
Abstractions and Algorithms for Specializing Dynamic
Program Analysis and Random Fuzz Testing

Rohan Padhye

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-137
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-137.html

July 27, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research was funded in part by gifts from Samsung, Facebook, by NSF
grants CCF1409872, CCF-1423645, and CNS-1817122, an Okawa
Foundation Research Grant, and by
the AWS Cloud Credits for Research program

Abstractions and Algorithms for Specializing Dynamic Program Analysis and Random
Fuzz Testing

by

Rohan Raju Padhye

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Koushik Sen, Chair
Professor Coye Cheshire

Assistant Professor Alvin Cheung
Assistant Professor Jonathan Ragan-Kelley

Summer 2020

Abstractions and Algorithms for Specializing Dynamic Program Analysis and Random
Fuzz Testing

Copyright 2020
by

Rohan Raju Padhye

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

1

Abstract

Abstractions and Algorithms for Specializing Dynamic Program Analysis and Random
Fuzz Testing

by

Rohan Raju Padhye

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

Software bugs affect the security, performance, and reliability of critical systems that much
of our society depends on. In practice, the predominant method of ensuring software quality
is via extensive testing. Software developers have considerable domain expertise about their
own software, and are adept at writing functional tests. However, handcrafted tests often
fail to catch corner cases. Further, it is far less common to find software projects that
ship with handwritten tests that target non-functional software issues such as performance,
concurrency, security, and privacy.

Dynamic program analysis techniques can be used to find potential software bugs by observ-
ing program execution. Such techniques are limited by the availability of quality inputs with
which to execute the program. For example, although profilers can be used to diagnose per-
formance issues when good stress tests are available, they are not very useful when provided
with only small functional test cases. Researchers have also developed various algorithms
to automatically generate test inputs. Techniques such random fuzzing are a promising ap-
proach for discovering unexpected inputs in a scalable manner. Coverage-guided fuzzing
(CGF) tools that evolve a corpus of test inputs via random mutations and guided by test-
execution feedback have recently become popular due to their success in crashing programs
that process binary data. However, by relying solely on hard-coded heuristics, their effec-
tiveness as push-button tools is limited when the test program, the input format, or the
testing objective becomes complex.

This dissertation presents new abstractions and algorithms that empower software developers
to specialize automated testing tools using their domain expertise.

First, we present two techniques to find algorithmic performance issues, such accidentally
sub-optimal worst-case complexity, using only developer-provided functional tests: (1) Travi-
oli performs dynamic analysis of unit test executions to precisely identify program functions

2

that perform redundant data-structure traversals; (2) PerfFuzz employs a novel algorithm
based on CGF to automatically generate inputs that exercise worst-case complexity. These
techniques have helped discover previously unknown asymptotic performance bugs in real-
world software including the D3 visualization toolkit, the ExpressJS web server, and the
Google Closure Compiler.

Second, we present Zest+JQF, a technique and framework respectively to find semantic
bugs in programs that process complex structured inputs in a multi-stage pipeline, such as
compilers. This approach leverages domain knowledge about a program under test by allow-
ing users to provide: (1) simple generator functions that sample syntactically valid inputs,
and (2) predicate functions that determine whether a sampled input is also semantically
valid. Zest automatically guides the user-provided generator functions towards producing
inputs that are likely to be semantically valid and also increase code coverage in the program
under test. JQF allows researchers to plug-in custom algorithms for guiding such generators.
Together, Zest+JQF have enabled the discovery of 42 previously unknown software bugs
in widely used Java projects such as OpenJDK, Apache Commons, Maven, Ant, and the
Google Closure Compiler. Many of these bugs are far beyond the reach of conventional CGF
or generator-based testing tools.

Finally, we present FuzzFactory, a framework for rapidly prototyping and composing
domain-specific fuzzing applications. With FuzzFactory, new fuzzing applications can be
created by defining a strategy for selecting which mutated inputs should be saved as the
basis for subsequent mutations; such inputs are called waypoints. FuzzFactory provides a
lightweight API for instrumenting programs such that they provide custom feedback during
test execution; this feedback is used to determine if the corresponding test input should be
considered a waypoint. We describe six domain-specific fuzzing applications created with
FuzzFactory. We also show how two of these applications can be composed together to
create a fuzzer that performs better than the sum of its parts.

i

To my parents and to my wife, Radhika.

ii

Contents

Contents ii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Algorithmic Performance Bugs . 2
1.2 Semantic Bugs in Input-Processing Pipelines 4
1.3 Domain-Specific Testing Objectives . 5

2 Background 7
2.1 Software Bugs . 7
2.2 Program Analysis . 8
2.3 Automatic Test-Input Generation . 9
2.4 Random Fuzz Testing . 11
2.5 Coverage-Guided Fuzzing (CGF) . 13

2.5.1 Contemporary CGF Tools: AFL and libFuzzer 14

3 Travioli: Dynamic Analysis of Data-Structure Traversals 16
3.1 Motivation . 17
3.2 Identifying Data-Structure Traversals . 18

3.2.1 Traversing Functions . 19
3.2.2 Detecting Traversing Functions . 21
3.2.3 Detecting Redundant Traversals . 25

3.3 Dynamic Analysis Implementation . 25
3.3.1 Events and Traces . 26
3.3.2 Read-Traces and Read-Footprints . 27
3.3.3 Traversing Functions . 27
3.3.4 Detecting Traversals . 27
3.3.5 Detecting Redundant Traversals . 29
3.3.6 Access Graphs . 29

iii

3.4 Evaluation . 32
3.5 Summary . 35

4 PerfFuzz: Automatically Generating Pathological Inputs 36
4.1 A Motivating Example . 37
4.2 The PerfFuzz Algorithm . 40

