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Abstract

The Interplay between Sampling and Optimization

by

Xiang Cheng

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Peter Bartlett, Chair

We study the connections between optimization and sampling. In one direction, we study
sampling algorithms from an optimization perspective. We will see how the Langevin MCMC
algorithm can be viewed as a deterministic gradient descent in probability space, which
enables us to do convergence analysis in KL divergence. We will also see how adding a
momentum term improves the convergence rate of Langevin MCMC, much like acceleration
in gradient descent. Finally, we will study the problem of sampling from non-logconcave
distributions, which is roughly analogous to non-convex optimization.

Conversely, we will also study optimization algorithms from a sampling perspective. We will
approximate stochastic gradient descent by a Langevin-like stochastic differential equation,
and use this to explain some of its remarkable generalization properties.
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Chapter 1

Preliminaries

1.1 Convexity and Smoothness

We say that a twice-differentiable function f : Rd → Rd is m strongly convex if

∀x ∇2f(x) � mI (1.1)

A very useful consequence of (1.1) is that for all x, y, 〈∇f(x)−∇f(y), x− y〉 ≥ m‖x− y‖2
2,

which ensures that the gradient flow is contractive.
We say that f : Rd → R has L-Lipschitz gradients, or equivalently L-smooth, if

∀x, y ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 (1.2)

If f(x) is twice differentiable, the above is equivalent to ∇2f(x) ≺ LI for all x.

1.2 Sampling

We will be concerned with the problem of sampling from a distribution

p∗(x) ∝ e−U(x), (1.3)

where x ∈ Rd. We will refer to U(x) as the potential function, and we will assume that we
can compute ∇U(x) for all x.

We will mostly focus on the problem of sampling from p∗(x) when U(x) is m strongly
convex and has L Lipschitz Gradients, given access to the gradient oracle of U , though in
certain parts of this thesis, we will relax the convexity/regularity assumptions on U(x).

1.3 The Langevin Dynamics

The Langevin Diffusion, with respect to the potential U(x), is given by the following stochastic
differential equation:

dxt = −∇U(xt)dt+
√

2dBt, (1.4)
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where Bt is the standard Brownian motion. The invariant distribution of (1.4) is p∗(x) ∝
e−U(x). For the purposes of this thesis, we can assume that U(x) is smooth, and that e−U(x)

is integrable.
To convert (1.4) to a computationally tractable algorithm, a common approach is to use

the Euler-Murayama discretization scheme:

xk+1 = xk − δ∇U(xk) +
√

2δξk, (1.5)

where δ is the step-size and ξk ∼ N (0, I).

1.4 The Wasserstein Metric

Denote by B(Rd) the Borel σ-field of Rd. Given probability measures µ and ν on (Rd,B(Rd)),
we define a transference plan ζ between µ and ν as a probability measure on (Rd×Rd,B(Rd×
Rd)) such that for all sets A ∈ B(Rd), ζ(A× Rd) = µ(A) and ζ(Rd × A) = ν(A). We denote
by Γ(µ, ν) the set of all transference plans. A pair of random variables (X, Y ) is called a
coupling if there exists a ζ ∈ Γ(µ, ν) such that (X, Y ) are distributed according to ζ. (With
some abuse of notation, we will also refer to ζ as the coupling.)

The k-Wasserstein distance between µ and ν is given by

Wk(µ, ν) = inf
ζ∈Γ(µ,ν)

(
E(x,y)∼ζ

[
‖x− y‖k2

])1/k

.

In this thesis, we will mainly be concerned with W1 and W2.

1.5 Optimization

Given an optimization objective f(x) : Ξ→ R, the goal is to find

x∗ ∈ arg min
Ξ
f(x). (1.6)

Very commonly, Ξ is a subset of Rd. In this thesis, we will also consider the specific case of
Ξ = P(Rd), the space of densities over Rd, metrized by the 2-Wasserstein distance.

1.6 Overview

The goal of this thesis is to explore various connections between sampling and optimization.
We will see how optimization ideas can help us analyze and design better sampling algorithms.
Conversely, stochastic optimization algorithms such as SGD can be better understood by
analogy with sampling procedures. This thesis is organized as follows:
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• In Chapter 2, we show how the Langevin MCMC algorithm (1.5) is equivalent to a
deterministic gradient descent algorithm over P(Rd). This allows us to bound the
distance between (1.5) and (1.4) in terms of KL divergence. Our analysis relies largely
on the view of Langevin diffusion as the gradient flow of KL divergence with respect to
the Wasserstein distance, shown in [45].

• In Chapter 3, we study a different SDE derived from adding momentum to (1.4). The
SDE, given in (3.1), is often known as the underdamped Langevin diffusion. We give a
MCMC algorithm, based on discretizing (3.1), and show that the convergence rate is
quadratically faster in dimension d and target accuracy ε. This curiously mirrors the
acceleration phenomenon in optimization.

• In Chapter 4, we study the problem of sampling from a distribution p∗(x) ∝ e−U(x)

when the potential U(x) is non-convex. This is roughly analogous to optimizing a
non-convex objective. We show that the standard Langevin MCMC algorithm converges
to p∗(x), but the number of steps required is exponential in a quantity that measures
how non-convex U(x) is. We also show that underdamped Langevin MCMC achieves a
quadratic speed-up even in this non-convex setting.

• In Chapter 5, we instead try to analyze stochastic gradient descent, an optimization
algorithm, from a sampling point of view. We are motivated by the empirical observation
that SGD solutions sometimes generalize better than gradient descent solutions. We
show that SGD can be viewed as the discrete-time approximation of a SDE with a
state-dependent diffusion coefficient. This view allows us to characterize the distribution
of SGD solutions, in spite of the irregularity of SGD noise.
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Chapter 2

Langevin MCMC as Gradient Descent
over P(Rd)

2.1 Introduction

In this chapter, we study the problem of sampling from

p∗(x) ∝ e−U(x),

where U(x) is strongly convex (see 1.1).
We will study the MCMC algorithm given in (1.5), reproduced below for ease of reference:

ui+1 = ui − h · ∇U(ui) +
√

2hξi, (2.1)

where h is a step-size, and ξi
iid∼ N(0, 1).

Recall that (2.1) is the Euler-Murayama discretization of the Langevin SDE:

dx̄t = −∇U(x̄t)dt+
√

2dBt, (2.2)

where Bt is the standard Brownian motion.
We verify that (2.1) is equivalent to the following Discretized Langevin SDE:

dxt = −∇U(xτ(t))dt+
√

2dBt, (2.3)

where τ(t) , b t
h
c · h (note that τ(t) is parameterized by h). Note that the difference between

(2.2) and (2.3) is in the drift term: one is ∇U(x̄t), the other is ∇U(xτ(t))
Let pt denote the distribution of xt. Our main goal is to establish the convergence of

pt in (2.3) in KL (pt‖p∗). KL-divergence is perhaps the most natural notion of distance
between probability distributions in this context, because of its close relationship to maximum
likelihood estimation, its interpretation as information gain in Bayesian statistics, and its
central role in information theory. Convergence in KL-divergence implies convergence in total
variation and 2-Wasserstein distance, thus we are able to obtain convergence rates in total
variation and 2-Wasserstein that are comparable to the results shown in [20, 27, 29].
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2.2 Assumptions and Definitions

We denote by P(Rd) the space of all probability distributions over Rd. In this chapter, only
distributions with densities wrt the Lebesgue measure will appear (see Lemma 20), both in
the algorithm and in the analysis. With abuse of notation, we use the same symbol (e.g. p)
to denote both the probability distribution and its density wrt the Lebesgue measure.

For the rest of this chapter, we will use pt to exclusively denote the distribu-
tion of xt in (2.3).

We assume without loss of generality that

arg min
x
U(x) = 0,

and that
U(0) = 0.

(We can always shift the origin to achieve this, and the minimizer of U is easy to find using,
say, gradient descent.)

For the rest of this chapter, we will let

F (µ) =


∫
µ(x) log

(
µ(x)
p∗(x)

)
dx, if µ has a density wrt

Lebesgue measure

∞ otherwise

be the KL-divergence between µ and p∗. It is known that F is minimized by p∗, and
F (p∗) = 0.

Finally, given a vector field v : Rd → Rd and a distribution µ ∈ P(Rd), we define the
L2(µ)-norm of v as

‖v‖L2(µ) ,
√
Eµ[‖v(x)‖2

2].

Recall that the Wasserstein distance defined in 1.4. In this chapter, we will use Wasserstein
distance to exclusively refer to the 2-Wasserstein distance, given by

W2(µ,ν) =

√
inf

γ∈Γ(µ,ν)

∫
(‖x− y‖2

2), dγ(x, y)

where Γ(µ,ν) is the set of all couplings between µ and ν.
Let (X1,B(X1)) and (X2,B(X2)) be two measurable spaces, µ be a measure on X1, and

r : X1 → X2 be a measurable map. The push-forward measure of µ through r is defined
as

r#µ(B) = µ(r−1(B)) ∀B ∈ B(X2)l.

Intuitively, for any f , Er#µ[f(x)] = Eµ[f(r(x))].
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It is known that for any two distributions µ and ν which have density wrt the Lebesgue
measure, the optimal coupling is induced by a map Topt : Rd → Rd; i.e., W 2

2 (µ,ν) =∫
(‖x− y‖2

2)dγ∗(x, y) for
γ∗ = (Id, Topt)#µ,

where Id is the identity map, and Topt satisfies Topt#µ = ν, so by definition, γ∗ ∈ Γ(µ,ν).
We call Topt the optimal transport map, and Topt− Id the optimal displacement map.

Given two points ν and π in P(Rd), a curve µt : [0, 1]→P(Rd) is a constant-speed-
geodesic between ν and π if µ0 = ν, µ1 = π and W2(µs,µt) = (t − s)W2(ν,π) for
all 0 ≤ s ≤ t ≤ 1. If vπν is the optimal displacement map between ν and π, then the
constant-speed-geodesic µt is characterized by

µt = (Id+ tvπν )#ν. (2.4)

Given a curve µt : R+ →P(Rd), we define its metric derivative as

|µ′t| , lim sup
s→t

W2(µs,µt)

|s− t|
. (2.5)

Intuitively, this is the speed of the curve in 2-Wasserstein distance. We say that a curve µt is

absolutely continuous if
∫ b
a
|µ′t|2dt <∞ for all a, b ∈ R.

Given a curve µt : R+ →P(Rd) and a sequence of velocity fields vt : R+ → (Rd → Rd),
we say that µt and vt satisfy the continuity equation at t if

d

dt
µt(x) + div(µt(x) · vt(x)) = 0. (2.6)

(We assume that µt has density wrt Lebesgue measure for all t).

Remark 1 If µt is a constant-speed-geodesic between ν and π, then µt and vπν satisfy (2.6)
at t = 0, by the characterization in (2.4).

We say that vt is tangent to µt at t if the continuity equation holds and ‖vt + w‖L2(µt) ≥
‖vt‖L2(µt) for all w such that div(µt · w) = 0. Intuitively, vt is tangent to µt if it minimizes
‖vt‖L2(µt) among all velocity fields v that satisfy the continuity equation.

2.3 Main Results

In Section 2.3.1, we state Theorem 1, which establishes a nonasymptotic convergence in
Kullback-Leibler divergence for (2.3) when U(x) is m strongly convex and L smooth (see
(1.1) and (1.2)). As a consequence, we also unify the proof of convergence in total variation
and W2 as simple corollaries to the convergence in KL.

The following table compares the number of iterations of (2.1) required to achieve ε error
in each of the three quantities according to the analysis of various papers.

In Section 2.3.2, we state Theorem 2, which establishes a convergence rate for when U is
not strongly convex. The corollary for convergence in total variation has a better dependence
on the dimension than the corresponding result in [20], but a worse dependence on ε.
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TV W2 KL

[20, 27] Õ( d
ε2

) - -

[29] Õ( d
ε2

) Õ( d
ε2

) -

our result Õ( d
ε2

) Õ( d
ε2

) Õ(d
ε
)

Table 2.1: Comparison of iteration complexity

2.3.1 Strong Convexity Result

In this section, we assume that U(x) is m strongly convex and L smooth (see (1.1) and (1.2)).

Theorem 1 Let U(x) be m strongly convex and have L Lipschitz gradient. Let xt and pt be
as defined in (2.3) with p0 = N(0, 1

m
).

If

h =
mε

16dL2

and

k = 16
L2

m2

d log dL
mε

ε
,

then KL (pkh‖p∗) ≤ ε.

This theorem immediately allows us to obtain the convergence rate of pkh in both total
variation and 2-Wasserstein distance.

Corollary 1 Using the choice of k and h in Theorem 1, we get

1. dTV (pkh,p
∗) ≤

√
ε

2. W2(pkh,p
∗) ≤

√
2ε
m

.

The first assertion follows from Pinsker’s inequality [69]. The second assertion follows
from (2.15), where we take µ0 to be p∗ and µ1 to be pkh. To achieve δ accuracy in total
variation or W2, we apply Theorem 1 with ε = δ2 and ε = mδ2 respectively.

Remark 2 The log term in Theorem 1 is not crucial. To avoid the log term, one can run
(2.1) a few times, each time aiming to only halve the objective KL (pt‖p∗) (thus the stepsize
starts out large and is also halved each subsequent run). The proof is straightforward and will
be omitted.
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2.3.2 Weak Convexity Result

In this section, we study the case when log p∗ is not m strongly convex (but still convex and
L smooth). Let πh be the stationary distribution of (2.3) with stepsize h.

We will assume that we can choose an initial distribution p0 which satisfies

W2(p0,p
∗) = C1 (2.7)

and √
Ep∗‖x‖2

2 = C2. (2.8)

Let h′ be the largest stepsize such that

W2(πh, p
∗) ≤ C1 ,∀h ≤ h′. (2.9)

Theorem 2 Let xt and pt be as defined in (2.3) with p0 satisfying (2.7). If

h =
1

48
min

{
ε

C1(C1 + C2)L2
,

ε2

C2
1dL

2
, h′
}

=
1

48
min

{
ε

C1C2L2
,

ε2

C2
1dL

2
, h′
}

and

k =
2C2

1

εh
+

2C2
1 log(F (r0)− F (p∗))

h
,

then KL (pkh‖p∗) ≤ ε

Once again, applying Pinsker’s inequality, we get that the above choice of k and t yields
dTV (pkh,p

∗) ≤
√
ε. Without strong convexity, we cannot get a bound on W2 from bounding

KL(pkh||p∗) like we did in Corollary 1.
In [20], a proof in the non-strongly-convex case was obtained by running Langevin MCMC

on

p̃∗ ∝ p∗ · exp(−δ
d
‖x‖2

2).

We see that log p̃∗ is thus strongly convex with m = δ
d
, and dTV (p∗, p̃∗) ≤ δ. By the results

of [20], or [27], or Theorem 1, we need

k = Õ(
d3

δ4
) (2.10)

iterations to get dTV (pkh,p
∗) ≤ δ.

On the other hand, if we assume log(F (p0)−F (p∗)) ≤ 1
ε

and h′ ≥ 1
10

min
{

ε
C1C2L2 ,

ε2

C2
1dL

2

}
,

the results of Theorem 2 implies that with

h = O

(
ε

L2C1

min

{
1

C2

,
ε

dC1

})
,
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to get dTV (pkh,p
∗) ≤ δ, we need

k = Ω

(
L2C3

1

δ4
max

{
C2,

dC1

δ2

})
.

Even if we ignore C1 and C2, our result is not strictly better than (2.10) as we have a worse
dependence on δ. However, we do have a better dependence on d.

2.4 Proof Outline

In Section 2.4.1, we establish preliminary results which characterize curves over P(Rd). In
Section 2.4.2, we study the curve of steepest descent for F (·), as well as its discretization.

In section 2.4.3, we outline the proofs of Theorem 1 and 2.

2.4.1 Calculus over P(Rd)

In this section, we present some crucial lemmas which allow us to study the evolution of
F (µt) along a curve µt : R+ → P(Rd). These results are all immediate consequences of
results proven in [2].

Lemma 2 For any µ ∈P(Rd), let δF
δµ

(µ) : Rd → R be the first variation of F at µ defined

as
(
δF
δµ

(µ)
)

(x) , log
(

µ(x)
p∗(x)

)
+ 1. Let the subdifferential of F at µ be given by

wµ , ∇
(
δF

δµ
(µ)

)
: Rd → Rd.

For any curve µt : R+ →P(Rd), and for any vt that satisfies the continuity equation for µt

(see Equation (2.6)), the following holds:

d

dt
F (µt) = Eµt [〈wµt(x), vt(x)〉] .

Based on Lemma 2, we define (for any µ ∈P(Rd)) the operator

Dµ(v) , Eµ [〈wµ(x), v(x)〉] : (Rd → Rd)→ R. (2.11)

Dµ(v) is linear in v.

Lemma 3 Let µt be an absolutely continuous curve in P(Rd) with tangent velocity field vt.
Let |µ′t| be the metric derivative of µt, then

‖vt‖L2(µt) = |µ′t|.
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Lemma 4 For any µ ∈P(Rd), let ‖Dµ‖∗ , sup‖v‖L2(µ)≤1Dµ(v), then

‖Dµ‖∗ =

√∫ ∥∥∥∥∇(δFδµ (µ)

)
(x)

∥∥∥∥2

2

µ(x)dx.

Furthermore, for any absolutely continuous curve µt : R+ →P(Rd) with tangent velocity vt,
we have ∣∣∣∣ ddtF (µt)

∣∣∣∣ ≤ ‖Dµt‖∗‖vt‖L2(µt).

As a corollary of Lemma 3 and Lemma 4, we have the following result:

Corollary 5 Let µt be an absolutely continuous curve with tangent velocity field vt. Then

d

dt
F (µt) ≤ ‖Dµt‖∗ · |µ′t|.

2.4.2 Exact and Discrete Gradient Flow for F (p)

In this section, we will study the curve pt : R+ →P(Rd) defined in (2.3). Unless otherwise
specified, we will assume that p0 is an arbitrary distribution.

Let xt be as defined in (2.3). For any given t and for all s, we define a stochastic process
yts as

yts = xs for s ≤ t

dyts = −∇U(yts)ds+
√

2dBs for s ≥ t (2.12)

let qts denote the distribution for yts.

From s = t onwards, this is the exact Langevin diffusion with pt as the initial distribution
(compare with expression (2.2)).

Finally, for each t, we define a sequence zts by

zts = xs for s ≤ t

dzts = (−∇U(ztτ(t)) +∇U(zts))ds, for s ≥ t (2.13)

let gts denote the distribution for zts.

zts represents the discretization error of ps through the divergence between qts and ps (formally
stated in Lemma 6). Note that ztτ(t) = xtτ(t) because τ(t) ≤ t.

Remark 3 The Bs in (2.3), (2.12) and (2.13) are the same. Thus, xs (from (2.3)), yts (from
(2.12)) and zts (from (2.13)) define a coupling between the curves ps, qts and gts.

Our proof strategy is as follows:
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1. In Lemma 6, we demonstrate that the divergence between ps (discretized Langevin)
and qts (exact Langevin) can be represented as a curve gts.

2. In Lemma 7, we demonstrate that the “decrease in F (pt) due to exact Langevin” given
by d

ds
F (qts)

∣∣
s=t

is sufficiently negative.

3. In Lemma 8, we show that the “discretization error” given by d
ds

(F (ps)− F (qts))
∣∣
s=t

is
small.

4. Added together, they imply that d
ds
F (ps)

∣∣
s=t

is sufficiently negative.

Lemma 6 For all x ∈ Rd and t ∈ R+,

d

ds
gts(x)

∣∣∣∣
s=t

= (
d

ds
ps(x)− d

ds
qts(x))

∣∣∣∣
s=t

.

Lemma 7 For all s, t ∈ R+,
d

ds
F (qts) = −‖Dqts‖

2
∗.

Lemma 8 For all t ∈ R+,

d

ds

(
F (ps)− F (qts)

)∣∣∣∣
s=t

≤
(

2L2h
√

Epτ(t) [‖x‖2
2] + 2L

√
hd
)
· ‖Dpt‖∗.

2.4.3 Proof of Main Theorems

We now state the lemmas needed to prove Theorem 1. We first establish a notion of strong
convexity of F (µ) with respect to W2 metric.

Lemma 9 For all µ0,µ1 ∈ P(Rd) and t ∈ [0, 1], let µt : [0, 1] → P(Rd) be the constant-
speed geodesic between µ0 and µ1. If log p∗(x) is m strongly convex, then

F (µt) ≤ (1− t)F (µ0) + tF (µ1)− m

2
t(1− t)W 2

2 (µ0,µ1). (2.14)

(Recall from (2.4) that if vµ1
µ0

is the optimal displacement map from µ0 to µ1, then µt =
(Id+ t · vµ1

µ0
)#µ0.)

Equivalently,

F (µ1) ≥ F (µ0) +Dµ0(v
µ1
µ0

) +
m

2
W 2

2 (µ0,µ1). (2.15)

We call this the ”m strong geodesic convexity” of F wrt the W2 distance.

Next, we use the m strong geodesic convexity of F to upper bound F (µ) − F (p∗) by
1

2m
‖Dµ‖2

∗ (for any µ ∈ P(Rd)). This is analogous to how f(x)− f(x∗) ≤ 1
2m
‖∇f(x)‖2

2 for
standard m strongly convex functions in Rd.
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Lemma 10 Under our assumption that − log p∗(x) is m strongly convex, we have that for
all µ ∈P(Rd),

F (µ)− F (p∗) ≤ 1

2m
‖Dµ‖2

∗.

Now, recall pt from (2.3). We use strong convexity to obtain a bound on Ept [‖x‖2
2] for all

t. This will be important for bounding the discretization error in conjunction with Lemma 8.

Lemma 11 Let pt be as defined in (2.3). If p0 is such that Ep0 [‖x‖2
2] ≤ 4d

m
, and h ≤ 1

L
in

the definition of (2.3), then for all t ∈ R+,

Ept‖x‖2 ≤ 4d

m
.

Finally, we put everything together to prove Theorem 1.

Proof of Theorem 1

We first note that h = mε
16L2 ≤ 1

L
.

By Lemma 11, for all t, Ept [‖x‖2
2] ≤ 4d

m
. Combined with Lemma 8, we get that for all

t ∈ R+

d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤

(
4L2h

√
d

m
+ 2L

√
hd

)
· ‖Dpt‖∗.

Suppose that F (pt)− F (p∗) ≥ ε, and let

h =
mε

16dL2
≤ 1

16
min

{
m

L2

√
ε

d
,
mε

L2d

}
.

Then ∀t

d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤

(
4L2h

√
d

m
+ 2L

√
hd

)
≤ 1

2

√
mε‖Dpt‖∗ ≤

1

2
‖Dpt‖2

∗,

where the last inequality holds because Lemma 10 and the assumption that F (pt)−F (p∗) ≥ ε
together imply that ‖Dpt‖∗ ≥

√
2mε.

So combining Lemma 7 and Lemma 6, we have

d

dt
F (pt) =

d

ds
F (qts)

∣∣∣∣
s=t

+
d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤ −‖Dpt‖2
∗ +

1

2
‖Dpt‖2

∗

= −1

2
‖Dpt‖2

∗

≤ −m(F (pt)− F (p∗)), (2.16)
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where the last line once again follows from Lemma 10.
To handle the case when F (pt)− F (p∗) ≤ ε, we use the following argument:

1. We can conclude that F (pt)− F (p∗) > ε implies d
dt
F (pt) ≤ 0.

2. By the results of Lemma 20 and Lemma 21, for all t, |p′t| is finite and ‖Dpt‖ is finite,
so d

dt
F (pt) is finite and F (pt) is continuous in t.

3. Thus, if F (pt) ≤ ε for some t ≤ kh, then F (ps) ≤ ε for all s ≥ t as F (pt) > ε implies
d
dt
F (pt) ≤ 0 and F (pt) is continuous in t. Thus F (pkh)− F (p∗) ≤ ε.

Thus, we need only consider the case that F (pt) > ε for all t ≤ kh. This means that
(2.16) holds for all t ≤ kh.

By Gronwall’s inequality, we get

F (pkh)− F (p∗) ≤ (F (p0)− F (p∗)) exp(−mkh).

We thus need to pick

k =
1
m

log F (p0)−F (p∗)
ε

h
= 16

L2

m2

d log F (p0)−F (p∗)
ε

ε
.

Using the fact that p0 = N(0, 1
m

). Using L-smoothness and m strong convexity, we can
show that

− log p∗(x) ≤ L

2
‖x‖2

2 +
d

2
log(

2π

m
),

and

log p0(x) = −m
2
‖x‖2

2 −
d

2
log(

2π

m
).

We thus get that F (p0)− F (p∗) = KL (p0‖p∗) ≤ dL
m

, so

k = 16
L2

m2

d log dL
mε

ε
.

�

The proof of Theorem 2 is quite similar to that of Theorem 1, so we defer it to Appendix
A.

2.5 Related Work

The first explicit proof of non-asymptotic convergence of overdamped Langevin MCMC
for log-smooth and strongly log-concave distributions was given by Dalalyan [20], where it
was shown that discrete, overdamped Langevin diffusion achieves ε error, in total variation
distance, in O

(
d
ε2

)
steps. Following this, Durmus et al. [29] proved that the same algorithm
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achieves ε error, in 2-Wasserstein distance, in O
(
d
ε2

)
steps. We remark that the proofs

of Lemma 8, 11 and 17 are essentially taken from [29]. Recently Raginsky et al. [72] and
Dalalyan and Karagulyan [21] also analyzed convergence of Langevin MCMC with stochastic
gradient updates. Asymptotic guarantees for Langevin MCMC was established much earlier
by Gelfand and Mitter [38], Roberts and Tweedie [75].

Our work also relies heavily on the theory established in the book of Ambrosio, Gigli
and Savare [2], which studies the underlying probability distribution p̄t induced by (2.2) as
a gradient flow in probability space. This allows us to view (2.3) as a deterministic convex
optimization procedure over the probability space, with KL-divergence as the objective. This
beautiful line of work relating SDEs with gradient flows in probability space was begun by
Jordan, Kinderlehrer and Otto [45]. We refer any interested reader to an excellent survey by
Santambrogio in [76].

Finally, we remark that the theory in [2] has some very interesting connections with the
study of normalization flows in [73] and [55]. For example, the tangent velocity of (2.2),
given by vt = ∇ log p∗ −∇ log pt, can be thought of as a deterministic transformation that
induces a normalizing flow.
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Chapter 3

Underdamped Langevin MCMC and
Acceleration

3.1 Introduction

In this chapter, we study the continuous time underdamped Langevin diffusion represented
by the following stochastic differential equation (SDE):

dvt = −γvtdt− u∇U(xt)dt+ (
√

2γu)dBt (3.1)

dxt = vtdt,

where (xt, vt) ∈ R2d, U is a twice continuously-differentiable function and Bt represents
standard Brownian motion in Rd. Under fairly mild conditions, it can be shown that the
invariant distribution of the continuous-time process (3.1) is proportional to exp(−(U(x) +
‖v‖2

2/2u)). Thus the marginal distribution of x is proportional to exp(−U(x)). There is a
discretized version of (3.1) which can be implemented algorithmically, and provides a useful
way to sample from p∗(x) ∝ e−U(x) when the normalization constant is not known.

We establish the convergence of SDE (3.1) as well as its discretization to the invariant
distribution p∗. This provides explicit rates for sampling from log-smooth and strongly log-
concave distributions using the underdamped Langevin Markov chain Monte Carlo (MCMC)
algorithm (Algorithm 1).

Underdamped Langevin diffusion is particularly interesting because it contains a Hamil-
tonian component, and its discretization can be viewed as a form of Hamiltonian MCMC.
Hamiltonian MCMC [see review of HMC in 5, 63] has been empirically observed to con-
verge faster to the invariant distribution compared to standard Langevin MCMC which is a
discretization of overdamped Langevin diffusion that we studied in Chapter 2:

dxt = −∇U(xt)dt+
√

2dBt, (3.2)

the first order SDE corresponding to the high friction limit of (3.1). This chapter provides a
non-asymptotic quantitative explanation for these observations.
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3.2 Assumptions and Definitions

In this section, we present basic definitions and notational conventions. Throughout, we let
‖v‖2 denote the Euclidean norm, for a vector v ∈ Rd.

3.2.1 Assumptions on U

We make the following assumptions regarding the function U .

(A1) The function U is twice continuously-differentiable on Rd and has Lipschitz continuous
gradients; that is, there exists a positive constant L > 0 such that for all x, y ∈ Rd we
have

‖∇U(x)−∇U(y)‖2 ≤ L‖x− y‖2.

(A2) U is m strongly convex, that is, there exists a positive constant m > 0 such that for all
x, y ∈ Rd,

U(y) ≥ U(x) + 〈∇U(x), y − x〉+
m

2
‖x− y‖2

2.

It is fairly easy to show that under these two assumptions the Hessian of U is positive definite
throughout its domain, with mId×d � ∇2U(x) � LId×d. We define κ = L/m as the condition
number. Throughout the paper we denote the minimum of U(x) by x∗. Finally, we assume
that we have a gradient oracle ∇U(·); that is, we have access to ∇U(x) for all x ∈ Rd.

3.2.2 Underdamped Langevin Diffusion

Throughout the paper we use Bt to denote standard Brownian motion [62]. Next we set up
the notation specific to the continuous and discrete processes that we study in this chapter.

1. Consider the exact underdamped Langevin diffusion defined by the SDE (3.1), with
an initial condition (x0, v0) ∼ p0 for some distribution p0 on R2d. Let pt denote the
distribution of (xt, vt) and let Φt denote the operator that maps from p0 to pt:

Φtp0 = pt. (3.3)

2. One step of the discrete underdamped Langevin diffusion is defined by the SDE

dṽt = −γṽtdt− u∇U(x̃0)dt+ (
√

2γu)dBt (3.4)

dx̃t = ṽsdt,

with an initial condition (x̃0, ṽ0) ∼ p̃0. Let p̃t and Φ̃t be defined analogously to pt and
Φt for (xt, vt).

Note 1: The discrete update differs from (3.1) by using x̃0 instead of x̃t in the drift of
ṽs.

Note 2: We will only be analyzing the solutions to (3.4) for small t. Think of an
integral solution of (3.4) as a single step of the discrete Langevin MCMC.
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Algorithm 1: Underdamped Langevin MCMC

Input : Step size δ < 1, number of iterations n, initial point (x0, 0), smoothness
parameter L and gradient oracle ∇U(·)

1 for i = 0, 1, . . . , n− 1 do
2 Sample (xi+1, vi+1) ∼ Zi+1(xi, vi)
3 end

3.2.3 Stationary Distributions

Throughout the chapter, we denote by p∗ the unique distribution which satisfies p∗(x, v) ∝
exp−(U(x) + 1

2u
‖v‖2

2). It can be shown that p∗ is the unique invariant distribution of (3.1)
[see Proposition 6.1 in 68]. Let g(x, v) = (x, x+ v). We let q∗ be the distribution of g(x, v)
when (x, v) ∼ p∗.

3.3 Main Results

Our main result is a proof that Algorithm 1, a variant of HMC algorithm, converges to ε

error in 2-Wasserstein distance after O
(√

dκ2

ε

)
iterations, under the assumption that the

target distribution is of the form p∗ ∝ exp(−(U(x)), where U is L smooth and m strongly
convex (see section 3.2.1), with κ = L/m denoting the condition number. Compared to the

results of [26] on the convergence of Langevin MCMC in W2 in O
(
dκ2

ε2

)
iterations, this is an

improvement in both d and ε. We also analyze the convergence when we have noisy gradients
with bounded variance and establish non-asymptotic convergence guarantees in this setting.

3.3.1 Algorithm

The underdamped Langevin MCMC algorithm that we analyze in this chapter in shown in
Algorithm 1.

The random vector Zi+1(xi, vi) ∈ R2d, conditioned on (xi, vi), has a Gaussian distribution
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with conditional mean and covariance obtained from the following computations:

E
[
vi+1

]
= vie−2ν − 1

2L
(1− e−2ν)∇U(xi)

E
[
xi+1

]
= xi +

1

2
(1− e−2ν)vi − 1

2L

(
ν − 1

2

(
1− e−2ν

))
∇U(xi)

E
[(
xi+1 − E

[
xi+1

]) (
xi+1 − E

[
xi+1

])>]
=

1

L

[
ν − 1

4
e−4ν − 3

4
+ e−2ν

]
· Id×d

E
[(
vi+1 − E

[
vi+1

]) (
vi+1 − E

[
vi+1

])>]
=

1

L
(1− e−4ν) · Id×d

E
[(
xi+1 − E

[
xi+1

]) (
vi+1 − E

[
vi+1

])>]
=

1

2L

[
1 + e−4ν − 2e−2ν

]
· Id×d.

The distribution is obtained by integrating the discrete underdamped Langevin diffusion (3.4)
up to time δ, with the specific choice of γ = 2 and u = 1/L. In other words, if p(i) is the
distribution of (xi, vi), then Zi+1(xi, vi) ∼ p(i+1) = Φ̃νp

(i). Refer to Lemma 23 in Appendix
B.1 for the derivation.

3.3.2 Convergence under Exact Gradient

Theorem 3 Let p(n) be the distribution of the iterate of Algorithm 1 after n steps starting
with the initial distribution p(0)(x, v) = 1x=x(0) · 1v=0. Let the initial distance to optimum
satisfy ‖x(0) − x∗‖2

2 ≤ D2. If we set the step size to be

ν = min

{
ε

104κ

√
1

d/m+D2
, 1

}

and run Algorithm 1 for n iterations with

n ≥ max

{
208κ2

ε
·
√

d

m
+D2, 2κ

}
· log

(
24
(
d
m

+D2
)

ε

)
,

then we have the guarantee that

W2(p(n), p∗) ≤ ε.

Remark 4 The dependence of the runtime on d, ε is thus Õ
(√

d
ε

)
, which is a significant

improvement over the corresponding O
(
d
ε2

)
runtime of (overdamped) Langevin diffusion by

[26].

We note that the log(24(d/m+D2)/ε) factor can be shaved off by using a time-varying step
size.
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3.3.3 Convergence under Stochastic Gradient

Now we state convergence guarantees when we have access to noisy gradients, ∇̂U(x) =
∇U(x) + ξ, where ξ is a independent random variable that satisfies

1. The noise is unbiased : E [ξ] = 0.

2. The noise has bounded variance : E[‖ξ‖2
2] ≤ dσ2.

Each step of the dynamics is now driven by the SDE,

dv̂t = −γv̂tdt− u∇̂U(x̂0)dt+ (
√

2γu)dBt (3.5)

dx̂t = v̂sdt,

with an initial condition (x̂0, v̂0) ∼ p̂0. Let p̂t and Φ̂t be defined analogously to pt and Φt for
(xt, vt) in Section 3.2.2.

Theorem 4 Let p(n) be the distribution of the iterate of Algorithm 3 (presented in Appendix
B.3) after n steps starting with the initial distribution p(0)(x, v) = 1x=x(0) · 1v=0. Let the initial
distance to optimum satisfy ‖x(0) − x∗‖2

2 ≤ D2. If we set the step size to be

ν = min

{
ε

310κ

√
1

d/m+D2
,

ε2L2

1440σ2dκ
, 1

}
,

and run Algorithm 1 for n iterations with

n ≥ max

{
2880κ2σ2d

ε2L2
,
620κ2

ε
·
√

d

m
+D2, 2κ

}
· log

(
36
(
d
m

+D2
)

ε

)
,

then we have the guarantee that

W2(p(n), p∗) ≤ ε.

Remark 5 Note that when the variance in the gradients σ2d is large we recover the rate of
overdamped Langevin diffusion and we need Õ(σ2κ2d/ε2) steps to achieve accuracy of ε in
W2.

3.4 Proof Outline

In this section, we outline the proof of Theorem 3. The proof of Theorem 4 is similar, and
will be relegated to Appendix B.3.

In Section 3.4.1, we establish the convergence rate for the continuous-time SDE (3.1).
In Section 3.4.2, we bound the discretization error between (3.1) and (4.7).
The proof of Theorem 3, given in Section 3.4.3, follows from combining these two results.
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3.4.1 Convergence of the Continuous-Time Process

In this section we prove Theorem 5, which demonstrates a contraction for solutions of the
SDE (3.1). We will use Theorem 5 along with a bound on the discretization error between
(3.1) and (3.4) to establish guarantees for Algorithm 1.

Theorem 5 Let (x0, v0) and (y0, w0) be two arbitrary points in R2d. Let p0 be the Dirac delta
distribution at (x0, v0) and let p′0 be the Dirac delta distribution at (y0, w0). We let u = 1/L
and γ = 2. Then for every t > 0, there exists a coupling ζt(x0, v0, y0, w0) ∈ Γ(Φtp0,Φtp

′
0) such

that

E(xt,vt,yt,wt)∼ζt((x0,v0,y0,w0))

[
‖xt − yt‖2

2 + ‖(xt + vt)− (yt + wt)‖2
2

]
(3.6)

≤ e−t/κ
{
‖x0 − y0‖2

2 + ‖(x0 + v0)− (y0 + w0)‖2
2

}
.

Remark 6 A similar objective function was used in [33] to prove contraction.

Given this theorem it is fairly easy to establish the exponential convergence of the continuous-
time process to the stationary distribution in W2.

Corollary 12 Let p0 be arbitrary distribution with (x0, v0) ∼ p0. Let q0 and Φtq0 be the
distributions of (x0, x0 + v0) and (xt, xt + vt), respectively (i.e., the images of p0 and Φtp0

under the map g(x, v) = (x, x+ v)). Then

W2(Φtq0, q
∗) ≤ e−t/2κW2(q0, q

∗).

Proof
We let ζ0 ∈ Γ(p0, p

∗) be such that Eζ0 [‖x0 − y0‖2
2 + ‖x0 − y0 + v0 − w0‖2

2] = W 2
2 (q0, q

∗). For
every x0, v0, y0, w0 we let ζt(x0, v0, y0, w0) be the coupling as prescribed by Theorem 5. Then
we have,

W 2
2 (qt, q

∗)

(i)

≤ E(x0,v0,y0,w0)∼ζ0

[
E(xt,vt,yt,wt)∼ζt(x0,v0,y0,w0)

[
‖xt − yt‖2

2 + ‖xt − yt + vt − wt‖2
2

∣∣∣x0, y0, v0, w0

]]
(ii)

≤ E(x0,v0,y0,w0)∼ζ0
[
e−t/κ

(
‖x0 − y0‖2

2 + ‖x0 − y0 + v0 − w0‖2
2

)]
(iii)
= e−t/κW 2

2 (q0, q
∗),

where (i) follows as the Wasserstein distance is defined by the optimal coupling and by the
tower property of expectation, (ii) follows by applying Theorem 5 and finally (iii) follows
by choice of ζ0 to be the optimal coupling. One can verify that the random variables
(xt, xt + vt, yt, yt + wt) defines a valid coupling between qt and q∗. Taking square roots
completes the proof. �
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Lemma 13 (Sandwich Inequality) The triangle inequality for the Euclidean norm implies
that

1

2
W2(pt, p

∗) ≤ W2(qt, q
∗) ≤ 2W2(pt, p

∗). (3.7)

Thus we also get convergence of Φtp0 to p∗:

W2(Φtp0, p
∗) ≤ 4e−t/2κW2(p0, p

∗).

Proof of Lemma 13
Using Young’s inequality, we have

‖x+ v − (x′ + v′)‖2
2 ≤ 2‖x− x′‖2

2 + 2‖v − v′‖2
2.

Let γt ∈ Γopt(pt, p
∗). Then

W2(qt, q
∗) ≤

√
E(x,v,x′,v′)∼γt [‖x− x′‖2

2 + ‖x+ v − (x′ + v′)‖2
2]

≤
√

E(x,v,x′,v′)∼γt [3‖x− x′‖2
2 + 2‖v − v′‖2

2]

≤ 2
√

E(x,v,x′,v′)∼γt [‖x− x′‖2
2 + ‖v − v′‖2

2] = 2W2(pt, p
∗).

The other direction follows identical arguments, using instead the inequality

‖v − v′‖2
2 ≤ 2‖x+ v − (x′ + v′)‖2

2 + 2‖x− x′‖2
2.

�

We now turn to the proof of Theorem 5.

Proof of Theorem 5
We will prove Theorem 5 in four steps. Our proof relies on a synchronous coupling argument,
where pt and p′t are coupled (trivially) through independent p0 and p′0, and through shared
Brownian motion Bt.

Step 1: By the definition of the continuous time process (3.1), we get

d

dt
[(xt + vt)− (yt + wt)] =− (γ − 1)vt − u∇U(xt)− {−(γ − 1)wt − u∇U(yt)} .

The two processes are coupled synchronously which ensures that the Brownian motion terms
cancel out. For ease of notation, we define zt , xt − yt and ψt , vt − wt. As U is twice
differentiable, by Taylor’s theorem we have

∇U(xt)−∇U(yt) =

[∫ 1

0

∇2U(xt + h(yt − xt))dh
]

︸ ︷︷ ︸
,Ht

zt.
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Using the definition of Ht we obtain

d

dt
[zt + ψt] =− ((γ − 1)ψt + uHtzt).

Similarly we also have the following derivative for the position update:

d

dt
[xt − yt] =

d

dt
[zt] = ψt.

Step 2: Using the result from Step 1, we get

d

dt

[
‖zt + ψt‖2

2 + ‖zt‖2
2

]
= −2〈(zt + ψt, zt), ((γ − 1)ψt + uHtzt,−ψt)〉

= −2
[
zt + ψt zt

] [(γ − 1)Id×d uHt − (γ − 1)Id×d
−Id×d Id×d

]
︸ ︷︷ ︸

,St

[
zt + ψt
zt

]
(3.8)

Here (zt + ψt, zt) denotes the concatenation of zt + ψt and zt.
Step 3: Note that for any vector x ∈ R2d the quadratic form x>Stx is equal to

x>Stx = x>
(
St + S>t

2

)
x.

Let us define the symmetric matrix Qt = (St + S>t )/2. We now compute and lower bound
the eigenvalues of the matrix Qt by making use of an appropriate choice of the parameters γ
and u. The eigenvalues of Qt are given by the characteristic equation

det

([
(γ − 1− λ)Id×d

uHt−γId×d
2

uHt−γId×d
2

(1− λ)Id×d

])
= 0.

By invoking a standard result of linear algebra (stated in the appendix as Lemma 28), this is
equivalent to solving the equation

det

(
(γ − 1− λ)(1− λ)Id×d −

1

4
(uHt − γId×d)2

)
= 0.

Next we diagonalize Ht and get d equations of the form

(γ − 1− λ)(1− λ)− 1

4
(uΛj − γ)2 = 0,

where Λj with j ∈ {1, . . . d} are the eigenvalues ofHt. By the strong convexity and smoothness
assumptions we have 0 < m ≤ Λj ≤ L. We plug in our choice of parameters, γ = 2 and
u = 1/L, to get the following solutions to the characteristic equation:

λ∗j = 1±
(

1− Λj

2L

)
.
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This ensures that the minimum eigenvalue of Qt satisfies λmin(Qt) ≥ 1/2κ.
Step 4: Putting this together with our results in Step 2 we have the lower bound

[zt + ψt, zt]
> St [zt + ψt, zt] = [zt + ψt, zt]

>Qt [zt + ψt, zt] ≥
1

2κ

[
‖zt + ψt‖2

2 + ‖zt‖2
2

]
.

Combining this with (3.8) yields

d

dt

[
‖zt + ψt‖2

2 + ‖zt‖2
2

]
≤ −1

κ

[
‖zt + ψt‖2

2 + ‖zt‖2
2

]
.

The convergence rate of Theorem 5 follows immediately from this result by applying Grönwall’s
inequality [Corollary 3 in 25]. �

3.4.2 Discretization Analysis

In this section, we study the solutions of the discrete process (3.4) up to t = δ for some
small δ. Here, δ represents a single step of the Langevin MCMC algorithm. In Theorem
6, we will bound the discretization error between the continuous-time process (3.1) and the
discrete process (3.4) starting from the same initial distribution. In particular, we bound
W2(Φδp0, Φ̃δp0). This will be sufficient to get the convergence rate stated in Theorem 3.
Recall the definition of Φt and Φ̃t from (3.3).

Furthermore, we will assume for now that the kinetic energy (second moment of velocity)
is bounded for the continuous-time process,

∀t ∈ [0, ν] Ept
[
‖v‖2

2

]
≤ EK . (3.9)

We derive an explicit bound on EK (in terms of problem parameters d, L,m etc.) in Lemma
24 in Appendix B.2.

In this section, we will repeatedly use the following inequality:∥∥∥∥∫ t

0

vsds

∥∥∥∥2

2

=

∥∥∥∥1

t

∫ t

0

t · vsds
∥∥∥∥2

2

≤ t

∫ t

0

‖vs‖2
2ds,

which follows from Jensen’s inequality using the convexity of ‖ · ‖2
2.

We now present our main discretization theorem:

Theorem 6 Let Φt and Φ̃t be as defined in (3.3) corresponding to the continuous-time and
discrete-time processes respectively. Let p0 be any initial distribution and assume that the
step size δ ≤ 1. As before we choose u = 1/L and γ = 2. Then the distance between the
continuous-time process and the discrete-time process is upper bounded by

W2(Φνp0, Φ̃νp0) ≤ ν2

√
2EK

5
.
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Proof
We will once again use a standard synchronous coupling argument, in which Φνp0 and Φ̃νp0

are coupled through the same initial distribution p0 and common Brownian motion Bt.
First, we bound the error in velocity. By using the expression for vt and ṽt from Lemma

63, we have

E
[
‖vs − ṽs‖2

2

] (i)
= E

[∥∥∥∥u∫ s

0

e−2(s−r) (∇U(xr)−∇U(x0)) dr

∥∥∥∥2

2

]

= u2E

[∥∥∥∥∫ s

0

e−2(s−r) (∇U(xr)−∇U(x0)dr)

∥∥∥∥2

2

]
(ii)

≤ su2

∫ s

0

E
[∥∥e−2(s−r) (∇U(xr)−∇U(x0))

∥∥2

2

]
dr

(iii)

≤ su2

∫ s

0

E
[
‖(∇U(xr)−∇U(x0))‖2

2

]
dr

(iv)

≤ su2L2

∫ s

0

E
[
‖xr − x0‖2

2

]
dr

(v)
= su2L2

∫ s

0

E

[∥∥∥∥∫ r

0

vwdw

∥∥∥∥2

2

]
dr

(vi)

≤ su2L2

∫ s

0

r

(∫ r

0

E
[
‖vw‖2

2

]
dw

)
dr

(vii)

≤ su2L2EK
∫ s

0

r

(∫ r

0

dw

)
dr =

s4u2L2EK
3

,

where (i) follows from Lemma 63 and v0 = ṽ0, (ii) follows from application of Jensen’s
inequality, (iii) follows as |e−4(s−r)| ≤ 1, (iv) is by application of the L-smoothness property
of U(x), (v) follows from the definition of xr, (vi) follows from Jensen’s inequality and (vii)
follows by the uniform upper bound on the kinetic energy assumed in (3.9), and proven
in Lemma 24. This completes the bound for the velocity variable. Next we bound the
discretization error in the position variable:

E
[
‖xs − x̃s‖2

2

]
= E

[∥∥∥∥∫ s

0

(vr − ṽr)dr
∥∥∥∥2

2

]
≤ s

∫ s

0

E
[
‖vr − ṽr‖2

2

]
dr

≤ s

∫ s

0

r4u2L2EK
3

dr =
s6u2L2EK

15
,

where the equality is by coupling through the initial distribution p0, the first inequality is by
Jensen’s inequality and the second inequality uses the preceding bound. Setting s = δ and by
our choice of u = 1/L we have that the squared Wasserstein distance is bounded as

W 2
2 (Φδp0, Φ̃p0) ≤ EK

(
δ4

3
+
δ6

15

)
.

Given our assumption that δ is chosen to be smaller than 1, this gives the upper bound:

W 2
2 (Φδp0, Φ̃p0) ≤ 2EKδ4

5
.

Taking square roots establishes the desired result. �
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3.4.3 Proof of Theorem 3

From Corollary 12, we have that for any i ∈ {1, . . . , n}
W2(Φνq

(i), q∗) ≤ e−δ/2κW2(q(i), q∗).

By the discretization error bound in Theorem 6 and the Sandwich Inequality (3.7), we get

W2(Φνq
(i), Φ̃νq

(i)) ≤ 2W2(Φνp
(i), Φ̃νp

(i)) ≤ ν2

√
8EK

5
.

By the triangle inequality for W2,

W2(q(i+1), q∗) = W2(Φ̃νq
(i), q∗) ≤ W2(Φνq

(i), Φ̃νq
(i)) +W2(Φνq

(i), q∗) (3.10)

≤ ν2

√
8EK

5
+ e−δ/2κW2(q(i), q∗). (3.11)

Let us define η = e−δ/2κ. Then by applying (3.11) n times we have:

W2(q(n), q∗) ≤ ηnW2(q(0), q∗) +
(
1 + η + . . .+ ηn−1

)
ν2

√
8EK

5

≤ 2ηnW2(p(0), p∗) +

(
1

1− η

)
ν2

√
8EK

5
,

where the second step follows by summing the geometric series and by applying the upper
bound (3.7). By another application of (3.7) we get:

W2(p(n), p∗) ≤ 4ηnW2(p(0), p∗)︸ ︷︷ ︸
,T1

+

(
1

1− η

)
ν2

√
32EK

5︸ ︷︷ ︸
,T2

. (3.12)

Observe that,
1− η = 1− e−δ/2κ ≥ δ/(4κ).

This inequality follows as δ/κ < 1. We now bound both terms T1 and T2 at a level ε/2 to bound

the total error W2(p(n), p∗) at a level ε. Note that choice of δ = εκ−1
√

1/10816 (d/m+D2) ≤
εκ−1

√
5/2048EK (by upper bound on EK in Lemma 24) ensures that,

T2 =

(
1

1− η

)
ν2

√
32EK

5
≤ 4κ

δ

(
δ2

√
32EK

5

)
≤ ε

2
.

