2.1 Microbenchmarks

Cost models Our first microbenchmark compares the two methods for semi-honest arith-
metic MPC preprocessing (see Section 6.2.3.3): linear and quadratic preprocessing.

For both of the following experiments, we fit the constants of our cost model to the first
four points of the graph and then extrapolate the results for the remaining two points. The
dotted lines of the graph indicate the cost model’s predictions and we can see that it closely

CHAPTER 6. CEREBRO 116

matches with the experimental results. Figure 6.6a shows the preprocessing throughput of
the linear and the quadratic protocols on high-bandwidth network. When the number of
parties is small, the two protocols have similar throughput. However, as the number of parties
increases, the quadratic protocol becomes slower than the linear protocol, mainly due to the
increased communication.

Figure 6.6d compares the same protocols when the network is slow and becomes the
bottleneck. When the number of parties is small, the quadratic protocol is faster than the
linear protocol because it uses smaller ciphertexts, but it performs worse than the linear
protocol as the number of parties increases.

Vectorization Figures 6.6b and 6.6e show the preprocessing throughput of a single matrix-
vector multiplication – where the matrices are of sizes (m× n) and (n× 1) – under different
network conditions. We test with a fixed m = 128 and vary n in our experiments. On a
high-bandwidth network, when there are two parties and n = 100, the quadratic protocol
achieves a 16× speedup over the linear protocol. Even when the number of parties is increased
to 12, these two protocols still have an 8.8× gap. On a slower network, the matrix-vector
technique has a larger performance gain since it mainly saves communication, with up to
55× speed up.

Next, we evaluate the two protocols when there is a mix of matrix multiplication and
regular multiplication. The results are shown in Figures 6.6c and 6.6f. The planning decision
will be different based on the percentage of multiplication gates that can be substituted with
matrix-vector multiplications, the shape of such matrices, the number of parties, and the
network bandwidth. For example, in 2Gbps network with 12 parties and n = 10, if 40% of
the multiplication gates can be vectorized, then Cerebro will pick quadratic. If the network
bandwidth drops to 100Mbps, then 20% of such computation is enough for the compiler to
pick quadratic.

Layout planning We evaluate the hierarchical layout preprocessing against a flat one for
12 parties across two regions: 9 are located in one region, and 3 are located in the other.
Each party has 2Gbps bandwidth for intra-region communication, and we vary the total
cross-region bandwidth shared by parties in the same region. Figure 6.7 shows the throughput
comparison as well as our fitted cost models. Similar to before, we fit the constants of our cost
model to the first three points of the graph and then extrapolate the results. The flat layout
throughput scales linearly to the cross-region total bandwidth. To evaluate the hierarchical
layout, we need to first determine the workload of each coordinator using cvxpy. From the
graph we can see that the hierarchical layout achieves a speed up of 4× to 4.5× over the flat
layout.

6.5.2.2 Machine learning applications

In this section we evaluate Cerebro using decision tree prediction, logistic regression
training via SGD, and linear regression training via ADMM [37, 10, 219]. We estimate the

CHAPTER 6. CEREBRO 117

2 4 6 8 10 12
complete tree layers in 2Gbps network

0

9

18

27

36

45

to
ta

lt
im

e
(s

)

Planner-SH
SH Boolean

SH Arithmetic

(a) Decision tree prediction time for different
tree sizes (2-party).

2 4 6 8 10 12
parties each in 2Gbps network

0
5

10
15
20
25
30

to
ta

lt
im

e
(s

)

Planner-SH
SH Boolean

SH Arithmetic

(b) Decision tree prediction time for different
number of parties (10-layer tree).

0 6000 12000 18000 24000 30000
Number of samples

102
103
104
105
106
107
108

Ti
m

e
(s

)

SH Arithmetic
SH Boolean
Mal Boolean No Swap

Mal Boolean Swap
Mal Arithmetic

(c) Time for logistic regression training in
different dataset size (time in log-scale).

0 5 10 20 30 40
features in the dataset

101

102

103

104

105

106

Ti
m

e
(s

)

Use LC
Not use LC

Not use LC (estimated)

(d) ADMM with/without local compute, 104

training samples per party (time in log-scale).

Fig. 6.8: Experiments on machine-learning applications (2Gbps network).

network cost for the preprocessing phase of the arithmetic protocol using the throughput
gathered in the previous benchmarks.

Decision tree prediction We implement decision tree prediction using Cerebro’s DSL,
which evaluates a complete h layer binary decision tree, where the ith layer has 2i−1 nodes.
We evaluate a scenario where there are P parties, one of which has the input feature vector
and all P parties secret-share a model. If P = 2, we assume that we are doing a two-party
secure prediction, where one party has the feature vector and the other has the model.

We show the prediction performance in the 2-party semi-honest setting in Figure 6.8a. In
this experiment, we varied the number of layers in the decision tree. We fit the data points
involving 3, 6, 9 layers and then extrapolate the cost model to estimate the performance of
our graphed points. Cerebro always picks the protocol that has the lower estimated cost from
our model. In the 2-party scenario, Cerebro always chooses to use a boolean protocol since

CHAPTER 6. CEREBRO 118

evaluating the decision tree requires many comparisons and data selection. In a 12-layer
tree, the semi-honest boolean protocol takes 7.5× less time than the semi-honest arithmetic
protocol. In Figure 6.8b, we vary the number of parties, and plot the inference runtime for
a 10 layer tree. We observe that the total execution time for the boolean protocol grows
linearly with number of parties, and sublinearly for the arithmetic protocol. Therefore, with
9 or more parties, Cerebro chooses to use the arithmetic protocol.

As noted previously, Cerebro also supports the malicious setting, we exclude those results
here for brevity.

Logistic regression We implemented and evaluated Cerebro on logistic regression training
using SGD. In this experiment, we evaluated training in both the semi-honest and the malicious
settings to show a difference in the performance for different variants of the protocols. For
the semi-honest and malicious boolean protocols, we ran logistic regression for one iteration
of SGD and extrapolated the remaining results. First, we compare the performance between
the semi-honest boolean and semi-honest arithmetic protocol in Figure 6.8c. As expected, the
arithmetic protocol significantly outperforms the boolean protocol in this case, both because
it is better suited for this task and because it enables vectorization. Using these results we
see that for a 27000 record training set the arithmetic protocol is 67× faster than the boolean
protocol, taking an hour instead of three days.

However, in the malicious setting, the arithmetic protocol does not always perform better.
The amount of memory used by the malicious boolean protocol is linear in the number of
parties and the number of gates. As a result, we run out of memory when trying to benchmark
larger circuits. We estimate the malicious boolean protocol on machines with enough memory
as well as on the original machines with swap space to use as additional memory. As shown
in Figure 6.8c, if the machines have enough memory, then the malicious boolean protocol
is 3× faster than the malicious arithmetic protocol, but if swap space is used instead, then
the malicious boolean protocol is 4× slower than the malicious arithmetic protocol. Overall,
the malicious boolean protocol is up to 61× slower than its semi-honest counterpart and
the malicious arithmetic protocol is up to 3300× slower than its semi-honest counterpart,
indicating a significant tradeoff between performance and security.

ADMM We evaluate ADMM in the semi-honest setting to show Cerebro’s automated
planning of local computation. Cerebro automatically detects that the parties can locally
compute much of the ADMM algorithm, thus minimizing the number of MPC operations
required as described previously in Section 6.2. We evaluate these benefits in Figure 6.8d and
find that the use of local computation allows Cerebro to improve ADMM performance by up
to 400× when training a 40-feature model using 10000 records. We estimate the preprocessing
and run the online phase for the first four data points, but estimate the fifth. Beyond this
we also find that the use of arithmetic circuits is beneficial here for the same reasons as in
the case of logistic regression, i.e., it allows vectorization and is better suited to expressing
matrix operations.

CHAPTER 6. CEREBRO 119

Training D.P. time (s) Validation time (s)
samples
1000 0.038 9.52
5000 0.038 47.6
15000 0.038 143
25000 0.038 238
27000 0.038 257

Table 6.3: Time for applying the privacy policy or the validation policy to a logistic regression
model.

6.5.3 Policy evaluation

We evaluate the performance of Cerebro’s release policies in the semi-honest setting.
Specifically, we evaluate logistic regression that uses both differential privacy and the threshold-
based validation policies. Our differential privacy policy is output perturbation-based [48,
213], which simply requires each party to locally sample noise. The secure computation will
sum every party’s noise and add the noise to the weights. As table 6.3 shows, the time
for adding this noise is independent of the number of training samples, and is insigificant
compared to the training time.

The threshold-based validation policy requires the model to achieve a sufficient level of
accuracy in order to be released. To see how much time is needed for validation, we split the
dataset with 30000 records into a training set of 27000 records and a validation set composed
of the remaining 3000 records. We train the model using a subset of the training set and
validate the trained model using part of the validation set which is 10% the size of the used
training set. From table 6.3, we can see that the validation time grows linearly to the used
validation set. Compared with training in logistic regression, the time taken by validation
is equivalent to training another 10% of the training samples, which matches the training
behavior of logistic regression.

6.5.4 Auditing evaluation

Next, we present the overheads from enabling auditing support for logistic regression.
There are two main costs in this case. The first cost is producing and signing a commitment,
which takes 24.4 seconds, of which 8 milliseconds are spent generating a signature for user
input (which is a 27000×23 matrix in our case). The second cost is spent on the commitment
protocol described in Section 6.3.2.2. Checking the commitment within MPC using a non-
batching commitment scheme such as subset sum takes 424, 113 seconds while checking the
commitment using a batching commitment scheme such as Pedersen commitments takes
roughly 8040 seconds. The speedup is roughly 53x, which only grows as the number of samples
increases as the batched commitment scheme scales better with respect to the number of
samples. Overall we find that enabling auditing has reasonable overhead.