4.2.1 Implementation . 43
4.3 Evaluation . 43

4.3.1 Comparison with SlowFuzz . 45
4.3.1.1 Maximizing Execution Counts 45
4.3.1.2 Algorithmic Complexity Vulnerabilities 47

4.3.2 Comparison with Coverage-Guided Fuzzing 49
4.3.3 Case Studies . 51
4.3.4 libpng . 52
4.3.5 libjpeg-turbo . 53
4.3.6 zlib . 53
4.3.7 libxml . 53
4.3.8 Google Closure Compiler . 53

4.4 Threats to Validity . 54
4.5 Summary . 54

5 JQF and Zest: Coverage-Guided Generator-Based Fuzzing 56
5.1 Problem Motivation . 57

5.1.1 Generator-Based Testing . 57
5.1.2 Coverage-Guided Fuzzing . 58

5.2 Semantic Fuzzing with Zest . 60
5.2.1 Parametric Generators . 60
5.2.2 The Zest Algorithm for Semantic Fuzzing 63

5.3 The JQF Framework . 65
5.3.1 The Guidance Interface . 66
5.3.2 Parametric Generators . 67
5.3.3 Code Coverage Events . 67
5.3.4 Guidances . 68

5.3.4.1 No Guidance . 68
5.3.4.2 Zest Guidance . 68
5.3.4.3 AFL Guidance . 69
5.3.4.4 PerfFuzz Guidance . 69
5.3.4.5 Repro Guidance . 70

5.3.5 New Software Bugs Uncovered . 70
5.4 Evaluation of Zest . 71

5.4.1 Coverage of Semantic Analysis Classes 73
5.4.2 Bugs in the Semantic Analysis Classes 74

iv

5.5 Discussion and Limitations . 77
5.6 Summary . 78

6 FuzzFactory: Domain-Specific Fuzzing with Waypoints 80
6.1 Motivation . 81

6.1.1 Waypoints . 82
6.2 The FuzzFactory Framework . 83

6.2.1 Domain-Specific Feedback . 84
6.2.2 Waypoints . 84

6.2.2.1 Monotonicity of Aggregation 85
6.2.3 Composing Domains . 88
6.2.4 Algorithm for Domain-Specific Fuzzing 89

6.3 Domain-Specific Fuzzing Applications . 89
6.3.1 Program Instrumentation . 91
6.3.2 Experimental Setup . 92
6.3.3 slow: Maximizing Execution Path Length 92

6.3.3.1 Experimental Evaluation . 93
6.3.4 perf: Discovering Hot Spots . 94

6.3.4.1 Experimental Evaluation . 95
6.3.5 mem: Exacerbating Memory Allocations 96

6.3.5.1 Experimental Evaluation . 97
6.3.6 valid: Validity Fuzzing . 97

6.3.6.1 Experimental Evaluation . 100
6.3.7 cmp: Smoothing Hard Comparisons 100

6.3.7.1 Experimental Evaluation . 102
6.3.8 diff: Incremental Fuzzing . 103

6.3.8.1 Experimental Evaluation . 105
6.4 Composing Multiple Domains . 106

6.4.1 New bugs discovered . 107
6.5 Discussion . 107
6.6 Implementation . 108

6.6.1 API for Domain-Specific Fuzzing . 108
6.7 Summary . 109

7 Related Work 110
7.1 Algorithmic Performance Bugs . 110

7.1.1 Redundant Computation Analysis . 110
7.1.2 Data-Structure Analysis . 111
7.1.3 Execution Contexts and AECs . 111
7.1.4 Worst-Case Execution Time . 112
7.1.5 Generating Pathological Inputs Automatically 112

7.2 Coverage-Guided Fuzzing . 113

v

7.3 Generating Complex Inputs for Testing . 113
7.4 Customizing Fuzzing Algorithms . 114

8 Conclusion 115
8.1 Key Takeaway . 115
8.2 Future Work . 116

Bibliography 118

Author’s Biography 136

vi

List of Figures

1.1 Architecture of a program having a structured-input processing pipeline. 4

3.1 A recursive function containing a traversal. 18
3.2 A function that redundantly traverses a list. 18
3.3 A function that traverses an array. 19
3.4 A function that traverses a linked list. 19
3.5 A non-traversing function. 20
3.6 Another example of a non-traversing function. 22
3.7 Mutually recursive functions containing a traversal. 23
3.8 Sample execution-context graph . 24
3.9 Sample access graphs . 31

4.1 Extract from a C program that counts the frequency of words in an input string. 37
4.2 Evaluation of PerfFuzz vs. SlowFuzz on macro-benchmarks 46
4.3 Evaluation of PerfFuzz vs. SlowFuzz on micro-benchmarks 48
4.4 Evaluation of PerfFuzz vs. AFL: maximum hot spots 50
4.5 Evaluation of PerfFuzz vs. AFL: distibution of maximum execution counts . . 51
4.6 Snippet from libpng showing distinct hot spots discovered by PerfFuzz . . . 52

5.1 A simplified XML document generator. 59
5.2 A junit-quickcheck property that tests an XML-based component. 59
5.3 A sample property test using JQF . 65
5.4 The Guidance interface provided by JQF. 66
5.5 Pseudo-code of JQF’s fuzzing loop. 67
5.6 Evaluation of Zest vs. AFL and QuickCheck: semantic branch coverage 73