To ensure T1 < ε/2 it is enough to ensure that

n >
1

log(η)
log

(
8W2(p(0), p∗)

ε

)
.

In Lemma 25 we establish a bound on W 2
2 (p(0), p∗) ≤ 3(d/m+D2). This motivates our choice

of n > 2κ
δ

log

(
24( d

m
+D2)
ε

)
, which establishes our claim.



CHAPTER 3. UNDERDAMPED LANGEVIN MCMC AND ACCELERATION 28

3.5 Related Work

Hamiltonian Monte Carlo (HMC) is a broad class of algorithms which involve Hamiltonian
dynamics in some form. We refer to Ma et al. [56] for a survey of the results in this area. Among
these, the variant studied in this paper (Algorithm 2), based on the discretization of (3.1), has
a natural physical interpretation as the evolution of a particle’s dynamics under a force field
and drag. This equation was first proposed by Kramers [49] in the context of chemical reactions.
The continuous-time process has been studied extensively [4, 6, 11, 24, 33, 39, 42, 61, 83].

However, to the best of our knowledge, prior to this work, there was no polynomial-
in-dimension convergence result for any version of HMC under a log-smooth or strongly
log-concave assumption for the target distribution. Most closely related to our work is the
recent paper Eberle et al. [33] who demonstrated a contraction property of the continuous-time
process defined in (3.2). That result deals, however, with a much larger class of functions, and
because of this the distance to the invariant distribution scales exponentially with dimension
d. Subsequent to the appearance of the arXiv version of this work, two recent papers also
analyzed and provided non-asymptotic guarantees for different versions of HMC. Lee and
Vempala [52] analyzed Riemannian HMC for sampling from polytopes using a logarithmic
barrier function. Mangoubi and Smith [59] studied a different variant of HMC under similar

assumptions to this paper to get a mixing time bound of O(
√
dκ6.5

ε
) in 1-Wasserstein distance

(same as our result in d and ε but worse in the condition number κ). They also establish mixing
time bounds for higher order integrators (both with and without a Metropolis correction)
which have improved dependence in both d and ε but under a much stronger separability
assumption1.

Also related is the recent work on understanding acceleration of first-order optimization
methods as discretizations of second-order differential equations [50, 81, 84].

1They assume that the potential function f is a sum of d/c functions {fi}
d d

c e
i=1 , where each fi only depends

on a distinct set of c coordinates, for some constant c ∈ N.
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Chapter 4

Non-convex Sampling

4.1 Introduction

We study the problem of sampling from a target distribution of the following form:

p∗(x) ∝ exp (−U(x)) ,

where x ∈ Rd, and the potential function U : Rd 7→ R is L-smooth everywhere and m strongly
convex outside a ball of radius R (see detailed assumptions in Section 4.2.1).

In both optimization and sampling, while the classical theory focused on convex problems,
recent attention has turned to the more broadly useful setting of non-convex problems. While
general non-convex problems are infeasible, it is possible to make reasonable assumptions
that allow theory to proceed while still making contact with practice.

We again study the overdamped Langevin MCMC algorithm, which is a discretization of
the following SDE:

dxt = −∇U(xt)dt+
√

2dBt, (4.1)

whose invariant distribution is p∗(x). We will also study the underdamped Langevin diffusion,
which can be represented by the following SDE:

dxt = utdt , (4.2)

dut = −λ1ut − λ2∇U(xt)dt+
√

2λ1λ2dBt,

where λ1, λ2 > 0 are free parameters. This SDE can also be discretized appropriately to
yield a corresponding MCMC algorithm (Algorithm 1). Second-order methods such as
underdamped Langevin MCMC are particularly interesting as it has been previously observed
both empirically [63] and theoretically [17, 59] that these methods can be faster to converge
than the classical first-order methods.

In this chapter, we show that it is possible to sample from p∗ in time polynomial in the
dimension d and the target accuracy ε (as measured in 1-Wasserstein distance). We also
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show that the convergence depends exponentially on the product LR2. Intuitively, LR2 is
a measure of the non-convexity of U . Our results establish rigorously that as long as the
problem is not “too badly non-convex,” sampling is provably tractable.

Our main results are presented in Theorem 8 and Theorem 9, and can be summarized
informally as follows:

Theorem 7 (informal) Given a potential U that is L-smooth everywhere and strongly-
convex outside a ball of radius R, we can output a sample from a distribution which is ε-close to

p∗(x) ∝ exp (−U(x)) in W1 distance by running Õ
(
ecLR

2
d/ε2

)
steps of overdamped Langevin

MCMC (4.4), or Õ
(
ecLR

2
√
d/ε
)

steps of underdamped Langevin MCMC (Algorithm 2).

Here, c is an explicit positive constant.

For the case of strongly convex U , it has been shown by [17] that the iteration complexity

of Algorithm 2 is Õ(
√
d/ε), improving quadratically upon the best known iteration complexity

of Õ(d/ε2) for overdamped Langevin MCMC [27]. We will find this quadratic speed-up in d
and ε in our setting as well (see Theorem 8 versus Theorem 9).

4.2 Assumptions and Definitions

In this section, we present the basic definitions, notational conventions and assumptions
used throughout the paper. For q ∈ {1, 2} and v ∈ Rd we let ‖v‖q denote the q-norm. For
M ∈ Rd×d, we let ‖M‖2 := sup‖v‖2≤1,v∈Rd ‖Mv‖2. We use Bt to denote standard Brownian

motion [see, e.g., 62].

4.2.1 Assumptions on the potential U

We make the following assumptions on the potential function U :

(A1) The function U is continuously-differentiable on Rd and has Lipschitz-continuous
gradients; that is, there exists a positive constant L > 0 such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖2 ≤ L‖x− y‖2.

(A2) The function has a stationary point at zero:

∇U(0) = 0.

(A3) The function is strongly convex outside of a ball; that is, there exist constants m,R > 0
such that for all x, y ∈ Rd with ‖x− y‖2 > R, we have:

〈∇U(x)−∇U(y), x− y〉 ≥ m‖x− y‖2
2.
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Finally we define the condition number as κ := L/m. Observe that Assumption (A2) is
imposed without loss of generality, because we can always find a stationary point in polynomial
time and shift the coordinate system so that this stationary point of U is at zero. These
conditions are similar to the assumptions made by Eberle [32]. Note that crucially Assumption
(A3) is strictly stronger than the assumption made in recent papers by Durmus and Moulines
[27], Raginsky et al. [72] and Zhang et al. [87]. To see this observe that these papers only
require Assumption (A3) to hold for a fixed y = 0, while we require this condition to hold
for all y ∈ Rd. One can also think of the difference between these two conditions as being
analogous to the difference between strong convexity (outside a ball) and one-point strong
convexity (outside a ball).

4.3 Main Results

In this section, we state our main theorems. Our first result, Theorem 8, shows that
overdamped Langevin MCMC needs O(d/ε2) steps to achieve ε error in Wasserstein distance.
The proof is quite simple, and serves as a warm-up to Theorem 9, which shows that under
Langevin MCMC needs O(

√
d/ε) steps to achieve ε error in Wasserstein distance. This is a

quadratic improvement over the overdamped Langevin MCMC algorithm in terms of d and ε,
which mirrors the results when U is convex.

4.3.1 Overdamped Langevin diffusion

Our first result studies the convergence of overdamped Langevin diffusion, given in (1.4), and
reproduced below for ease of reference:

dyt = −∇U(yt)dt+
√

2dBt. (4.3)

The discretized overdamped Langevin diffusion as

dxt = −∇U
(
xb tδc

)
dt+

√
2dBt, (4.4)

where δ is the step-size of the discretization and b·c denotes the floor function.
Our first result, stated as Theorem 8, establishes the rate at which the distribution of the

solution of Eq. (4.4) converges to p∗.

Theorem 8 Assume that m ≥ exp (−LR2/2)
R2 , and let 0 < ε ≤ dR2√

d/m+R2
be the desired accuracy.

Also let the initial point x(0) be such that ‖x(0)‖2 ≤ R. Then if the step size scales as:

δ =
ε2 exp (−LR2)

210R2d
,
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and number of iterations scales as:

n = Ω̃

(
exp

(
3LR2

2

)
· d
ε2

)
,

we have the following guarantee:

W1(pnδ, p
∗) ≤ ε,

where pnδ is the distribution of xnδ in (4.4) and the distribution p∗(y) ∝ e−U(y).

For potentials where LR2 is a constant, the number of iterations taken by overdamped MCMC
scales as Ω̃(d/ε2). This matches the rate obtained in the strongly log-concave setting by
Durmus and Moulines [27].

Intuitively, LR2 measures the extent of non-convexity. When this quantity is large, it is
possible for U to contain numerous local minima that are deep. It is therefore reasonable
that the runtime of the algorithm should be exponential in this quantity.

The assumption on the strong convexity parameter, m, is made to simplify the presentation
of the theorem. Note that this assumption is without loss of generality, since we can always
take the radius R to be sufficiently large in Assumption (A3). Similarly, our assumption on
the target accuracy can also be easily removed, but we make this assumption in the interest
of clarity.

The proof of Theorem 8 is relegated to Appendix C.3. The proof follows by carefully
combining the continuous-time argument of [32] together with the discretization bound of
[27].

4.3.2 Underdamped Langevin diffusion

In this section, we present our results for underdamped Langevin diffusion. The underdamped
Langevin diffusion is a second-order stochastic process described by the following SDE:

dyt = vtdt, (4.5)

dvt = −2vt −
cκ
L
∇U(yt)dt+

√
4cκ
L
dBt,

where we define the constant:

cκ :=1/(1000κ), (4.6)

where κ = L/m is the condition number. Similar to the case of overdamped Langevin diffusion,

it can be verified that the invariant distribution of the SDE is p∗(y, v) ∝ e−U(y)− L
2cκ
‖v‖22 . This

ensures that the marginal along y is the distribution that we are interested in. Based on the
SDE in Eq. (4.5), we define the discretized underdamped Langevin diffusion as:

dxt = utdt, (4.7)

dut = −2ut −
cκ
L
∇U

(
xb tδcδ

)
dt+

√
4cκ
L
dBt,
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where δ is the step size of discretization. The SDE in Eq. (4.7) is implementable as the
following algorithm:

Algorithm 2: Underdamped Langevin MCMC

Input : Step-size δ < 1, number of iterations n, initial point (x(0), 0), smoothness
parameter L, condition number κ and gradient oracle ∇U(·).

1 for i = 0, 1, . . . , n− 1 do
2 Sample (x(i+1)δ, u(i+1)δ) ∼ Z(i)(xiδ, uiδ)
3 end

In this algorithm Z(i)(xiδ, uiδ) ∈ R2d is a Gaussian random vector with the following mean
and covariance (which are functions of the previous iterates (xiδ, uiδ)):

E
[
u(i+1)δ

]
= uiδe

−2δ − cκ
2L

(1− e−2δ)∇U(xiδ) ,

E
[
x(i+1)δ

]
= xiδ +

1

2
(1− e−2δ)uiδ −

cκ
2L

(
δ − 1

2

(
1− e−2δ

))
∇U(xiδ) ,

E
[(
x(i+1)δ − E

[
x(i+1)δ

]) (
x(i+1)δ − E

[
x(i+1)δ

])>]
=
cκ
L

[
δ − 1

4
e−4δ − 3

4
+ e−2δ

]
· Id×d ,

E
[(
u(i+1)δ − E

[
u(i+1)δ

]) (
u(i+1)δ − E

[
u(i+1)δ

])>]
=
cκ
L

(1− e−4δ) · Id×d ,

E
[(
x(i+1)δ − E

[
x(i+1)δ

]) (
u(i+1)δ − E

[
u(i+1)δ

])>]
=

cκ
2L

[
1 + e−4δ − 2e−2δ

]
· Id×d .

We show that the iterates at round i of Algorithm 2 and the solution to the SDE in Eq. (4.7)
at time t = iδ have the same distribution (see Lemma 64 in Appendix C.8).

In Theorem 9, we establish a bound on the rate at which the distribution of the iterates
produced by this algorithm converge to the target distribution p∗.

Theorem 9 Assume that m ≥ exp (−6LR2)
64R2 and let 0 < ε ≤ dR2√

d/m+R2
be the desired accuracy.

Also let the initial point x(0) be such that ‖x(0)‖2 ≤ R. Assume also that e72LR2 ≥ 2.
Then if the step size scales as:

δ =
ε

R +
√
d/m

· e−12LR2 · 2−35 min

(
1

LR2
,

1

κ

)
,

and the number of iterations as:

n = Ω̃

(√
d

ε
exp

(
18LR2

))
,

we have the guarantee that

W1(pnδ, p
∗) ≤ ε,

where pnδ is the distribution of xnδ and we have p∗(y) ∝ e−U(y).
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If we consider potentials for which LR2 is a constant, the iteration complexity of underdamped
Langevin MCMC grows as Õ(

√
d/ε), which is a quadratic improvement over the first-order

overdamped Langevin MCMC algorithm. Again, the iteration complexity grows exponentially
in LR2 which is to be expected. As before, the condition on the strong convexity parameter
and the target accuracy is made in the interest of clarity and can be removed..

4.4 Proof Outline

In this section, we sketch the proof of Theorem 9. The heart of the proof of this theorem is
a somewhat intricate coupling argument. We begin by defining two processes, (xt, ut) and
(yt, vt), and then couple them appropriately. The first set of variables, (xt, ut), represent
a solution to the discretized SDE in Eq. (4.7). On the other hand, the variables (yt, vt)
represent a solution of the continuous-time SDE in Eq. (4.5) with the initial conditions being
(y0, v0) ∼ p∗(y, v). Thus the variables (yt, vt) evolve according to the invariant distribution
for all t > 0. The noise that underlies both processes is coupled, and with an appropriate
choice of a Lyapunov function we are able to demonstrate that the distributions of these
variables converge in 1-Wasserstein distance.

In section D.1.2 we explicitly construct a coupling. In section 4.4.3, we describe the
Lyapunov function that we will use. Finally, in the section 4.4.4, we describe how the Lyapunov
function contracts to 0 under the stated coupling, which in turns implies a convergence in
Wasserstein distance.

In Section D.1.2,

4.4.1 A coupling construction

Let β = 1/poly(L, 1/m, d,R, 1/Cm) be a small constant (see proof of Theorem 9 for the exact
value), and let `(x) = q(‖x‖2) be a smoothed approximation of ‖x‖2 at a scale of β, as defined
in (C.2).

Additionally, let ν = 1/poly(L, 1/m, d,R, 1/Cm) be another small constant (see proof of
Theorem 9 for the exact value). In designing our coupling, we ensure that certain values are
only updated at intervals of size ν. These are needed to ensure that the stochastic process
that we work with is sufficiently regular.

While reading the proofs it might be convenient for the reader to think of both β and ν to
be arbitrarily close to zero, and to think of `(x) as equal to ‖x‖2; β and ν do not impact the
bound on the iteration complexity in Theorem 9. For a detailed discussion see Appendix C.2.

We define a time Tsync as

Tsync :=
3 log 100

c2
κ

. (4.8)
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We then choose ν to be such that Tsync
ν

is a positive integer, and define the constant

Cm := min

{
e−6LR2

6000κ(1 + LR2)
,
e−6LR2

200Tsync
,
c2
κ

3

}
(4.9)

= min

{
e−6LR2

213κ(1 + LR2)
,

e−6LR2

229 · log (100) · κ2
,

1

222κ2

}
.

This constant Cm will be the rate at which our Lyapunov function contracts.
With these definitions in place we are ready to define a coupling between variables (xt, ut)

that evolve according to the discretized process described in Eq. (4.11), and variables (yt, vt)
that evolve according to the SDE in Eq. (4.13).

Let the initial conditions for these processes be given by,

(x0, u0) = (x(0), 0),

(y0, v0) ∼ p∗(y, v). (4.10)

Define a variable τt that will be useful in determining how the noise underlying the processes is

coupled. We initialize this variable as follows: τ0 = 0, if
√
‖x0 − y0‖2

2 + ‖x0 − y0 + u0 − w0‖2
2 ≥√

5R, and τ0 = −Tsync otherwise.
Let At and Bt denote independent d-dimensional Brownian motions. We then let the

complete set of variables
(
xt, ut, yt, vt, τb tν c

)
evolve according to the following stochastic

dynamics:

dxt = utdt (4.11)

dut = −2utdt−
cκ
L
∇U

(
xb tδcδ

)
dt+ 2

√
cκ
L
dBt (4.12)

dyt = vtdt (4.13)

dvt = −2vt −
cκ
L
∇U(yt)dt+ 2

√
cκ
L
dBt (4.14)

− 1

{
kν ≥ τb tν c + Tsync

}
·
(

4

√
cκ
L
γtγ

T
t dBt + 2

√
cκ
L
γ̄tγ̄

T
t dAt

)
,

where the functions M, γt and γ̄t are defined as follows:

M(r) :=


1, for r ∈ [β,∞)
1
2

+ 1
2

cos
(
r · 2π

β

)
, for r ∈ [β/2, β]

0, for r ∈ [0, β/2]

γt :=(M(‖zt + wt‖2))1/2 zt + wt
‖zt + wt‖2

γ̄t :=
(
1− (1− 2M(‖zt + wt‖2))2)1/4 zt + wt

‖zt + wt‖2

, (4.15)
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and where for convenience we have defined

zt := xt − yt
wt := ut − vt. (4.16)

Note that the function M essentially is a Lipschitz approximation to the indicator function
1 {r > 0}.

Let us unpack the definition of the SDE. First, note that when the indicator 1
{
kν ≥ τb tν c + Tsync

}
is equal to zero, then both (xt, ut) and (yt, vt) are evolved by the same Brownian motion Bt.
This is called a synchronous coupling between the processes.

Second, when this indicator is equal to one, the processes are evolved by the same
Brownian motion in the directions perpendicular to zt + wt, and (roughly) by the reflected
Brownian motion along the direction zt + wt. This is called a reflection coupling between the
two processes.

In the following lemma, we show that the variables (yt, vt) have the same marginal
distributions as the solution to the SDE defined in Eq. (4.13).

Lemma 14 The dynamics in defined by Eq. (4.13) and Eq. (4.14) is distributionally equivalent
to the dynamics defined by Eq. (4.5).

We give the proof in Appendix C.8. It is easy to verify that (xt, ut) have the same marginal
distribution as the solution to the SDE defined in Eq. (4.11) so we omit the proof.

Finally, we define an update rule for τ which dictates how the noise is coupled. For any
k ∈ Z+, τk is defined as follows:

τk :=

 kν

if

(
kν − τk−1 ≥ Tsync AND

√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 ≥
√

5R

)
τk−1otherwise.

(4.17)

From the dynamics in Eq. (4.14), we see that τk is used for determining whether
(xt, yt, ut, vt) evolves by synchronous or reflection coupling over the interval t ∈ [kν, (k + 1)ν).
From its definition in Eq. (4.17), we see that, roughly speaking, τk is “the last time (up to

kν) that (zt, wt) ends up outside the ball
√
‖zt‖2

2 + ‖zt + wt‖2
2 =
√

5R,” but with a caveat:

we do not update the value of τk more than once in a Tsync interval of time.
Let (Ω,Ft, P ) be the probability space, where Ft is the σ-algebra generated by (y0, v0),

Bs and As for all s ∈ [0, t). In the following Lemma, we prove that
(
xt, ut, vt, yt, τb tν c

)
has a

unique strong solution (xt, ut, yt, vt, τb tν c)(ω) (ω ∈ Ω), which is adapted to the filtration Ft.
Furthermore, with probability one, (xt, ut, yt, vt)(ω) is t-continuous:

Lemma 15 Let Bt and At be two independent Brownian motions, and let Ft be the σ-algebra
generated by Bs, As; s ≤ t, and (x0, u0, y0, v0).
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For all t ≥ 0, the stochastic process (xt, ut, yt, vt, τb tν c)(ω) defined in Eqs. (4.11)–(4.17)

has a unique solution such that (xs, us, ys, vs) is t-continuous with probability one, and satisfies
the following, for all s ≥ 0,

1. (xs, us, ys, vs, τb sν c) is adapted to the filtration Fs.

2. E
[
‖xs‖2

2 + ‖ys‖2
2 + ‖us‖2

2 + ‖vs‖2
2

]
≤ ∞.

We defer the proof of this lemma to Appendix C.7.
Finally, for notational convenience, we define the following quantities, for any k ∈ Z+:

µk :=1 {kν ≥ τk + Tsync} (4.18)

rt :=(1 + 2cκ)`(zt) + `(zt + wt) (4.19)

∇t :=∇U(xt)−∇U(yt)

∆t :=∇U(xb tδcδ)−∇U(xt). (4.20)

As described above, when µk = 0 the processes are synchronously coupled, and when µk = 1
they are coupled via reflection coupling. Roughly, rt corresponds to the sum of ‖zt‖2 and
‖zt + wt‖2. ∇t is the difference of the gradients of U at xt and yt, while ∆t is the difference
of the gradients at xb tδcδ and xt.

4.4.2 A concave upper bound on ‖·‖2
We follow Eberle [32] in our specification of the distance function f : R+ → R that is used in
the definition of our Lyapunov function.

Let αf and Rf be two positive constants, to be specified later.
We define auxiliary functions ψ, Ψ and g, all mapping from R+ to R+:

h(r) :=


1, for r ∈ [0,Rf ]
1− 1

Rf
(r −Rf ), for r ∈ [Rf , 2Rf ]

0, for r ∈ [2Rf ,∞)

ψ(r) := e−2αf
∫ r
0 h(s)ds , Ψ(r) :=

∫ r

0

ψ(s)ds , (4.21)

g(r) := 1− 1

2

∫ r
0
h(s)Ψ(s)

ψ(s)
ds∫∞

0
h(s)Ψ(s)

ψ(s)
ds
.

Let us summarize some important properties of the functions ψ and g:

• ψ is decreasing, ψ(0) = 1, and ψ(r) = ψ(2Rf ) for any r > 2Rf .

• g is decreasing, g(0) = 1, and g(r) = 1
2

for any r > 2Rf .
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Finally we define f as

f(r) :=

∫ r

0

ψ(s)g(s)ds. (4.22)

In Lemma 55 in Appendix C.5, we state and prove various several useful properties of the
distance function f . Most importantly, f is designed to be concave, and f(r) ≥ C · r for
some constant C.

4.4.3 Lyapunov Function

In this section, we define a Lyapunov function that will be useful in demonstrating that the
distributions of (xt, ut) and (yt, vt) converge in 1-Wasserstein distance. Let f be as defined in
(4.22), with αf and Rf defined as:

αf :=
L

4
, and, Rf := 12R, (4.23)

Recall the constant Cm defined in (4.9).
Additionally define the stochastic processes:

ξt =

∫ t

0

e−Cm(t−s)cκ

∥∥∥xs − xb sδcδ∥∥∥2
ds, (4.24)

σt =

∫ t

0

µb sν c · e
−Cm(t−s) · 1

{
rs ≥

√
12R

}
4rsds, (4.25)

φt =

∫ t

0

µb sν c · e
−Cm(t−s)

〈
∇ws(f(rs)), 4

√
cκ
L

(
γsγ

T
s dBs +

1

2
γ̄sγ̄

T
s dAs

)〉
. (4.26)

The processes ξt and σt will be used to track the discretization error arising due to the time
increments δ and ν. We refer to Lemma 62 in Appendix C.7 for a proof of the existence of φt.

The following stochastic process Lt acts as our Lyapunov function:

Lt := µk · (f(rt)− ξt) + (1− µk) · exp (−Cm(t− τk)) · (f(rτk)− ξτk)− (σt + φt), (4.27)

where k :=
⌊
t
ν

⌋
. Note that Lt (the Lyapunov function at time t) depends on rτk (at time

τk). In Lemma 50, we demonstrate that this function contracts at a rate of e−Cmt. The
convergence bound then follows by showing that the convergence of this Lyapunov function
implies convergence of the distributions in 1-Wasserstein distance.

4.4.4 Proof Sketch

We present a full proof of Theorem 9 in Appendix C.4. In this section we provide a high-level
sketch of our proof.

The proof proceeds by a path-wise analysis of the evolution of the Lyapunov function. In
Figure 4.1a, we illustrate a sample path of the process when d = 1 (the d > 1 case is identical,
but harder to draw on paper).
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(a) Illustration of Coupling (b) Update for τ and ν

First, let us highlight the features of the figure.

1. The red circle represents the set
√
‖zt‖2

2 + ‖zt + wt‖2
2 =
√

5R. It affects the updates of

τb tν c, which, in turn, dictates how the processes are coupled.

2. The orange circle represents
√
‖zt‖2

2 + ‖zt + wt‖2
2 = 23

50
·
√

5R. In relation to the red

circle, it represents the contraction of
√
‖zt‖2

2 + ‖zt + wt‖2
2 when evolved according to

synchronous coupling.

3. The space enclosed by the dark green diamond represents (1 + 2cκ)‖zt‖2 + ‖zt + wt‖2 ≤√
5R. It is is contained in the set

√
‖zt‖2

2 + ‖zt + wt‖2
2 ≤
√

5R.

4. The space enclosed by the light green diamond represents 2((1 + 2cκ)‖zt‖2 + ‖zt + wt‖2) ≤
2 · 23

50

√
5R. It contains the set (1 + 2cκ)‖zt‖2 + ‖zt + wt‖2 ≤

23
50
·
√

5R.

5. It is not shown, but note that the red quarter circle is contained in (1 + 2cκ)‖zt‖2 +

‖zt + wt‖2 ≤
√

12R, which is the radius Rf used for defining f in Eq. (4.23).

6. The brown squiggly lines (t0 → t1) and (t2 → t3) represent the evolution of the process
under reflection coupling.

7. The black line t1 → t2 represents the evolution of the process under synchronous
coupling.

Below, we describe how (zt, wt) evolves over t ∈ [t0, t3], and illustrate the main ideas behind
the proof. To simplify matters, assume that
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1. ki := ti/ν are integers, for i = 0, 1, 2, 3.

2. t3 − t2 = Tsync.

3. ξt = σt = 0 as these terms correspond to discretization errors.

4. rt ≈ ‖zt‖2 + (1 + 2cκ)‖zt + wt‖2.

Then

• From t0 → t1:
Suppose that the process starts somewhere inside the red circle and stays inside for until
time t1, then τb tν c = t0 and µb tν c = 1 for t ∈ [t0, t1), and the process (zt, wt) undergoes

reflection coupling.

In this case, we can show that when rt ≤
√

12R then f(rt) − φt contracts at a rate
of exp(−Cmt) with probability one (see Lemma 33). This in turn implies that our
Lyapunov function Lt also contracts at the same rate with probability one (see Lemma 53
and Lemma 54).

• From t1 → t2:
At t = t1, we update τk1 so that τk1 = t1. Thus µs = 0 for all s ∈ [t1, t2). Dur-
ing this period, (zt, wt) evolves under synchronous coupling. In Lemma 37, we show

that
√
‖zt2‖

2
2 + ‖zt2 + wt2‖

2
2 ≤

23
50

√
‖zt1‖

2
2 + ‖zt1 + wt1‖

2
2. This implies that f(rt2) ≤

e−Cm(t2−t1)f(rt1) (Lemma 34). Again, this contraction is with probability one. Intu-
itively, we use synchronous coupling because when the value of ‖zt‖2 + ‖zt + wt‖2 is
large, Assumption (A3) guarantees contraction even in the absence of noise.

This contraction in f consequently results in a contraction of the Lyapunov function
(see Lemma 52).

• After a duration Tsync of synchronous coupling, we have µk2 = 1 and we resume reflection
coupling over [t2, t3]. Note that at t = t2, the Lyapunov function Lt, undergoes a jump
in value, from exp (−Cm(t2 − t1))f(rt1) to f(rt2) (see (4.27)). We show in Lemma 51
that this jump is negative with probability one.

4.5 Related Work

A convergence rate for overdamped Langevin diffusion, under assumptions (A1) – (A3) (see
Section 4.2.1) has been established by [32], but the continuous-time diffusion studied in that
paper is not implementable algorithmically. In a more algorithmic line of work, [20] bounded
the discretization error of overdamped Langevin MCMC, and provided the first nonasymptotic
convergence rate of overdamped Langevin MCMC under log-concavity assumptions. This was
followed by a sequence of papers in the strongly log-concave setting [see, e.g., 16, 21, 27, 30].



CHAPTER 4. NON-CONVEX SAMPLING 41

Our result for overdamped Langevin MCMC is in line with this existing work; indeed, we
combine the continuous-time convergence rate of Eberle [32] with a variant of the discretization
error analysis by Durmus and Moulines [27]. The final number of timesteps needed is

Õ(ecLR
2
d/ε2), which is expected, as the rate of [32] is O(e−cLR

2
) (for the continuous-time

process) and the iteration complexity established by [27] is Õ(d/ε2).
On the other hand, convergence of underdamped Langevin MCMC under (strongly)

log-concave assumptions was first established by Cheng et al. [17]. Also very relevant to
our results is the work of Eberle et al. [33], who demonstrated a contraction property of the
continuous-time process stated in Eq. (4.2). That result deals, however, with a much larger
class of potential functions, and accordingly the distance to the invariant distribution scales
exponentially with dimension d. Our analysis yields a more favorable result by combining
ideas from both Eberle et al. [33] and Cheng et al. [17], under new assumptions; see Section
4.3.2 for a full discussion.

Also noteworthy is the fact that the problem of sampling from non-log-concave distributions
has been studied by [72], but under weaker assumptions, with a worst-case convergence rate
that is exponential in d. In [85], this technique is used to study the application of Stochastic
Gradient Langevin Diffusion (and its variance-reduced version) to non-convex optimization.
Similarly, Durmus and Moulines [27] analyze the overdamped Langevin MCMC algorithm
under the assumption that U is superlinear outside a ball. This is more general than our
assumption of “strong convexity outside a ball”; in this setting, the authors prove a rate that
is exponential in dimension. On the other hand, [37] established a poly(d, 1/ε) convergence
rate for sampling from a distribution that is close to a mixture of Gaussians, where the
mixture components have the same variance (which is subsumed by our assumptions).

Finally, there is a large class of sampling algorithms known as Hamiltonian Monte Carlo
(HMC), which involve Hamiltonian dynamics in some form. We refer to Ma et al. [56] for a
survey of the results in this area. Among these, the variant studied in this paper (Algorithm
2), based on the discretization of the SDE in Eq. (4.2), has a natural physical interpretation
as the evolution of a particle’s dynamics under a viscous force field. This model was first
studied by Kramers [49] in the context of chemical reactions. The continuous-time process
has been studied extensively [4, 6, 11, 24, 33, 39, 42, 61, 83]. Four recent papers—Mangoubi
and Smith [59], Lee and Vempala [52], Mangoubi and Vishnoi [60] and [23]—study the
convergence rate of (variants of) HMC under log-concavity assumptions. In [34], the authors
study the convergence of HMC on general metric state spaces. Bou-Rabee et al. [8] study the
convergence of HMC under assumptions similar to ours, and prove a convergence rate that
depends on ecLR

2
for some constant c. We remark that the algorithm studied in this case is

different from the underdamped Langevin MCMC algorithm, because of the incorporation of
an accept-reject step.
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Part III

Optimization as Sampling
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Chapter 5

Stochastic Gradient and Langevin
Processes

5.1 Introduction

Stochastic Gradient Descent (SGD) is one of the workhorses of modern machine learning.
In many non-convex optimization problems, such as training deep neural networks, SGD is
able to produce solutions with good generalization error; indeed, there is evidence that the
generalization error of an SGD solution can be significantly better than that of Gradient
Descent (GD) [41, 44, 47]. This suggests that, to understand the behavior of SGD, it is not
enough to consider the limiting cases such as small step size or large batch size where it
degenerates to GD. In this paper, we take an alternate view of SGD as a sampling algorithm,
and aim to understand its convergence to an appropriate stationary distribution.

There has been rapid recent progress in understanding the finite-time behavior of MCMC
methods, by comparing them to stochastic differential equations (SDEs), such as the Langevin
diffusion. It is natural in this context to think of SGD as a discrete-time approximation of an
SDE. There are, however, two significant barriers to extending previous analyses to the case
of SGD. First, these analysis are often restricted to isotropic Gaussian noise, whereas the
noise in SGD can be far from Gaussian. Second, the noise depends significantly on the current
state (the optimization variable). For instance, if the objective is an average over training
data with a nonnegative loss, as the objective approaches zero the variance of minibatch SGD
goes to zero. Any attempt to cast SGD as an SDE must be able to handle this kind of noise.

This motivates the study of Langevin MCMC-like methods that have a state-dependent
noise term:

w(k+1)δ = wkδ − δ∇U(wkδ) +
√
δξ(wkδ, ηk), (5.1)

where wt ∈ Rd is the state variable at time t, δ is the step size, U : Rd → R is a (possibly
non-convex) potential, ξ : Rd × Ω → Rd is the noise function, and ηk are sampled i.i.d.
according to some distribution over Ω (for example, in minibatch SGD, Ω is the set of subsets
of indices in the training sample).
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Throughout this paper, we assume that Eη [ξ(x, η)] = 0 for all x. We define a matrix-
valued function M(·) : Rd → Rd×d to be the square root of the covariance matrix of ξ; i.e.,
for all x, M(x) :=

√
Eη [ξ(x, η)ξ(x, η)T ], where for a positive semidefinite matrix G, A =

√
G

is the unique positive semidefinite matrix such that A2 = G.
In studying the generalization behavior of SGD, earlier work [41, 44] propose that (5.1)

be approximated by the stochastic process y(k+1)δ = ykδ − δ∇U(ykδ) +
√
δM(ykδ)θk where

θk ∼ N (0, I), or, equivalently:

dyt = −∇U(ykδ)dt+M(ykδ)dBt (5.2)

for t ∈ [kδ, (k + 1)δ],

with Bt denoting standard Brownian motion [46]. Specifically, the non-Gaussian noise ξ(·, η)
is approximated by a Gaussian variable M(·)θ with the same covariance, via an assumption
that the minibatch size is large and an appeal to the central limit theorem.

The process in (5.2) can be seen as the Euler-Murayama discretization of the following
SDE:

dxt = −∇U(xt)dt+M(xt)dBt. (5.3)

We let p∗ denote the invariant distribution of (5.3). Note the similarity between (5.3) and
(1.4); the key difference is in M(xt), the diffusion coefficient.

We prove quantitative bounds on the discretization error between (5.2), (5.1) and (5.3), as
well as convergence rates of (5.2) and (5.1) to p∗. Our bounds are in 1-Wasserstein distance
(denoted by W1(·, ·) in the following). We present the full theorem statements in Section 5.4,
and summarize our contributions below:

1. In Theorem 10, we bound the discretization error between (5.2) and (5.3). Informally,
Theorem 10 states:

1. If x0 = y0, then for all k, W1(xkδ, ykδ) = O(
√
δ) ;

2. For n ≥ Õ

(
1

δ

)
, W1(p∗, Law(ynδ)) = O(

√
δ),

where Law(·) denotes the distribution of a random vector. This is a crucial intermediate
result that allows us to prove the convergence of (5.1) to (5.3). We highlight that the
variable diffusion matrix: 1) leads to a very large discretization error, due to the scaling
factor of

√
δ in the M(ykδ)θk noise term, and 2) makes the stochastic process non-contractive

(this is further compounded by the non-convex drift). Our convergence proof relies on a
carefully constructed Lyapunov function together with a specific coupling. Remarkably,
the ε dependence in our iteration complexity is the same as that in Langevin MCMC with
constant isotropic diffusion [29].
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2. In Theorem 11, we bound the discretization error between (5.1) and (5.3). Informally,
Theorem 11 states:

1. If x0 = w0, then for all k, W1(xkδ, wkδ) = O(δ1/8) ;

2. For n ≥ Õ

(
1

δ

)
, W1(p∗, Law(wnδ)) = O(δ1/8).

Notably, the noise in each step of (5.1) may be far from Gaussian, but for sufficiently small
step size, (5.1) is nonetheless able to approximate (5.3). This is a weaker condition than
earlier work, which must assume that the batch size is sufficiently large so that CLT ensures
that the per-step noise is approximately Gaussian.

3. Based on Theorem 10, we predict that for sufficiently small δ, two different processes of the
form (5.1) will have similar distributions if their noise terms ξ have the same covariance
matrix, as that leads to the same limiting SDE (5.3). In Section 5.5, we evaluate this claim
empirically: we design a family of SGD-like algorithms and evaluate their test error at
convergence. We observe that the noise covariance alone is a very strong predictor for the
test error, regardless of higher moments of the noise. This corroborates our theoretical
prediction that the noise covariance approximately determines the distribution of the
solution. This is also in line with, and extends upon, observations in earlier work that the
ratio of batch size to learning rate correlates with test error [41, 44].

5.2 Motivating Example

It is generally difficult to write down the invariant distribution of (5.3). In this section, we
consider a very simple one-dimensional setting which does admit an explicit expression for
p∗, and serves to illustrate some remarkable properties of anisotropic diffusion matrices.

Let us define D(x) := M2(x). Our analysis will be based on the Fokker-Planck equation,
which states that p∗ is the invariant distribution of (5.3) if

0 = div(p∗(x)∇U(x)) + div(p∗(x)Γ(x) +D(x)∇p∗(x)), (5.4)

where Γ(x) is a vector whose ith coordinate equals
∑d

j=1
∂
∂xj

[D(x)]i,j . In the one-dimensional

setting, we can explicitly write down the density of p∗(x). Note that in this case, Γ(x) =

∇D(x). Let V (x) :=
∫ x

0

(
∇U(x)
D(x)

+ ∇D(X)
D(x)

)
dx =

∫ x
0

(
∇U(x)
D(x)

)
dx+ logD(x)− logD(0). We can

verify that p∗(x) ∝ e−V (x) satisfies (5.4).
For a concrete example, let the potential U(x) and the diffusion function M(x) be defined
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as

U(x) :=


1
2
x2, for x ∈ [−1, 4]

1
2
(x+ 2)2 − 1, for x ≤ −1

1
2
(x− 8)2 − 16, for x ≥ 4

M(x) =


1
2
(x+ 2), for x ∈ [−2, 8]

1, for x ≤ −2
6, for x ≥ 8

.

(a) U(x) (b) M(x) (c) V (x) (d) Samples

Figure 5.1: One-dimensional example exhibiting the importance of state-dependent noise:
A simple construction showing how M(x) can affect the shape of the invariant distribution.
While U(x) has two local minima, V (x) only has the smaller minimum at x = −2. Figure 5.1d
represents samples obtained from simulating using the process (5.2). We can see that most
of the samples concentrate around x = −2.

We plot U(x) in Figure 5.1a. Note that U(x) has two local minima: a shallow minimum
at x = −2 and a deeper minimum at x = 8. A plot of M(x) can be found in Figure 5.1b.
M(x) is constructed to have increasing magnitude at larger values of x. This has the effect
of biasing the invariant distribution towards smaller values of x.

We plot V (x) in Figure 5.1c. Remarkably, V (x) has only one local minimum at x = −2.
The larger minimum of U(x) at x = 8 has been smoothed over by the effect of the large
diffusion M(x). This is very different from when the noise is homogeneous (e.g., M(x) = I),
in which case p∗(x) ∝ e−U(x). We also simulate (5.3) (using (5.2)) for the given U(x) and
M(x) for 1000 samples (each simulated for 1000 steps), and plot the histogram in Figure
5.1d.

5.3 Assumptions and Definitions

In this section, we state the assumptions and definitions that we need for our main results in
Theorem 10 and Theorem 11.

Assumption A We assume that U(x) satisfies
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1. The function U(x) is continuously-differentiable on Rd and has Lipschitz continuous
gradients; that is, there exists a positive constant L ≥ 0 such that
for all x, y ∈ Rd, ‖∇U(x)−∇U(y)‖2 ≤ L‖x− y‖2.

2. U has a stationary point at zero: ∇U(0) = 0.

3. There exist positive constants m,LR, R such that for all ‖x− y‖2 ≥ R,

〈∇U(x)−∇U(y), x− y〉 ≥ m‖x− y‖2
2. (5.5)

and for all ‖x− y‖2 ≤ R, ‖∇U(x)−∇U(y)‖2 ≤ LR‖x− y‖2.

Remark 7 The assumption in (5.5) roughly states that “U(x) is convex outside a ball of
radius R”. This assumption, and minor variants, is common in the non-convex sampling
literature [18, 32, 32, 36, 39, 57].

Assumption B We make the following assumptions on ξ and M :

1. For all x, E [ξ(x, η)] = 0.

2. For all x, ‖ξ(x, η)‖2 ≤ β almost surely.

3. For all x, y, ‖ξ(x, η)− ξ(y, η)‖2 ≤ Lξ‖x− y‖2 almost surely.

4. There is a positive constant cm such that for all x, 2cmI ≺M(x).

Remark 8 We discuss these assumptions in a specific setting in Section 5.5.2.

For convenience we define a matrix-valued function N(·) : Rd → Rd×d:

N(x) :=
√
M(x)2 − c2

mI. (5.6)

Under Assumption A, we can prove that N(x) and M(x) are bounded and Lipschitz (see
Lemma 79 and 80 in Appendix D.4). These properties will be crucial in ensuring convergence.

Recall that, given an arbitrary sample space Ω and any two distribution p ∈P(Ω) and
q ∈P(Ω), a joint distribution ζ ∈P(Ω× Ω) is a coupling between p and q if its marginals
are equal to p and q respectively.

For a matrix, we use ‖G‖2 to denote the operator norm: ‖G‖2 = supv∈Rd,‖v‖2=1 ‖Gv‖2.
Finally, we define a few useful constants which will be used throughout the rest of the

chapter:

LN :=
4βLξ
cm

, αq :=
LR + L2

N

2c2
m

,

Rq := max

{
R,

16β2LN
m · cm

}
λ := min

{
m

2
,

2c2
m

32Rq
2

}
exp

(
−7

3
αqRq

2

)
. (5.7)



CHAPTER 5. STOCHASTIC GRADIENT AND LANGEVIN PROCESSES 48

LN is the smoothness parameter of the matrix N(x), and we show in Lemma 80 that
tr
(
(N(x)−N(y))2) ≤ L2

N‖x− y‖
2
2. The constants αq and Rq are used to define a Lyapunov

function q in Appendix D.5.1. A key step in our proof uses the fact that, under the dynamics
(5.2), q contracts at a rate of e−λ, plus discretization error.

5.4 Main Results

In this section, we present our main convergence results beginning with convergence under
Gaussian noise and proceeding to the non-Gaussian case.

Theorem 10 Let xt and yt have dynamics as defined in (5.3) and (5.2) respectively, and
suppose that the initial conditions satisfy E

[
‖x0‖2

2

]
≤ R2 +β2/m and E

[
‖y0‖2

2

]
≤ R2 +β2/m.

Let ε̂ be a target accuracy satisfying ε̂ ≤
(

16(L+L2
N)

λ

)
· exp (7αqRq/3) · Rq

αqRq2+1
. Let δ be a

step size satisfying

δ ≤ min


λ2ε̂2

512β2(L2+L4
N) exp

(
14αqRq2

3

)
2λε̂

(L2+L4
N ) exp

(
7αqRq2

3

)√
R2+β2/m

.

If we assume that x0 = y0, then there exists a coupling between xt and yt such that for
any k,

E [‖xkδ − ykδ‖2] ≤ ε̂

Alternatively, if we assume n ≥ 3αqRq2
δ

log R2+β2/m
ε̂

, then

W1(p∗, pynδ) ≤ 2ε̂

where pyt := Law(yt).

Remark 9 Note that m,L,R are from Assumption A, LN is from (5.7), cm, β, Lξ are from
Assumption B)

Remark 10 Finding a suitable y0 can be done very quickly using gradient descent wrt U(·).
The convergence rate to the ball of radius R is very fast, due to Assumption A.3.

After some algebraic simplifications, we see that for a sufficiently small ε̂, achieving
W1(pynδ, p

∗) ≤ ε̂ requires number of steps

n = Õ

(
β2

ε̂2
· exp

(
14

3
·
(
LR
c2
m

+
16β2L2

ξ

c4
m

)
·max

{
R2,

212β6L2
ξ

m2c4
m

}))
.
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Remark 11 The convergence rate contains a term eR
2
; this term is also present in all of

the work cited in the previous section under Remark 1. Given our assumptions, including
the “convexity outside a ball of radius R” assumption, this dependence is unavoidable as it
describes the time to transit between two modes of the invariant distribution for a simple
double-well potential.

Remark 12 As illustrated in Section 5.5.2, the m from Assumption B.3 should be thought
of as a regularization term which can be set arbitrarily large. In the following discussion, we

will assume that max
{
R2,

β6L2
ξ

m2c4m

}
is dominated by the R2 term.

To gain intuition about this term, let’s consider what it looks like under a sequence of
increasingly weak assumptions:

a. Strongly convex, constant noise: U(x) m strongly convex, L smooth, ξ(x, η) ∼
N (0, I) for all x. (In reality we need to consider a truncated Gaussian so as not to violate
Assumption B.2, but this is a minor issue). In this case, Lξ = 0, cm = 1, R = 0, β = Õ(

√
d),

so k = O( d
ε̂2

). This is the same rate as obtained by [29]. We remark that [29] obtains a W2

bound which is stronger than our W1 bound.
b. Non-convex, constant noise: U(x) not strongly convex but satisfies Assumption

A, and ξ(x, η) ∼ N (0, I). In this case, Lξ = 0, cm = 1, β = Õ(
√
d) This is the setting studied

by [18] and [57]. The rate we recover is k = Õ
(
d

ε̂2
· exp

(
14
3
LR2

))
, which is in line with [18],

and is the best W1 rate obtainable from [57].
c. Non-convex, state-dependent noise: U(x) satisfies Assumption A, and ξ satisfies

Assumption B. To simplify matters, suppose the problem is rescaled so that cm = 1. Then

the main additional term compared to setting b. above is exp
(

64β2L2
ξR

2

c4m

)
. This suggests that

the effect of a Lξ-Lipschitz noise can play a similar role in hindering mixing as a LR-Lipschitz
non-convex drift.

When the dimension is high, computing M(yk) can be difficult, but if for each x, one
has access to samples whose covariance is M(x), then one can approximate M(yk)θk via
the central limit theorem by drawing a sufficiently large number of samples. The proof of
Theorem 10 can be readily modified to accommodate this (see Appendix D.1.5).

We now turn to the non-Gaussian case.

Theorem 11 Let xt and wt have dynamics as defined in (5.3) and (5.1) respectively, and
suppose that the initial conditions satisfy E

[
‖x0‖2

2

]
≤ R2 +β2/m and E

[
‖w0‖2

2

]
≤ R2 +β2/m.

Let ε̂ be a target accuracy satisfying ε̂ ≤
(

16(L+L2
N)

λ

)
· exp (7αqRq/3) · Rq

αqRq2+1
. Let ε :=

λ
16(L+L2

N )
exp

(
−7αqRq2

3

)
ε̂.
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Let T := min
{

1
16L

, β2

8L2(R2+β2/m)
, ε

32
√
Lβ
, ε2

128β2 ,
ε4L2

N

214β2c2m

}
and let δ be a step size satisfying

δ ≤ min

 Tε2L

36dβ2 log
(

36dβ2

ε2L

) , T ε4L2

214dβ4 log
(

214dβ4

ε4L2

)
 .

If we assume that x0 = w0, then there exists a coupling between xt and wt such that for
any k,

E [‖xkδ − wkδ‖2] ≤ ε̂.

Alternatively, if we assume that n ≥ 3αqRq2
δ
· log R2+β2/m

ε̂
, then

W1(p∗, pwnδ) ≤ 2ε̂,

where pwt := Law(wt).

Remark 13 To achieve W1(p
∗, pwnδ) ≤ ε̂, the number of steps needed is of order n =

Õ
(

1
ε̂8
· e29αqRq2

)
. The ε̂ dependency is considerably worse than in Theorem 10. This is

because we need to take many steps of (5.1) in order to approximate a single step of (5.2).
For details, see the coupling construction in Equations (D.8)–(D.12) of Appendix D.2.

5.5 Application to Stochastic Gradient Descent

In this section, we will cast SGD in the form of (5.1). We consider an objective of the form

U(w) =
1

n

n∑
i=1

Ui(w). (5.8)

We reserve the letter η to denote a random minibatch from {1, . . . , n}, sampled with replace-
ment, and define ζ(w, η) as follows:

ζ(w, η) := ∇U(w)− 1

|η|
∑
i∈η

∇Ui(w) (5.9)

For a sample of size one, i.e. |η| = 1, we define

H(w) := E
[
ζ(w, η)ζ(w, η)T

]
(5.10)

as the covariance matrix of the difference between the true gradient and a single sampled
gradient at w. A standard run of SGD, with minibatch size b := |ηk|, then has the following
form:

wk+1 = wk − δ
1

b

∑
i∈ηk

∇Ui(wk)

= wk − δ∇U(wk) +
√
δ
(√

δζ(wk, ηk)
)
. (5.11)
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We refer to an SGD algorithm with step size δ and minibatch size b a (δ, b)-SGD. Notice that
(5.11) is in the form of (5.1), with ξ(w, η) =

√
δζ(w, η). The covariance matrix of the noise

term is

E
[
ξ(w, η)ξ(w, η)T

]
=
δ

b
H(w). (5.12)

Because the magnitude of the noise covariance scales with
√
δ, it follows that as δ → 0, (5.11)

converges to deterministic gradient flow. However, the loss of randomness as δ → 0 is not
desirable as it has been observed that as SGD approaches GD, through either small step size
or large batch size, the generalization error goes up [41, 43, 44, 47]; this is also consistent
with our experimental observations in Section 5.5.3.1.

Therefore, a more meaningful way to take the limit of SGD is to hold the noise term
constant in (5.11). More specifically, we define the constant-noise limit of (5.11) as

dxt = −∇U(xt)dt+M(xt)dBt, (5.13)

where M(x) :=
√

δ
b
H(x). Note that this is in the form of (5.3), with noise covariance M(xt)

2

matching that of SGD in (5.11). Using Theorem 11, we can bound the W1 distance between
the SGD iterates wk from (5.11), and the continuous-time SDE xt from (5.13).