CHAPTER 6. CEREBRO 120

6.6 Related work
Related plaintext systems There is a large body of prior work on distributed linear
algebra systems [182, 34, 96] and machine learning training/prediction [51, 126, 158, 50, 4,
63]. While some of these systems are general and can be adapted to the distributed setting,
they do not provide security guarantees and cannot be used in the collaborative machine
learning setting when the input data is sensitive. Some of these systems provide interesting
linear algebra optimizations that are similar to Cerebro’s optimizations at a very high level,
but Cerebro additionally must consider the effects of optimizing a cryptographic protocol.
This means that Cerebro has different rules for transformation and a very different cost model.
The idea of “physical planning” is similar to prior systems and database work [125, 205, 151,
88, 123, 208, 137]. The main difference is that we instantiate this idea to the MPC setting
and work closely with the underlying cryptography.

MPC compilers Cerebro draws inspiration and ideas from a body of work on MPC
compilers [210, 145, 196, 183, 46, 120, 41, 11, 217, 164, 85, 74, 85, 207]. Compared to
prior work, Cerebro’s compiler differs in two important aspects. First, we provide n-party
compilation supporting two MPC frameworks under different threat models. There is prior
work providing n-party compilation supporting a single framework [210, 145, 196, 11, 217, 164,
85] and two-party compilation supporting multiple frameworks [74, 46, 120]. Second, Cerebro
adds optimization in both the logical and the physical layers, which allows us to consider a
multitude of factors like computation type, network setup, and others. Conclave [207] is a
recent system that is similar to Cerebro because it handles multiple frameworks and does
optimization. However, it is designed for SQL, and does not consider physical planning or
release policies. Finally, Cerebro itself is an end-to-end platform for collaborative learning
and supports policies and auditing.

Secure learning systems There are two main approaches to building secure learning
systems: utilizing hardware enclaves or cryptography. There is prior work that utilize
hardware enclaves to execute generic computation, analytics, or machine learning [22, 116,
221, 115, 170]. Compared to Cerebro, the threat model is quite different. While hardware
enclaves support arbitrary functionality, the parties have to put trust in the hardware
manufacturer. We have also seen that enclaves are prone to leakages [214, 39, 109, 172, 136].

There has been much prior work on secure learning using cryptography, both in training
and prediction [168, 112, 93, 55, 97, 10, 162, 223, 219, 146, 127, 186, 202, 52, 8, 33]. However,
these prior works are lacking in several aspects. First, they mostly focus on optimizing specific
training/prediction algorithms and models and do not consider supporting an interface for
programming generic models. Second, they do not automatically navigate the tradeoffs
of different physical setups. Finally, these frameworks also do not take into account the
incentive-driven nature of secure collaborative learning, while Cerebro supports policies and
auditing.

CHAPTER 6. CEREBRO 121

Other related work A recent paper by Frankle et. al. [84] leverages SNARKs, commit-
ments, and MPC for accountability. However, the objective is to make the government more
accountable to the public, so the setting and the design are both quite different from ours.
Other papers [118, 119, 64, 21] explore identifying cheating parties in maliciously secure MPC.
However, these papers are either highly theoretical in nature, or require proof that each party
behaved honestly during the entire protocol execution, which can be quite expensive. Cerebro
is mainly concerned with holding the users accountable for their input data, and our scheme
both works with multiple MPC frameworks and does not need to require proof of honest
behavior for the entire protocol execution. With regards to the logical optimizations that
Cerebro performs, there has been work [183] that also performs partitioning of computation
into local and secure modes. However, Cerebro does not require the user to specify the mode
of computation for every single operation and instead automatically partitions the source
code into local and secure components.

6.7 Security proofs

6.7.1 Extended vectorized triple generation

In SecureML [162], the authors provided a way to generate matrix multiplication triples
instead of scalar multiplication triples. However, the design was only for two parties. In
Cerebro, we generalize their design by applying the two-party protocol to the multi-party
setting where each Pi runs the two-party protocol in a pairwise fashion with all other parties
Pj . The protocol is split into two parts: an “offline” phase that generates independent matrix
multiplication triples without having access to any party’s private input, as well as an “online”
phase that actually runs the computation with every party’s private input and outputs a
result to everyone.

There are P parties participating in the secure computation, and we denote each party
as Pi∈[0,...,P). We also define a semihonest adversary A who is able to statically compromise
up to P − 1 out of P parties, but does not deviate from the cryptographic protocol. Since
the adversary is semihonest adversary’s view is therefore the corrupted parties’ inputs, the
messages that it receives from the honest parties, as well as the final output.

We first define the ideal functionalities Foffline and Fonline, where Foffline generates the
vectorized random multiplication triples and Fonline is the online phase that computes on
secret shared private values by utilizing the multiplication triples. We will prove using the
hybrid (Foffline, Fonline).

Proof sketch. We are in the semihonest setting, so we do not need extraction of the adversary’s
inputs. Instead, the simulator is given those inputs directly can pass those inputs to the ideal
functionality. The simulator Sonline then receives a final output from the ideal functionality.
Sonline will generate a view for the adversary given the corrupted parties’ inputs as well as the
final output. The adversary’s inputs are the corrupted parties’ private outputs from Foffline
and the private inputs to the secure computation. Therefore, the simulate the adversary’s

CHAPTER 6. CEREBRO 122

view, Sonline simply generates random shares for the honest parties and follows the specified
protocol. Before combining the final shares, the simulator adjusts the honest parties’ shares
so that the result matches the output produced by the ideal functionality.

Since the online phase relies on the offline phase producing the correct multiplication triples.
The ideal functionality takes no inputs, and generates random shares of matrix multiplication
triples so that for each triple (A · B = C), each party Pi has shares A(i), B(i), C(i). There
are different protocols for generating multiplication triples, and here we will give a proof of
the homomorphic encryption based method. In this protocol, Pi each generates a different
public/private Paillier key pair. For the sake of a simpler analysis, we assume that Bj is a
vector b, and that the relation is c = Ab. To generalize this to the multi-party setting, we
can apply the two-party protocol in a pairwise fashion to generate the triples. To compute the
triple, it suffices for each party to first sample random A(i) and b(i), and c =

∑
i

∑
j A

(i) ·b(j).
Since each Pi can compute A(i) · b(i) locally, we use can adapt the two-party cross product to
compute shares of A(i) · b(j) between Pi and Pj. In the two-party protocol, Pi individually
generates a public/private key pair. The sender then encrypts its share and sends it to the
receiver party. The receiver executes encrypted encryption and subtracts a random mask to
the resulting encrypted vector. The encrypted vector is sent back to the sender and it can
decrypt this masked vector. The decrypted vector is the sender’s new share, and the mask
vector is the receiver’s new share. At the end of the protocol, each party adds up all of the
shares.

Proof sketch. The simulator Soffline begins by calling the ideal functionality and receiving
the final output shares for the corrupted parties. If the honest party is sender in the pairwise
protocol, the simulator simply encrypts 0 using the honest party’s public key and sends it
to the receiver. The receiver will execute the protocol correctly and sets is share to be the
random mask vector. If the honest party is the receiver, the simulator then computes the
encrypted product with 0 and adds a random mask vector r. Since the simulator knows the
final private output that each corrupted adversary is supposed to receive, it simply adjusts
one of the shares of the simulated honest parties so that the final summed private share is
indeed equal to the private output. Since the other shares are random, this adjusted share is
also random.

Clearly, the real world protocol correctly implements the ideal functionality. In terms
of the privacy argument, the simulated view is computationally indistinguishable from the
real world view. If the receiver is corrupt, it only receives an encrypted cipher. Any privacy
leakage from the receiver’s side will mean that the receiver can distinguish the ciphertext,
breaking the computational assumption of the underlying encryption. If the sender is corrupt,
it can decrypt the received cipher, but the simulated random vector mask is drawn from a
uniformly random distribution, which is the same as the real world protocol’s view.

CHAPTER 6. CEREBRO 123

6.7.2 Hierarchical triple generation

In Section 6.2.3.4, we describe a hierarchical design for triple generation for linear
preprocessing. To generate a P -party Beaver triple ({ai}, {bi}, {ci}) in which (

∑
ai) ·(

∑
bi) =

(
∑
ci), the original linear preprocessing protocol works as follows:

1. All parties run a distributed key generation to generate a SWHE (somewhat homomor-
phic encryption) public key PK; each party Pi has a share of the SWHE private key
SKi.

2. Each party Pi samples random ai, bi, and fi locally and encrypt them under the SWHE
public key PK; Pi sends EncPK(ai), EncPK(bi), EncPK(fi) to a coordinator.

3. The coordinator, which could be one of the P parties, aggregates the ciphertexts of a, b,
and f by running the SWHE addition algorithm, thereby obtaining EncPK(a), EncPK(b),
and EncPK(f); then, the coordinator computes a new ciphertext EncPK(a∗b+f), denoted
by EncPK(c+ f), and sends EncPK(c+ f) to all parties.

4. All parties run an existing distributed decryption protocol to decrypt EncPK(c + f)
together, so that all parties see c + f in plaintext. P1 sets c1 = c + f − f1, and
other parties Pi (i 6= 1) set ci = −fi. Together with ai and bi sampled previously,
({ai}, {bi}, {ci}) forms a Beaver triple.

