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Abstract

Secure, Expressive, and Debuggable Large-Scale Analytics

by

Ankur Dave

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ion Stoica, Chair

Growing volumes of data collection, outsourced computing, and demand for complex analytics
have led to the rise of big data analytics frameworks such as MapReduce and Apache Spark.
However, these systems fall short in processing sensitive data, graph querying, and debugging. This
dissertation addresses these remaining challenges in analytics by introducing three systems built on
top of Spark: Oblivious Coopetitive Queries (OCQ), GraphFrames, and Arthur. OCQ focuses on the
setting of coopetitive analytics, which refers to cooperation among competing parties to run queries
over their joint data. OCQ is an efficient, general framework for oblivious coopetitive analytics using
hardware enclaves. GraphFrames is an integrated system that lets users combine graph algorithms,
pattern matching, and relational queries, each of which typically requires a specialized engine, and
optimizes work across them. Arthur is a debugger for Apache Spark that provides a rich set of
analysis tools at close to zero runtime overhead through selective replay of data flow applications.
Together, these systems bring Apache Spark closer to the goal of a unified analytics platform that
retains the flexibility, extensibility, and performance of relational systems.
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Chapter 1

Introduction

Computer science historically focused on machines, algorithms, and data structures: specific
methods that work together to transform data into insights. Programming languages abstracted away
specifics of different machines. The insight of databases was to further abstract away specifics of
data representation and algorithms, and expose a simpler model of data as a collection of relations
that can be transformed using queries expressed using a small set of relational operators. This gives
the database the flexibility to choose which algorithms and data structures are best suited for the task.

In real use, databases came to take on two different roles: as the data store of record, and as an
environment for extracting insights from that data. Systems began to specialize for one or the other.
This dissertation is concerned with the latter role, which has come to be known as analytics.

1.1 Rise of Distributed Dataflow Systems
Analytics has traditionally been performed using specialized data warehouses based on the Massively
Parallel Processing (MPP) architecture, in which data is extracted, transformed, and loaded into a
shared-nothing database [47] that stores data in columnar format [126] and supports efficient SQL
query execution through vectorization [20] or code generation [104]. Data warehouses often use a
cluster composed of a small number of high-end physical machines.

Since the data warehouse became popular, a few identifiable shifts have occurred in the area of
analytical databases:

1. Growing volumes of data collection, driven by globalization, the internet, IoT, and the outsized
role of software across all industrial and government sectors. This motivated the creation
of the MapReduce [44] framework, which scaled beyond the limits of a traditional data
warehouse using hundreds or thousands of commodity machines.

2. Outsourced computing. Rather than each organization needing to maintain its own cluster,
it has become more economical and convenient to outsource analytics to a small number of
cloud providers. This offers a number of advantages including elasticity, ease of management,
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and improved resource utilization through disaggregation of compute and storage resources.
It has also created new security and regulatory concerns in case of a breach.

3. Demand for more complex analytics. In addition to relational operations on tabular data, it is
increasingly important to view data as graphs or to apply machine learning techniques. These
operations are cumbersome to express in SQL, even with user-defined functions (UDFs),
creating demand for more specialized frameworks [89, 137, 91, 59]. The flexibility offered by
these frameworks in turn makes these operations more difficult to debug than typical SQL
queries.

These shifts led to the rise of distributed dataflow systems based on the MapReduce framework,
including Dryad [72], Apache Spark [142], and Apache Flink [29] for general data processing; and
Dremel [96], Apache Drill [5], Apache Impala [80], Presto [115], and Apache Spark SQL [11] for
SQL analytics. These systems support unstructured data in addition to tabular data, and they execute
data-parallel operations by breaking them into directed acyclic graphs (DAGs) of deterministic
tasks that each operate on a horizontal partition of the input data and can be scheduled in multiple
locations and re-executed in case of failure. Their architecture emphasizes extreme scalability.
Loosely coupled internals make them adaptable to different storage services and applications. They
offer fine-grained, parallel fault recovery, making them suitable for executing long-running, complex
queries on cloud machines that can scale elastically and can be treated as interchangeable.

1.2 Challenges in Large-Scale Analytics
Although distributed dataflow systems have seen tremendous growth, we argue that they have not
fully addressed these challenges, posing a barrier to further adoption. They do not address the
following needs, illustrated in Figure 1.1.

1. Processing sensitive federated data. Tools for large-scale analytics are designed to exploit the
elasticity and convenient disaggregated services offered by cloud providers. However, many
organizations are hesitant to entrust their most sensitive data to cloud providers, and regulations
may prevent them from doing so [30]. In addition, these tools are designed to be operated by
a single organization and cannot securely analyze data from multiple untrusting organizations.
Traditional federated databases [127, 144, 53, 52] assume participating organizations trust
each other and can share data. These systems are unsuitable when organizations are in
business competition or are legally prevented from sharing data. For example, banks may
wish to collaboratively assess industrywide risk, but they cannot share their proprietary
customer information with one another in plaintext. Existing systems in this setting of
coopetitive analytics (analytics among cooperative and competing parties) either assume a
weak semi-honest threat model or incur prohibitive overhead [134, 136, 15, 103].

2. Graph queries. Specialized graph mining tools support efficient pattern querying [137, 132,
130], but these systems have limited support for other graph analytics tasks such as distributed
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Figure 1.1: No existing system for large-scale analytics addresses all three identified needs, represented as the
vertices of the triangle in this figure. This dissertation introduces three systems built on Apache Spark and
Apache Spark SQL to address these needs.

graph algorithms. A workflow involving multiple systems is cumbersome to orchestrate and
incurs significant overhead when data crosses system boundaries. Naively encoding graph
queries as join-heavy dataflow computation results in very poor performance due to the large
intermediate result sizes generated. Prior work [59, 75, 25, 50] has explored how to express
iterative graph algorithms as dataflow computation, but these systems either do not support
graph queries, are unable to share intermediate results across multiple queries in a workload,
or forego intra-query fault tolerance.

3. Debugging. It is difficult to understand the correctness and performance of complex analytics
queries due to their large scale and the scarcity of tools that go beyond coarse metrics and
error reporting without incurring significant overhead. Tools for testing assertions, tracing
through data flows, and replaying code exist [109, 73, 58, 43], but they are too expensive to
use in production.

This dissertation addresses these three challenges in large-scale analytics, toward the goal of a
unified analytics platform that retains the flexibility, extensibility, and performance of relational
systems.
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1.3 Dissertation Overview
The work in this dissertation applies generally to any distributed dataflow system. For concreteness,
we choose to build on Apache Spark [142], a popular distributed dataflow framework, and Apache
Spark SQL [11], a distributed SQL analytics engine that uses Spark. This dissertation presents
three systems that build on Apache Spark and Apache Spark SQL to address the aforementioned
challenges in large-scale analytics.

1. OCQ (Chapter 2) enables secure analytics in a multi-party setting. OCQ extends Spark
SQL to execute multi-party queries securely using hardware enclaves. Its query planner
chooses how and where to execute each relational operator to prevent data leakage through
side channels such as memory access patterns, network traffic statistics, and cardinality, while
minimizing overhead. We find that OCQ is up to 9.9x faster than Opaque, a state-of-the-art
secure analytics framework which outsources all data and computation to an enclave-enabled
cloud; and is up to 219x faster than implementing analytics using AgMPC, a state-of-the-art
secure multi-party computation framework.
This chapter is adapted from previously published work [42].

2. GraphFrames (Chapter 3) enables users to express graph algorithms, pattern matching and
relational queries, and optimizes work across them. It executes these operations efficiently by
materializing multiple views of the graph, selecting join plans based on the available views,
and executing these plans using Spark SQL.
This chapter is an extended version of previously published work [41].

3. Arthur (Chapter 4) is a debugger for Spark programs that provides a rich set of analysis
tools at close to zero runtime overhead through selective replay. Unlike previous replay
debuggers, which add high overheads due to the need to log low-level nondeterministic events,
Arthur takes advantage of the structure of Spark programs, which are composed of graphs of
deterministic tasks for fault tolerance, to minimize its logging cost. It uses selective replay to
implement a variety of debugging features, including rerunning any task in a single-process
debugger; ad-hoc queries on computation state; and forward and backward tracing of records
through the computation, which it achieves using a program transformation at replay time.

Finally, Chapter 5 summarizes the main results and discusses directions for future work.
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Chapter 2

Oblivious Coopetitive Analytics Using
Hardware Enclaves

In this chapter we address challenges created by the shift toward outsourced and multi-party analytics.
This chapter builds upon Opaque [145], a system I coauthored that enables large-scale analytics on
sensitive data. Opaque allows a single organization to outsource its computation to an untrusted
cloud. In this chapter we study the more general problem of how to securely process data from
multiple untrusting organizations.

2.1 Introduction
Distributed analytics frameworks [142] are now widely used, but are designed to operate on data
owned by one entity. Federated databases, which span data owned by multiple cooperating parties,
have a long history in the database community [127, 144, 53, 52]. This community has focused on
the case when the organizations trust each other and can share data.

However, there are many applications in which organizations cannot share plaintext data with
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Figure 2.1: OCQ executes approved federated queries using hardware enclaves. Its query planner and
relational operators hide memory and network access patterns and sensitive cardinalities.
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each other because, for example, they are in business competition, or due to privacy regulations and
liability concerns. Nevertheless, collaboration among these competing organizations could enable
new applications. For example, banks would like to perform analytics over their aggregate data
to better detect money laundering, but cannot share the data with each other because they are in
competition. The Chief Risk Officer of Scotiabank stated that such collaboration “will enhance
yields by orders of magnitude” [48]. We are partnering with Scotiabank for this use case. As another
example, consider a consortium of hospitals that want to pool their patient data for researchers to
access. Researchers need the ability to correlate patients across hospitals, yet regulations prevent
the hospitals from sharing raw patient data or letting it leave the premises [30]. Following previous
work [146], we refer to this setting of analytics among cooperative and competing parties as
coopetitive analytics.

In a coopetitive setting, parties agree in advance on a shared schema and a set of allowed queries.
They agree to run these queries on their private data and share only the results. In particular, they
will not share the actual database of any party or intermediate results in the query computation.

Prior work in the coopetitive setting uses either specialized cryptography or hardware enclaves.
Cryptography [114, 15, 146, 2, 79, 95] either offers limited functionality too restrictive for general
analytics, as is the case for partially-homomorphic encryption, or introduces enormous overheads,
taking hours to months for typical queries, as is the case for secure multi-party computation (MPC),
as we show in §2.8.

Approaches based on hardware enclaves [145, 49, 98, 107] are more promising for performance.
While hardware enclaves have many side channels [135, 24, 123, 139, 26, 84], prior work [68]
shows that many classes of side channels disappear if one designs the computation to be oblivious:
memory accesses are independent of sensitive data. In a distributed setting, network traffic patterns
also create a side channel [106]. Hence, to use hardware enclaves for coopetitive analytics requires
oblivious protocols designed for this setting. The overarching challenge is that such protocols are
slow.

The most relevant related work to OCQ is likely Opaque [145], which offers oblivious analytics
on data outsourced to a single untrusted cloud. However, aggregating multiple parties’ sensitive data
to a single location suffers from several drawbacks in the coopetitive setting. First, transferring and
maintaining a remote copy of large data incurs significant overhead especially if this data changes
frequently. Second, this strategy may run afoul of regulations that forbid a database from being
moved out of a certain perimeter. Third, the oblivious computation in Opaque crucially assumes
that all communication happens within the same cloud; applying Opaque’s algorithms to query
execution across different parties connected by a wide-area network results in prohibitive overhead.

In this chapter, we propose Oblivious Coopetitive Queries (OCQ), a general framework for
coopetitive analytics based on hardware enclaves, overviewed in Figure 2.1. Rather than requiring
multiple parties’ data to be aggregated to a single location, OCQ executes queries in a decentralized
manner. OCQ develops efficient oblivious query algorithms (e.g., oblivious federated join) for the
federated setting and a schema-aware padding mechanism, which combined prevent data leakage
through (1) memory accesses to data inside the enclaves, and (2) network traffic patterns outside the
enclaves, both within a local data center and in the wide area. OCQ also contributes an oblivious
planner, which determines where to execute each operation and how to execute it, to minimize the
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overhead while maintaining the oblivious security guarantees.
We implemented OCQ as an extension to Apache Spark SQL’s Catalyst query planner and

execution engine. We evaluate OCQ using SGX-enabled, geographically distributed clusters on a
variety of synthetic benchmarks and find that OCQ is up to 9.9× faster than outsourcing all data
and computation to a third party running Opaque. Compared to AgMPC [136], a state-of-the-art
cryptographic framework for secure multi-party computation, OCQ is up to 219× faster.

OCQ’s design addresses the following challenges:

Challenge 1: Oblivious queries in the wide area. The first step of distributed operators such as
aggregations and joins is typically to shuffle the entire relation to colocate the appropriate records.
For example, Opaque implements aggregation using an initial distributed sort based on the grouping
attributes to colocate records that belong to the same group. However, in the coopetitive setting, this
incurs record movement across the wide area, requiring the use of expensive security protocols to
avoid leaking information.

Approach: Federated and oblivious planner. Our federated planner chooses operators that
maximize the computation run at originating parties and ensures that communication across the
wide area does not leak information about the input data. For example, while a high-cardinality
aggregation that results in many groups would normally be implemented using an initial distributed
sort, OCQ’s planner instead chooses to compute partial aggregates at each party and shuffle those
partial aggregates across the wide area, with padding to hide the number of groups from each party.
The worst-case upper bound on the number of groups is often much smaller than the number of rows
in the database, for example, for fields containing gender or age. This approach avoids exchanging
un-aggregated records between parties. Key to performance is that parts of the computation running
within a party’s cluster that only touch that party’s data need not be oblivious because the data
is known to the party. Such local computation will still run inside the enclaves for integrity and
authentication.

Challenge 2: Combining data of mixed sensitivities. Queries may consist of operators that
combine slices of multiple parties’ data. Because OCQ executes these operators at the parties
themselves, and because parties may provide table-level sensitivity annotations, many relational
operators in OCQ combine data of varying sensitivity levels. For example, one party may execute a
join operator between its own data and a slice of sensitive data from other parties. Executing such
operators using fully-oblivious algorithms would incur unnecessary overhead.

Approach: Mixed-sensitivity algorithms. OCQ introduces mixed-sensitivity operators, such as a
mixed-sensitivity oblivious join algorithm based on the merge phase of bitonic sort that provides up
to 2.5x speedup compared to a fully-oblivious join.

Challenge 3: Query planning with sensitive cardinalities. Query planners traditionally rely on
statistics to choose among multiple plans. However, such statistics are sensitive in a coopetitive
setting, as they reveal information about the distribution of each party’s data. The plan chosen can
leak information about the input statistics. Additionally, the cardinalities of intermediate relations
may leak information, such as the selectivity of a filter. Cardinality leakage poses a further threat in
the coopetitive setting than in the outsourced computation setting because a malicious party can
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manipulate its input to extract information through cardinalities.
Approach: Schema-aware padding. As in previous work on Opaque [145], we take the approach

of padding input and intermediate relations to publicly-known bounds to hide sensitive cardinalities.
Our contribution is a scheme to refine these bounds by exploiting the likely presence of foreign key
relationships between public and private relations in each party’s schema to find tighter padding
bounds for each operator. For example, a query to find all distinct disease diagnoses across multiple
hospitals would typically involve padding to the number of patient diagnoses, while a foreign key
relationship to a set of diseases would enable OCQ to pad to the possibly much smaller number
of registered diseases. We introduce rules to propagate these bounds through the query plan.
Conveniently, padding rules also obviate the problem of leakage via the choice of plan, because the
resulting padding bounds provide exact cardinality information without leaking sensitive statistics.

2.2 Background
OCQ is designed to enable coopetitive analytics using hardware enclaves. Here we describe the
coopetitive setting and provide background on the building blocks for OCQ.

2.2.1 Hardware enclaves
Hardware enclaves or trusted execution environments (TEEs) such as Intel SGX [94], AMDMemory
Encryption [78], Keystone [82], Sanctum [39], MI6 [22] and others [133, 10] enable code to run in
an isolated environment where other processes on the same host, including the OS and hypervisor,
cannot tamper with its execution or access its memory. Enclaves also provide remote attestation,
which allows the enclave to prove to a client that it is running the desired code and to establish a
secure channel to a client. We discuss in Section 2.4 the enclave threat model we build OCQ on.

2.2.2 Oblivious algorithms
As we discuss in Section 2.4, enclaves suffer from side channels exploiting memory access patterns
to data and traffic patterns. OCQ protects against these side channels with oblivious computation
and appropriate padding. Oblivious algorithms aim to process data while ensuring that their memory
accesses are independent of the contents of the data; this also implies that the network traffic patterns
are also independent of data content. For example, basic matrix multiplication is oblivious, because
its access pattern depends only on the size of the inputs and not their numerical values. In contrast,
quicksort is not oblivious because its access pattern depends on the ordering of the data: in each
iteration, records smaller than the pivot are swapped to one memory region, while records larger
than the pivot are swapped to another. The choice of where to swap each record depends on the
record contents.

Because sorting is at the heart of most database operators, efficient oblivious sorting algorithms
are of particular interest. Single-machine oblivious sorting can be done using sorting networks that
perform a fixed sequence of compare-exchange operations. Asymptotically more compare-exchange
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Figure 2.2: Illustration of column sort algorithm. Each column represents an encrypted partition. Column sort
enables oblivious distributed sorting using four intra-partition sorts (steps 1, 3, 5, 7) and four data exchanges
(2, 4, 6, 8) in fixed patterns. An attacker only sees exchanges of encrypted records. Since the pattern of
exchanges is fixed, it cannot leak data contents.

operations are needed for oblivious sorting than for traditional sorting. An oblivious compare-
exchange can be implemented via a comparison followed by a conditional swap of two equal-length
buffers depending on the result of the comparison.

For data partitioned across multiple machines, oblivious sorting can be accomplished using a
two-level sorting algorithm in which each partition is individually sorted using a sorting network,
and records are sorted across partitions using an algorithm called column sort [85]. Column sort
consists of a fixed sequence of data exchange and intra-machine sorting that uses only 4 shuffles,
compared to O(n log2 n) shuffles for a sorting-network-based distributed sort. It is thus well suited
to oblivious distributed sorting, where it was previously applied by Opaque [145]. OCQ also uses it
for sorting sensitive data; the algorithm is illustrated in Figure 2.2.

2.2.3 Spark SQL and Opaque
OCQ’s planner and federated execution engine are built on Spark SQL [142, 11], a distributed
SQL analytics framework, and Opaque [145], an extension of Spark SQL for secure outsourced
computation via hardware enclaves.

Spark SQL offers distributed plaintext query execution. Queries can be written in SQL or an
embedded Scala DSL called DataFrames. The user submits queries to the Spark SQL driver, which
parses them into logical plan format. Spark SQL’s extensible rule-based query planner, Catalyst,
which also runs at the driver, optimizes these plans and generates a physical plan for execution on a
Spark cluster. Catalyst is primarily rule-based, but offers limited statistics collection and cost-based
optimization. The physical plan breaks the query into stages consisting of parallel tasks that are
executed on workers. Each worker writes results to distributed storage or returns them to the driver.

Opaque extends Spark SQL to the untrusted cloud setting, where the driver is trusted but the
workers are not. By extending Catalyst with encrypted operators which result in tasks that run inside
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Figure 2.3: Architecture of OCQ. OCQ’s replicated federated planner executes operators on Opaque and
Spark clusters at each party. Sensitive data never leaves its originating party in plaintext.