6.1 An example to motivate FuzzFactory . 81
6.2 Evaluation of domain-specific fuzzer slow. 93
6.3 Evaluation of domain-specific fuzzer perf. 95
6.4 Evaluation of domain-specific fuzzer mem. 96
6.5 Sample change to libpng test driver to enable validity fuzzing. 97
6.6 Evaluation of domain-specific fuzzer valid. 98
6.7 Evaluation of domain-specific fuzzer cmp. 101

vii

6.8 Example motivating the diff domain-specific fuzzer. 103
6.9 Evaluation of domain-specific fuzzer diff. 104
6.10 Evaluation of composing domain-specific fuzzers cmp and mem. 106
6.11 API for domain-specific fuzzing in pseudocode. 108

viii

List of Tables

3.1 Sample execution contexts and AECs. 24
3.2 Overview of experiments conducted to evaluate Travioli. 32
3.3 Results of experimental evaluation: traversals discovered by Travioli. 32
3.4 Evaluation of sampled redundant traversal points reported by Travioli. 34

4.1 Results of running PerfFuzz on libpng . 49

5.1 Number of new bugs discovered using JQF. 70
5.2 Description of benchmarks used to evaluate Zest. 72
5.3 Evaluation of Zest vs. AFL and QuickCheck: new bugs discovered 75

6.1 Definition of instrumentation functions. 90
6.2 slow: Application for maximizing execution path length 93
6.3 perf: Application for discovering hot spots . 95
6.4 mem: Application for exacerbating memory allocation 96
6.5 valid: Application for validity fuzzing . 98
6.6 cmp: Application for smoothing hard comparisons 101
6.7 diff: Application for incremental fuzzing . 103

ix

Acknowledgments

First and foremost, I am tremendously grateful to my advisor, Koushik Sen, for his
steadfast support and mentorship. I appreciate being given the flexibility to choose my own
research direction and work on projects that I was passionate about. This was especially
challenging when things did not go according to plan, but Koushik always believed in me
and taught me how to fail fast when necessary. I am thankful for his advice on research,
technical writing, and connecting with members of the broader research community. I always
felt I could talk to Koushik about anything, professional or personal, without judgment; such
confidence played a crucial role in my ability to succeed in graduate school. I hope I will be
able to follow in his footsteps as a professor.

I probably wouldn’t have started my journey towards a Ph.D. if it hadn’t been for mentors
such as Uday Khedker and Amitabha Sanyal at IIT Bombay, as well as Vibha Sinha and
Senthil Mani formerly at IBM Research India. They played a pivotal role in sparking my
interest in programming languages, software engineering, and in pursuing a career in research.

I would like to thank a number of faculty members at Berkeley for their time, support,
and invaluable advice: Jonathan Bachrach, Coye Cheshire, Alvin Cheung, Susan Graham,
Paul Hilfinger, Jonathan Ragan-Kelly, Sanjit Seshia, and Dawn Song.

I am indebted to my colleague and closest collaborator, Caroline Lemieux, with whom I
co-authored a number of papers. I would also like to thank a number of people who have
influenced my research direction and vision in various ways including advice, collaboration,
and mentorship: Sarah Chasins, Daniel Fremont, Mike Grace, Lee Harrison, Eddie Kim,
Miryung Kim, Yves Le Traon, Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath,
Tobias Ospelt, Mike Papadakis, Hayavardh Vijayakumar, and Andreas Zeller.

I am grateful that I could always rely on the amazing staff in the EECS Department
including Jean Nguyen, Shirley Salanio, Audrey Sillers, Ria Briggs, Tami Chouteau, Roxana
Infante, and Kostadin Ilov.

I am fortunate to have had fantastic colleagues and friends who made me look forward to
making the trek up to campus every day: Rohan Bavishi, Benjamin Brock, Michael Chang,
Wontae Choi, Michael Dennis, Rafael Dutra, Liang Gong, Giulia Guidi, Sagar Karandikar,
Kevin Laeufer, Caroline Lemieux, Azad Salam, Stephanie Wang, Tyler Westenbroek, and
Ed Younis.

Last but not least, I am grateful to my family and friends for always being there through
the ups and downs and encouraging me to keep going.

My research was funded in part by gifts from Samsung, Facebook, by NSF grants CCF-
1409872, CCF-1423645, and CNS-1817122, an Okawa Foundation Research Grant, and by
the AWS Cloud Credits for Research program.

1

Chapter 1

Introduction

Today, the vast majority of software is written by humans. Since much of our society
depends on software systems, the consequences of inadvertently introduced software bugs
can be devastating. With new application domains emerging faster than the mechanisms
to produce provably good software automatically, software bugs are here to stay for the
foreseeable future. The predominant form of ensuring quality in practice is via software
testing: a 50 billion USD market by some estimates [69], which is expected to keep growing.

Now, software developers have considerable domain expertise and are adept at writing
functional test suites. However, handcrafted test cases often fail to catch corner-case bugs.
Such bugs leak into production software, and their effects can be devastating. Software Fail
Watch [175] estimated that software failures have accounted for at least 1.7 trillion USD of
asset losses and impacted about 3.7 billion people—half the world’s population—as of 2019.

Fortunately, numerous program analysis techniques have been developed to automatically
reason about the run-time behavior of programs, with the goal of preventing or identifying
software bugs. This dissertation almost exclusively focuses on applications of two of these
techniques: dynamic program analysis and random fuzz testing. Although these approaches
are well known, their effectiveness when implemented as push-button tools is limited to the
availability of good test inputs or to discovering a narrow class of software faults respectively.
We target scenarios where the test program, the input format, and the testing objective
becomes complex. In such settings, the traditional approach of analyzing or automatically
testing a program in isolation either does not scale or produces inadequate results. A key
insight of this work is that we can specialize automated testing tools and make them smarter
by drawing upon artifacts incorporating the domain expertise of software developers; thus,
challenging testing problems can be made tractable.