5.5.1 Importance of Noise Covariance

We highlight the fact that the limiting SDE of a discrete process,

wk+1 = wk − s∇U(wk) +
√
sξ(wk, ηk), (5.14)

depends only on the covariance matrix of ξ. More specifically, as long as ξ satisfies√
E [ξ(w, η)ξ(w, η)T ] = M(w), (5.14) will have (5.13) as its limiting SDE, regardless of

higher moments of ξ. This fact, combined with Theorem 11, means that in the limit of δ → 0
and k → ∞, the distribution of wk will be determined by the covariance of ξ alone. An
immediate consequence is the following: at convergence, the test performance of any Langevin
MCMC-like algorithm is almost entirely determined by the covariance of its noise term.

Returning to the case of SGD algorithms, since the noise covariance is M(x)2 = δ
b
H(x)

(see (5.12)), we know that the ratio of step size δ to batch size b is an important quantity which
can dictate the test error of the algorithm; this observation has been made many times in
prior work [41, 44], and our results in this paper are in line with these observations. Here, we
move one step further, and provide experimental evidence to show that more fundamentally,
it is the noise covariance in the constant-noise limit that controls the test error.

To verify this empirically, we propose the following algorithm called large-noise SGD.
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Definition 1 An (s, σ, b1, b2)-large-noise SGD is an algorithm that aims to minimize (5.8)
using the following updates:

wk+1 = wk −
s

b1

∑
i∈ηk

∇Ui(wk) (5.15)

+
σ
√
s

b2

∑
i∈η′k

∇Ui(wk)−
∑
i∈η′′k

∇Ui(wk)

 ,

where ηk, η
′
k, and η′′k are minibatches of sizes b1, b2, and b2, sampled uniformly at random

from {1, . . . , n} with replacement. The three minibatches are sampled independently and are
also independent of other iterations.

Intuitively, an (s, σ, b1, b2)-large-noise SGD should be considered as an SGD algorithm
with step size s and minibatch size b1 and an additional noise term. The noise term computes
the difference of two independent and unbiased estimates of the full gradient ∇U(wk), each
using a batch of b2 data points. Using the definition of ζ in (5.9), we can verify that the
update (5.15) is equivalent to

wk+1 = wk − s∇U(wk) + sζ(wk, ηk) (5.16)

+ σ
√
s(ζ(wk, η

′′
k)− ζ(wk, η

′
k)),

which is in the form of (5.1), with

ξ(w, η̃) =
√
sζ(w, η) + σ(ζ(w, η′′)− ζ(w, η′)), (5.17)

where η̃ = (η, η′, η′′), and |η| = b1, |η′| = |η′′| = b2. Further, the noise covariance matrix is

E
[
ξ(w, η̃)ξ(w, η̃)T

]
= (

s

b1

+
2σ2

b2

)H(w). (5.18)

Therefore, if we have
s

b1

+
2σ2

b2

=
δ

b
, (5.19)

then an (s, σ, b1, b2)-large-noise SGD should have the same noise covariance as a (δ, b)-SGD
(but very different higher noise moments due to the injected noise), and based on our theory,
the large-noise SGD should have similar test error to that of the SGD algorithm, even if the
step size and batch size are different. In Section 5.5.3, we verify this experimentally. We
stress that we are not proposing the large-noise SGD as a practical algorithm. The reason
that this algorithm is interesting is that it gives us a family of (wk)k=1,2,... which converges to
(5.13), and is implementable in practice. Thus this algorithm helps us uncover the importance
of noise covariance (and the unimportance of higher noise moments) in Langevin MCMC-like
algorithms. We also remark that [43] proposed a different way of injecting noise, multiplying
the sampled gradient with a suitably scaled Gaussian noise. This has a similar effect on
maintain the noise covariance independent of changes to step-size/batch-size; they observed
that under this injection, generalization error remained almost constant across different batch
sizes.
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5.5.2 Satisfying the Assumptions

Before presenting the experimental results, we remark on a particular way that a function
U(w) defined in (5.8), along with the stochastic sequence wk defined in (5.15), can satisfy
the assumptions in Section 5.3.

Suppose first that we shift the coordinate system so that ∇U(0) = 0. Let us additionally
assume that for each i, Ui(w) has the form

Ui(w) = U ′i(w) + V (w),

where V (w) := m(‖x‖2 −R/2)2 is a m strongly convex regularizer outside a ball of radius
R, and each U ′i(w) has LR-Lipschitz gradients. Suppose further that m ≥ 4 · LR. These
additional assumptions make sense when we are only interested in U(w) over BR(0), so V (w)
plays the role of a barrier function that keeps us within BR(0). Then, it can immediately be
verified that U(w) satisfies Assumption A with L = m+ LR.

The noise term ξ in (5.17) satisfies Assumption B.1 by definition, and satisfies Assumption
B.3 with Lξ = (

√
s+ 2σ)L. Assumption B.2 is satisfied if ζ(w, η) is bounded for all w, i.e.

the sampled gradient does not deviate from the true gradient by more than a constant. We
will need to assume directly Assumption B.4, as it is a property of the distribution of ∇Ui(w)
for i = 1, . . . , n.

5.5.3 Experiments

In this section, we present experimental results that validate the importance of noise covariance
in predicting the test error of Langevin MCMC-like algorithms. In all experiments, we use
two different neural network architectures on the CIFAR-10 dataset [51] with the standard
test-train split. The first architecture is a simple convolutional neural network, which we call
CNN in the following, and the other is the VGG19 network [79]. To make our experiments
consistent with the setting of SGD, we do not use batch normalization or dropout, and use
constant step size. In all of our experiments, we run SGD algorithm 2000 epochs such that
the algorithm converges sufficiently. Since in most of our experiments, the accuracies on the
training dataset are almost 100%, we use the test accuracy to measure the generalization
performance.

Recall that according to (5.12) and (5.18), for both SGD and large-noise SGD, the noise
covariance is a scalar multiple of H(w). For simplicity, in the following, we will slightly abuse
our terminology and call this scalar the noise covariance; more specifically, for (δ, b)-SGD,
the noise covariance is δ/b, and for an (s, σ, b1, b2)-large-noise SGD, the noise covariance is
s
b1

+ 2σ2

b2
.

5.5.3.1 Accuracy vs Noise Covariance

In our first experiment, we focus on the SGD algorithm, and show that there is a positive
correlation between the noise covariance and the final test accuracy of the trained model. One
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Figure 5.2: Relationship between test accuracy and the noise covariance of SGD algorithm.
In each plot, the dots with the same color correspond to SGD runs with the same batch size
but different step sizes.

major purpose of this experiment is to establish baselines for our experiments on large-noise
SGD.

We choose constant step size δ from

{0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}

and minibatch size b from {32, 64, 128, 256, 512}. For each (step size, batch size) pair, we
plot its final test accuracy against its noise covariance in Figure 5.2. From the plot, we can
see that higher noise covariance leads to better final test accuracy, and there is a linear trend
between the test accuracy and the logarithm. We also highlight the fact that conditioned on
the noise covariance, the test accuracy is not significantly correlated with either the step size
or the minibatch size. In other words, similar to the observations in prior work [41, 44], there
is a strong correlation between relative variance of an SGD sequence and its test accuracy,
regardless of the combination of minibatch size and step size.

5.5.3.2 Large-Noise SGD

In this section, we implement and examine the performance of the large-noise SGD algorithm
proposed in (5.15). We select a subset of SGD runs with relatively small noise covariance in
the experiment in the previous section (we call them baseline SGD runs), and implement
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Figure 5.3: Large-noise SGD. Small dots correspond to all the baseline SGD runs in Figure 5.2.
Each × corresponds to a baseline SGD run whose step size is specified in the legend and
batch size is specified in the title. Each � corresponds to a large-noise SGD run whose noise
covariance is 8 times that of the × with the same color. As we can see, injecting noise
improves test accuracy, and the large-noise SGD runs fall close to the linear trend.
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Figure 5.4: Large-noise SGD. Batch size in the titles represents the batch size of × runs. Each
� corresponds to a large-noise SGD run whose noise covariance matches that of a baseline
SGD run whose step size is the same as the × run with the same color and batch size is 128.
Again, large-noise SGD falls close to the linear trend.

large-noise SGD by injecting noise. Our goal is to see, for a particular noise covariance,
whether large-noise SGD has test accuracy that is similar to SGD, in spite of significant
differences in third-and-higher moments of the noise in large-noise SGD compared to standard
SGD.

Our first experiment is to add noise with the same minibatch size to the (δ, b) baseline
SGD run such that the new noise covariance matches that of an (8δ, b)-SGD (an SGD run

with larger step size). In other words, we implement (δ,
√

7δ/2, b, b)-large-noise SGD, whose
noise covariance is 8 times that of the baseline. Our results are shown in Figure 5.3. Our
second experiment is similar: we add noise with minibatch size 128 to the (δ, b) baseline SGD
run with b ∈ {256, 512} such that the new noise covariance matches that of a (δ, 128)-SGD (an
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SGD run with smaller batch size). More specifically, we implement (δ,
√

1
2
(1− 128

b
)δ, b, 128)-

large-noise SGD runs. The results are shown in Figure 5.4. In these figures, each × denotes a
baseline SGD run, with step size specified in the legend and minibatch size specified by plot
title. For each baseline SGD run, we have a corresponding large-noise SGD run, denoted by �
with the same color. As mentioned, these � runs are designed to match the noise covariance
of SGD with larger step size or smaller batch size. In addition to × and �, we also plot
using a small teal marker all the other runs from Section 5.5.3.1. This helps highlight the
linear trend between the logarithm of noise covariance and test accuracy that we observed in
Section 5.5.3.1.

As can be seen, the (noise variance, test accuracy) values for the � runs fall close to the
linear trend. More specifically, a run of large-noise SGD produces similar test accuracy to
vanilla SGD runs with the same noise variance. We highlight two potential implications:
First, just like in Section 5.5.3.1, we observe that the test accuracy strongly correlates with
relative variance, even for noise of the form (5.17), which can have rather different higher
moments than ζ (standard SGD noise); Second, since the � points fall close to the linear
trend, we hypothesize that the constant-noise limit SDE (5.13) should also have similar test
error. If true, then this implies that we only need to study the potential U(x) and noise
covariance M(x) to explain the generalization properties of SGD.

5.6 Related Work

Previous work has drawn connections between SGD noise and generalization [41, 43, 44, 47, 58].
Notably, He et al. [41], Jastrzebski et al. [44], Mandt et al. [58] analyze favorable properties
of SGD noise by arguing that in the neighborhood of a local minimum, (5.2) is roughly
the discretization of an Ornstein-Uhlenbeck (OU) process, and so the distribution of ykδ
approximates is approximately Gaussian. However, empirical results [43, 47] suggest that
SGD generalizes better by finding better local minima, which may require us to look beyond
the “OU near local minimum” assumption to understand the global distributional properties
of SGD. Indeed, Hoffer et al. [43] suggest that SGD performs a random walk on a random loss
landscape, Kleinberg et al. [48] propose that SGD noise helps smooth out “sharp minima.”
Jastrzebski et al. [44] further note the similarity between (5.1) and an Euler-Murayama
approximation of (5.3). Chaudhari and Soatto [14] also made connections between SGD and
SDE. Our work tries to make these connections rigorous, by quantifying the error between
(5.3), (5.2) and (5.1), without any assumptions about (5.3) being close to an OU process or
being close to a local minimum.

Our work builds on a long line of work establishing the convergence rate of Langevin
MCMC in different settings [18, 20, 29, 36, 39, 54, 57]. We will discuss our rates in relation to
some of this work in detail following our presentation of Theorem 10. We note here that some
of the techniques used in this paper were first used by Eberle [32], Gorham et al. [39], who
analyzed the convergence of (5.3) to p∗ without log-concavity assumptions. Erdogdu et al. [36]
studied processes of the form (5.2) as an approximation to (5.3) under a distant-dissipativity
assumption, which is similar to the assumptions made in this paper. For the sequence (5.2),
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they prove an O(1/ε2) iteration complexity to achieve ε integration error for any loss f which
has bounded derivatives up to fourth order. In comparison, we prove W1 convergence between
Law(ykδ) and p∗, which is equivalent to sup‖∇f‖∞≤1 |E [f(ykδ)]− Ey∼p∗ [f(y)]|, also with rate

Õ(1/ε2). By smoothing the W1 test function to have bounded derivatives up to fourth order,
we believe that the results by Erdogdu et al. [36] can imply a qualitatively similar result to
Theorem 10, but with a worse dimension and ε dependence.

In concurrent work by Li et al. [54], the authors study a process based on a stochastic
Runge-Kutta discretization scheme of (5.3). They prove an Õ

(
d

ε−2/3

)
iteration complexity to

achieve ε error in W2 for an algorithm based on Runge-Kutta discretization of (5.3). They
make a strong assumption of uniform dissipativity (essentially assuming that the process
(5.3) is uniformly contractive), which is much stronger than the assumptions in this paper,
and may be violated in the settings of interest considered in this paper.

There has been a number of works [3, 15, 53] which establish CLT results for SGD with
very small step size (rescaled to have constant variance). This work generally focuses on the
setting of “OU process near a local minimum”, in which the diffusion matrix is constant.

Finally, a number of authors have studied the setting of heavy-tailed gradient noise in
neural network training. [86] showed that in some cases, the heavy-tailed noise can be
detrimental to training, and a clipped version of SGD performs much better. [80] argue
that when the SGD noise is heavy-tailed, it should not be modeled as a Gaussian random
variable, but instead as an α-stable random variable, and propose a Generalized Central Limit
Theorem to analyze the convergence in distribution. Our paper does not handle the setting
of heavy-tailed noise; our theorems require that the norm of the noise term is uniformly
bounded, which will be satisfied, for example, if gradients are explicitly clipped at a threshold,
or if the optimization objective has Lipschitz gradients and the SGD iterates stay within a
bounded region.
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Appendix A

Proofs for Chapter 2

Proof of Lemma 2
The proof is directly from results in [2]. See Theorem 10.4.9, with F(µ|γ) = KL (µ‖γ), with

µ = µ, γ = p∗, σ = µ
p∗

, F (ρ) = ρ log ρ, LF (σ) = σ, and wµ = ∇LF (σ)
σ

= ∇ log µ
p∗

. The

expression for d
dt
F (pt) comes from expression 10.1.16 (section E of chapter 10.1.2, page 233).

See also expressions 10.4.67 and 10.4.68.
(One can also refer to Theorem 10.4.13 and Theorem 10.4.17 for proofs of wµ for the

KL-divergence functional in more general settings.) By Lemma 20, wpt is well defined for all
t. �

Proof of Lemma 3
Theorem 8.3.1 of [2].

�

Proof of Lemma 4
By definition of Dµt(v) in (2.11) and Lemma 2 and Cauchy-Schwarz. �

Proof
Proof of Lemma 6 In this proof, we treat t as a fixed but arbitrary number, and prove the
Lemma for all t ∈ R+. We will use xs, y

t
s, z

t
s, ps, qts and gts as defined in (2.3), (2.12) and

(2.13).
First, consider the case when t = τ(t). By definition, xt = ytt = ztt , and pt = qtt = gtt. By

Fokker Planck,

d

ds
ps(x)

∣∣∣∣
s=t

= −∇U(xt) + tr(∇2pt)

= −∇U(ytt) + tr(∇2qtt)

=
d

ds
qts(x)

∣∣∣∣
s=t

.
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On the other hand

dzts
∣∣
s=t

= −∇U(ztτ(t)) +∇U(ztt) = −∇U(xt) +∇U(xt) = 0.

Thus d
ds

gts
∣∣
s=t

= 0 So Lemma (6) holds.
In the remainder of this proof, we assume that t 6= τ(t).
For a given Θ ∈ R2d, we let Π1(Θ) denote the projection of Θ onto its first d coordinates,

and Π2(Θ) denote the projection of Θ onto its last d coordinates. With abuse of notation,
for P ∈P(R2d), we let Π1(P) and Π2(P) denote the corresponding marginal densities.

We will consider three stochastic processes: Θs,Λ
t
s,Ψ

t
s over R2d for s ∈ [τ(t), τ(t) + h).

First, we introduce the stochastic process Θs for s ∈ [τ(t), τ(t) + h)

Θτ(t) =

[
xτ(t)

−∇U(xτ(t))

]
dΘs =

[
Π2(Θs)

0

]
dt+

[√
2dBt

0

]
for s ∈ [τ(t), τ(t) + h).

We let Ps denote the density for Θs. Intuitively, Ps is the joint density between xs and
−∇U(xτ(t)). One can verify that Π1(Θs) = xs and Π1(Ps) = ps. By Fokker-Planck, we have
∀Θ ∈ R2d

d

ds
Ps(Θ)

∣∣∣∣
s=t

=−∇ ·
(

Pt(Θ) ·
[
Π2(Θ)

0

])
+

d∑
i=1

∂2

∂Θ2
i

Pt(Θ). (A.1)

Next, for any given t, we introduce the stochastic process Λt
s for s ∈ [τ(t), τ(t) + h).

Λt
s = Θs for s ≤ t

dΛt
s =

[
−∇U(Π1(Λt

s))
0

]
ds+

[√
2dBs

0

]
for s ≥ t.

Let Qt
s denote the density for Λt

s. One can verify that Π1(Λ
t
s) = yts and Π1(Q

t
s) = qts. By

Fokker-Planck, we have ∀Θ ∈ R2d

d

ds
Qt
s(Θ)

∣∣∣∣
s=t

=−∇ ·
(

Qt
t(Θ) ·

[
−∇U(Π1(Θ))

0

])
+

d∑
i=1

∂2

∂Θ2
i

Qt
t(Θ). (A.2)
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Finally, define

Ψt
s = Θs for s ≤ t

dΨt
s =

[
Π2(Ψt

s) +∇U(Π1(Ψt
s))

0

]
ds

+

[√
2dBs

0

]
for s ≥ t.

Let Gts denote the density for Ψt
s. One can verify that Π1(Ψ

t
s) = zts and Π1(Gts) = gts. By

Fokker-Planck, we have ∀Θ ∈ R2d.

d

ds
Gts(Θ)

∣∣∣∣
s=t

= −∇ ·
(
Gtt(Θ) ·

[
Π2(Θ) +∇U(Π1(Θ))

0

])
. (A.3)

By definition, Θt = Λt
t = Ψt

t almost surely, and Pt = Qt
t = Gtt . Taking the difference

between (A.1), (A.2) thus gives

d

ds
Ps(Θ)−Qt

s(Θ)

∣∣∣∣
s=t

=−∇ ·
(

Pt(Θ) ·
[
Π2(Θ) +∇U(Π1(Θ))

0

])
=

d

ds
Gts(Θ)

∣∣∣∣
s=t

Finally, marginalizing out the last d coordinates on both sides, and recalling that Π1(Ps) = ps,
Π1(Qt

s) = qts and Π1(Gts) = gts, we prove the Lemma. �

Proof of Lemma 7
The fact that qts is the steepest descent follows from the fact that Fokker-Planck equation for
Langevin diffusion yields, for all x ∈ Rd

d

ds
qts(x) =div(qts(x)∇ log p∗(x)) + tr(∇2qts(x))

=div

(
qts(x)

(
∇ log

p∗(x)

qts(x)

))
.

By definition of (2.6), we get that

vs = ∇ log
p∗(x)

qts(x)
(A.4)

satisfies the continuity equation for qts. By Lemma 2,

wqts = ∇ log

(
qts
p∗

)
.

Thus
d

ds
F (qts) = Dqts(vs) = −Eqts

[
‖wqts‖

2
2

]
= −‖Dqts‖

2
∗,

where the last equality is by Cauchy-Schwarz.
�
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Proof of Lemma 8
Consider zts and gts as defined in (2.13). By Lemma 6, d

ds
gts
∣∣
s=t

= ( d
ds

ps − d
ds

qts)
∣∣
s=t

. The
first variation of F , defined by

lim
ε→0

F (µ + ε∆)− F (µ)

ε
=

∫ (
δF

δµ
(µ)

)
(x) ·∆(x)dx,

is linear (see Chapter 7.2 of [76]). (In the above, ∆ : Rd → R is an arbitrary 0-mean
perturbation). In addition, because pt = qtt = gtt, we have δF

δµ
(pt) = δF

δµ
(qtt) = δF

δµ
(gtt), we get

that
d

ds
F (gts)

∣∣∣∣
s=t

=

(
d

ds
F (ps)−

d

ds
F (qts)

)∣∣∣∣
s=t

.

We will upper bound |gt′s ||s=t, then apply Corollary 5.

|gt′s |
∣∣
s=t

= lim
ε→0

1

ε
W2(gtt+ε,g

t
t)

≤ lim
ε→0

1

ε

√
E
[∥∥ε(∇U(xt)−∇U(xτ(t)))

∥∥2

2

]
=

√
E
[∥∥∇U(xt)−∇U(xτ(t))

∥∥2

2

]
≤
√
E
[
L2‖xt − xτ(t)‖2

2

]
=L

√
E
[
‖(t− τ(t))∇U(xτ(t)) +

√
2(Bt −Bτ(t))‖2

2

]
≤2L(t− τ(t))

√
E
[
‖∇U(xτ(t))‖2

2

]
+ 2L

√
(t− τ(t))d

≤2L(t− τ(t))
√
L2E

[
‖xτ(t)‖2

2

]
+ 2L

√
(t− τ(t))d,

where the first line is by definition of metric derivative, second line is by the coupling between
gtt and gtt+ε) induced by the joint distribution (ztt , z

t
t+ε) and the fact that ztτ(t) = xt. The

fourth line is by Lipschitz-gradient of U(x), fifth line is by definition of xt, sixth line is by
variance of Bt −B0, seventh line is once again by Lipschitz-gradient of U(x).

Thus, we upper bound |gt′s ||s=t by 2L2(t−τ(t))
√
E
[
‖xτ(t)‖2

2

]
+2L

√
(t− τ(t))d. Applying

Corollary 5, and using the fact that for all t, t− τ(t) ≤ h, we get

d

ds
F (gts)

∣∣∣∣
s=t

≤
(

2L2h
√
E
[
‖xτ(t)‖2

2

]
+ 2L

√
hd

)
‖Dgtt

‖∗

≤
(

2L2h
√
E
[
‖xτ(t)‖2

2

]
+ 2L

√
hd

)
‖Dpt‖∗.
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The last line is because gtt = pt by definition.
�

Proof of Lemma 9
By Theorem 9.4.11 of [2], m-strong-convexity of log p∗ implies geodesic convexity. Expression
(2.14) then follows from the definition of geodesic convexity in definition 9.1.1 of [2].

Rearrranging terms, dividing by t and taking limit as t→ 0, we get

F (µ1) ≥ F (µ0) + lim
t→0

F (µt)− F (µ0)

t
+
m

2
W 2

2 (µ0,µ1)

= F (µ0) +Dµ0(v
µ1
µ0

) +
m

2
W 2

2 (µ0,µ1).

The last equality follows by Lemma 2 and by the remark immediately following (2.6).
We remark that the proof of (2.15) is completely analogous to the proof of first-order

characterization of strongly convex functions over Rd.
�

Proof of Lemma 10
We consider (2.15), and use two facts

1. For any µ ∈P(Rd), Dµ(v) is linear in v. (see (2.11))

2. For any µ,ν ∈ P(Rd), W 2
2 (µ,ν) = Eµ‖vνµ(x)‖2

2, by definition of W2 and vνµ as the
optimal displacement map.

We apply Lemma (10) with µ0 = p∗ and µ1 = µ. Let vp
∗

µ be the optimal displacement map
from µ to p∗, so (2.15) gives

F (µ)− F (p∗) ≤ −Dµ(vp
∗

µ )− m

2
W 2

2 (µ,p∗)

= −Dµ(vp
∗

µ )− m

2
Eµ‖vp

∗

µ (x)‖2
2.

Let v∗ , arg max‖v‖L2(µ)≤1−Dµ(v), so Dµ(v∗) = −‖Dµ‖∗ by linearity. We know that the

maximizer of
arg max

v
−Dµ(v)− m

2
Eµ‖vp

∗

µ (x)‖2
2 = c · v∗,

for some real number c. Taking derivatives wrt c gives c = 1
m
‖Dµ‖∗. Thus we get

F (µ)− F (p∗) ≤ m

2
‖Dµ‖2

∗.

�
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Proof of Lemma 11
We prove this by induction on k. First, by definition of p0 = N(0, 1

m
), we get that

Ept

[
‖x‖2

2

]
=

d

m
≤ 4d

m
,∀t ≤ 0h.

Next, we assume that for some k, and for all t ≤ kh, Ept [‖x‖2
2] ≤ 4d

m
.

For the inductive step, we consider t ∈ (kh, (k + 1)h]
From (2.3),

xt = xkh − (t− kh)∇U(xkh) +
√

2(Bt −Bkh).

By smoothness and strong convexity and the assumption that arg minx U(x) = 0, we get that
for all x and for all t:

‖(x− (t− kh)∇U(x))− 0‖2 ≤ (1−mt)‖x− 0‖2.

(Note that h ≤ 1
L

implies that t− kh ≤ 1
L

.) So for all t

Ex∼pt‖x‖2
2

=Ex∼pkh‖x− (t− kh)∇U(x) +
√

2(Bt −Bkh)‖2
2

=Ex∼pkh‖x− (t− kh)∇U(x)‖2
2 + E‖

√
2(Bt −Bkh)‖2

2

≤(1−mt)Ex∼pkh‖x‖2
2 + 2dt

=Ex∼pkh‖x‖2
2 + (2dt−mtEx∼pkh‖x‖2

2).

By our inductive hypothesis, we have Ex∼pt‖x‖2
2 ≤ 4d

m
for all t ≤ kh

If Ex∼pkh‖x‖2
2 ≥ 2d

m
, then Ex∼pt‖x‖2

2 ≤ Ex∼pkh‖x‖2
2 ≤ 4d

m
.

If Ex∼pkh‖x‖2
2 ≤ 2d

m
, then Ex∼pt‖x‖2

2 ≤ 2d
m

+ 2d
L
≤ 4d

m
(by t− kh ≤ 1

L
and by L ≥ m).

Thus if pkh is such that Epkh‖x‖2
2 ≤ 4d

m
, then it must be that Ept‖x‖2 ≤ 4d

m
for all

t ∈ (kh, (k + 1)h], thus proving the inductive step. �

A.1 Proof of Theorem 2

First, we present a lemma for upper bounding F (µ)− F (p∗) for µ ∈P(Rd) in the absence
of strong convexity. The following lemma plays an analogous role to Lemma 10.

Lemma 16 Let F be convex in W2, then for all µ ∈P(Rd),

F (µ)− F (p∗) ≤ ‖Dµ‖∗W2(µ,p∗).
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Proof of Lemma 16
Similar to the proof of Lemma 10, we consider (2.15), but with m = 0, (and once again vp

∗
µ

denotes the optimal displacement map from µ to p∗):

F (µ)− F (p∗) ≤ −Dp(vp
∗

µ )

≤ ‖Dµ‖∗ · ‖vp
∗

µ ‖L2(µ)

≤ ‖Dµ‖∗ ·W2(µ,p∗),

where first inequality is from (2.15), second line is by definition of ‖Dµ‖∗, third line is by
defintion of Wasserstein distance and the fact that vp

∗
µ is the optimal transport map.

�

Next, we establish that for a fixed stepsize h, W2(pt,πh) is nonincreasing, using a
synchronous coupling technique taken from [29].

Lemma 17 Let pt be defined as in the statement of Theorem 2. Let h be a fixed stepsize
satisfying h ≤ min{ 1

L
, h′}. Then for all k,

W2(pkh,πh) ≤ W2(p0,πh).

Proof of Lemma 17

First, we demonstrate that (2.3) is contractive in W2.
We will prove this by induction.
Base case: trivially true.
Inductive Hypothesis: W2(pkh,πh) ≤ W2(p0,πh) for some k.
Inductive Step: Let T be the optimal transport map from pkh to πh. We will demon-

strate a coupling between p(k+1)h and πh with cost less than W2(pkh,πh). The lemma then
follows from induction.

Since xkh ∼ pkh (see (2.3)), the optimal coupling between pkh and πh is given by the pair
of random variables (xkh, T (xkh)). For t ∈ [kh, (k + 1)h],

x(k+1)h = xkh − h∇U(xkh) +
√

2(B(k+1)h −Bkh)).

Consider the coupling γ between pkh and πh defined by the following pair of random variables(
xkh − h∇U(xkh) +

√
2(B(k+1)h −Bkh),

T (xkh)− h∇U(T (xkh)) +
√

2(B(k+1)h −Bkh)
)
.

(Note that πh is stationary under the discrete Langevin diffusion with stepsize h, so γ does
have the right marginals).
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To demonstrate contraction in W2:

W 2
2 (p(k+1)h,πh)

≤E
[∥∥∥(xkh − h∇U(xkh) +

√
2(B(k+1)h −Bkh)

)
−
(
T (xkh)− h∇U(T (xkh)) +

√
2(B(k+1)h −Bkh)

)∥∥∥2

2

]
=E

[
‖(xkh − h∇U(xkh))− (T (xkh)− h∇U(T (xkh)))‖2

2

]
≤E[‖xkh − T (xkh)‖2

2 − 2h 〈∇U(xkh)−∇U(T (xkh)), xkh − T (xkh)〉
+ h2‖∇U(xkh)−∇U(T (xkh))‖2

2]

≤E
[
‖xkh − T (xkh)‖2

2

]
=W 2

2 (pkh,πh),

where the last equality follows by optimality of T , and the last inequality follows because
L-smoothness of U(x) implies

− 2h 〈∇U(xkh)−∇U(T (xkh)), xkh − T (xkh)〉

≤− h

L
‖∇U(xkh)−∇U(T (xkh))‖2

2

≤− h2‖∇U(xkh)−∇U(T (xkh))‖2
2.

This completes the inductive step. �

Corollary 18 Let pt be as defined in (2). Then for all t,

W2(pt,p
∗) ≤ 4C1.

Proof of Corollary 18
First, if t = τ(t), then by Lemma 17 and (2.9) and triangle inequality, we get our conclusion.

So assume that t 6= τ(t). Using identical arguments as in Lemma 17, and noting the
assumption on h′ in (2.9) and the fact that h ≤ h′, we can show that

W2(pt,πt−τ(t)) ≤ W2(pτ(t),πt−τ(t)) (A.5)

By triangle inequality and the assumption in (2.9), we have

W2(pt,p
∗)

≤W2(pt,πt−τ(t)) +W2(πt−τ(t),p
∗)

≤W2(pτ(t),πt−τ(t)) +W2(πt−τ(t),p
∗)

≤W2(pτ(t),πh) +W2(πh,p
∗)

+W2(πh,p
∗) +W2(πt−τ(t),p

∗)

≤4C1
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Where the first inequality is by triangle inequality, the second inequality is by (A.5), third
inequality is by triangle inequality, fourth inequality is by assumption (2.9) and the fact that
t− τ(t) ≤ h ≤ h′. �

Next, we use Lemma 17, to bound E [‖xkh‖2
2] for all k:

Lemma 19 Let h, xt and pt be as defined in the statement of Theorem 2. Then for all k

E
[
‖xkh‖2

2

]
≤ 4(C2

1 + C2
2).

Proof of Lemma 19
Let γ(x, y) be the optimal coupling between pkh and πh. Let γ′(x, y) be the optimal coupling
between πh and p∗. Then

Epkh

[
‖x‖2

2

]
= Eγ

[
‖x‖2

2

]
= Eγ

[
‖x− y + y‖2

2

]
≤ 2Eγ

[
‖x− y‖2

2

]
+ 2Eγ

[
‖y‖2

2

]
= 2W2(pkh,πh) + 2Eπh

[
‖y‖2

2

]
= 2W2(pkh,πh) + 2Eγ′

[
‖x‖2

2

]
= 2W2(pkh,πh) + 2Eγ′

[
‖x− y + y‖2

2

]
≤ 2W2(pkh,πh) + 4Eγ′

[
‖x− y‖2

2

]
+ 4Eγ′

[
‖y‖2

2

]
≤ 2W2(pkh,πh) + 4W2(πh,p

∗) + 4Ep∗
[
‖x‖2

2

]
.

By definition of C2 at the start of Section 2.3.2, we have

Ep∗
[
‖x‖2

2

]
≤ C2

2 .

By Lemma 17, we have

W2(pkh,πh) ≤ W2(p0,πh) ≤ C1.

By definition of h′ at the start of Section 2.3.2, and h in Theorem 2 (which ensures h ≤ h′),
we have

W2(πh,p
∗) ≤ C1

�

Proof of Theorem 2
First, we bound the discretization error (for an arbitrary t). By Lemma 8:

d

ds

(
F (ps)− F (qts)

)∣∣∣∣
s=t

≤
(

2L2t
√
Epτ(t)‖xτ(t)‖2

2 + 2L
√
td
)
· ‖Dpt‖∗

≤
(

2L2t
√
Epτ(t)‖xτ(t)‖2

2 + 2L
√
td
)
· ‖Dpt‖∗.
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Given the choice of

h =
1

48
min

{
ε

C1(C1 + C2)L2
,

ε2

L2C2
1d
, h′
}
,

we can ensure that(
L2h

√
E‖xτ(t)‖2

2 + 2L
√
hd

)
≤1

4

(
L2h

√
18(C2

1 + C2
2) + 2L

√
hd

)
≤ ε

8C1

,

where the first inequality comes from Lemma 19.
Assume that F (ps)− F (p∗) ≥ ε. By Lemma 16 and Corollary 18, we have

‖Dps‖∗ ≥
F (ps)− F (p∗)

W2(ps,p∗)

≥ ε

W2(ps,p∗)

≥ ε

4C1

. (A.6)

This implies that
d

ds
F (ps)− F (qts)

∣∣∣∣
s=t

≤ 1

2
‖Dpt‖2

∗

The rate of decrease of F (pt) thus satisfies

d

dt
F (pt)− F (p∗) =

d

dt
F (qts)− F (p∗)

∣∣∣∣
s=t

+
d

dt
(F (ps)− F (qts))

∣∣∣∣
s=t

=− ‖Dpt‖2
∗ +

1

2
‖Dpt‖2

∗

≤− 1

2
‖Dpt‖2

∗

≤− 1

2C2
1

(F (pt)− F (p∗))2.

We now study two regimes. The first regime is when F (pt)− F (p∗) ≥ 1, d
dt
F (pt)− F (p∗) ≤

− 1
2C2

1
(F (pt)− F (p∗)), which implies

F (pt)− F (p∗) ≤ (F (p0)− F (p∗)) exp(− t

2C2
1

).

We thus achieve F (pt)− F (p∗) ≤ 1 after time

t ≥ 2C2
1 log(F (p0)− F (p∗)).
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In the second regime, F (pt) − F (p∗) ≤ 1. By noting that ft = 1
t

is the solution to
d
dt
ft = −f 2

t , and letting ft = 1
2C2

1
(F (pt)− F (p∗)), we get F (pt)− F (p∗) ≤ 2C2

1

t
. To achieve

F (pt)− F (p∗) ≤ ε, we set t =
2C2

1

ε
. Overall, we just need to set

t ≥ 2C2
1

ε
+ 2C2

1 log(F (p0)− F (p∗)).

This, combined with the choice of h earlier, proves the theorem.
�

A.1.1 Some regularity results

In this subsection, we provide some regularity results needed in various parts of the paper.

Lemma 20 Let wµ be as defined in Lemma 2. Let pt be as defined in 2.3. For all t, wpt is
well defined, and Ept [‖wpt‖2

2] is finite.

Proof of Lemma 20
First, we establish the following statement: For any t, there exists a δ ∈ R with µδ,y(x) being
the distribution of N(y, δ) and p ∈P(Rd) such that

1. For all x ∈ Rd, pt(x) = Ey∼p [µδ,y(x)]

2. Ep [‖x‖2
2] is finite.

If t = τ(t), then let p = (Id(·)−h∇U(·))#pτ(t)−1 and let δ = 2h. Otherwise, if t 6= τ(t), then
let p = (Id(·)− (t− τ(t))∇U(·))#pτ(t) and δ = 2(t− τ(t)). Where we used the definition of
push-forward distribution from (2.2). 1. now can be easily verified.

To see 2, let t′ = τ(t)− 1 in case 1 and let t′ = τ(t) in case 2.

Ep

[
‖x‖2

2

]
=Ept′

[
‖x− h∇U(x)‖2

2

]
≤2Ept′

[
‖x‖2

2

]
+ 2h2Ept′

[
‖∇U(x)‖2

2

]
≤2Ept′

[
‖x‖2

2

]
+ 2h2L2Ept′

[
‖x‖2

2

]
≤(2 + 2h2L2)

4d

m
,

where the last inequality follows by Lemma 11.
Since µδ,y(x) for all x, y, Ep [µδ,y(x)] is differentiable for all x. This proves the first part

of the Lemma.
Next, a nice property of Gaussians is that

∇xµδ,y(x) = −µδ,y

δ
(x− y).
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Thus,

∇ log pt(x)

=
1

δ
∇ logEy∼p [µδ,y(x)]

=
1

δ

1

Ey∼p [µδ,y(x)]
Ey∼p [((y − x)µδ,y(x)))]

=
1

δ
Ey∼µxδ [y]− x,

where µx
δ denotes the conditional distribution of y given x, when y ∼ p and x ∼ µδ,y.

Thus

Ex∼pt(x)

[
‖∇ log pt(x)‖2

2

]
≤1

δ
Ex∼pt(x)

[
2Ey∼µxδ

[
‖y‖2

2

]
+ 2‖x‖2

2

]
=

2

δ
Ey∼p

[
‖y‖2

2

]
+

2

δ
Ex∼pt

[
‖x‖2

2

]
<∞,

where the first inequality is by Jensen’s inequality and Young’s inequality and the preceding
result, the second inequality is by definition of conditional distribution, the third inequality is
by the fact that δ > 0 (by definition at the start of the proof), the fact that Ex∼pt [‖x‖2

2] ≤ 4d
m

(by Lemma 11), and by the fact that Ey∼p [‖y‖2
2] <∞ (see item 2. at the start of the proof)

Finally, we have that

‖wpt‖2
L2(pt)

=Ept

[
‖wpt(x)‖2

2

]
=Ept

[
‖∇ log pt(x)−∇ log p∗(x)‖2

2

]
≤2Ept

[
‖∇ log pt(x)‖2

2

]
+ 2Ept

[
‖∇ log p∗(x)‖2

2

]
<∞,

where the last inequality uses the fact that ‖∇ log p(x)‖2 = ‖∇U(x)‖2 ≤ L‖x‖2 and
Ept [‖x‖2

2] ≤ 4d
m

. �

Lemma 21 Let pt be as defined in (2.3). Then |p′t| is finite for all t, where |p′t| is the metric
derivative of pt, as defined in (2.5).

Proof of Lemma 21
We define the random variable ξ to be distributed as N(0, 1). For all t, let xt be as defined in

(2.3). One can verify that the random variable yt , xτ(t)−∇(t−τ(t))U(xτ(t))+
√

2(t− τ(t))ξ
has the same distribution as xt. Thus yt and yt+ε define a coupling between pt and pt+ε.
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Let h , t− τ(t), then

|p′t|

= lim
ε→0

1

ε
W2(pt,pt+ε)

≤ lim
ε→0

1

ε

√
E [‖yt − yt+ε‖2

2]

= lim
ε→0

1

ε

√
Ex∼pτ(t)

[
‖ε∇U(x) + (

√
2(h+ ε)−

√
2h)ξ‖2

2

]
= lim

ε→0

1

ε

√
Ex∼pτ(t) [‖ε∇U(x)‖2

2] + E
[
‖(
√

2(h+ ε)−
√

2h)ξ‖2
2

]
≤ lim

ε→0

1

ε

√
Ex∼pτ(t) [‖ε∇U(x)‖2

2]

+
1

ε

√
E
[
‖(
√

2(h+ ε)−
√

2h)ξ‖2
2

]
=
√

Ex∼pτ(t) [‖∇U(x)‖2
2] +

1√
8h

√
E [‖ξ‖2

2],

where the last inequality follows by Taylor expansion of
√

2h+ 2ε. We can bound the first
term by a finite number using ‖∇U(x)‖2

2 ≤ L2‖x‖2
2, then applying Lemma 11. The second

term is finite for h 6= 0.
For the case h = 0, we know that wpt satisfies the continuity equation for pt at t, and so

|p′t| = ‖wpt‖L2(pt) <∞, by Lemma 3 and Lemma 20. �
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Appendix B

Proofs for Chapter 3

B.1 Explicit Discrete Time Updates

In this section we calculate integral representations of the solutions to the continuous-time
process (3.1) and the discrete-time process (3.4).

Lemma 22 The solution (xt, vt) to the underdamped Langevin diffusion (3.1) is

vt = v0e
−γt − u

(∫ t

0

e−γ(t−s)∇U(xs)ds

)
+
√

2γu

∫ t

0

e−γ(t−s)dBs (B.1)

xt = x0 +

∫ t

0

vsds.

The solution (x̃t, ṽt) of the discrete underdamped Langevin diffusion (3.4) is

ṽt = ṽ0e
−γt − u

(∫ t

0

e−γ(t−s)∇U(x̃0)ds

)
+
√

2γu

∫ t

0

e−γ(t−s)dBs (B.2)

x̃t = x̃0 +

∫ t

0

ṽsds.

Proof
It can be easily verified that the above expressions have the correct initial values (x0, v0) and
(x̃0, ṽ0). By taking derivatives, one also verifies that they satisfy the differential equations in
(3.1) and (3.4). �

Next we calculate the moments of the Gaussian used in the updates of Algorithm 1. These
are obtained by integrating the expression for the discrete-time process presented in Lemma
22.
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Lemma 23 Conditioned on (x̃0, ṽ0), the solution (x̃t, ṽt) of (3.4) with γ = 2 and u = 1/L is
a Gaussian with conditional mean,

E [ṽt] = ṽ0e
−2t − 1

2L
(1− e−2t)∇U(x̃0)

E [x̃t] = x̃0 +
1

2
(1− e−2t)ṽ0 −

1

2L

(
t− 1

2

(
1− e−2t

))
∇U(x̃0),

and with conditional covariance,

E
[
(x̃t − E [x̃t]) (x̃t − E [x̃t])

>
]

=
1

L

[
t− 1

4
e−4t − 3

4
+ e−2t

]
· Id×d

E
[
(ṽt − E [ṽt]) (ṽt − E [ṽt])

>
]

=
1

L
(1− e−4t) · Id×d

E
[
(x̃t − E [x̃t]) (ṽt − E [ṽt])

>
]

=
1

2L

[
1 + e−4t − 2e−2t

]
· Id×d.

Proof
It follows from the definition of Brownian motion that the distribution of (x̃t, ṽt) is a 2d-
dimensional Gaussian distribution. We will compute its moments below, using the expression
in Lemma 22 with γ = 2 and u = 1/L.

Computation of the conditional means is straightforward, as we can simply ignore the
zero-mean Brownian motion terms:

E [ṽt] = ṽ0e
−2t − 1

2L
(1− e−2t)∇U(x̃0) (B.3)

E [x̃t] = x̃0 +
1

2
(1− e−2t)ṽ0 −

1

2L

(
t− 1

2

(
1− e−2t

))
∇U(x̃0). (B.4)

The conditional variance for ṽt only involves the Brownian motion term:

E
[
(ṽt − E [ṽt]) (ṽt − E [ṽt])

>
]

=
4

L
E

[(∫ t

0

e−2(t−s)dBs

)(∫ t

0

e−2(s−t)dBs

)>]

=
4

L

(∫ t

0

e−4(t−s)ds

)
· Id×d

=
1

L
(1− e−4t) · Id×d.

The Brownian motion term for x̃t is given by√
4

L

∫ t

0

(∫ r

0

e−2(r−s)dBs

)
dr =

√
4

L

∫ t

0

e2s

(∫ t

s

e−2rdr

)
dBs =

√
1

L

∫ t

0

(
1− e−2(t−s)) dBs.
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Here the second equality follows by Fubini’s theorem. The conditional covariance for x̃t now
follows as

E
[
(x̃t − E [x̃t]) (x̃t − E [x̃t])

>
]

=
1

L
E

[(∫ t

0

(
1− e−2(t−s)) dBs

)(∫ t

0

(
1− e−2(t−s)) dBs

)>]

=
1

L

[∫ t

0

(
1− e−2(t−s))2

ds

]
· Id×d

=
1

L

[
t− 1

4
e−4t − 3

4
+ e−2t

]
· Id×d.

Finally we compute the cross-covariance between x̃t and ṽt,

E
[
(x̃t − E [x̃t]) (ṽt − E [ṽt])

>
]

=
2

L
E

[(∫ t

0

(
1− e−2(t−s)) dBs

)(∫ t

0

e−2(t−s)dBs

)>]

=
2

L

[∫ t

0

(1− e−2(t−s))(e−2(t−s))ds

]
· Id×d

=
1

2L

[
1 + e−4t − 2e−2t

]
· Id×d.

We thus have an explicitly defined Gaussian. Notice that we can sample from this
distribution in time linear in d, since all d coordinates are independent. �

B.2 Controlling the Kinetic Energy

In this section, we establish an explicit bound on the kinetic energy EK in (3.9) which is used
to control the discretization error at each step.

Lemma 24 (Kinetic Energy Bound) Let p(0)(x, v) = 1x=x(0) · 1v=0— the Dirac delta
distribution at (x(0), 0). Let the initial distance from the optimum satisfy ‖x(0) − x∗‖2

2 ≤ D2

and u = 1/L as before. Further let p(i) be defined as in Theorem 3 for i = 1, . . . n, with step
size ν and number of iterations n as stated in Theorem 3. Then for all i = 1, . . . n and for all
t ∈ [0, ν], we have the bound

E(x,v)∼Φtp(i)

[
‖v‖2

2

]
≤ EK ,

with EK = 26(d/m+D2).

Proof
We first establish an inequality that provides an upper bound on the kinetic energy for any
distribution p.

Step 1: Let p be any distribution over (x, v), and let q be the corresponding distribution
over (x, x+v). Let (x′, v′) be random variables with distribution p∗. Further let ζ ∈ Γopt(p, p

∗)
such that,

Eζ
[
‖x− x′‖2

2 + ‖(x− x′) + (v − v′)‖2
2

]
= W 2

2 (q, q∗).
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Then we have,

Ep
[
‖v‖2

2

]
= Eζ

[
‖v − v′ + v′‖2

2

]
≤ 2Ep∗

[
‖v‖2

2

]
+ 2Eζ

[
‖v − v′‖2

2

]
≤ 2Ep∗

[
‖v‖2

2

]
+ 4Eζ

[
‖x+ v − (x′ + v′)‖2

2 + ‖x− x′‖2
2

]
= 2Ep∗

[
‖v‖2

2

]
+ 4W 2

2 (q, q∗), (B.5)

where for the second and the third inequality we have used Young’s inequality, while the final
line follows by optimality of ζ.

Step 2: We know that p∗ ∝ exp(−(U(x) + L
2
‖v‖2

2)), so we have Ep∗ [‖v‖2
2] = d/L.

Step 3: For our initial distribution p(0)(q(0)) we have the bound

W 2
2 (q(0), q∗) ≤ 2Ep∗

[
‖v‖2

2

]
+ 2Ex∼p(0),x′∼p∗

[
‖x− x′‖2

2

]
=

2d

L
+ 2Ep∗

[
‖x− x(0)‖2

2

]
,

where the first inequality is an application of Young’s inequality. The second term is bounded
below,

Ep∗
[
‖x− x(0)‖2

2

]
≤ 2Ep∗

[
‖x− x∗‖2

2

]
+ 2‖x(0) − x∗‖2

2 ≤
2d

m
+ 2D2,

where the first inequality is again by Young’s inequality. The second line follows by applying
Theorem 12 to control Ep∗ [‖x− x∗‖2

2]. Combining these we have the bound,

W 2
2 (q(0), q∗) ≤ 2d

(
1

L
+

2

m

)
+ 4D2.

Putting all this together along with (B.5) we have

Ep(0)
[
‖v‖2

2

]
≤ 10d

L
+

16d

m
+ 16D2 ≤ 26

(
d

m
+D2

)
.

Step 4: By Theorem 5, we know that ∀t > 0,

W 2
2 (Φtq

(i), q∗) ≤ W 2
2 (q(i), q∗).

This proves the theorem statement for i = 0. We will now prove it for i > 0 via induction.
We have proved it for the base case i = 0, let us assume that the result holds for some i > 0.
Then by (3.12) applied up to the (i+ 1)th iteration, we know that

W 2
2 (q(i+1), q∗) = W 2

2 (Φ̃νq
(i), q∗) ≤ W 2

2 (q(i), q∗).

Thus by (B.5) we have,
EΦtp(i)

[
‖v‖2

2

]
≤ EK ,

for all t > 0 and i ∈ {0, 1, . . . , n}. �
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Algorithm 3: Stochastic Gradient Underdamped Langevin MCMC

Input : Step size δ < 1, number of iterations n, initial point (x0, 0), smoothness
parameter L and stochastic gradient oracle ∇̂U(·)

1 for i = 0, 1, . . . , n− 1 do
2 Sample (xi+1, vi+1) ∼ Zi+1(xi, vi)
3 end

Next we prove that the distance of the initial distribution p(0) to the optimum distribution
p∗ is bounded.

Lemma 25 Let p(0)(x, v) = 1x=x(0) · 1v=0— the Dirac delta distribution at (x(0), 0). Let the
initial distance from the optimum satisfy ‖x(0) − x∗‖2

2 ≤ D2 and u = 1/L as before. Then

W 2
2 (p(0), p∗) ≤ 3

(
D2 +

d

m

)
.