SGX enclaves rather than in plaintext, it enables distributed queries on encrypted data.
OCQ’s federated planner is an extension of Catalyst, and OCQ leverages Opaque to process

encrypted data within a single party. This enables OCQ to inherit Spark SQL’s query languages and
optimizations, and Opaque’s secure distributed query processing. However, OCQ must implement
rules and orchestration logic specific to secure federated queries.

2.3 Architecture
Figure 2.3 shows OCQ’s architecture. Each party maintains a Spark cluster with at least one
hardware enclave-enabled machine, on which Opaque tasks are scheduled. OCQ’s query planner
is deterministic and runs outside the enclave at every party. This is because our query planner
builds on Spark SQL’s planner, which is a large Scala codebase that would significantly broaden the
enclave’s attack surface and require heavyweight sandboxing techniques. To reduce coordination
between parties at query time, each party runs a replica of OCQ’s federated planner; we describe the
mechanism for verifying the plan’s integrity in Section 2.3.1. Each planner replica maintains an
audit log of all queries issued by any party.

The role of each party’s Opaque clusters is to (1) give assurance that the computation at each
party happens correctly, and (2) safely mix multiple parties’ data. Therefore it is essential for enclave
code to be trusted by all parties. OCQ accomplishes this by granting all parties the ability to invoke
pre-approved routines on all enclaves, but ensuring that each enclave verifies that the deployed code
is approved by all the parties via remote attestation.

In OCQ, parties own different tables; a logical table consisting of rows from different parties can
be implemented using union. Parties annotate their tables as either public or sensitive. The query
planner determines the sensitivity level of intermediate results using sensitivity propagation rules
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discussed in Section 2.5.

2.3.1 Setup phase
Parties must share the cryptographic hash of each encrypted partition of each of their input relations
with all other parties. Once the setup phase has completed, no party can change its input data, and
the enclaves will ensure this.

Parties setup their enclaves using OCQ’s code, and perform remote attestation amongst all
these clusters. Consider a logical enclave at each party (which can be implemented via a cluster of
enclaves). The result of this stage is:

• Every party and its enclave know the public keys of every party, the schema and sensitivity of
every table of each party, and the hashes of each party’s encrypted data.

• Each enclave checks that the enclaves at the other parties were correctly setup with OCQ with
the same information.

• The enclaves agree on symmetric keys for a secure channel amongst themselves.

Queriers may attempt to submit malicious queries designed to extract sensitive data, and a
compromised planner replica may produce a physical plan that reveals sensitive information. We
prevent both of these by requiring all parties to agree on the allowed set of queries, the resulting
query plans, and size bounds for sensitive input and intermediate data sets. The agreed-upon
configuration is represented as a set of DDL statements, queries, and physical plans that is signed by
all parties and passed to each party’s instance of the OCQ federated planner and enclave. Before
signing the configuration, each party should check that it matches expectations.
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2.3.2 Query lifecycle
Figure 2.4 shows the lifecycle of a query. A user submits a query to a federated query planner
replica, which broadcasts it to all the others, one planner instance per party. Each planner first
checks that the query conforms to the set of approved queries and then performs the same planning
and optimization steps, deterministically generating a federated plan with operators running at
different locations. The generated plan satisfies all parties’ sensitivity annotations and performs as
much computation as possible in plaintext at each party. The party signs the plan, and enclaves will
execute only plans signed by all the parties. Each planner runs the relevant operators at its local
Spark and Opaque clusters.

Special data movement operators trigger data exchange with other parties across the wide area,
or between one party’s Spark and Opaque clusters, when allowed by the sensitivity annotations. The
final operator collects the results back to the originating replica and returns them to the user.

A party can observe network traffic generated by computation on other parties’ data when
that computation is run within their Opaque cluster, such as during final aggregation. To prevent
size leakage in this case, OCQ automatically determines appropriate public upper bounds for
all intermediate results and ensures that each operator pads its output to the appropriate bounds.
Section 2.5.4 describes this process in more detail.

Our integrity mechanism for ensuring that a malicious party cannot tamper with the integrity
of the computation or input data is similar to that of Opaque [145]’s self-verifying computation,
so we only describe it at a high level. At query time, the signed physical plans are loaded into the
enclaves, which check that all parties signed every plan. When an enclave is requested to execute
part of a query plan, it verifies that each of the inputs to the plan fragment were either authentic
input data or were generated by the expected child plan, depending on the expected input source. To
check that the input is authentic, when scanning a party’s input data, the scanning enclave checks
the partition’s hash against the party’s hash from setup to ensure that the party has not tampered
with the input data. If the hashes do not match, the enclave signals failure and the query will abort.
After executing the plan fragment, the enclave certifies that its output was correctly produced by
running the requested plan fragment.

2.4 Threat model and security guarantees

2.4.1 Abstract enclave model
OCQ considers an attacker who can see memory accesses to data and/or messages sent over
the network. Such an attacker arises from a large class of attacks: attacks leveraging page
faults [139, 27, 135], the branch predictor [84], cache timing [123, 24], the memory bus [81],
network traffic patterns [106], and others. Oblivious algorithms are impressively effective against
such a large variety of attacks [68] because they address the core leakage of these channels: memory
accesses based on sensitive data. OCQ contributes oblivious algorithms for the federated analytics
setting to thrwart such attacks. We group the attackers in two categories:
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• A network attacker that sees all network traffic but has no access to the machines. In
particular, this attacker does not see any memory accesses inside any of the machines.

• A malicious party attacker that sees all memory accesses made by enclaves in addition to
the network traffic. For this party we assume the oblivious row-level conditional-exchange
primitive from Section 2.2.2.

OCQ builds on top of an abstract enclave model; OCQ’s design is not tied to Intel SGX even
if our prototype implementation in Section 2.7 builds on it. There are many different proposals
for hardware enclaves, such as Intel SGX [94], AMD Memory Encryption [78], Keystone [82],
Sanctum [39], MI6 [22] and others [133, 10], with more upcoming as researchers make rapid
progress towards more secure hardware enclaves. OCQ assumes that the attacker cannot access or
undetectably modify data or code inside the hardware enclave, that it cannot exploit side-channels
different from the memory addresses discussed above, subvert the remote attestation process or
otherwise the integrity or secrecy of the enclave; if the attacker could, OCQ does not protect
against such attacks. Such side-channel attacks indeed exist in some enclave implementations
(such as in Intel SGX); addressing them should be done at a different level of abstraction than
OCQ operates at, for example, through better enclave design. For instance, Intel SGX suffers from
various vulnerabilities or side channels, such as attacks based on speculative execution [26, 33, 122],
power consumption [102, 129], rollback [113], intra cache line memory accesses [140, 99], denial-
of-service attacks [74, 62], and others (e.g., [138, 83]). Many defenses or mitigations have been
proposed, such as for closing hyperthreading-based attacks [108, 34], rollback defenses [23, 92],
and importantly, improved enclave designs that remove a wide array of the attacks above, such as
KeyStone [82] or MI6 [22] (the latter even protects against speculative-execution attacks). We hope
that OCQ’s design will be ported to better and better enclaves as research progresses on this front.

We remark that our implementation prototype of OCQ described in Section 2.7 focuses
on obliviousness with respect to data at the cache-line granularity. While OCQ’s oblivious
algorithms are oblivious even when it comes to accesses to OCQ’s pseudocode, we have not ensured
that our implementation and the generated binary preserve this property. Also, while OCQ’s
oblivious algorithms could be applied at the intra-cache-line granularity [140, 99], our prototype
implementation does not implement them at this level. Both of these can be addressed in the
implementation with existing mechanisms (e.g., [108, 34, 88, 61, 40]) at a performance cost.

2.4.2 Party threat model
In the coopetitive setting, a malicious party could attempt to tamper with the other parties’ data during
joint computation, or it could attempt to inspect other party’s data using the attacker capabilities
we discussed in §2.4.1. A party can also observe and modify network traffic generated by such
outsourced computation. Given the assumption of an abstract enclave model, OCQ guarantees
integrity of outsourced operators and data.

Each party is free to input data of its choice, and OCQ does not protect against low-quality or
maliciously-crafted data. OCQ ensures the integrity of each party’s computation and data after the
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data has been inputted. The parties, if they wish to, could include checks for each other’s data in the
queries given to OCQ.

Query results often leak some information about the data from which they were computed.
This is why we require the parties to agree on what queries they permit to run on their data and
whose results they are agreeing to release. OCQ ensures that all parties agreed to running some
query before running that query and releasing the result. Deciding which queries are safe to run is
outside the scope of our system, and is largely an unsolved research problem. Nevertheless, existing
work in differentially private analytics [76, 77, 16] (discussed further in §2.9.4) and inference
detection [66, 45, 116] could aid parties to transform the queries into a safer form or to detect
particularly revealing queries.

2.4.3 Security guarantees
OCQ guarantees obliviousness for sensitive tables, namely that there is no information leakage about
the sensitive data content from the trace of memory accesses and traffic messages other than size,
schema, and query information. We use a standard definition of obliviousness, which states that the
trace of memory accesses and messages can be simulated without access to the data, while only
knowing a bound on the data size, the schema, parties’ configuration, and the query plans to execute.

The proof that OCQ meets this guarantee follows from the observation that for all our protocols
(query planner, overall query plan, and individual operators), all the accesses to memory and the
schedule of messages on the network are performed according to a predefined schedule, fixed ahead
of time before the data is input, and which is determined according to our planner’s rules based on
data size, schema, query and party’s configuration.

Like in much prior work in oblivious computation, our formalism captures only addresses and
lengths, and not the actual data content. The reason is that hardware enclaves as used in OCQ and
other works, encrypt the content and re-encrypt it upon every access.

We remark that OCQ’s query planner runs entirely using non-sensitive information to produce a
physical plan; hence, the planning process is oblivious by definition.

We now focus on showing that the execution of each physical plan of a query is oblivious w.r.t.
sensitive tables. OCQ’s definition of obliviousness differs from that of Opaque because there are
multiple parties in addition to the network attacker. A malicious party attacker may see the content
of its own sensitive tables and perform non-oblivious computation on them, but not the content of
other parties’ sensitive tables. We formalize this by constructing two types of simulators:

• Simparty has access to a party’s sensitive data, but does not have access to the sensitive data of
other parties, yet must simulate this party’s memory and network access patterns.

• Simnet does not have access to any party’s sensitive data and must simulate the network
communication patterns among all parties.

The fact that the simulators can simulate the memory and network patterns without seeing all the
sensitive tables implies that these patterns do not leak information about these sensitive tables.
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Let D be the set of tables of all parties. As we discussed in Section 2.3, tables are of two types:
sensitive and public. Let Si be the set of tables of party i that are sensitive (including those OCQ
marks as sensitive after propagating sensitivity as discussed in Section 2.5). Let Public(D) be all
the non-sensitive information about the datasets, such as the content of all public tables and publicly
known metadata about the sensitive tables, such as the names and owners of the tables, the names
and schema of columns, an upper bound on the number of rows in each table, the set of unique key
and foreign key constraints, and others. This metadata does not include the actual values in any
column.

Let P be the set of publicly known cluster configurations of the parties, including the number
of workers and their IP addresses, the untrusted memory size and EPC size of each machine,
the oblivious sorting block size, etc. Let q be a query with any user-specified padding bounds
(Section 2.5.5). Let Tracei(D,P,q) be the access pattern trace visible to the malicious attacker at
party i: an ordered sequence of memory accesses of the form (read/write, addr, length)
and network messages of the form (dst, length). These do not contain timestamps because
OCQ does not protect against timing attacks. Tracenet(D,P,q) is the ordered sequence of network
messages across all parties.

Theorem1. For all parties i, datasets D, with party i’s sensitive tables Si, for all cluster configurations
P, for all queries q there exist polynomial-time simulators Simparty and Simnet such that

∀i,Simparty(Public(D), i,Si,P,q) = Tracei(D,P,q),
Simnet(Public(D),P,q) = Tracenet(D,P,q).

We provide a proof sketch in Section 2.6.

2.5 Query Planning
We next explore OCQ’s federated query planner, which finds query plans that satisfy security
properties while minimizing the scope of expensive oblivious operators.

2.5.1 Overview
The federated query planner accepts sensitivity annotations on each party’s base tables. It supports
two sensitivity levels:

• Public: the table can be processed at any site with integrity verification. Confidentiality is not
required, and data contents and cardinality may safely be exposed.

• Sensitive: if exported from the originating site, the table must be processed with confidentiality
and integrity verification, including protection against access pattern side channels and
cardinality leakage.
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When executing a query, the planner propagates sensitivities through the plan to determine
the sensitivity level of each intermediate result, such as a set of partial aggregates. OCQ uses the
same two-part sensitivity propagation scheme as Opaque. First, since tables could be correlated via
their relationships (e.g., foreign keys), OCQ uses second-path analysis [66] on the user-provided
sensitivity annotations to capture these correlations: user-specified base tables are initialized as
sensitive, and all tables reachable from a sensitive table via primary–foreign key relationships are
recursively marked as sensitive as well. Second, OCQ assigns each operator a sensitivity level
determined by the sensitivity levels of its inputs. Operators that process more than one input relation
(e.g., join) receive the highest sensitivity level of all their inputs.

The federated query planner uses these two sensitivity levels to determine where to execute
each operator. Recall that each party has an Opaque site/cluster. Operators may execute in two
locations: federated or single-site. The federated operators execute in every site in parallel, whereas
the single-site ones execute only at one party. For example, for an aggregation, each site can perform
a partial aggregation within their site using the federated operator and the results are then sent to the
querying party for final aggregation, which occurs using the single-site operator. OCQ supports the
following operator execution modes:

• Federated. The operator executes partitioned and encrypted/authenticated in each site’s
Opaque cluster using SGX. Datasets are encrypted and authenticated for integrity verification,
but operators will reveal data cardinality and may leak data contents through side channels.

• Federated-Oblivious. The operator executes partitioned and encrypted in each site’s Opaque
cluster using oblivious algorithms in SGX to hide access pattern side channels. The operator
reveals nothing beyond the cardinality of the input, such as filter and join selectivities.

• Single-Site-Oblivious. The operator executes obliviously with Opaque at the site where the
query originated. This provides the same security guarantees as Federated-Oblivious and is
used for final aggregation on sensitive data.

• Single-Site. The operator executes encrypted using Opaque at the site where the query
originated. This provides the same security guarantees as the Federated mode and is used for
final aggregation on public data.

The query planner ensures data of a particular sensitivity level is never processed using an
operator with insufficient protections. For example, Sensitive data may be processed with a Federated
operator if it has not left its originating site, but after an exchange, the same data must be processed
using Federated-Oblivious or Single-Site-Oblivious operators only. The planner can always produce
a secure plan for any supported query by running all operators in the Single-Site-Oblivious mode
with naive worst-case padding, but the resulting overhead can be prohibitive so its goal is to find
secure plans with much lower overhead when possible.

In the remainder of this section, we describe our query planning algorithm and rules (Section 2.5.2,
Section 2.5.3), then discuss how the planner hides intermediate cardinalities (Section 2.5.4). The
strict sensitivity levels and the use of padding together simplify physical operator selection. This
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traditionally depends on accurate cardinality estimation, which is much easier in OCQ than in
traditional databases due to OCQ’s use of padding. OCQ introduces padding rules that exploit
foreign key constraints in the database schema to minimize padding overhead.

2.5.2 Algorithm
Respecting the constraints described above, the federated query planner applies rules to produce a
physical plan that specifies the necessary algorithms and data movement for all three levels of the
federation: between parties, within each party, and within each machine. Planning occurs as follows:

1. Obtain the logical plan for the query using Spark SQL.

2. Apply rules to transform the logical plan into a federated physical plan respecting sensitivity
annotations and with “ShipTo” operators indicating data movement.

3. Eliminate redundant ShipTo operators.

4. Insert padding operators based on the rules in Section 2.5.4.

5. Execute the federated plan and return the results.

The rules used in step 2 apply recursively to the logical plan in bottom-up order starting with the
base tables. For each logical operator (e.g., Project, Filter, Join, Aggregate) and its input plans, the
rules produce a physical sub-plan that respects the operator’s sensitivity level and avoids unnecessary
encryption or data movement overhead.

OCQ’s rules require operators to be planned in order of execution, because it uses the execution
mode chosen for earlier operators in determining the execution mode for later operators. This is
implemented using a postorder traversal on subplans referencing sensitive data.

2.5.3 Query planner rules
We now examine rules for the four common logical operators (Project, Filter, Join, and Aggregate).
We express rules in Scala’s pattern match syntax, where each rule is a case that may match the
logical operator being planned. Rules can specify subtyping constraints with : syntax. We use
these constraints to discriminate based on the execution mode (abbreviated as Fed, FedObl, SSObl,
and SS) of an operator’s inputs. Each rule ensures the resulting physical operator respects sensitivity
levels, so the entire plan also will.

To illustrate how OCQ converts a query into a physical plan, take the example of Query 1
in Table 2.1. For each logical operator that matches a rule, Scala binds the operator’s contents to
parameters listed after the case keyword. It then executes the body of the case, which comes after
the => arrow, and the planner uses the return value as the physical plan for the given logical operator.
For example, the logical operator Filter(diagnosis, diag="c. diff") in Query 1 (Table 2.1),
will be mapped to OCQ’s physical operator FedEncFilter[diag="c. diff"]. We do not describe
what each one of OCQ’s physical operators run (because they are many), but instead describe only
the more novel operator algorithms in §2.6.
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Project. The input to the projection is referred to as child, and the projected columns as p.
Because a projection never requires data movement and does not leak access patterns, the resulting
operator uses the same execution mode as its input.
case Project(p, child: Fed) => FedEncProject(p, child)
case Project(p, child: FedObl) => FedOblProject(p, child)
case Project(p, child: SSObl) => OblProject(p, child)
case Project(p, child: SS) => EncProject(p, child)

Filter. The input to the filter is referred to as child, and the filter predicate as f. As with
projection, filtering never requires data movement. However, unlike projection, filtering leaks access
pattern information by default, so depending on the execution mode and sensitivity level of the input,
we use an oblivious filter operator to hide which input records matched the predicate.
case Filter(f, child: Fed) => FedEncFilter(f, child)
case Filter(f, child: FedObl) => FedOblFilter(p, child)
case Filter(f, child: SSObl) => OblFilter(p, child)
case Filter(f, child: SS) => EncFilter(p, child)

Join. OCQ currently only supports inner joins. The inputs to the join are referred to as left and
right, and the join columns as c. Joining does require data movement, and we choose between a
broadcast join where one input is broadcast to all parties and joined separately with each portion
of the other input, and a single-site join where both inputs are brought to the querier’s cluster.
Both types of joins can be executed with or without obliviousness; we additionally implement a
mixed-sensitivity broadcast join (Section 2.6.1). For brevity, we only list half the rules for Join; the
other half are the same up to swapping left and right. When multiple join rules apply, such as when
there is a choice between broadcasting the left side and the right side, the planner currently chooses
one of them arbitrarily, but a cost-based planner could consider both and choose the lower-cost
option. In addition, we benefit from Spark SQL’s existing planner rules. For example, Spark
SQL’s broadcast exchange reuse ensures that when a plan indicates that the same relation should be
broadcast more than once, it will only be shipped over the WAN once.
case Join(c, left: Fed, right: Public) =>
FedEncJoin(c, left, BcastToFed(right))
case Join(c, left: Fed, right: Sensitive) =>
FedMixedSensJoin(c, left, BcastToFed(right))
case Join(c, left: FedObl, right: Public) =>
FedMixedSensJoin(c, left, BcastToFed(right))
case Join(c, left: FedObl, right: Sensitive) =>
OblJoin(c, EncCollect(left), EncCollect(right))
case Join(c, left: SSObl, right: Public) =>
MixedSensJoin(c, EncCollect(left), EncCollect(right))
case Join(c, left: SSObl, right: Sensitive) =>
OblJoin(c, left, EncCollect(right))
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Aggregate. The input to the aggregation is referred to as child (which is a query subplan), the
grouping attributes as g, and the aggregation attributes as a. Partial and final aggregates are assigned
the same sensitivity level as the input data. The attributes resulting from partial aggregation are
referred to using partial(a) and the attributes from final aggregation as final(a). The execution
mode of partial aggregation is the same as its input, while final aggregation always occurs at the
querier’s site in SSObl or SS modes. The with keyword indicates the child’s execution mode as
well as its sensitivity.
case Aggregate(g, a, child: Fed with Public) =>
EncAgg(g, final(a),
EncCollect(FedAgg(g, partial(a), child)))

This rule applies to an aggregation over Public data which will reside in a Fed manner as a
result of running the child subplan. Because the data is public, we can execute both the partial and
the final aggregation in Enc mode (without oblivious operators).
case Aggregate(g, a, child: Fed with Sensitive) =>
OblAgg(g, final(a),
EncCollect(FedAgg(g, partial(a), child)))

case Aggregate(g, a, child: FedObl) =>
OblAgg(g, final(a),
EncCollect(FedOblAgg(g, partial(a), child)))

Both rules apply to sensitive federated data. In the first case, each sensitive data slice has not left
its originating party, while in the second case, the sensitive data has been commingled with other
parties’ sensitive data and is protected by obliviousness in addition to encryption. Therefore, in the
first case only the final aggregation needs to be oblivious, while in the second case, both the partial
and final aggregation must be oblivious. The remaining rules are as follows:
case Aggregate(g, a, child: SSObl) => OblAgg(g, a, child)
case Aggregate(g, a, child: SS) => EncAgg(g, a, child)

Query planning example. Table 2.1 shows the results of OCQ’s federated planning on two sample
medical queries [15]. The queries refer to two tables: a diagnosis table containing patient SSNs
and the diseases they were diagnosed with, and a medication table containing patient SSNs and
the medications they were prescribed. Given these two relations, Query 1 computes comorbidity
of the disease c. diff : the most common diseases that c. diff patients are also diagnosed with.
Query 2 counts the number of patients with heart disease who were prescribed aspirin. Tables
and intermediate results containing identifiable patient information (here SSN) were specified as
Sensitive; tables without SSNs but with more than one column as Sensitive to prevent correlation
attacks; and tables with only one non-identifiable column as Public.