Broadly, this dissertation addresses three related problems. First, we focus on automati-
cally identifying algorithmic performance bugs ; that is, software implementation issues that
can cause programs to consume inordinate amounts of physical computing resources when
presented with worst-case inputs. Second, we tackle the challenging problem of automati-
cally testing programs that parse and transform complex structured inputs in a multi-stage
pipeline, such as compilers. Third, we investigate mechanisms for rapid prototyping of au-

CHAPTER 1. INTRODUCTION 2

tomatic test-input generation tools specialized for achieving domain-specific test objectives.
The solutions presented in this dissertation utilize a variety of data sources from existing
unit tests to explicitly provided specifications.

The rest of this chapter provides an introduction to each of these three topics and outlines
the research questions which prompted their development. Chapter 2 provides background
material about dynamic program analysis and random fuzz testing. Chapters 3–6 describe
four main contributions of this dissertation in detail: Travioli [144] identifies algorithmic
complexity bottlenecks by analyzing only functional unit tests (Chapter 3); PerfFuzz [107]
automatically synthesizes program inputs that exercise worst-case algorithmic complexity
(Chapter 4); JQF+Zest [140, 141, 142] find semantic bugs deep within software that
processes complex inputs with the help of QuickCheck-like generator functions and user-
provided validity predicates (Chapter 5); FuzzFactory [143] enables rapid customization
of fuzzing tools for domain-specific testing objectives (e.g. regression testing and finding
memory consumption bugs) (Chapter 6). Chapter 7 discusses related work. Finally, Chap-
ter 8 concludes with a summary of key takeaways and opportunities for future work.

1.1 Algorithmic Performance Bugs
Performance problems in software are notoriously difficult to detect and fix [93]. Unexpected
performance issues can lead to serious project failures and create troublesome security is-
sues. For example, a well-known class of Denial-of-Service (DoS) attacks target algorithmic
complexity vulnerabilities [45] which cause a running program to exhaust computational
resources when presented with worst-case inputs.

A large body of research has focused on diagnosing performance problems by observ-
ing or statistically analyzing dynamically collected performance profiles [79, 129, 15, 131,
176]. Almost all of these techniques assume the availability of test inputs with which to
execute the candidate program for performance profiling. But where do these inputs come
from? The most commonly chosen sources include (1) specially hand-crafted performance
tests [131, 126], (2) standardized benchmark suites [15, 16, 41], (3) inputs that are commonly
encountered in normal program usage (sometimes called representative workloads) [73, 200],
or (4) inputs sent by users experiencing performance problems [176]. These sources of inputs
either stress only average-case behavior, are subject to human bias and error, or can only be
obtained when the damage is already done.

We want to be able to reason about worst-case program behavior, and identify any
performance bottlenecks, without relying on the availability of worst-case inputs themselves.
Test inputs that are designed specifically for analyzing a program’s performance, such as the
ones described above, are not readily available for the vast majority of software projects.
However, most software projects ship with functional test cases that demonstrate various
features and exercise a variety of code paths. Our first research question is thus:

Can we identify algorithmic performance bottlenecks using only functional test cases?

CHAPTER 1. INTRODUCTION 3

Chapter 3 presents Travioli, which is a first attempt at tackling this challenge. Travi-
oli performs dynamic analysis of a program’s execution of functional unit tests. Travioli
identifies program functions which traverse data structures, without relying on any knowledge
of data-structure libraries or type definitions. The goal of Travioli is to identify a special
class of algorithmic performance bottlenecks called redundant data-structure traversals. We
have implemented Travioli for JavaScript and evaluated its analysis on five projects that
are popular on GitHub and that make heavy use of data structures. In two of these projects,
D3 and ExpressJS, Travioli was able to identify redundant traversals which correspond to
algorithmic performance bottlenecks. Both of these issues were identified by the respective
project developers as performance bugs, and one of them has since been patched with an
optimization that provides asymptotic speedup.

Although these results are encouraging, Travioli’s main limitation is that it can only
identify program functions that are potential bottlenecks. A manual effort is still required
to craft the worst-case input for such program functions before it can be confirmed as a
performance bug or dismissed as a false positive.

We next investigated whether we could automatically generate program inputs that lead
to pathological algorithmic performance. We decided to make use of coverage-guided fuzzing
(CGF), which is a feedback-directed random test-input generation technique. Popular CGF
tools such as AFL [196] perform an evolutionary search: test inputs are generated by per-
forming random mutations on the binary representation of previously saved inputs (e.g. bit
flips and splicing of multi-byte chunks). These tools are coverage-guided: new inputs are
saved if their execution on the test program leads to a new program location being visited.
Such code coverage is collected using lightweight program instrumentation.