In the strawman flat design, Cerebro distributes the work of the coordinator to each party
evenly, which means that each party, throughout the MPC, coordinates the same amount of
triples. This is ill-suited for the cross-region setting in which parties are separated into a few
physical regions, where intra-region communication is fast, but the inter-region communication
is slow.

Now, in the hierarchical design, as we mention in Section 6.2.3.4, a coordinator is split into
(1) many regional coordinators, one per region and (2) a global coordinator that communicates
with the regional coordinators. Cerebro still distributes the work of the coordinator to different
parties, but the workload is now computed by solving an optimization problem related to the
network layout and the bandwidth, as discussed in Section 6.2.3.4 and Section 6.8.3. The
detailed changes to the protocol above are as follows:

• On step 2, each party Pi firstly sends EncPK(ai) and EncPK(bi) to the regional coor-
dinator in Pi’s region. Each regional coordinator aggregates the ciphertexts via the
SWHE additions algorithm and sends the aggregated results to the global coordinator.

• On step 3, the global coordinator sends EncPK(c) to regional coordinators. Each regional
coordinator then forwards this ciphertext to the parties in the region.

• On step 4, the regional coordinators also help aggregate some information broadcast in
the distributed decryption protocol.

CHAPTER 6. CEREBRO 124

We now outline that these change preserves the security guarantees of the original protocol
in the semi-honest setting.

Proof sketch. The insight of the proof is that, in this modified protocol, the parties’ view is, in
principle, a strict subset of the view in the original SPDZ protocol (which is maliciously secure).
In the maliciously secure SPDZ protocol, each party sees EncPK(ai), EncPK(bi), EncPK(fi) of
one another and also sees the information for the distributed decryption protocol sent by
one another, without aggregation. Our hierarchical protocol aggregates more ciphertexts, so
that each party sees conceptually less information than the original SPDZ. This informal
description is the high-level idea of the proof below.

We now state this argument more formally. Note that the original, maliciously secure
SPDZ is also secure against semi-honest adversaries. Therefore, there exists a simulator Si for
each party Pi, such that the following two distributions are computationally indistinguishable:{

Si(1λ, fi(1λ)), f(1λ)
}
λ

c
≈
{
viewi(1

λ), outputi(1
λ)
}
λ
,

where λ is the security parameter, fi(1λ) is the output of Pi in a triple generation func-
tionality (i.e., (ai, bi, ci)), f(1λ) denotes all parties’ output, viewi(1λ) denotes the view of
Pi, and outputi(1

λ) denotes the output of Pi in the protocol;
c
≈ denotes computational

indistinguishability.
It is not hard to construct another simulator SHi for our hierarchical design, which, as

described above, surgically aggregates some of the ciphertexts following the specific hierarchical
parameters, which can be computed efficiently. This will, therefore, be computationally
indistinguishable with the view in the hierarchical setting, denoted by viewHi (1λ):{

SHi (1λ, fi(1
λ)), f(1λ)

}
λ

c
≈
{
viewHi (1λ), outputi(1

λ)
}
λ
.

This concludes the security proof sketch.

6.7.3 Auditing

In Cerebro, the auditing protocol is used to identify wrong doings by parties who run the
secure computation with malicious datasets. By injection malicious data into the computation,
the malicious parties are able to affect the result of the computation. Therefore, the security
goal of the auditing protocol is to make sure to produce a superset of the cheating parties
produced by the result of the auditing function. Note that Cerebro’s auditing protocol is
trying to protect the honest parties from an attack where the malicious parties want to finish
the secure computation, but also wants to attack the released result itself.

Proof sketch. We will argue for the security of this protocol via two dimensions: privacy and
correctness. We make use of existing cryptographic constructs such as commitments, MPC,
and PKI.

CHAPTER 6. CEREBRO 125

Privacy is easy to see because we make blackbox usage of cryptographic commitments as
well as MPC. Any privacy leakage in the protocol will result in breaking these cryptographic
primitives. In terms of correctness, note that the security guarantee we provide is that

1. Any malicious party who can be caught by the auditing function is either caught by the
auditing function, or is caught aborting and will automatically identified as cheating

2. Any honest party cannot be falsely caught as cheating

Cerebro is able to provide this guarantee again because of the underlying cryptographic
primitives that are used. First, cryptographic commitments are binding, so the cheating
party with bounded computation power cannot find an alternative sanitized version of the
input. This holds during both the secure computation phase, as well as the auditing phase so
as to make sure that all parties are using only one input dataset. Therefore, the question is
whether a malicious party can somehow trick the auditor into using a different commitment
during the auditing phase, and thus inputting an alternative dataset during this phase.
This cannot be true because each party is supposed to sign this commitment (assuming
the existence of a public key infrastructure) and passes it to every other party. During the
auditing process, every party will then pass the received commitments to the auditor A.
Inconsistency cannot occur during the secure computation phase because the computation
itself checks that Pi’s input data matches the commitments from every party, which means
that there is only one copy of each party’s data. During auditing, the auditor will also receive
these commitments and check that they are consistent. Even if P − 1 parties collude together
during this phase to construct an alternative commitment, the honest party will give the
original commitment to the auditor, who will then verify that each party’s input in this
phase matches the commitments. Therefore, each party is guaranteed to always use the
same dataset, and cannot swap out the original dataset used in the secure computation for a
new one. Furthermore, a malicious party cannot falsely accuse of an honest party of being
malicious by making changes to its commitments, since each party’s commitment is signed
by that party’s private key, and each session has a unique qid which prevents replay attacks.

6.8 Physical planning

6.8.1 More cost models

Boolean MPC preprocessing cost For boolean MPC, there are two phases within the
preprocessing phase. The first phase is very similar to the preprocessing generation phase for
arithmetic MPC, except that this step now generates AND triples instead of multiplication
triples. For this phase, Cerebro only provides one method, which is similar to the quadratic
preprocessing, and has the same cost model as eq. (6.2). The second phase is a circuit
generation phase, where each party creates a copy of the final circuit and sends it to a single

CHAPTER 6. CEREBRO 126

party. This “evaluator” party will be in charge of executing the circuit during the online
phase.

Therefore, the cost model for the boolean MPC preprocessing phase is:

c+Na(P − 1)(f1(λ) + g1(B, λ)) + g2(B, λ)N(P − 1) (6.4)

where λ is the security parameter, g1 refers to the cost of preprocessing AND gates, and g2

refers to the cost for a single evaluator to receive P − 1 copies of the garbled circuit.

Online execution cost The online phases for arithmetic and boolean MPC have quite
different behaviors, which in turn result in different cost models. Arithmetic MPC requires
interaction (hence network round trips) among all parties for multiplication gates throughout
the entire computation. The number of round trips is proportional to the depth of the circuit.
Boolean MPC, on the other hand, is able to evaluate the online phase in a constant number
of rounds. Therefore, arithmetic MPC’s online phase can be modeled as c + g(l)R, where
R indicates the number of communication rounds. We do not consider the compute cost
because it should be very insignificant compared to the cost of the round trips.

Boolean MPC’s online phase is modeled as c+ f(λ)N , where λ is the security parameter.
This captures the compute cost of evaluating the entire boolean circuit. There is interaction
at the beginning of the protocol because the evaluator needs to receive encrypted inputs, and
at the end of the protocol because the evaluator needs to publish the output.

6.8.2 Linear vs. quadratic preprocessing

Without diving into the cryptography, we describe these two methods at a very high level.
Both methods are constant round, which means that they only need 1 - 2 roundtrips. In
linear preprocessing, each party independently generates data for each triple and sends this
data to a set of coordinators. The coordinators then aggregate this data, compute on it, and
send the results back to each party. A similar pattern repeats for a second round. Since the
triples can be generated independently, we distribute the coordination across all parties. In
quadratic preprocessing, each party interacts with every other party in constant round to
compute the triples.

6.8.3 Extended description of layout optimization

In this section, we give an extended analysis of the layout optimization problem. For an
easier analysis, we assume that there are at most two regions (see Figure 6.4). In order to
explain our cost model, we first define some preliminary notation as follows. The two regions
are denoted as L and R. PL parties are located in region L, and PR parties are located
in region R. We assume that each party has roughly the same computation power, that
each party has a fixed inbound and outbound bandwidth limit for in-continent data transfer,
and that between the two regions there is another inbound and outbound bandwidth limit

CHAPTER 6. CEREBRO 127

shared by all the parties. Let nL be the number of triples that a single global coordinator
in L handles; nR is similarly defined for region R. Hence we have the following relation
nL · PL + nR · PR = Nm. The cost (i.e., the wall-clock time) for preprocessing arithmetic
circuits is:

T =g1(B1)(L1 + L2) + g2(B2)L3

+ f1(|p|)L4 + f2(|p|)(L1 + L3)
(6.5)

B1 is the intra-region bandwidth per party, while B2 is the total inter-region bandwidth
between the two regions. Therefore, the g1 and g2 terms capture the network cost. The f1

and f2 terms correspond to the compute cost, where f1 captures ciphertext multiplication,
and f2 captures the other ciphertext operations. L1 - L4 are scaling factors that are functions
of nL, nR, PL, and PR:

L1 = max
(
nR · PR·(PL−1)

PL
, nL · PL·(PR−1)

PR

)
,

L2 = max (nL · (PL − 1), nR · (PR − 1)) ,
L3 = max (nL · PL, nR · PR) , L4 = max (nL, nR) .