For Query 1, the planner runs the initial Filter operator in Federated mode. Subsequently, only
the diag2 column of the result is needed for the Aggregate operator, so Spark SQL automatically
inserts a projection to drop the other columns. The resulting table is collected to a single site for the
final aggregation and sort.



20

Query 1 (comorbidity of c. diff ):
Sort(
Aggregate(
Join(
Filter(diagnosis, diag="c. diff"),
Project(diagnosis, diag as diag2),
col="patientSSN"),
groupby="diag2", agg="count"), col="count")

Federated plan for Query 1:
OblSort [diag_count]
OblAgg groupby[diag2] agg[count(*) as diag_count]
OblCollect
FedOblProject [diag2]
FedMixedSensJoin [patientSSN]
BcastToFed
FedEncFilter [diag="c. diff"]
FedEncProject [diag]
FedEncScan diagnosis

FedEncProject [diag as diag2]
FedEncScan diagnosis

Query 2 (aspirin count):
Count(
Aggregate(
Join(
Filter(diagnosis, diag="heart disease"),
Filter(medication, med="aspirin"),
col="patientSSN"),
groupby="patientSSN")

Federated plan for Query 2:
OblCount
OblAgg groupby[patientSSN]
OblCollect
FedOblProject [patientSSN]
FedMixedSensJoin [patientSSN]
FedEncFilter [diag="heart disease"]
FedEncScan diagnosis
BcastToFed
FedEncFilter [med="aspirin"]
FedEncScan medication

Table 2.1: Example queries and resulting federated plans. Queries (top) are specified in Spark SQL’s logical
plan notation, which is similar to relational algebra. The resulting plans (bottom) are specified in Spark SQL’s
physical plan notation with OCQ’s physical operator names. Nesting indicates a child relationship; sub-plans
nested under a physical operator provide input to that operator. Physical operators take parameters, listed on
the same line as the operator name. Most operator parameters are expression lists, listed in square brackets.
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For Query 2, the planner likewise runs the initial filters in Federated mode. As in Query 1, the
right side is Public, so the planner uses a mixed-sensitivity broadcast join. The oblivious aggregation
returns the number of distinct patients.

2.5.4 Determining padding upper bounds
Sensitive operators must pad their output to avoid leaking information about the input. For example, a
bank may want to hide how many customers it has, so the data sizes of any cross-site communication
must be padded to a bound greater than the number of customers. Alternatively, to hide the number
of customers with revenue >$1 million, computation downstream of all revenue-based filters must
be padded.

The federated query planner ensures queries’ intermediate cardinalities do not leak information
about sensitive attributes. The final cardinality is handled the same as the intermediate cardinalities,
depending on which parties can see the final result. After producing an unpadded plan using the rules
above, it adds padding to Sensitive operators that could leak information about the table’s contents.
This section describes this rule-based process using the same rule syntax as Section 2.5.3. Though
these rules match physical operators, we use logical plan names in some pattern specifications to
denote matching all physical operators implementing a logical operator. Additionally, we refer to
certain specific join types such as referential integrity inner equi-joins as a shorthand for pattern
specifications that check that these constraints are satisfied. Finally, we use Scala’s @ operator to
denote binding the physical operator under consideration to a named variable.

Base tables. Base tables are padded using tiered padding to hide their exact cardinality, encapsulated
by the round function, specified by the parties. We refer to the table scan operator as t. The rule
wraps t with a Pad operator that inserts dummy rows to inflate the result cardinality. The base table
data must already be padded to an equal or greater bound when writing it to disk to avoid revealing
the true cardinality through the file size. This enables this operator to make dummy accesses to the
input when generating the dummy output rows.
case t @ TableScan() => Pad(round(t.cardinality), t)

Filters. Most filters must be padded to the input size to avoid leaking selectivity. The else clause
of the rule below transforms the filter into a projection that adds a boolean field with the value of the
filter predicate using Scala’s :+ operator, which appends this column to the existing columns. Later
operators will use this tombstone-like field to determine whether or not to include the record in their
operations.

When at most one record is being selected, such as to extract the record of a single patient based
on SSN, padding to the input size would be very wasteful. OCQ identifies this case by checking
if the predicate is an equality comparison against a unique key using the uniquelyReferences
method. The if clause below pads the result to a cardinality of 1 to avoid leaking whether or not
the predicate matched a row. Within this rule, which branch is taken depends only on the schema
and query, not the underlying data, so it does not reveal any new information to an attacker.
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case f @ Filter(pred, child) =>
if (pred.uniquelyReferences(child.keys)) Pad(1, f)
else Project(child.cols :+ pred, child)

Joins. Arbitrary joins must be padded to the product of table sizes, but common join types have
much smaller upper bounds. Unique key equijoins are a very common join type where one side’s
join attribute is known unique. We pad these joins to the size of the other table; the unique key
ensures each record in the latter matches at most one record in the former. For brevity, we omit the
code listing for this rule.

Aggregations. Arbitrary aggregations must be padded to the input size, because each input record
could belong to a different group. However, foreign key constraints let us refine this bound. For
example, an aggregation over patients’ diseases can yield at most one row per disease if there is a
foreign key constraint between the (sensitive) patient diagnosis table and the (public) disease table,
because the foreign key constraint implies that all patients’ diseases correspond to a record in the
disease table. Without the foreign key constraint, we must pad the aggregate output to the number
of patient diagnoses, which could be large. With the constraint, we can instead pad to the number of
diseases.

We search for such foreign key constraints using publicTableKeys in the rule below. If there
is a matching foreign key, the Some(...) case determines the appropriate cardinality, using min to
ensure the new bound is smaller. Otherwise, the None case pads to the input cardinality.
case a @ Aggregate(groupCols, aggExprs, child) =>
publicTableKeys.find(groupCols.output) match {
case Some(tbl, key) =>
Pad(min(tbl.cardinality(key), child.cardinality), a)
case None =>
Pad(child.cardinality, a) }

2.5.5 Pre-specified padding bounds
Automatic padding bound search cannot always find the optimal bound. First, it assumes that while
the exact cardinality of a base table is sensitive, rounded cardinalities are safe to share. Yet, for
some tables, even an order-of-magnitude approximation of the cardinality is sensitive. Second, it
relies on foreign key constraints to determine padding bounds for individual columns. However,
many columns use implicit domains without foreign key constraints, such as ages, genders, letter
grades, salaries, and ZIP codes. Third, most relational operators cannot reduce the padding bounds
of their output, potentially resulting in large slowdowns.

We therefore support pre-specified padding bounds in schemas and queries. When defining
the shared schema, parties can specify cardinality bounds for any table or column. When defining
the allowed queries, a query may contain padding bounds for any intermediate result, for example
the result of a filter expected to be highly selective. We exposed this functionality using extension
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methods on Spark SQL’s DataFrame API. Below is an example of specifying table and column
cardinality bounds and a bound for a filter operator.
val diseaseDF = spark.load(".../disease/")
.sizeBound(70000)
val employeeDF = spark.load(".../employee/")
.colBounds("salary" -> 20, "addressZIP" -> 42000)
val singleEmployee =
employeeDF.filter($"name" = "John Doe").sizeBound(1)

In case a query-specific operator underestimates the actual output cardinality, OCQ silently
truncates the result to avoid leakage. If the parties wish to know when this has occurred, they can
express this using subqueries.

2.6 Coopetitive algorithms
The coopetitive setting affects the performance of secure operators because it implies mixed-
sensitivity computation and wide-area communication. Mixed-sensitivity computation occurs when
a party combines its own data with sensitive data from another party. Wide-area communication
occurs for operators such as aggregation and join that require combining data from multiple parties.
We describe two algorithms that leverage the coopetitive setting to reduce the amount of oblivious
computation needed compared to previous approaches.

2.6.1 Mixed-sensitivity join
Like Opaque’s oblivious join algorithm, OCQ performs oblivious joins using bitonic sorting
networks, which have traditionally been used in databases for SIMD parallelism [14] but which we
use to protect against access pattern side channels. However, unlike in Opaque, oblivious joins in
OCQ are very likely to be of mixed sensitivity. For example, a federated join between two Sensitive
relations will be executed as an oblivious partial join at each party between that party’s slice of one
relation and the entire federation’s records for the other relation. In this case, it is unnecessary to
handle the former relation obliviously, since the owner of that relation is also the party processing it.

We therefore introduce a mixed-sensitivity join algorithm. We refer to the former relation as
the non-sensitive relation and the latter as the sensitive relation. First, the non-sensitive relation is
sorted using a conventional external sort. Next, the sensitive relation is obliviously sorted using the
algorithm described in Section 2.2.2. The two sorted relations are then merged using an oblivious
bitonic merge, illustrated in Figure 2.5a.

When joining two relations of equal size, asymptotic analysis shows that mixed-sensitivity
join represents a constant-factor improvement. If the two relations contain n

2 elements each, an
oblivious sort of the union requires O(n log2 n) comparisons, while the mixed-sensitivity algorithm
requires O(n2 log n

2 ) comparisons for the conventional external sort, O(n2 log2 n
2 ) comparisons for the

sensitive-relation oblivious sort, and O(n2 log n) comparisons for the bitonic merge. Figure 2.5b
demonstrates an empirical speedup due to mixed-sensitivity join of up to 2.5× for large inputs. In
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Figure 2.5: (a) Bitonic merge network for 8 elements. (b) Speedup from mixed-sensitivity join compared to
standard oblivious join for two relations of equal size. The x axis indicates the size of each relation in number
of records. For small joins, other costs dominate, but once each relation contains more than 105 records, the
mixed-sensitivity join shows a speedup of up to 2.5× compared to conventional oblivious join.

addition, when the sensitive relation is relatively small, mixed-sensitivity join becomes arbitrarily
faster than a standard oblivious join.

2.6.2 Coopetitive aggregation
Opaque implements aggregation using an initial distributed oblivious sort based on the grouping
attributes to colocate records that belong to the same group. However, in the coopetitive setting, this
results in excessive wide-area data movement. Instead, we implement aggregation by computing
partial aggregates at each party and sorting only those partial aggregates across the wide area, with
padding to hide the exact number of groups from each party. The partial aggregates from each party
are padded as described in Sections 2.5.4 and 2.5.5. The final aggregation is then performed as
in Opaque, with a boundary processing step, a parallel scan over the sorted partial aggregates to
produce final aggregates and dummy records, and, if a user-specified padding bound on the output is
provided, an oblivious sort and filter to remove the appropriate number of dummies.

The speedup from this approach comes from avoiding the initial global oblivious sort in favor of
an oblivious sort over the partial aggregates. When the bound of the number of groups is small, this
produces a substantial performance gain.

2.6.3 Obliviousness proofs
Now that we presented OCQ’s algorithms, we proceed to sketch the proof of its obliviousness,
formulated in Section 2.4.3.
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Proof of Theorem 1. In this proof, we will invoke the simulators for the oblivious building blocks
that previously existed: bitonic sort, bitonic merge, column sort primitives, and the Opaque operators
in oblivious-pad mode. A query q can consist of different tasks. It suffices to prove that the
simulators can simulate the trace for each task. Here, we present simulators for the more complex
algorithms OCQ contributes: mixed-sensitivity join and and coopetitive aggregation. For each
physical operator O in the physical plan, the planner rules ensure that O runs in oblivious mode if
the inputs to O contain any sensitive table owned by a party other than i.

Without loss of generality, consider party i. Recall that mixed-sensitivity join occurs between
party i’s own input Ai and a slice of the other parties’ input Bi. If O is a mixed-sensitivity join, it
proceeds as follows:

1. Simparty sorts Ai using quicksort because it receives Ai as input. Let Public(Ai,sorted) be the
public metadata of the sorted result.

2. Simparty invokes the simulators for bitonic sort and column sort on Public(B) to simulate an
oblivious distributed sort of B on the equijoin keys. Let Public(Bi,sorted) be the metadata of
the sorted result.

3. Simparty invokes the simulator for bitonic merge on Public(Ai,sorted) and Public(Bi,sorted). Let
Public(Ui,sorted) be the metadata of the sorted union.

4. Simparty invokes Opaque’s simulator for oblivious padded join on Public(Ui,sorted) with the
padding bound specified in the query.

Simnet runs similarly to Simparty: it performs the last three steps above.
For coopetitive aggregation, if O is the partial phase of coopetitive aggregation at party i, let

the padding bound for O be b. Simparty for party i extracts the data of the sensitive input Ai and
executes a conventional hash aggregation on it, then pads its size to b. Let Public(Agg(Ai)) be the
metadata of the padded partial aggregates.

If O is the final phase of coopetitive aggregation, Simparty for party i and Simnet invokes the
simulator for the bitonic sort and column sort on

⋃
∀i Public(Agg(Ai)). Simnet then invokes Opaque’s

simulator for the oblivious padded aggregation on this metadata.
�

2.7 Implementation
We implemented OCQ on top of Intel SGX and as an extension to Apache Spark SQL’s Catalyst
query planner and execution engine using 2,000 lines of Scala code. OCQ builds on a version
of Opaque we modified, which uses 11,000 lines of C++ enclave code and 3,000 lines of Scala
code. No code changes to Spark SQL were required; both OCQ and Opaque extend Catalyst only
by adding rules and strategies. The schema-aware padding requires that tables be annotated with
primary and foreign key hints; since Spark SQL does not natively support key annotations, we added
them as a separate extension. We implemented the row-level conditional-exchange primitive in
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Q1 Count(GroupBy(Join(A, B, "x" == "y"), "x"))

Q5 Count(GroupBy(Filter(
Join(A, B, "w"),
Contains("A.x", "xyz")
&& ("B.x" + "B.y" > 10)
&& ("A.y" > "B.y")), "x"))

Table 2.2: DJoin queries.

SGX using the x86 conditional move instructions on data in registers, for which we assume that the
attacker cannot see accesses to registers inside enclaves. Federated query execution is coordinated
by the querying JVM, which maintains a connection to each cluster in the federation using Spark’s
remote query functionality via the SparkSession.

2.8 Evaluation
In this section we evaluate OCQ’s performance against outsourced and multi-party computation.
We measure the overhead of OCQ’s security guarantees. We explore an alternative design where
SGX-enabled machines are required at only one site, and show that requiring SGX at all sites provides
a significant speedup. We explore the speedup of our query planner compared to a traditional query
planner unaware of security. Finally, we evaluate the benefit of schema-aware padding versus the
conventional filter push-up approach.

2.8.1 Setup
We performed benchmarks across 5 parties located in AWS us-east-1, AWS us-west-1, AWS
eu-west-1, and AWS ap-northeast-1, and in our organization. Each party has approximately 10 MB/s
bandwidth to each other party. Our organization’s site has an SGX cluster with 5 machines, while
the AWS sites use 5-node r5.large clusters with Intel’s SGX simulation driver. We use a federated
query workload derived from previous papers on federated analytics. From SMCQL [15] we use the
comorbidity and aspirin count queries described in Section 2.5.3. From DJoin [103] we use queries
1–5. The DJoin queries are listed in Table 2.2. We generated synthetic table data with the following
total size per table:

1. diagnosis - 1,024,000 rows, 10 GB
2. medication - 142,972 rows, 4.3 MB
3. DJoin A - 15,000 rows, 15 MB
4. DJoin B - 15,000 rows, 15 MB
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Figure 2.6: OCQ vs. competing systems. OCQ is orders of magnitude faster than SMCQL and DJoin due to
its use of trusted hardware, and is faster than Opaque for most queries because it can execute initial filters in
plaintext.

2.8.2 Comparison to other systems
Figure 2.6 compares OCQ to Opaque (outsourced computation) as well as SMCQL and DJoin
(secure multi-party computation). For the first, since Opaque’s implementation assumes at least
2MB of non-observable memory which speeds up its oblivious protocols considerably, we ran OCQ
with the same configuration. For the second, we report the numbers from the SMCQL and DJoin
papers because they are too slow to run on our dataset or not open source. They are also insufficient
for the coopetitive setting (as explained in §2.9.1). OCQ is 1–4 orders of magnitude faster than
SMCQL and DJoin due to its use of trusted hardware. Meanwhile, OCQ gains a performance
advantage over Opaque, which also uses trusted hardware, for queries that begin with a substantially
selective filter operation. Because the initial filter requires no communication between parties, it can
be executed in plaintext at each party. The cardinality of the input to subsequent oblivious operators
is then greatly reduced. For our synthetic data, the initial c. diff filter for the comorbidity query
has ≈ 1% selectivity, as does the result of the selection and join to find patients with heart disease
who were prescribed aspirin for the aspirin count query. For OCQ we specified padding bounds
that reflect this selectivity, because we do not wish to treat the selectivity parameter as sensitive. In
contrast, Opaque must first perform an oblivious filter over each full relation. Because intermediate
relation sizes within our query workload tend to shrink as the query progresses, this initial oblivious
filter tends to dominate the running time.