Chapter 4 describes PerfFuzz, a method to automatically synthesize pathological inputs
using only functional test cases as a starting point. PerfFuzz generates inputs by adapt-
ing the CGF algorithm, using developer-provided inputs that demonstrate the program’s
functionality as a set of seeds for mutation. A prior approach, SlowFuzz [149], used random
fuzzing to find inputs that cause program execution to take really long execution paths.
In contrast, PerfFuzz uses multi-dimensional feedback and independently maximizes ex-
ecution counts for all program locations. This enables PerfFuzz to (1) find a variety of
inputs that exercise distinct hot spots in a program and (2) generate inputs with higher total
execution path length than previous approaches by escaping local maxima. PerfFuzz is
also effective at generating inputs that demonstrate algorithmic complexity vulnerabilities.
We have implemented PerfFuzz on top of AFL, a popular coverage-guided fuzzing tool.
Chapter 4 also presents an experimental evaluation of PerfFuzz on four widely used C
libraries. We find that PerfFuzz outperforms SlowFuzz by generating inputs that exercise
the most-hit program branch 5× to 69× times more, and result in 1.9× to 24.7× longer total
execution paths.

CHAPTER 1. INTRODUCTION 4

Syntactic
Stage

Semantic
StageInput

Semantic
Error

Syntactic
Error

Output

Syntactically
Invalid

Semantically
Invalid

Valid

Figure 1.1: Architecture of a program having a structured-input processing pipeline.

1.2 Semantic Bugs in Input-Processing Pipelines
CGF tools such as PerfFuzz rely on random mutations of inputs represented as sequences
of bytes. These techniques are therefore effective at automatically generating inputs for pro-
grams that process binary data or parsers of simple text formats. However, the applicability
of these methods is limited when testing programs that expect complex structured inputs.
For example, a build system such as Apache Maven first parses its input as an XML docu-
ment and checks its conformance to a schema before invoking the actual build functionality.
Document processors, Web browsers, compilers and various other programs follow this same
check-then-run pattern. In general, such programs have an input processing pipeline con-
sisting of two stages: a syntax parser and a semantic analyzer. We illustrate this pipeline in
Figure 1.1. The syntax parsing stage translates the raw input into an internal data structure
that can be easily processed (e.g. an abstract syntax tree) by the rest of the program. The
semantic analysis stage checks if an input satisfies certain semantic constraints (e.g. if an
XML input fits a specific schema), and executes the core logic of the program. Inputs may
be rejected by either stage if they are syntactically or semantically invalid.

Automatically testing such programs is challenging. The difficulty lies in synthesizing
inputs that (1) satisfy complex constraints on their structure and (2) exercise a variety of
code paths in the semantic analysis stages and beyond.

Conventional CGF tools that generate new test inputs via byte-level mutations easily
destroy the syntax and semantics of previously valid inputs. Unsurprisingly, most of the
bugs discovered by CGF when testing such software lie in their syntax parsing stages only.

To address this problem, we first observe that software developers are familiar with the
input format of the programs they are testing. This is evidenced by the fact that software
developers frequently write extensive unit tests, with hard-coded test inputs containing the
expected structure and semantics. With this insight, we ask the following research question:

CHAPTER 1. INTRODUCTION 5

How can we enable CGF tools to leverage the domain expertise of software developers, who
are familiar with the structure and semantics of their programs’ inputs? What abstractions

can we provide to enable developers to encode their domain knowledge?

We propose to use an abstraction popularized by property testing tools like QuickCheck [37].
This abstraction consists of (1) a generator function, whose job is to randomly sample a
syntactically valid input, and (2) a validity predicate, whose job is to check whether a syn-
tactically valid input also satisfies certain semantic invariants. Due to the popularity of
QuickCheck, which was originally developed for testing Haskell programs, as well as the
proliferation of similar property testing tools in many other programming languages, this is
a well-known abstraction. However, property testing tools themselves are not sufficient at
testing complex programs such as compilers due to the very large space of inputs to sample
from and a very large set of distinct program behaviors to exercise.

Chapter 5 describes Zest, a technique which automatically guides QuickCheck-like ran-
dom input generators to better explore the semantic analysis stage of test programs. Zest
treats random-input generators as deterministic functions of infinite bit sequences called pa-
rameters. We present the key insight that mutations in the untyped parameter domain map
to structural mutations in the input domain. Zest leverages program feedback in the form
of code coverage and input validity using an algorithm we call semantic fuzzing. Chapter 5
also presents an evaluation of Zest against AFL and QuickCheck on five Java programs:
Maven, Ant, BCEL, Closure, and Rhino. Zest covers 1.03×–2.81× as many branches within
the benchmarks’ semantic analysis stages as baseline techniques. Further, Zest found 10
new previously unknown bugs in the semantic analysis stages of these widely used software
projects. Zest was the most effective technique in finding these bugs reliably and quickly,
requiring at most 10 minutes on average to find each bug.

1.3 Domain-Specific Testing Objectives
Like PerfFuzz and Zest, many other researchers have adopted coverage-guided fuzzing
technology to meet domain-specific testing objectives. Examples of such objectives include
directed testing [23], differential testing [148], side-channel analysis [130], and discovering
algorithmic complexity vulnerabilities [149].

Currently, the practice of developing domain-specific fuzzing applications is quite ad-
hoc. For every new domain, researchers must find a way to tweak the fuzzing algorithm and
produce a new variant of AFL or some other fuzzing tool. Each such solution can require
non-trivial implementation effort. Further, these variants are independent and cannot be
easily composed. We thus ask the following research question:

How can we enable researchers to create and compose domain-specific fuzzing applications?
What abstractions can we provide to support such specifications?