Proof
As p(0)(x, v) is a delta distribution, there is only one valid coupling between p(0) and p∗. Thus
we have

W 2
2 (p(0), p∗) = E(x,v)∼p∗

[
‖x− x(0)‖2

2 + ‖v‖2
2

]
= E(x,v)∼p∗

[
‖x− x∗ + x∗ − x(0)‖2

2 + ‖v‖2
2

]
≤ 2Ex∼p∗(x)

[
‖x− x∗‖2

2

]
+ 2D2 + Ev∼p∗(v)

[
‖v‖2

2

]
,

where the final inequality follows by Young’s inequality and by the definition of D2. Note
that p∗(v) ∝ exp(−L‖v‖2

2/2), therefore Ev∼p∗(v) [‖v‖2
2] = d/L. By invoking Theorem 12 the

first term Ex∼p∗(x) [‖x− x∗‖2
2] is bounded by d/m. Putting this together we have,

W 2
2 (p(0), p∗) ≤ 2

d

m
+
d

L
+ 2D2 ≤ 3

(
d

m
+D2

)
.

�

B.3 Analysis with Stochastic Gradients

Here we state the underdamped Langevin MCMC algorithm with stochastic gradients. We
will borrow notation and work under the assumptions stated in Section 3.3.3.
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Description of Algorithm 3

The random vector Zi+1(xi, vi) ∈ R2d, conditioned on (xi, vi), has a Gaussian distribution
with conditional mean and covariance obtained from the following computations:

E
[
vi+1

]
= vie−2ν − 1

2L
(1− e−2ν)∇̂U(xi)

E
[
xi+1

]
= xi +

1

2
(1− e−2ν)vi − 1

2L

(
ν − 1

2

(
1− e−2ν

))
∇̂U(xi)

E
[(
xi+1 − E

[
xi+1

]) (
xi+1 − E

[
xi+1

])>]
=

1

L

[
ν − 1

4
e−4ν − 3

4
+ e−2ν

]
· Id×d

E
[(
vi+1 − E

[
vi+1

]) (
vi+1 − E

[
vi+1

])>]
=

1

L
(1− e−4ν) · Id×d

E
[(
xi+1 − E

[
xi+1

]) (
vi+1 − E

[
vi+1

])>]
=

1

2L

[
1 + e−4ν − 2e−2ν

]
· Id×d.

The distribution is obtained by integrating the discrete underdamped Langevin diffusion
(3.5) up to time δ, with the specific choice of γ = 2 and u = 1/L. In other words, if p(i) is

the distribution of (xi, vi), then Zi+1(xi, vi) ∼ p(i+1) = Φ̂νp
(i). Derivation is identical to the

calculation in Appendix B.1 by replacing exact gradients ∇U(·) with stochastic gradients

∇̂U(·). A key ingredient as before in understanding these updates is the next lemma which
calculates the exactly the update at each step when we are given stochastic gradients.

Lemma 26 The solution (x̂t, v̂t) of the stochastic gradient underdamped Langevin diffusion
(3.5) is

v̂t = v̂0e
−γt − u

(∫ t

0

e−γ(t−s)∇̂U(x̂0)ds

)
+
√

2γu

∫ t

0

e−γ(t−s)dBs (B.6)

x̂t = x̂0 +

∫ t

0

v̂sds.

Proof
Note that they have the right initial values, by setting t = 0. By taking derivatives, one can
also verify that they satisfy the differential equation (3.5). �

B.3.1 Discretization Analysis

In Theorem 27, we will bound the discretization error between the discrete process without
noise in the gradients (3.4) and the discrete process (3.5) starting from the same initial
distribution.

Lemma 27 Let q0 be some initial distribution. Let Φ̃δ and Φ̂δ be as defined in (3.3) corre-
sponding to the discrete time process without noisy gradients and discrete-time process with
noisy gradients respectively. For any 1 > δ > 0,

W 2
2 (Φ̂δq0, q

∗) = W 2
2 (Φ̃δq0, q

∗) +
5δ2dσ2

L2
.
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Proof
Taking the difference of the dynamics in (B.2) and (B.6), and using the definition of ∇̂U(x).
We get that

v̂δ = ṽδ + u

(∫ δ

0

e−γ(s−δ)ds

)
ξ (B.7)

x̂δ = x̃δ + u

(∫ δ

0

(∫ r

0

e−γ(s−r)ds

)
dr

)
ξ,

where ξ is a zero-mean random variance with variance bounded by σ2d and is independent
of the Brownian motion. Let Γ1 be the set of all couplings between Φ̃δq0 and q∗ and let Γ2

be the set of all couplings between Φ̂δq0 and q∗. Let γ1(θ, ψ) ∈ Γ1 be the optimal coupling
between Φ̃δq0 and q∗, i.e.

E(θ,ψ)∼γ1
[
‖θ − ψ‖2

2

]
= W 2

2 (Φ̃δq0, q
∗).

Let

([
x̃
w̃

]
,

[
x
w

])
∼ γ1. By the definition of γ1 we have the marginal distribution of[

x̃
w̃

]
∼ Φ̃δq0. Finally let us define the random variables

[
x̂
ŵ

]
,

[
x̃
w̃

]
+ u

 (∫ δ
0

(∫ r
0
e−γ(s−r)ds

)
dr
)
ξ(∫ δ

0

(∫ r
0
e−γ(s−r)ds

)
dr +

∫ δ
0
e−γ(s−δ)ds

)
ξ

 .
By (B.7), it follows that

[
x̂
ŵ

]
∼ Φ̂δp0. Thus

([
x̂
ŵ

]
,

[
x
w

])
defines a valid coupling between

Φ̂tq0 and q∗. Let us now analyze the distance between q∗ and ∇̂δq0,

W 2
2 (Φ̂δq0, q

∗)

(i)

≤ Eγ1

∥∥∥∥∥∥
[
x̃
ṽ

]
+ u

 (∫ δ
0

(∫ r
0
e−γ(s−r)ds

)
dr
)
ξ(∫ δ

0

(∫ r
0
e−γ(s−r)ds

)
dr +

∫ δ
0
e−γ(s−δ)ds

)
ξ

− [x
v

]∥∥∥∥∥∥
2

2


(ii)
= Eγ1

[∥∥∥∥[x̃ṽ
]
−
[
x
v

]∥∥∥∥2

2

]
+ u · Eγ1

∥∥∥∥∥∥
 (∫ δ

0

(∫ r
0
e−γ(s−r)ds

)
dr
)
ξ(∫ δ

0

(∫ r
0
e−γ(s−r)ds

)
dr +

∫ δ
0
e−γ(s−δ)ds

)
ξ

∥∥∥∥∥∥
2

2


(iii)

≤ Eγ1

[∥∥∥∥[x̃ṽ
]
−
[
x
v

]∥∥∥∥2

2

]
+ 4u2

((∫ δ

0

(∫ r

0

e−γ(s−r)ds

)
dr

)2

+

(∫ δ

0

e−γ(s−δ)ds

)2
)
dσ2

(iv)

≤ Eγ1

[∥∥∥∥[x̃ṽ
]
−
[
x
v

]∥∥∥∥2

2

]
+ 4u2

(
δ4

4
+ δ2

)
dσ2

(v)

≤ W 2
2 (Φ̃tq0, q

∗) + 5u2δ2dσ2,
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where (i) is by definition of W2, (ii) is by independence and unbiasedness of ξ, (iii) is by
Young’s inequality and because E [‖ξ‖2

2] ≤ dσ2, (iv) uses the upper bound e−γ(s−r) ≤ 1 and
e−γ(s−t) ≤ 1, and finally (v) is by definition of γ1 being the optimal coupling and the fact
that δ ≤ 1. The choice of u = 1/L yields the claim.

�

Given the bound on the discretization error between the discrete processes with and without
the stochastic gradient we are now ready to prove Theorem 4.

Proof of Theorem 4
From Corollary 12, we have that for any i ∈ {1, . . . , n}

W2(Φνq
(i), q∗) ≤ e−δ/2κW2(q(i), q∗).

By the discretization error bound in Theorem 6 and the sandwich inequality (3.7), we get

W2(Φνq
(i), Φ̃νq

(i)) ≤ 2W2(Φνp
(i), Φ̃νp

(i)) ≤ ν2

√
8EK

5
.

By the triangle inequality for W2,

W2(Φ̃νq
(i), q∗) ≤ W2(Φνq

(i), Φ̃νq
(i)) +W2(Φνq

(i), q∗)
(i)

≤ ν2

√
8EK

5
+ e−δ/2κW2(q(i), q∗)

Combining this with the discretization error bound established in Lemma 27 we have,

W 2
2 (Φ̂tq

(i), q∗) ≤

(
e−δ/2κW2(q(i), q∗) + δ2

√
8EK

5

)2

+
5δ2dσ2

L2
.

By invoking Lemma 29 we can bound the value of this recursive sequence by,

W2(q(n), q∗) ≤ e−nδ/2κW2(q(0), q∗) +
δ2

1− e−δ/2κ

√
8EK

5

+
5δ2dσ2

L2

(
δ2

√
8EK

5
+
√

1− e−δ/κ
√

5δ2dσ2

L2

) .
By using the sandwich inequality (Lemma 13) we get,

W2(p(n), p∗) ≤ 4e−nδ/2κW2(p(0), p∗)︸ ︷︷ ︸
T1

+
4δ2

1− e−δ/2κ

√
8EK

5︸ ︷︷ ︸
T2

+
20δ2dσ2

L2

(
δ2

√
8EK

5
+
√

1− e−δ/κ
√

5δ2dσ2

L2

)
︸ ︷︷ ︸

T3

.
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We will now control each of these terms at a level ε/3. By Lemma 25 we know W 2
2 (p(0), p∗) ≤

3
(
d
m

+D2
)
. So the choice,

n ≤ 2κ

δ
log

(
36
(
d
m

+D2
)

ε

)

ensures that T1 is controlled below the level ε/3. Note that 1− e−δ/2κ ≥ δ/4κ as δ/κ < 1. So

the choice δ < εκ−1
√

5/479232(d/m+D2) ≤ εκ−1
√

5/18432EK (by upper bound on EK in
Lemma 24) ensures,

T2 ≤
16δ2κ

δ

√
8EK

5
≤ ε

3
.

Finally δ ≤ ε2κ−1L2/1440dσ2 ensures T3 is bounded,

T3 =
20δ2dσ2

L2

(
δ2

√
8EK

5
+
√

1− e−δ/κ
√

5δ2dσ2

L2

) ≤ 20δ2dσ2

L2

(
δ2

√
8EK

5
+
√

5δ3dσ2

2L2κ

) ≤ 20δ2dσ2

L2

√
5δ3dσ2

2L2κ

≤ ε

3
.

This establishes our claim. �

B.4 Technical Results

We state this theorem by Durmus and Moulines [27] used in the proof of Lemma 24.

Theorem 12 [Theorem 1 in 27] For all t ≥ 0 and x ∈ Rd,

Ep∗
[
‖x− x∗‖2

2

]
≤ d

m
.

The following lemma is a standard result in linear algebra regarding the determinant of a
block matrix. We apply this result in the proof of Theorem 5.

Lemma 28 [Theorem 3 in 78] If A,B,C and D are square matrices of dimension d, and C
and D commute, then we have

det

([
A B
C D

])
= det(AD −BC).

We finally present a useful lemma from [21] that we will use in the proof of Theorem 4.

Lemma 29 [Lemma 7 in 21] Let A, B and C be given non-negative numbers such that
A ∈ {0, 1}. Assume that the sequence of non-negative numbers {xk}k∈N satisfies the recursive
inequality

x2
k+1 ≤ [(A)xk + C]2 +B2
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for every integer k ≥ 0. Then

xk ≤ Akx0 +
C

1− A
+

B2

C +
√

(1− A2)B
(B.8)

for all integers k ≥ 0.
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Appendix C

Proofs for Chapter 4

We outline here the organization of the Appendix.
In Appendix C.1, we list the variables used in this paper, with references to their definitions.

In Appendix C.2, we give a description of two small constants, β and ν, which are used
throughout our analysis to ensure regularity in time and space.

In Appendix C.3, we give a proof of Theorem 8. In Appendix C.4, we give a proof of
Theorem 9.

In Appendix C.5, we specify the construction of the distance function f , which is used to
demonstrate contraction. In Appendix C.6, we bound the moments of some of the relevant
quantities; these are used in discretization bounds of Appendix C.3 and C.4. In Appendix
C.7, we gives proofs of the existence of our coupling constructions. In Appendix C.8, we prove
that our coupling constructions have the correct marginals. We also prove that Algorithm 2
exactly implements (4.7).
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C.1 Index of Notation

αf
Parameter of f (4.22). See (C.7)(overdamped) and (4.23)
(underdamped).

β Constant in defining `. See also Section C.2.

cκ See (4.6)

Cm Underdamped contraction rate, see (4.9).

Co Overdamped contraction rate, see (C.8).

d Dimension of x

f See (4.22)

κ Condition number, defined after Assumption (A3)

` Twice continuously differentiable approximation to ‖·‖2 with β
error. See Lemma 31.

L Lipschitz gradient parameter, see Assumption (A1).

L Lyapunov function. See (C.11) (overdamped) and (4.27)
(underdamped)

m Contraction parameter outside the R ball. See Assumption (A3)

M See (C.5) (overdamped) (4.15) (underdamped)

q See Lemma 30

r See (4.19).

R See Assumption (A3)

Rf
Parameter of f (4.22). See (C.7)(overdamped) and (4.23)
(underdamped).

Tsync See (4.8).

τk See (4.17)

wt Short for ut − vt, defined in (4.16)

zt Short for xt − yt, defined in (4.16)

γ See (4.15)

µ See (4.18)

ν Coupling stepsize in underdamped Coupling, used in (4.17)). See
also Section C.2.

ξ See (4.24).

σ See (4.25).

φ See (4.26).

∇t and ∆t See (C.6) and (4.20)
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C.2 Two Small Constants

On ` and β:
In this paper, we will take β = 1/poly(L, 1/m, d,R, eLR

2
) to be a small constant. See the

proofs of Theorem 8 and Theorem 9 for the exact values of β. Intuitively, β is a radius inside
of which we perform the following smoothing:

We define a function q(r) in (C.1), which is a smoothed approximation of |r|, such that it
has continuous second derivatives everywhere. Specifically, for r ≤ β/2, q(r) is a cubic spline.

q(r) =


β
3

+ 8
3β2 · r3, for r ∈ [0, β/4]

5β
12
− r + 4

β
· r2 − 8

3β2 · r3, for r ∈ [β/4, β/2]

r, for r ∈ [β/2,∞].

(C.1)

This allows us to define a smoothed version of ‖x‖2, which has continuous second derivatives
everywhere:

`(x) = q(‖x‖2). (C.2)

In various parts of our proof, we replace ‖·‖2 by its smooth approximation `(·), defined in
Lemma 31, parametrized by β; a small β means that `(·) and ‖·‖2 are close. We need to be
careful as `(·) is strongly convex, with parameter 1/β2, in a β/2 radius around zero. We
thus need to design our dynamics to ensure that the coupling has no noise in this region (see
Eq. (4.15)).

When reading the proofs, it helps to think of `(·) = ‖·‖2 and β = 0, as we can take β to
be arbitrarily small without additional computation costs.

On ν:
In order to demonstrate the existence of a strong solution to the coupling presented in Section
4.4.1 (Lemma 15), we switch between synchronous and reflection coupling at deterministic,
finite intervals of width ν.

This is not necessary strictly speaking, as there are results that ensure the existence of
solutions of an SDE when the diffusion and drift coefficients are discontinuous but have finite
variation. However, we choose to use a discretized coupling as the existence of its solution
can be verified by using standard results.

This discretized coupling scheme adds an error term σt (see Eq. (4.25)). We show in
Lemma 42 that this is o(ν2).

When reading the proofs, it helps to think of ν = 0 and σt = 0, as we can take ν to
be arbitrarily small without additional computation costs. In the proof, it suffices to let
ν = 1/poly(L, 1/m, d,R, eLR

2
). See the proof and Theorem 9 for the exact value of ν.

Note that ν is distinct from (and unrelated to) δ, which is the step-size of the under-
damped Langevin MCMC algorithm (Algorithm 2). The step size δ and the corresponding
discretization error ξt, cannot be made arbitrarily small without additional computation
costs.
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Lemma 30 Let β be any positive real. Let q(r) be defined as in (C.1), reproduced below for
ease of reference:

q(r) =


β
3

+ 8
3β2 · r3, for r ∈ [0, β/4]

5β
12
− r + 4

β
· r2 − 8

3β2 · r3, for r ∈ [β/4, β/2]

r, for r ∈ [β/2,∞].

Then,

1. q(r), q′(r)/r and q′′(r)/r2 exist for all r, and are continuous.

2. For all r, q(r) satisfies β/3 ≤ q(r) and |r − q(r)| ≤ β/3. In addition, q(r) = r for
r ≥ β/2.

3. q′(r) is monotonically nondecreasing, q′(r) = 1 for r ≥ β/2, and q′(r) = 0 for r = 0.

4. q′′(r) = 0 for all r ≥ β/2.

Proof
Taking derivatives, we verify that

q′(r) =


8
β2 · r2, for r ∈ [0, β/4]

−1 + 8
β
· r − 8

β2 · r2, for r ∈ [β/4, β/2]

1, for r ∈ [β/2,∞];

q′′(r) =


16
β2 · r, for r ∈ [0, β/4]

8
β
− 16

β2 · r, for r ∈ [β/4, β/2]

0, for r ∈ [β/2,∞].

All the claims can then be verified algebraically. �

Lemma 31 For a given β > 0, let q(r) be as defined above. Define `(x) : Rn → R+ as
`(x) = q(‖x‖2). Then

1. For all x, `(x) satisfies β/3 ≤ `(x) and |`(x)− ‖x‖2| ≤ β/3. In addition, for ‖x‖2 ≥
β/2, `(x) = ‖x‖2.

2. ∇`(x) = q′(‖x‖2) x
‖x‖2

, for all x, ‖∇`(x)‖2 ≤ 1, for ‖x‖2 ≥ β/2, ∇`(x) = x
‖x‖2

.

3. for ‖x‖2 ≥ β/2, ∇2`(x) = q′′(‖x‖2) xx
T

‖x‖22
+ q′(‖x‖2) 1

‖x‖2

(
I − xxT

‖x‖22

)
.
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4. ∇`(x) and ∇2`(x) are defined everywhere and continuous. In particular, for ‖x‖2 ≤ β/2,

‖∇`(x)‖2 ≤ 4, and
∥∥∇2`(x)

∥∥
2
≤ 8

β
.

Proof

1. Immediate from Lemma 30.2.

2. By Chain rule, ∇`(x) = q′(‖x‖2)
x
‖x‖2

. Furthermore, From the Lemma 30.1, we verify

that ∇`(x) is defined everywhere, including at 0. The remaining claims follow from
Lemma 30.3

3. This is just chain rule, together with Lemma 30.1, which guarantees the existence of
q′′(‖x‖2)/‖x‖2

2 for all x.

4. Existence and continuity follow from Lemma 30.

�

C.3 Proofs for overdamped Langevin Monte Carlo

C.3.1 Coupling construction for overdamped Langevin MCMC

Let β be a small constant (see proof of Theorem 8 for the exact value), and let `(x) = q(‖x‖2)
be the smoothed approximation of ‖x‖2 as defined in Appendix C.2.

We begin by establishing the convergence of the continuous-time process in Eq. (4.3)
to the invariant distribution. Similar to [32], we construct a coupling between the SDEs
described by Eq. (4.3) and Eq. (4.4). We initialize the coupling at

x0 = 0

y0 ∼ p∗(y),

and evolve the pair (xt, yt) according to the dynamics

dxt = −∇U
(
xb tδcδ

)
dt+

√
2dBt (C.3)

dyt = −∇U(yt)dt+
√

2dBt − 2
√

2γtγ
T
t dBt +

√
2γ̄tγ̄

T
t dAt, (C.4)
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where the terms γt and γ̄t are defined as:

γt :=(M(‖zt‖2))1/2 zt
‖zt‖2

γ̄t :=
(
1− (1− 2M(‖zt‖2))2)1/4 zt

‖zt‖2

,

with zt :=xt − yt,

M(r) :=


1, for r ∈ [β,∞)

1
2

+ 1
2

cos
(
r · 2π

β

)
, for r ∈ [β/2, β]

0, for r ∈ [0, β/2].

(C.5)

We use the convention that 0/0 = 0 when ‖zt‖2 = 0. It can be verified that γt and γ̄t are
Lipschitz and gradient-Lipschitz for all zt ∈ Rd.

The following lemma confirms that the dynamics (C.4) give the correct distribution.

Lemma 32 The dynamics in Eq. (C.4) is distributionally equivalent to the dynamics defined
in Eq. (4.3).

We defer the proof to Appendix C.8.
For notational convenience, we define

∇t :=∇U(xt)−∇U(yt)

∆t :=∇U(xb tδcδ)−∇U(xt). (C.6)

Finally, we construct the Lyapunov function that we will use to show convergence. Let f
be as defined in Eq. (4.22), with

αf :=
L

4
, and, Rf := R. (C.7)

Define a constant,

Co := min

{
1

8R2
e−LR

2/2,m

}
, (C.8)

and finally, define two stochastic processes

ξt :=L

∫ t

0

e−Co(t−s)
∥∥∥xs − xb sδcδ∥∥∥2

ds (C.9)

φt :=

∫ t

0

e−Co(t−s)f ′(‖zs‖2)

〈
zs
‖zs‖2

,
(

2
√

2γsγ
T
s dBs +

√
2γ̄sγ̄

T
s dAs

)〉
. (C.10)

With these definitions, the following stochastic process Lt acts as our Lyapunov function:

Lt :=f(`(zt))− ξt − φt. (C.11)
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C.3.2 Proof of Theorem 8

The proof follows in three steps. In Step 1 we analyze the evolution of f(`(zt)) using Itô’s
Lemma. In Step 2 we use this to show that the Lyapunov function Lt which is defined in
Eq. (C.11) contracts at a sufficiently fast rate. Finally in Step 3 we relate this contraction in
the Lyapunov function to a bound on the iteration complexity of (4.4).

We note that the technique in establishing Step 1 is essentially taken from [32].
Step 1: By Itô’s Lemma applied to f(`(zt)),

df(`(zt)) = 〈∇zf(`(zt)),−∇t −∆t〉︸ ︷︷ ︸
=:♠

dt+
1

2
tr
(
∇2
zf(`(zt))

(
8γtγ

T
t + 2γ̄tγ̄

T
t

))
︸ ︷︷ ︸

=:♥

dt

+
〈
∇zf(`(zt)), 2

√
2γtγ

T
t dBt −

√
2γ̄tγ̄

T
t dAt

〉
.

We first bound the term ♠. Note that ∇zf(`(zt)) = f ′(`(zt))∇`(zt). When zt = 0,
`(zt) = β/3 + 8/(3β2) by (C.1) and (C.2), so f(`(zt)) is well defined by Lemma 55.F2. By

Lemma 31.2, ∇`(zt) =
q′(‖zt‖2
‖zt‖2

. Since q′(r)/r is always well defined for all r (by Lemma 30.1),

we conclude that when zt = 0, ∇`(zt) = 0, and thus ∇f(`(zt)) = 0 as well. For the case when
‖zt‖2 6= 0 we have,

∇f(`(zt)) = f ′(`(zt))q
′(‖zt‖2)

zt
‖zt‖2

,

where q(·) is the function used to define ` (see Lemma 30). Thus

♠ = 〈∇f(`(zt)),−∇t −∆t〉

= f ′(`(zt)) · q′(‖zt‖2) ·
〈

zt
‖zt‖2

,−∇t −∆t

〉
(i)

≤ f ′(`(zt)) · q′(‖zt‖2)

〈
zt
‖zt‖2

,−∇t

〉
+ ‖∆t‖2

(ii)

≤ 1 {‖zt‖2 ∈ [0, β]} · Lβ + 1 {‖zt‖2 ∈ [R,∞]} · (−m‖zt‖2)

+ 1 {‖zt‖2 ∈ (β,R)} · f ′(`(zt)) · (L‖zt‖2) + ‖∆t‖2,

where (i) is by the Cauchy-Schwarz inequality, along with the fact that |f ′(r)| ≤ 1 (see
(F2) of Lemma 55), and Lemma 30.3. The inequality in (ii) can be verified by considering
three disjoint events. When ‖zt‖2 ∈ [0, β], the bound follows by Cauchy-Schwarz, (F2) of
Lemma 55, combined with Lemma 30.3. When ‖zt‖2 ∈ [R,∞] the bound follows from strong
convexity (Assumption (A3)). When ‖zt‖2 ∈ (β,R], we bound the term using Cauchy-Schwarz,
Assumption (A1), and Lemma 30.3.

Next, we consider the other term ♥ = 1
2
tr
(
∇2
zf(`(zt))

(
8γtγ

T
t + 2γ̄tγ̄

T
t

))
.
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First, consider the case when ‖zt‖2 = 0. By chain rule, and by definition of ` in (C.2) and
q in (C.1),

∇2f(`(zt)) = f ′(`(zt))∇2q(‖zt‖2) + f ′′(`(zt))∇q(‖zt‖2)(∇q(‖zt‖2))T (C.12)

We further verify that at ‖zt‖2 = 0,

∇q(‖zt‖2) =
8

3β2
‖zt‖2zt = 0 (C.13)

∇2q(‖zt‖2) =
8

3β2
‖zt‖2I +

ztz
T
t

‖zt‖2

= 0 (C.14)

Thus for ‖zt‖2 = 0, ∇2f(`(zt)) = 0, and the following holds:

♥ = 0 = 1 {‖zt‖2 ∈ [β,R]}4f ′′(`(zt)).

Next, consider the case when ‖zt‖2 6= 0,

∇2f(`(zt)) =f ′′(`(zt))q
′(‖zt‖2)2 ztz

T
t

‖zt‖2
2

+ f ′(`(zt))q
′(‖zt‖2)

1

‖zt‖2

(
I − ztz

T
t

‖zt‖2

)
+ f ′(`(zt))q

′′(‖zt‖2)
ztz

T
t

‖zt‖2
2

.

Exapanding using the definition of ♥,

♥ =
1

2
tr
(
∇2
zf(`(zt))

(
8γtγ

T
t + 2γ̄tγ̄

T
t

))
(i)
=

1

2
tr

(
f ′′(`(zt)) · q′(‖zt‖2)2 · ztz

T
t

‖zt‖2
2

(
8γtγ

T
t + 2γ̄tγ̄

T
t

))
︸ ︷︷ ︸

=:♥1

+
1

2
tr

(
f ′(`(zt)) · q′(‖zt‖2) · 1

‖zt‖2

(
I − ztz

T
t

‖zt‖2

)(
8γtγ

T
t + 2γ̄tγ̄

T
t

))
︸ ︷︷ ︸

=:♥2

+
1

2
tr

(
f ′(`(zt))q

′′(zt)
ztz

T
t

‖zt‖2
2

(
8γtγ

T
t + 2γ̄tγ̄

T
t

))
︸ ︷︷ ︸

=:♥3

,

where (i) is by the expression for ∇2f(`(zt)) above.
Before proceeding, we verify by definition of γt and γ̄t in Eq. (C.5) that

tr

(
ztz

T
t

‖zt‖2
2

(
8γtγ

T
t + 2γ̄tγ̄

T
t

))
= 8‖γt‖2

2 + 2‖γ̄t‖2
2. (C.15)
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First we simplify ♥1:

♥1 =
1

2
f ′′(`(zt)) · q′(‖zt‖2)2 ·

(
8‖γt‖2

2 + 2‖γ̄t‖2
2

)
(i)

≤1 {‖zt‖2 ∈ [β,R]}
(
f ′′(`(zt)) ·

(
4‖γt‖2

2 + ‖γ̄t‖2
2

))
(ii)
=1 {‖zt‖2 ∈ [β,R]}4f ′′(`(zt)),

where the inequality (i) is because f ′′(r) ≤ 0 for all r > 0 (by Lemma 55.(F5)), q′(r) ≥ 0 for
all r (by Lemma 30.3) and q′(r) = 1 for all r ≥ β/2 (Lemma 30.3). The equality in (ii) is
because γt = 1 and γ̄t = 0 for ‖zt‖2 ≥ β (by their definition in Eq. (C.5)).

Next, using Eq. (C.15), we can immediately verify that ♥2 = 0.
Finally, we focus on ♥3,

♥3 =
1

2
f ′(`(zt))q

′′(zt)
(
8‖γt‖2

2 + 2‖γ̄t‖2
2

)
= 0,

where we use the fact that q′′(‖zt‖2) = 0 if ‖zt‖2 ≥ β/2 (by Lemma 30.4) and γt = γ̄t = 0 if
‖zt‖2 ≤ β/2 (by its definition in Eq. (C.5)).

Putting together the bounds on ♥1, ♥2 and ♥3, we can upper bound ♥ as

♥ ≤ 1 {‖zt‖2 ∈ [β,R]}4f ′′(`(zt)).

Combining the upper bounds on ♠ and ♥,

♠+♥ ≤1 {‖zt‖2 ∈ [β,R]}(L‖zt‖2f
′(`(zt)) + 4f ′′(`(zt)))︸ ︷︷ ︸

=:♣

+ 1 {‖zt‖2 ∈ [R,∞]} · (−m‖zt‖2) + ‖∆t‖2 + Lβ.

Let us now focus on ♣. By Lemma 55,

♣ =1 {‖zt‖2 ∈ [β,R]} · (L‖zt‖2f
′(`(zt)) + 4f ′′(`(zt)))

(i)

≤1 {‖zt‖2 ∈ [β,R]} · (L · `(zt)f ′(`(zt)) + 4f ′′(`(zt)) + Lβ/3)

(ii)

≤1 {‖zt‖2 ∈ [β,R]} · (−Cof(`(zt))) + Lβ/3

(iii)

≤ 1 {‖zt‖2 ∈ [0, R]}(−Cof(`(zt))) + (L+ 8Co)β

(iv)

≤ 1 {‖zt‖2 ∈ [0, R]}(−Cof(`(zt))) + 10Lβ,

where (i) is because |‖zt‖2 − `(zt)| ≤ β/3 (by Lemma 31.1) and because |f ′(r)| ≤ 1 for all
r > 0 (by Lemma 55.(F2)). The inequality in (ii) is by Lemma 55 (F4), our definition of
Co in (C.8), and the fact that ‖zt‖2 ∈ [β,R] implies `(zt) ≤ R (Lemma 31.1). Inequality
(iii) is again by Lemma 31.1 and Lemma 55 (F3). Finally, (iv) is by (C.8) and m ≤ L, a
consequence of Assumptions (A1) and (A3).
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Thus,

♠+♥ ≤1 {‖zt‖2 ∈ [0, R]}(−Cof(`(zt))) + 1 {‖zt‖2 ∈ [R,∞]} · (−m‖zt‖2) + 11Lβ + ‖∆t‖2

≤− Cof(`(zt)) + 12Lβ + ‖∆t‖2,

where the second line is by Lemma 31.1 and 55.(F3), and by m ≤ L.
Putting this together with the expression for df(`(zt)),

df(`(zt)) ≤(−Cof(`(zt)) + 12Lβ + ‖∆t‖2)dt+
〈
∇zf(`(zt)), 2

√
2γtγ

T
t dBt +

√
2γ̄tγ̄

T
t dAt

〉
≤
(
−Cof(`(zt)) + 12Lβ + L

∥∥∥xt − xb tδcδ∥∥∥2

)
dt

+
〈
∇zf(`(zt)), 2

√
2γtγ

T
t dBt +

√
2γ̄tγ̄

T
t dAt

〉
.

The second inequality uses the definition of ∆t in Eq. (C.6) and Assumption (A1).
Step 2: If we consider the evolution of the Lyapunov function Lt (defined in Eq. (C.11)),

we can verify that

dLt =d(f(`(zt))− φt − ξt)
(i)

≤− Co(f(`(zt))− φt − ξt)dt+ 12Lβdt

=− CoLtdt+ 12Lβdt,

where the simplification in inequality (i) can be verified by taking time derivatives of stochastic
processes φt and ξt defined in Eq. (C.10) and Eq. (C.9).

Applying Grönwall’s inequality,

Lt ≤e−CotL0 +

∫ t

0

e−Co(t−s)12Lβds ≤ e−CotL0 +
12Lβ

Co
.

Using the definition of Lt in Eq. (C.11) we get,

f(`(zt)) ≤ e−Cotf(`(z0)) + ξt + φt.

Taking expectations with respect to the Brownian motion yields:

E [f(`(zt))] ≤ e−CotE [f(`(z0))] + E [ξt] + E [φt] . (C.16)

By the definition of φt in Eq. (C.10), we verify that E [φt] = 0, and by definition of ξt in
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Eq. (C.9),

E [ξt] =

∫ t

0

e−Co(t−s)E
[∥∥∥xt − xb tδcδ∥∥∥2

]
ds

≤
∫ t

0

e−Co(t−s)E

[∥∥∥∥∥(s− ⌊sδ⌋δ)∇U(xb sδcδ) +

∫ s

b sδcδ
dBr

∥∥∥∥∥
2

]
ds

≤
∫ t

0

e−Co(t−s)
(
E
[
δL
∥∥∥xb sδcδ∥∥∥2

]
+
√
δd
)
ds

≤
∫ t

0

e−Co(t−s)
(

2δL
√
R2 + d/m+

√
δd
)
ds

≤
2δL

√
R2 + d/m+

√
δd

Co

We can also bound the initial value of E [f(`(z0))] as follows:

E [f(`(z0))]
(i)
= E [f(`(y0))]

(ii)

≤ E [`(y0)]
(iii)

≤ E [‖y0‖2] + β/3
(iv)

≤
√
R2 +

d

m
+ β/3,

where (i) is because x(0) = 0 in Eq. (C.3), (ii) is by Lemma 55.(F3), (iii) is by Lemma 31.1,
and finally (iv) is by Lemma 61.

Let n be the number of time steps, so that t = nδ. Substituting into the inequality in
Eq. (C.16), we get

E [f(`(znδ))] ≤ e−Co(nδ)

(
32

√
R2 +

d

m
+ β/3

)
+

2δL
√
R2 + d/m+ δd

Co
+

12Lβ

Co
.

Step 3: We translate our bound on E [f(`(znδ))] to a bound on E [‖znδ‖2], which implies
a bound in 1-Wasserstein distance. By Lemma 55(F3),

E [‖znδ‖2]

≤ 2eL(R+β)2/2

(
e−Co(nδ)

(
32

√
R2 +

d

m
+ β/3

)
+

2δL
√
R2 + d/m+ δd

Co
+

12Lβ

Co

)

≤ 4eLR
2/2

(
e−Co(nδ)

(
32

√
R2 +

d

m

)
+

2δL
√
R2 + d/m+ δd

Co

)
,

where for the second inequality, it suffices to let β = δd/6
For a given ε, the first term is less than ε/2 if

nδ ≥10

(
log

(
R2 + d/m

ε

)
+ LR2

)
· 1

Co
.
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The second term is less than ε/2 if

δ ≤ 1

10
e−LR

2/2 min

{
ε√

R2 + d/m
,
ε2Co
d

}
.

By the definition of Co in Eq. (C.8),

Co ≤
1

8
min

{
exp (−LR2/2)

R2
,m

}
=

exp (LR2/2)

8R2
,

where the equality is by our assumption on the strong convexity parameter m in the theorem
statement. Recall that we also assume that ε ≤ dR2√

d/m+R2
. Thus we can verify that

min

{
ε√

R2 + d/m
,
ε2Co
d

}
=
ε2Co
d

.

Putting everything together, we obtain a guarantee that E [‖zt‖2] ≤ ε if

δ =
ε2 exp (−LR2)

210R2d
,

and

n ≥ 218 log

(
R2 + d/m

ε

)
·R4 · exp

(
3LR2

2

)
· d
ε2
,

as prescribed by the theorem statement.
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C.4 Proofs for Underdamped Langevin Monte Carlo

C.4.1 Overview

The main idea behind the proof is to show that Lt contracts with probability one by a factor
of e−Cmν , going from t = (k− 1)ν to t = kν. The result can be found in Lemma 50 in Section
C.4.5. The proof considers four cases:

1. µk−1 = 1, µk = 1. In Lemma 53 in Section C.4.5, we show that Lkν ≤ e−CmνL(k−1)ν .
The proof of this result in turn uses Lemma 33 in Section C.4.2, which shows that Lt
contracts at a rate of −Cm over the interval t ∈ [(k − 1)ν, kν].

2. µk−1 = 1, µk = 0. In Lemma 54 in Section C.4.5, we show that Lkν ≤ e−CmνL(k−1)ν .
The proof of this result is almost identical to the preceding case µk−1 = 1, µk = 1. (In
particular, Lt undergoes no jump in value at t = kν, in spite in the change in value
from µk−1 = 1 to µk = 0. See proof for details.)

3. µk−1 = 0, µk = 0. In Lemma 52 in Section C.4.5, we show that Lkν ≤ e−CmνL(k−1)ν .
The proof of this result is mainly based on the definition of Lt.

4. µk−1 = 0, µk = 1. In Lemma 51 in Section C.4.5, we show that Lkν ≤ e−CmνL(k−1)ν .
This case is somewhat tricky, as Lt undergoes a jump in value at t = kν. Specifically,
Lt jumps from e−CmTsync

(
f(rτk−1

)− ξτk−1

)
− (σkν + φkν) to f(rkν)− ξkν − (σkν + φkν).

We prove that this jump is always negative (Lemma 34, Section C.4.3). The proof of
Lemma 36 in turn relies on a contraction result in Lemma 37.

Having proven Lemma 50, we prove Theorem 9 by applying Lemma 50 recursively, and
showing that E [Lt] sandwiches the Wasserstein distance W1(pt, p

∗).

C.4.2 Contraction under Reflection Coupling

Our main result is stated as Lemma 33. It shows that µkf(rt) contracts at a rate of exp(−Cmt),
plus some discretization error terms.

Lemma 33 For any positive integer k, with probability one we have,

µk ·
(
f(r(k+1)ν)− ξ(k+1)ν

)
−
(
σ(k+1)ν + φ(k+1)ν

)
≤ e−Cmν(µk · (f(rkν)− ξkν)− (σkν + φkν)) + 5βν.

Proof
If µk = 0, by definition of σt and φt in (4.26), σ(k+1)ν = e−Cmνσkν and φ(k+1)ν = e−Cmνφkν , so
the inequality reduces to e−Cmν(−(σkν + φkν)) ≤ e−Cmν(−(σkν + φkν)) + 5βν which is clearly
true. To simplify notation, we leave out the factor of µk in subsequent expressions and assume
that µk = 1 unless otherwise stated.

For the rest of this proof, we will consider time s ∈ [kν, (k + 1)ν) for some k.
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Let us first establish some useful derivatives of the function f :

∇zf(rs) = f ′(rs) · (1 + 2cκ)q
′(‖zs‖2) · zs

‖zs‖2

+ f ′(rs) · q′(zs + ws) ·
zs + ws
‖zs + ws‖2

,

∇wf(rs) = f ′(rs) · q′(‖zs + ws‖2) · zs + ws
‖zs + ws‖2

,

∇2
wf(rs) = f ′(rs) · q′(‖zs + ws‖2) · 1

‖zs + ws‖2

(
I − (zs + ws)(zs + ws)

T

‖zs + ws‖2
2

)

+ f ′(rs)q
′′(‖zs + ws‖2)

(zs + ws)(zs + ws)
T

‖zs + ws‖2
2

+ f ′′(rs)q
′(‖zs + ws‖2)2 (zs + ws)(zs + ws)

T

‖zs + ws‖2
2

. (C.17)

The derivatives follow from Lemma 31 and by the definition of rt in Eq. (4.19). From
Lemma 31.3, ∇2

wf((1 + 2cκ)`(z) + `(z + w)) exists everywhere and is continuous,
with ∇2

wf((1 + 2cκ)`(z) + `(z + w))|z+w=0 = 0. Note that, we use the convention 0/0 = 0.
For any s ∈ [kν, (k + 1)ν), we have:

dµk · f(rs)
(i)
= µk · 〈∇zf(rs), dzs〉 + 〈∇wf(rs), dws〉

+ µk ·
8cκ
L
γTs ∇2

wf(rs)γsds+
2cκ
L
γ̄Ts ∇2

wf(rs)γ̄sds

(ii)
= µk ·

(
〈∇zf(rs), ws〉 +

〈
∇wf(rs),−2ws −

cκ
L
∇s −

cκ
L

∆s

〉)
︸ ︷︷ ︸

=:♠

ds

+ µk ·
((

8cκ
L
γTs ∇2

wf(rs)γs +
2cκ
L
γ̄Ts ∇2

wf(rs)γ̄s

))
︸ ︷︷ ︸

=:♥

ds

+ µk ·
〈
∇wf(rs),

(
4

√
cκ
L
γtγ

T
t dBt + 2

√
cκ
L
γ̄tγ̄

T
t dAt

)〉
ds, (C.18)

where (i) follows from Itô’s Lemma, and (ii) follows from Eqs. (4.11) - (4.14), and the
definition of ∇t and ∆t in Eq. (4.20).

In the sequel, we upper bound the terms ♠,♥,♣ separately. Before we proceed, we verify
the following inequalities:

q′(‖zs‖2)

〈
zs
‖zs‖2

, ws

〉
= q′(‖zs‖2)

〈
zs
‖zs‖2

, zs + ws − zs
〉

(i)

≤ q′(‖zs‖2)(‖zs + ws‖2 − ‖zs‖2),
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where (i) is by Cauchy-Schwarz, and:

q′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

,−ws −
cκ
L
∇s

〉
= q′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

,−zs − ws + zs −
cκ
L
∇s

〉
(i)

≤ q′(‖zs + ws‖2)

(
−‖zs + ws‖2 + ‖zs‖2 +

〈
zs + ws
‖zs + ws‖2

,−cκ
L
∇s

〉)
(ii)

≤ q′(‖zs + ws‖2)(−‖zs + ws‖2 + (1 + cκ)‖zs‖2),

where (i) is again by Cauchy-Schwarz and (ii) is by Cauchy-Schwarz combined with Assump-
tion (A1). Finally:

q′(zs + ws)

〈
zs + ws
‖zs + ws‖2

,−cκ
L

∆s

〉
≤ q′(‖zs + ws‖2)

cκ
L
‖∆s‖2, (C.19)

where the inequality above is by Cauchy-Schwarz along with the fact that q′(r) ≥ 0 for all r
from Lemma 30.

Bounding ♠: From Eqs. (C.18) and (C.17):

♠ = (1 + 2cκ)f
′(rs)q

′(‖zs‖2)

〈
zs
‖zs‖2

, ws

〉
+ f ′(rs)q

′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

, ws

〉
+ f ′(rs)q

′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

,−2ws −
cκ
L
∇s −

cκ
L

∆s

〉
= (1 + 2cκ)f

′(rs)q
′(‖zs‖2)

〈
zs
‖zs‖2

, ws

〉
+ f ′(rs)q

′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

,−ws −
cκ
L
∇s −

cκ
L

∆s

〉
=: ♠1. (C.20)

We again highlight the fact that q′(‖z‖2) z
‖z‖2

is defined for all z, particularly at ‖z‖2 = 0,

as q(r) = o(r2) near zero (see Lemma 30).
Substituting the inequality in Eq. (C.19) into ♠1:

♠1 = (1 + 2cκ)f
′(rs)q

′(‖zs‖2)

〈
zs
‖zs‖2

, ws

〉
+ f ′(rs)q

′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

,−ws −
cκ
L
∇s −

cκ
L

∆s

〉
≤ (1 + 2cκ)f

′(rs)q
′(‖zs‖2)(‖zs + ws‖2 − ‖zs‖2)

+ f ′(rs)q
′(‖zs + ws‖2)(−‖zs + ws‖2 + (1 + cκ)‖zs‖2) +

cκ
L
‖∆s‖2,
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where the inequality uses Cauchy-Schwarz and (F2) of Lemma 55.
Now consider a few cases. We will use the expression for q′(r) from Eq. (30) a number of

times:

1. If ‖zs‖2 ∈ [β,∞), ‖zs + ws‖2 ∈ [β,∞), then q′(‖zs‖2) = q′(‖zs + ws‖2) = 1, so that

♠1 ≤ f ′(rs)(‖zs + ws‖2 − ‖zs‖2 − ‖zs + ws‖2 + (1 + cκ)‖zs‖2) +
cκ
L
‖∆s‖2

= f ′(rs)(cκ‖zs‖2) +
cκ
L
‖∆s‖2

≤ 2cκf
′(rs)rs + β +

cκ
L
‖∆s‖2,

where we use the definition of rt defined in Eq. (4.19) and Lemma 31.1.

2. If ‖zs‖2 ∈ [0, β), ‖zs + ws‖2 ∈ [β,∞), then q′(‖zs‖2) ∈ [0, 1] and q′(‖zs + ws‖2) = 1, so
that

♠1

(i)

≤ f ′(rs)((1 + 2cκ)q
′(‖zs‖2)‖ws‖2 − ‖zs + ws‖2 + (1 + cκ)‖zs‖2) +

cκ
L
‖∆s‖2

(ii)

≤ f ′(rs)(2cκ‖ws‖2 + 3‖zs‖2) +
cκ
L
‖∆s‖2

(iii)

≤ f ′(rs)(2cκ‖ws‖2 + 3β) +
cκ
L
‖∆s‖2

(iv)

≤ 2cκf
′(rs)rs + 5β +

cκ
L
‖∆s‖2,

where (i) uses ‖zs + ws‖2 − ‖zs‖2 ≤ ‖ws‖2, (ii) uses ‖ws‖2 − ‖zs + ws‖2 ≤ ‖z)s‖2, (iii)
uses our upper bound in ‖zs‖2 and (iv) uses the definition of rt in Eq. (4.19) and
Lemma 31.1.

3. If ‖zs‖2 ∈ [β,∞), ‖zs + ws‖2 ∈ [0, β), then q′(‖zs‖2) = 1 and q′(‖zs + ws‖2) ∈ [0, 1], so
that

♠1

(i)

≤ f ′(rs)((1 + 2cκ)(‖zs + ws‖2 − ‖zs‖2)− ‖zs + ws‖2 + (1 + cκ)‖zs‖2) +
cκ
L
‖∆s‖2

= f ′(rs)(2cκ‖zs + ws‖2 − cκ‖zs‖2) +
cκ
L
‖∆s‖2

(ii)

≤ f ′(rs)
(

3cκ‖zs + ws‖2 −
cκ
2
rs + 2β

)
+
cκ
L
‖∆s‖2

≤ f ′(rs)
(
−cκ

2
rs

)
+ 5β +

cκ
L
‖∆s‖2,

where (i) uses our expression for q′(·), and (ii) uses the expression for rt in Eq. (4.19),
the fact that cκ ≤ 1/1000 and Lemma 31.1.
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4. Finally, if ‖zs‖2 ∈ [0, β), ‖zs + ws‖2 ∈ [0, β), then q′(‖zs‖2) ∈ [0, 1] and q′(‖zs + ws‖2) ∈
[0, 1], so that

♠1 ≤f ′(rs)(3β) +
cκ
L
‖∆s‖2 ≤ f ′(rs)

(
−cκ

2
rs

)
+ 5β +

cκ
L
‖∆s‖2,

where we again use the expression for rs in Eq. (4.19) and Lemma 31.1.

Combining the four cases above we find that,

♠ ≤ ♠1 ≤1 {‖zs + ws‖2 ∈ [0, β)} ·
(
f ′(rs)

(
−cκ

2
rs

)
+ 4β +

cκ
L
‖∆s‖2

)
+ 1 {‖zs + ws‖2 ∈ [β,∞)} ·

(
2cκf

′(rs)rs + 5β +
cκ
L
‖∆s‖2

)
, (C.21)

where we use Lemma 55.(F2), Lemma 31.1 and Eq. (4.19).
Bounding ♥:

♥ (i)
=

(
8cκ
L
γTs ∇2

wf(rs)γs +
2cκ
L
γ̄Ts ∇2

wf(rs)γ̄s

)
(ii)
=

8cκ
L
· γTs

(
f ′(rs) · q′(‖zs + ws‖2) · 1

‖zs + ws‖2

(
I − (zs + ws)(zs + ws)

T

‖zs + ws‖2
2

))
γs

+
8cκ
L
· γTs

(
f ′(rs)q

′′(‖zs + ws‖2)
(zs + ws)(zs + ws)

T

‖zs + ws‖2
2

)
γs

+
8cκ
L
· γTs

(
f ′′(rs)q

′(‖zs + ws‖2)2 (zs + ws)(zs + ws)
T

‖zs + ws‖2
2

)
γs

+
2cκ
L
· γ̄Ts

(
f ′(rs) · q′(‖zs + ws‖2) · 1

‖zs + ws‖2

(
I − (zs + ws)(zs + ws)

T

‖zs + ws‖2
2

))
γ̄s

+
2cκ
L
· γ̄Ts

(
f ′(rs)q

′′(‖zs + ws‖2)
(zs + ws)(zs + ws)

T

‖zs + ws‖2
2

)
γ̄s

+
2cκ
L
· γ̄Ts

(
f ′′(rs)q

′(‖zs + ws‖2)2 (zs + ws)(zs + ws)
T

‖zs + ws‖2
2

)
γ̄s

(iii)
=

8cκ
L
·
((
f ′′(rs)q

′(‖zs + ws‖2)2 + f ′(rs)q
′′(‖zs + ws‖2)

))
· ‖γs‖2

2

+
2cκ
L
·
(
f ′′(rs)q

′(‖zs + ws‖2)2 + f ′(rs)q
′′(‖zs + ws‖2)

)
· ‖γ̄s‖2

2,

where (i) is by Eq. (C.17), (ii) is by Lemma C.17 and (iii) is because
〈
γs,

zs+ws
‖zs+ws‖2

〉
= ‖γs‖2

and
〈
γ̄s,

zs+ws
‖zs+ws‖2

〉
= ‖γ̄s‖2 (see Eq. (4.15)).
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From Lemma 30.4, q′′(‖zs + ws‖2) = 0 for ‖zs + ws‖2 ≥ β/2 and from Eq. (4.15), γs =
γ̄s = 0 for ‖zs + ws‖2 ≤ β/2. Thus the above simplifies to

♥
(i)

≤ 8cκ
L
·
(
f ′′(rs)q

′(‖zs + ws‖2)2
)
· ‖γs‖2

2 +
2cκ
L
·
(
f ′′(rs)q

′(‖zs + ws‖2)2
)
· ‖γ̄s‖2

2

(ii)

≤ 8cκ
L
·
(
f ′′(rs)q

′(‖zs + ws‖2)2
)
· ‖γs‖2

2

≤ 1 {‖zs + ws‖2 ≥ β} · 8cκ
L
· f ′′(rs), (C.22)

where (i) is by Lemma 55 (F5), which implies that 2cκ
L
· (f ′′(rs)q′(‖zs + ws‖2)2) · ‖γ̄s‖2

2 ≤ 0.
The inequality in (ii) is because f ′′(r) ≤ 0 for all r (Lemma 55.(F5)), along with the
facts that 1 {‖zs + ws‖2 ≥ β} · q′(‖zs + ws‖2) = 1 {‖zs + ws‖2 ≥ β} (by Lemma 30.3), and
1 {r ≥ β}q′(r)2 = 1 {r ≥ β} (by Eq. (4.15)).