The intra-region communication cost is captured by the g1 term. Because of hierarchical
planning, each node needs to act as both an intra-region coordinator and an inter-region
coordinator. Without loss of generality, we analyze region L. The intra-region coordination
load is nL · (PL − 1), because each node receives from every other node in the region. The
inter-region coordination load can be derived by first summing the total number of triples
that need to be partially aggregated within L, which is equal to the total number of triples
handled by region R: nR · PR. Since there are PL parties, each party handles nR · PR/PL
triples. Finally, since each party only needs to receive from the other parties in L, the cost
per party is nR · PR(PL − 1)/PL. The g2 term captures the inter-region communication cost.
Since we are doing partial aggregation, we found that the best way to capture this cost is
to sum up the total number of triples per region (see L3) and scale that according to the
total inter-region bandwidth B2. The f1 term captures the ciphertext multiplication cost.
Since that happens only once per triple at the intra-region coordinator, we have the scaling
in L4. Finally, the rest of the ciphertext cost is attributed to ciphertext addition. This can
be similarly derived using the logic for deriving g1, so we omit this due to space constraints.

6.9 Conclusion
Cerebro is a secure collaborative learning platform that allows users to program custom

learning tasks without expertise in cryptography. Compared to Helen, Cerebro is much more
flexible and usable, but is a first but important step towards making secure collaborative
learning programmable and highly efficient.

128

Chapter 7

Conclusion

The systems I built for my dissertation are part of a broader vision of bringing the
capabilities of advanced cryptography to the masses. By incorporating the latest theoretical
advances into practical systems, I’ve worked towards enabling people to better collaborate
and communicate across trust domains with few compromises in data privacy and security.

For future work, I would like to build upon my thesis work to continue to develop systems
to enable users who have no expertise in cryptography to efficiently address their applications’
needs and constraints while enjoying the benefits of provable and verifiable security. My
graduate work has laid out some initial steps towards achieving these goals, and here I list
several possible future research directions.

Tailored MPC protocols for learning. Helen is the first tailored cryptographic protocol
for machine learning training, but the functionality is only limited to regularized linear models.
An interesting direction is to build more efficient tailored protocol for training more complex
models such as logistic regression. Inference is also an interesting use case, but the challenge
here is that the application often needs to be more real time. It would be interesting to
look into secure prediction for recurrent neural networks and LSTMs, which are different
from convolutional neural networks (CNNs) and are used for speech models. An additional
direction is to explore alternative threat models for MPC, such as the covert threat model.

Better systems tools for MPC. MPC research over the past decades has seen dramatic
improvement in asymptotic performance from a theoretic perspective. However, there is
a rich set of systems tools that can help make MPC more efficient and more usable. One
existing problem is that many MPC implementations assume that the protocol only operates
on a single machine at each party. Therefore, an interesting direction of research is to look
into how to parallelize and distribute various MPC protocols within each trust domain to take
advantage of their local cluster compute resources. Another problem is that there exist many
generic MPC protocols, but no one protocol is best suited to all applications. I want to build
an extensible platform that can automatically utilize new MPC backends. Cryptographers

CHAPTER 7. CONCLUSION 129

should be able to easily integrate their new MPC frameworks into this platform, and it should
automatically optimize and plan high-level programs using the new backends.

Theoretical guarantees for incentivizing collaboration. Most prior work in secure
collaborative computation assumes that the parties are ready to collaborate, but it is still
unclear what actions need to be taken to incentivize these parties to collaborate in the first
place. I want to use mechanism design to define economic policies and provide theoretical
guarantees for these policies. Combining game theory with MPC also leads to an interesting
threat model: what if we assume that the participants are all rational actors with utility
functions, instead of a setting where an external adversary can compromise a subset of the
parties?

Automated synthesis and verification of secure protocols. Cerebro shows some
initial opportunities for automated compilation and optimization of MPC. Using this as a
starting point, I want to explore how to automatically generate an efficient secure computation
program such that its performance is close to a hand-tuned protocol. I want to focus on
two specific kinds of secure protocols: oblivious computation and MPC. I think there are
very interesting opportunities for applying program synthesis techniques for optimization by
exploring random transformations of the program while ensuring that the transformations
are still provably secure. Moreover, many cryptographic systems claim provable security, but
that aspect only comes from the system design. Real world implementations of cryptography
often have bugs. I want to explore program verification techniques that can help generate
provable secure implementations of protocols. I also hope to extend verification to the design
level and build tools that aid theoreticians in creating and checking cryptographic proofs for
their protocols.

Attacks and defenses for collaborative learning. When there are multiple competing
parties that compute a joint function together and release the result to everyone at the end,
the parties have incentives to cheat the process. Therefore, it would be useful to think about
concrete attacks that are possible in the collaborative computation setting. Understanding
concrete attacks can also lead to better defenses.

130

Bibliography

[1] 25th. Austin, TX, Aug. 2016.

[2] 36th. San Jose, CA, May 2015.

[3] Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira. “Integrating Compression and
Execution in Column-Oriented Database Systems”. In: ACM International Conference
on Management of Data (SIGMOD). 2006.

[4] Martín Abadi et al. “Tensorflow: A system for large-scale machine learning”. In: OSDI
2016. 2016, pp. 265–283.

[5] Martin Abadi et al. “Deep learning with differential privacy”. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. ACM.
2016, pp. 308–318.

[6] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. “Succinct: Enabling Queries on
Compressed Data”. In: 12th. Oakland, CA, May 2015.

[7] Akshay Agrawal et al. “A Rewriting System for Convex Optimization Problems”. In:
Journal of Control and Decision 5.1 (2018), pp. 42–60.

[8] Google AI. Federated Learning: Collaborative Machine Learning without Centralized
Training Data. https://ai.googleblog.com/2017/04/federated- learning-
collaborative.html.

[9] Miklós Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing. ACM. 1996, pp. 99–
108.

[10] Andreea B. Alexandru et al. “Cloud-based Quadratic Optimization with Partially
Homomorphic Encryption”. In: arXiv preprint arXiv:1809.02267 (2018).

[11] A Aly et al. SCALE and MAMBA. https://github.com/KULeuven-COSIC/SCALE-
MAMBA.

[12] AMPlab, University of California, Berkeley. Big Data Benchmark. https://amplab.
cs.berkeley.edu/benchmark/.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/

BIBLIOGRAPHY 131

[13] Arvind Arasu and Raghav Kaushik. “Oblivious Query Processing”. In: Proc. 17th
International Conference on Database Theory (ICDT), Athens, Greece, March 24-28,
2014. 2014, pp. 26–37. doi: 10.5441/002/icdt.2014.07. url: http://dx.doi.org/
10.5441/002/icdt.2014.07.

[14] Arvind Arasu et al. “Orthogonal Security with Cipherbase”. In: 6th. Asilomar, CA,
Jan. 2013.

[15] Arvind Arasu et al. “Secure database-as-a-service with cipherbase”. In: Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data. ACM.
2013, pp. 1033–1036.

[16] M. Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In: 2015.
Melbourne, Australia, May 2015.

[17] Giuseppe Ateniese et al. “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers”. In: IJSN (2015).

[18] AWS Inter-Region ping. https://www.cloudping.co. Accessed: 2019-09-16.
[19] Sumeet Bajaj and Radu Sion. “TrustedDB: a trusted hardware based database with

privacy and data confidentiality”. In: 2011. Athens, Greece, June 2011, pp. 205–216.
[20] Johes Bater et al. “SMCQL: secure querying for federated databases”. In: Proceedings

of the VLDB Endowment 10.6 (2017), pp. 673–684.
[21] Carsten Baum, Bernardo David, and Rafael Dowsley. “Insured MPC: Efficient Secure

Multiparty Computation with Punishable Abort.” In: IACR Cryptology ePrint Archive
2018 (2018), p. 942.

[22] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding applications from an
untrusted cloud with haven”. In: ACM Transactions on Computer Systems (TOCS)
33.3 (2015), p. 8.

[23] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. www.cs.huji.ac.il/project/Fairplay/FairplayMP.
html. 2008.

[24] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness theorems
for non-cryptographic fault-tolerant distributed computation”. In: Proceedings of the
twentieth annual ACM symposium on Theory of computing. ACM. 1988, pp. 1–10.

[25] Eli Ben-Sasson et al. “Scalable zero knowledge via cycles of elliptic curves”. In: Algo-
rithmica 79.4 (2017), pp. 1102–1160.

[26] Thierry Bertin-Mahieux et al. “The Million Song Dataset.” In: Ismir. Vol. 2. 9. 2011,
p. 10.

[27] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. “Dictionary-based order-
preserving string compression for main memory column stores”. In: Proceedings of the
2009 ACM SIGMOD International Conference on Management of data. ACM. 2009,
pp. 283–296.

https://doi.org/10.5441/002/icdt.2014.07
http://dx.doi.org/10.5441/002/icdt.2014.07
http://dx.doi.org/10.5441/002/icdt.2014.07
https://www.cloudping.co
www.cs.huji.ac.il/project/Fairplay/FairplayMP.html
www.cs.huji.ac.il/project/Fairplay/FairplayMP.html

BIBLIOGRAPHY 132

[28] Andrea Bittau et al. “Prochlo: Strong privacy for analytics in the crowd”. In: Proceedings
of the 26th Symposium on Operating Systems Principles. ACM. 2017, pp. 441–459.

[29] L. Susan Blackford and Myricom. “An updated set of basic linear algebra subprograms
(BLAS)”. In: TOMS. 2002.

[30] Matt Blaze. “A Cryptographic File System for Unix”. In: 1st ACM Conference on
Communications and Computing Security. Nov. 1993, pp. 9–16.