Chapter 6 describes FuzzFactory, a framework that enables researchers to rapidly pro-

CHAPTER 1. INTRODUCTION 6

totype new domain-specific fuzzing applications and compose them with each other. Fuz-
zFactory introduces the abstraction of waypoints : the intermediate inputs that are saved
in a CGF-like fuzzing loop. In traditional CGF, the waypoints are any inputs that increase
code coverage. FuzzFactory allows researchers to specify domain-specific criteria under
which inputs should be considered waypoints. In particular, the FuzzFactory API allows
researchers to (1) perform domain-specific instrumentation of test programs to collect cus-
tom feedback during test execution in the form of a key-value map, and (2) specify a function
to aggregate this feedback across all inputs generated during a fuzzing loop. The result of
this aggregation determines if a newly generated input in a fuzzing loop should be saved as a
waypoint. We have identified some key properties of this aggregation function that can help
provide formal guarantees that all waypoints make progress towards some domain-specific
testing objective. Chapter 6 also describes six instantiations of domain-specific fuzzing ap-
plications that we developed using FuzzFactory, along with an experimental evaluation
for each of them.

7

Chapter 2

Background

This chapter introduces some key concepts that are necessary for appreciating the novel
contributions in this dissertation detailed in the subsequent chapters.

2.1 Software Bugs
The first recorded reference to the modern concept of a software bug appears in Ada
Lovelace’s notes [114] on the sketch of Charles Babbage’s Analytical Engine, which would
have been programmable using punch cards (emphasis original):

“an analysing process must equally have been performed in order to furnish the
Analytical Engine with the necessary operative data; and that herein may also
lie a possible source of error. Granted that the actual mechanism is unerring in
its processes, the cards may give it wrong orders.”

In this dissertation, we use the following broad definition of a software bug:

Definition 1 (Software Bug). A software bug is any error or flaw in the implementation of
a software system that causes it to produce incorrect results, exhibit undesirable behavior,
or cause unintended consequences.

For example, consider an online shopping website that is designed to allow users to purchase
items through a web browser. A software bug in the implementation of such a web-based
application might: (a) lead to incorrect listings of item prices—a functional correctness
issue, (b) take too long to return search results—a performance issue, (c) crash and exit
when a button is clicked—a reliability issue, (d) let attackers steal a customer’s credit card
information—a security issue, (e) leak a customer’s shopping activity—a privacy issue, etc.

Ideally, we want software to be free of any bugs. There are two overarching challenges to
achieving this goal.

CHAPTER 2. BACKGROUND 8

The first challenge stems from the definition of a software bug: how do we know what
results are correct or what behavior is acceptable? This is the specification problem. Spec-
ifying desirable properties of software systems is challenging due to a number of reasons
ranging from capturing the right requirements from stakeholders [133] to formally specifying
them in an appropriate representation [104]. A related question that can be asked is: given
a program’s execution on some specific inputs, did it exhibit undesirable behavior? This
is known as the test oracle problem [18]. Without good specifications or test oracles, it is
impossible to identify software bugs even when they manifest at run-time.

The second challenge is that of automatically reasoning about software behavior. As-
suming that we can specify some program property or behavior that is undesirable, can we
determine if a given program is buggy?

This dissertation does not delve into the details of the specification or oracle problem.
In some applications, such as when looking for semantic bugs, we assume that test oracles
are available in the form of explicit assert statements inserted by developers, automatic
checks inserted by sanitization tools [166, 167], or implied via the abnormal termination of
a program by the operating system (e.g. aborts, segfaults, memory exhaustion, and other
crashes). In other applications, such as when looking for performance issues, we assume
that our goal is to generate a test inputs that exhibit pathological behavior (e.g. worst-case
performance). Whether a program’s behavior on such a pathological input is expected or
unexpected is up to a human user to decide.

We next provide a background on research that addresses the second challenge, that of
automatically reasoning about program behavior and/or identifying software bugs.

2.2 Program Analysis
Rice’s theorem [159] states for any non-trivial property of partial functions—that is, prop-
erties that do not hold universally true or false for all partial computable functions—the
question of whether a given algorithm computes a partial function with this property is
undecidable. This theorem implies that all interesting questions about the behavior of pro-
grams are undecidable. With respect to our goal of determining if programs are buggy (for
some non-trivial class of software bugs), it means that it is impossible to develop an algo-
rithm that will precisely answer “yes” or “no” for every program. In practice, however, we
are often satisfied with algorithms that can answer “yes”, “no”, or “maybe”. The general field
of computer science that deals with automated reasoning about software properties is called
program analysis.

Program analyses can be broadly classified as static or dynamic. A static analysis ex-
amines a program’s source code or other representation to simultaneously reason about all
possible run-time behaviors under all possible program inputs. In contrast, a dynamic anal-
ysis observes one or more program executions on specific program inputs.

Since static analyses reason about all possible behaviors, they are often conservative;
that is, they can prove the absence of a certain class of bugs in some cases and report that a

CHAPTER 2. BACKGROUND 9

program may contain bugs in other cases. For example, a type checker [152] performs a static
analysis to prevent programs written in a particular language execute operations that are not
valid in the semantics of that language. A sound type checker can guarantee that well-typed
programs never execute such invalid operations. Due to Rice’s theorem, a sound type checker
cannot also be complete; that is, it must necessarily reject some programs as ill-typed even
though they may never execute invalid operations at run-time. Static analyses have been
developed to find many classes of bugs, from null-pointer exceptions [52, 128, 117] and buffer
overflow vulnerabilities [183, 105, 190] to data races [56, 97] and algorithmic performance
issues [135]. Contemporary static analysis tools such as FindBugs [40], Error-Prone [76],
and Infer [60], are actually extensive frameworks that support the addition of new analyses
based on syntatic code smells, type analysis, and abstract interpretation respectively. Static
bug finding tools attempt to minimize, but cannot escape from, false positives ; that is,
warnings of potential bugs or security vulnerabilities that would never manifest at run-time.
Too many false warnings can pose a barrier to the adoption of static analysis tools [95].
Minimizing false warnings requires sophisticated algorithms which are ever more precise;
unfortunately, an increase in precision almost always comes at the expense of scalability.
Developing static analyses that are simultaneously sound, scalable, and highly precise is an
active area of research. Closely related to static analysis is the use of formal methods to
perform software model checking [92, 57]; that is, automatic verification of formally specified
software properties.