Combining our upper bounds on ♠ and ♥ from Eq. (C.21) and Eq. (C.22),

♠+♥ ≤ 1 {‖zs + ws‖2 < β} ·
(
f ′(rs)

(
−cκ

2
rs

)
+ 5β +

cκ
L
‖∆s‖2

)
+ 1 {‖zs + ws‖2 ≥ β} ·

(
2cκf

′(rs)rs + 5β +
cκ
L
‖∆s‖2

)
+ 1 {‖zs + ws‖2 ≥ β} · 8cκ

L
· f ′′(rs)

(i)
= 1

{
‖zs + ws‖2 ≥ β, rs ≤

√
12R

}
·
(

8cκ
L
f ′′(rs) + 2cκf

′(rs) · rs
)

+ 1

{
‖zs + ws‖2 ≥ β, rs >

√
12R

}
· (2cκf ′(rs)rs)

+ 1 {‖zs + ws‖2 < β} ·
(
f ′(rs)

(
−cκ

2
rs

))
+ 5β +

cκ
L
‖∆s‖2

(ii)
= 1

{
‖zs + ws‖2 ≥ β, rs ≤

√
12R

}
·
(

8cκ
L

(
f ′′(rs) +

L

4
f ′(rs) · rs

))
+ 1

{
‖zs + ws‖2 ≥ β, rs >

√
12R

}
· (2cκf ′(rs)rs)

+ 1 {‖zs + ws‖2 < β} ·
(
f ′(rs)

(
−cκ

2
rs

))
+ 5β +

cκ
L
‖∆s‖2,
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where (i) and (ii) follow from algebraic manipulations. Continuing forward we find that,

♠+♥
(i)

≤ 1

{
‖zs + ws‖2 ≥ β, rs ≤

√
12R

}
·

(
−8cκ
L
· e
−6LR2

48R2
f(rs)

)
+ 1

{
‖zs + ws‖2 ≥ β, rs >

√
12R

}
· (2cκf ′(rs)rs)

+ 1 {‖zs + ws‖2 < β} ·

(
−cκe

−6LR2

4
f(rs)

)
+ 5β +

cκ
L
‖∆s‖2

(ii)

≤ 1

{
‖zs + ws‖2 ≥ β, rs ≤

√
12R

}
· (−Cmf(rs))

+ 1 {‖zs + ws‖2 < β} · (−Cmf(rs))

+ 1

{
rs >

√
12R

}
· 2rs + 5β +

cκ
L
‖∆s‖2

(iii)

≤ −Cmf(rs) + 1

{
rs >

√
12R

}
· (Cmf(rs) + 2rs) + 5β +

cκ
L
‖∆s‖2

(iv)

≤ −Cmf(rs) + 1

{
rs >

√
12R

}
· (4rs) + 5β +

cκ
L
‖∆s‖2, (C.23)

where (i) is by Lemma 55 (F4) combined with the choice of αf and Rf , third line is by
Lemma 55 (F2) and Lemma 55 (F3). (ii) follows immediately from the definition of Cm in
(4.9). (iii) can be verified from algebra, and finally (iv) is from the fact that Cm ≤ 1 and
f(r) ≤ r for all r (Lemma 55 (F3)).

Thus, by combining the bounds on ♠ and ♥ in Eqs. (C.23) back into Eq. (C.18),

dµkf(rs) ≤− µkCmf(rs)ds

+ µk

(
1

{
rs >

√
12R

}
· 4rs + 5β +

cκ
L
‖∆s‖2

)
ds

+ µk

〈
∇wf(rs), 4

√
cκ
L

(
γsγ

T
s dBs +

1

2
γ̄sγ̄

T
s dAs

)〉
≤− µkCmf(rs)ds

+ µk

(
1

{
rs >

√
12R

}
· 4rsds+ 5β + cκ

∥∥∥xs − xb sδcδ∥∥∥2

)
ds

+ µk

〈
∇wf(rs), 4

√
cκ
L

(
γsγ

T
s dBs +

1

2
γ̄sγ̄

T
s dAs

)〉
. (C.24)



APPENDIX C. PROOFS FOR CHAPTER 4 108

By taking the time derivative of Eq. (4.24)-(4.26), we can verify that for s ∈ [kν, (k+ 1)ν),

dµkξs =− µk · Cmξsds+ µk · cκ
∥∥∥xs − xb tδcδ∥∥∥2

ds,

dσs =− µkCmσsds+ µk · 1
{
rs ≥

√
12R

}
· 4rsds,

dφs =− µkCmφsds+ µk ·
〈
∇wf(rs), 4

√
cκ
L

(
γsγ

T
s dBs +

1

2
γ̄sγ̄

T
s dAs

)〉
.

By combining with Eq. (C.24) we get

d(µk · (f(rs)− ξs)− σs − φs) ≤− Cm(µk · (f(rs)− ξs)− (σs + φs)) + 5βds.

An application of Grönwall’s Lemma over the interval s ∈ [kν, (k + 1)ν) gives us the
claimed result:

µk ·
(
f(r(k+1)ν)− ξ(k+1)ν

)
−
(
σ(k+1)ν + φ(k+1)ν

)
≤ e−Cmν(µk · (f(rkν)− ξkν)− (σkν + φkν)) + 5βν.

�

C.4.3 Main results for synchronous coupling

Our main result in this section is Lemma 34, which shows that over a period of Tsync, f(rs)
contracts by an amount exp (−CmTsync) with probability one. Note that this is weaker than
showing a contraction rate of exp(−Cmt) for all t, but is sufficient for our purposes.

Lemma 34 Assume that e72LR2 ≥ 2. With probability one, for all k,

1 {kν = τk−1 + Tsync} · (f(rkν)− ξkν)
≤ 1 {kν = τk−1 + Tsync} · exp (−CmTsync) ·

(
f
(
rτk−1

)
− ξτk−1

)
+ 5β.

Proof
From our definition of cκ in Eq. (4.6), rt in Eq. (4.19), and from Lemma 31.1, it can be
verified that

rkν ≤1.002(‖zkν‖2 + ‖zkν + wkν‖2) + 2β

≤
√

2.002

√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 + 2β.

On the other hand, by ‖·‖1 ≥ ‖·‖2 and by Lemma 31,

rτk−1
≥
√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2
− 2β.
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Combining the inequality in the display above with the statement of Lemma 37 gives:

1 {kν = τk−1 + Tsync} · rkν ≤
√

47

50
· 1 {kν = τk−1 + Tsync} · rτk−1

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt+ 5β.

Combining the above with (F2), (F3) and (F6) of Lemma 55, and by using the definition of
f in Eq. (4.23),

1 {kν = τk−1 + Tsync} · f(rkν)

≤ 1 {kν = τk−1 + Tsync} · exp

(
−

1−
√

47/50

4
e−6LR2

)
f(rτk−1

)

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt+ 5β

≤ 1 {kν = τk−1 + Tsync} · exp (−CmTsync)f
(
rτk−1

)
+ 1 {kν = τk−1 + Tsync} · cκ

∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt+ 5β

(i)

≤ 1 {kν = τk−1 + Tsync} · exp (−CmTsync)f
(
rτk−1

)
+ 1 {kν = τk−1 + Tsync} · cκ

∫ kν

τk−1

e−Cm(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt+ 5β, (C.25)

where the first line in (i) follows from the definition of Tsync and Cm in Eq. (4.8) and Eq. (4.9)

along with the fact that (1−
√

47/50)/4 ≥ 1/200. The second line in (i) is because Cm ≤ c2κ
3

from Eq. (4.9).



APPENDIX C. PROOFS FOR CHAPTER 4 110

By definition of ξt in Eq. (4.24),

1 {kν = τk−1 + Tsync}ξkν

= 1 {kν = τk−1 + Tsync} ·
∫ kν

0

e−Cm(kν−t)cκ

∥∥∥xt − xb tδcδ∥∥∥2
dt

= 1 {kν = τk−1 + Tsync} · e−Cm(kν−τk−1)

∫ τk−1

0

e−Cm(τk−1−t)cκ

∥∥∥xt − xb tδcδ∥∥∥2
dt

+ 1 {kν = τk−1 + Tsync} ·
∫ kν

τk−1

e−Cm(kν−t)cκ

∥∥∥xt − xb tδcδ∥∥∥2
dt

= 1 {kν = τk−1 + Tsync} · exp (−Cm(kν − τk−1))ξτk−1

+ cκ

∫ kν

τk−1

exp (−Cm(kν − t))
∥∥∥xt − xb tδcδ∥∥∥2

dt

= 1 {kν = τk−1 + Tsync} · exp (−CmTsync)ξτk−1

+ cκ

∫ kν

τk−1

exp (−Cm(kν − t))
∥∥∥xt − xb tδcδ∥∥∥2

dt. (C.26)

By subtracting the left and the right hand sides of Eq. (C.26) and Eq. (C.25) thus gives us
that,

1 {kν = τk−1 + Tsync} · (f(rkν)− ξkν)
≤ 1 {kν = τk−1 + Tsync} · exp (−CmTsync) ·

(
f
(
rτk−1

)
− ξτk−1

)
+ 5β.

�

We now state and prove several auxillary lemmas which are required for the proof of
Lemma 34.

Lemma 35 If ‖zs‖2
2 + ‖zs + ws‖2

2 ≥ 2.2R2, then

〈zs, ws〉 +
〈
zs + ws,−ws −

cκ
L
∇s

〉
≤ −c

2
κ

3

(
‖zs‖2

2 + ‖zs + ws‖2
2

)
.

Proof
We begin by expanding the differentials d‖zs‖2

2 + d‖zs + ws‖2
2:

d‖zs‖2
2 + d‖zs + ws‖2

2 = 2 〈zs, ws〉 + 2
〈
zs + ws,−ws −

cκ
L
∇s

〉
= −2‖ws‖2

2 − 2
〈
zs,

cκ
L
∇s

〉
− 2

〈
ws,

cκ
L
∇s

〉
= −2‖ws‖2

2 − 2
〈
zs,

cκ
L
∇s

〉
+ ‖ws‖2

2 +
c2
κ

L2
‖∇t‖2

2 − ‖wt +
cκ
L
∇t‖2

2

≤ −‖ws‖2
2 − 2

〈
zs,

cκ
L
∇s

〉
+
c2
κ

L2
‖∇s‖2

2

≤ −‖ws‖2
2 − 2

〈
zs,

cκ
L
∇s

〉
+ c2

κ‖zs‖2
2 =: ♠. (C.27)
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Now consider two cases.
Case 1: (‖zs‖2 ≤ R) By Young’s inequality,

‖zs + ws‖2
2 ≤ 11‖ws‖2

2 + 1.1‖zs‖2
2.

Furthermore, by our assumption that ‖zs‖2
2 + ‖zs + ws‖2

2 ≥ 2.2R2,

11‖ws‖2
2 ≥ ‖zs + ws‖2

2 − 1.1‖zs‖2
2

= ‖zs‖2
2 + ‖zs + ws‖2

2 − 1.1‖zs‖2
2 − ‖zs‖

2
2

≥ 2.2R2 − 2.1R2

≥ 0.1R2

≥ 0.1‖zs‖2
2,

=⇒ ‖zs‖2
2 ≤

1000

9
‖ws‖2

2. (C.28)

With this implication ♠ can now be upper bounded by

♠ = −‖ws‖2
2 − 2

〈
zs,

cκ
L
∇s

〉
+ c2

κ‖zs‖
2
2

(i)

≤ −‖ws‖2
2 + 2cκ‖zs‖2

2 + c2
κ‖zs‖

2
2

(ii)

≤ −‖ws‖2
2 + 3cκ‖zs‖2

2

(iii)

≤ −2

3
‖ws‖2

2

(iv)

≤ −c
2
κ

3

(
‖zs‖2

2 + ‖zs + ws‖2
2

)
,

where (i) is by Assumption (A1) and Cauchy-Schwarz, and (ii) is because cκ := 1
1000κ

≤ 1
1000

.

The inequality (iii) is by the implication in Eq. (C.28), which gives 3cκ‖zs‖2
2 ≤

1000cκ
3
‖ws‖2

2 ≤
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1
3
‖ws‖2

2. Finally, (iv) can be verified as follows:

‖zs‖2
2 + ‖zs + ws‖2

2

(i)

≤ 3‖zs‖2
2 + 2‖ws‖2

2

(ii)

≤ 1000

3
‖wt‖2

2 + 2‖wt‖2
2

≤ 1006

3
‖wt‖2

2.

=⇒
(
‖zs‖2

2 + ‖zs + ws‖2
2

)
≤ 1006

3
‖ws‖2

2

≤ 1

2cκ
‖ws‖2

2.

=⇒ 2

3
‖ws‖2

2 ≥
4cκ
3

(
‖zs‖2

2 + ‖zs + ws‖2
2

)
(iii)

≥ c2
κ

3

(
‖zs‖2

2 + ‖zs + ws‖2
2

)
,

where (i) is by Young’s inequality, (ii) is by Eq. (C.28), and (iii) is by cκ ≤ 1
1000

.
Case 2: (‖zs‖2 ≥ R) We have,

♠ =− ‖ws‖2
2 − 2

〈
zs,

cκ
L
∇s

〉
+ c2

κ‖zs‖
2
2

(i)

≤− ‖ws‖2
2 − 2c2

κ‖zs‖
2
2 + c2

κ‖zs‖
2
2

≤− ‖ws‖2
2 − c

2
κ‖zs‖

2
2

≤− c2
κ

(
‖ws‖2

2 + ‖zs‖2
2

)
(ii)

≤ − c2
κ

3

(
‖zs‖2

2 + ‖zs + ws‖2
2

)
,

where (i) is by Assumption (A3) and (ii) is because

‖zs‖2
2 + ‖zs + ws‖2

2 ≤3‖zs‖2
2 + 2‖ws‖2

2

≤3
(
‖zs‖2

2 + ‖ws‖2
2

)
.

Hence, we have proved the result under both cases. �

Lemma 36 With probability one,

(1− µk) ·
(√∥∥z(k+1)ν

∥∥2

2
+
∥∥z(k+1)ν + w(k+1)ν

∥∥2

2
−
√

2.2R

)
+

≤ (1− µk) · e−
c2κν

3

(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

+ (1− µk) · cκ
∫ (k+1)ν

kν

e−
c2κ
3

((k+1)ν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt.



APPENDIX C. PROOFS FOR CHAPTER 4 113

Proof
When µk = 1, the inequality holds trivially (0 = 0), so for the rest of this proof, we consider
the case µk = 0. To simplify notation, we leave out the multiplier (1− µk) in all subsequent
expressions.

We can verify from Eqs. (4.11)-(4.14) and Eq. (4.18) that when µk = 0, for any s ∈
[kν, (k + 1)ν),

dzs =wsds

d(zs + ws) =
(
−ws +

cκ
L

(∇s + ∆s)
)
ds.

Thus, for any s ∈ [kν, (k + 1)ν),

d

((√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)2

+

)

(i)
=

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R
)

+√
‖zs‖2

2 + ‖zs + ws‖2
2

〈 zs

zs + ws

 ,
 ws

−ws − cκ
L

(∇s + ∆s)

〉 ds
(ii)

≤ −c
2
κ

3

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R
)

+√
‖zs‖2

2 + ‖zs + ws‖2
2

·
(
‖zs‖2

2 + ‖zs + ws‖2
2

)
ds

+

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R
)

+√
‖zs‖2

2 + ‖zs + ws‖2
2

· (‖zs + ws‖2‖∆s‖2)ds

≤ −c
2
κ

3

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)
+

·
√
‖zs‖2

2 + ‖zs + ws‖2
2ds

+
cκ
L

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)
+

· ‖∆s‖2ds

≤ −c
2
κ

3
·
(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)2

+

ds

+ cκ

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)
+

·
∥∥∥xs − xb sδcδ∥∥∥2

ds,

where (i) is by the expression for dzs and dws established above, and (ii) is by Lemma 35
and Cauchy-Schwarz, the last two inequalities follow by algebraic manipulations.

Dividing throughout by
(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R
)

+
gives us that

d

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)
+

≤
(
−c

2
κ

3

(√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)
+

+ cκ

∥∥∥xs − xb sδcδ∥∥∥2

)
dt.
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We can verify that the inequality implies that

d

((√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)
+

− cκ
∫ s

kν

e−
c2κ
3

(s−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
≤ −c

2
κ

3

((√
‖zs‖2

2 + ‖zs + ws‖2
2 −
√

2.2R

)
+

− cκ
∫ s

kν

e−
c2κ
3

(s−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
dt.

Thus by Grönwall’s Lemma,(√
‖z(k+1)ν‖2

2 + ‖z(k+1)ν + w(k+1)ν‖2
2 −
√

2.2R

)
+

− cκ
∫ (k+1)ν

kν

e−
c2κ
3

((k+1)ν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

≤ e−
c2κ
3

((k+1)ν−kν)

((√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

− cκ
∫ kν

kν

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
= e−

c2κν

3

(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

.

This proves the statement of the Lemma. �

Lemma 37 Assume that e72LR2 ≥ 2. With probability one, for all positive integers k,

1 {kν = τk−1 + Tsync} ·
√
‖zkν‖2 + ‖zkν + wkν‖2

≤
√

23

50
· 1 {kν = τk−1 + Tsync} ·

√∥∥zτk−1

∥∥2
+
∥∥zτk−1

+ wτk−1

∥∥2

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt+ 3β.

Proof
By our choice ν we know that Tsync/ν is an integer, thus we have,

kν = τk−1 + Tsync ⇒ (k − 1)ν < τk−1 + Tsync.

Thus,

1 {kν = τk−1 + Tsync}
(i)
= 1 {kν = τk−1 + Tsync} · 1 {(k − 1)ν < τk−1 + Tsync}
(ii)
= 1 {kν = τk−1 + Tsync} · (1− µk−1)

(iii)
= 1 {kν = τk−1 + Tsync} ·

∏
i∈Sk−1

(1− µi), (C.29)

where Sk−1 :=
{ τk−1

ν
, τk−1

ν
+ 1, ..., k − 1

}
(as defined in Lemma 38). Above, (i) is because

kν = τk−1 +Tsync ⇒ (k−1)ν < τk−1 +Tsync, (ii) is because (k−1)ν < τk−1 +Tsync ⇒ µk−1 = 0
(see Eq. (4.18)) and (iii) is by Part 2 of Lemma 38.
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We can now recursively apply Lemma 36 as follows: (to simplify notation, let α :=
1 {kν = τk−1 + Tsync}):

α ·
∏

i∈Sk−1

(1− µi) ·
(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

≤ α ·
∏

i∈Sk−1

(1− µi) · e−
c2κ
3
ν

(√∥∥z(k−1)ν

∥∥2

2
+
∥∥z(k−1)ν + w(k−1)ν

∥∥2

2
−
√

2.2R

)
+

+ α ·
∏

i∈Sk−1

(1− µi) · cκ
∫ kν

(k−1)ν

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

≤ α ·
∏

i∈Sk−1

(1− µi) · e−
c2κ
3
Tsync

(√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2
−
√

2.2R

)
+

+ α ·
∏

i∈Sk−1

(1− µi) · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt, (C.30)

where the last inequality uses the fact that ν · (k − τk−1) = Tsync in the definition of α.
Thus, we have,

1 {kν = τk−1 + Tsync} ·
(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

(i)
= 1 {kν = τk−1 + Tsync} ·

∏
i∈Sk−1

(1− µi) ·
(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

(ii)

≤ 1 {kν = τk−1 + Tsync} ·
∏

i∈Sk−1

(1− µi) ·
(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

+ 1 {kν = τk−1 + Tsync} ·
∏

i∈Sk−1

(1− µi) · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

(iii)
= 1 {kν = τk−1 + Tsync} · e−

c2κ
3
Tsync

(√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2
−
√

2.2R

)
+

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

(iv)

≤ 1 {kν = τk−1 + Tsync} ·
1

100

(√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2
−
√

2.2R

)
+

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt, (C.31)

where (i) is by Eq. (C.29), (ii) is by Eq. (C.30), (iii) is by Eq. (C.29) again, and (iv) is by
the definition Tsync = 3

c2κ
log(100).
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Let j := τk−1/ν. Then by the first part of Lemma 38, we know that τj = τk−1 = jν. From
the update rule for τk, Eq. (4.17), this must imply that√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2
=
√
‖zjν‖2

2 + ‖zjν + wjν‖2
2 ≥
√

5R. (C.32)

Thus finally,

1 {kν = τk−1 + Tsync} ·
(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2

)
(i)

≤ 1 {kν = τk−1 + Tsync} ·
(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

+ 1 {kν = τk−1 + Tsync} ·
√

2.2R

(ii)

≤ 1 {kν = τk−1 + Tsync}
1

100

(√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2
−
√

2.2R

)
+

+ 1 {kν = τk−1 + Tsync} ·
√

2.2R

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

(iii)

≤ 1 {kν = τk−1 + Tsync}
1

100

(√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2
−
√

2.2R

)
+ 1 {kν = τk−1 + Tsync} ·

√
22

50

√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

(iv)

≤ 1 {kν = τk−1 + Tsync}
√

23

50

√∥∥zτk−1

∥∥2

2
+
∥∥zτk−1

+ wτk−1

∥∥2

2

+ 1 {kν = τk−1 + Tsync} · cκ
∫ kν

τk−1

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt,

where (i) is by an algebraic manipulation, (ii) is by Eq. (C.31), (iii) is by Eq. (C.32) and

(iv) is because 1/100 +
√

22/50 ≤
√

23/50. �

Lemma 38 Let k be a positive integer, then:

1. Let j = τk/ν. Then for all i ∈ {j, j + 1, ..., k}, τi = τk = jν.

2. If µk = 0, then µi = 0 for all i ∈ {τk/ν...k}, µi = 0. Equivalently,

1 {µk = 0} =
∏
i∈Sk

1 {µi = 0},

where Sk :=
{
τk
ν
, ..., k

}
.
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Proof
For the first claim: By definition of the update for τk, if j = τk/ν for any k, then jν = τj = τk.
Note that τi is nondecreasing with i, so that j = τk ≤ k, which implies that τj ≤ τj+1 ≤ ... ≤ τj .
Since τj = τk, the inequalities must hold with equality.

For the second claim: By the definition of µk; µk = 0 implies that kν < τk+Tsync. From the
first claim, we know that for all i ∈ {τk/ν...k}, τi = τk. Thus iν ≤ kν < τk+Tsync = τi+Tsync.
�

C.4.4 Discretization Error Bound

In this section, we bound the various discretization errors. First, in Section C.4.4.1, we
establish a bound on E [ξt]. Then in Lemma 42, we bound E [σt]. Finally, in Lemma 47, we
show that E [φt] = 0 as it is a martingale.

C.4.4.1 Bound on E [ξt]

In this subsection, we establish a bound on E [ξt]. This term represents the discretization error

that arises because in the SDE in Eq. (4.12), the update to ut uses the gradient ∇U
(
xb tδcδ

)
instead of ∇U(xt). Our main result is Lemma 39, which in turn relies on the uniform bound

for all t ≥ 0 on E
[∥∥∥xt − xb tδcδ∥∥∥8

2

]
established in Corollary 40 (based on the moment bounds

established in Appendix C.6).

Lemma 39 For all t ≥ 0,

E [ξt] ≤ δ ·
29cκ

(
R +

√
d/m

)
Cm

.

Proof
By the bound in Corollary 40,

E
[∥∥∥xt − xb tδcδ∥∥∥8

2

]
≤ δ8272

(
R2 +

d

m

)4

.

Further, by Jensen’s inequality,

E
[∥∥∥xt − xb tδcδ∥∥∥2

]
≤ δ · 29

(
R +

√
d

m

)
.
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By integrating from up to time t,

E [ξt] =

∫ t

0

e−Cm(t−s)E
[
cκ

∥∥∥xt − xb sδcδ∥∥∥2

]
ds

≤
∫ t

0

e−Cm(t−s)cκδ2
9

(
R +

√
d

m

)
ds

≤δ ·
29cκ

(
R +

√
d/m

)
Cm

.

�

Corollary 40 For all t ≥ 0,

E
[∥∥∥xt − xb tδcδ∥∥∥8

2

]
≤ δ8272

(
R2 +

d

m

)4

.

Proof
This follows directly by combining the results of Lemma 56 and Lemma 41. �

Lemma 41 Suppose that the step size δ ≤ 1
1000

. Then for all t ∈ [
⌊
t
δ

⌋
δ, (
⌊
t
δ

⌋
+ 1)δ],

E
[∥∥∥xt − xb tδcδ∥∥∥8

2

]
≤ δ8

(
1.1E

[(∥∥∥xb tδcδ∥∥∥8

2
+
∥∥∥ub tδcδ∥∥∥8

2

)]
+ 212

(
R2 +

d

m

)4
)
.

Proof

E
[∥∥∥xt − xb tδcδ∥∥∥8

2

]
= E

∥∥∥∥∥
∫ t

b tδcδ
wsds

∥∥∥∥∥
8

2


≤ δ7

∫ t

b tδcδ
E
[
‖ws‖8

2

]
ds

= δ8

(
1.1E

[(∥∥∥xb tδcδ∥∥∥8

2
+
∥∥∥ub tδcδ∥∥∥8

2

)]
+ 212

(
R2 +

d

m

)4
)
,

where for the last inequality, we use Lemma 58.
�
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C.4.4.2 Bounds on E [σt] and E [φt]

In this subsection, we bound E [σt] (Lemma 42). This term represents the discretization error
that arises because τk (and hence µk) is updated at discrete time intervals of ν. We highlight
the fact that E [σt] is bounded by a term that depends on ν, which can be made arbitrarily
small. The main ingredient of this proof is a bound on E

[
µk · 1

{
rs ≥

√
12R

}]
in Lemma 44.

Lemma 42 For β ≤ 0.0001R. There exists a C5 = poly(L, 1/m, d,R, 1
Cm

) and C3 =
1/poly(L, 1/m, d,R), such that for all ν ≤ C3, for all positive integers k, and for all t ≥ 0,

E [σt] ≤ C5ν
2.

Proof
By the definition of σt in Eq. (4.25),

E [σt] = E
[∫ t

0

µb sν c · e
−Cm(t−s)

1

{
rs ≥

√
12R

}
· 4rsds

]
= 4

∫ t

0

e−Cm(t−s)E
[
µb sν c1

{
rs ≥

√
12R

}
rs

]
ds

(i)

≤ 4

∫ t

0

e−Cm(t−s)ν2 · C4

≤ 4ν2C4

Cm
= ν2 · C5,

where (i) is by Corollary 45. �

Lemma 43 For all s ≥ 0,

E
[
r2
s

]
≤ 232

(
R2 +

d

m

)
.

Proof
Recall that,

r2
s = ((1 + 2cκ)‖zs‖2 + ‖zs + ws‖2)2

≤ ((2 + 2cκ)‖zs‖2 + ‖ws‖2)2

≤ (2.1‖xs‖2 + 2.1‖ys‖2 + ‖us‖2 + ‖vs‖2)2

(i)

≤ 16
(
‖xs‖2

2 + ‖us‖2
2 + ‖ys‖2

2 + ‖vs‖2
2

)
≤ 216

(
272

(
R2 +

d

m

)4
)1/4

= 232

(
R2 +

d

m

)
,
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where (i) is by Lemma 56 and Lemma 57. �

Lemma 44 For every β ≤ 0.0001R, there exists a C2 = poly(L, 1/m, d,R), C3 = 1/poly(L, 1/m, d,R),
such that for all ν ≤ C3, for all positive integers k, and for all s ∈ [kν, (k + 1)ν],

E
[
µk · 1

{
rs ≥

√
12R

}]
≤ C2ν

4.

Proof
By definition of µk in Eq. (4.18), we know that µk = 1 implies that kν − τk ≥ Tsync which
further implies that τk = τk−1 (otherwise τk must equal kν by the definition of τt, in which
case kν − τk = 0 < Tsync). This then implies that kν − τk−1 ≥ Tsync. It must thus be the case

that
√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 <
√

5R, because otherwise τk = kν, which contradicts µk = 1.

Thus,

µk ≤ 1

{√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 <
√

5R

}
. (C.33)

By a standard inequality between ‖·‖1 and ‖·‖2,√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 ≥

1√
2

(‖zkν‖2 + ‖zkν + wkν‖2)

(i)

≥ 1√
2

(`(zkν) + `(zkν + wkν))− β

(ii)

≥ 1

1.002
√

2
rkν − β,

where (i) is by Lemma 31.1, and (ii) is by definition of rt in Eq. (4.19) and by definition of
cκ.

Combining with the inequality (C.33),

µk ≤ 1

{
1

1.002
√

2
rkν − β <

√
5R

}
= 1

{
rkν < 1.002

√
10R + β

}
≤ 1

{
rkν <

√
11R

}
, (C.34)

where the final inequality uses our assumption that β ≤ 0.0001R. Thus,

µk · 1
{
rs ≥

√
12R

}
≤1
{
rkν <

√
11R

}
· 1
{
rs ≥

√
12R

}
≤1 {|rs − rkν | ≥ 0.14R}.
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Taking expectations,

E
[
µk · 1

{
rs ≥

√
12R

}]
≤ E [1 {|rs − rkν | ≥ 0.14R}]
(i)

≤ E [(rs − rkν)8]

(0.14R)8

(ii)

≤
210E

[
‖zs − zkν‖8

2 + ‖ws − wkν‖8
2

]
+ 210β4

(0.14R)8
, (C.35)

where (i) by Markov’s inequality, (ii) can be verified by using Lemma 31.1 and some algebra.
Next, by the dynamics of zt we have that

‖zs − zkν‖8
2 =

∥∥∥∥∫ s

kν

wsdt

∥∥∥∥8

2

≤ (s− kν)7

∫ s

kν

‖ws‖8
2dt

≤ 23(s− kν)7

∫ s

kν

‖us‖8
2 + ‖vs‖8

2dt. (C.36)

Further by the definition of the dynamics of wt we get,

‖ws − wkν‖8
2

=

∥∥∥∥∫ s

kν

−2wt −
cκ
L
∇U(xb tδc) +

cκ
L
∇U(yt)dt+ 4

√
cκ
L

∫ s

kν

γtγ
T
t dBt + 2

√
cκ
L

∫ s

kν

γ̄tγ̄
T
t dAt

∥∥∥∥8

2

(i)

≤ 220(s− kν)7

(∫ s

kν

‖wt‖8
2 +

c8
κ

L8
‖∇U(yt)‖8

2 +
c8
κ

L8

∥∥∥∇U(xb tν c)
∥∥∥8

2
dt

)
+ 212 c

4
κ

L4

∥∥∥∥∫ s

kν

γtγ
T
t dBt

∥∥∥∥8

2

+ 212 c
4
κ

L4

∥∥∥∥∫ s

kν

γ̄tγ̄
T
t dAt

∥∥∥∥8

2

(ii)

≤ 230(s− kν)7

(∫ s

kν

‖ut‖8
2 + ‖vt‖8

2 + c8
κ‖yt‖

8
2 + c8

κ

∥∥∥xb tν c∥∥∥8

2
dt

)
+ 212 c

4
κ

L4

∥∥∥∥∫ s

kν

γtγ
T
t dBt

∥∥∥∥8

2

+ 212 c
4
κ

L4

∥∥∥∥∫ s

kν

γ̄tγ̄
T
t dAt

∥∥∥∥8

2

(iii)

≤ 230(s− kν)7

(∫ s

kν

‖ut‖8
2 + ‖vt‖8

2 + ‖yt‖8
2 +

∥∥∥xb tν c∥∥∥8

2
dt

)
+ 212 1

L4

∥∥∥∥∫ s

kν

γtγ
T
t dBt

∥∥∥∥8

2

+ 212 1

L4

∥∥∥∥∫ s

kν

γ̄tγ̄
T
t dAt

∥∥∥∥8

2

, (C.37)

where (i) is by the triangle inequality and Young’s inequality, (ii) uses Assumption (A1), and
(iii) uses the fact that cκ ≤ 1.
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Therefore, summing the two inequalities above and taking expectations,

E
[
‖zs − zkν‖8

2 + ‖ws − wkν‖8
2

]
≤ E

[
230(s− kν)7

(∫ s

kν

∥∥∥xb tδcδ∥∥∥8

2
+ ‖ut‖8

2 + ‖yt‖8
2 + ‖vt‖8

2dt

)]
+ E

[
212 1

L4

∥∥∥∥∫ s

kν

γtγ
T
t dBt

∥∥∥∥8

2

+ 212 1

L4

∥∥∥∥∫ s

kν

γ̄tγ̄
T
t dAt

∥∥∥∥8

2

]

≤ 232(s− kν)8

(
R2 +

d

m

)4

+ 252 · (s− kν)4 · 1

L4
,

where the last inequlaity is by combining Lemma 56, Lemma 57 and Lemma 46 and by noting
that by their definition in Eq. (4.15), ‖γt‖2 ≤ 1 and ‖γ̄t‖2 ≤ 1 for all t, with probability one.

There exists C1 = poly(R, d, 1
m

) and C3 = 1/poly(R, d, 1
m

), such that for all ν < C3 and
for all s ∈ [kν, (k + 1)ν], the right-hand side of the inequality above is upper bounded by

E
[
‖zs − zkν‖8

2 + ‖ws − wkν‖8
2

]
≤ν4C1.

Combining the above with inequality (C.35), we find that there exists C2 = poly(R, d, 1
m

)
and C3 = 1/poly(R, d, 1

m
), such that for all ν < C3 and for all s ∈ [kν, (k + 1)ν]

E
[
µk · 1

{
rs ≥

√
12R

}]
≤E [(rs − rkν)8]

(0.14R)8

≤
210E

[
‖zs − zkν‖8

2 + ‖ws − wkν‖8
2

]
+ 210β4

(0.14R)8

≤ν4C2,

where β is absorbed into C2 due to our assumption that β ≤ 0.0001R.
�

Corollary 45 For β ≤ 0.0001R. There exists constants, C3 = 1/poly(L, 1/m, d,R) and
C4 = poly(L, 1/m, d,R), such that for all ν ≤ C3, for all positive integers k, and for all
s ∈ [kν, (k + 1)ν],

E
[
µk1

{
rs ≥

√
12R

}
rs

]
≤
√

E
[
µk1

{
rs ≥

√
12R

}]√
E [r2

s ] ≤ C4ν
2.

Proof
Proof follows by combining the results of Lemma 43 and Lemma 44. �

Lemma 46 Let γt be a d-dimensional adapted process satisfying ‖γt‖2 ≤ 1 for all t > 0 with
probability one. Then

E

[∥∥∥∥∫ t

0

γsγ
T
s dBs

∥∥∥∥8

2

]
≤ 220t4.
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Proof
Let us define βt :=

∫ t
0
γsγ

T
s dBs. Define the function l(β) := ‖β‖8

2 for this proof. The derivates
of this function are,

∇l(β) = 8l(β)3/4β

∇2l(β) = 8l(β)3/4I + 48l(β)2/4ββT .

By Itô’s Lemma,

dl(βt) =
〈
8l(βt)

3/4βt, βtβ
T
t dBt

〉
+ 4l(βt)

3/4‖γt‖2
2dt+ 24l(βt)

2/4(〈βt, γt〉)2‖γt‖2
2dt

≤
〈
8l(βt)

3/4βt, βtβ
T
t dBt

〉
+ 4l(βt)

3/4dt+ 24l(βt)
2/4‖βt‖2

2dt

=
〈
4l(βt)

3/4βt, βtβ
T
t dBt

〉
+ 28l(βt)

3/4dt.

Taking expectations,

d

dt
E [l(βt)] ≤28E

[
l(βt)

3/4
]
≤ 28E [l(βt)]

3/4 .

Thus,

d

dt
E [l(βt)]

1/4 ≤ 28

⇒ E [l(βt)]
1/4 ≤ 28t

⇒ E [l(βt)] ≤ 220t4,

as claimed. �

Lemma 47 For all t ≥ 0, E [φt] = 0.

Proof
By the definition of φt it is a martingale. Hence, E [φt] = 0. �

C.4.5 Putting it all together

In this section, we combine the results from Appendices C.4.2, C.4.3 and C.4.4 to prove
Theorem 9. The heart of the proof is Lemma 50, which shows that Lt contracts with
probability one at a rate of −Cm. This lemma essentially combines the results of Lemmas 51,
52 (proved in Appendix C.4.2) and Lemmas 53, 54 (proved in Appendix C.4.3).

Proof of Theorem 9
From Lemma 50 we have,

Lkν ≤ e−CmkνL0 +
1

1− exp (−Cmν)
· (3ν + 5)β. (C.38)
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while from Lemma 49,

f(rkν) ≤ 200Lkν + 400ξkν + σkν + φkν + 400β.

Taking expectations,

E [f(rkν)]

(i)

≤ 200E [Lkν ] + 400E [ξkν ] + E [σkν ] + E [φkν ] + 400β

(ii)

≤ 200e−CmkνE [L0] + 400E [ξkν ] + E [σkν ] + E [φkν ] +
2000(ν + 1)

1− exp (−Cmν)
β

= 200e−CmkνE [f(r0)] + 400E [ξkν ] + E [σkν ] + E [φkν ] +
2000(ν + 1)

1− exp (−Cmν)
β

≤ 200e−CmkνE [r0] + 400E [ξkν ] + E [σkν ] + E [φkν ] +
3000(ν + 1)

1− exp (−Cmν)
β,

where (i) is by Eq. (C.38) and (ii) can be verified from the initialization in Eq. (4.10) and
the definition of the Lyapunov function Lt in Eq. (4.27).

From Lemmas 39, 42 and 47,

400E [ξkν ] + E [σkν ] + E [φkν ] ≤ δ ·
218cκ

(
R +

√
d/m

)
Cm

+ C5ν
2,

where C5 = poly(L, 1/m, d,R, 1/Cm) as defined in Lemma 42.
From Lemma 57, our choice of x0 = u0 = 0 in Eq. (4.10) and our definition of rt in

Eq. (4.19),

E [r0] ≤ 3E [‖y0‖2 + ‖v0‖2] ≤ 210

(
R +

√
d

m

)
+ 3β.

By plugging the bound on E [r0] and E [ξkν ] into the bound on E [f(rkν)] above gives us that

E [f(rkν)] ≤ e−Cmkν218

(
R +

√
d

m

)
+ δ ·

218cκ

(
R +

√
d/m

)
Cm

+ C5ν
2 +

3000(ν + 1)

1− exp (−Cmν)
β.

This inequality along with (F3) of Lemma 55, and Lemma 31.1 also implies that,

E [‖zkν‖2] ≤ E [rkν ] + β

≤ 2e6LR2 · E [f(rku)] + β

≤ e6LR2 · e−Cmkν219

(
R +

√
d

m

)
+ e6LR2 · δ ·

219cκ

(
R +

√
d/m

)
Cm

+ 2e6LR2 ·
(
C5ν

2 +
3000(ν + 1)

1− exp (−Cmν)
β + β

)
.
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We can take ν and β to be arbitrarily small without any additional computation cost, so let

ν = e−10 min

{
1
Cm
,

(
e−6LR2 · δcκ(R+

√
d/m)

Cm

)1/2
}

and β = 2−20e−6LR2 · δcκ(R +
√
d/m) · ν

1+ν
.

In particular, note that our assumption that ν ≤ e−10/Cm allows us to simplify 1/(1−
exp(−Cmν)) ≤ Cmν/2. We have thus shown that the sum of terms containing β and ν are
less than the sum of terms which do not contain β and ν.

We can ensure that the second term

(
e6LR2 · δ ·

219cκ
(
R+
√
d/m

)
Cm

)
is less than ε/2 by setting

δ = ε2−20e−6LR2 Cm

R +
√
d/m

1

cκ
.

We can ensure that the first term
(
e6LR2 · e−Cmkν219

(
R +

√
d
m

))
is less than ε/2 by setting

kν ≥
log 1

ε
+ 6LR2 + log

(
220
(
R2 + d

m

))
Cm

.

Recalling the definition of Cm := min
{

e−6LR2

6000κLR2 ,
e−6LR2

21·107·log (100)·κ2 ,
1

3·106κ2

}
in Eq. (4.9), and

cκ := 1/(1000κ), some algebra shows that it suffices to let

δ =
ε

R +
√
d/m

· e−12LR2 · 2−35 min

(
1

LR2
,

1

κ

)
.

The number of steps of the algorithm is thus

n =
kν

δ
≥ 260 ·

R +
√
d/m

ε
· e18LR2 · κ ·max

{
LR2, κ

}2 ·
(

log
1

ε
+ LR2 + log

(
R2 +

d

m

))
= Õ

(√
d

ε
e18LR2

)
.

This completes the proof. �

Lemma 48 With probability one, for all positive integers k,

(1− µk) · f(rkν) ≤ (1− µk) · 2
(
f(rτk) + cκ

∫ kν

τk

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
+ 6β.

Proof
First, by Eq. (4.19) and Lemma 31.1,

(1− µk) · rkν =(1− µk) · ((1 + 2cκ)`(zkν)2 + `(zkν + wkν))

≤(1− µk) · ((1 + 2cκ)‖zkν‖2 + ‖zkν + wkν‖) + 3β.
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Note that by Lemma 38 we have,

1− µk = 1 {µk = 0} =
∏
i∈Sk

1 {µi = 0} =
∏
i∈Sk

(1− µi), (C.39)

where Sk :=
{
τk
ν
, ..., k

}
. Thus using this characterization of 1− µk we get,

(1− µk) · ((1 + 2cκ)‖zkν‖2 + ‖zkν + wkν‖2)

(i)

≤ (1− µk) · 2
√
‖zkν‖2

2 + ‖zkν + wkν‖2
2

(ii)

≤ (1− µk) · 2
((√

‖zkν‖2
2 + ‖zkν + wkν‖2

2 −
√

2.2R

)
+

+
√

2.2R

)
,

where (i) is by defintion of cκ in Eq. (4.6) and (ii) inequality is by algebra. Unpacking this
further we get that:

(1− µk) · ((1 + 2cκ)‖zkν‖2 + ‖zkν + wkν‖2)

(i)

≤ (1− µk) · 2

((∏
i∈Sk

(1− µi)

)
·
(√
‖zkν‖2

2 + ‖zkν + wkν‖2
2 −
√

2.2R

)
+

+
√

2.2R

)
(ii)

≤ (1− µk) · 2

((∏
i∈Sk

(1− µi)

)
· e−

c2κ
3

(kν−τk)

(√
‖zτk‖

2
2 + ‖zτk + wτk‖

2
2 −
√

2.2R

)
+

)

+ (1− µk) · 2

((∏
i∈Sk

(1− µi)

)
· cκ
∫ kν

τk

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
+ (1− µk) · 2

(√
2.2R

)
(iii)

≤ (1− µk) · 2
((√

‖zτk‖
2
2 + ‖zτk + wτk‖

2
2 −
√

2.2R

)
+

+
√

2.2R

)
+ (1− µk) · 2

(
cκ

∫ kν

τk

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
(iv)
= (1− µk) · 2

(√
‖zτk‖

2
2 + ‖zτk + wτk‖

2
2

)
+ (1− µk) · 2

(
cκ

∫ kν

τk

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
(v)

≤ (1− µk) · 2
(
rτk +

(
cκ

∫ kν

τk

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

))
+ 3β,

where (i) is by Eq. (C.39), (ii) follows by Lemma 36, applied recursively for i ∈
{
τk
ν
...k
}

, while
(iii) is again by Eq. (C.39). The equality in (iv) can be verified as follows: By Lemma 38
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we know that ττk/ν = τk, which implies that
√
‖zτk‖

2
2 + ‖zτk + wτk‖

2
2 ≥
√

5R based on the

dynamics of τk in Eq. (4.17). Finally (v) is by definition of rt in Eq. (4.19).
Our conclusion thus follows from the concavity of f and the fact that f(0) = 0, so that

for all a, b, c ∈ R+, f(4b) ≤ 4f(b) and a ≤ b+ c implies that f(a) ≤ f(b) + c:

(1− µk) · f(rkν) ≤ (1− µk) · 2
(
f(rτk) + cκ

∫ kν

τk

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt

)
+ 6β.

�

Lemma 49 For all positive integer k, with probability one,

f(rkν) ≤ 200Lkν + 400ξkν + σkν + φkν + 400β.

Proof
From Lemma 48,

(1− µk) · f(rkν) ≤ 2(1− µk) · f(rτk) + 2(1− µk) · cκ
∫ kν

τk

e−
c2κ
3

(kν−t)
∥∥∥xt − xb tδcδ∥∥∥2

dt+ 6β

≤ 2(1− µk) · f(rτk) + 2(1− µk)ξkν + 6β, (C.40)

where the last inequality is by Eq. (4.24).
We can also verify from the definition of µt in Eq. (4.18) that µk = 0⇔ kν ≤ τk + Tsync.

Thus,

(1− µk) · e−Cm(kν−τk)
(i)

≥ (1− µk) · e−CmTsync
(ii)

≥ (1− µk) · exp

(
−c

2
κ

3
· Tsync

)
= (1− µk) ·

1

100
, (C.41)

where (i) is by Eq. (4.9) and (ii) line is by Eq. (4.8).
Combining the above with the definition of ξkν in Eq. (4.24) we get,

(1− µk)ξkν = (1− µk)e−Cm(kν−τk)ξτk +

∫ kν

τk

e−Cm(kν−s)cκ

∥∥∥xs − xb sδcδ∥∥∥2
ds

≥ (1− µk)e−Cm(kν−τk)ξτk . (C.42)
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Thus,

Lkν
(i)
= µk(f(rkν)− ξkν) + (1− µk) · e−Cm(kν−τk) · (f(rτk)− ξτk)− (σkν + φkν)

(ii)

≥ µk(f(rkν)− ξkν) + (1− µk) · e−Cm(kν−τk) ·
(

1

2
f(rkν)− ξkν − ξτk − 2β

)
− (σkν + φkν)

(iii)

≥ µk(f(rkν)− ξkν) + (1− µk) · ·
(
e−Cm(kν−τk)

2
f(rkν)− 2ξkν − 2β

)
− (σkν + φkν)

(iv)

≥ µk(f(rkν)− ξkν) + (1− µk) ·
(

1

200
f(rkν)− 2ξkν − 2β

)
− (σkν + φkν)

(v)

≥ 1

200
(µk · f(rkν) + (1− µk) · f(rkν))− (2ξkν + σkν + φkν)− 2β

(vi)
=

1

200
(f(rkν))− (2ξkν + σkν + φkν)− 2β,

where (i) is by definition of L in Eq. (4.27). (ii) is by Eq. (C.40). (iii) is by Eq. (C.42) and
the positivity of f , ξ, β. (iv) is by Eq. (C.41) and the fact that f(rt) ≥ 0 and ξt ≥ 0 for all t.
The inequalities (v) and (vi) are by algebraic manipulations.

Rearranging terms gives

f(rkν) ≤ 200Lkν + 400ξkν + σkν + φkν + 400β.

�

Lemma 50 Assume that e72LR2 ≥ 2. With probability one, for all positive integers k,

Lkν ≤ e−CmνL(k−1)ν + (3ν + 5)β.

Applying this recursively,

Lkν ≤e−CmkνL0 + (3ν + 5)β ·
k∑
i=0

e−iCmν

≤e−CmkνL0 +
1

1− exp (−Cmν)
· (3ν + 5)β.

Proof
We get the conclusion by summing the results of Lemmas 51, 52, 53 and 54. �

Below, we state the lemmas which are needed to prove Lemma 50.

Lemma 51 Assume that e72LR2 ≥ 2. For all positive integers k, with probability 1,

1 {µk = 1, µk−1 = 0} · Lkν ≤1 {µk = 1, µk−1 = 0} · e−CmνL(k−1)ν + 5β.
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Proof
Given the definition of Lt in Eq. (4.27) we find that 1 {µk = 1}Lkν = 1 {µk = 1}f(rkν) and
1 {µk−1 = 0}L(k−1)ν = 1 {µk−1 = 0}

(
e−Cm((k−1)ν−τk−1)f(rτk−1

)−
(
σ(k−1)ν + φ(k−1)ν

))
.

By the dynamics of µk, we can verify that

µk = 1⇔ kν ≥ τk + Tsync

⇒ kν 6= τk

⇒ τk = τk−1

⇒ kν ≥ τk−1 + Tsync.

We can also verify that

µk−1 = 0⇒ (k − 1)ν < τk−1 + Tsync.