[31] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A Framework for Fast
Privacy-Preserving Computations”. In: Computer Security - ESORICS 2008: 13th
European Symposium on Research in Computer Security, Málaga, Spain, October 6-8,
2008. Proceedings. Ed. by Sushil Jajodia and Javier Lopez. 2008.

[32] Alexandra Boldyreva et al. “Order-Preserving Symmetric Encryption”. In: 28th. 2009.

[33] Keith Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine
Learning”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. 2017.

[34] George Bosilca et al. “Flexible development of dense linear algebra algorithms on
massively parallel architectures with DPLASMA”. In: 2011 IEEE International Sym-
posium on Parallel and Distributed Processing Workshops and Phd Forum. IEEE. 2011,
pp. 1432–1441.

[35] Raphael Bost et al. “Machine Learning Classification Over Encrypted Data”. In:
Network and Distributed System Security Symposium (NDSS). 2015.

[36] Fabrice Boudot. “Efficient proofs that a committed number lies in an interval”. In:
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2000, pp. 431–444.

[37] Stephen Boyd et al. “Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers”. In: Foundations and Trends in Machine
Learning, Vol. 3, No. 1. 2010.

[38] Gilles Brassard, David Chaum, and Claude Crépeau. “Minimum Disclosure Proofs of
Knowledge”. In: J. Comput. Syst. Sci. 37.2 (Oct. 1988), pp. 156–189. issn: 0022-0000.
doi: 10.1016/0022-0000(88)90005-0. url: http://dx.doi.org/10.1016/0022-
0000(88)90005-0.

[39] Ferdinand Brasser et al. “Software Grand Exposure: SGX Cache Attacks Are Practical”.
In: CoRR abs/1702.07521 (2017).

[40] bristolcrypto/SPDZ-2: Multiparty computation with SPDZ, MASCOT, and Overdrive
offline phases. https://github.com/bristolcrypto/SPDZ-2. Accessed: 2018-10-31.

https://doi.org/10.1016/0022-0000(88)90005-0
http://dx.doi.org/10.1016/0022-0000(88)90005-0
http://dx.doi.org/10.1016/0022-0000(88)90005-0
https://github.com/bristolcrypto/SPDZ-2

BIBLIOGRAPHY 133

[41] Niklas Büscher et al. “HyCC: Compilation of Hybrid Protocols for Practical Secure
Computation”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18. Toronto, Canada: ACM, 2018, pp. 847–861.
isbn: 978-1-4503-5693-0. doi: 10.1145/3243734.3243786. url: http://doi.acm.
org/10.1145/3243734.3243786.

[42] Jan Camenisch, Stephan Krenn, and Victor Shoup. “A Framework for Practical
Universally Composable Zero-Knowledge Protocols”. In: Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings. 2011, pp. 449–467. doi: 10.1007/978- 3- 642- 25385- 0_24. url:
https://doi.org/10.1007/978-3-642-25385-0%5C_24.

[43] Ran Canetti. “Security and composition of cryptographic protocols: a tutorial (part
I)”. In: ACM SIGACT News 37.3 (2006), pp. 67–92.

[44] Nicholas Carlini et al. “The Secret Sharer: Measuring Unintended Neural Network
Memorization & Extracting Secrets”. In: arXiv preprint arXiv:1802.08232 (2018).

[45] Kiran Challapalli. “The Internet of Things: A time series data challenge”. In: IBM Big
data and Analytics Hub. 2014.

[46] Nishanth Chandran et al. “EzPC: Programmable and Efficient Secure Two-Party
Computation for Machine Learning”. In: IEEE European Symposium on Security and
Privacy, EuroS&P 2019, Stockholm, Sweden, June 17-19, 2019. 2019, pp. 496–511.
doi: 10.1109/EuroSP.2019.00043. url: https://doi.org/10.1109/EuroSP.2019.
00043.

[47] Fay Chang et al. “Bigtable: A Distributed Storage System for Structured Data”. In:
7th. Seattle, WA, Nov. 2006.

[48] Kamalika Chaudhuri and Claire Monteleoni. “Privacy-preserving logistic regression”.
In: Advances in neural information processing systems. 2009, pp. 289–296.

[49] Hongmei Chen and Yaoxin Xiang. “The Study of Credit Scoring Model Based on
Group Lasso”. In: Procedia Computer Science 122 (2017). 5th International Conference
on Information Technology and Quantitative Management, ITQM 2017, pp. 677–684.
issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2017.11.423. url:
http://www.sciencedirect.com/science/article/pii/S1877050917326716.

[50] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In:
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining. ACM. 2016, pp. 785–794.

[51] Tianqi Chen et al. “Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems”. In: arXiv preprint arXiv:1512.01274 (2015).

[52] Valerie Chen, Valerio Pastro, and Mariana Raykova. “Secure Computation for Machine
Learning With SPDZ”. In: arXiv preprint arXiv:1901.00329 (2019).

https://doi.org/10.1145/3243734.3243786
http://doi.acm.org/10.1145/3243734.3243786
http://doi.acm.org/10.1145/3243734.3243786
https://doi.org/10.1007/978-3-642-25385-0_24
https://doi.org/10.1007/978-3-642-25385-0%5C_24
https://doi.org/10.1109/EuroSP.2019.00043
https://doi.org/10.1109/EuroSP.2019.00043
https://doi.org/10.1109/EuroSP.2019.00043
https://doi.org/https://doi.org/10.1016/j.procs.2017.11.423
http://www.sciencedirect.com/science/article/pii/S1877050917326716

BIBLIOGRAPHY 134

[53] Xinyun Chen et al. “Targeted backdoor attacks on deep learning systems using data
poisoning”. In: arXiv preprint arXiv:1712.05526 (2017).

[54] Richard Cleve. “Limits on the security of coin flips when half the processors are faulty”.
In: Proceedings of the eighteenth annual ACM symposium on Theory of computing.
ACM. 1986, pp. 364–369.

[55] Martine de Cock et al. “Fast, Privacy Preserving Linear Regression over Distributed
Datasets Based on Pre-Distributed Data”. In: Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security (AISec). 2015.

[56] Conviva. http://www.conviva.com/.
[57] James C. Corbett et al. “Spanner: GoogleÕs Globally-distributed Database”. In: 10th.

Hollywood, CA, Oct. 2012.
[58] Thomas H. Cormen et al. “Sorting Networks”. In: Introduction to algorithms. MIT

Press, 2001. Chap. 27.
[59] Henry Corrigan-Gibbs and Dan Boneh. “Prio: Private, Robust, and Scalable Compu-

tation of Aggregate Statistics”. In: 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 2017.

[60] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: IACR Cryptology
ePrint Archive 2016 (2016), p. 86.

[61] Victor Costan, Ilia Lebedev, and Srinivas Devadas. “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation”. In: 25th. Austin, TX, Aug. 2016.

[62] Ronald Cramer, Ivan Damgård, and Jesper Nielsen. “Multiparty computation from
threshold homomorphic encryption”. In: EUROCRYPT 2001 (2001), pp. 280–300.

[63] Daniel Crankshaw et al. “Clipper: A low-latency online prediction serving system”.
In: 14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17). 2017, pp. 613–627.

[64] Robert K. Cunningham, Benjamin Fuller, and Sophia Yakoubov. “Catching MPC
Cheaters: Identification and Openability”. In: Information Theoretic Security - 10th
International Conference, ICITS 2017, Hong Kong, China, November 29 - December
2, 2017, Proceedings. 2017, pp. 110–134.

[65] Gina M. D’Angelo, D. Chandrasekhra Rao, and Chi Charles Gu. “Combining least
absolute shrinkage and selection operator (LASSO) and principal-components analysis
for detection of gene-gene interactions in genome-wide association studies”. In: BMC
proceedings. 2009.

[66] Ivan Damgård. “Efficient concurrent zero-knowledge in the auxiliary string model”. In:
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2000, pp. 418–430.

[67] Ivan Damgård. “On Σ-protocols”. In: Lecture Notes, University of Aarhus, Department
for Computer Science (2002).

http://www.conviva.com/

BIBLIOGRAPHY 135

[68] Ivan Damgård and Mads Jurik. “Client/server tradeoffs for online elections”. In:
International Workshop on Public Key Cryptography. Springer. 2002, pp. 125–140.

[69] Ivan Damgård et al. “Multiparty computation from somewhat homomorphic encryp-
tion”. In: Advances in Cryptology–CRYPTO 2012. Springer, 2012, pp. 643–662.

[70] Daniel J. Abadi and Samuel R. Madden and Nabil Hachem. “Column-Stores vs.
Row-Stores: How Different Are They Really?” In: ACM International Conference on
Management of Data (SIGMOD). 2008.

[71] Gionatan Danti. “Linux compressors comparison on CentOS 6.5 x86-64: lzo vs lz4 vs
gzip vs bzip2 vs lzma”. In: Hardware and software benchmark and analysis. 2014.

[72] Giuseppe DeCandia et al. “Dynamo: AmazonÕs Highly Available Key-value Store”.
In: 21st. Stevenson, WA, Oct. 2007.

[73] Harry S. Delugach and Thomas H. Hinke. “Wizard: A Database Inference Analysis
and Detection System”. In: IEEE Transactions on Knowledge and Data Engineering
8.1 (Feb. 1996), pp. 56–66. issn: 1041-4347. doi: 10.1109/69.485629. url: http:
//dx.doi.org/10.1109/69.485629.

[74] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY: A Framework for
Efficient Mixed-Protocol Secure Two-Party Computation”. In: NDSS’15.