Our reported query times include network transfer time, including the time required to transfer
the full relations to the cloud for each Opaque query. Figure 2.7 shows the proportion of query time
spent in network transfer. These transfers occur in parallel, so 5-node cluster uses its full aggregate
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Figure 2.7: OCQ vs. Opaque, highlighting network transfer time. OCQ retains an advantage even assuming
an infinitely fast network because it can execute initial filters in plaintext rather than using oblivious operators
on the full inputs.

bandwidth to transfer each relation. For the medical queries, this transfer is the dominant factor in
Opaque’s query times due to the large data sizes involved. Although the uploaded data could be
reused across queries, we include it in the query times for consistency with the other systems. Data
reuse is not always possible, for example in case of frequently-changing data.

We also evaluated OCQ without any non-observable memory assumption (namely, the attacker
can observe any party table data in any part of memory) to show that its performance remains
much better than MPC-based systems. We compared OCQ against AgMPC [136], a state-of-the-art
maliciously secure MPC framework (§2.9.1). We ran a query consisting of a referential integrity
inner equi-join on two equal-sized synthetic tables, each containing two 32-bit integers. The first
integer in each table was the join key. Figure 2.8 shows that OCQ is up to 219× faster than AgMPC
on this query.

2.8.3 Overhead of security
Figure 2.9 compares OCQ to alternative uses of Opaque with varying security guarantees to show
the overhead of OCQ’s security. “Outsourced Opaque” is as before. “Plaintext federated” refers to
an alternative federated configuration where all computation runs in plain text rather than within
SGX. This configuration might be suitable for a network of non-competing entities. “Outsourced
Spark SQL” refers to a configuration similar to Opaque but where computation is run in plaintext
rather than in SGX. This option provides no security guarantees, as a server-side attacker could
access the data in full.

Figure 2.9 shows that OCQ introduces 2.2–12× overhead compared to a plaintext federated
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Figure 2.10: Availability of SGX enclaves at all sites provides 1.3–1.6× speedup compared to having SGX at
only one site.

configuration due to its use of oblivious operators. Additionally, outsourced Spark SQL outperforms
OCQ by up to 25× for the DJoin queries, which use small relations without any initial filters, and
whose complexity is entirely in the core join computation, which is expensive to perform obliviously.
However, OCQ outperforms the outsourced configurations for the medical queries, which do contain
initial filters. Note that as before, we include network transfer time in query time, including the time
to upload full tables for the outsourced configurations.

2.8.4 Benefit of having SGX at each site
We next explore the design choice in OCQ that each site must have its own local SGX cluster. This
represents a constraint to its adoption, since SGX deployments are not widespread. However, we
observe that some queries significantly benefit from this choice. Figure 2.10 compares OCQ to an
alternative design (“OCQ w/ one SGX”) where operations on multiple parties’ data such as joins and
aggregations require the data to be collected to a single SGX cluster first. We observe a 1.3–1.6×
speedup over the alternative design for the medical queries because the use of broadcast joins allows
the components of the broadcast join, namely an oblivious join at each party, to operate on less data.
Since all oblivious joins run in parallel, this results in a speedup for the initial join, which dominates
the query plans.

2.8.5 Benefit of schema-aware padding
We compare the performance of our schema-aware padding approach to a baseline query without
padding and to an implementation of Opaque’s “filter push-up” approach. In the latter, filters and
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Figure 2.11: Schema-aware padding provides a 2.5× speedup compared to filter push-up, and is only 26%
slower than the baseline plan without padding.

aggregations on sensitive relations always return one output row for each input row, with rows that
did not match the predicate or rows other than the first one in each group resulting in a dummy output
row. All dummy rows are filtered out at once as the final step of the query, thus hiding intermediate
result sizes. This approach results in large costs when intermediate output is transferred over the
network.

With appropriate sensitivity step-down hints for the medical dataset, schema-aware padding
on the aspirin count and comorbidity queries results in the same plan as a suitably designed filter
push-up approach. We therefore introduce a plausible new query on the medical dataset that finds
the most costly diseases by grouping the diagnosis table on disease id and computing the total
cost for each disease:
diagnosis.groupBy("disease")
.agg(sum("cost") as "total_cost")
.sort("total_cost").select("disease").take(5)

This query results in the physical plan without padding:
OblLimit 5
OblProject [disease_id]
OblSort [total_cost]
OblAgg groupby[disease_id]

agg[sum(cost_partial_sum) as total_cost]
OblCollect
FedAgg groupby[disease_id]

agg[sum(cost) as cost_partial_sum]
FedEncScan diagnosis
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Though the top-level aggregation occurs within SGX because its input is sensitive, this plan may
leak the cardinality of the partial aggregates through SGX side channels. Our reimplementation of
filter push-up results in the following:
OblLimit 5
OblProject [disease_id]
OblSort [total_cost]
OblAggPadded groupby[disease_id]

agg[sum(cost_partial_sum) as total_cost]
OblCollect
FedPad diagnosis.cardinality
FedAgg groupby[disease]

agg[sum(cost) as cost_partial_sum]
FedEncScan diagnosis

This plan pads both levels of aggregation to the input size, hiding their cardinalities, but resulting
in two costly oblivious sort operations on padded data. In contrast, our schema-aware padding
recognizes that the cardinalities of the partial and final aggregates are bounded by the number of
known disease codes, which is much smaller than the cardinality of the input diagnosis table and
is public knowledge. It generates a nearly identical plan to filter push-up, with the difference that
both aggregation operations pad to disease.cardinality instead of diagnosis.cardinality.
Figure 2.11 compares the performance of all three plans using the input described in Section 2.8.1.
The lower padding bound and consequently reduced oblivious sort cardinality give our schema-aware
padding approach a 2.5× speedup compared to the filter push-up approach, and it is only 26% slower
than the baseline plan without padding.

2.9 Related work

2.9.1 Cryptographic approaches
SMCQL [15] and Conclave [134] use secure multi-party computation (instead of hardware enclaves)
to achieve federated analytics queries. Unlike OCQ, SMCQL and Conclave do not protect against a
malicious attacker (the attacker is semi-honest), and their implementation is for only two or three
parties. Further, their join scheme relies on joining non-sensitive attributes, unlike OCQ, which can
join on sensitive data.

AgMPC [136] is likely the most relevant cryptographic framework to OCQ because it is n-party,
maliciously-secure, and supports generic computation. As we show in §2.8, though, AgMPC is
orders of magnitude slower than OCQ.

DJoin [103] and private intersection-sum [71] use multi-party computation to provide certain
SQL operators. DJoin supports only count queries over equi-joins, while private intersection-sum
supports sum queries over set intersections. Both assume a passive attacker and incur high overhead.

UnLynx [54] and MedCo [118] use partially-homomorphic encryption to provide filter-aggregate
queries over multiple parties’ data and are secure against malicious queriers. Compared to these
systems, OCQ offers a greater range of functionality, but requires trust in hardware enclaves.
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Cryptographic approaches have also been used for coopetitive machine learning training and
prediction, which often involve secure aggregation [38, 19, 105, 64, 56, 100]. These approaches do
not offer general analytics, and they largely assume a passive attacker or two non-colluding servers.

Encrypted databases such as CryptDB [114], AlwaysEncrypted [97], and Seabed [112] perform
queries over encrypted data, but are not suited for the coopetitive setting.

2.9.2 Hardware enclave approaches
Systems for single-machine or distributed computation using hardware enclaves include SCONE [12],
Graphene [32], Ryoan [69], Haven [17], VC3 [121], Cipherbase [9], and Opaque [145]. These
systems assume a setting where all data is controlled by one party and are not designed for the
coopetitive setting. Prochlo [18] offers privacy-preserving outsourced computation over many
users’ data using hardware enclaves. However, it requires centralizing the data, which encounters
regulatory and logistical challenges in the coopetitive setting. Ohrimenko et al. [107] provides
oblivious machine learning in SGX, but does not consider analytics in the federated setting and
query planning. Oblix [98] focuses on oblivious point queries and does not support analytics and
the decentralized setting.

2.9.3 Unencrypted federated databases
Collaborative query planning (CQP) [144] is a proposal for decentralized query planning in a multi-
party setting where information sharing policy restricts centralized planning. Queries are instead
broken into subqueries, independently planned by each party, and reassembled into a federated plan.
CQP shares a setting with OCQ and complements it in the case where query planning information
such as statistics must be treated as sensitive. Preference-aware query optimization (PAQO) [53, 52]
is a proposal to extend SQL with users’ declarations for where their data should be processed in
a distributed database, with applications including restricting certain data from untrusted servers.
PAQO allows the user to treat these declarations, called intensional descriptions [52], as preferences
to be optimized rather than hard constraints. In future work, a similar approach could be applied to
OCQ.

2.9.4 Differential privacy
A complementary and synergetic direction to OCQ are differential-privacy systems like Flex [76]
and Chorus [77], which offer differential privacy for SQL queries via query rewriting. The queries
they produce can be used as input to OCQ. Hence, one could add differential privacy to a query result
before sharing it among the parties in OCQ. Shrinkwrap [16] provides differential privacy specifically
for federations, and can be used with OCQ to reduce the amount of padding for intermediate results.
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2.10 Summary
In this chapter we proposed OCQ, an efficient framework for oblivious coopetitive analytics using
hardware enclaves. OCQ’s contributions are its query planner design, which supports flexible
party-specific sensitivity rules, its mechanism for propagating and refining padding upper bounds
based on foreign key constraints, and its mixed-sensitivity algorithms.
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Chapter 3

GraphFrames: An Integrated API for
Mixing Graph and Relational Queries

We now turn to the topic of complex analytics, particularly graph analytics and querying. This
chapter builds upon GraphX [59], a framework I coauthored that enables large-scale graph processing
within Apache Spark rather than requiring a separate, specialized engine. In this chapter we study
how to generalize the ideas behind GraphX to support pattern matching as well as graph algorithms.

3.1 Introduction
Analyzing the graphs of relationships that occur in modern datasets is increasingly important, in
domains including commerce, social networks, and medicine [93, 28, 13]. To date, this analysis has
been done through specialized systems like Neo4J [137], Titan [132] and GraphLab [89]. These
systems offer two main capabilities: pattern matching to find subgraphs of interest [137, 65, 51] and
graph algorithms such as shortest paths and PageRank [91, 89, 59].

While graph analytics is powerful, running it in a separate system is both onerous and inefficient.
Most workflows involve building a graph from existing data, likely in a relational format, then
running search or graph algorithms on it, and then performing further computations on the result.
With isolated graph analysis systems, users have to move data manually and there is no optimization
of computation across these phases of the workflow. Several recent systems have started to bridge
this gap by running graph algorithms on a relational engine [59, 75, 50], but they have no support
for pattern matching and do not optimize across graph and relational queries.

We present GraphFrames, an integrated system that can combine relational processing, pattern
matching and graph algorithms and optimize computations across them. GraphFrames generalize the
ideas behind GraphX [59] and Vertexica [75] by maintaining arbitrary views of a graph (e.g., triplets
or triangles) and executing queries using joins across them. They then optimize execution across the
relational and graph portions of the computation. A key challenge in achieving this goal is query
planning. For this purpose, we extend a graph-aware dynamic programming algorithm by Huang et
al. [67] to select among multiple input views and compute a join plan. We also propose an algorithm
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gf = GraphFrame(vertices, edges)

triples = gf.pattern(
"(x:User)->(p:Product)<-(y:User)")

pairs.where(pairs.p.category == "Books")
.groupBy(pairs.p.name)
.count()

Listing 3.1: An example of the GraphFrames API. We create a GraphFrame from two tables of vertices and
edges, and then we search for all instances pattern, namely two users that bought the same product. The result
of this search is another table that we can then perform filtering and aggregation on. The system will optimize
across these steps, e.g., pushing the filter above the pattern search.

for suggesting new views based on the query workload.
To make complete graph analytics workflows easy to write, GraphFrames provide a declarative

API similar to “data frames” in R, Python and Spark [117, 111, 11] that integrates into procedural
languages like Python. Users build up a computation out of relational operators, pattern matching,
and calls to algorithms, as shown in Listing 3.1. The system then optimizes across these steps,
selecting join plans and performing algebraic optimizations. Similar to systems like Pig [110] and
Spark SQL [11], the API makes it easy to build a computation incrementally while receiving the
full benefits of relational optimization. Finally, the GraphFrames API is also designed to be used
interactively: users can launch a session, define views that will aid their queries, and query data
interactively from a Python shell. Unlike current tools, GraphFrames let analysts perform their
complete workflow in a single system.

We have implemented GraphFrames over Spark SQL [11], and made them compatible with
Spark’s existing DataFrame API. We show that GraphFrames match the performance of other
distributed graph engines for various tasks, while enabling optimizations across the tasks that would
not happen in other systems. Support for multiple views of the graph adds significant benefits: for
example, materializing a few simple views can speed up queries by 10× over the algorithm in [67].
In addition, viewing graph data as relations makes it easy to write domain-specific optimizations
such as attribute-based partitioning [147]. Finally, by building on Spark, GraphFrames interoperate
easily with custom UDFs (e.g., ETL code) and with Spark’s machine learning library and external
data sources.

In summary, our contributions are:

• A declarative API that lets users combine relational processing, pattern matching and graph
algorithms into complex workflows and optimizes across them.

• An execution strategy that generalizes those in Vertexica and GraphX to support multiple
views of the graph.

• A graph-aware query optimization algorithm that selects join plans based on the available
views.
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• An implementation and evaluation of GraphFrames on Spark.

3.2 Motivation
In this section, we highlight several use cases that require the mixing of relational processing, graph
pattern matching and iterative graph algorithms. We then argue that current systems cannot address
these use cases efficiently. We discuss how GraphFrames, the first unified graph analytics system,
can fix these problems.

3.2.1 Use Cases
E-Commerce One very important problem E-Commerce retailers need to solve is product
recommendation. One representative system implementation is shown in Figure 3.1.

Since user activities are captured and stored in different systems such as transactional databases
for purchase and web logs for click information and document databases or other NoSQL databases
for product review data. The first step is to perform Extract-Transform-Load (ETL) to extract
information on users, products, ratings and purchasing information from these relevant systems.
The output is typically written in a distributed file system such as HDFS.

The second step typically involves running collaborative filtering to compute predicted ratings of
users, i.e. to uncover latent ratings not present in the dataset. This is done for all users. Collabrative
filtering computation are ususally implemented as iterative graph algorithms in a graph parallel
processing engine such as GraphX, Apache Giraph. The output is also usually written in a distributed
file system or database for further processing.

Retailers typically do not rely on the results from the second step. They would like to
further customize their recommendation considering group behavior to perform more personalized
recommendation. This step involves finding user activity patterns to refine or rank recommendation
results. This step is well-suited for graph pattern matching. Relational processing after this step can
also be carried out, e.g. aggregation and filtering, joining with other datasets.

As shown in Figure 3.1, the whole pipeline crosses multiple systems, and data gets copied into
and out of the storage system multiple times. Each system has their own API and data structures.

Economic Graph LinkedIn is in the process of constructing the economic graph. The economic
graph can help connect employees and employers much better. For example, company A’s recruiter
might want to find employees who knows Golang and worked at Google. It then filter the list with
those who are connected to at least one employee at company A in three hops. LinkedIn might
perform candidate recommendations for all its supported companies.

Instagram Follow Graph Instagram suggests users who else they may want to follow. This
involves collaborative filtering to identify similar accounts who has already followed some other
users. This is currently performed in Apache Giraph. The results are then further processed for
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Figure 3.1: Graph Analytics Pipeline

account recommendation. This involves ranking other sources using boosted tree [28]. GraphFrames
can perform ETL, collaborative filtering, and boosted tree processing in a single system.

Genomics In genomics, scientists would like to find some patterns. For example, find clones with
name YWXD1000 and type YAC [13]. They then may perform clustering on the found patterns.
GraphFrames can easily handle this use case which combines graph pattern matching and clustering.

3.2.2 Challenges and Requirements
All the above use cases require a combination of Extract-Transform-Load (ETL), iterative graph
algorithms, and graph pattern matching. For example, to find users with similar interests in Amazon,
we need to do ETL to extract the graph. We then perform collaborative filtering to fill in the missing
edges between users and products. With the user-product rating graph, we can use pattern matching
to find users who cobought similar products. For computation in the economic graph, we need
graph pattern matching to find related candidates. We can run iterative graph algorithms to identify
community of users of similiar skill sets. Instagram suggests users to follow by extracting the follow
graph in an ETL step, running collaborative filtering using Apache Giraph, and ranking potential
accounts to suggest using a separate machine learning system. For genomics, we need graph pattern
matching and iterative graph algorithm to perform clustering.

However, there is currently no single system capable of efficiently executing all three computations:
relational processing or dataflow processing, graph pattern matching, and iterative graph algorithms.
As shown in Figure 3.1, a typical graph analytics pipeline may begin by using a dataflow system
such as Apache Hadoop MapReduce or Apache Spark to load a dataset from HDFS and extract
the graph. Once the graph is extracted, it may be written back into HDFS. Then Apache Giraph
or GraphX will process the graph and output the results. For the Amazon use case, graph pattern
matching is then performed to compute users who bought similar products. The analytics pipeline
can be repeated many times during exploratory studies.
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There are three major drawbacks of the current implementation.

• The graph analytics pipeline crosses different systems multiple times. Intermediate results are
written into a distributed file system. This has serious performance overheads. It can not keep
up with interative exploratory studies.

• No end-to-end optimization can be carried out and no sharing of intermediate state and data
structures.

• Different systems have different APIs. There is no single abstraction to ease system develop-
ment.

3.2.3 Need for a Unified System
To support graph analytics in batch and interactive model, the system needs to be responsive and
support a unified programming model. Indeally, we would like a unified system to perform ETL,
iterative graph algorithms and graph pattern matching.

GraphFrames provides the ability to stay within a single framework throughout the analytics
process. This removes the need to learn and support mutiple systems (e.g., Figure 3.1) and plumbing
to move between systems. As a result, it is substantially easier to interactively transform, and
compute on large graphs and share data-structures across stages of the pipeline. GraphFrames
support the above-mentioned use case very well. GraphFrames built on top of Spark DataFrames
can perform powerful ETL processing, e.g. to construct the economic graph. GraphFrames support
a concise and declarative API for graph pattern matching and iterative graph algorithms. It is
languaged integrated with Scala. This makes it easy to use language features to create user defined
functions (UDFs).

3.3 GraphFrame API
The main programming abstraction in GraphFrames’ API is a GraphFrame. Conceptually, it
contains of two relations (tables) representing the vertices and edges of the graph, as well as a set of
materialized views of subgraphs. The vertices and edges may have multiple attributes that are used
in queries. The views are defined using patterns to match various shapes of subgraphs, as we shall
describe in Section 3.3.2. For example, a user might create a view of all the triangles in the graph,
which can then be used to quickly answer other queries involving triangles.

GraphFrames expose a concise language-integrated API that unifies graph analytics and relational
queries. We based this API on DataFrames, a common abstraction for data science in Python and
R [111, 117] that is also available as a declarative API on Spark SQL [11]. In this section, we first
cover some background on DataFrames, and then discuss the additional operations available on
GraphFrames. We demonstrate the generality of GraphFrames for analytics by mapping the core
primitives in GraphX into GraphFrame operations. Finally, we discuss how GraphFrames integrate
with the rest of Apache Spark (e.g., the machine learning library).



40

All the code examples are shown in Python. We show the GraphFrame API itself in Scala
because it explicitly lists data types.

3.3.1 DataFrame Background
DataFrames are the main programming abstraction for manipulating tables of structured data in
R, Python, and Spark. Different variants of DataFrames have slightly different semantics. For the
purpose of this chapter, we describe Spark’s DataFrame implementation, which we build on [11].
Each DataFrame contains data grouped into named columns, and keeps track of its own schema.
A DataFrame is equivalent to a table in a relational database, and can be transformed into new
DataFrames using various relational operators available in the API.