By our choice of ν, Tsync/ν is an integer (see comment following Eq. (4.8)), and the inequalities
above imply that kν = τk−1 + Tsync. Thus,

1 {µk = 1, µk−1 = 0} = 1 {µk = 1, µk−1 = 0} · 1 {kν = τk−1 + Tsync}. (C.43)

To reduce clutter, let us define α := 1 {µk = 1, µk−1 = 0} and α′ := 1 {kν = τk−1 + Tsync}.
Hence we have,

α · Lkν
(i)
= α · (f(rkν)− ξkν)− α · (σkν + φkν)

(ii)
= α · α′(f(rkν)− ξkν)− α · (σkν + φkν)

(iii)

≤ α · α′ · e−CmTsync
(
f(rτk−1

)− ξτk−1

)
− α · (σkν + φkν) + 5β

(iv)
= α · α′ · e−Cm(kν−τk−1)

(
f(rτk−1

)− ξτk−1

)
− α · (σkν + φkν) + 5β

(v)
= α · α′ · e−Cmνe−Cm((k−1)ν−τk−1)

(
f(rτk−1

)− ξτk−1

)
− α · (σkν + φkν) + 5β

(vi)
= α · e−Cmνe−Cm((k−1)ν−τk−1)

(
f(rτk−1

)− ξτk−1

)
− α · (σkν + φkν) + 5β, (C.44)

where (i) is by definition of Lkν , (ii) by Eq. (C.43), (iii) is by Lemma 34, (iv) is by the fact
that α′ = 1 {Tsync = kν − τk−1}, (v) is by algebra and finally (vi) is again by Eq. (C.43).

By definition of σt in Eq. (4.25),

α · σkν = α

∫ kν

0

µb sν c · e
−Cm(kν−s) · 4rsds

(i)
= α

∫ (k−1)ν

0

µb sν c · e
−Cm(kν−s) · 4rsds

= αe−Cmνσ(k−1)ν , (C.45)

where (i) is because α = 1 implies that µb sν c = µk−1 = 0 for all s ∈ [(k − 1)ν, kν).
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Similarly, by the definition of φt in Eq. (4.26),

α · φkν

= α

∫ kν

0

µb sν c · e
−Cm(kν−s)f ′(rs)q

′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

, 4

√
cκ
L

(
γsγ

T
s dBs +

1

2
γ̄sγ̄

T
s dAs

)〉
(i)
= α

∫ (k−1)ν

0

µb sν c · e
−Cm(kν−s)f ′(rs)q

′(‖zs + ws‖2)

〈
zs + ws
‖zs + ws‖2

, 4

√
cκ
L

(
γsγ

T
s dBs +

1

2
γ̄sγ̄

T
s dAs

)〉
= αe−Cmνφ(k−1)ν , (C.46)

where (i) is again because α = 1 implies that µb sν c = µk−1 = 0 for all s ∈ [(k − 1)ν, kν).

Combining these results,

αLkν
(i)

≤ α · e−Cmνe−Cm((k−1)ν−τk−1)
(
f(rτk−1

)− ξτk−1

)
− α · (σkν + φkν) + 5β

(ii)
= α · e−Cmνe−Cm((k−1)ν−τk−1)

(
f(rτk−1

)− ξτk−1

)
− αe−Cmν ·

(
σ(k−1)ν + φ(k−1)ν

)
+ 5β

(iii)
= α · e−Cmν · L(k−1)ν + 5β,

where (i) is by Eq. (C.44) and (ii) is by Eq. (C.45) and Eq. (C.46). Inequality (iii) is by the def-
inition of Lt in Eq. (4.27), and because 1 {µk−1 = 0}L(k−1)ν = 1 {µk−1 = 0}

(
e−Cm((k−1)ν−τk−1)f(rτk−1

)−
(
σ(k−1)ν + φ(k−1)ν

))
,

as noted in the beginning of the proof. �

Lemma 52 For all positive integers k, with probability one,

1 {µk = 0, µk−1 = 0} · Lkν ≤ 1 {µk = 0, µk−1 = 0} · e−CmνL(k−1)ν + 5β.

Proof
Define α1, α2 and α3 to be indicators for the following events:

α1 := 1 {µk = 0, µk−1 = 0}, α2 := 1 {kν = τk} and α3 := 1 {kν = τk−1 + Tsync}.

By the definition of the Lyapunov function in Eq. (4.27) we find that

α1 · Lkν = α1 ·
(
e−Cm(kν−τk)(f(rτk)− ξτk)− (σkν + φkν)

)
, and,

α1 · L(k−1)ν = α1 ·
(
e−Cm((k−1)ν−τk−1)

(
f(rτk−1

)− ξτk−1

)
−
(
σ(k−1)ν + φ(k−1)ν

))
. (C.47)

We now consider two cases: when kν = τk and when kν 6= τk and prove the result in both
of these cases.

Case 1: kν = τk
From the definition of τt in Eq. (4.17), we know that kν = τk ⇒ kν − τk−1 ≥ Tsync.
Additionally, µk−1 = 0⇒ (k − 1)ν − τk−1 < Tsync. By our choice of ν; Tsync/ν is an integer



APPENDIX C. PROOFS FOR CHAPTER 4 131

(immediately below (4.8)). Thus it must be that kν = τk−1 + Tsync. Hence we have shown
that

α1 · α2 =α1 · α2 · α3. (C.48)

Thus,

α1 · α2 · Lkν
(i)
= α1 · α2 · α3 ·

(
e−Cm(kν−τk)(f(rτk)− ξτk)− (στk + φτk)

)
(ii)
= α1 · α2 · α3 · ((f(rkν)− ξkν)− (σkν + φkν))

(iii)

≤ α1 · α2 · α3 ·
(
e−Cm(kν−Tsync) ·

(
f(rτk−1

)− ξτk−1

)
− (σkν + φkν)

)
+ 5β

(iv)
= α1 · α2 · α3 ·

(
e−Cm(kν−Tsync) ·

(
f(rτk−1

)− ξτk−1

)
− e−Cmν

(
σ(k−1)ν + φ(k−1)ν

))
+ 5β

(v)
= α1 · α2 · α3 ·

(
e−CmνL

(
θ(k−1)ν

))
+ 5β

(vi)
= α1 · α2 ·

(
e−CmνL

(
θ(k−1)ν

))
+ 5β,

where (i) is by Eq. (C.48), (ii) is because α2 = 1 implies τk = kν, (iii) is by Lemma 34.
Inequality (iv) is because α1 = 1 implies µk−1 = 0, we can thus verify from Eq. (4.25) and
Eq. (4.26) that α1 · (σkν + φkν) = α1 · e−Cmν

(
σ(k−1)ν + φ(k−1)ν

)
(the detailed proof is identical

to proof of Eq. (C.45) and (C.46), and is not repeated here). (v) follows by our expression
for L(k−1)ν in Eq. (C.47) and (vi) is again by Eq. (C.48).

Case 2: kν 6= τk
In this case, by the definition of τt (in Eq. (4.17)) that τk = τk−1. Thus,

α1 · (1− α2) · Lkν
(i)
= α1 · (1− α2) · e−Cm(kν−τk)(f(rτk)− ξτk)− α1 · (1− α2) · (σkν + φkν)

(ii)
= α1 · (1− α2) · e−Cm(kν−τk−1)

(
f(rτk−1

)− ξτk−1

)
− α1 · (1− α2) · (σkν + φkν)

(iii)
= α1 · (1− α2) · e−Cm(kν−τk−1)

(
f(rτk−1

)− ξτk−1

)
− α1 · (1− α2) · e−Cmν

(
σ(k−1)ν + φ(k−1)ν

)
(iv)
= α1 · (1− α2) · e−CmνL(k−1)ν ,

where (i) is by the expression for Lkν in Eq. (C.47), (ii) is because τk = τk−1. Inequality (iii)
is because α1 · (σkν + φkν) = α1 · e−Cmν(σ(k−1)ν + φ(k−1)ν). The proof of this fact is identical
to proof of inequalities Eqs. (C.45) and (C.46), and is not repeated here. Finally (iv) is by
pulling out a factor of e−Cmν , and then using the equality in Eq. (C.47).

Therefore, summing the two cases, we get our conclusion that

1 {µk = 0, µk−1 = 0} · Lkν ≤ 1 {µk = 0, µk−1 = 0} · e−CmνL(k−1)ν + 5β.

�
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Lemma 53 For all positive integers k, with probability 1,

1 {µk = 1, µk−1 = 1} · Lkν ≤ 1 {µk = 1, µk−1 = 1} · e−CmνL(k−1)ν + 5βν.

Proof
Let α denote the indicator of the following event, α := 1 {µk = 1, µk−1 = 1}. By the definition
of our Lyapunov function (see Eq. (4.27)) that

α · Lkν = α · ((f(rkν)− ξkν)− (σkν + φkν)), and,

α · L(k−1)ν = α ·
((
f(r(k−1)ν)− ξ(k−1)ν

)
−
(
σ(k−1)ν + φ(k−1)ν

))
. (C.49)

Thus we have,

α · Lkν
(i)
= α · ((f(rkν)− ξkν)− (σkν + φkν))

(ii)
= α · (µk(f(rkν)− ξkν)− (σkν + φkν))

(iii)

≤ α ·
(
e−Cmνµk ·

(
f(r(k−1)ν)− ξ(k−1)ν

)
−
(
σ(k−1)ν + φ(k−1)ν

))
+ 5βν

(iv)
= α ·

(
e−Cmν ·

(
f(r(k−1)ν)− ξ(k−1)ν

)
−
(
σ(k−1)ν + φ(k−1)ν

))
+ 5βν

(v)
= α · e−CmνL(k−1)ν ,

where (i) is by Eq. (C.49), (ii) is because α = α · µk, (iii) is by Lemma 33, (iv) is again
because α = α · µk and (v) is again by Eq. (C.49). �

Lemma 54 For all positive integers k, with probability 1,

1 {µk = 0, µk−1 = 1} · Lkν ≤1 {µk = 0, µk−1 = 1} · e−CmνL(k−1)ν + 5βν.

Proof
Let α := 1 {µk = 0, µk−1 = 1}. We can verify using the definition of the Lyapunov function
in Eq. (4.27) that:

α · Lkν = α ·
(
e−Cm(kν−τk)(f(rτk)− ξτk)− (σkν + φkν)

)
and,

α · L(k−1)ν = α ·
((
f(r(k−1)ν)− ξ(k−1)ν

)
−
(
σ(k−1)ν + φ(k−1)ν

))
. (C.50)

Additionally, we can verify from Eq. (4.18) that µk = 0 implies that kν − Tsync < τk and
that µk−1 = 1 implies thta (k − 1)ν − Tsync ≥ τk−1. Putting this together, we get

τk > kν − Tsync > (k − 1)ν − Tsync ≥ τk−1.

Thus τk > τk−1. From the definition of µt (in Eq. (4.18)), we see that τk is either equal to
τk−1 or is equal to kν, so that it must be that

τk = kν,
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when α = 1. In particular, this implies that

α · Lkν
(i)
= α ·

(
e−Cm(kν−τk)(f(rτk)− ξτk)− (σkν + φkν)

)
(ii)
= α · (µk · (f(rkν)− ξkν)− (σkν + φkν))

(iii)

≤ α ·
(
e−Cmνµk ·

(
f(r(k−1)ν)− ξ(k−1)ν

)
−
(
σ(k−1)ν + φ(k−1)ν

))
+ 5βν

(iv)

≤ α ·
(
e−Cmν ·

(
f(r(k−1)ν)− ξ(k−1)ν

)
−
(
σ(k−1)ν + φ(k−1)ν

))
+ 5βν

(v)
= α · e−CmνL(k−1)ν + 5βν,

where (i) is by Eq. (C.50), (ii) is by α · µk = α and because α = α · 1 {τk = kν}, (iii) is by
Lemma 33, (iv) is again by α · µk = α and finally (v) is by Eq. (C.50). �

C.5 Properties of f

Lemma 55 Assume that e2αfR2
f ≥ 21

2
. The function f defined in Eq. (4.22) has the following

properties.

(F1) f(0) = 0, f ′(0) = 1 .

(F2) For all r ≥ 0, 1
2
e−2αfR2

f ≤ 1
2
ψ(r) ≤ f ′(r) ≤ 1.

(F3) For all r ≥ 0, 1
2
e−2αfR2

f r ≤ 1
2
Ψ(r) ≤ f(r) ≤ Ψ(r) ≤ r.

(F4) For all 0 < r ≤ Rf , f ′′(r) + αfrf
′(r) ≤ − e

−2αfR
2
f

4R2
f
f(r)

(F5) For all r > 0, f ′′ is defined, f ′′(r) ≤ 0, and f ′′(r) = 0 when r > 2Rf .

(F6) If 2αfR2
f ≥ ln 2, for any 0.5 < s < 1, f(sr) ≤ exp

(
−1−s

4
e−2αfR2

f

)
f(r).

(F7) For r > 0, |f ′′(r)| ≤ 4αfRf + 4
Rf

Proof
We refer to definitions of the functions ψ,Ψ, g in Eq. (D.19) and the definition of f in
Eq. (4.22).

(F1) f(0) = 0 and f ′(0) = 1 by the definition of f and ψ.

(F2),(F3) are verified from the definitions, noting that 1
2
≤ g(r) ≤ 1 and e−2αfR2

f ≤
ψ(2Rf ) ≤ ψ(r) ≤ ψ(0).
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(F4) To prove this property first we observe that f ′(r) = ψ(r)g(r) so

f ′′(r) = ψ′(r)g(r) + ψ(r)g′(r).

By the definition of ψ, ψ′(r) = −2αfrψ(r) if r < Rf , thus

f ′′(r) + 2αfrf
′(r) = −2αfrψ(r)g(r) + ψ(r)g′(r) + 2αfrf

′(r)

= ψ(r)g′(r)

= −1

2

h(r)Ψ(r)∫∞
0
h(s)Ψ(s)

ψ(s)
ds

(i)

≤ −1

2

f(r)∫∞
0
h(s)Ψ(s)

ψ(s)
ds

(ii)

≤ −e
−2αfR2

f

4R2
f

f(r),

where (i) is because f(r) ≤ Ψ(r) and h(r) = 1 for r ≤ Rf .

(ii) is because f(r) ≥ 0 and∫ ∞
0

h(s)
Ψ(s)

ψ(s)
ds =

∫ 2Rf

0

h(s)
Ψ(s)

ψ(s)
ds ≤

∫ 2Rf

0

2s

e−2αfR2
f

ds ≤ 4R2
fe

2αfR2
f .

The first inequality above is by (F2), (F3) and the definition of h(s).

(F5) f ′′(r) ≤ 0 follows from its expression f ′′(r) = ψ′(r)g(r) + ψ(r)g′(r), and the fact that
ψ(r) ≥ 0 from (F2), g(r) ≥ 1/2, g′(r) ≤ 0 and ψ′(r) ≤ 0 for all r. For r > 2Rf ,
ψ′(r) = g′(r) = 0, so in that case f ′′(r) = ψ′(r)g(r) + ψ(r)g′(r) = 0.

(F6) For any 0 < c < 1,

f((1 + c)r) =f(r) +

∫ (1+c)r

r

f ′(s)ds ≥ f(r) + cr · 1

2
e−2αfR2

f ≥
(

1 +
c

2
e−2αfR2

f

)
f(r),

where the first inequality follows from (F2), and the second inequality follows from

(F3). Under the assumption that e−2αfR2
f ≤ 1

2
, and using the inequality 1 + x ≥ ex/2

for all x ∈ [0, 1/2], we get 1 + (c/2)e−2αfR2
f ≥ e(c/4)e

−2αfR
2
f
.
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Thus, for any s ∈ (1/2, 1), let r′ := sr, so that r = 1
s
r′ =

(
1 +

(
1
s
− 1
))
r′ Applying the

above with c = 1
s
− 1, we get

f(sr) = f(r′) ≤ 1

1 + c
2

exp
(
−2αfR2

f

)f((1 + c)r′)

=
1

1 + c
2

exp
(
−2αfR2

f

)f(r)

≤ exp
(
− c

4
e−2αfR2

f

)
f(r)

= exp

(
−1/s− 1

4
e−2αfR2

f

)
f(r) ≤ exp

(
−1− s

4
e−2αfR2

f

)
f(r).

where we use the fact that −1−s
s
≤ −(1− s).

(F7) Recall that

f ′′(r) = ψ′(r)g(r) + ψ(r)g′(r)

Thus

|f ′′(r)| ≤ |ψ′(r)g(r)|+ |ψ(r)g′(r)|
≤ 2αfrh(r) + |ψ(r)g′(r)|

From our definition of h(r), we know that rh(r) ≤ 2Rf . In addition, since ψ(r) is
monotonically decreasing, Ψ(r) =

∫ r
0
ψ(s)ds ≥ rψ(r), so that

Ψ(r)

ψ(r)
≥ r. (C.51)

Thus Ψ(r)/r ≥ r for all r. On the other hand, using the fact that ψ(s) ≤ 1,

Ψ(r) =

∫ r

0

ψ(s)ds ≤ r. (C.52)

Combining the previous expressions,

|ψ(r)ν ′(r)| =

∣∣∣∣∣12 h(r)Ψ(r)∫ 4Rf
0

µ(s)Ψ(s)
ψ(s)

ds

∣∣∣∣∣
≤

∣∣∣∣∣12 2Rf∫ Rf
0

Ψ(s)
ψ(s)

ds

∣∣∣∣∣
≤

∣∣∣∣∣12 2Rf∫ Rf
0

sds

∣∣∣∣∣
≤ 4

Rf

,
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where the first inequality is by the definition of h(r) = 1 for r ≤ Rf and h(r) = 0 for
r ≥ 2Rf , and the second-to-last inequality is by (C.51).

Put together, we get

|f ′′(r)| ≤ 4αfRf +
4

Rf

.

�

C.6 Bounding moments

To bound the discretization error it is necessary to bound the moments of the random
variables xt, ut and yt, vt. The main results of this section are Lemma 56 (which bounds the
moments of xt and ut) and Lemma 57 (which bounds the moments of yt and vt).

Lemma 56 For δ ≤ 2−10cκ, and for all t ≥ 0,

E
[
‖xt‖8

2 + ‖xt + ut‖8
2

]
≤ 270

(
R2 +

d

m

)4

.

Lemma 57 For all t ≥ 0,

E
[
‖yt‖8

2 + ‖yt + vt‖8
2

]
≤ 266

(
R2 +

d

m

)4

.

C.6.1 Proof of Lemma 56

Let us consider the Lyapunov function l(xt, ut) :=
(
‖xt‖2

2 + ‖xt + ut‖2
2 − 4R2

)4

+
.

By calculating the derivaties of l we can verify that:

∇xl(xt, ut) = 8l(xt, ut)
3/4(xt)

∇ul(xt, ut) = 8l(xt, ut)
3/4(xt + ut)

∇2
ul(xt, ut) = 8l(xt, ut)

3/4I + 24l(xt, ut)
2/4(xt + ut)(xt + ut)

T .

The following are two useful inequalities which we will use in this proof:

‖x‖2
2 + ‖x+ u‖2

2 ≤ l(x, u)1/4 + 4R2

‖x‖2
2 + ‖x+ u‖2

2 ≥ l(x, u)1/4. (C.53)

Recall from the dynamics defined in Eq. (4.11) and Eq. (4.12) that

dxt =utdt

dut =− 2ut −
cκ
L
∇U(xb tδcδ)dt+ 2

√
cκ
L
dBt.
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Thus by studying the evolution of the Lyapunov function l(xt, ut) we have:

d

dt
E [l(xt, ut)] = E

[
8l(xt, ut)

3/4
(
〈xt, ut〉 +

〈
xt + ut,−ut −

cκ
L
∇U(xb tδcδ)

〉)]
+ E

[
16cκ
L

(
l(xt, ut)

3/4d+ 3l(xt, ut)
2/4‖xt + ut‖2

2

)]

= E

8l(xt, ut)
3/4
(
〈xt, ut〉 +

〈
xt + ut,−ut −

cκ
L
∇U(xt)

〉)
︸ ︷︷ ︸

=:♠



+ E

8 · cκ
L
· l(xt, ut)3/4

(〈
xt + ut,∇U(xt)−∇U(xb tδcδ)

〉)
︸ ︷︷ ︸

=:♥



+ E

16cκ
L

(
l(xt, ut)

3/4d+ 3l(xt, ut)
2/4‖xt + ut‖2

2

)
︸ ︷︷ ︸

=:♣

 .
We will bound the three terms separately. We begin by bounding ♠:

♠ = 8l(xt, ut)
3/4
(
〈xt, ut〉 +

〈
xt + ut,−ut −

cκ
L
∇U(xt)

〉)
(i)

≤ −c2
κl(xt, ut)

3/4
(
‖xt‖2

2 + ‖xt + ut‖2
2

)
(ii)

≤ −c2
κl(xt, ut),
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where (i) is by invoking Lemma 59, and (ii) is by Eq. (C.53). Next consider the term ♥:

♥ = 8 · cκ
L
· l(xt, ut)3/4

(〈
xt + ut,∇U(xt)−∇U(xb tδcδ)

〉)
(i)

≤ 8cκl(xt, ut)
3/4‖xt + ut‖2

∥∥∥xt − xb tδcδ∥∥∥2

(ii)

≤ 8cκl(xt, ut)
3/4
(
l(xt, ut)

1/8 + 2R
)∥∥∥xt − xb tδcδ∥∥∥2

(iii)

≤ 8cκl(xt, ut)
7/8
∥∥∥xt − xb tδcδ∥∥∥2

+ 16cκl(xt, ut)
3/4R

∥∥∥xt − xb tδcδ∥∥∥2

(iv)

≤ c2
κ

8
l(xt, ut) +

232

c6
κ

(∥∥∥xt − xb tδcδ∥∥∥8

2

)
+
c2
κ

8
l(xt, ut) +

228

c2
κ

(
R4
∥∥∥xt − xb tδcδ∥∥∥4

2

)
(v)

≤ c2
κ

4
l(xt, ut) +

232

c6
κ

(∥∥∥xt − xb tδcδ∥∥∥8

2

)
+ 228c2

κR
8 +

228

c6
κ

∥∥∥xt − xb tδcδ∥∥∥8

2

(vi)

≤ c2
κ

4
l(xt, ut) + 228c2

κR
8 +

233

c6
κ

∥∥∥xt − xb tδcδ∥∥∥8

2

(vii)

≤ c2
κ

4
l(xt, ut) + 228c2

κR
8 +

233

c6
κ

∥∥∥∥∥
∫ t

b tδcδ
usds

∥∥∥∥∥
8

2

(viii)

≤ c2
κ

4
l(xt, ut) + 228c2

κR
8 +

233

c6
κ

((
t−
⌊
t

δ

⌋
δ

)7 ∫ t

b tδcδ
‖us‖8

2ds

)
(ix)

≤ c2
κ

4
l(xt, ut) + 228c2

κR
8 +

233

c6
κ

(
δ7

∫ t

b tδcδ
‖us‖8

2ds

)
,

where (i) is by Cauchy-Schwarz and Assumption (A1), (ii) is by Eq. (C.53), (iii) is again by
Eq. (C.53), (iv) is by Young’s inequality, (v) is again by Young’s inequality, (vi) follows by
an algebraic manipulation, (vii) is by the dynamics defined in Eq. (4.11), (viii) is by Jensen’s
inequality and finally (ix) is because t−

⌊
t
δ

⌋
δ ≤ δ. Also:

♣ =
16cκ
L

(
l(xt, ut)

3/4d+ 3l(xt, ut)
2/4‖xt + ut‖2

2

)
(i)

≤ 16cκ
L

(
l(xt, ut)

3/4d+ 3l(xt, ut)
3/4 + 12l(xt, ut)

2/4R2
)

(ii)

≤ c2
κ

16
l(xt, ut) +

228

c2
κL

4
d4 +

c2
κ

16
l(xt, ut) +

236

c2
κL

4
+
c2
κ

16
l(xt, ut) +

216c2
κR

4

L2

(iii)

≤ c2
κ

4
l(xt, ut) + 229c2

κ

(
d4

m4
+
R4

L2

)
(iv)

≤ c2
κ

4
l(xt, ut) + 230c2

κ

(
d4

m4
+R8

)
,
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where (i) is by Eq. (C.53), (ii) is by Young’s inequality, (iii) follows by definition of cκ in
Eq. (4.6) and (iv) is by Young’s inequality, and because m ≤ L.

Putting together the upper bounds on ♠,♥,♣:

d

dt
E [l(xt, ut)] = ♠+♥+♣

≤ E

[
−c2

κl(xt, ut) + 228c2
κR

8 +
233

c6
κ

(
δ7

∫ t

b tδcδ
‖us‖8

2ds

)
+
c2
κ

4
l(xt, ut) + 230c2

κ

(
d4

m4
+R8

)]

≤ −c
2
κ

2
E [l(xt, ut)] + 233c2

κ

(
d4

m4
+R8

)
+

233

c6
κ

δ7

∫ t

b tδcδ
E
[
‖us‖8

2

]
ds

(i)

≤ −c
2
κ

2
E [l(xt, ut)] + 233c2

κ

(
d4

m4
+R8

)
+

233

c6
κ

δ8

(
1.1E

[(∥∥∥xb tδcδ∥∥∥8

2
+
∥∥∥ub tδcδ∥∥∥8

2

)]
+ 2

(
d

m

)4
)

(ii)

≤ −c
2
κ

2
E [l(xt, ut)] + 233c2

κ

(
d4

m4
+R8

)
+
c2
κ

8

(
E
[
l
(
xb tδcδ, ub tδcδ

)]
+R8 +

(
d

m

)4
)

≤ −c
2
κ

2
E [l(xt, ut)] + 234c2

κ

(
d4

m4
+R8

)
+
c2
κ

8
E
[
l
(
xb tδcδ, ub tδcδ

)]
, (C.54)

where (i) is by Lemma 58, and (ii) is by Eq. (C.53) and Eq. (4.6) along with some algebra.
Consider an arbitrary positive interger k. By Grönwall’s Lemma applied over s ∈

[kδ, (k + 1)δ),

E
[
l(x(k+1)δ, u(k+1)δ

]
≤ e−

c2κ
2
δE [l(xkδ, ukδ)] + δ ·

(
234c2

κ

(
d4

m4
+R8

)
+
c2
κ

8
E
[
l
(
xb tδcδ, ub tδcδ

)])
(i)

≤
(

1− c2
κδ

4

)
E [l(xkδ, ukδ)] + δ ·

(
234c2

κ

(
d4

m4
+R8

)
+
c2
κ

8
E
[
l
(
xb tδcδ, ub tδcδ

)])
(ii)

≤ e−
c2κδ

8 E [l(xkδ, ukδ)] + 234c2
κδ

(
234

(
d4

m4
+R8

))
,

where (i) and (ii) use the fact that c2
κδ ≤ 1

10
, along with 1− a ≤ e−a ≤ 1− a

2
for |a| ≤ 1

10
.

Applying the above recursively, using the geometric sum, and Eq. (4.10), we show that
for all positive integers k,

E [l(xkδ, ukδ)] ≤ 238

(
d4

m4
+R8

)
.

For an arbitrary t ≥ 0, we can similarly verify using the above result, Eq. (C.54), and
Grönwall’s Lemma that

E [l(xt, ut)] ≤ 239

(
d4

m4
+R8

)
.
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This completes the proof of the lemma.
We now state and prove some auxillary lemmas that were useful in the proof above.

Lemma 58 Assume that δ ≤ 1
1000

. Then for all t ≥ 0,

E
[
‖xt‖8

2 + ‖ut‖8
2

]
≤ 1.1E

[(∥∥∥xb tδcδ∥∥∥8

2
+
∥∥∥ub tδcδ∥∥∥8

2

)]
+ 2

(
d

m

)4

.

Proof
From the stochastic dynamics defined in Eq. (4.11), Eq. (4.12), Eq. (4.13) and Eq. (4.14), we
can verify that

d

dt
E
[(
‖xt‖8

2 + ‖ut‖8
2

)] (i)
=E

[
8‖xt‖6

2 〈xt, ut〉 + 8‖ut‖6
2

〈
ut,−2ut −

cκ
L
∇U(xb tδcδ)

〉]
+ E

[
8cκd

L
‖ut‖6

2 +
48cκ
L
‖ut‖6

2

]
(ii)

≤8E
[
‖xt‖8

2 + ‖ut‖8
2 + ‖ut‖8

2 + c8
κ

∥∥∥xb tδcδ∥∥∥8

2

]
+ E

[
d

m
‖ut‖6

2

]
(iii)

≤ 64E
[
‖xt‖8

2 + ‖ut‖8
2

]
+ E

[∥∥∥xb tδcδ∥∥∥8

2

]
+

(
d

m

)4

,

where (i) is by Itô’s Lemma, (ii) is by Assumption (A1), Young’s inequality and by the
definition of cκ in Eq. (4.6), and (iii) is again by Young’s inequality and definition of cκ.

Consider an arbitrary t ≥ 0, and let k :=
⌊
t
δ

⌋
. Then for all s ∈ [kδ, (k + 1)δ), we have:

E
[(
‖xt‖8

2 + ‖ut‖8
2

)]
≤ e64(s−kδ)E

[(∥∥∥xb tδcδ∥∥∥8

2
+
∥∥∥ub tδcδ∥∥∥8

2

)]
+
(
e64(s−kδ) − 1

)(
E
[∥∥∥xb tδcδ∥∥∥8

2

]
+

(
d

m

)4
)

≤ (1 + 128δ)E
[(∥∥∥xb tδcδ∥∥∥8

2
+
∥∥∥ub tδcδ∥∥∥8

2

)]
+ 128δ

(
d

m

)4

≤ 1.1E
[(∥∥∥xb tδcδ∥∥∥8

2
+
∥∥∥ub tδcδ∥∥∥8

2

)]
+ 2

d

m
,

where the final two inequalities are both by our assumption that δ ≤ 1
1000

. �

Lemma 59 For (xt, ut) satisfying ‖xt‖2
2 + ‖xt + ut‖2

2 ≥ 4R2,

〈xt, ut〉 +
〈
xt + ut,−ut −

cκ
L
∇U(xt)

〉
≤− c2

κ

6

(
‖xt‖2

2 + ‖xt + ut‖2
2

)
.
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Proof
We first verify that

〈xt, ut〉 +
〈
xt + ut,−ut −

cκ
L
∇U(xiν)

〉
= −‖ut‖2

2 −
cκ
L

〈xt,∇U(xt)〉−
〈
ut,

cκ
L
∇U(xt)

〉
= −‖ut‖2

2 −
cκ
L

〈xt,∇U(xt)〉−
cκ
L

〈ut,∇U(xt)〉

= −‖ut‖2
2 −

cκ
L

〈xt,∇U(xt)〉 +
1

2
‖ut‖2

2 +
c2
κ

2L2
‖∇U(xt)‖2

2 −
1

2

∥∥∥ut +
cκ
L
∇U(xt)

∥∥∥2

2

≤ −1

2
‖ut‖2

2 −
cκ
L

〈xt,∇U(xt)〉 +
c2
κ

2
‖xt‖2

2 =: ♠ (C.55)

Now consider two cases:
Case 1: (‖xt‖2 ≤ R) By Young’s inequality we get that,

‖xt + ut‖2
2 ≤ 11‖ut‖2

2 + 1.1‖xt‖2
2.

Furthermore, by our assumption that ‖xt‖2
2 + ‖xt + ut‖2

2 ≥ 4R2,

11‖ut‖2
2 ≥‖xt + ut‖2

2 − 1.1‖xt‖2
2

≥4R2 − 2.1R2

≥1.9R2

≥1.9‖xt‖2
2. (C.56)

Thus in this case ‖ut‖2
2 ≥

1
10
R2, and ♠ can be upper bounded by

♠ =− 1

2
‖ut‖2

2 −
〈
xt,

cκ
L
∇U(xt)

〉
+
c2

2
‖xt‖2

2

(i)

≤− 1

2
‖ut‖2

2 + cκ‖xt‖2
2 +

c2
κ

2
‖xt‖2

2

(ii)

≤ − 1

2
‖ut‖2

2 + 2cκ‖xt‖2
2

(iii)

≤ − 1

4
‖ut‖2

2

(iv)

≤ − 1

160

(
‖xt‖2

2 + ‖xt + ut‖2
2

)
,

where (i) is by L-Lipschitz of ∇U and Cauchy-Schwarz, (ii) and (iii) are because cκ :=
1

1000κ
≤ 1

1000
and by Eq. (C.56), the (iv) is because

‖xt‖2
2 + ‖xt + ut‖2

2 ≤3‖xt‖2
2 + 2‖ut‖2

2

≤30‖ut‖2 + 2‖ut‖2

≤40‖ut‖2
2,
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where the second inequality is by again by Eq. (C.56).
Case 2: (‖xt‖2 ≥ R)

By Assumption (A3), − cκ
L
〈xt,∇t〉 ≤ − cκ

κ
‖xt‖2

2. Thus we can upper bound ♠ as follows:

♠ =− 1

2
‖ut‖2

2 −
cκ
L

〈xt,∇t〉 +
c2

2
‖xt‖2

2

≤− 1

2
‖ut‖2

2 − c
2
κ‖xt‖

2
2 +

c2

2
‖xt‖2

2

≤− ‖ut‖2
2 −

c2
κ

2
‖xt‖2

2

≤− c2
κ

3

(
‖xt‖2

2 + ‖xt + ut‖2
2

)
.

Putting the previous two results together, and using Young’s inequality:

♠ ≤− c2
κ

3

(
‖xt‖2

2 + ‖xt + ut‖2
2

)
≤− c2

κ

3

(
‖xt‖2

2 + ‖xt + ut‖2
2

)
≤− c2

κ

6

(
‖xt‖2

2 + ‖xt + ut‖2
2

)
.

�

C.6.2 Proof of Lemma 57

Let us consider the Lyapunov function l(yt, vt) :=
(
‖yt‖2

2 + ‖yt + vt‖2
2 − 4R2

)4

+
.

By calculating its derivatives we can verify that

∇xl(yt, vt) = 8l(yt, vt)
3/4(yt)

∇ul(yt, vt) = 8l(yt, vt)
3/4(yt + vt)

∇2
ul(yt, vt) = 8l(yt, vt)

3/4I + 24l(yt, vt)
2/4(yt + vt)(yt + vt)

T .

Recall the dynamics of the variables yt and vt,

dyt =vtdt

dvt =− 2vt −
cκ
L
∇U(xyt)dt+ 2

√
cκ
L
dBt.
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By Itô’s lemma we can study the time evolution of this Lyapunov function:

dl(yt, vt) = 8l(yt, vt)
3/4
(
〈yt, vt〉 +

〈
yt + vt,−vt −

cκ
L
∇U(yt)

〉)
dt

+
16cκ
L

(
l(yt, vt)

3/4d+ l(yt, vt)
2/4‖yt + vt‖2

2

)
dt

+ 16

√
cκ
L
l(yt, vt)

3/4(〈yt, vt〉 + 〈yt + vt, dBt〉)

(i)

≤ 8l(yt, vt)
3/4

(
−c

2
κ

6

(
‖yt‖2

2 + ‖yt + vt‖2
2

))
dt

+
16cκ
L

(
l(yt, vt)

3/4d+ l(yt, vt)
2/4‖yt + vt‖2

2

)
dt

+ 16

√
cκ
L
l(yt, vt)

3/4(〈yt, vt〉 + 〈yt + vt, dBt〉)

(ii)

≤ −c2
κl(yt, vt)dt

+
32cκ
L

(
l(yt, vt)

3/4d
)
dt+

64cκ
L

(
l(yt, vt)

2/4R2
)
dt

+ 16

√
cκ
L
l(yt, vt)

3/4(〈yt, vt〉 + 〈yt + vt, dBt〉)

≤ −c2
κl(yt, vt)dt

+
c2
κ

8
l(yt, vt)dt+

225d4

c2
κL

4
dt+

c2
κ

8
l(yt, vt)dt+

216R4

L2

+ 16

√
cκ
L
l(yt, vt)

3/4(〈yt, vt〉 + 〈yt + vt, dBt〉)

≤ −c
2
κ

2
l(yt, vt)dt+ 226

(
d4

c2
κL

4
+ c2R8

)
dt

+ 16

√
cκ
L
l(yt, vt)

3/4(〈yt, vt〉 + 〈yt + vt, dBt〉),

where (i) can be proved by an argument similar to the proof of Lemma 59, and is omitted,
while (ii) follows because

‖y + v‖2
2 ≤ l(y, v)1/4 + 4R2, and, ‖y‖2

2 + ‖x+ u‖2
2 ≥ l(y, v)1/4

by the definition of l(x, u). Taking expectations on both sides, the term involving the
Brownian motion, dBt, goes to zero. Note also that (yt, vt) is distributed according to the
invariant distribution p∗ for all t ≥ 0, therefore,

0 =
d

dt
E [l(yt, vt)] ≤−

c2
κ

2
E [l(yt, vt)] + 226

(
d4

c2
κL

4
+ c2R8

)
≤− c2

κ

2
E [l(yt, vt)] + 226c2

κ

(
1012 d

4

m4
+R8

)



APPENDIX C. PROOFS FOR CHAPTER 4 144

Thus

E [l(yt, vt)] ≤ 227

(
1012 d

4

m4
+R8

)
≤ 266

(
d

m
+R2

)4

.

This completes the proof of the lemma.
We now state and prove some auxillary lemmas that were useful in the proof above.

Lemma 60 Let xt be evolved according to the dynamics in Eq. (C.3). Then for all t ≥ 0,

E
[
‖xt‖2

2

]
≤ 2

(
R2 +

d

m

)
.

Proof
Let θk ∼ N (0, I) then we have,

1 {‖xkδ‖2 ≤ R} ·
∥∥x(k+1)δ

∥∥2

2
= 1 {‖xkδ‖2 ≤ R} ·

∥∥∥xkδ − δ∇U(xk) +
√

2δθk

∥∥∥2

2

≤ 1 {‖xkδ‖2 ≤ R} · ‖xkδ − δ∇U(xk)‖2
2

+ 1 {‖xkδ‖2 ≤ R} ·
∥∥∥√2δθk

∥∥∥2

2

+ 1 {‖xkδ‖2 ≤ R} · 2
〈
xkδ − δ∇U(xk),

√
2δθk

〉
.

Consider two cases:
If ‖xkδ‖2 ≥ R, then

‖xkδ − δ∇U(xk)‖2
2 = ‖xkδ‖2

2 − 〈xkδ, 2δ∇U(xk)〉 + δ2‖∇U(xk)‖2
2

(i)

≤ (1− 2δm)‖xkδ‖2
2 + δ2‖∇U(xk)‖2

2

(ii)

≤
(
1− 2δm+ δ2L2

)
‖xkδ‖2

2

(iii)

≤ (1− δm)‖xkδ‖2
2,

where (i) is by Assumption (A3), (ii) is by Assumption (A1), and (iii) is by our assumption
that δ ≤ 1

κL
.

While I=if ‖xkδ‖2 ≤ R, then

‖xkδ − δ∇U(xk)‖2
2 = ‖xkδ‖2

2 − 〈xkδ, 2δ∇U(xk)〉 + δ2‖∇U(xk)‖2
2

(i)

≤
(
1 + 2δL+ δ2L2

)
‖xk‖2

2

(ii)

≤ (1 + 3δL)‖xk‖2
2,

where (i) is by Assumption (A1), and (ii) is by our assumption that δ ≤ 1
κL

.
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Thus for both cases we have,

‖xkδ − δ∇U(xk)‖2
2 ≤1 {‖xkδ‖2 ≥ R}(1− δm)‖xkδ‖2

2 + 1 {‖xkδ‖2 ≤ R}(1 + 3δL)‖xk‖2
2

≤‖xkδ‖2
2 − δm‖xkδ‖

2
2 + 1 {‖xkδ‖2 ≤ R} · (3δL+ δm)‖xkδ‖2

2.

Thus we have:

1 {‖xkδ‖2 ≤ R}‖xkδ − δ∇U(xk)‖2
2 ≤1 {‖xkδ‖2 ≤ R}(1− δm)‖xkδ‖2

2.

By taking expectations with respect to the Brownian motion we get,

E
[
1 {‖xkδ‖2 ≤ R}

∥∥x(k+1)δ

∥∥2

2

]
≤ (1− δm)E

[
1 {‖xkδ‖2 ≤ R}‖xkδ‖2

2

]
+ E

[
1 {‖xkδ‖2 ≤ R}

∥∥∥√2δθk

∥∥∥2

2

]
≤ (1− δm)E

[
1 {‖xkδ‖2 ≤ R}‖xkδ‖2

2

]
+ 2δd.

Applying this inequality recursively over k steps we arrive at,

E
[
1 {‖xkδ‖2 ≤ R}

∥∥x(k+1)δ

∥∥2

2

]
≤e−δmE

[
1 {‖xkδ‖2 ≤ R}

∥∥x(k+1)δ

∥∥2

2

]
+

2δd

δm

≤2d

m
.

Thus we get that,

E
[∥∥x(k+1)δ

∥∥2

2

]
≤ 2

(
R2 +

d

m

)
.

�

Lemma 61 Let y ∼ p∗(y) ∝ e−U(y). Then

E
[
‖y‖8

2

]
≤ 220

(
d4

m4
+R8

)
.

Proof
Let l(y) :=

(
‖y‖2

2 −R2
)4

+
. We calculate derivatives and verify that

∇l(y) = 8l(y)3/4 · y
∇2l(y) = 48l(y)2/4 · yyT + 8l(y)3/4I,

where I is the identity matrix. By Itô’s Lemma:

dl(yt) = 〈∇l(yt),−∇U(yt)〉 dt+
〈
∇l(yt),

√
2dBt

〉
+

1

2
tr
(
∇2l(yt)

)
. (C.57)
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We start by analyzing the first term,

〈∇l(yt),−∇U(yt)〉 =
〈
8l(yt)

3/4 · yt,−∇U(yt)
〉

(i)

≤ 1 {‖yt‖2 ≥ R}
(
8l(yt)

3/4
)(
−m‖yt‖2

2

)
+ 1 {‖yt‖2 < R}

〈
8l(yt)

3/4y,−∇U(yt)
〉

(ii)
=
(
8l(yt)

3/4
)(
−m‖yt‖2

2

)
≤ −8ml(yt),

where (i) is by Assumption (A3), and, (ii) is because 1 {‖yt‖2 < R} · l(yt) = 0 and
1 {‖yt‖2 ≥ R} · l(yt) = l(yt) by definition of l(yt).

Consider the other term on the right-hand side of Eq. (C.57):

tr
(
∇2l(yt)

)
= 48l(yt)

2/4‖y‖2 + 8l(yt)
3/4d

(i)

≤ 48l(yt)
3/4 + 8l(yt)

3/4d+ 48l(yt)
2/4R2

≤ 64l(yt)
3/4d+ 48l(yt)

2/4R2

(ii)

≤ 2ml(yt) + 221 d
4

m3
+ 2ml(yt) + 211R

4

m
(iii)

≤ 4ml(yt) + 222

(
d4

m3
+mR8

)
,

where (i) is by definition of l(y), while (ii) and (iii) are by Young’s inequality.
Put together into Eq. (C.57) and taking expectations,

d

dt
E [l(yt)] ≤− 8mE [l(yt)] + 4ml(yt) + 222

(
d4

m3
+mR8

)
≤− 4mE [l(yt)] + 222

(
d4

m3
+mR8

)
.

Since yt ∼ p∗ for all t, d
dt
E [l(yt)] = 0, thus we get,

E [l(yt)] ≤ 220

(
d4

m4
+R8

)
.

�

C.7 Existence of Coupling

Proof of Lemma 15
We prove the existence of a unique strong solution for (xt, ut, yt, vt, τb tν c) inductively: Let
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k be an arbitrary nonnegative integer, and suppose that the lemma statement holds for all
s ∈ [0, kν]. We show that the lemma statement holds for all s ∈ [0, (k + 1)ν].

First, we can verify that for t ∈ [kν, (k + 1)ν),

τb tν c = τk,

that is, τb tν c is a constant, and so µb tν c = µk is also a constant.

Next, we find that for t ∈ [kν, (k + 1)ν), the following is algebraically equivalent to
dynamics described by Eqs.(4.11)–(4.14):

dxt = utdt,

dut = −2utdt−
cκ
L
∇U

(
xb tδcδ

)
dt+ 2

√
cκ
L
dBt,

dyt = vtdt,

dvt = −2vt −
cκ
L
∇U(yt)dt+ 2

√
cκ
L
dBt − µk ·

(
4

√
cκ
L
γtγ

T
t dBt + 2

√
cκ
L
γ̄tγ̄

T
t dAt

)
,

where we use the fact that µt takes on a constant value over t ∈ [kν, (k + 1)ν).
We proceed by applying Theorem 5.2.1 of [66], which states that if the following holds:

1. E
[
‖xkν‖2

2 + ‖ykν‖2
2 + ‖ukν‖2

2 + ‖vkν‖2
2

]
<∞.

2. For all x, y ∈ Rd, ‖∇U(x)−∇U(y)‖2 ≤ D‖x− y‖2 for some constant D > 0.

3. For all (x, y, u, v), (x′, y′, u′, v′),∥∥γγT − γ′γ′T∥∥
2

+
∥∥γ̄γ̄′Tt − γ̄′tγ̄′T∥∥2

≤ D(‖x− x′‖2 + ‖y − y′‖2 + ‖u− u′‖2 + ‖v − v′‖2),

for some constant D (where γ and γ̄ are functions of (x, y, u, v), as defined in Eq. (4.15),
similarly for γ′, γ̄′ and (x′, y′, u′, v′)),

then there is a solution (xt, yt, ut, vt) for t ∈ [kν, (k + 1)ν] with the properties:

(a) (xt, yt, ut, vt) is unique and t-continuous with probability one.

(b) (xt, yt, ut, vt) is adapted to the filtration Ft generated by (xkν , ykν , ukν , vkν) and dBt

and dAt for t ∈ [kν, (k + 1)ν).

(c)
∫ T

0
E
[
‖xt‖2

2 + ‖yt‖2
2 + ‖ut‖2

2 + ‖vt‖2
2

]
dt <∞.

We can verify the first condition holds by using Lemma 56 and Lemma 57. Condition 2
holds due to our smoothness assumption, Assumption (A1).

We can verify that Condition 3 also holds using the argument below:
From the definition ofM in Eq. (4.15), we know that |M(r)′| ≤ 1

2
|sin (r · 2π/β)| · 2π

β
≤ π

β
.
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By definition of γt in Eq. (4.15),

γtγ
T
t :=M(‖zt + wt‖2) · (zt + wt)(zt + wt)

T

‖zt + wt‖2
2

.

To simplify notation, consider an arbitrary x, y ∈ Rd, and assume wlog that ‖x‖2 ≤ ‖y‖2.
We will bound ∥∥∥∥∥M(‖x‖2)

xxT

‖x‖2
2

−M(‖y‖2)
yyT

‖y‖2
2

∥∥∥∥∥
2

≤ D‖x− y‖2,

for some D, which implies condition 3.
By the triangle inequality,∥∥∥∥∥M(‖x‖2)

xxT

‖x‖2
2

−M(‖y‖2)
yyT

‖y‖2
2

∥∥∥∥∥
2

≤M(‖x‖2)

∥∥∥∥∥ xxT‖x‖2
2

− yyT

‖y‖2
2

∥∥∥∥∥
2

+

∥∥∥∥∥ yyT‖y‖2
2

∥∥∥∥∥
2

|M(‖x‖2)−M(‖y‖2)|

≤ M(‖x‖2)

∥∥∥∥∥ xxT‖x‖2
2

− yyT

‖y‖2
2

∥∥∥∥∥
2

+ |M(‖x‖2)−M(‖y‖2)|. (C.58)

The second term can be bounded as

|M(‖x‖2)−M(‖y‖2)| ≤ π

β
|‖x‖2 − ‖y‖2|2 ≤

π

β
‖x− y‖2,

where we use the upper bound we established on |M′(r)|.
To bound the first term, we consider two cases:
If ‖x‖2 ≤ β/2, M(‖x‖2) = 0 and we are done.
If ‖x‖2 ≥ β/2, we verify that the transformation T (x) = x

‖x‖2
has Jacobian ∇T (x) =

1
‖x‖2

(
I − xxT

‖x‖2

)
, so that ‖∇T (x)‖2 ≤

1
‖x‖2

. By our earlier assumption that ‖x‖2 ≤ ‖y‖2, we

know that ‖ax+ (1− a)y‖2 ≥ β/2 for all a ∈ [0, 1]. Therefore,∥∥∥∥ x

‖x‖2

− y

‖y‖2

∥∥∥∥
2

= ‖T (x)− T (y)‖2 ≤
1

‖x‖2

‖x− y‖2 ≤
2

β
.
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By the triangle inequality and some algebra, we obtain:∥∥∥∥∥ xxT‖x‖2
2

− yyT

‖y‖2
2

∥∥∥∥∥
2

≤
∥∥∥∥ x

‖x‖2

+
y

‖y‖2

∥∥∥∥
2

∥∥∥∥ x

‖x‖2

− y

‖y‖2

∥∥∥∥
2

≤ 2

∥∥∥∥ x

‖x‖2

− y

‖y‖2

∥∥∥∥
2

≤ 4

β
‖x− y‖2,

where the first two inequalities are due to the triangle inequality. Combined with the fact
that M(r) ≤ 1 for all r, we can bound Eq. (C.58) by 8

β
‖x− y‖2.

A similar argument can be used to show that γ̄t is Lipschitz. LetN (x) :=
(
1− (1− 2M(‖x‖2))2)1/2

.
Then we verify that

N (r) :=


1, for r ∈ [β,∞)

sin
(
r · 2π

β

)
, for r ∈ [β/2, β]

0, for r ∈ [0, β/2]

γ̄t :=(N (‖zt + wt‖2))1/2 zt + wt
‖zt + wt‖2

.

The proof is almost identical to the proof of (C.58), so we omit it, but highlight two
crucial facts:

1. N (r) ∈ [0, 1] for all r

2. |N ′(r)| ≤ 2π

β
for all r.

Thus we find that Condition 3 is satisfied with D = 16
β

, and in turn show that (a)-

(c) hold for t ∈ [kν, (k + 1)ν]. From Eq. (4.17) we know that τ(k+1)ν is a function of
(x(k+1)ν , u(k+1)ν , y(k+1)ν , v(k+1)ν , τk). Thus we have shown the existence of a unique solution
(xt, yt, ut, vt, τb tν c) for t ∈ [kν, (k + 1)ν], where (xt, yt, ut, vt) is t-continuous.