[75] Dua Dheeru and Efi Karra Taniskidou. UCI Machine Learning Repository. 2017. url:
http://archive.ics.uci.edu/ml.

[76] Steven Diamond and Stephen Boyd. “CVXPY: A Python-Embedded Modeling Lan-
guage for Convex Optimization”. In: Journal of Machine Learning Research 17.83
(2016), pp. 1–5.

[77] Tien Tuan Anh Dinh et al. “M2R: Enabling Stronger Privacy in MapReduce Compu-
tation”. In: 24th USENIX Security Symposium (USENIX Security 15). 2015.

[78] Jack J. Dongarra et al. “A set of level 3 basic linear algebra subprograms”. In: ACM
Trans. Math. Softw. 16 (1990), pp. 1–17.

[79] John C Duchi, Michael I Jordan, and Martin J Wainwright. “Local privacy, data pro-
cessing inequalities, and statistical minimax rates”. In: arXiv preprint arXiv:1302.3203
(2013).

[80] Cynthia Dwork. “Differential privacy”. In: Encyclopedia of Cryptography and Security
(2011), pp. 338–340.

[81] Jonathan Ellis. Lightweight transactions in Cassandra 2.0. http://www.datastax.
com/dev/blog/lightweight-transactions-in-cassandra-2-0.

[82] Sebastian Faust et al. “On the non-malleability of the Fiat-Shamir transform”. In:
International Conference on Cryptology in India. Springer. 2012, pp. 60–79.

[83] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. “Sharing decryption
in the context of voting or lotteries”. In: International Conference on Financial
Cryptography. Springer. 2000, pp. 90–104.

https://doi.org/10.1109/69.485629
http://dx.doi.org/10.1109/69.485629
http://dx.doi.org/10.1109/69.485629
http://archive.ics.uci.edu/ml
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0

BIBLIOGRAPHY 136

[84] Jonathan Frankle et al. “Practical accountability of secret processes”. In: 27th USENIX
Security Symposium (USENIX Security 18). 2018, pp. 657–674.

[85] Martin Franz et al. “CBMC-GC: an ANSI C compiler for secure two-party com-
putations”. In: International Conference on Compiler Construction. Springer. 2014,
pp. 244–249.

[86] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures”. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-16, 2015. 2015.

[87] Matthew Fredrikson et al. “Privacy in Pharmacogenetics: An End-to-End Case Study
of Personalized Warfarin Dosing”. In: Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014. 2014.

[88] Andrew Friedley and Andrew Lumsdaine. “Communication Optimization Beyond
MPI”. In: 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (2011), pp. 2018–2021.

[89] David Froelicher et al. “Drynx: Decentralized, Secure, Verifiable System for Statis-
tical Queries and Machine Learning on Distributed Datasets”. In: arXiv preprint
arXiv:1902.03785 (2019).

[90] David Froelicher et al. “Unlynx: a decentralized system for privacy-conscious data
sharing”. In: Proceedings on Privacy Enhancing Technologies 2017.4 (2017), pp. 232–
250.

[91] Juan A Garay, Philip MacKenzie, and Ke Yang. “Strengthening zero-knowledge
protocols using signatures”. In: Eurocrypt. Vol. 2656. Springer. 2003, pp. 177–194.

[92] A. Gascon et al. “Secure linear regression on vertically partitioned datasets”. In: Crypto
ePrint Archive. 2016.

[93] Adrià Gascón et al. Privacy-Preserving Distributed Linear Regression on High-Dimensional
Data. Cryptology ePrint Archive, Report 2016/892. 2016.

[94] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st. Bethesda,
MD, May 2009, pp. 169–178.

[95] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic Evaluation of the AES
Circuit. Cryptology ePrint Archive, Report 2012/099. June 2012.

[96] Amol Ghoting et al. “SystemML: Declarative machine learning on MapReduce”. In:
2011 IEEE 27th International Conference on Data Engineering. IEEE. 2011, pp. 231–
242.

[97] Irene Giacomelli et al. Privacy-Preserving Ridge Regression with only Linearly-
Homomorphic Encryption. Cryptology ePrint Archive, Report 2017/979. https :
//eprint.iacr.org/2017/979. 2017.

https://eprint.iacr.org/2017/979
https://eprint.iacr.org/2017/979

BIBLIOGRAPHY 137

[98] Ran Gilad-Bachrach et al. “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy”. In: International Conference on Machine Learning.
2016, pp. 201–210.

[99] Eu-Jin Goh et al. “SiRiUS: Securing Remote Untrusted Storage”. In: Proceedings of the
Tenth Network and Distributed System Security (NDSS) Symposium. Internet Society
(ISOC), Feb. 2003, pp. 131–145.

[100] Oded Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness.
Vol. 1. Springer Science & Business Media, 1998.

[101] Oded Goldreich. “Towards a Theory of Software Protection and Simulation by Oblivious
RAMs”. In: STOC’87. 1987.

[102] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Collision-Free Hashing from
Lattice Problems.” In: IACR Cryptology ePrint Archive 1996 (1996), p. 9.

[103] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to play any mental game”.
In: Proceedings of the nineteenth annual ACM symposium on Theory of computing.
ACM. 1987, pp. 218–229.

[104] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simulation on Oblivi-
ous RAMs”. In: JACM’96. 1996.

[105] Oded Goldreich and Rafail Ostrovsky. “Software Protection and Simulation on Oblivi-
ous RAMs”. In: J. ACM 43.3 (May 1996), pp. 431–473. issn: 0004-5411.

[106] Gene H Golub and Charles F Van Loan. Matrix computations. Vol. 3. JHU Press,
2012.

[107] Joseph E. Gonzalez et al. “GraphX: Graph Processing in a Distributed Dataflow
Framework”. In: 11th. Broomfield, CO, Oct. 2014.

[108] Google Research. TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. https://www.tensorflow.org/. 2015.

[109] Johannes Götzfried et al. “Cache Attacks on Intel SGX”. In: Proceedings of the 10th
European Workshop on Systems Security. EuroSec’17. 2017.

[110] Jens Groth. “Homomorphic Trapdoor Commitments to Group Elements.” In: IACR
Cryptology ePrint Archive 2009 (2009), p. 7.

[111] Alon Halevy, Peter Norvig, and Fernando Pereira. “The Unreasonable Effectiveness of
Data”. In: IEEE Intelligent Systems 24.2 (Mar. 2009), pp. 8–12. issn: 1541-1672. doi:
10.1109/MIS.2009.36. url: http://dx.doi.org/10.1109/MIS.2009.36.

[112] Rob Hall, Stephen E. Fienberg, and Yuval Nardi. “Secure Multiple Linear Regression
Based on Homomorphic Encryption”. In: Journal of Official Statistics. 2011.

[113] Thomas H. Hinke. “Inference aggregation detection in database management systems”.
In: IEEE Symposium on Security and Privacy. 1988, pp. 96–106.

https://www.tensorflow.org/
https://doi.org/10.1109/MIS.2009.36
http://dx.doi.org/10.1109/MIS.2009.36

BIBLIOGRAPHY 138

[114] Allison L Holloway et al. “How to barter bits for chronons: compression and bandwidth
trade offs for database scans”. In: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. ACM. 2007, pp. 389–400.

[115] Tyler Hunt et al. “Chiron: Privacy-preserving Machine Learning as a Service”. In:
CoRR abs/1803.05961 (2018). arXiv: 1803.05961. url: http://arxiv.org/abs/
1803.05961.

[116] Tyler Hunt et al. “Ryoan: A Distributed Sandbox for Untrusted Computation on
Secret Data.” In: OSDI. 2016, pp. 533–549.

[117] Intel. Intel Math Kernel Library. https://software.intel.com/en-us/mkl.
[118] Yuval Ishai, Rafail Ostrovsky, and Hakan Seyalioglu. “Identifying cheaters without an

honest majority”. In: Theory of Cryptography Conference. Springer. 2012, pp. 21–38.
[119] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. “Secure multi-party computation with

identifiable abort”. In: Annual Cryptology Conference. Springer. 2014, pp. 369–386.
[120] Muhammad Ishaq, Ana L. Milanova, and Vassilis Zikas. “Efficient MPC via Program

Analysis: A Framework for Efficient Optimal Mixing”. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019. Ed. by Lorenzo Cavallaro et al. ACM, 2019,
pp. 1539–1556. doi: 10.1145/3319535.3339818. url: https://doi.org/10.1145/
3319535.3339818.

[121] Roger Iyengar et al. “Towards Practical Differentially Private Convex Optimization”.
In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE.

[122] Roger Iyengar et al. “Towards practical differentially private convex optimization”. In:
Towards Practical Differentially Private Convex Optimization. IEEE. 2019, p. 0.

[123] Thomas B. Jablin et al. “Automatic CPU-GPU communication management and
optimization”. In: PLDI. 2011.

[124] Matthew Jagielski et al. “Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning”. In: arXiv preprint arXiv:1804.00308 (2018).

[125] Matthias Jarke and Jürgen Koch. “Query Optimization in Database Systems”. In:
ACM Comput. Surv. 16 (1984), pp. 111–152.

[126] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature embedding”. In:
Proceedings of the 22nd ACM international conference on Multimedia. ACM. 2014,
pp. 675–678.

[127] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. “Gazelle: A Low
Latency Framework for Secure Neural Network Inference”. In: CoRR abs/1801.05507
(2018).