Dynamic analyses attempt to uncover software faults by demonstrating the violation of
some property on specific program inputs, but cannot prove the absence of bugs in general.
As such, dynamic analyses suffer from false negatives. Dynamic analyses have been devel-
oped to target similar classes of bugs, including data races [134, 167], buffer overflows [160,
166], and algorithmic performance issues [131]. Dynamic analysis is often implemented by
performing program instrumentation; that is, inserting code at various locations in the pro-
gram being analyzed. The instrumentation code monitors program execution by collecting
data about program values during execution and performing run-time checks. Although
program instrumentation introduces a run-time overhead, dynamic analyses tools can be a
more scalable solution than static analysis for large programs; for example, contrast a 10×
slowdown during program execution for dynamic analysis with an inter-procedural static
analysis whose run-time complexity is a cubic function of program size.

This dissertation focuses exclusively on dynamic program analysis techniques. The effec-
tiveness of dynamic analysis techniques is of course limited by the quality test inputs that
a program is executed with. Much of this dissertation concerns a problem that is closely
related to the field of program analysis: test-input generation.

2.3 Automatic Test-Input Generation
Test-input generation is the problem of synthesizing an input i for program p, such that the
execution of p with i leads to some run-time property φ being satisfied. A run-time property

CHAPTER 2. BACKGROUND 10

is usually, though not always, a predicate about program values at a certain program point;
for example, “is the value of variable x at line 6 greater than 0?”. Such problems can be
represented in a number of equivalent formulations, such as discovering inputs that cause a
program to violate an assert statement, that cause a test suite to fail, that cause the program
to crash or throw an exception, or simply that lead to a particular program point being
visited. Some test-input generation problems consider run-time properties about program
execution: for example, the number of times a program function is invoked, the amount
of memory consumed by a program, or whether sensitive information (e.g. a password) is
leaked (e.g. to a file).

The naïve approach of enumerating all program inputs and checking the run-time prop-
erty dynamically quickly becomes impractical as the space of program inputs becomes very
large or unbounded.

The field of search-based software engineering (SBST) [122, 83, 82, 194] recognizes that
for certain classes of programs and properties, test inputs with desirable properties can be
discovered via mathematical optimization or metaheuristic techniques such as hill climbing,
simulated annealing, and genetic algorithms.

Symbolic execution techniques recognize that distinct program inputs which lead to the
execution of the same program path—that is, the same control-flow sequence—belong to
the same equivalence class for the purpose of exploring program behaviors. Instead of enu-
merating inputs, they enumerate program paths. A program path p is feasible if there is at
least one program input i such that the program’s execution on i takes path p. The goal
now is to find a feasible program path that visits a program point of interest. The basic
idea of symbolic execution dates back to 1976 [38, 99]: (1) programs can be executed by
treating input variables as symbols, (2) expressions can be evaluated to formulas possibly
involving symbolic input variables, (3) at every point during symbolic execution, a logical
path condition p is maintained, which is initialized to true at the start of the program,
(4) when a conditional branch involving a symbolic condition q is encountered, the path
condition for the true branch is p ∧ q and for the false branch is p ∧ ¬q, (5) a test-input
for any program path with path condition p can be constructed by finding a solution to p
(if it exists). Research on symbolic execution-based test-input generation exploded in the
2000s as the technology behind constraint solvers (such as SMT [19]) improved. A number of
symbolic execution tools such as EXE [30], DART [72], CUTE [164], JPF-SE [5], KLEE [29],
Pex [181], SAGE [25], and S2E [36] have been developed for various platforms and employing
various performance optimizations. A key challenge for symbolic execution tools is the path
explosion problem [31]: the number of program paths to explore grows exponentially with
conditional branches, and can even be unbounded in the presence of symbolic loops. Later
work on symbolic execution has explicitly targeted challenges with scalability [14, 165].

CHAPTER 2. BACKGROUND 11

2.4 Random Fuzz Testing
Practioners have long known that simply generating test inputs at random is a scalable
and surprisingly effective method for finding implementation faults in computer systems.
Random test generation was first popularized for finding faults in hardware in the 1970s and
80s: random test-input generators were developed for sequential circuits [26], memories [64],
ICs [50], floating point units [120], cache controllers [189], etc.

Random test-case generation as a methodology for finding software bugs was initially
dismissed: Myers’ 1979 book The Art of Software Testing [126] states “the least effective
methodology of all is random-input testing”. However, by the 1980s random testing was found
to be “more cost effective” than systematic techniques and “a useful validation tool” that
achieves “a very high degree of coverage” [53, 91]. Many of these results reflect experiences in
testing software that operated on a fixed set of numeric inputs, such as computer simulations.

In 1990, Miller et al. [123] developed fuzz, a tool for testing the reliability of Unix utilities
by generating random sequences of characters as input1. They were able to crash dozens
of standard widely used Unix utilities including vi, emacs, as, ftp, spell, and uniq by
simply feeding random input data generated by fuzz. A common cause of these crashes
was segfaults; many of the tested programs had input-validation bugs such as missing size
checks or improper format strings that could cause the programs to read/write memory out
of bounds when presented with unexpected inputs. Such buffer overflow bugs were and
remain serious security vulnerabilities2.