The proof of the lemma now follows by induction over k. �

Lemma 62 Let Bt and At be two independent Brownian motions, and let Ft be the σ-algebra
generated by Bs, As; s ≤ t, and (x0, u0, y0, v0).

For all t ≥ 0, the stochastic process φt defined in Eqs. (4.24) has a unique solution such
that φt is t-continuous with probability one, and satisfies the following, for all s ≥ 0:

1. φt is adapted to the filtration Fs.



APPENDIX C. PROOFS FOR CHAPTER 4 150

2. E
[
‖φt‖2

2

]
≤ ∞.

Proof
The proof is almost identical to that of Lemma 15. The main additional requirement is
showing that there exists a constant D such that for any (x, y, u, v) and (x′, y′, u′, v′),∥∥∇wf(r)γγT −∇w′f(r′)γ′γ′T

∥∥
2
, (C.59)

with γ (resp γ′) being a function of (x, y, u, v) (resp γ′) as defined in (4.15). and r being a
function of (x, y, u, v) as defined in (4.19). In the proof of Lemma 15, we already showed that
γγT and γ′γ′T are uniformly bounded and lipschitz, thus it is sufficient to show that

1. ‖∇wf(r)−∇w′f(r′)‖2 ≤ D‖x− x′‖2 + ‖y − y′‖2 + ‖u− u′‖2 + ‖v − v′‖2

2. ‖∇wf(r)‖2 ≤ D. (C.60)

The second point is easy to verify:

∇wf(r) = f ′(r)∇wr = f ′(r)(∇w`(z + w))

Thus ‖∇wf(r)‖2 ≤ 1 using item (F2) of Lemma 55 and item 2 of Lemma 31.
To prove the first point, we verify that

∇2
wf(r) = f ′′(r)(∇w`(z + w)) + f ′(r)

(
∇2
w`(z + w)

)
.

Using item (F7) of Lemma 55 and item∥∥∇2
wf(r)

∥∥
2
≤ 4αfRf +

4

Rf

+
8

β
;

this implies C.60 which in turn implies (C.59). Note that ‖w − w′‖2 ≤ ‖u− u′‖2 + ‖v − v′‖.
�

C.8 Coupling and Discretization

Proof of Lemma 14
Let us define

B̄t :=

∫ t

0

(
dBt − 1

{
kν ≥ τb tν c + Tsync

}
·
(
2γtγ

T
t dBt + γ̄tγ̄

T
t dAt

))
.

We will show that B̄t is a Brownian motion by using Levy’s characterization. The conclusion
then follows immediately from the dynamics defined in Eq. (3.1).

Since Bt and At are Brownian motions, B̄t is also a continuous martingale with respect
to the filtration Ft. Further the quadratic variation of B̄t over an interval [s, s′] is∫ s′

s

(
I − 21

{
kν ≥ τb tν c + Tsync

}
γtγ

T
t

)2

+ 1

{
kν ≥ τb tν c + Tsync

}(
γ̄tγ̄

T
t

)2︸ ︷︷ ︸
=:♠

dt.
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If 1
{
kν ≥ τb tν c + Tsync

}
= 0, then the above is clearly the identity matrix – I.

If, on the other hand, 1
{
kν ≥ τb tν c + Tsync

}
= 1, define ct := zt + wt; then by the

definition of γt and γ̄t in Eq. (4.15), we find that

♠ =

(
I − 2M(‖ct‖2)

ctc
T
t

‖ct‖2
2

)2

+
(
1− (1− 2M(‖ct‖2))2) ctcTt

‖ct‖2
2

(i)
= I − ctc

T
t

‖ct‖2
2

+ (1− 2M(‖ct‖2))2 ctc
T
t

‖ct‖2
2

+
(
1− (1− 2M(‖ct‖2))2) ctcTt

‖ct‖2
2

= I,

where (i) follows by the eigenvalue decomposition of the matrix
(
I − 2M(‖ct‖2)

ctcTt
‖ct‖22

)2

.

Thus the quadratic variation of B̄t over the interval [s, s] is (s′ − s)I, thus satisfying
Levy’s characterization of a Brownian motion.

�

Proof of Lemma 32
Using similar steps as Lemma 14, we can verify that

B̄t :=

∫ t

0

√
2dBt − 2

√
2γtγ

T
t dBt +

√
2γ̄tγ̄

T
t dAt.

is a Brownian motion. The proof follows immediately. �

Lemma 63 Given (xkδ, ukδ), the solution (xt, ut), for t ∈ (kδ, (k + 1)δ], of the discrete
underdamped Langevin diffusion defined by the dynamics in Eq. (4.7) is

ut = ukδe
−2(t−kδ) − cκ

L

(∫ t

kδ

e−2(t−s)∇U(xkδ)ds

)
+

√
4cκ
L

∫ t

kδ

e−2(t−s)dBs (C.61)

xt = xkδ +

∫ t

kδ

usds.

Proof
It can be easily verified that the above expressions have the correct initial values (xkδ, ukδ).
By taking derivatives, one can also verify that they satisfy the stochastic differential equations
in Eq. (4.7). �

Lemma 64 Conditioned on (xkδ, ukδ), the solution (x(k+1)δ, u(k+1)δ) of Eq. (4.7) is a Gaussian
with mean,

E
[
u(k+1)δ

]
= ukδe

−2δ − cκ
2L

(1− e−2δ)∇f(xkδ)

E
[
x(k+1)δ

]
= xkδ +

1

2
(1− e−2δ)ukδ −

cκ
2L

(
δ − 1

2

(
1− e−2δ

))
∇U(xkδ),
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and covariance,

E
[(
x(k+1)δ − E

[
x(k+1)δ

]) (
x(k+1)δ − E

[
x(k+1)δ

])>]
=
cκ
L

[
δ − 1

4
e−4δ − 3

4
+ e−2δ

]
· Id×d

E
[(
u(k+1)δ − E

[
u(k+1)δ

]) (
u(k+1)δ − E

[
u(k+1)δ

])>]
=
cκ
L

(1− e−4δ) · Id×d

E
[(
x(k+1)δ − E

[
x(k+1)δ

]) (
u(k+1)δ − E

[
u(k+1)δ

])>]
=

cκ
2L

[
1 + e−4δ − 2e−2δ

]
· Id×d.

Proof
Consider some t ∈ [kδ, (k + 1)δ).

It follows from the definition of Brownian motion that the distribution of (xt, ut) is
a 2d-dimensional Gaussian distribution. We will compute its moments below, using the
expression in Lemma 63. Computation of the conditional means is straightforward, as we
can simply ignore the zero-mean Brownian motion terms:

E [ut] = ukδe
−2(t−kδ) − cκ

2L
(1− e−2(t−kδ))∇U(xkδ) (C.62)

E [xt] = xkδ +
1

2
(1− e−2(t−kδ))ukδ −

cκ
2L

(
t− kδ − 1

2

(
1− e−2(t−kδ)))∇U(xkδ). (C.63)

The conditional variance for ut only involves the Brownian motion term:

E
[
(ut − E [ut]) (ut − E [ut])

>
]

=
4cκ
L

E

[(∫ t

kδ

e−2(t−s)dBs

)(∫ t

kδ

e−2(s−t)dBs

)>]

=
4cκ
L

(∫ t

kδ

e−4(t−s)ds

)
· Id×d

=
cκ
L

(1− e−4(t−kδ)) · Id×d.

The Brownian motion term for xt is given by√
4cκ
L

∫ t

kδ

(∫ r

kδ

e−2(r−s)dBs

)
dr =

√
4cκ
L

∫ t

kδ

e2s

(∫ t

s

e−2rdr

)
dBs

=

√
cκ
L

∫ t

kδ

(
1− e−2(t−s)) dBs.

Here the second equality follows by Fubini’s theorem. The conditional covariance for xt now
follows as

E
[
(xt − E [xt]) (xt − E [xt])

>
]

=
cκ
L
E

[(∫ t

kδ

(
1− e−2(t−s)) dBs

)(∫ t

kδ

(
1− e−2(t−s)) dBs

)>]

=
cκ
L

[∫ t

kδ

(
1− e−2(t−s))2

ds

]
· Id×d

=
cκ
L

[
t− kδ − 1

4
e−4(t−kδ) − 3

4
+ e−2(t−kδ)

]
· Id×d.
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Finally we compute the cross-covariance between xt and ut,

E
[
(xt − E [xt]) (ut − E [ut])

>
]

=
2cκ
L

E

[(∫ t

kδ

(
1− e−2(t−s)) dBs

)(∫ t

kδ

e−2(t−s)dBs

)>]

=
2cκ
L

[∫ t

kδ

(1− e−2(t−s))(e−2(t−s))ds

]
· Id×d

=
cκ
2L

[
1 + e−4(t−kδ) − 2e−2(t−kδ)] · Id×d.

We thus have an explicitly defined Gaussian. Notice that we can sample from this distribution
in time linear in d, since all d coordinates are independent. �
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Appendix D

Proofs for Chapter 5

D.1 Proofs for Convergence under Gaussian Noise
(Theorem 10)

D.1.1 Proof Overview

The main proof of Theorem 10 is contained in Appendix D.1.4.
Here, we outline the steps of our proof:

1. In Appendix D.1.2, we construct a coupling between (5.3) and (5.2) over a single step
(i.e. for t ∈ [kδ, (k + 1)δ], for some k and δ).

2. Appendix D.1.3, we prove Lemma 65, which shows that under the coupling constructed
in Step 1, a Lyapunov function f(xT − yT ) contracts exponentially with rate λ, plus a
discretization error term. The function f is defined in Appendix D.5, and sandwiches
‖xT − yT‖2. In Corollary 66, we apply the results of Lemma 65 recursively over multiple
steps to give a bound on f(xkδ − ykδ) for all k, and for sufficiently small δ.

3. Finally, in Appendix D.1.4, we prove Theorem 10 by applying the results of Corollary
66, together with the fact that f(z) upper bounds ‖z‖2 up to a constant factor.

D.1.2 A coupling construction

In this subsection, we will study the evolution of (5.3) and (5.2) over a small time interval.
Specifically, we will study

dxt =−∇U(xt)dt+M(xt)dBt (D.1)

dyt =−∇U(y0)dt+M(y0)dBt (D.2)

One can verify that (D.1) is equivalent to (5.3), and (D.2) is equivalent to a single step of
(5.2) (i.e. over an interval t ≤ δ).
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We first give the explicit coupling between (D.1) and (D.2): ( A similar coupling in the
continuous-time setting is first seen in [39] in their proof of contraction of (5.3).)

Given arbirary (x0, y0), define (xt, yt) using the following coupled SDE:

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(xs)dWs (D.3)

yt =y0 +

∫ t

0

−∇U(y0)dt+

∫ t

0

cm
(
I − 2γsγ

T
s

)
dVs +

∫ t

0

N(y0)dWs,

where dVt and dWt are two independent standard Brownian motion, and

γt :=
xt − yt
‖xt − y‖2

· 1 {‖xt − yt‖2 ∈ [2ε,Rq)}. (D.4)

By Lemma 70, we show that (D.1) has the same distribution as xt in (D.3), and (D.2)
has the same distribution as yt in (D.3). Thus, for any t, the process (xt, yt) defined by (D.3)
is a valid coupling for (D.1) and (D.2).

D.1.3 One step contraction

Lemma 65 Let f be as defined in Lemma 82 with parameters ε satisfying ε ≤ Rq
αqRq2+1

.

Let xt and yt be as defined in (D.3). If we assume that E
[
‖y0‖2

2

]
≤ 8(R2 + β2/m) and

T ≤ min

{
ε2

β2 ,
ε

6L
√
R2+β2/m

}
, then

E [f(xT − yT )] ≤ e−λTE [f(x0 − y0)] + 3T (L+ L2
N)ε.

Remark 14 For ease of reference: m,L,LR, R are from Assumption A, cm, β are from
Assumption B, αq,Rq, LN , λ are defined in (5.7).

Proof of Lemma 65
For notational convenience, for the rest of this proof, let us define zt := xt − yt and ∇t :=
∇U(xt)−∇U(yt), ∆t := ∇U(y0)−∇U(yt) Nt := N(xt)−N(yt).

It follows from (D.3) that

dzt = −∇tdt+ ∆tdt+ 2cmγtγ
T
t dVt + (Nt +N(yt)−N(y0))dWt. (D.5)
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Using Ito’s Lemma, the dynamics of f(zt) is given by

df(zt)

=〈∇f(zt), dzt〉 + 2c2
mtr
(
∇2f(zt)

(
γtγ

T
t

))
dt+

1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))2)dt

=− 〈∇f(zt),∇t〉︸ ︷︷ ︸
1

dt+ 〈∇f(zt),∆t〉︸ ︷︷ ︸
2

dt+
〈
∇f(zt), 2cmγtγ

T
t dVt + (Nt +N(yt)−N(y0))dWt

〉︸ ︷︷ ︸
3

+ 2c2
mtr
(
∇2f(zt)

(
γtγ

T
t

))︸ ︷︷ ︸
4

dt+
1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))2)︸ ︷︷ ︸

5

dt. (D.6)

3 goes to 0 when we take expectation, so we will focus on 1 , 2 , 4 , 5 . We will consider
3 cases

Case 1: ‖zt‖2 ≤ 2ε
From item 1(c) of Lemma 82, ‖∇f(z)‖2 ≤ 1. Using Assumption A.1, ‖∇t‖ ≤ L‖zt‖2, so that

1 ≤ ‖∇t‖2 ≤ L‖zt‖2 ≤ 2Lε.

Also by Cauchy Schwarz,

2 = 〈∇f(zt),∆t〉 ≤ ‖∆t‖2 ≤ L‖yt − y0‖2

Since γt = 0 in this case by definition in (D.4), 4 = 0.
Using Lemma 82.2.c. ‖∇2f(zt)‖2 ≤

2
ε
, so that

5 ≤1

ε

(
tr
(
N2
t +N(yt)−N(y0)

)2
)

≤2

ε

(
tr
(
N2
t

)
+ tr

(
(N(yt)−N(y0))2))

≤2L2
N

ε

(
‖zt‖2

2 + ‖yt − y0‖2
2

)
≤4L2

Nε+
2L2

N

ε
‖yt − y0‖2

2,

where the second inequality is by Young’s inequality, the third inequality is by item 2 of
Lemma 80, the fourth inequality is by our assumption that ‖zt‖2 ≤ 2ε.

Summing these,

1 + 2 + 4 + 5 ≤ 4
(
L+ L2

N

)
ε+ L‖yt − y0‖2 +

2L2
N

ε
‖yt − y0‖2

2.

Case 2: ‖zt‖2 ∈ (2ε,Rq)
In this case, γt = zt

‖zt‖2 . Let q be as defined in (D.20) and g be as defined in Lemma 84. By
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items 1(b) and 2(b) of Lemma 82 and items 1(b) and 2(b) of Lemma 84,

∇f(zt) =q′(g(zt))∇g(zt)

=q′(g(zt))
zt
‖zt‖2

∇2f(zt) =q′′(g(zt))∇g(zt)∇g(zt)
T + q′(g(zt))∇2g(zt)

=q′′(g(zt))
ztz

T
t

‖zt‖2
2

+ q′(g(zt))
1

‖zt‖2

(
I − ztz

T
t

‖zt‖2
2

)
.

Once again, by Assumption A.3,

1 ≤ q′(g(zt))‖∇t‖2 ≤ q′(g(zt)) · LR · ‖zt‖2 ≤L · q′(g(zt))g(zt) + 2Lε,

where the last inequality uses Lemma 84.4. We can also verify that

2 ≤ L‖yt − y0‖2.

Using the expression for ∇2f(zt),

4 = 2c2
mtr
(
∇2f(zt)γtγ

T
t

)
= 2c2

m · q′′(g(zt)).

Finally,

5 =
1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))2)

=
1

2
tr

((
q′′(g(zt))

ztz
T
t

‖zt‖2
2

+ q′(g(zt))
1

‖zt‖2

(
I − ztz

T
t

‖zt‖2
2

))
(Nt +N(yt)−N(y0))2

)
≤1

2
tr

((
q′(g(zt))

1

‖zt‖2

(
I − ztz

T
t

‖zt‖2
2

))
(Nt +N(yt)−N(y0))2

)
≤q
′(g(zt))

‖zt‖2

·
(
tr
(
N2
t

)
+ tr

(
(N(yt)−N(y0))2))

≤q′(g(zt)) · L2
N‖zt‖2 +

L2
N‖yt − y0‖2

2

2ε

≤q′(g(zt)) · L2
Ng(zt) +

L2
N‖yt − y0‖2

2

2ε
+ 2L2

Nε.

The above uses multiples times the fact that 0 ≤ q′ ≤ 1 and q′′ ≤ 0 (proven in items 3
and 4 of Lemma 85). The second inequality is by Young’s inequality, the third inequality is
by item 2 of Lemma 80, the fourth inequality uses item 4 of Lemma 84.



APPENDIX D. PROOFS FOR CHAPTER 5 158

Summing these,

1 + 2 + 4 + 5 ≤
(
LR + L2

N

)
q′(g(zt))g(zt) + 2c2

mq
′′(g(zt)) +

L2
N‖yt − y0‖2

2

2ε
+ 2
(
L+ L2

N

)
ε

≤−
2c2
m exp

(
−7αqRq2

3

)
32Rq

2 q(g(zt)) +
L2
N‖yt − y0‖2

2

2ε
+ 2
(
L+ L2

N

)
ε

≤− λq(g(zt)) +
L2
N‖yt − y0‖2

2

2ε
+ 2(L+ L2

N)ε

=− λf(zt) +
L2
N‖yt − y0‖2

2

2ε
+ 2(L+ L2

N)ε+ L‖yt − y0‖2,

where the last inequality follows from Lemma 85.1. and the definition of λ in (5.7).
Case 3: ‖zt‖2 ≥ Rq

In this case, γt = 0. Similar to case 2,

∇f(zt) = q′(g(zt))
zt
‖zt‖2

.

Thus by Assumption A.3,

1 =

〈
q′(g(zt))

zt
‖zt‖2

,−∇t

〉
≤−mq′(g(zt))‖zt‖2,

where the inequality is by Assumption A.3.
For identical reasons as in Case 1, 2 ≤ LR‖yt − y0‖2, and 4 = 0. Finally,

5 =
1

2
tr
(
∇2f(zt)(Nt +N(yt)−N(y0))2)

=
1

2
tr

((
q′′(g(zt))

ztz
T
t

‖zt‖2
2

+ q′(g(zt))
1

‖zt‖2

(
I − ztz

T
t

‖zt‖2
2

))
(Nt +N(yt)−N(y0))2

)
≤1

2
tr

((
q′(g(zt))

1

‖zt‖2

(
I − ztz

T
t

‖zt‖2
2

))
(Nt +N(yt)−N(y0))2

)
≤q
′(g(zt))

‖zt‖2

·
(
tr
(
N2
t

)
+ tr

(
(N(yt)−N(y0))2)),

where the first inequality is because q′′ ≤ 0 from item 4 of Lemma 85, the second inequality
is by Young’s inequality. (These steps are identical to Case 2). Continuing from above, and
using item 2 and 3 of Lemma 80,

5 ≤q′(g(zt)) ·
(

8β2LN
cm

+
L2
N‖yt − y0‖2

2

ε

)
≤q′(g(zt)) ·

(m
2
‖zt‖2

)
+ q′(g(zt)) ·

(
L2
N‖yt − y0‖2

2

ε

)
,
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where the second inequality is by our definition of Rq in the lemma statement, which ensures

that 8β2LN
cm
≤ m

2
Rq ≤ m

2
‖zt‖2.

Thus

1 + 2 + 4 + 5

≤−mq′(g(zt))‖zt‖2 + LR‖yt − y0‖2 +
m

2
q′(g(zt))‖zt‖2 + q′(g(zt)) ·

(
L2
N‖yt − y0‖2

2

ε

)
≤− m

2
q′(g(zt))‖zt‖2 +

L2
N

ε
‖yt − y0‖2

2 + L‖yt − y0‖2

≤− λf(zt) +
L2
N

ε
‖yt − y0‖2

2 + L‖yt − y0‖2,

where the second inequality uses q′ ≤ 1 from item 3 of Lemma 85, the third inequality uses
our definition of λ in (5.7).

Combining the three cases, (D.6) can be upper bounded with probability 1:

df(zt) ≤− λf(zt) +
L2
N

ε
‖yt − y0‖2

2 + L‖yt − y0‖2

+
〈
∇f(zt), 2cmγtγ

T
t dVt + (Nt +N(yt)−N(y0))dWt

〉
.

To simplify notation, let us define Gt ∈ R1×2d as
Gt :=

[
∇f(zt)

T2cmγtγ
T
t ,∇f(zt)

T (Nt +N(yt)−N(y0))
]
, and let At be a 2d-dimensional

Brownian motion from concatenating At =

 Vt
Wt

. Thus

df(zt) ≤ −λf(zt)dt+

(
L2
N

ε
‖yt − y0‖2

2 + L‖yt − y0‖2

)
+GtdAt.

We will study the Lyapunov function

Lt := f(zt)−
∫ t

0

e−λ(t−s)
(
L2
N

ε
‖ys − y0‖2

2 + L‖ys − y0‖2

)
ds−

∫ t

0

e−λ(t−s)GsdAs.

By taking derivatives, we see that

dLt ≤− λf(zt)dt+

(
L2
N

ε
‖yt − y0‖2

2 + L‖yt − y0‖2

)
dt+GtdAt

+ λ

(∫ t

0

e−λ(t−s)
(
L2
N

ε
‖ys − y0‖2

2 + L‖ys − y0‖2

)
ds

)
dt

−
(
L2
N

ε
‖yt − y0‖2

2 + L‖yt − y0‖2

)
dt

+ λ

(∫ t

0

e−λ(t−s)GsdAs

)
dt−GtdAt

=− λLtdt.
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We can then apply Gronwall’s Lemma to Lt, so that

LT ≤ e−λTL0,

which is equivalent to

f(zT )−
∫ T

0

e−λ(T−s)
(
L2
N

ε
‖ys − y0‖2

2 + L‖ys − y0‖2

)
ds−

∫ T

0

e−λ(t−s)GsdAs ≤ e−λTf(z0).

Observe thatGs is measurable wrt the natural filtration generated byAs, so that
∫ T

0
e−λ(T−s)GsdAs

is a martingale. Thus taking expectations,

E [f(zT )] ≤ e−λTE [f(z0)] +

∫ T

0

L2
N

ε
E
[
‖ys − y0‖2

2

]
+ LE [‖ys − y0‖2] ds.

By Lemma 75, E
[
‖yt − y0‖2

2

]
≤ t2L2E

[
‖y0‖2

2

]
+ tβ2, so that∫ T

0

L2
N

ε
E
[
‖ys − y0‖2

2

]
ds ≤ T 3L2

NL
2

ε
E
[
‖y0‖2

2

]
+
T 2L2

N

ε
β2

LE [‖ys − y0‖2] ≤ T 2L2
√

E
[
‖y0‖2

2

]
+ T 3/2Lβ.

Furthermore, using our assumption in the lemma statement that T ≤ min

{
ε2

β2 ,
ε

6L
√
R2+β2/m

}
and E

[
‖y0‖2

2

]
≤ 8(R2 + β2/m), we can verify that∫ T

0

L2
N

ε
E
[
‖ys − y0‖2

2

]
ds ≤ 1

4
TL2

Nε+ TL2
Nε

LE [‖ys − y0‖2] ≤ 1

2
TLε+ TLε.

Combining the above gives

E [f(zT )] ≤ e−λTE [f(z0)] + 3T
(
L+ L2

N

)
ε.

�

Corollary 66 Let f be as defined in Lemma 82 with parameter ε satisfying ε ≤ Rq
αqRq2+1

.

Let δ ≤ min

{
ε2

β2 ,
ε

8L
√
R2+β2/m

}
, and let x̄t and ȳt have dynamics as defined in (5.3) and

(5.2) respectively, and suppose that the initial conditions satisfy E
[
‖x̄0‖2

2

]
≤ R2 + β2/m and

E
[
‖ȳ0‖2

2

]
≤ R2 + β2/m. Then there exists a coupling between x̄t and ȳt such that

E [f(x̄iδ − ȳiδ)] ≤ e−λiδE [f(x̄0 − ȳ0)] +
6

λ

(
L+ L2

N

)
ε.
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Proof of Corollary 66

From Lemma 71 and 72, our initial conditions imply that for all t, E [‖x̄t‖2
2] ≤ 6

(
R2 + β2

m

)
and E [‖ȳkδ‖2

2] ≤ 8
(
R2 + β2

m

)
.

Consider an arbitrary k, and for t ∈ [kδ, (k + 1)δ), define

xt := x̄kδ+t and yt := ȳkδ+t.

Under this definition, xt and yt have dynamics described in (D.1) and (D.2). Thus the
coupling in (D.3), which describes a coupling between xt and yt, equivalently describes a
coupling between x̄t and ȳt over t ∈ [kδ, (k + 1)δ).

We now apply Lemma 65. Given our assumed bound on δ and our proven bounds on
E
[
‖x̄t‖2

2

]
and E

[
‖ȳt‖2

2

]
,

E
[
f(x̄(k+1)δ − ȳ(k+1)δ)

]
=E [f(xδ − yδ)]
≤e−λδE [f(x0 − y0)] + 6δ(L+ L2

N)ε

=e−λδE [f(x̄kδ − ȳkδ)] + 6δ(L+ L2
N)ε.

Applying the above recursively gives, for any i

E [f(x̄iδ − ȳiδ)] ≤ e−λiδE [f(x̄0 − ȳ0)] +
6

λ

(
L+ L2

N

)
ε.

�

D.1.4 Proof of Theorem 10

For ease of reference, we re-state Theorem 10 below as Theorem 13 below. We make a minor
notational change: using the letters x̄t and ȳt in Theorem 13, instead of the letters xt and yt
in Theorem 10. This is to avoid some notation conflicts in the proof.

Theorem 13 (Equivalent to Theorem 10) Let x̄t and ȳt have dynamics as defined in
(5.3) and (5.2) respectively, and suppose that the initial conditions satisfy E

[
‖x̄0‖2

2

]
≤

R2+β2/m and E
[
‖ȳ0‖2

2

]
≤ R2+β2/m. Let ε̂ be a target accuracy satisfying ε̂ ≤

(
16(L+L2

N)
λ

)
·

exp (7αqRq/3) · Rq
αqRq2+1

. Let δ be a step size satisfying

δ ≤ min


λ2ε̂2

512β2(L2+L4
N) exp

(
14αqRq2

3

)
2λε̂

(L2+L4
N ) exp

(
7αqRq2

3

)√
R2+β2/m

.
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If we assume that x̄0 = ȳ0, then there exists a coupling between x̄t and ȳt such that for
any k,

E [‖x̄kδ − ȳkδ‖2] ≤ ε̂.

Alternatively, if we assume k ≥ 3αqRq2
δ

log R2+β2/m
ε̂

, then

W1(p∗, pykδ) ≤ 2ε̂,

where pyt := Law(ȳt).

Proof of Theorem 13

Let ε := λ
16(L+L2

N )
exp

(
−7αqRq2

3

)
ε̂. Let f be defined as in Lemma 82 with the parameter

ε.

E [‖x̄iδ − ȳiδ‖2]

≤2 exp

(
7αqRq

2

3

)
E [f(x̄iδ − ȳiδ)] + 2 exp

(
7αqRq

2

3

)
ε

≤2 exp

(
7αqRq

2

3

)(
e−λiδE [f(x̄0 − ȳ0)] +

6

λ

(
L+ L2

N

)
ε

)
+ 2 exp

(
7αqRq

2

3

)
ε

≤2 exp

(
7αqRq

2

3

)
e−λiδE [f(x̄0 − ȳ0)] +

16(L+ L2
N)

λ
exp

(
7αqRq

2

3

)
· ε (D.7)

=2 exp

(
7αqRq

2

3

)
e−λiδE [f(x̄0 − ȳ0)] + ε̂,

where the first inequality is by item 4 of Lemma 82, the second inequality is by Corollary
66 (notice that δ satisfies the requirement on T in Theorem 10, for the given ε). The third

inequality uses the fact that 1 ≤ L/m ≤ (L+L2
N)

λ
.

The first claim follows from substituting x̄0 = ȳ0 into (D.7), so that the first term is 0,
and using the definition of ε, so that the second term is 0.

For the second claim, let x̄0 ∼ p∗, the invariant distribution of (5.3). From Lemma 71, we
know that x̄0 satisfies the required initial conditions in this Lemma. Continuing from (D.7),

E [‖x̄iδ − ȳiδ‖2]

≤2 exp

(
7αqRq

2

3

)(
2e−λiδE

[
‖x̄0‖2

2 + ‖ȳ0‖2
2

]
+

6

λ

(
L+ L2

N

)
ε

)
+ ε

≤2 exp

(
7αqRq

2

3

)(
2e−λiδ

(
R2 + β2/m

))
+

16

λ
exp

(
2

7αqRq
2

3

)(
L+ L2

N

)
ε

=4 exp

(
7αqRq

2

3

)(
e−λiδ

(
R2 + β2/m

))
+ ε̂.

By our assumption that i ≥ 1
δ
· 3αqRq

2 log R2+β2/m
ε̂

, the first term is also bounded by ε̂, and
this proves our second claim. �
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D.1.5 Simulating the SDE

One can verify that the SDE in (5.2) can be simulated (at discrete time intervals) as follows:

y(k+1)δ = ykδ − δ∇U(ykδ) +
√
δM(ykδ)θk,

where θk ∼ N (0, I). This however requires access to M(yk,δ), which may be difficult to
compute.

If for any y, one is able to draw samples from some distribution py such that

1. Eξ∼py [ξ] = 0

2. Eξ∼py
[
ξξT
]

= M(y)

3. ‖ξ‖2 ≤ β almost surely, for some β,

then one might sample a noise that is δ close to M(ykδ)θk through Theorem 15.

Specifically, if one draws n samples ξ1...ξn
iid∼ py, and let Sn := 1√

n

∑n
i=1 ξi, Theorem 15

guarantees that W2(Sn,M(y)θ) ≤
(

6
√
dβ
√

log n
)
/
√
n. We remark that the proof of Theorem

10 can be modified to accommodate for this sampling error. The number of samples needed
to achieve ε accuracy will be on the order of n u O(δε)−2 = O(ε−6).

D.2 Proofs for Convergence under Non-Gaussian
Noise (Theorem 11)

D.2.1 Proof Overview

The main proof of Theorem 11 is contained in Appendix D.2.4.
Here, we outline the steps of our proof:

1. In Appendix D.2.2, we construct a coupling between (5.3) and (5.1) over an epoch
which consists of an interval [kδ, (k + n)δ) for some k. The coupling in (D.2.2) consists
of four processes (xt, yt, vt, wt), where yt and vt are auxiliary processes used in defining
the coupling. Notably, the process (xt, yt) has the same distribution over the epoch as
(D.3).

2. In Appendix D.2.3, we prove Lemma 67 and Lemma 68, which, combined with Lemma 65
from Appendix D.1.3, show that under the coupling constructed in Step 1, a Lyapunov
function f(xT − wT ) contracts exponentially with rate λ, plus a discretization error
term. In Corollary 69, we apply the results of Lemma 65, Lemma 67 and Lemma
68 recursively over multiple steps to give a bound on f(xkδ − wkδ) for all k, and for
sufficiently small δ.

3. Finally, in Appendix D.2.4, we prove Theorem 11 by applying the results of Corollary
69, together with the fact that f(z) upper bounds ‖z‖2 up to a constant.
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D.2.2 Constructing a Coupling

In this sectopn, we construct a coupling between (5.1) and (5.3), given arbitrary initialization
(x0, w0). We will consider a finite time T = nδ, which we will refer to as an epoch.

1. Let Vt and Wt be two independent Brownian motion.

2. Using Vt and Wt, define

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(w0)dWs. (D.8)

3. Using the same Vt and Wt in (D.8), we will define yt as

yt =w0 +

∫ t

0

−∇U(w0)ds+

∫ t

0

cm
(
I − 2γsγ

t
s

)
dVs +

∫ T

0

N(xs)dWs, (D.9)

where γt := xt−yt
‖xt−yt‖2 · 1 {‖xt − yt‖2 ∈ [2ε,Rq)}. The coupling (xt, yt) defined in (D.8)

and (D.9) is identical to the coupling in (D.3) (with y0 = w0).

4. We now define a process vkδ for k = 0...n:

vkδ =w0 +
k−1∑
i=0

−δ∇U(w0) +
√
δ
k−1∑
i=0

ξ(w0, ηi), (D.10)

where marginally, the variables (η0...ηn−1) are drawn i.i.d from the same distribution
as in (5.1).

Notice that yT − w0 − T∇U(w0) =
∫ T

0
cmdBt +

∫ T
0
N(w0)dWt, so that Law(yT − w0 −

T∇U(w0)) = N (0, TM(w0)2). Notice also that vT−w0−T∇U(w0) =
√
δ
∑n−1

i=0 ξ(w0, ηi).

By Corollary 88, W2(yT − w0 − T∇U(w0), vT − w0 − T∇U(w0)) = 6
√
dδβ
√

log n. Let
the joint distribution between (D.10) and (D.9) be the one induced by the optimal
coupling between yT − w0 − T∇U(w0) and vT − w0 − T∇U(w0), so that√

E
[
‖yT − vT‖2

2

]
=
√

E
[
‖yT − T∇U(w0)− vT + T∇U(w0)‖2

2

]
=W2(yT − w0 − T∇U(w0), vT − w0 − T∇U(w0))

≤6
√
dδβ

√
log n, (D.11)

where the last inequality is by Corollary 88.
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5. Given the sequence (η0...ηn−1) from (D.10), we can define

wkδ =w0 +
k−1∑
i=0

−δ∇U(wiδ) +
√
δ
k−1∑
i=0

ξ(wiδ, ηi), (D.12)

specifically, (w0...wnδ) in (D.12) and (v0...vnδ) in (D.10) are coupled through the shared
(η0...ηn−1) variables.

For convenience, we will let vt := viδ and wt := wiδ, where i is the unique integer satisfying
t ∈ [iδ, (i+ 1)δ).

We can verify that, marginally, the process xt in (D.8) has the same distribution as (5.3),
using the proof as Lemma 70. It is also straightforward to verify that wkδ, as defined in
(D.12), has the same marginal distribution as (5.1), due to the definition of ηi in (D.10).

D.2.3 One Epoch Contraction

In Lemma 67, we prove a discretization error bound between f(xT − yT ) and f(xT − vT ), for
the coupling defined in (D.8), (D.9) and (D.10).

In Lemma 68, we prove a discretization error bound between f(xT − vT ) and f(xT −wT ),
for the coupling defined in (D.8), (D.10) and (D.12).

Lemma 67 Let f be as defined in Lemma 82 with parameter ε satisfying ε ≤ Rq
αqRq2+1

. Let

xt, yt and vt be as defined in (D.8), (D.9), (D.10). Let n be any integer and δ be any step
size, and let T := nδ.

If E
[
‖x0‖2

2

]
≤ 8(R2 + β2/m), E

[
‖y0‖2

2

]
≤ 8(R2 + β2/m) and T ≤ min

{
1

16L
, β2

8L2(R2+β2/m)

}
and

δ ≤ min

 Tε2L

36dβ2 log
(

36dβ2

ε2L

) , T ε4L2

214dβ4 log
(

214dβ4

ε4L2

)
 ,

Then

E [f(xT − vT )]− E [f(xT − yT )] ≤ 4TLε,

Proof
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By Taylor’s Theorem,

E [f(xT − vT )]

=E [f(xT − yT ) + 〈∇f(xT − yT ), yT − vT 〉]

+ E
[∫ 1

0

∫ s

0

〈
∇2f(xT − yT + s(yT − vT )), (yT − vT )(yT − vT )T

〉
dsdt

]

=E

f(xT − yT ) + 〈∇f(x0 − y0), yT − vT 〉︸ ︷︷ ︸
1

+ 〈∇f(xT − yT )−∇f(x0 − y0), yT − vT 〉︸ ︷︷ ︸
2



+ E


∫ 1

0

∫ s

0

〈
∇2f(xT − yT + s(yT − vT )), (yT − vT )(yT − vT )T

〉
dsdt︸ ︷︷ ︸

3

 .
We will bound each of the terms above separately.

E
[

1
]

=E [〈∇f(x0 − y0), yT − vT 〉]
=E [〈∇f(x0 − y0), nδ∇U(y0)− nδ∇U(v0)〉]

+ E

[〈
∇f(x0 − y0),

∫ T

0

−∇U(w0)dt+

∫ T

0

cmdVt +

∫ T

0

N(w0)dWt +
n−1∑
i=0

√
δξ(v0, ηi)

〉]
=E [〈∇f(x0 − y0), nδ∇U(y0)− nδ∇U(v0)〉]
=0,

where the third equality is because
∫ T

0
dBt,

∫ T
0
dWt and

∑T
k=1 ξ(v0, ηi) have zero mean

conditioned on the information at time 0, and the fourth equality is because y0 = v0 by
definition in (D.9) and (D.10).

E
[

2
]

=E [〈∇f(xT − yT )−∇f(x0 − y0), yT − vT 〉]

≤
√

E
[
‖∇f(xT − yT )−∇f(x0 − y0)‖2

2

]√
E
[
‖yT − vT‖2

2

]
≤2

ε

√
2E
[
‖xT − x0‖2

2 + ‖yT − y0‖2
2

]√
E
[
‖yT − vT‖2

2

]
≤2

ε

√
(32Tβ2 + 4Tβ2) ·

(
6
√
dδβlog n

)
≤128

ε

√
Tβ2 ·

(√
dδlog n

)
,
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where the second inequality is by ‖∇2f‖2 ≤
2
ε

from item 2(c) of Lemma 82 and Young’s
inequality. The third inequality is by Lemma 74 and Lemma 75 and (D.11).

Finally, we can bound

E
[

3
]

≤
∫ 1

0

∫ s

0

E
[∥∥∇2f(xT − yT + s(yT − vT ))

∥∥
2
‖yT − vT‖2

2

]
dsdt

≤2

ε
E
[
‖yT − vT‖2

2

]
≤72dδβ2 log2 n

ε
,

where the second inequality is by ‖∇2f‖2 ≤
2
ε

from item 2(c) of Lemma 82, the third
inequality is by (D.11).

Summing these 3 terms,

E [f(xT − vT )− f(xT − yT )]

≤128

ε

√
Tβ2 ·

(√
dδ
√

log n
)

+
36dδβ2 log n

ε

=
128

ε

√
Tβ2 ·

(
√
dδ

√
log

T

δ

)
+

36dδβ2 log T
δ

ε
.

Let us bound the first term. We apply Lemma 89 (with x = T
δ

and c = ε4

214dβ4 ), which
shows that

T

δ
≥ 214dβ4

ε4
log

(
214dβ4

ε4L2

)
⇒ T

δ

1

log T
δ

≥ 214dβ4

ε4L2
⇔ 128

ε

√
Tβ2 ·

(√
dδlog

T

δ

)
≤ TLε.

For the second term, we can again apply Lemma 89 (x = T
δ

and c = ε2L
36dβ2 ), which shows

that

T

δ
≥ 36dβ2

ε2L
log

(
36dβ2

ε2L

)
⇒ T

δ

1

log T
δ

≥ 36dβ2

ε2L
⇒

36dδβ2 log T
δ

ε
≤ TLε.

The above imply that

E [f(xT − vT )− f(xT − yT )] ≤ 2TLε.

�

Lemma 68 Let f be as defined in Lemma 82 with parameter ε satisfying ε ≤ Rq
αqRq2+1

. Let

xt, vt and wt be as defined in (D.8), (D.10), (D.12). Let n be an integer and δ be a step size,
and let T := nδ.
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If we assume that E
[
‖x0‖2

2

]
, E
[
‖v0‖2

2

]
, and E

[
‖w0‖2

2

]
are each upper bounded by 8(R2 + β2/m)

and that T ≤ min
{

1
16L

, ε
32
√
Lβ
, ε2

128β2 ,
ε4L2

N

214β2c2m

}
, then

E [f(xT − wT )]− E [f(xT − vT )] ≤ 4T (L+ L2
N)ε.

Remark 15 For sufficiently small ε, our assumption on T boils down to T = o(ε4).

Proof
First, we can verify using Taylor’s theorem that for any x, y,

f(y) =f(x) + 〈∇f(x), y − x〉 +

∫ 1

0

∫ s

0

〈
∇2f(x+ s(y − x)), (y − x)(y − x)T

〉
dsdt,

(D.13)

∇f(y) =∇f(x) +
〈
∇2f(x), y − x

〉
+

∫ 1

0

∫ s

0

〈
∇3f(x+ s(y − x)), (y − x)(y − x)T

〉
dsdt.

(D.14)

Thus

E [f(xT − wT )]

=E [f(xT − vT ) + 〈∇f(xT − vT ), vT − wT 〉]

+ E
[∫ 1

0

∫ s

0

〈
∇2f(xT − vT + s(vT − wT )), (vT − wT )(vT − wT )T

〉
dsdt

]

=E

f(xT − vT ) + 〈∇f(x0 − v0), vT − wT 〉︸ ︷︷ ︸
1

+ 〈∇f(xT − vT )−∇f(x0 − v0), vT − wT 〉︸ ︷︷ ︸
2



+ E


∫ 1

0

∫ s

0

〈
∇2f(xT − vT + s(vT − wT )), (vT − wT )(vT − wT )T

〉
dsdt︸ ︷︷ ︸

3

 .

Recall from (D.10) and (D.12) that

vnδ =w0 +
n−1∑
i=0

δ∇U(w0) +
√
δ

n−1∑
i=0

ξ(w0, ηi),

wnδ =w0 +
n−1∑
i=0

δ∇U(wiδ) +
√
δ
n−1∑
i=0

ξ(wiδ, ηi).
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Note that conditioned on the randomness up to time 0, E
[∑n−1

i=0 ξ(w0, ηi)
]

= E
[∑n−1

i=0 ξ(wiδ, ηi)
]

=
0, so that

E
[

1
]

=E [〈∇f(x0 − v0), vT − wT 〉]

=δE

[〈
∇f(x0 − v0),

n−1∑
i=0

∇U(w0)−∇U(wiδ)

〉]

+
√
δE

[〈
∇f(x0 − v0),

n−1∑
i=0

ξ(w0, ηi)−
n−1∑
i=0

ξ(wiδ, ηi)

〉]

=δE

[〈
∇f(x0 − v0),

n−1∑
i=0

∇U(w0)−∇U(wiδ)

〉]

≤δ
n−1∑
i=0

LE [‖w0 − wiδ‖2]

≤TL
√

32Tβ2 ≤ 8T 3/2Lβ,

where the third equality is becayse ξ(·, ηi) has 0 mean conditioned on the randomness at time
0, and the second inequality is by Lemma 77.

Next,

E
[

2
]

=E [〈∇f(xT − vT )−∇f(x0 − v0), vT − wT 〉]
≤E [‖∇f(xT − vT )−∇f(x0 − v0)‖2‖vT − wT‖]

≤4

ε

√
E
[
‖xT − x0‖2

2 + ‖vT − v0‖2
2

]
·
√

E
[
‖vT − wT‖2

2

]
≤4

ε

√
16Tβ2 + 2Tβ2 ·

√
32
(
T 2L2 + TL2

ξ

)
Tβ2

≤128

ε
Tβ2

(√
TLξ + TL

)
,

where the second inequality is because ‖∇2f‖2 ≤
2
ε

from item 2(c) of Lemma 82 and by
Young’s inequality. The third inequality is by Lemma 74, Lemma 76 and Lemma 78.
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Finally,

E
[

3
]

=E
[∫ 1

0

∫ s

0

〈
∇2f(xT − vT + s(vT − wT )), (vT − wT )(vT − wT )T

〉
dsdt

]
≤
∫ 1

0

∫ s

0

E
[∥∥∇2f(xT − vT + s(vT − wT ))

∥∥
2
‖vT − wT‖2

2

]
ds

≤1

ε
E
[
‖vT − wT‖2

2

]
≤32

ε

(
T 2L2 + TL2

ξ

)
Tβ2,

where the second inequality is because ‖∇2f‖2 ≤
2
ε

from item 2(c) of Lemma 82 and by
Young’s inequality. The third inequality is by Lemma 78.

Summing the above,

E [f(xT − wT )− f(xT − vT )]

≤8T 3/2Lβ +
128

ε
Tβ2

(√
TLξ + TL

)
+

32

ε

(
T 2L2 + TL2

ξ

)
Tβ2

≤T 3/2ε,

where the last inequality is by our assumption on T , specifically,

T ≤ ε2

128β2
⇒ T 3/2Lβ ≤ TLε

T ≤ ε2

128β2
⇒ 128

ε
T 2Lβ2 ≤ TLε

T ≤ ε

32
√
Lβ
⇒ 32

ε
(T 3L2β2) ≤ TLε

T ≤ ε4L2
N

214β2c2
m

⇒ 128

ε
T 3/2β2Lξ ≤ TL2

Nε

T ≤ ε2

128β2
⇒ T ≤ ε2

128c2
m

⇒ 32

ε
T 2L2

ξβ
2 ≤ TL2

Nε,

where the last line uses the fact that β ≥ c2
m.

�

Corollary 69 Let f be as defined in Lemma 82 with parameter ε satisfying ε ≤ Rq
αqRq2+1

.

Let T = min
{

1
16L

, β2

8L2(R2+β2/m)
, ε

32
√
Lβ
, ε2

128β2 ,
ε4L2

N

214β2c2m

}
and let

δ ≤ min

{
Tε2L

36dβ2 log
(

36dβ2

ε2L

) , Tε4L2

214dβ4 log
(

214dβ4

ε4L2

)
}

. Assume additionally that n = T/δ is an integer.
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Let x̄t and w̄t have dynamics as defined in (5.3) and (5.2) respectively, and suppose that the
initial conditions satisfy E

[
‖x̄0‖2

2

]
≤ R2 + β2/m and E

[
‖w̄0‖2

2

]
≤ R2 + β2/m. Then there

exists a coupling between x̄t and w̄t such that

E [f(x̄iδ − w̄iδ)] ≤ e−λiδE [f(x̄0 − w̄0)] +
6

λ

(
L+ L2

N

)
ε

Proof
From Lemma 71 and 73, our initial conditions imply that for all t, E [‖x̄t‖2

2] ≤ 6
(
R2 + β2

m

)
and E [‖w̄kδ‖2

2] ≤ 8
(
R2 + β2

m

)
.

Consider an arbitrary k, and for t ∈ [0, T ), define

xt := x̄kT+t and wt := w̄kT+t (D.15)

Notice that as described above, xt and wt have dynamics described in (5.3) and (5.1). Let
xt, wt have joint distribution as described in (D.8) and (D.12), and let (yt, vt) be the processes
defined in (D.9) and (D.10). Notice that the joint distribution between xt and wt equivalently
describes a coupling between x̄t and w̄t over t ∈ [kT, (k + 1)T ).

First, notice that the processes (D.8) and (D.9) have the same distribution as (D.3). We
can thus apply Lemma 65:

E [f(xT − yT )] ≤e−λTE [f(x0 − y0)] + 6T (L+ L2
N)ε

By Lemma 67,

E [f(xT − vT )]− E [f(xT − yT )] ≤ 4TLε

By Lemma 68,

E [f(xT − wT )]− E [f(xT − vT )] ≤ 4T (L+ L2
N)ε

Summing the above three equations,

E [f(xT − wT )] ≤ e−λδE [f(x0 − w0)] + 14T (L+ L2
N)

Where we use the fact that y0 = w0 by construction in (D.9).
Recalling (D.15), this is equivalent to

E
[
f(x̄(k+1)T − w̄(k+1)T )

]
≤ e−λδE [f(x̄kT − w̄kT )] + 14T (L+ L2

N)

Applying the above recursively gives, for any i

E [f(x̄iT − w̄iT )] ≤ e−λiTE [f(x̄0 − w̄0)] +
14

λ

(
L+ L2

N

)
ε

�
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D.2.4 Proof of Theorem 11

For ease of reference, we re-state Theorem 11 below as Theorem 14 below. We make a minor
notational change: using the letters x̄t and ȳt in Theorem 14, instead of the letters xt and yt
in Theorem 11. This is to avoid some notation conflicts in the proof.

Theorem 14 (Equivalent to Theorem 11) Let x̄t and wt have dynamics as defined in
(5.3) and (5.1) respectively, and suppose that the initial conditions satisfy E

[
‖x̄0‖2

2

]
≤

R2+β2/m and E
[
‖w̄0‖2

2

]
≤ R2+β2/m. Let ε̂ be a target accuracy satisfying ε̂ ≤

(
16(L+L2

N)
λ

)
·

exp (7αqRq/3) · Rq
αqRq2+1

. Let ε := λ
16(L+L2

N )
exp

(
−7αqRq2

3

)
ε̂. Let

T := min

{
1

16L
,

β2

8L2(R2 + β2/m)
,

ε

32
√
Lβ

,
ε2

128β2
,
ε4L2

N

214β2c2
m

}
and let δ be a step size satisfying

δ ≤ min

 Tε2L

36dβ2 log
(

36dβ2

ε2L

) , T ε4L2

214dβ4 log
(

214dβ4

ε4L2

)
 .

If we assume that x̄0 = w̄0, then there exists a coupling between x̄t and w̄t such that for
any k,

E [‖x̄kδ − w̄kδ‖2] ≤ ε̂.

Alternatively, if we assume that k ≥ 3αqRq2
δ
· log R2+β2/m

ε̂
, then

W1(p∗, pwkδ) ≤ 2ε̂,

where pwt := Law(w̄t).

Proof of Theorem 14
Let f be defined as in Lemma 82 with parameter ε.