[128] M. Kallahalla et al. “Plutus: Scalable secure file sharing on untrusted storage”. In: 2nd
USENIX conference on File and Storage Technologies (FAST ’03). San Francisco, CA,
Apr. 2003.

https://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961
http://arxiv.org/abs/1803.05961
https://software.intel.com/en-us/mkl
https://doi.org/10.1145/3319535.3339818
https://doi.org/10.1145/3319535.3339818
https://doi.org/10.1145/3319535.3339818

BIBLIOGRAPHY 139

[129] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory Encryption. White
paper. Apr. 2016.

[130] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: Faster Malicious
Arithmetic Secure Computation with Oblivious Transfer”. In: CCS’16.

[131] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: faster malicious
arithmetic secure computation with oblivious transfer”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM. 2016,
pp. 830–842.

[132] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: making SPDZ great
again”. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2018, pp. 158–189.

[133] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. “Blowfish: Dynamic storage-
performance tradeoff in data stores”. In: 13th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 16). 2016, pp. 485–500.

[134] Andrew C Kidd et al. “Survival prediction in mesothelioma using a scalable Lasso
regression model: instructions for use and initial performance using clinical predictors”.
In: BMJ Open Respiratory Research 5.1 (2018). doi: 10.1136/bmjresp-2017-000240.
eprint: https://bmjopenrespres.bmj.com/content/5/1/e000240.full.pdf. url:
https://bmjopenrespres.bmj.com/content/5/1/e000240.

[135] Les King. “Why Compression is a Must in the Big Data Era”. In: IBM Big Data and
Analytics Hub. 2013.

[136] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: arXiv
preprint arXiv:1801.01203 (2018).

[137] David J. Kuck et al. “Dependence Graphs and Compiler Optimizations”. In: POPL.
1981.

[138] A. Lakshman and P. Malik. “Cassandra: A Decentralized Structured Storage System”.
In: ACM SIGOPS Operating Systems Review, 44(2):35Ð40. 2010.

[139] Andrew Lamb et al. “The Vertica Analytic Database: C-store 7 Years Later”. In:
Proceedings of the VLDB Endowment 5.12 (2012), pp. 1790–1801.

[140] Dayeol Lee et al. “Keystone: A framework for architecting tees”. In: arXiv preprint
arXiv:1907.10119 (2019).

[141] Sangho Lee et al. “Inferring fine-grained control flow inside SGX enclaves with branch
shadowing”. In: 26th USENIX Security Symposium, USENIX Security. 2017, pp. 16–18.

[142] T. Leighton. “Tight Bounds on the Complexity of Parallel Sorting”. In: IEEE Transac-
tions on Computers C-34.4 (Apr. 1985), pp. 344–354. issn: 0018-9340. doi: 10.1109/
TC.1985.5009385.

https://doi.org/10.1136/bmjresp-2017-000240
https://bmjopenrespres.bmj.com/content/5/1/e000240.full.pdf
https://bmjopenrespres.bmj.com/content/5/1/e000240
https://doi.org/10.1109/TC.1985.5009385
https://doi.org/10.1109/TC.1985.5009385

BIBLIOGRAPHY 140

[143] Chang Liu et al. “GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation”. In: Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
’15. 2015, pp. 87–101.

[144] Chang Liu et al. “ObliVM: A Programming Framework for Secure Computation”. In:
36th. San Jose, CA, May 2015.

[145] Chang Liu et al. “Oblivm: A programming framework for secure computation”. In:
2015 IEEE Symposium on Security and Privacy. IEEE. 2015, pp. 359–376.

[146] Jian Liu et al. “Oblivious Neural Network Predictions via MiniONN Transformations”.
In: CCS’17.

[147] Jian Liu et al. “Oblivious neural network predictions via minionn transformations”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2017, pp. 619–631.

[148] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. “Fine-Pruning: Defending
Against Backdooring Attacks on Deep Neural Networks”. In: arXiv preprint arXiv:1805.12185
(2018).

[149] Yunhui Long et al. “Understanding Membership Inferences on Well-Generalized Learn-
ing Models”. In: CoRR abs/1802.04889 (2018). arXiv: 1802 . 04889. url: http :
//arxiv.org/abs/1802.04889.

[150] Ben Lorica. “The re-emergence of time-series”. In: O’Reilly Radar. 2013.

[151] Samuel Madden et al. “TinyDB: an acquisitional query processing system for sensor
networks”. In: ACM Trans. Database Syst. 30 (2005), pp. 122–173.

[152] Umesh Maheshwari, Radek Vingralek, and William Shapiro. “How to Build a Trusted
Database System on Untrusted Storage”. In: 4th. San Diego, CA, Oct. 2000.

[153] David Mazières and Dennis Shasha. Building secure file systems out of Byzantine
storage. Tech. rep. TR2002–826. NYU Department of Computer Science, May 2002.

[154] Frank McKeen et al. “Innovative Instructions and Software Model for Isolated Execu-
tion”. In: Proceedings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy. 2013.

[155] Frank McKeen et al. “Innovative instructions and software model for isolated execution.”
In: HASP@ ISCA 10 (2013).

[156] MemCached. http://www.memcached.

[157] X. Meng et al. “MLlib: Machine Learning in Apache Spark”. In: Journal of Machine
Learning Research. 2016.

[158] Xiangrui Meng et al. “Mllib: Machine learning in apache spark”. In: The Journal of
Machine Learning Research 17.1 (2016), pp. 1235–1241.

https://arxiv.org/abs/1802.04889
http://arxiv.org/abs/1802.04889
http://arxiv.org/abs/1802.04889
http://www.memcached

BIBLIOGRAPHY 141

[159] Microsoft. Always Encrypted Database Engine. https://msdn.microsoft.com/en-
us/library/mt163865.aspx.

[160] David L Mills. “Internet time synchronization: the network time protocol”. In: IEEE
Transactions on communications 39.10 (1991), pp. 1482–1493.

[161] Pratyush Mishra et al. “Delphi: A Cryptographic Inference Service for Neural Networks”.
In: 29th USENIX Security Symposium (USENIX Security 20). 2020.

[162] Payman Mohassel and Yupeng Zhang. “SecureML: A System for Scalable Privacy-
Preserving Machine Learning.” In: IACR Cryptology ePrint Archive 2017 (2017),
p. 396.

[163] MongoDB. http://www.mongodb.org.

[164] Benjamin Mood et al. “Frigate: A validated, extensible, and efficient compiler and
interpreter for secure computation”. In: 2016 IEEE European Symposium on Security
and Privacy (EuroS&P). IEEE. 2016, pp. 112–127.

[165] Arjun Narayan and Andreas Haeberlen. “DJoin: Differentially Private Join Queries
over Distributed Databases”. In: Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation. OSDI’12. 2012.

[166] Kartik Nayak et al. “GraphSC: Parallel Secure Computation Made Easy”. In: 36th.
San Jose, CA, May 2015.

[167] Valeria Nikolaenko et al. “Privacy-preserving ridge regression on hundreds of millions
of records”. In: Security and Privacy (SP), 2013 IEEE Symposium on. IEEE. 2013,
pp. 334–348.

[168] Valeria Nikolaenko et al. “Privacy-preserving ridge regression on hundreds of millions
of records”. In: Security and Privacy (SP), 2013 IEEE Symposium on. IEEE. 2013,
pp. 334–348.

[169] Olga Ohrimenko et al. “Oblivious Multi-Party Machine Learning on Trusted Proces-
sors”. In: 25th. Austin, TX, Aug. 2016.

[170] Olga Ohrimenko et al. “Oblivious multi-party machine learning on trusted processors”.
In: 25th USENIX Security Symposium (USENIX Security 16). 2016, pp. 619–636.

[171] Olga Ohrimenko et al. “Observing and Preventing Leakage in MapReduce”. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2015, pp. 1570–1581.

[172] Olga Ohrimenko et al. “Observing and Preventing Leakage in MapReduce”. In: Pro-
ceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security. CCS ’15. 2015.

[173] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes”. In: EUROCRYPT. 1999, pp. 223–238.

https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx

BIBLIOGRAPHY 142

[174] Shoumik Palkar et al. “Evaluating End-to-End Optimization for Data Analytics
Applications in Weld”. In: PVLDB 11 (2018), pp. 1002–1015.

[175] Aurojit Panda et al. “SCL: Simplifying Distributed SDN Control Planes”. In: 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17).
2017, pp. 329–345.

[176] Charalampos Papachristou, Carole Ober, and Mark Abney. “A LASSO penalized
regression approach for genome-wide association analyses using related individuals:
application to the Genetic Analysis Workshop 19 simulated data”. In: BMC Proceedings
10.7 (Oct. 2016), p. 53. issn: 1753-6561. doi: 10.1186/s12919-016-0034-9. url:
https://doi.org/10.1186/s12919-016-0034-9.

[177] Antonis Papadimitriou et al. “Big Data Analytics over Encrypted Datasets with
Seabed”. In: 12th. Savannah, GA, Nov. 2016.

[178] Vasilis Pappas et al. “Blind Seer: A Scalable Private DBMS”. In: 35th. San Jose, CA,
May 2014.

[179] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”. In: Advances in Cryptology - CRYPTO ’91, 11th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings. 1991, pp. 129–140. doi: 10.1007/3-540-46766-1_9. url: https:
//doi.org/10.1007/3-540-46766-1%5C_9.

[180] Raluca Ada Popa, Frank H. Li, and Nickolai Zeldovich. “An Ideal-Security Protocol
for Order-Preserving Encoding”. In: 34th. San Francisco, CA, May 2013, pp. 463–477.