As an example, the following code snippet computes the number of female employees in each
department by performing aggregation and join between two data frames:
employees
.join(dept, employees.deptId == dept.id)
.where(employees.gender == "female")
.groupBy(dept.id, dept.name)
.agg(count("name"))

employees is a DataFrame, and employees.deptId is an expression representing the deptId
column. Expression objects have many operators that return new expressions, including the usual
comparison operators (e.g., == for equality test, > for greater than) and arithmetic ones (+, -, etc).
They also support aggregates, such as count("name").

Internally, a DataFrame object represents a logical plan to compute a dataset. A DataFrame
does not need to be materialized, until the user calls a special “output operation” such as save. This
enables rich optimization across all operations that were used to build the DataFrame.1

In terms of data type support, DataFrame columns support all major SQL data types, including
boolean, integer, double, decimal, string, date, and timestamp, as well as complex (i.e., non-atomic)
data types: structs, arrays, maps and unions. Complex data types can also be nested together to
create more powerful types. In addition, DataFrame also supports user-defined types [11].

3.3.2 GraphFrame Data Model
A GraphFrame is logically represented as two DataFrames: an edge DataFrame and a vertex
DataFrame. That is to say, edges and vertices are represented in separate DataFrames, and each of
them can contain attributes that are part of the supported types. Take a social network graph for an
example. The vertices can contain attributes including name (string), age (integer), and geographic
location (a struct consisting of two floating point values for longitude and latitude), while the edges
can contain an attribute about the time a user friended another (timestamp). The GraphFrame model
supports user-defined attributes with each vertex and edges, and thus is equivalent to the property

1This aspect of Spark DataFrames is different from R and Python; in those languages, DataFrame contents are
materialized eagerly after each operation, which precludes optimization across the whole logical plan [11].
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graph model used in many graph systems including GraphX and GraphLab. GraphFrame is more
general than Pregel/Giraph since GraphFrame supports user-defined attributes on edges.

Similar to DataFrames, a GraphFrame object is internally represented as a logical plan, and as a
result the declaration of a GraphFrame object does not necessarily imply the materialization of its
data.

Next, we explain how a GraphFrame can be constructed and operations available on them.

class GraphFrame {
// Different views on the graph
def vertices: DataFrame
def edges: DataFrame
def triplets: DataFrame
// Pattern matching
def pattern(pattern: String): DataFrame

// Relational-like operators
def filter(predicate: Column): GraphFrame
def select(cols: Column*): GraphFrame
def joinV(v: DataFrame, predicate: Column)
: GraphFrame
def joinE(e: DataFrame, predicate: Column)
: GraphFrame

// View creation
def createView(pattern: String): DataFrame

// Partition function
def partitionBy(Column*) GraphFrame
}

Listing 3.2: GraphFrame API in Scala

Graph Construction

A GraphFrame can be constructed using two DataFrames: a vertex DataFrame and an edge
DataFrame. A DataFrame is merely a logical view (plan) and can support a wide range of sources
that implement a data source API. Some examples of a DataFrame input include:

• a table Spark SQL’s system catalog
• a table in an external relational database through JDBC
• JSON, Parquet, Avro, CSV files on disk
• a table in memory in columnar format



42

• a set of documents in ElasticSearch or Solr
• results from relational transformations on the above

The following code demonstrates constructing a graph using a user table in a live transactional
database and the edges table from some JSON based log files in Amazon S3:
users = read.jdbc("mysql://...")
likes = read.json("s3://...")
graph = GraphFrame(users, likes)

Again, since DataFrames and GraphFrames are logical abstractions, the above code does not
imply that users, likes, or graph are materialized.

Edges, Vertices, Triplets, and Patterns

A GraphFrame exposes four tabular views of a graph: edges, vertices, triplets, and a pattern view
that supports specifying graph patterns using a syntax similar to the Cypher pattern language in
Neo4J [137].

The edges view and the vertices view should be self-evident. The triplets view consists of each
edge and its corresponding source and destination vertex attributes. It can actually be constructed
using the following 3-way join:
e.join(v, v.id == e.srcId)
.join(v, v.id == e.dstId)

We provide it directly since the triplets view is used commonly enough. Note that edges, vertices,
and triplets views are also the three fundamental views in GraphX, and GraphFrames is at least as
expressive as GraphX from the perspective of views.

In addition to the three basic tabular views, a GraphFrame also supports a pattern operator that
accepts a graph pattern in a Cypher-like syntax and returns a DataFrame consisting of edges and
vertices specified by the pattern. This pattern operator enables easy expression of pattern matching
in graphs.

Typical graph patterns consist of two nodes connected by a directed edge relationship, which
is represented in the format ()-[]->(). Nodes are specified using parentheses (), and relationships
are specified using square brackets, []. Nodes and relationships are linked using an arrow-like
syntax to express edge direction. The same node may be referenced in multiple relationships,
allowing relationships to be composed into complex patterns. Additionally, nodes and edges can be
constrained using inline type predicates expressed using colons.

For example, the following snippet shows a user u who viewed both item x and item y.
(u:Person)-[viewed]->(x: Item), u-[viewed]->(y: Item)

The resulting DataFrame from the above pattern should contain 3 structs: u, x, and y.
Note that the pattern operator is a simple and intuitive way to specify pattern matching. Under

the hood it is implemented using the join and filter operators available on a GraphFrame. We
provide it because it is often more natural to reason about graphs using patterns than using relational
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Figure 3.2: View Reuse

joins. The pattern operator can also be combined with other operators, as demonstrated in the next
subsection.

Programatic Pattern Generation and Pattern Library Patterns such as cliques can be cum-
bersome to specify for interactive queries. We therefore provide a pattern library to programmatically
generate and compose patterns. For example, a star of size K can be specified as (hub, spokes) =
star(nodePred, edgePred, K). nodePred and edgePred filters out nodes and edges. The pattern
returns a hub and a list of K-1 spokes. Their names can then be used in further pattern specification,
or materialized immediately.

View Creation

To enable reuse of computation, GraphFrames support view creation. The system materializes the
view internally and uses it to speed up subsequent queries. For example, in Figure 3.2, if we create a
view on triplets, we can reuse it to create a triangle view. The system will avoid rematerializing the
triplet view for computing the triangle view. We will discuss how our query planner performs view
selection to optimize the computation in the next section.

Relational Operators

Since a GraphFrame exposes the four tabular views, it already supports all the relational operators
(e.g. project, filter, join) available on these tabular views. Relational operators on these views can
already support many graph analysis algorithms. For example, the following snippet computes the
out-degree for each vertex:
g.edges.groupBy(g.edges.srcId).count()

In addition to relational operators on the tabular views, a GraphFrame also includes a few
relational-like operators on a graph:

Project The select operator projects the relevant columns of the corresponding vertices
DataFrame and edges DataFrame. The result is a graph with a subset of the vertex attributes
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and edge attributes. For example, gf1 = gf.select(gf.vertices.age, gf.edges.likes) projects only the
age attribute on vertices and likes attribute on edges. The select operator also supports all the
expressions available in DataFrames, including equality, arithmetics, string functions.

Filter The filter operator, as the name implies, filters the graph based on edge or vertex attributes
and returns the subgraph matching the filter. If a node is filtered, all the edges associated with it will
be filtered out, and vice versa.

Join The joinV operator creates a new graph by joining the existing graph’s vertices with a
different DataFrame and produces a new graph with more attributes for each vertex. It supports all
common join types such as inner join, left outer, right outer, full outer, and semi. It has two common
use cases. The first is to enhance a graph by filling in more attributes. For example, the following
snippet enhances an existing social graph by adding user interest information:
g.joinV(interests,
g.vertices.userId == interests.userId,
"right_outer")

The second use case is to combine joinV with select to model the Apply-Scatter phase in
the Gather-Apply-Scatter (GAS) abstraction in GraphLab. This is similar to GraphX’s leftJoinV
operator, except the GraphFrame join is more general because it can join on arbitrary attributes.

Similarly, the joinE operator creates a new graph by joining the existing graph’s edges with a
different DataFrame and produces a new graph with more attributes for each edge.

Attribute-Based Partitioning

Similar to GraphX, GraphFrames by default partitions a graph based on the natural partitioning
scheme of the edges. In [59], it was shown that natural partitioning can lead to great performance
when the input is pre-partitioned.

In addition, GraphX supports partitioning a graph based on arbitrary vertex or edge attributes.
This is more general than GraphX or Giraph because they only support partitioning on vertex
identifiers. This enables users to partition a graph based on their domain-specific knowledge that
can lead to strong data locality and minimize data communications.

Take the Amazon dataset [93] for example. The following snippet partitions the bipartite graph
based on product categories:
g.partitionBy(g.vertices.productCategory)

Intuitively, customers are more likely to buy products in the same category. Partitioning the
Amazon graph this way puts products of the same categories and their associated edges closer to
each other. In Section 3.6.4, we demonstrate that this partitioning schema does lead to substantial
reduction in data communication.
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User-defined Functions

GraphFrame also supports arbitrary user-defined functions (UDFs) in Scala, Java, and Python. The
udf function accepts a lambda function as input and creates an expression that can be used in
relational and graph projection. For example, given a model object for a machine learning model,
we could create a UDF predicting some user behavior based on users’ age and registrationTime
attributes.
model: LogisticRegressionModel = ...
predict = udf(lambda x, y: model.predict(Vector(x, y)))
g.select(
predict(g.vertices.age, g.vertices.registrationTime))

Unlike database systems which often require UDFs to be defined in a separate programming
environment that is different from the primary query interfaces, our GraphFrame API supports
inline definition of UDFs. We do not need complicated packaging and registration process found in
other database systems.

3.3.3 Generality of GraphFrames
As simple as it is, the GraphFrame abstraction is powerful enough to express many workloads.
We demonstrate the expressiveness by mapping all GraphX operators to operators in GraphFrame.
Since GraphX can be used to model the programing abstractions in GraphLab, Pregel, and BSP [59],
by mapping GraphX operations to GraphFrame, we demonstrate that GraphFrame is at least as
expressive as GraphX, GraphLab, Pregel, and BSP.

GraphX’s operators can be divided into three buckets: collection views, relational-like operators,
and graph-parallel computations. Section 3.3.2 already demonstrated that GraphFrame provides all
the three fundamental collection views in GraphX (edges, vertices, and tripets).

All relational-like operators in GraphX can be trivially mapped one-to-one to GraphFrame
operators. For example, the select operator is a superset of GraphX’s mapV and mapE operators,
and joinV and joinE are the generalized variant of GraphX’s leftJoinV and leftJoinE operators.
The filter operator is a more general version of GraphX’s subgraph operator.

In GraphX, graph-parallel computations consist of aggregateMessages2 and its variants. Similar
to the Gather phase in the GAS abstraction, aggregateMessages encodes a two-stage process of
graph-parallel computation. Logically, it is the composition of a projection followed by an
aggregation on the triplets view. In [59], it was illustrated using the following SQL query:
SELECT t.dstId, reduceF(mapF(t)) AS msgSum
FROM triplets AS t GROUP BY t.dstId

This SQL query can indeed be expressed using the following GraphFrame operators:
g.triplets
.select(mapF(g.triplets.attribute[s]).as("mapOutput"))
.groupBy(g.triplets.dstId)
.agg(reduceF("mapOutput"))

2aggregateMessages was called mrTriplets in [59], but renamed in the open source GraphX system.
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We demonstrated that GraphFrame can support all the operators available in GraphX and
consequently can support all operations in GraphLab, Pregel, and BSP. For convenience, we
also provide similar APIs as GraphX’s Pregel variant in GraphFrame for implementing iterative
algorithms. We have also implemented common graph algorithms including connected components,
PageRank, triangle counting.

3.3.4 Spark Integration
Because GraphFrames builds on top of Spark, this brings three benefits. First, GraphFrames can
load data from and save data into existing Spark SQL data sources such as HDFS files in Json,
Parquet format, HBASE, Cassandra, etc. Second, GraphFrame can use a growing list of machine
learning algorithms in MLlib. Third, GraphFrames can call Spark DataFrame API. As an example,
the following code reads user-product rating information from HDFS into a DataFrame. We then
select the review text and use user ID and product ID pair as the key. We can call the topic model to
learn the topics of reviews. With the topics, we can compute similar products, etc as in [93] and do
graph pattern matching to uncover user communities who bought similar products.
corpus = rating.read.parquet("hdfs:///...")
.select(pair(user_id, product_id), review_txt)
ldaModel = LDA.train(corpus, k=10000)
topics = ldaModel.topicsMatrix()

3.3.5 Putting It Together
We show that the ease of developing an end-to-end graph analytics pipeline with an example in
Listing 3.3. As we discussed in Section 3.2, for ecommerce, we would like to group users of similar
intersts.

The first step is to perform ETL to extract information on users, products, ratings and cobought.
They are represented as DataFrames. We then construct a GraphFrame graph. The vertices contain
both user nodes and product nodes. The edges are between users and products. An edge exists
between a user and a product if the user rated the product. This is a bipartite graph.

For the second step, we run collaborative filtering to compute predicted ratings of users, i.e. to
uncover latent ratings not present in the dataset. We then create a graph densifiedGraph with the
same vertex node as graph and more edges by adding product-product edges. A product-product
edge is added if the two are cobought.

As the final step, we will find users who have good ratings for at least two products together.
Instead of finding pairs of users, we can find group of users of size K .

This example shows the ease of using the GraphFrames API. We performed ETL, iterative graph
algorithms and graph pattern matching in one system. It is much more intuitve than coding the
pipeline in SQL. Language integration also makes it easy to plug in UDFs. For example, we can
create a UDF to extract product topics and topics user interested.

In the next section, we will highlight the opportunities for joint optimization.
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# 1. ETL
# users: [id: int, attributes: MapType(user_name)]
# products: [id: int, attributes: MapType(brand,
# category, price)]
# ratings: [user_id: int, product_id: int,
# rating: int, review_text: string]
# cobought: [product_1_id: int, product_2_id: int]

vertices = users.union(products)
graph = GraphFrame(vertices, ratings)

# 2. Run ALS to get top 1M inferred recommendations
# predictedRatings: [user_id: int, product_id: int,
# predicted_rating: int]
predictedRatings = ALS.train(graph, iterations=20)
.recommendForAll(1e6)

densifiedGraph = GraphFrame(vertices,
ratings.union(predictedRatings).union(cobought))

# 3. Find groups of users with the same interests
densifiedGraph.pattern("""(u1)-[r1]->(p1);
(u2)-[r2]->(p2); (p1)-[]->(p2)""")
.filter("r1.rating > 3 && r2.rating > 3")
.select("u1.id", "u2.id")

Listing 3.3: GraphFrame End-to-End Example in Python

3.4 Query Optimization
GraphFrame operators, including both the graph as well as the relational operators, are compiled
to relational operators. Thereafter, we optimize the complete pipeline by extending Catalyst. To
do this, the GraphFrame query planner extends the dynamic programming algorithm of Huang et
al. [67] to the distributed setting, with two major changes:

View rewrite The user can register arbitrary materialized views and the planner will automatically
rewrite the query to reuse a materialized view when appropriate. This is useful because pattern
queries could be very expensive to run and reusing computations across several queries can improve
the user experience. GraphFrame API also allows users to get suggestions for the views to create.
Finally, we also describe how we can further extend the query planning to create the views adaptively.

Vertex cut/2D partitioning-aware planning The system partitions distributed graphs using
vertex cuts, which are more communication-efficient than the more commonly-used edge cuts. The
planner is aware of the vertex cut layout as well as a 2D partitioning heuristic which provides a
communication bound, and it chooses join sites appropriately to minimize communication.

By building on top of Spark SQL, GraphFrames also benefit from whole-stage code generation.
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3.4.1 Query Planner
The dynamic programming algorithm proposed in [67] recursively decomposes a pattern query into
fragments, the smallest fragment being a set of co-partitioned edges, and builds a query plan in a
bottom-up fashion. The original algorithm considers a single input graph. In this chapter, we extend
it to views, i.e., the algorithm matches the views in addition to matching the pattern query. The
input to the algorithm is the base graph G, a set of graph views {GV1,GV2, ..,GVn}, and the pattern
query Q = (Vq,Eq). Each graph view GVi consists of the view query that was used to create the
view and a cost estimator CEi. The algorithm also takes the partitioning function P as an input, as
opposed to a fixed partitioning in the original algorithm. The output is the best query plan (lowest
cost) to process the query Q.

The algorithm starts by recursively decomposing the pattern query into smaller fragments and
building the query plan for each fragment. At the leaf level, i.e., when the fragment consists of
only a single edge, we lookup the edge (along with its associated predicates) in the base graph. At
higher levels, we combine the child query plans to produce larger plans. At each level, we also check
whether the query fragment matches with the view query of any of the graph views. In case a match
is found, we add the view as a candidate solution to the query fragment. This also takes care of
combining child query plans from multiple graph views, i.e., we consider all combinations of the
graph views and later pick the best one. Algorithm 1 shows the extended algorithm for finding plans
using views. Each time a new plan is generated for a query fragment, we match the fragment with
the set of graph views, as shown in blue in Algorithm 1. Algorithm 2 shows the pseudocode for
view matching. For every query plan solution, we check whether its query fragment is equivalent to
a view query3 and add the view to the solution set in case a match is found. Note that we keep both
the solutions, one which uses the view and one which does not, and later pick the best one. Also
note that we match the views on the logical query fragments in a bottom-up fashion, i.e., a view
matched a lower levels could still be replaced by a larger view (and thus more useful view) at the
higher levels.

Combining graph views, however, produces a new (intermediate) graph view and so we need to
consider the new (combined) cost estimate when combining it further. To handle this, we keep track
of four things in the query plan solution at each level: (i) the query plan, (ii) the estimated cost,
(iii) the partitioning, and (iv) the cost estimator. When combining the solutions, we combine their
cost estimates as well4.

Figure 3.3 illustrates the query planning using views. The system takes the given pattern query
and the three graph views, V1, V2, and V3 as inputs. The linear decomposition (recursively) splits
the query into two fragments, such that at least one of them is not decomposable (i.e., it is either a
single edge or co-partitioned set of edges). The lower left part of Figure 3.3 shows one such linear
decomposition and the corresponding candidate query plan using views. Here we match a view
with a query fragment only when it contains the exact same set of edges. The bushy decomposition
generates query fragments none of which may be non-decomposable (i.e., each query fragment

3Instead of looking for exact match, the algorithm could also be extended to match views which contain the query
fragment, as in traditional view matching literature.