E [‖x̄iδ − w̄iδ‖2]

≤2 exp

(
7αqRq

2

3

)
E [f(x̄iδ − w̄iδ)] + 2 exp

(
7αqRq

2

3

)
ε

≤2 exp

(
7αqRq

2

3

)(
e−λiδE [f(x̄0 − w̄0)] +

6

λ

(
L+ L2

N

)
ε

)
+ 2 exp

(
7αqRq

2

3

)
ε

≤2 exp

(
7αqRq

2

3

)
e−λiδE [f(x̄0 − w̄0)] +

16(L+ L2
N)

λ
exp

(
7αqRq

2

3

)
· ε (D.16)

=2 exp

(
7αqRq

2

3

)
e−λiδE [f(x̄0 − w̄0)] + ε̂,
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where the first inequality is by item 4 of Lemma 82, the second inequality is by Corollary
69 (notice that δ satisfies the requirement on T in Theorem 10, for the given ε). The third

inequality uses the fact that 1 ≤ L/m ≤ (L+L2
N)

λ
.

The first claim follows from substituting x̄0 = w̄0 into (D.16), so that the first term is 0,
and using the definition of ε, so that the second term is 0.

For the second claim, let x̄0 ∼ p∗, the invariant distribution of (5.3). From Lemma 71, we
know that x̄0 satisfies the required initial conditions in this Lemma. Continuing from (D.16),

E [‖x̄iδ − w̄iδ‖2]

≤2 exp

(
7αqRq

2

3

)(
2e−λiδE

[
‖x̄0‖2

2 + ‖w̄0‖2
2

]
+

6

λ

(
L+ L2

N

)
ε

)
+ ε

≤2 exp

(
7αqRq

2

3

)(
2e−λiδ

(
R2 + β2/m

))
+

16

λ
exp

(
2

7αqRq
2

3

)(
L+ L2

N

)
ε

=4 exp

(
7αqRq

2

3

)(
e−λiδ

(
R2 + β2/m

))
+ ε̂.

By our assumption that i ≥ 1
δ
· 3αqRq

2 log R2+β2/m
ε̂

, the first term is also bounded by ε̂, and
this proves our second claim. �

D.3 Coupling Properties

Lemma 70 Consider the coupled (xt, yt) in (D.3). Let pt denote the distribution of xt, and
qt denote the distribution of yt. Let p′t and q′t denote the distributions of (D.1) and (D.2).

If p0 = p′0 and q0 = q′0, then pt = p′t and qt = q′t for all t.

Proof
Consider the coupling in (D.3), reproduced below for ease of reference:

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(xs)dWs

yt =y0 +

∫ t

0

−∇U(y0)dt+

∫ t

0

cm
(
I − 2γsγ

T
s

)
dVs +

∫ t

0

N(y0)dWs.

Let us define the stochastic process At :=
∫ t

0
M(xs)

−1cmdVs +
∫ t

0
M(xs)

−1N(xs)dWs. We
can verify using Levy’s characterization that At is a standard Brownian motion: first, since Vt
and Wt are Brownian motions, and N(x) is differentiable with bounded derivatives, we know
that At has continuous sample paths. We now verify that AitA

j
t − 1 {i = j}t is a martingale.

Notice that dAt = cmdVt +M(xs)
−1N(xs)dWs. Then

dAitA
j
t =dATt

(
eie

T
j

)
At

=At
(
eie

T
j

)(
cmdVt +M(xs)

−1N(xs)dWs

)T
+
(
cmdVt +M(xs)

−1N(xs)dWs

)(
eje

T
i

)
aTt

+
1

2
tr
((
eie

T
j + eje

T
i

)(
c2
mM(xs)

−2 +M(xs)
−1N(xs)

2M(xs)
−1
))
dt,
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where the second inequality is by Ito’s Lemma applied to f(At) = ATt eje
T
j At. Taking

expectations,

dE
[
AitA

j
t

]
=E

[
1

2
tr
((
eie

T
j + eje

T
i

)(
c2
mM(xs)

−2 +M(xs)
−1N(xs)N(xs)

T
(
M(xs)

−1
)T))]

dt

=E
[

1

2
tr
((
eie

T
j + eje

T
i

)(
M(xs)

−1
(
c2
mI +N(xs)

2
)
M(xs)

−1
))]

dt

=E
[

1

2
tr
((
eie

T
j + eje

T
i

)(
M(xs)

−1
(
M(xs)

2
)
M(xs)

−1
))]

dt

=E
[

1

2
tr
((
eie

T
j + eje

T
i

))]
dt

=1 {i = j}dt.

This verifies that AitA
j
t − 1 {i = j}t is a martingale, and hence by Levy’s characterization,

At is a standard Brownian motion. In turn, we verify that by definition of At,

xt =x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

cmdVs +

∫ t

0

N(xs)dWs

=x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

M(xs)
(
M(xs)

−1(cmdVs +N(xs)dWs)
)

=x0 +

∫ t

0

−∇U(xs)ds+

∫ t

0

M(xs)dAs

Since we showed that At is a standard Brownian motion, we verify that xt as defined in (D.3)
has the same distribution as (5.3).

On the other hand, we can verify that A′t :=
∫ T

0
(I − 2γsγ

T
s )Vs is a standard Brownian

motion by the reflection principle. Thus∫ t

0

cm
(
I − 2γsγ

T
s

)
dVs +

∫ t

0

N(y0)dWs ∼ N (0,
(
c2
mI +N(y0)2

)
) = N (0,M(y0)2)

where the equality is by definition of N in (5.6).
It follows immediately that yt in (D.3) has the same distribution as yt in (5.2).

�

D.3.1 Energy Bounds

Lemma 71 Consider xt as defined in (5.3). If x0 satisfies E [‖x0‖2
2] ≤ R2 + β2

m
, then Then

for all t,

E
[
‖xt‖2

2

]
≤ 6

(
R2 +

β2

m

)
.
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We can also show that

Ep∗
[
‖x‖2

2

]
≤ 4

(
R2 +

β2

m

)
.

Proof
We consider the potential function a(x) = (‖x‖2 −R)2

+ We verify that

∇a(x) =(‖x‖2 −R)+
x

‖x‖2

∇2a(x) =1 {‖x‖2 ≥ R} xx
T

‖x‖2
2

+
(‖x‖2 −R)+

‖x‖2

(
I − xxT

‖x‖2
2

)
.

Observe that

1. ‖∇2a(x)‖2 ≤ 21 {‖x‖2 ≥ R} ≤ 2

2. 〈∇a(x),−∇U(x)〉 ≤ −ma(x). This can be verified by considering 2 cases. If ‖x‖2 ≤ R,
then ∇a(x) = 0 and a(x) = 0. If ‖x‖2 ≥ R, then by Assumption A,

〈∇a(x),−∇U(x)〉 ≤ −m(‖x‖2 −R)+‖w‖2 ≤ −m(‖x‖2 −R)2
+ = −m · a(x).

3. a(x) ≥ 1
2
‖x‖2

2−2R2. One can first verify that a(x) ≥ (‖x‖2−R)2−R2. Next, by Young’s

inequality, (‖x‖2−R)2 = ‖x‖2
2 +R2−2‖x‖2R ≥ ‖x‖

2
2 +R2− 1

2
‖x‖2

2−2R2 = 1
2
‖x‖2

2−R2.

Therefore,

d

dt
E [a(xt)] = E [〈∇a(xt),−∇U(xt)dt〉] +

1

2
E
[
tr
(
M(xt)

2∇2a(x)
)]
≤ −mE [a(xt)] + β2

⇒ d

dt

(
E [a(xt)]−

β2

m

)
≤ −m

(
E [a(xt)]−

β2

m

)
⇒ d

dt

(
E [a(xt)]−R2 − β2

m

)
≤ −m

(
E [a(xt)]−R2 − β2

m

)
.

Thus if E [‖x0‖2
2] ≤ R2 + β2

m
, then E [a(x0)] ≤ R2 − β2

m
, then

(
E [a(x0)]−R2 − β2

m

)
≤ 0,

and
(
E [a(xt)]−R2 + β2

m

)
≤ e−mt · 0 ≤ 0 for all t. This implies that, for all t,

E
[
‖xt‖2

2

]
≤ E

[
2a(xt) + 4R2

]
≤ 6

(
R2 +

β2

m

)
.

For our second claim that Ep∗
[
‖x‖2

2

]
≤ R2 + β2

m
, we can use the fact that if x0 ∼ p∗, then

E [a(xt)] does not change as p∗ is invariant, so that

0 =
d

dt
E [a(xt)] ≤ −mE [a(xt)] + β2.
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Thus

E [a(xt)] ≤
β2

m
.

Again,

Ep∗
[
‖x‖2

2

]
= E

[
‖xt‖2

2

]
≤ 2E [a(xt)] + 4R2 ≤ 4

(
R2 +

β2

m

)
.

�

Lemma 72 Let the sequence ykδ be as defined in (5.1). Assuming that δ ≤ m/(16L2) and

E [‖y0‖2
2] ≤ 2

(
R2 + β2

m

)
Then for all k,

E
[
‖ykδ‖2

2

]
≤ 8

(
R2 +

β2

m

)
.

Proof
Let a(w) := (‖w‖2 −R)2

+. We can verify that

∇a(w) =(‖w‖2 −R)+

w

‖w‖2

∇2a(w) =1 {‖w‖2 ≥ R}ww
T

‖w‖2
2

+ (‖w‖2 −R)+

1

‖w‖2

(
I − wwT

‖w‖2
2

)
Observe that

1. ‖∇2a(w)‖2 ≤ 21 {‖w‖2 ≥ R} ≤ 2

2. 〈∇a(w),−∇U(w)〉 ≤ −ma(w).

3. a(w) ≥ 1
2
‖w‖2

2 − 2R2.

The proofs are identical to the proof at the start of Lemma 73, so we omit them here.
Using Taylor’s Theorem, and taking expectation of y(k+1)δ conditioned on ykδ,

E
[
a(y(k+1)δ)

]
=E [a(ykδ)] + E

[〈
∇a(ykδ), y(k+1)δ − ykδ

〉]
+ E

[∫ 1

0

∫ t

0

〈
∇2a(ykδ + s(y(k+1)δ − ykδ), (y(k+1)δ − ykδ)(y(k+1)δ − ykδ)T

〉
dtds

]
≤E [a(ykδ)] + E

[〈
∇a(ykδ), y(k+1)δ − ykδ

〉]
+ E

[∥∥(y(k+1)δ − ykδ)
∥∥2

2
ds
]

≤E [a(ykδ)] + E [〈∇a(ykδ),−δ∇U(ykδ)〉] + 2δ2‖∇U(ykδ)‖2
2 + 2δE

[
tr
(
M(ykδ)

2
)]

≤E [a(ykδ)]−mδE [a(ykδ)] + 2δ2E
[
‖∇U(ykδ)‖2

2

]
+ 2δE

[
tr
(
M(ykδ)

2
)]

≤E [a(ykδ)]−mδE [a(ykδ)] + 2δ2L2E
[
‖ykδ‖2

2

]
+ 2δβ2

≤E [a(ykδ)]−mδE [a(ykδ)] + 4δ2L2E [a(ykδ)] + 8δ2L2R2 + 2δβ2

≤(1−mδ/2)E [a(ykδ)] +mδR2 + 2δβ2,
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where the first inequality uses the upper bound on ‖∇2a(y)‖2 above, the second inequality
uses the fact that y(k+1)δ ∼ N (ykδ − δ∇U(ykδ), δM(ykδ)

2), the third inequality uses claim
2. at the start of this proof, the fourth inequality uses item 2 of Assumption B. The fifth
inequality uses claim 3. above, the sixth inequality uses our assumption that δ ≤ m

16L2 .
Taking expectation wrt ykδ,

E
[
a(y(k+1)δ)

]
≤ E [a(yk)]−mδ

(
E [a(ykδ)]− 2R2 + 2β2/m

)
⇒ E

[
a(y(k+1)δ)

]
− (2R2/2 + 2β2/m) ≤ (1−mδ)

(
E [a(ykδ)]− (2R2 + 2β2/m

)
.

Thus, if E [‖y0‖2
2] ≤ 2R2 + 2β2/m, then E [a(y0)]− (2R2 + 2β2/m) ≤ 0, then E [a(ykδ)]−

(2R2 + 2β2/m) ≤ 0 for all k, which implies that

E
[
‖ykδ‖2

2

]
≤ 2E [a(ykδ)] + 4R2 ≤ 8

(
R2 + β2/m

)
for all k. �

Lemma 73 Let the sequence wkδ be as defined in (5.1). Assuming that δ ≤ m/(16L2) and

E [‖w0‖2
2] ≤ 2

(
R2 + β2

m

)
Then for all k,

E
[
‖wkδ‖2

2

]
≤ 8

(
R2 +

β2

m

)
.

Proof
The proof is almost identical to that of Lemma 72. Let a(w) := (‖w‖2 −R)2

+. We can verify
that

∇a(w) =(‖w‖2 −R)+

w

‖w‖2

∇2a(y) =1 {‖w‖2 ≥ R}ww
T

‖w‖2
2

+ (‖w‖2 −R)+

1

‖w‖2

(
I − wwT

‖w‖2
2

)
.

Observe that

1. ‖∇2a(w)‖2 ≤ 21 {‖w‖2 ≥ R} ≤ 2

2. 〈∇a(w),−∇U(w)〉 ≤ −ma(w).

3. a(w) ≥ 1
2
‖w‖2

2 − 2R2.

The proofs are identical to the proof at the start of Lemma 73, so we omit them here.
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Using Taylor’s Theorem, and taking expectation of w(k+1)δ conditioned on wkδ,

E
[
a(w(k+1)δ)

]
=E [a(wkδ)] + E

[〈
∇a(wkδ), w(k+1)δ − wkδ

〉]
+ E

[∫ 1

0

∫ t

0

〈
∇2a(wkδ + s(w(k+1)δ − wkδ), (w(k+1)δ − wkδ)(w(k+1)δ − wkδ)T

〉
dtds

]
≤E [a(wkδ)] + E

[〈
∇a(wkδ), w(k+1)δ − wkδ

〉]
+ E

[∥∥(w(k+1)δ − wkδ)
∥∥2

2
ds
]

≤E [a(wkδ)] + E [〈∇a(wkδ),−δ∇U(wkδ)〉] + 2δ2‖∇U(wkδ)‖2
2 + 2δE

[
‖ξ(wkδ, ηk)‖2

2

]
≤E [a(wkδ)]−mδE [a(wkδ)] + 2δ2E

[
‖∇U(wkδ)‖2

2

]
+ 2δE

[
‖ξ(wkδ, ηk)‖2

2

]
≤E [a(wkδ)]−mδE [a(wkδ)] + 2δ2L2E

[
‖wkδ‖2

2

]
+ 2δβ2

≤E [a(wkδ)]−mδE [a(wkδ)] + 2δ2L2a(wkδ) + 2δ2L2R2 + 2δβ2

≤(1−mδ/2)a(wkδ) +mδR2 + 2δβ2,

where the first inequality uses the upper bound on ‖∇2a(y)‖2 above, the second inequality
uses the fact that w(k+1)δ = (ykδ − δ∇U(ykδ) = ξ(wkδ, ηk)), and E [ξ(wkδ, ηk)|wkδ] = 0, the
third inequality uses claim 2. at the start of this proof, the fourth inequality uses item 2 of
Assumption B. The fifth inequality uses claim 3. above, and the sixth inequality uses our
assumption that δ ≤ m

16L2 .
Taking expectation wrt wkδ,

E
[
a(w(k+1)δ)

]
≤ E [a(wk)]−mδ

(
E [a(wkδ)]− 2R2 + 2β2/m

)
⇒ E

[
a(w(k+1)δ)

]
− (2R2/2 + 2β2/m) ≤ (1−mδ)

(
E [a(wkδ)]− (2R2 + 2β2/m

)
.

Thus, if E [‖w0‖2
2] ≤ 2R2 +2β2/m, then E [a(w0)]− (2R2 + 2β2/m) ≤ 0, then E [a(wkδ)]−

(2R2 + 2β2/m) ≤ 0 for all k, which implies that

E
[
‖wkδ‖2

2

]
≤ 2E [a(wkδ)] + 4R2 ≤ 8

(
R2 + β2/m

)
for all k. �

D.3.2 Divergence Bounds

Lemma 74 Let xt be as defined in (D.1) (or equivalently (D.3) or (D.8)), initialized at x0.
Then for any T ≤ 1

16L
,

E
[
‖xT − x0‖2

2

]
≤ 8
(
Tβ2 + T 2L2E

[
‖x0‖2

2

])
.

If we additionally assume that E
[
‖x0‖2

2

]
≤ 8(R2 + β2/m) and T ≤ β2

8L2(R2+β2/m)
, then

E
[
‖xT − x0‖2

2

]
≤ 16Tβ2.
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Proof
By Ito’s Lemma,

d

dt
E
[
‖xt‖2

2

]
=2E [〈∇U(xt), xt − x0〉] + E

[
tr
(
M(xt)

2
)]

≤2LE [‖xt‖2‖xt − x0‖2] + β2

≤2LE
[
‖xt − x0‖2

2

]
+ 2LE [‖x0‖2‖xt − x0‖2] + β2

≤2LE
[
‖xt − x0‖2

2

]
+ L2TE

[
‖x0‖2

2

]
+

1

T
E
[
‖xt − x0‖2

2

]
+ β2

≤ 2

T
E
[
‖xt − x0‖2

2

]
+
(
L2TE

[
‖x0‖2

2

]
+ β2

)
,

where the first inequality is by item 1 of Assumption A and item 2 of Assumption B, the
second inequality is by triangle inequality, the third inequality is by Young’s inequality, the
last inequality is by our assumption on T .

Applying Gronwall’s inequality for t ∈ [0, T ],(
E
[
‖xt − x0‖2

2

]
+ L2T 2E

[
‖x0‖2

2

]
+ Tβ2

)
≤e2

(
E [‖x0 − x0‖] + L2T 2E

[
‖x0‖2

2

]
+ Tβ2

)
≤8L2T 2E

[
‖x0‖2

2

]
+ Tβ2.

This concludes our proof. �

Lemma 75 Let yt be as defined in (D.2) (or equivalently (D.3) or (D.8)), initialized at y0.
Then for any T ,

E
[
‖yT − y0‖2

2

]
≤ T 2L2E

[
‖y0‖2

2

]
+ Tβ2

If we additionally assume that E
[
‖y0‖2

2

]
≤ 8(R2 + β2/m) and T ≤ β2

8L2(R2+β2/m)
, then

E
[
‖yT − y0‖2

2

]
≤ 2Tβ2.

Proof
Notice from the definition in (D.2) that yT − y0 ∼ N (−T∇U(y0), TM(y0)2), the conclusion
immediately follows from item 1 of Assumption A and item 2 of Assumption B, and the fact
that

tr
(
M(x)2

)
= tr

(
E
[
ξ(x, η)ξ(x, η)T

])
= E

[
‖ξ(x, η)‖2

2

]
.

�
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Lemma 76 Let vt be as defined in (D.10), initialized at v0. Then for any T = nδ,

E
[
‖vT − v0‖2

2

]
≤ T 2L2E

[
‖v0‖2

2

]
+ Tβ2.

If we additionally assume that E
[
‖v0‖2

2

]
≤ 8(R2 + β2/m) and T ≤ β2

8L2(R2+β2/m)
, then

E
[
‖vT − v0‖2

2

]
≤ 2Tβ2.

Proof
From (D.10),

vT − v0 = −T∇U(v0) +
√
δ
n−1∑
i=0

ξ(v0, ηi).

Conditioned on the randomness up to time i, E [ξ(v0, ηi+1)] = 0. Thus

E
[
‖vT − v0‖2

2

]
=T 2E

[
‖∇U(v0)‖2

2

]
+ δ

n−1∑
i=0

E
[
‖ξ(v0, ηi)‖2

2

]
≤T 2L2E

[
‖v0‖2

2

]
+ Tβ2,

where the inequality is by item 1 of Assumption A and item 2 of Assumption B. �

Lemma 77 Let wt be as defined in (D.12), initialized at w0. Then for any T = nδ such that
T ≤ 1

2L
,

E
[
‖wT − w0‖2

2

]
≤ 16

(
T 2L2E

[
‖w0‖2

2

]
+ Tβ2

)
.

If we additionally assume that E
[
‖w0‖2

2

]
≤ 8(R2 + β2/m) and T ≤ β2

8L2(R2+β2/m)
, then

E
[
‖wT − w0‖2

2

]
≤ 32Tβ2

.

Proof

E
[∥∥w(k+1)δ − w0

∥∥2

2

]
=E

[∥∥∥wkδ − δ∇U(wkδ) +
√
δξ(wkδ, ηk)− w0

∥∥∥2

2

]
=E

[
‖wkδ − δ∇U(wkδ)− w0‖2

2

]
+ δE

[
‖ξ(wkδ, ηk)‖2

2

]
(D.17)
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We can bound δE
[
‖ξ(wkδ, ηk)‖2

2

]
≤ δβ2 by item 2 of Assumption B.

E
[
‖wkδ − δ∇U(wkδ)− w0‖2

2

]
≤E

[
(‖wkδ − w0 − δ(∇U(wkδ)−∇U(w0))‖2 + δ‖∇U(w0)‖2)2]

≤
(

1 +
1

n

)
E
[
‖wkδ − w0 − δ(∇U(wkδ)−∇U(w0))‖2

2

]
+ (1 + n)δ2E

[
‖∇U(w0)‖2

2

]
≤
(

1 +
1

n

)
(1 + δL)2E

[
‖wkδ − w0‖2

2

]
+ 2nδ2L2E

[
‖w0‖2

2

]
≤e1/n+2δLE

[
‖wkδ − w0‖2

2

]
+ 2nδ2L2E

[
‖w0‖2

2

]
,

where the first inequality is by triangle inequality, the second inequality is by Young’s
inequality, the third inequality is by item 1 of Assumption A.

Inserting the above into (D.17) gives

E
[∥∥w(k+1)δ − w0

∥∥2

2

]
≤ e1/n+2δLE

[
‖wkδ − w0‖2

2

]
+ 2nδ2L2E

[
‖w0‖2

2

]
+ δβ2.

Applying the above recursively for k = 1...n, we see that

E
[
‖wnδ − w0‖2

2

]
≤

n−1∑
k=0

e(n−k)·(1/n+2δL) ·
(
2nδ2L2E

[
‖w0‖2

2

]
+ δβ2

)
≤16

(
n2δ2L2E

[
‖w0‖2

2

]
+ nδβ2

)
=16

(
T 2L2E

[
‖w0‖2

2

]
+ Tβ2

)
.

�

D.3.3 Discretization Bounds

Lemma 78 Let vkδ and wkδ be as defined in (D.10) and (D.12). Then for any δ, n, such
that T := nδ ≤ 1

16L
,

E
[
‖vT − wT‖2

2

]
≤ 8
(
2T 2L2

(
T 2L2E

[
‖v0‖2

2

]
+ Tβ2

)
+ TL2

ξ

(
16
(
T 2L2E

[
‖w0‖2

2

]
+ Tβ2

)))
If we additionally assume that E

[
‖v0‖2

2

]
≤ 8(R2 + β2/m), E

[
‖w0‖2

2

]
≤ 8(R2 + β2/m) and

T ≤ β2

8L2(R2+β2/m)
, then

E
[
‖vT − wT‖2

2

]
≤ 32

(
T 2L2 + TL2

ξ

)
Tβ2.
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Proof
Using the fact that conditioned on the randomness up to step k, E [ξ(v0, ηk+1)− ξ(wkδ, ηk+1)] =
0, we can show that for any k ≤ n,

E
[∥∥v(k+1)δ − w(k+1)δ

∥∥2

2

]
=E

[∥∥∥vkδ − δ∇U(v0)− wkδ + δ∇U(wkδ) +
√
δξ(w0, ηk)−

√
δξ(wkδ, ηk)

∥∥∥2

2

]
=E

[
‖vkδ − δ∇U(v0)− wkδ + δ∇U(wkδ)‖2

2

]
+ δE

[
‖ξ(w0, ηk)− ξ(wkδ, ηk)‖2

2

]
(D.18)

Using Assumption B, and Lemma 76, we can bound

δE
[
‖ξ(w0, ηk)− ξ(wkδ, ηk)‖2

2

]
≤δL2

ξE
[
‖wkδ − w0‖2

2

]
≤δL2

ξ

(
16
(
T 2L2E

[
‖w0‖2

2

]
+ Tβ2

))
We can also bound

E
[
‖vkδ − δ∇U(v0)− wkδ + δ∇U(wkδ)‖2

2

]
≤
(

1 +
1

n

)
E
[
‖vkδ − δ∇U(vkδ)− wkδ + δ∇U(wkδ)‖2

2

]
+ (1 + n)δ2E

[
‖∇U(vkδ)−∇U(v0)‖2

2

]
≤
(

1 +
1

n

)
(1 + δL)2E

[
‖vkδ − wkδ‖2

2

]
+ 2nδ2L2E

[
‖vkδ − v0‖2

2

]
≤e1/n+2δLE‖vkδ − wkδ‖2

2 + 2nδ2L2E
[
‖vkδ − v0‖2

2

]
≤e1/n+2δLE‖vkδ − wkδ‖2

2 + 2nδ2L2
(
T 2L2E

[
‖v0‖2

2

]
+ Tβ2

)
,

where the first inequality is by Young’s inequality and the second inequality is by item 1 of
Assumption A, the fourth inequality uses Lemma 76.

Substituting the above two equation blocks into (D.18), and applying recursively for
k = 0...n− 1 gives

E
[
‖vT − wT‖2

2

]
=E

[
‖vnδ − wnδ‖2

2

]
≤e1+2nδL

(
2n2δ2L2

(
T 2L2E

[
‖v0‖2

2

]
+ Tβ2

)
+ nδL2

ξ

(
16
(
T 2L2E

[
‖w0‖2

2

]
+ Tβ2

)))
≤8
(
2T 2L2

(
T 2L2E

[
‖v0‖2

2

]
+ Tβ2

)
+ TL2

ξ

(
16
(
T 2L2E

[
‖w0‖2

2

]
+ Tβ2

)))
.

The last inequality is by noting that T = nδ ≤ 1
4L

. �
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D.4 Regularity of M and N

Lemma 79

1. tr
(
M(x)2

)
≤ β2

2. tr
(
(M(x)2 −M(y)2)2

)
≤ 16β2L2

ξ‖x− y‖2
2

3. tr
(
(M(x)2 −M(y)2)2

)
≤ 32β3Lξ‖x− y‖2

Proof
In this proof, we will use the fact that ξ(·, η) is Lξ-Lipschitz from Assumption B.

The first property is easy to see:

tr
(
M(x)2

)
=tr
(
Eη
[
ξ(x, η)ξ(x, η)T

])
=Eη

[
tr
(
ξ(x, η)ξ(x, η)T

)]
=Eη

[
‖ξ(x, η)‖2

2

]
≤β2.

We now prove the second and third claims. Consider a fixed x and fixed y, let uη := ξ(x, η),
vη := ξ(y, η). Then

tr
((
M(x)2 −M(y)2

)2
)

=tr
((

Eη
[
uηu

T
η − vηvTη

])2
)

=tr
(
Eη,η′

[(
uηu

T
η − vηvTη

)(
uη′u

T
η′ − vη′vTη′

)])
=Eη,η′

[
tr
((
uηu

T
η − vηvTη

)(
uη′u

T
η′ − vη′vTη′

))]
.

For any fixed η and η′, let’s further simplify notation by letting u, u′, v, v′ denote
uη, uη′ , vη, vη′ . Thus

tr
((
uuT − vvT

)(
u′u′T − v′v′T

))
=tr
((

(u− v)vT + v(u− v)T + (u− v)(u− v)T
)(

(u′ − v′)v′T + v′(u′ − v′)T + (u′ − v′)(u′ − v′)T
))

=tr
(
(u− v)vT (u′ − v′)v′T

)
+ tr

(
(u− v)vTv′(u′ − v′)T

)
+ tr

(
(u− v)vT (u′ − v′)(u′ − v′)T

)
+ tr

(
v(u− v)T (u′ − v′)v′T

)
+ tr

(
v(u− v)Tv′(u′ − v′)T

)
+ tr

(
v(u− v)T (u′ − v′)(u′ − v′)T

)
+ tr

(
(u− v)(u− v)T (u′ − v′)v′T

)
+ tr

(
(u− v)(u− v)Tv′(u′ − v′)T

)
+ tr

(
(u− v)(u− v)T (u′ − v′)(u′ − v′)T

)
≤min

{
16β2L2

ξ‖x− y‖
2
2, 32β3Lξ‖x− y‖2

}
,

where the last inequality uses Assumption B.2 and B.3; in particular, ‖v‖2 ≤ β and
‖u− v‖2 ≤ min {2β, Lξ‖x− y‖2}. This proves 2. and 3. of the lemma statement. �
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Lemma 80 Let N(x) be as defined in (5.6) and LN be as defined in (5.7). Then

1. tr
(
N(x)2

)
≤ β2

2. tr
(
(N(x)−N(y))2) ≤ L2

N‖x− y‖
2
2

3. tr
(
(N(x)−N(y))2) ≤ 8β2

cm
· LN‖x− y‖2.

Proof of Lemma 80
The first inequality holds because N(x)2 := M(x)2 − c2

mI, and then applying Lemma 79.1,
and the fact that tr(M(x)2 − c2

mI) ≤ tr(M(x)2) by Assumption B.4.
The second inequality is an immediate consequence of Lemma 81, Lemma 79.2, and the

fact that λmin(N(x)2) = λmin(M(x)2 − c2
m) ≥ c2

m by Assumption B.4.
The proof for the third inequality is similar to the second inequality, and follows from

Lemma 79 and Lemma 81.
�

Lemma 81 (Simplified version of Lemma 1 from [35]) Let A, B be positive definite
matrices. Then

tr

((√
A−
√
B
)2
)
≤ tr

(
(A−B)2A−1

)
D.5 Defining f and related inequalities

In this section, we define the Lyapunov function f which is central to the proof of our main
results. Here, we give an overview of the various functions defined in this section:

1. g(z) : Rd → R+: A smoothed version of ‖z‖2, with bounded derivatives up to third
order.

2. q(r) : R+ → R+: A concave potential function, similar to the one defined in [32], which
has bounded derivatives up to third order everywhere except at r = 0.

3. f(z) = q(g(z)) : Rd → R+, a concave function which upper and lower bounds ‖z‖2

within a constant factor, has bounded derivatives up to third order everywhere.

Lemma 82 (Properties of f) Let ε satisfy ε ≤ Rq
αqRq2+1

. We define the function

f(z) := q(g(z))

Where q is as defined in (D.20) Appendix D.5.1, and g is as defined in Lemma 84 (with
parameter ε). Then

1. a) ∇f(z) = q′(g(z)) · ∇g(z)
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b) For ‖z‖2 ≥ 2ε, ∇f(z) = q′(g(z)) z
‖z‖2

c) For all z, ‖∇f(z)‖2 ≤ 1.

2. a) ∇2f(z) = q′′(g(z))∇g(z)∇g(z)T + q′(g(z))∇2g(z)

b) For r ≥ 2ε, ∇2f(z) = q′′(g(z)) zz
T

‖z‖22
+ q′(g(z)) 1

‖z‖2

(
I − zzT

‖z‖22

)
c) For all z, ‖∇2f(z)‖2 ≤

2
ε

d) For all z, v, vT∇2f(z)v ≤ q′(g(z))
‖z‖2

3. For any z, ‖∇3f(z)‖2 ≤
9
ε2

4. For any z, f(z) ∈
[

1
2

exp
(
−7αqRq2

3

)
g(‖z‖2), g(‖z‖2)

]
∈
[

1
2

exp
(
−7αqRq2

3

)
(‖z‖2 − 2ε), ‖z‖2

]
Proof of Lemma 82

1. a) chain rule

b) Use definition of ∇g(z) from Lemma 84.

c) By definition, ∇f(z) = q′(g(z))∇g(z). From Lemma 85, |q′(g(z))| ≤ 1. By
definition, ∇g(z) = h′(‖z‖2) z

‖z‖2
. Our conclusion follows from h′ ≤ 1 using item 2

of Lemma 83.

2. a) chain rule

b) by item 2 b) of Lemma 84

c) by item 1 c) and item 2 d) of Lemma 84, and item 3 and item 4 of Lemma 85,

and our assumption that ε ≤ Rq
αq+Rq2+1

.

d) by item 4 of Lemma 85), and items 2 c) and 2 d) of Lemma 84, and our expression
for ∇2f(z) established in item 2 a).

3. It can be verified that

∇3f(z) =q′′′(g(z)) · ∇g(z)
⊗

3 + q′′(g(z))∇g(z)
⊗
∇2g(z) + q′′(g(z))∇2g(z)

⊗
∇g(z)

+ q′′(g(z))∇g(z)
⊗
∇2g(z) + q′(g(z))∇3g(z)

Thus∥∥∇3f(z)
∥∥

2
≤|q′′′(g(z))|‖∇g(z)‖3

2 + 3q′′(g(z))‖∇g(z)‖2

∥∥∇2g(z)
∥∥

2
+ q′(g(z))

∥∥∇3g(z)
∥∥

≤5

(
αq +

1

Rq
2

)(
αqRq

2 + 1
)

+ 3

(
5αqRq

4
+

4

Rq

)
· 1

ε
+

1

ε2

≤ 9

ε2
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Where the first inequality uses Lemma 85 and Lemma 84, and the second inequality
assumes that ε ≤ Rq

αqRq2+1

4.

f(z) ∈
[

1

2
exp

(
−7αqRq

2

3

)
g(‖z‖2), g(‖z‖2)

]
∈
[

1

2
exp

(
−7αqRq

2

3

)
(‖z‖2 − 2ε), ‖z‖2

]
The first containment is by Lemma 85.2.: 1

2
exp

(
−7αqRq2

3

)
· g(z) ≤ q(g(z)) ≤ g(z).

THe second containment is by Lemma 84.4: g(‖z‖2) ∈ [‖z‖2 − 2ε, ‖z‖2].

�

Lemma 83 (Properties of h) Given a parameter ε, define

h(r) :=


r3

6ε2
, for r ∈ [0, ε]

ε
6

+ r−ε
2

+ (r−ε)2
2ε
− (r−ε)3

6ε2
, for r ∈ [ε, 2ε]

r, for r ≥ 2ε

1. The derivatives of h are as follows:

h′(r) =


r2

2ε2
, for r ∈ [0, ε]

1
2

+ r−ε
ε
− (r−ε)2

2ε2
, for r ∈ [ε, 2ε]

1, for r ≥ 2ε

h′′(r) =


r
ε2
, for r ∈ [0, ε]

1
ε
− r−ε

ε2
, for r ∈ [ε, 2ε]

0, for r ≥ 2ε

h′′′(r) =


1
ε2
, for r ∈ [0, ε]

− 1
ε2
, for r ∈ [ε, 2ε]

0, for r ≥ 2ε

2. a) h′ is positive, motonically increasing.

b) h′(0) = 0, h′(r) = 1 for r ≥ ε

c) h′(r)
r
≤ min

{
1
ε
, 1
r

}
for all r

3. a) h′′(r) is positive



APPENDIX D. PROOFS FOR CHAPTER 5 187

b) h′′(r) = 0 for r = 0 and r ≥ 2ε

c) h′′(r) ≤ 1
ε

d) h′′(r)
r
≤ 1

ε2

4. |h′′′(r)| ≤ 1
ε2

5. r − 2ε ≤ h(r) ≤ r

Proof of Lemma 83
The claims can all be verified with simple algebra. �

Lemma 84 (Properties of g) Given a parameter ε, let us define

g(z) := h(‖z‖2)

Where h is as defined in Lemma 83 (using parameter ε). Then

1. a) ∇g(z) = h′(‖z‖2) z
‖z‖2

b) For ‖z‖2 ≥ 2ε, ∇g(z) = z
‖z‖2 .

c) For any ‖z‖2, ‖∇g(z)‖2 ≤ 1

2. a) ∇2g(z) = h′′(‖z‖2) zz
T

‖z‖22
+ h′(‖z‖2) 1

‖z‖2

(
I − zzT

‖z‖22

)
b) For ‖z‖2 ≥ 2ε, ∇2g(z) = 1

‖z‖2

(
I − zzT

‖z‖22

)
.

c) For ‖z‖2 ≥ 2ε, ‖∇2g(z)‖2 = 1
‖z‖2

d) For all z, ‖∇2g(z)‖2 ≤
1
ε

3. ‖∇3g(z)‖2 ≤
5
ε2

4. ‖z‖2 − 2ε ≤ g(z) ≤ ‖z‖2.

Proof of Lemma 84
All the properties can be verified with algebra. We provide a proof for 3. since it is a bit
involved.

Let us define the functions κ1(z) = ∇(‖z‖2), κ2(z) = ∇2(‖z‖2), κ3(z) = ∇3(‖z‖2). Specifi-
cally,

κ1(z) =
z

‖z‖2

κ2(z) =
1

‖z‖2

(
I − zzT

‖z‖2
2

)
κ3(z) =− 1

‖z‖2
2

z

‖z‖2

⊗(
I − zzT

‖z‖2
2

)
+

1

‖z‖2

(
z

‖z‖2

⊗
κ2(z) + κ2(z)

⊗ z

‖z‖2

)
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It can be verified that ∥∥κ2(z)
∥∥

2
=

1

‖z‖2∥∥κ3(z)
∥∥

2
=

1

‖z‖2
2

It can be verified that ∇2g(z) has the following form:

∇3g(z) = h′′′(‖z‖2)
(
κ1(z)

)⊗ 3
+ h′′(‖z‖2)κ1(z)

⊗
κ2(z) + h′′(‖z‖2)κ2(z)

⊗
κ1(z)

+ h′(‖z‖2)κ3(z) + h′′(‖z‖2)κ1(z)
⊗

κ2(z)

Thus ∥∥∇3g(z)
∥∥

2
≤ |h′′′(‖z‖2)|+ 3

h′′(‖z‖2)

‖z‖2

+
h′(‖z‖2)

‖z‖2
2

≤ 5

ε2

Where we use properties of h from Lemma 83.
The last claim follows immediately from Lemma 83.4. �

D.5.1 Defining q

In this section, we define the function q that is used in Lemma 82. Our construction is a
slight modification to the original construction in [32].

Let αq and Rq be as defined in (5.7). We begin by defining auxiliary functions ψ(r), Ψ(r)
and ν(r), all from R+ to R:

ψ(r) := e−αqτ(r) , Ψ(r) :=

∫ r

0

ψ(s)ds , ν(r) := 1− 1

2

∫ r
0
µ(s)Ψ(s)
ψ(s)

ds∫ 4Rq
0

µ(s)Ψ(s)
ψ(s)

ds
, (D.19)

Where τ(r) and µ(r) are as defined in Lemma 86 and Lemma 87 with R = Rq.
Finally we define q as

q(r) :=

∫ r

0

ψ(s)ν(s)ds. (D.20)

We now state some useful properties of the distance function q.

Lemma 85 The function q defined in (D.20) has the following properties.

1. For all r ≤ Rq, q
′′(r) + αqq

′(r) · r ≤ −
exp

(
− 7αqRq2

3

)
32Rq2

q(r)

2. For all r,
exp

(
− 7αqRq2

3

)
2

· r ≤ q(r) ≤ r
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3. For all r,
exp

(
− 7αqRq2

3

)
2

≤ q′(r) ≤ 1

4. For all r, q′′(r) ≤ 0 and |q′′(r)| ≤
(

5αqRq
4

+ 4
Rq

)
5. For all r, |q′′′(r)| ≤ 5αq + 2αq

(
αqRq

2 + 1
)

+ 2(αqRq2+1)

Rq2

Proof of Lemma 85

Proof of 1. It can be verified that

ψ′(r) =ψ(r)(−αqτ ′(r))

ψ′′(r) =ψ(r)
(

(αqτ
′(r))

2
+ αqτ

′′(r)
)

ν ′(r) =− 1

2

µ(r)Ψ(r)
ψ(r)∫ 4Rq

0
µ(s)Ψ(s)
ψ(s)

ds

For r ∈ [0,Rq], τ
′(r) = r, so that ψ′(r) = ψ(r)(−αqr). Thus

q′(r) =ψ(r)ν(r)

q′′(r) =ψ′(r)ν(r) + ψ(r)ν ′(r)

=ψ(r)ν(r)(−αqr) + ψ(r)ν ′(r)

=− αqrν ′(r) + ψ(r)ν ′(r)

q′′(r) + αqrq
′(r) =ψ(r)ν ′(r)

=− 1

2

µ(r)Ψ(r)∫ 4Rq
0

µ(s)Ψ(s)
ψ(s)

ds

=− 1

2

Ψ(r)∫ 4Rq
0

µ(s)Ψ(s)
ψ(s)

ds

Where the last equality is by definition of µ(r) in Lemma 87 and the fact that r ≤ Rq.
We can upper bound∫ 4Rq

0

µ(s)Ψ(s)

ψ(s)
ds ≤

∫ 4Rq

0

Ψ(s)

ψ(s)
ds ≤

∫ 4Rq
0

sds

ψ(4Rq)
=

16Rq
2

ψ(4Rq)
≤16Rq

2 · exp

(
7αqRq

2

3

)
Where the first inequality is by Lemma 87, the second inequality is by the fact that ψ(s) is
monotonically decreasing, the third inequality is by Lemma 86.
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Thus

q′′(r) + αqrq
′(r) ≤− 1

2

exp
(
−7αqRq2

3

)
16Rq

2

Ψ(r)

≤−
exp

(
−7αqRq2

3

)
32Rq

2 q(r)

Where the last inequality is by Ψ(r) ≥ q(r).
Proof of 2. Notice first that ν(r) ≥ 1

2
for all r. Thus

q(r) :=

∫ r

0

ψ(s)ν(s)ds

≥1

2

∫ r

0

ψ(s)ds

≥
exp

(
−7αqRq2

3

)
2

· r

Where the last inequality is by Lemma 86.
Proof of 3. By definition of f , q′(r) = ψ(r)ν(r), and

exp
(
−7αqRq2

3

)
2

≤ ψ(r)ν(r) ≤ 1

Where we use Lemma 86 and the fact that ν(r) ∈ [1/2, 1]
Proof of 4. Recall that

q′′(r) = ψ′(r)ν(r) + ψ(r)ν ′(r)

That q′′ ≤ 0 can immediately be verified from the definitions of ψ and ν.
Thus

|q′′(r)| ≤|ψ′(r)ν(r)|+ |ψ(r)ν ′(r)|
≤αqτ ′(r) + |ψ(r)ν ′(r)|

From Lemma 86, we can upperbound τ ′(r) ≤ 5Rq
4

. In addition, Ψ(r) =
∫ r

0
ψ(s) ≥ rψ(r), so

that

Ψ(r)

ψ(r)
≥ r (D.21)

(Recall again that ψ(s) is monotonically decreasing). Thus Ψ(r)/r ≥ r for all r. In addition,
using the fact that ψ(r) ≤ 1,

Ψ(r) =

∫ r

0

ψ(s)ds ≤ r (D.22)
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Combining the previous expressions,

|ψ(r)ν ′(r)| =

∣∣∣∣∣12 µ(r)Ψ(r)∫ 4Rq
0

µ(s)Ψ(s)
ψ(s)

ds

∣∣∣∣∣
≤

∣∣∣∣∣12 µ(r)r∫ Rq
0

Ψ(s)
ψ(s)

ds

∣∣∣∣∣
≤

∣∣∣∣∣12 4Rq∫ Rq
0

sds

∣∣∣∣∣
≤ 4

Rq

Where the first inequality are by definition of µ(r) and (D.22), and the second inequality is
by (D.21) and the fact that µ(r) = 0 for r ≥ 4Rq. Combining with our bound on ψ′(r)ν(r)
gives the desired bound.

Proof of 5.

q′′′(r) = ψ′′(r)ν(r) + 2ψ′(r)ν ′(r) + ψ(r)ν ′′(r)

We first bound the middle term:

|ψ′(r)ν ′r)| =|ψ(r)(αqτ
′(r))ν ′r)|

≤αq|τ ′(r)||ψ(r)ν ′r)|

≤5αqRq

4
· 4

Rq

≤5αq

Where the second last line follows form Lemma 86 and our proof of 4..
Next,

ψ′′(r) = ψ(r)
(
α2
qτ
′(r)2 − αqτ ′′(r)

)
Thus applying Lemma 86.1 and Lemma 86.3,

|ψ′′(r)ν(r)| ≤2α2
qRq

2 + αq

Finally,

ν ′′(r) =
1

2
∫ 4Rq

0
µ(s)Ψ(s)
ψ(s)

ds
· d
dr
µ(r)Ψ(r)/ψ(r)
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Expanding the numerator,

d

dr

µ(r)Ψ(r)

ψ(r)
=µ′(r)

Ψ(r)

ψ(r)
+ µ(r)− µ(r)

Ψ(r)ψ′(r)

ψ(r)2

=µ′(r)
Ψ(r)

ψ(r)
+ µ(r) + µ(r)

Ψ(r)ψ(r)αqτ
′(r)

ψ(r)2

Thus

ψ(r)ν ′′(r) =
1

2
∫ 4Rq

0
µ(s)Ψ(s)
ψ(s)

ds
· (µ′(r)Ψ(r) + µ(r)ψ(r) + µ(r)Ψ(r)αqτ

′(r))

Using the same argument as from the proof of 4., we can bound

1

2
∫ 4Rq

0
µ(s)Ψ(s)
ψ(s)

ds
≤ 1

2
∫ Rq

0
sds

≤ 1

Rq
2

Finally, from Lemma 87, |µ′(r)| ≤ π
6Rq , so

|ψ(r)ν ′′(r)| ≤π/6 + 1 + 5αqRq
2/4

Rq
2

≤2(αqRq
2 + 1)

Rq
2

�

Lemma 86 Let τ(r) : [0,∞)→ R be defined as

τ(r) =



r2

2
, for r ≤ R

R2

2
+R(r −R) + (r−R)2

2
− (r−R)3

3R , for r ∈ [R, 2R]

5R2

3
+R(r − 2R)− (r−2R)2

2
+ (r−2R)3

12R , for r ∈ [2R, 4R]

7R2

3
, for r ≥ 4R]

Then

1. τ ′(r) ∈ [0, 5R
4

], with maxima at r = 3R
2

. τ ′(r) = 0 for r ∈ {0}
⋃

[4R,∞)

2. As a consequence of 1, τ(r) is monotonically increasing

3. τ ′′(r) ∈ [−1, 1]
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Proof of Lemma 86
We provide the derivatives of τ below. The claims in the Lemma can then be immediately
verified.

τ ′(r) =



r, for r ≤ R

R+ (r −R)− (r−R)2

R , for r ∈ [R, 2R]

R− (r − 2R) + (r−2R)2

4R , for r ∈ [2R, 4R]

0, for r ≥ 4R]

τ ′′(r) =



1, for r ≤ R

1− 2(r−R)
R , for r ∈ [R, 2R]

−1 + r−2R
2R , for r ∈ [2R, 4R]

0, for r ≥ 4R]

�

Lemma 87 Let

µ(r) :=


1, for r ≤ R
1
2

+ 1
2

cos
(
π(r−R)

3R

)
, for r ∈ [R, 4R]

0, for r ≥ 4R

Then

µ′(r) :=


0, for r ≤ R

− π
6R sin

(
π(r−R)
R

)
, for r ∈ [R, 4R]

0, for r ≥ 4R

Furthermore, µ′(r) ∈ [− π
6R , 0]

This lemma can be easily verified by algebra.

D.6 Miscellaneous

The following theorem, taken from [35], establishes a quantitative CLT.



APPENDIX D. PROOFS FOR CHAPTER 5 194

Theorem 15 Let X1...Xn be random vectors with mean 0, covariance Σ, and ‖Xi‖ ≤ β
almost surely for each i. Let Sn = 1√

n

∑n
i=1 Xi, and let Z be a Gaussian with covariance Σ,

then

W2(Sn, Z) ≤ 6
√
dβ
√

log n√
n

.

Corollary 88 Let X1...Xn be random vectors with mean 0, covariance Σ, and ‖Xi‖ ≤ β
almost surely for each i. let Y be a Gaussian with covariance nΣ. Then

W2

(∑
i

Xi, Y

)
≤ 6
√
dβ
√

log n.

This is simply taking the result of Theorem 15 and scaling the inequality by
√
n on both

sides.
The following lemma is taken from [19] and included here for completeness.

Lemma 89 For any c > 0, x > 3 max
{

1
c

log 1
c
, 0
}

, the inequality

1

c
log(x) ≤ x

holds.

Proof
We will consider two cases:

Case 1: If c ≥ 1
e
, then the inequality

log(x) ≤ cx

is true for all x.
Case 2: c ≤ 1

e
.

In this case, we consider the Lambert W function, defined as the inverse of f(x) = xex.
We will particularly pay attention to W−1 which is the lower branch of W .

We can lower bound W−1(−c) using Theorem 1 from [13]:

∀u > 0, W−1(−e−u−1) > −u−
√

2u− 1

equivalently ∀c ∈ (0, 1/e), −W−1(−c) < log

(
1

c

)
+ 1 +

√
2

(
log

(
1

c

)
− 1

)
− 1

= log

(
1

c

)
+

√
2

(
log

(
1

c

)
− 1

)
≤ 3 log

1

c
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Thus by our assumption,

x ≥ 3 · 1

c
log

(
1

c

)
⇒x ≥ 1

c
(−W−1(−c))

then W−1(−c) is defined, so

x ≥ 1

c
max {−W−1(−c), 1}

⇒(−cx)e−cx ≥ −c
⇒xe−cx ≤ 1

⇒ log(x) ≤ cx

The first implication is justified as follows: W−1
−1 : [−1

ε
,∞)→ (−∞,−1) is monotonically

decreasing. Thus its inverse W−1
−1 (y) = yey, defined over the domain (−∞,−1) is also

monotonically decreasing. By our assumption, −cx ≤ −3 log 1
c
≤ −3, thus −cx ∈ (−∞,−1],

thus applying W−1
−1 to both sides gives us the first implication. �
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