[181] Raluca Ada Popa et al. “CryptDB: Protecting Confidentiality with Encrypted Query
Processing”. In: 23rd. Cascais, Portugal, Oct. 2011, pp. 85–100.

[182] Zhengping Qian et al. “MadLINQ: Large-scale Distributed Matrix Computation for
the Cloud”. In: EuroSys’12. 2012.

[183] Aseem Rastogi, Matthew A Hammer, and Michael Hicks. “Wysteria: A programming
language for generic, mixed-mode multiparty computations”. In: 2014 IEEE Symposium
on Security and Privacy. IEEE. 2014, pp. 655–670.

[184] Redis. http://www.redis.io.

[185] M. Sadegh Riazi et al. Chameleon: A Hybrid Secure Computation Framework for
Machine Learning Applications. Cryptology ePrint Archive, Report 2017/1164. https:
//eprint.iacr.org/2017/1164. 2017.

[186] M. Sadegh Riazi et al. “XONN: XNOR-based Oblivious Deep Neural Network Infer-
ence”. In: 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara,
CA, USA, August 14-16, 2019. Ed. by Nadia Heninger and Patrick Traynor. USENIX
Association, 2019, pp. 1501–1518. url: https://www.usenix.org/conference/
usenixsecurity19/presentation/riazi.

https://doi.org/10.1186/s12919-016-0034-9
https://doi.org/10.1186/s12919-016-0034-9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1%5C_9
https://doi.org/10.1007/3-540-46766-1%5C_9
http://www.redis.io
https://eprint.iacr.org/2017/1164
https://eprint.iacr.org/2017/1164
https://www.usenix.org/conference/usenixsecurity19/presentation/riazi
https://www.usenix.org/conference/usenixsecurity19/presentation/riazi

BIBLIOGRAPHY 143

[187] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. “DeepSecure: Scal-
able Provably-Secure Deep Learning”. In: CoRR abs/1705.08963 (2017).

[188] Sanjiban Roy et al. Stock Market Forecasting Using LASSO Linear Regression Model.
Jan. 2015.

[189] Felix Schuster et al. “VC3: Trustworthy data analytics in the cloud using SGX”. In:
Security and Privacy (SP), 2015 IEEE Symposium on. IEEE. 2015, pp. 38–54.

[190] Scotiabank’s chief risk officer on the state of anti–money laundering. https://www.
mckinsey.com/business-functions/risk/our-insights/scotiabanks-chief-
risk-officer-on-the-state-of-anti-money-laundering. Oct. 2019.

[191] Ming-Wei Shih et al. “T-SGX: Eradicating Controlled-Channel Attacks Against Enclave
Programs”. In: In Proceedings of the 2017 Network and Distributed System Security
Symposium (NDSS). 2017.

[192] Vitaly Shmatikov and Congzheng Song. “What Are Machine Learning Models Hiding?”
In: ().

[193] Reza Shokri and Vitaly Shmatikov. “Privacy-Preserving Deep Learning”. In: CCS.
2015.

[194] Reza Shokri et al. “Membership inference attacks against machine learning models”.
In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE. 2017, pp. 3–18.

[195] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. “Machine learning models
that remember too much”. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2017, pp. 587–601.

[196] Ebrahim M Songhori et al. “Tinygarble: Highly compressed and scalable sequential
garbled circuits”. In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015,
pp. 411–428.

[197] Emil Stefanov and Elaine Shi. “Multi-cloud oblivious storage”. In: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security. ACM. 2013,
pp. 247–258.

[198] Emil Stefanov, Elaine Shi, and Dawn Song. “Towards practical oblivious RAM”. In:
arXiv preprint arXiv:1106.3652 (2011).

[199] Emil Stefanov et al. “Path ORAM: an extremely simple oblivious RAM protocol”. In:
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM. 2013, pp. 299–310.

[200] Florian Tramèr et al. “Stealing machine learning models via prediction apis”. In: 25th
USENIX Security Symposium (USENIX Security 16). 2016, pp. 601–618.

[201] Stephen Tu et al. “Processing Analytical Queries over Encrypted Data”. In: 39th. Riva
del Garda, Italy, Aug. 2013, pp. 289–300.

https://www.mckinsey.com/business-functions/risk/our-insights/scotiabanks-chief-risk-officer-on-the-state-of-anti-money-laundering
https://www.mckinsey.com/business-functions/risk/our-insights/scotiabanks-chief-risk-officer-on-the-state-of-anti-money-laundering
https://www.mckinsey.com/business-functions/risk/our-insights/scotiabanks-chief-risk-officer-on-the-state-of-anti-money-laundering

BIBLIOGRAPHY 144

[202] Anselme Tueno, Florian Kerschbaum, and Stefan Katzenbeisser. “Private evaluation of
decision trees using sublinear cost”. In: Proceedings on Privacy Enhancing Technologies
2019.1 (2019), pp. 266–286.

[203] Jo Van Bulck et al. “Foreshadow: Extracting the keys to the Intel SGX kingdom
with transient out-of-order execution”. In: Proceedings of the 27th USENIX Security
Symposium. USENIX Association. 2018.

[204] VIFF, the Virtual Ideal Functionality Framework. http://viff.dk/. 2015.
[205] Stratis Viglas and Jeffrey F. Naughton. “Rate-based query optimization for streaming

information sources”. In: SIGMOD Conference. 2002.
[206] Radek Vingralek. “GnatDb: A Small-footprint, Secure Database System”. In: 28th.

Hong Kong, China, Aug. 2002.
[207] Nikolaj Volgushev et al. “Conclave: secure multi-party computation on big data”. In:

European Conference on Computer Systems. 2019.
[208] Minjie Wang, Chien-chin Huang, and Jinyang Li. “Supporting Very Large Models

using Automatic Dataflow Graph Partitioning”. In: EuroSys. 2018.
[209] Xiao Wang, Hubert Chan, and Elaine Shi. “Circuit ORAM: On Tightness of the

Goldreich-Ostrovsky Lower Bound”. In: CCS’15. 2015.
[210] Xiao Wang, Alex J Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty

computation toolkit. https://github.com/emp-toolkit.
[211] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Global-scale secure multiparty

computation”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM. 2017, pp. 39–56.

[212] Xi Wu et al. “A Methodology for Formalizing Model-Inversion Attacks”. In: IEEE
29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June
27 - July 1, 2016. 2016.

[213] Xi Wu et al. “Bolt-on differential privacy for scalable stochastic gradient descent-based
analytics”. In: Proceedings of the 2017 ACM International Conference on Management
of Data. ACM. 2017, pp. 1307–1322.

[214] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems”. In: Security and Privacy
(SP), 2015 IEEE Symposium on. IEEE. 2015, pp. 640–656.

[215] Andrew C Yao. “Protocols for secure computations”. In: Foundations of Computer
Science, 1982. SFCS’08. 23rd Annual Symposium on. IEEE. 1982, pp. 160–164.

[216] M. Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing”. In: 9th. San Jose, CA, Apr. 2012.

[217] Yihua Zhang, Aaron Steele, and Marina Blanton. “PICCO: a general-purpose compiler
for private distributed computation”. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM. 2013, pp. 813–826.

http://viff.dk/
https://github.com/emp-toolkit

BIBLIOGRAPHY 145

[218] Wenting Zheng et al. “Cerebro: A Platform for Multi-Party Cryptographic Collabora-
tive Learning”. In: Under submission ().

[219] Wenting Zheng et al. “Helen: Maliciously Secure Coopetitive Learning for Linear
Models”. In: S&P’19. 2019.

[220] Wenting Zheng et al. “MiniCrypt: Reconciling encryption and compression for big
data stores”. In: Proceedings of the 12th European Conference on Computer Systems.
ACM. 2017, pp. 191–204.

[221] Wenting Zheng et al. “Opaque: An Oblivious and Encrypted Distributed Analytics
Platform”. In: 14th. Boston, MA, 2017.

[222] Wenting Zheng et al. “Opaque: An Oblivious and Encrypted Distributed Analytics
Platform.” In: 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). 2017, pp. 283–298.

[223] Jan Henrik Ziegeldorf, Jan Metzke, and Klaus Wehrle. “SHIELD: A Framework for
Efficient and Secure Machine Learning Classification in Constrained Environments”. In:
Proceedings of the 34th Annual Computer Security Applications Conference. ACSAC
’18. San Juan, PR, USA: ACM, 2018, pp. 355–370. isbn: 978-1-4503-6569-7. doi: 10.
1145/3274694.3274716. url: http://doi.acm.org/10.1145/3274694.3274716.

https://doi.org/10.1145/3274694.3274716
https://doi.org/10.1145/3274694.3274716
http://doi.acm.org/10.1145/3274694.3274716

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Secure collaborative computation
	Overview of thesis
	Adoption

	Background
	Hardware Enclaves
	Cryptographic approach
	Comparison

	MiniCrypt
	Overview
	Key packing
	Read operations
	Writes in the generic mode
	The APPEND mode
	Implementation
	Evaluation
	Related work
	Conclusion

	Opaque
	Background
	Overview
	Opaque's encryption mode
	Oblivious execution
	Query planning
	Implementation
	Evaluation
	Related work
	Conclusion

	Helen
	Background
	System overview
	Cryptographic Gadgets
	Input preparation phase
	Model compute phase
	Extensions to Other Models
	Evaluation
	Related work
	ADMM derivations
	Security proofs
	Conclusion

	Cerebro
	Overview of Cerebro
	Programming and Execution Model
	Policies and auditing
	Implementation
	Evaluation
	Related work
	Security proofs
	Physical planning
	Conclusion

	Conclusion
	Bibliography