4We can do this more efficiently by pre-computing the estimates for all combinations of the graph views.
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Algorithm 1: FindPlanWithViews
Input :query Q; graph G; views GV1, ..,GVn; partitioning P
Output
:

Solutions for running Q

1 if Q.sol != null then
2 return null; // already generated plans for Q
3 if Q has only one edge e = (v1, v2)) then
4 Q.sol = (“match e", scan cost of Ei, P(ei), cei);
5 Q.sol = Q.sol ∪MatchViews(Q.sol, views);
6 return;
7 if all edges in Q are co-partitioned w.r.t P then
8 Q.sol = (“co-l join of Q",co-l join cost i, P(Q), cei);
9 Q.sol = Q.sol ∪MatchViews(Q.sol, views);
10 return;
11 T = φ ;
12 LD = LinearDecomposition(Q) ;
13 foreach linear decomposition (q1,q2) in LD do
14 FindPlan(q1);
15 FindPlan(q2 );
16 linearPlans = GenerateLinearPlans(q1,q2);
17 T = T ∪ linearPlans;
18 T = T ∪MatchViews(linearPlans, views);
19 LDAGs = GenerateLayeredDAGs(Q) ;
20 foreach layered DAG d in LDAGs do
21 (q1,q2, ...,qn−1,qn) = BushyDecomposition(d) ;
22 for i from 1 to n do
23 FindPlan(qi );
24 bushyPlans = GenerateBushyPlans(q1, ...,qn);
25 T = T ∪ bushyPlans;
26 T = T ∪MatchViews(bushyPlans, views);
27 Q.sol = EliminateNonMinCosts(T);
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Algorithm 2: MatchViews
Input :query plan solution set S; graph views GV1, ..,GVn

Output
:

query plan solution set from matching views

1 V = φ ;
2 foreach Solution S in S do
3 foreach Graph View GVi do
4 queryFragment = S.plan.query;
5 viewQuery = GVi.query;
6 if viewQuery is equivalent to queryFragment then
7 V = V ∪ (“scan", scan cost of GVi, GVi.p, CEi);

8 return V;
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S.No. View
1 A← B, A← C, B← F
2 A← B, A← C, C ← E
3 A← B, A← C, D← B
4 A← B, A← C, E ← C
5 B← A, B← D, E ← B

Table 3.1: Top-5 views of size three suggested by the system for the workload in Figure 3.5.

could be further split into linear or bushy decompositions). The lower right part of Figure 3.3 shows
one such bushy decomposition. We can see that the corresponding candidate query plan is different
and could not have been generated by the linear decomposition alone.

Our extend view matching algorithm can still leverage all of the optimizations proposed by
Huang et al. [67], including considering co-partitioned edges as the smallest fragment since they can
be computed locally, performing both linear and bushy decomposition of the queries, and applying
cycle-based optimization.

3.4.2 View Selection via Query Planning
The assumption so far was that the user manually creates the views. The system then generates
query plans to process pattern queries using one or more of them. However, in some cases, the user
may not be able to select which views to create. The question therefore is whether the system can
suggest users the views to create in such scenarios. Notice that the nice thing about recursive query
planning is that we are anyways traversing the space of all possible query fragments that are relevant
for the given query. We can consider each of these query fragments as candidate views. This means
that every time we generate a query plan for a fragment, we add it to a global set of candidate views.

In the end, we can rank the candidate views using different utility functions and present the
top ones. One such function could be the ratio of cost, i.e., savings due to the view, and size, i.e.,
the spending on the view. Recall that each query plan solution (the candidate view) contains its
corresponding cost estimator as well, which could be used to compute these metrics. The system
could also collect the candidate views over several queries before presenting the interesting ones to
the user. We refer the readers to traditional view selection literature for more details [35].

The key thing to take away from here is that we can generate interesting candidate views as
a side-effect of dynamic programming based query planning. This means that the user can start
running his pattern queries on the input graph and later create one or more of the suggested views to
improve the performance. To illustrate, we ran the view suggestion API for the six query workload
from Figure 3.5. Table 3.1 shows the top-5 views of size three produced by the system.
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3.4.3 Adaptive View Creation
We discussed how the system can help users to select views. However, the views are still created
manually as an offline process. This is expensive and often the utility of a view is not known
a-priori. Let us now see how we can leverage the query planning algorithm to adaptively create the
graph views. The key idea is to start by materializing smaller query fragments and progressively
combine them to create views of larger query fragments. To do this, we annotate each solution
with the list of graph views it processes, i.e., solution s now have five pieces of information:
(plan,cost,partitioning,estimator, {GVi}). When combining the child query plans, we union the
graph views from the children.

When the algorithm runs for the first time there is only a single input graph view which is the
base graph itself. We look at all the leaf level query plans, and materializing the one(s) having the
maximum utility, i.e., they are the most useful. In each subsequent runs, we consider materializing
the query plans which combine existing views, i.e., we essentially move the view higher up in the
query tree. We still consider materializing new leaf level plans from the base graph. Rather than
combining the graph views greedily, a more fancy version can also keep counters on how many
times each graph view is used. We can then combine the most frequent as well as most useful graph
views.

The above adaptive view creation technique has two major advantages. First, it amortizes the
cost of creating the view over several queries. This is because creating views at the lower levels
involve fewer joins and hence it is cheaper. The system only spends more resources on creating a
view in case it is used more often. Second, this approach starts from more general leaf level views,
which could be used across a larger set of queries, and gradually specializes to larger views higher
up in the query tree. This is useful in scenarios where a user starts from ad-hoc analysis and later
converges to a specific query workload – something which is plausible in pattern matching queries.

3.5 Implementation
We implemented GraphFrames as a library on top of Spark SQL. The library consists of the
GraphFrame interface described in Section 3.3, a pattern parser, and our view-based query planner.
We also made improvements to Spark SQL’s Catalyst optimizer to support GraphFrames.

Each GraphFrame is represented as two Spark DataFrames (a vertex DataFrame and a edge
DataFrame), a collection of user-defined views. Implementations of each of the GraphFrame
methods follow naturally from this representation, and the GraphFrame interface is 250 lines of
Scala. The GraphFrame operations delegate to the pattern parser and the query planner.

Our query planner is implemented as a layer on top of Spark Catalyst, taking patterns as input,
collecting statistics using Catalyst APIs, and emitting a Catalyst logical plan. At query time, the
planner receives the user-specified views from the GraphFrame interface. The planner additionally
can suggest views when requested by the user. The query planner also accepts custom attribute-based
partitioners which it uses to make more accurate cost estimates and incorporates into the generated
plans.
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Figure 3.4: Pattern queries [67]

To simplify the query planner, we modified Catalyst to support join elimination when allowed by
the foreign key relationship between vertices and edges. This change required adding support for
unique and foreign key constraints on DataFrames to Spark SQL. Join elimination enables the query
planner to emit one join per referenced vertex, and joins unnecessary to produce the final output will
be eliminated. This change required 800 lines of Scala.

Our pattern parser uses the Scala parser combinator library and is implemented in 50 lines of
Scala.

Finally, building on top of Spark enables GraphFrames to easily integrate with data sources and
call its machine learning libraries.

3.6 Evaluation
In this section we demonstrate that GraphFrames match the performance of specialized graph query
engines, greatly exceed their performance in some cases by materializing appropriate views, and
outperform a mix of systems on analytics pipelines by avoiding communication between systems
and optimizing across the entire pipeline.

All experiments were conducted on Amazon EC2 using 8 r3.2xlarge worker nodes in
November 2015. Each node has 8 virtual cores, 61 GB of memory, and one 160 GB SSD.

3.6.1 Performance vs. Specialized Systems
We first show that GraphFrames match the performance of specialized graph query engines. We use
the results reported by [67] as a baseline.
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Figure 3.5: Performance of GraphFrames compared to a specialized engine for graph queries.

We ran the six queries shown in Figure 3.4 on a web graph dataset released by Google in
2002 [86]. This graph has 875,713 vertices and 5,105,039 edges. It is the largest graph used for
these queries in [67]. In Figure 3.5 we compare the performance of GraphFrames to the results
from [67], which were obtained on a 10-node cluster. GraphFrames match the baseline performance
for each of the six queries. Since the two systems use identical query planning algorithms in the
absence of views, differences in performance are due to the different cluster configurations and
execution engines (PostgreSQL in the baseline compared to Spark in the case of GraphFrames).

3.6.2 Impact of Views
We next demonstrate that materializing the appropriate views reduces query time, and in some cases
can greatly improve the plan selection. We reran the queries in Figure 3.4 on the same dataset.
However, before running these queries we registered the views listed in Table 3.2. We then ran each
query with and without view rewrite enabled. The results are reported in Figure 3.6.

Queries 1, 2, 3, and 6 do not benefit much from views, because the main cost in these queries
comes from generating unavoidably large intermediate result sets. For example, in Query 1 the
bidirectional edge between vertices A and B can use the 2-cycle view, but by far the more expensive
part of the plan is joining C and D to the view, because this generates all pairs of such vertices.

However, in Query 4 we observe a large speedup when using views. In Query 4, the order-
of-magnitude speedup is because the view equivalence check exposes an opportunity to reuse
an intermediate result that the planner would otherwise miss. This is because the reuse requires
recognizing that two subgraphs are isomorphic despite having different node labels, a problem that
is difficult in general but becomes much easier with the right choice of view. In particular, the
Triangle view is applicable both to the BCD triangle and the BCE triangle in Query 4, so the planner
can replace the naive 5-way join with a single self-join of the Triangle view with equality constraints
on vertices B and C.
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View Query Size in Google graph
2-cycle (a)->(b)->(a) 1,565,976
V (c)<-(a)->(b) 67,833,471
Triangle (a)<-(b)->(c)->(a) 28,198,954
3-cycle (a)->(b)->(c)->(a) 11,669,313

Table 3.2: Views registered in the system to explore their impact on queries in Figure 3.4.
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Figure 3.6: Performance of pattern queries with and without views

Additionally, in Query 5, precomputing views speeds up the main query by a factor of 2 by
moving the work of computing the BCD and BED triangles from the main query into the Triangle 2
and 3-cycle views. These views are expensive to create, and since they are common patterns it is
reasonable to precompute them.

3.6.3 End-to-End Pipeline Performance
We next evaluate the end-to-end performance of a multi-step pipeline that finds groups of users with
the same interests in an Amazon review dataset. We will see that using Spark and GraphFrames for
the whole pipeline allows more powerful optimizations and avoids the overhead of moving data
between system boundaries.

We ran the pipeline described in Listing 3.3 on an Amazon review dataset [93] with 82,836,502
reviews and 168,954,245 pairs of related products. Additionally, after finding groups of users with
the same interests in step 3, we aggregated the result for each user to find the number of users with
the same interests. To simulate running this pipeline without GraphFrames as a comparison point,
we ran each stage separately using Spark, saving and loading the working data between stages. In
addition to the I/O overhead, this prevented projections from being pushed down into the data scan,
increasing the ETL time. Figure 3.7 shows this comparison.
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3.6.4 Attribute-Based Partitioning Algorithm
GraphFrames supports partitioning based on arbitrary vertex or edge attributes, as discussed in
Section 3.3.2. Its API enables users to optimize graph partitioning based on their domain-specific
knowledges. We conduct an experiment to demonstrate the benefit of applying this API on the
Amazon dataset [93].

We first apply random hash partitioning to the Amazon graph, and measure the average number
of partitions each customer vertex belong to. This baseline represents the average number of times
the system needs to replicate vertex data in GraphX, GraphLab, and GraphFrame. We then apply
partitioning based on the product categories and measure the same metric, For items that belong in
multiple categories, we only use the first category.

Figure 3.8 compares the average number of partitions for customer vertices in the two different
partitioning schemes, using varying number of partitions. Partitioning by product categories leads
to approximately two fold in data locality (i.e. half data communication).

3.7 Discussion
Although we have presented one implementation of GraphFrames, we believe that the abstraction
is general and could benefit from other execution engines as well as additional optimizations. We
discuss several ways in which the system can be extended.
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Figure 3.8: Benefit of Attribute-Based Partitioning

3.7.1 Execution on RDBMS Engines
Although we choose to integrate with Spark, GraphFrames could also execute over relational
database engines, in a manner similar to Vertexica [75] and Grail [50]. All of the operations
on GraphFrames compile into a relational operator tree, so they should be able to execute on an
RDBMS engine. The main challenges in running GraphFrames over an RDBMS will be integrating
our query planning algorithm (which may be possible through optimizer hints) and supporting
user-defined functions (which we may replace with UDFs available in the database). Nonetheless,
the system would retain the same high-level API for building workflows, and would benefit from
more optimized performance and from the transactional, access control and recovery features of the
DBMS.

3.7.2 Physical Storage
Since GraphFrames are built on top of Spark SQL, they are currently represented physically as
vertex and edge tables using Spark SQL’s compressed columnar representation [11] (and similar
tables for any views). There are other physical representations that graph data may come in, such as
sparse matrices, adjacency lists and triplets. We would like to explore using these as “first-class”
formats for input data and letting the system work against these formats directly.

3.7.3 Additional Join Algorithms
Our current optimization algorithm produces a tree of pairwise join operators. As part of future work,
we would like to support other options, such as one-shot join algorithms over multiple tables [1] and
worse-case optimal join algorithms [36]. It should be possible to integrate these algorithms into our
System-R based framework.
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3.7.4 Dynamically Updating Graphs
GraphFrames currently do not provide support for processing dynamic graphs. In the future, we
would like to develop efficient incremental graph update and processing support. We plan to leverage
the newly available IndexedRDD [8] project to do this over Spark, or a relational database engine as
an alternative backend. One interesting addition here will be deciding which graph views we wish
to maintain incrementally as the graph changes.

3.8 Related work
To our knowledge, GraphFrames is the first system that lets users combine graph algorithms,
pattern matching and relational queries in a single API, and optimizes computations across
them. GraphFrames builds on previous work in graph analytics using relational databases, query
optimization for pattern matching, and declarative APIs for data analytics.

Graph Databases Graph databases such as Neo4j [137] and Titan [132] focus on mostly on graph
queries, often using pattern matching languages like Cypher [137] and Gremlin [119]. They have
very limited support for graph algorithms such as PageRank and for connecting with relational
data outside the graph database. GraphFrames use the pattern matching abstraction from these
systems, but can also support other parts of the graph processing workflow, such as building the
graph itself out of relational queries on multiple tables, and running analytics algorithms in addition
to pattern matching. They then optimize query execution across this entire workflow. GraphFrames’
language-integrated API also makes it easy to call user-defined functions (e.g., ETL code) and,
in our Spark-based implementation, to call into Spark’s built-in libraries, giving users a single
environment in which to write end-to-end workflows.

Graph-Parallel Programming Standalone systems including Pregel, GraphLab, Trinity and
X-Stream [91, 89, 124, 120] have been designed to run graph algorithms, but they require separate
data export and import and thus make end-to-end workflows complex to build. GraphFrames use
similar parallel execution plans to many of these systems (e.g., the Gather-Apply-Scatter pattern)
while supporting broader workflows.

Graph Processing over RDBMS GraphX, Vertexica, Pregelix and Grail [59, 75, 25, 50] have
explored running graph algorithms on relational databases or dataflow engines. Of these, GraphX
materializes a triplets view of the graph to speed up the most common join in iterative graph
algorithms, while the others use the raw tables in the underlying database. GraphFrames generalize
the execution strategy in these systems by letting the user materialize multiple views of arbitrary
patterns, which can greatly speed up common types of queries. GraphFrames also provide a
much broader API, including pattern matching and relational queries, where these tasks can all be
combined, whereas previous systems only focused on graph algorithms.
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Query Planning for Pattern Matching Query planning for graph pattern matching has been
studied in many domains, including SPARQL, social networks, and the semantic web; [125], [55]
and [51] are some surveys on this work. Most of the early work assumes that the dataset fits in
memory on a single machine, and does not consider distributed plans. Several recent projects have
also explored distributed graph pattern matching. [128] and [143] optimize distributed pattern
matching for large vertex-labeled graphs and Resource Description Framework (RDF) graphs,
while [90] looks at graph simulation queries. Huang et al. [67] provide a System-R style dynamic
programming algorithm for this task, which takes into account the characteristics of graph (e.g., that
cycles will be more selective than arbitrary joins) to produce execution plans. Our work extends the
algorithm in [67] to support multiple subgraph views as inputs to the planning process, and also
proposes a mechanism for suggesting new views to build based on the user’s queries.

Language-Integrated APIs Finally, the GraphFrames API is inspired by other declarative APIs
for data processing, including Spark SQL DataFrames [11], Pig [110] and DryadLINQ [141]. These
APIs are designed to be “programmer-friendly” by embedding into a procedural language or offering
similar constructs, but still perform end-to-end relational optimization. Embedding into a procedural
language makes it easier to build complex workflows in a modular function (e.g., by breaking them
into functions) and to call UDFs. To our knowledge, GraphFrames are the first extension of this
type of API to graphs, through our pattern matching, subgraphing and view creation operators.
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Chapter 4

Arthur: Rich Post-Facto Debugging for
Production Analytics Applications

Large-scale complex analytics increasingly features long-running queries, unreliable hardware and
services, and heavy use of UDFs. This chapter proposes a debugger for distributed dataflow systems
that addresses these challenges while incurring near-zero runtime overhead.

4.1 Introduction
Cluster computing frameworks such as Hadoop [6] and Dryad [72] have been widely adopted
to enable sophisticated processing of large datasets. These systems provide a simple “data flow”
programming model consisting of high-level transformations on distributed datasets, and hide the
complexities of distribution and fault tolerance.

While these frameworks have been highly successful, debugging the parallel applications written
in them is hard. To solve correctness or performance issues, users must understand the actions of
thousands of parallel tasks, which produce terabytes of intermediate data across a cluster.

Debugging becomes especially difficult in production settings. Although tools for testing
assertions, tracing through data flows, and replaying code exist (e.g., Inspector Gadget [109],
Daphne [73], liblog [58], and Newt [43]), they invariably add overhead. For large-scale applications
running 24/7, even 10% overhead can be expensive, so most operators do not use these tools in
production, making bugs that occur in production time-consuming to diagnose and fix.

In this chapter, we present a new debugger, Arthur, that can provide these debugging features
at close to zero runtime overhead, using selective replay of parts of the computation. Unlike
previous replay debuggers for distributed systems [58, 63, 3, 4], which need to log a wide array of
non-deterministic events (e.g., message interleavings) and are therefore expensive, we achieve our
low overhead by taking advantage of the structure of modern data-parallel applications as graphs of
deterministic tasks. Task determinism is implicitly assumed by the fault and straggler mitigation
techniques in these frameworks [44, 72], but we use this same feature to efficiently replay parts of
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the task graph for debugging.1
While the core idea of selective replay is simple, we show that it can be used to implement a rich

set of debugging tools. These include:

• Forward and backward tracing of records through just the portion of the job that they affect.

• Interactive ad-hoc queries on intermediate datasets.

• Re-execution of any task in the job in a single-process profiler or debugger.

• Introduction of assertions or instrumentation (e.g., print statements) into the job.

To implement these features, Arthur must tackle several challenges. First, despite frameworks’
assumption of task determinism, user error may cause nondeterministic replay, making it impossible
to reconstruct a task’s output. We do not aim to reproduce nondeterministic results, but instead
detect them using checksums of task output across re-executions. We show that this checksumming
adds minimal overhead to the original execution.

Second, to enable interactive debugging, Arthur also needs to be fast at replay time. We achieve
high performance by (1) only replaying the subset of the job’s task graph that is needed for a
particular debugging action (e.g., to rebuild the input for one task), (2) parallelizing the replay over
a cluster, and (3) caching frequently queried datasets in memory to provide fast access. As a result,
many debugging queries can be answered within several seconds, even for large applications.

Third, Arthur’s tracing feature requires tracing records across a variety of operators (e.g., map,
filter, reduce, and group-by), taking into account the semantics of each operator. We perform tracing
using a program transformation that augments each operator in the job to propagate tags with each
record. To make the tracing efficient, we use a compressed tag set representation based on Bloom
filters. A major advantage of our program transformation approach is that we do not need to modify
the parallel runtime (Spark) to propagate tags.

We implement Arthur to support loading execution logs from either Hadoop or Spark [142] (a
recent cluster computing framework with a concise Scala API). The system then replays the job in a
Spark-based parallel runtime. It provides an interactive Scala shell from which the user can replay
tasks, query intermediate datasets using arbitrary Spark queries, and run other analyses.

We evaluate Arthur on a variety of synthetic errors and three real bugs in Hadoop and Spark
programs. The issues we test include logic bugs such as incorrect input handling, performance
problems such as data skew, and unexpected program outputs that Arthur can trace back to specific
input records. In all cases, Arthur’s suite of tools can quickly narrow in on the problem. At recording
time, Arthur adds less than 4% overhead and produces logs at most several megabytes in size. At
replay time, Arthur finishes most analyses in a fraction of the running time of the original job,
thanks to selective replay and in-memory caching, and supports querying intermediate datasets in
sub-second time.

To summarize, our contributions are:
1Note that Arthur does not aim to debug non-deterministic problems, such as the user accidentally writing a

non-deterministic task, but it will detect them using a checksum of each task’s output. We show that this checksumming
adds minimal overhead.
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map reduceByKey topK 

Clicks (AdID, 1) (AdID, count) Top ads 

Figure 4.1: Dependency graph for the tasks produced in our example Spark program. Tall boxes represent
datasets, while filled boxes represent partitions of a dataset, which are computed in parallel by different tasks.

• The observation that data flow frameworks’ decomposition of jobs into deterministic tasks,
which is fundamental in these systems for fault tolerance, can also be used to for low-cost
replay debugging.

• A set of rich and efficient debugging tools that selectively replay only the part of the
computation needed for an analysis, including ad-hoc queries and forward and backward
record tracing.

• A fast, interactive environment for debugging jobs that allows ad-hoc queries in the Scala
language and provides high responsiveness using parallel execution and in-memory caching.

The rest of the chapter is organized as follows. Section 4.2 describes the target environment for
Arthur. We then discuss its architecture and capabilities in Sections 4.3–4.6. Section 4.7 discusses
our implementation. We then evaluate Arthur (Section 4.8), discuss limitations and extensions
(Section 4.9), and survey related work (Section 4.10).

4.2 Target Environment
Arthur is designed for parallel computing frameworks that use a data flow programming model,
which include MapReduce [44], Dryad [72], Spark [142], Hyracks [21], Pig [110], FlumeJava [31],
and others. It can also be applied to frameworks that are not typically thought of as data flow but
do break computations into deterministic tasks, such as the Bulk Synchronous Parallel model in
Pregel [91], where nodes operate on data locally and communicate at a barrier through the equivalent
of a reduce operation. Many frameworks adopt this type of deterministic model for fault tolerance.

Arthur’s replay approach takes advantage of the common assumption of task determinism,
implicitly assumed for stragglermitigation and fault recovery, to provide accurate replay. Nevertheless,
Arthur can detect nondeterminism and alert the user to the error, as described in Section 4.3.

To illustrate the structure of a data flow program, Figure 4.1 shows the lineage graph for a simple
Spark program that computes the top 100 ads clicked in a log. This program’s code is shown below:
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val topAds = clicks.map(c => (c.adID, 1))
.reduceByKey((a, b) => a+b)
.topK(100)

This program uses Spark’s functional API in the Scala language [142] to take a dataset called
clicks (loaded, e.g., from a file) and run map, reduce, and topK transformations on it. The user
code passed to these transformations (in this case, the Scala functions c => (c.adID, 1) and (a,
b) => a+b) is expected to be deterministic.

Using Arthur, we can rerun just enough portions of the dependency graph to answer a particular
debugging query. For example, if one of the reduce tasks is running slowly, we could replay all of
the maps and that one reduce task, without having to replay the rest of the job.

4.3 Architecture
The main idea in Arthur is that we can record a data flow program’s dependency graph at runtime,
and selectively replay parts of the execution at debug time to answer users’ questions. In this section,
we describe how Arthur performs recording and replay.

At record time, Arthur runs as a daemon collocated with the cluster computing framework’s
master that logs several types of information. The most important is the program’s dependency graph,
which consists of every transformation in the program (e.g., the map and reduce in MapReduce or
an operator in DryadLINQ or Spark) along with what input datasets or external files it acts on, and
how it was partitioned into tasks. Arthur also records a checksum of each task’s output; this allows
the debugger to compare the checksums at replay time to the original ones, and alert the user that a
task is nondeterministic if they differ. Finally, Arthur logs the execution time of each task, as well as
the cause of failure (e.g., an uncaught exception) for any tasks that fail. Figure 4.2a summarizes the
flow of information at record time.

After the program has finished running, the user launches Arthur in replay mode and loads
the program’s execution log. Arthur then accepts queries through an interactive shell and uses the
recorded information to replay parts of the program’s execution on demand. Replay takes place in
parallel on the cluster; Arthur replays tasks from the appropriate parts of the dependency graph by
launching them using Spark. Figure 4.2b illustrates the flow of information at replay time.

Arthur’s basic replay functionality, described in Section 4.4, supports rerunning portions of
the program exactly. This allows users to visualize the program’s dependency graph, explore
intermediate datasets, and rerun specific tasks locally in a conventional debugger.

Arthur also provides a more powerful type of replay that involves modifying the original operator
graph. This makes it possible to perform analyses such as tracing records forward and backward
through the data flow (described in Section 4.5). It also makes it possible to insert post-hoc
instrumentation into the execution graph, such as assertions on intermediate datasets and other
custom code (described in Section 4.6).
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Figure 4.2: Flow of information while recording a program’s execution and replaying and debugging the
program. MapReduce, Dryad, and Spark carry out user transformations by deploying tasks onto the cluster
and receiving their results. Arthur logs additional information about the program’s execution, which it can
replay on demand after the program finishes.

4.4 Basic Features
Arthur’s core features are built on top of its ability to load the original program graph and replay
parts of it on demand. The user accesses these features through an interactive shell based on Spark’s
Scala shell.

4.4.1 Data Flow Visualization
The simplest tool that Arthur provides is to use the lineage of datasets in the execution log to
provide a visualization of the program’s data flow graph. Such a visualization can be helpful in
understanding the data access patterns and general structure of the program, and it only requires
local analysis rather than re-execution of tasks in the job. Figure 4.3 shows an example lineage graph
produced by Arthur on a PageRank application. Arrows point from datasets to their dependencies.
The graph indicates that dataset 4 is used repeatedly in future computations, suggesting that it might
be a good candidate to be cached in memory on the cluster, for example.

4.4.2 Exploration of Intermediate Datasets
In debuggers for programs on a single machine, variable inspector windows and “print” commands
give visibility into a program’s intermediate state. Arthur can provide a similar experience for
data flow programs by allowing the user to query any intermediate dataset post-execution from the
interactive debugger shell. To query an intermediate dataset, we (1) read the dependency graph that
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Figure 4.3: Partial lineage graph of a Spark application, as plotted by Arthur.

Arthur recorded, (2) find the tasks required to rebuild it, and (3) run them on workers across the
cluster. Queries on datasets can be written using any of the operators in Spark [142], which include
relational operators, sampling, and transformations using arbitrary Scala code.

For example, the following console session shows how a user might explore an intermediate
dataset in the program from Section 4.2 that computes the top 100 ads clicked in a log. The user
loads the topads.log execution trace and queries dataset 2, which is a collection of ads and the
number of user clicks on each ad.

scala> val r = new EventLogReader("topads.log")
r: EventLogReader = EventLogReader@726b37ad

scala> r.datasets(2).take(5) // sample first 5 ads
// and click counts
// from dataset 2

res0: Array[(AdID, Int)] = [...]

scala> r.datasets(2).map(pair => pair._2).mean()
res1: Int = 258288 // mean # of clicks per ad

Because Arthur executes its operations in parallel on the cluster, queries on intermediate datasets
run at least as quickly as the original program, and frequently more quickly because only part of the
job needs to run in order to produce the requested output. In addition, Arthur uses Spark’s capability
to cache information in memory once it is computed, enabling it to respond to repeated queries on
the same dataset at interactive speeds.
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Figure 4.4: Tasks that need to be rerun for local task replay. To rerun a task (dark red), Arthur first runs its
ancestors (light blue) and saves the last output. It is only necessary to run these tasks rather than the entire job.

4.4.3 Task Replay
Logic errors in bulk operators such as map functions can be difficult to debug because they execute
in parallel on many machines. Programmers typically debug such operators by printing trace
information from within the operator and later reading logs on machines that produced exceptions
or incorrect results. Instead, it would be helpful to use conventional step-through debuggers and
profilers. For example, if a certain task is throwing an exception on specific input, stepping through
the user code in that transformation would make it easier to debug.

Arthur supports running specific tasks locally under such tools. To rerun a task locally, Arthur
first computes the input to that task by running the tasks that it depends on; these tasks persist
their outputs to disk. Arthur then launches a small wrapper program locally that receives the task
metadata, fetches the outputs of parent tasks, and executes the task in an isolated environment. The
user can then attach a conventional debugger such as JDB before the task runs, making it possible to
set breakpoints, catch exceptions, and step through the operator’s execution on the input data of
interest.

Local task replay only requires a small portion of the program to be re-executed. In particular,
only the task’s ancestors must be run, rather than the entire program. Figure 4.4 shows that in order
to debug an incorrect result from a particular task, Arthur only needs to rerun those tasks which
contribute results to that task’s input.

4.5 Record Tracing
Finding the set of records that stemmed from or led to a given record can be helpful in debugging
the program’s operations. For example, in a post to the Spark user group, a user described a word
count application that unexpectedly output a count for the empty string in addition to the counts for
each word in the input. Tracing that record backward through the program would reveal that the
empty string stemmed from empty lines in the input, allowing the user to fix the input parsing bug.
Arthur provides the ability to perform such tracing “post-hoc” by rerunning a transformed version
of the original program.
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Figure 4.5: For tracing, Arthur rewrites the dependency graph to propagate tags, which represent provenance,
along with each element. For example, the original dependency graph contains an operator that merges
datasets of A and B elements to form a dataset of C elements. In the modified graph, the original operator is
wrapped with logic to propagate the tags.
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Figure 4.6: The original filter operator applies a user-supplied predicate directly to each element, while the
augmented operator extracts the integer element before passing it to the predicate.

4.5.1 Mechanism
Arthur provides record tracing using a program transformation in which it modifies each operation
in the original program graph to propagate a tag, which represents provenance, along with each
element. In addition to performing its previous function, each operator in the new execution graph
is augmented to propagate tags, as illustrated in Figure 4.5. We implement forward and backward
record tracing by using this tagging primitive to mark elements of interest and track their ancestors
or descendants in the data flow, as described in the next sections.
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The program transformation approach takes advantage of the functional, high-level nature of
operations in modern data flow frameworks, which provide Arthur with precise information about
how data moves through the program. To extract this information, it is necessary for the definition
of each operator to include operator-specific tag propagation information. For example, Figure 4.6
shows that the filter operator propagates tags by extracting the element and passing it to the filtering
function. In general, an operator f from datasets of type A to datasets of type B must also come
with a function from the original operator f to an operator from datasets of type (A,Tag) to those of
type (B,Tag).

This approach to record tracing relies upon the fine-grained semantics of dataset operations
for accuracy. Operations like the filter above carry each input record to at most one output record,
allowing the system to track records without any loss of fidelity. On the other hand, some frameworks,
such as Hadoop, provide a coarser-grained API where a “map” function operates on multiple input
records at once using an iterator, and writes output to a second iterator. Such operations expose only
a coarse data flow structure, limiting the fidelity possible with a simple program transformation.
More involved techniques such as static analysis of user-supplied operations could improve fidelity.
In addition, for these types of operations, Newt [43] proposes a timing-based approach using the
observation that any particular output record could only have been influenced by the input records
that have appeared until that point. We use this approach in Arthur to handle Hadoop’s map operator
and a similar operator called mapPartitions in Spark.

4.5.2 Forward Tracing
Forward tracing is straightforward to implement on top of the tag-propagating program transformation.
Arthur transforms the dependency graph into one that propagates a Boolean tag in addition to each
record. It initializes the input records of interest with a true tag and other records with a false
tag, runs the modified job using the Boolean or operation to combine tags, and finds which output
records end up with a true tag. We show that forward tracing requires < 1.5× overhead at debug
time, while leaving the original runtime unaffected.

When only a few records are of interest, Arthur traces them through just the relevant subset of
the execution graph. For forward tracing, Arthur reruns the required tasks in each stage with tagging,
inspects these tasks’ outputs, looks up the elements’ shuffle keys to determine which tasks in the
next stage read records from these tasks, and repeats the process on the new set of tasks.

4.5.3 Backward Tracing
Like forward tracing, backward tracing builds upon tag propagation. Because operators are not
guaranteed to be invertible, backward tracing cannot simply tag output records with booleans and
run the program in reverse. Instead, it tags each input element with a unique tag, runs the job,
examines the tags that ended up on the output records of interest, and finds which input elements
contributed those tags. This process is illustrated in Figure 4.7.
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map reduceByKey topK 

Clicks (AdID, 1) (AdID, count) Top ads 

Figure 4.7: To trace an output record (rightmost rectangle) backward through the data flow, we tag each input
element uniquely, run the job to propagate the tags to the outputs, and find which input elements contributed
tags (leftmost blue, yellow, and red rectangles).

We implement unique tags using integers. Each input records is tagged with a unique integer
based on its position in the dataset, and tags are stored as sets of integers which are combined using
the union operation.

This approach works well for programs such as database queries where each record has a clear
provenance. However, in iterative programs such as PageRank, each output record is influenced
by a large number of input records. As a result, tags tend to diffuse widely, and in the extreme
case each output record may end up with a tag from every input record. This approach therefore
performs poorly for long jobs because of the high space overheads that tags impose in later stages.
Representing tags as Bloom filters provides a 1.78× speedup on PageRank, at the cost of false
positives.

An alternative approach to backward tracing is to trace the output records of interest backward
through each stage, starting with the last stage. In each stage, Arthur tags each record in the shuffle
output from the previous stage with a unique label, runs the stage, and finds which input elements
contributed to the tags of the output elements under consideration. This approach allows the tag
dependency structure to be precomputed, allowing further backward tracing queries to be performed
using just a single cluster-wide join operation.

4.6 Post-Hoc Instrumentation
Arthur’s ability to replay a modified version of the data flow graph, which we used in tracing, also
opens the door to other types of analyses. One that we have explored is post-hoc instrumentation of
the code, where assertions or print statements can be added to part of the job after it was executed
and can be verified in the debugger. While step-through debugging and tracing are powerful tools
for tracking down problems, often the best way to understand program execution, especially in a
large application, is to test assertions, and Arthur provides the ability to inject these without runtime
overhead.



70

The simplest type of assertion one can test is about the contents of a particular dataset. For
example, suppose that we were debugging a PageRank application, and we wanted to ensure that the
PageRank of each node was positive at all iterations. We could attach an assertion to the dataset for
a given operation as follows:

scala> val ranks = r.datasets(2) // dataset ID #2

scala> ranks.assert(r => r > 0)

Arthur will test the assertion by adding a no-op map operator after the computation of ranks that
verifies the predicate and reports any records that do not pass it to the master. By default, Arthur’s
assertions are attached “lazily” (they are not tested right away), so it is possible to attach multiple
assertions tomultiple datasets, and then test all of themusing a EventLogReader.checkAssertions()
function. Because Arthur’s shell is simply a Scala interpreter, it is also possible to attach these
assertions programmatically (e.g., search through the list of datasets for all the ones created on a
particular line of the program and add assertions to all of them).

Apart from these types of data assertions, Arthur also allows users to instrument their code
more closely by replaying a modified version of the original binary. As long as the functions in
the program still produce the same outputs (i.e., any modifications are only for print statements or
assertions), the system can still run the program on the cluster. Currently, this modification has to
be done manually before starting Arthur, but we also wish to support dynamic modification of the
program code using the Java VM’s class reloading feature [87] in the future.

Finally, it would be straightforward to extend the assertion mechanism to support “distributed
assertions” (in the form of a Spark expression that has to hold for an entire dataset, e.g., that the sum
of PageRanks is close to 1) [57]. Currently, these can be checked using manual Spark queries on the
datasets, as in Section 4.4.2.

4.7 Implementation
We implemented Arthur in about 2000 lines of Scala code. The system supports recording
applications written in either Hadoop or Spark, and replaying them in a Spark-based parallel runtime
where different debug operations can be invoked interactively from a Scala shell.

At recording time, Arthur needs to obtain (1) the graph of operators used in the parallel job and
(2) checksums of intermediate datasets, used to verify that re-execution has been deterministic. In
Hadoop, the operator graph is trivial, because it is always a single MapReduce step, so we only use
the job’s configuration to rerun the same map and reduce functions. In Spark, we added an event
logging module that logs the datasets used in each parallel operation to a file. For checksums, we
use a simple Java OutputStream wrapper that computes a checksum as data is written out. We only
perform checksumming for data at task boundaries (e.g., for the output data in a map task), where it
is either written to a file or sent over the network, so the checksumming adds little overhead because
the cost of sending the data over the network is much more expensive.
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At replay time, Arthur replays both Hadoop and Spark computations in the Spark engine, to take
advantage of features such as in-memory caching and interactive queries. We use an existing layer
on top of Spark, called SHadoop, to execute Hadoop map and reduce tasks within Spark. (This is
conceptually simple because Spark also supports map and reduce operators.) We begin by loading
the job’s code from a path provided by the user, followed by an event log with the parallel operations
run during the job and their operator graphs (as discussed above), then present the user with an
interactive Scala shell where they can view the operations and datasets and run queries on them.
The actual replay of both the original operators and any transformed versions of them (e.g., for
assertions or tracing) is implemented by submitting jobs to the existing Spark engine, so it does not
require changes to Spark.

The debugging interface for Arthur is a shell in the Scala programming language, based on
Spark’s interactive Scala shell. It provides an object model to load and debug jobs, and lets the
user define local variables or functions using the complete Scala language, and query datasets using
functional operators written in Spark. Users can also explicitly control which datasets to cache in
memory for repeated queries. For example, the following console session shows how one might
query an intermediate dataset in a PageRank computation, whose log is read from pagerank.log,
and replay a task:

scala> val r = new EventLogReader("pagerank.log")
r: EventLogReader = EventLogReader@726b37ad

scala> r.datasets
#00: hadoopFile at PageRank$.main(PR.scala:31)
#01: map at PageRank$.main(PR.scala:31)
#02: map at PageRank$.main(PR.scala:35)
#03: groupBy at PageRank$.main(PR.scala:35)
#04: flatMap at PageRank$.main(PR.scala:35)
#05: map at PageRank$.iterate(PR.scala:91)
#06: cogroup at PageRank$.iterate(PR.scala:92)
[...]

scala> r.datasets(2).count()
res0: Long = 129941 // # of elements in dataset 2

scala> r.debugTask(3, 1) // replay task 1 of dataset 3
[launches the JDB debugger]

Finally, for replaying individual tasks in a single-process debugger, we wrote a small wrapper
program that reads a serialized Task object from Spark and reads its input from a file (computed in
parallel using the cluster), then executes that task locally, so that we can spawn this program in a
local subprocess and attach JDB or other debugging tools to it.



72

1.04 1.02 1.02 

0.00 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 

PageRank Logistic 
regression 

k-means 

N
or

m
al

iz
ed

 ru
nt

im
e 

No debugging Debugging 

Figure 4.8: Performance comparison of various Spark applications with and without debugging.
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Figure 4.9: Running time of various interactive queries in the debugger. Arthur only runs the tasks necessary
to answer each query, so Query 1 is faster than the original program. Subsequent operations benefit from
in-memory caching.

4.8 Evaluation
We evaluated Arthur using a variety of real bugs and injected errors in Hadoop and Spark programs.
We find that Arthur’s overhead at record time is only 2–4%, making it feasible to run continuously.
At debug time, we found that Arthur can respond to queries at interactive speeds (on the order of a
second) by caching frequently-used datasets in memory, and often needs to rerun only a subset of the
job even for the first time it answers a query. Finally, we evaluated Arthur’s applicability to different
types of bugs by showing how it can diagnose task failures, incorrect output, nondeterministic
behavior, and deterministic performance problems in various programs.

4.8.1 Recording Overhead
We tested Arthur’s recording overhead on three Spark programs: PageRank, logistic regression,
and k-means. Our PageRank program runs 15 iterations on the articles in a 54 GB Wikipedia
dataset, our logistic regression program runs 10 iterations on 10 million 10-dimensional vectors of
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doubles, and our k-means program runs 5 iterations to cluster 100 million 4D points into 4 clusters.
Figure 4.8 compares the runtimes of these applications with and without Arthur when running
on a 20-node cluster. Because the overhead from task output checksumming constitutes most of
Arthur’s recording overhead, applications with large task outputs see higher overhead than those
with small task outputs. Each PageRank iteration updates the rank for every page, forcing Arthur to
checksum a large amount of information. On the other hand, each iteration of logistic regression
only outputs a single vector, and each iteration of k-means only updates a small number of cluster
centers. Regardless of application, however, Arthur’s logging overhead was at most 4%, and its log
size less than 5 MB.

4.8.2 Replay Performance
At replay time, Arthur can often run faster than the original program thanks to selective replay
and in-memory caching. Figure 4.9 shows the running times of various queries when debugging
the PageRank program. Query 1 counts the number of articles whose PageRank in iteration 3 is
greater than a threshold. Arthur only needs to run the first three iterations to answer the query, so it
runs faster than the original program. Next, Query 2 calculates the average PageRank in the third
iteration, and Query 3 sample the PageRank of ten articles. These queries reuse the same dataset as
Query 1, so they benefit from in-memory caching. Finally, rerunning a single task locally was fast
compared to the original program.

We also benchmarked the performance of forward and backward record tracing during replay
of the PageRank application. Forward tracing was 1.48× slower than the original program, while
backward tracing with integer set tags was 5.52× slower. The large slowdown for backward tracing
was due to diffusion of tags, as described in Section 4.5.3. Both versions correctly identified the
records that an input depended on (e.g., in tracing through three iterations of PageRank, we find
neighbours at most three links away). We also tested backward tracing with Bloom filter tags. This
reduced the slowdown to 3.09× the original program due to the more compact size of the Bloom
filter representation, but caused about 30% of records in the output to be erroneously tagged. The
actual performance ratio and error rate depends on the size of Bloom filter used.

4.8.3 Applicability
Though Arthur is focused towards debugging deterministic problems, we have observed these to be
more common than nondeterministic errors for complex distributed programs due to the fact that,
like MapReduce and Dryad, Spark requires transformations to be deterministic. To illustrate the
kinds of errors that Arthur can detect, we describe its applicability to three deterministic errors:
task failures, incorrect output, and performance problems. We also describe Arthur’s ability to
detect unintended nondeterminism through checksumming on a real bug from Conviva, as well as
its support for loading Hadoop traces on a pre-existing bug in Mahout.

Deterministic Task Failures As an example of a deterministic task failure, we injected an input
processing bug into our Wikipedia PageRank program. This program extracts the links from each
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article by parsing its XML representation and searching the parse tree for link elements. Certain
tasks were consistently throwing XML parsing exceptions, so we used Arthur to search the event log
for failing tasks. We reran one of the tasks in a conventional debugger and found that the culprit
records contained \N in place of the article’s XML. It turned out that our Wikipedia dump used this
string to represent an empty article, so we fixed the bug by adding error-handling code for that case.

Incorrect Output As an example of incorrect output, Carat, a real Spark program for processing
time series of devices’ power usage, contained a bug causing the output to contain nonsensical
negative values for power usage. We used Arthur to inject assertions at every stage and then replayed
the program. Arthur detected the assertion failures immediately after the location of the bug and
we were able to halt the program early, avoiding the inconvenience of rerunning the program in its
entirety.

Deterministic Performance Problems We debugged Monarch [131], a real Spark program that
used logistic regression to classify spam status updates. The program was running much more
slowly than expected, and we observed that a few straggler tasks were consistently finishing last,
tens of seconds later than the typical task. We recorded the task IDs that appeared to be stragglers
and, once the program had finished, we loaded its trace into Arthur and reran the tasks locally under
JDB. Examining the input partition to the task revealed that it contained several very large feature
records, identifying partition skew as the source of the problem. We were able to reproduce the
problem because Spark shards data into partitions deterministically.

Unintended Nondeterminism We used Arthur to detect a bug arising from unintended nonde-
terminism at Conviva, a video analytics company. An analytics query intended to operate on new
records that had arrived in the last few minutes was performing the filter by comparing record
timestamps against the current system time from within the query, as in the following example:

records.filter((System.currentTime() - _.time)
< INTERVAL)

When we used Arthur to replay the query, we received checksum mismatch warnings because the
time had changed from the original execution, and the query now matched fewer records. Examining
the operator that triggered the warnings revealed the bug, and we fixed the bug by computing the
time in the driver program instead of in the operator, so that the reference time would remain the
same across executions of the task:

val now = System.currentTime()
records.filter((now - _.time) < INTERVAL)

Hadoop Jobs To demonstrate Arthur’s support for loading Hadoop job traces, we chose a pre-
existing bug in Mahout [7], a Hadoop-based machine learning library. We reproduced the bug,
MAHOUT-363, in Arthur. This bug involved a NullPointerException due to a logic error in the map
code within Mahout. We were able to load the affected Hadoop job into Arthur, identify the map
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task causing the error, and rerun and step through the task locally until the NullPointerException.
Inspecting the task code and state in JDB confirmed that the exception was due to the Mahout
Cache’s failure to handle a null feature vector.

4.9 Discussion
Arthur can perform detailed analysis of job executions with nearly zero runtime overhead by
leveraging the determinism and structure of modern data-parallel applications. While the core idea
behind Arthur is simple, we showed that it efficiently supports a wide range of analyses, which can
be sped up by only replaying the relevant parts of the job. We believe that Arthur’s approach is
important for two reasons. First, because the deterministic data flow model we exploit was primarily
adopted for fault tolerance, we believe that it will remain present not only in today’s frameworks
(e.g., MapReduce, Dryad, Spark), but in future ones as well. Indeed, it is interesting that not only
the determinism itself, but also the decomposition of jobs into small tasks, is used to speed up
recovery on failure (by minimizing the work redone), and both elements directly speed up selective
replay. Second, because of the intrinsically high hardware cost of big data computations, any
instrumentation at runtime is expensive, so replay may be the only effective way to debug production
problems. Therefore, it is important to study which analyses can be performed this way.

Because of its reliance on replay, Arthur does have limitations that more invasive debuggers
would not. We discuss some of these next, followed by ways in which Arthur can be extended. We
also discuss how parallel runtimes could be extended to enable easier replay.

4.9.1 Limitations
Arthur’s replay approach has several limitations, some of which can be avoided with more care
during execution:

Nondeterministic User Code Arthur cannot replay bugs where a user’s code (e.g., a map
function) is nondeterministic, although it detects them using checksumming. While users of data
flow frameworks are asked to try to write deterministic code to enable fault recovery, nondeterminism
can still be a bug, so it is important to be able to fix it. There are two interesting possible approaches.
One is that, once nondeterminism has been detected, Arthur can try to reproduce nondeterministic
behavior (though maybe not the same as the original run) by simply running multiple copies of the
problematic task. It could also run these tasks in a more expensive replay debugger, such as R2 [63],
that can recreate nondeterministic events once it seems them the first time. A second approach
would be to try to identify nondeterministic code through static analysis (e.g., see whether particular
libraries are being called).2

2The most common nondeterministic library that might be called is a random number generator, but fortunately,
runtimes can make that deterministic by seeding the generator consistently for a given task ID. For example, Spark does
this for its built-in sample operation.
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Inter-Task Interactions Sometimes, bugs are not caused by a particular task, but by the interaction
between multiple tasks on the same machine. For example, Hadoop runs a series of tasks in the same
Java VM to amortize startup costs, but if each task leaks memory or uses a library with global state,
the behavior of a task may depend on which others have run before it. Arthur cannot guarantee to run
the same tasks together at replay time (especially if doing selective replay). Auxiliary monitoring
tools, such as a memory usage monitor, might be used to detect some of these conditions.

Lost Input Files Arthur implicitly assumes that the input files for each job are still available at
replay time. Fortunately, most data warehouses operate in an “append-only” fashion, and retain files
for a long time after ingestion. HDFS does not even support random updates.

Communication Order A subtle issue that can happen in some frameworks is that even though
the code in each task is deterministic, an instance of that task might fetch input data from other
tasks in a nondeterministic order. For example, in Spark, a reduce task performing a commutative
operation (such as a sum) fetches results from multiple map tasks in parallel and receives chunks
from different tasks in different orders. Although the operation is, technically, expected to be
commutative, some bugs might manifest only depending on the input order. In our implementation,
we modified Spark to log the order of chunks fetched and use the same order at replay time. For
Hadoop, this problem is not present because Hadoop always sorts the input to a reduce function.

Nondeterministic Programming Models While Arthur works for many current frameworks that
perform deterministic computations, such as MapReduce, Dryad, Spark, Hyracks, and Pregel, it
cannot be applied to programming models that allow nondeterministic, asynchronous messaging,
like MPI or Graphlab [60].

4.9.2 Extensions
While we have implemented several useful debugging tools in Arthur, we discuss other analyses that
would be interesting to implement in the model, especially by taking advantage of the parallelism of
the cluster, in Section 5.2. In addition, if replay is going to be the cheapest way to debug production
problems, it would also be interesting to extend runtime frameworks to better support it.

4.10 Related Work
Debuggers for Data Flow Frameworks Two recent systems for debugging parallel data flow
programs are Inspector Gadget [109] and Daphne [73].3

Inspector Gadget is a debugger for programs in the Pig scripting language that adds instrumenta-
tion into the program to monitor various properties (e.g., the time spent in each task, the number of
records matching a predicate, or user-specified assertions). However, this approach requires the

3“Arthur" was chosen to continue this trend of cartoon characters.
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Property Inspector
Gadget Daphne liblog/R2/ODR Arthur

Job visualization 3 3 7 3

Queries on intermediate data 7 7 7 3

Local task replay 7 3∗ 3 3

Assertions 3 7 3 3

Profiling 3 3 3 3

Record tracing 3 7 7 3

Runtime overhead 5–70%† minimal > 20% < 5%

Table 4.1: Comparison of Inspector Gadget, Daphne, general replay debuggers, and Arthur. Note that (*)
Daphne’s task replay requires that all intermediate data in the job is saved to disk and available at debug time,
and (†) Inspector Gadget requires instrumenting jobs at runtime, with varying overhead based on the analysis
done.

user to instrument their job before they run it, and does not allow the user to rerun a task in a local
debugger or to run ad-hoc queries on intermediate datasets that she did not add instrumentation for
in advance. The runtime overhead from instrumentation can be as high as 70% for some analyses
(e.g., data sampling and latency analysis using tags), making it expensive to run in production. In
contrast, our replay approach lets users ask ad-hoc questions about the job after it finished, including
rerunning parts of the job with the same kinds of instrumentation available in Inspector Gadget, and
additionally supports local step-through debugging of tasks.

Daphne lets users visualize and debug DryadLINQ programs. Daphne provides a “job object
model" for viewing the tasks in a job, hooks for attaching a debugger to a remote process on the
cluster, and the ability to replay a task in a single-process debugger as long as its input data is still
available on the cluster. This approach works in DryadLINQ because all communication between
tasks is through files on disk, but it will not work in the increasing number of frameworks that
perform computations in memory (such as Pregel [91], Graphlab [60], or Spark [142]), or for jobs
where the intermediate data has been deleted. In contrast, Arthur can recompute the input to any task.
In addition, Arthur also provides checksumming to verify that the user’s code runs deterministically
(an assumption in Daphne) and a rich set of capabilities that are not present in Daphne because they
require running new code on the cluster, such as running ad-hoc queries on intermediate datasets.

In general, our implementation provides a superset of the features in these debuggers, and shows
that these features can be be implemented “post-facto” using selective replay of the parts of the
job that a particular feature requires. Other features in Arthur, such as the ability to reconstruct
intermediate datasets and run ad-hoc queries on them, or to add new assertions after the job has
finished, are unique in our approach because they require running new computations on the job’s
intermediate data without knowing these computations during the original job’s execution. Table 4.1
summarizes the features in Arthur in comparison to other debuggers.
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Record Tracing and Provenance Several projects have explored how to efficiently capture
provenance of records in data-parallel computations to enable tracing. RAMP [70] defines and
captures provenance for “generalized map and reduce workflows,” which are programs composed
of an acyclic graph of map and reduce steps. However, because it does this tracing during job
execution, it can add substantial runtime overheads (20–76%). Newt [43] is a provenance capture
and replay framework for Hadoop and Hyracks that supports capturing record-level provenance
at runtime, and then replaying just the part of the job that produced a particular output record.
Unlike RAMP, it also handles map operators that work on a stream, by looking at the interleaving of
records being read and written to determine which input records affected an output record. (RAMP
assumes that the map function processes just one record at a time and cannot maintain state between
records.) However, Newt still incurs about 14–26% runtime overhead, and it lacks other debugging
functions, such as checking assertions or running ad-hoc queries on intermediate datasets. Inspector
Gadget [109] supports forward tracing through tag propagation and backward tracing by tagging all
input records, but it again needs to perform this tagging at runtime.

All of these approaches could be used within Arthur to capture provenance for records in (part
of) the job when recomputing it, while avoiding the runtime overhead in production. Our current
tracing module uses the properties of Spark and Hadoop operators, as well as a Newt-like approach
for map functions that operate on iterators.

Replay Debuggers Replay debugging for distributed systems has been extensively studied through
systems such as liblog [58], R2 [63], ODR [3], and DCR [4]. However, these systems are designed
to replay general distributed programs, and thus work by recording all sources of nondeterminism,
including message passing order across nodes, system calls, and accesses to memory shared across
threads. This results in significant overhead at runtime (often more than 20%), or even larger
slowdowns at replay time (> 10×) for systems that log fewer events but infer the order of missing
events [3]. In contrast, our debugger leverages the structure of datacenter computing frameworks
to deterministically replay tasks. This approach allows us to catch a large class of logic and
performance bugs, and although we cannot replay some of the nondeterministic bugs that other
systems capture (e.g., race conditions between threads in the same task), we can still detect them via
checksumming. Our recording overhead is also low enough that event logging can be turned on by
default in production.
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Chapter 5

Conclusion

5.1 Highlights

5.1.1 Oblivious Coopetitive Queries (OCQ)
We proposed OCQ, an efficient, general framework for oblivious coopetitive analytics using hardware
enclaves. OCQ’s contributions are its query planner design, which supports flexible party-specific
sensitivity rules; its mechanism for propagating and refining padding upper bounds based on foreign
key constraints; and its mixed-sensitivity join algorithm. Due to its performance gain over existing
solutions, we believe OCQ is the first realistically practical system for secure coopetitive analytics.

5.1.2 GraphFrames
Graph analytics applications typically require relational processing, pattern matching and iterative
graph algorithms. However, these applications previously had to be implemented in multiple systems,
adding both overhead and complexity. We aimed to unify the three with the GraphFrames abstraction.
The GraphFrames API which is concise and declarative, based on the “data frame” concept in R,
and enables easy expression and mixing of these three paradigms. GraphFrames optimize the entire
computation using graph-aware join optimization and view selection algorithm that generalizes
the execution strategies in previous graph-on-RDBMS systems. GraphFrames are implemented
over Spark SQL, enabling parallel execution on Spark and easy integration with Spark’s external
data sources, built-in libraries, and custom ETL code. We showed that GraphFrames make it easy
to write complete graph processing pipelines and enable optimizations across them that are not
possible in current systems.

GraphFrames was released as open source in 2016 and has garnered significant interest on
GitHub, with 594 stars at the time of writing.
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5.1.3 Arthur
As cluster programming frameworks are adopted for more applications, debugging the programs
written in them is increasingly important. This is challenging both because of the scale of the
applications and because of the cost of the hardware resources involved, which makes any runtime
overhead for debug information expensive. We have proposed an approach based on selective replay
that exploits the deterministic nature of computations in these frameworks to efficiently rerun parts of
the program. We show that this approach enables a rich set of analyses, including rerunning tasks in
a conventional step-through debugger, checking assertions, tracing records forward and back through
the computation, and interactively querying intermediate results. The cost to log the operations
we require is minimal (less than 4%), allowing our recording to be “always on” in production use.
The deterministic operations we leverage are a crucial element of current programming frameworks
because they enable fault recovery [44], so we believe that they will remain present in future
frameworks, making our approach applicable there as well.

5.2 Future Work
Secure vectorized query execution. Vectorized query execution [20] is a natural fit for secure
hardware enclaves because it (1) avoids the need to compile and attest new code at query time, (2)
makes heavy use of branchless operations that reduce side-channel leakage, and (3) achieves high
performance with a simple system design that reduces the trusted computing base compared to code
generation.

Oblivious user-defined functions. OCQ provides oblivious implementations of relational opera-
tors, but does not support UDFs. It would be useful to attempt to enforce obliviousness for UDFs or
to transform UDFs into oblivious form using techniques from programming languages. The goal is
to avoid the overhead of MPC frameworks by verifying that a UDF is inherently oblivious.

Support for hybrid queries spanning trusted hardware and cryptography. Certain threat
models may call for both trusted hardware and cryptography. For example, trusted hardware can be
used to enforce integrity with low overhead, while cryptography can be used when confidentiality
is needed. A planner that could determine when to apply each of these techniques could greatly
reduce overhead compared to a crypto-only solution.

Vectorized worst-case-optimal join algorithms for graph queries. Worst-case-optimal join
algorithms avoid the need to materialize large intermediate result sets during graph querying.
However, they are traditionally expressed in a tuple-at-a-time model, which is not ideal for
maximizing memory parallelism. A vectorized worst-case-optimal join algorithm could be ideally
suited for high-performance graph querying.
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Adaptive planning for graph queries. Graph data typically exhibits extreme skew, making it a
potential fit for adaptive query processing techniques [46]. Batching input data offers an opportunity
to amortize the cost of runtime plan changes across many tuples. This could allow graph queries to
coexist in the same system as traditional SQL workloads rather than resorting to specialized systems
and join algorithms for graphs.

Parallel Profiling Arthur provides a very effective foundation to run shadow profiling [101], a
technique where multiple copies of the program are run in parallel with sample profiling to collect
highly detailed statistics. Arthur’s model naturally allows doing this for only a subset of the job
(e.g., one task) and feeding the same input to every copy.

Minimal Example Discovery When a deterministic bug, such a task crashing, occurs, it would
be useful to automatically “narrow down” on a smaller example that produces the problem by trying
smaller subsets of the job’s input. This approach is taken in some existing testing tools, such as
QuickCheck [37], and clearly benefits from a parallel search.

Extending Runtimes for Debuggability Some of the limitations we highlight in Section 4.9.1
lead directly to ways to extend parallel runtimes for easier debuggability (and, ultimately, more
chance of recovering correctly from faults as well). Some ways that frameworks could help Arthur
include isolating tasks from each other in separate processes,1 providing hooks to fetch task inputs
in a specific order (as we have done in Spark), and retaining intermediate data on the filesystem
after job completion (if the framework normally writes temporary files and then deletes them), and
allowing this to be used as an input during replay to avoid recomputation. Most of these changes
would make programs in these frameworks easier to understand in general.

1One reason this was not done in Hadoop is due to the startup cost of new Java VMs, but this does not need to be a
fundamental limitation.
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