Today, fuzz testing, or simply fuzzing, refers to any test-input generation technique that
produces inputs using some randomized algorithm. The input generator is itself sometimes
referred to as a fuzzer. In the three decades following Miller et al.’s work, fuzz testing has
become a rich field of research for finding security vulnerabilities [118, 70].

The key advantage of fuzz testing over systematic techniques such as symbolic execution
is scalability: a randomized search can explore many program behaviors quickly and can
be easily parallelized. Possibly fueled by the increasing availability of cheap computing
resources, fuzz testing has become one of the predominant automated testing methods used
in practice. For example, Google’s ClusterFuzz system has found more than 16,000 bugs in
the Chrome web browser and over 11,000 bugs across 160+ open-source projects by January
2019 [74].

Modern fuzzers rarely generate inputs randomly from scratch: it is very unlikely that
inputs constructed as purely random sequences of bytes will exercise a non-trivial fraction of
a complex software system. The two broad approaches to smarter input generation include
model-based fuzzing and mutation-based fuzzing.

1Apparently, one of the authors accidentally discovered fuzz testing when working from home one “dark
and stormy night”; the rain introduced noise in the phone lines which were transmitting his commands to a
remote Unix system and caused programs at the other end to crash [123].

2MITRE Corporatation’s CommonWeakness Enumeration (CWE) list ranks buffer overflows as number 1
in the top 25 most dangerous software errors in 2019 [124].

CHAPTER 2. BACKGROUND 12

Model-based fuzzers generate inputs based on some understanding of what kind of inputs
a program expects. Although this might seem unintuitive—the goal of fuzzing is to generate
unexpected inputs that reveal software bugs—the idea is that generating inputs having some
basic structure or syntax will guarantee that certain parts of a test program’s code logic are
exercised. For example, grammar-based fuzzing [121, 43, 173, 71, 22] techniques use context-
free grammar specifications to generate strings belong to a particular language. CSmith [192]
generates C programs to test C compilers, using a combination of the knowledge of C’s syntax
and semantics. Several network-protocol fuzzers [17, 94, 146] generate input messages that
belong to some specified format. Model-based fuzzers are popular approaches for testing
software with graphical user interfaces [63, 193].

Mutation-based fuzzers generate inputs by performing random changes on valid seed
inputs. The idea is that making small random changes to a valid input, such as flipping
some bits in an input to a program that processes binary data (e.g. a media player), or
inserting random keywords in a text input to a parser (e.g. in a database query processor)
will correspond to subtle changes in the execution path of the test program through its
control-flow graph. Random mutations will create new, previously unseen and possibly
unexpected inputs, while retaining much of the syntax, structure, and other features of the
valid seed input. This idea has been used extensively by security-oriented fuzzers such as
honggfuzz [179], zzuf [85], and radamsa [137]. These tools have been used to find hundreds
of security vulnerabilities in commonly used software such as Unix utilities, network protocol
implementations, and C libraries.

Both model-based fuzzers and mutation-based fuzzers make use of some knowledge about
what kind of inputs a program expects. Both techniques as described above are black box ;
that is, they do not analyze the test program’s source code or collect any additional infor-
mation during program execution. Such black box testing is incredibly efficient, especially
when compared to white box techniques such as symbolic execution which need to collect
path constraints for every execution. Black-box fuzzers are also embarassingly parallelizable
since the generation of every input is independent from every other input. However, a direct
consequence of this fact is that the probability of generating an input that reveals a bug is
the exact same when generating the very first input as it is when generating say the hundred
millionth input. Researchers have long known that some of the most important questions
about the random testing strategy include “ ‘How long should it run?" and “Has it covered
all the important cases?" [189].

One way to measure the quality of a set of test inputs generated by a fuzzer is to use proxy
metrics such as code coverage, which correspond to the amount or fraction of program code
that is exercised by test inputs. Common granularities of code coverage include line coverage,
statement coverage, branch coverage, basic-block coverage, and edge coverage (the latter two
refer to nodes and edges in a program’s control-flow graph respectively). A straightforward
strategy for tracking the progress of a fuzzing session is to measure the code coverage achieved
by all the inputs generated so far; fuzzing is no longer viable when the rate of increasing
code coverage falls below a certain threshold. However, measuring code coverage requires
test programs to be instrumented with code that tracks which parts of the program are being

CHAPTER 2. BACKGROUND 13

Algorithm 1 The coverage-guided fuzzing algorithm
Input: an instrumented test program p, a set of initial seed inputs I
Output: a corpus of automatically generated inputs S, a set of failing test inputs F
1: S ← I
2: F ← ∅
3: totalCoverage ← ∅
4: repeat . Main fuzzing loop
5: for i in S do
6: if sample fuzzProb(i) then
7: i ′ ← mutate(i) . Generate new test input i′
8: coverage, result ← execute(p, i ′) . Run test with new input i′
9: if result = Failure then
10: F ← F ∪ {i′}
11: else if coverage ∩ totalCoverage 6= ∅ then
12: S ← S ∪ {i′} . Save i′ if new code coverage achieved
13: totalCoverage← totalCoverage ∪ coverage
14: end if
15: end if
16: end for
17: until given time budget expires
18: return S,F

exercised when executing test inputs. This instrumentation adds performance overhead, and
can reduce the overall fuzzing efficiency.

Collecting code coverage during a fuzzing session does brings one very important advan-
tage, at least to mutation-based fuzzers. The coverage information can be used to augment
the set of seed inputs: automatically generated (i.e., fuzzed) inputs that exercise previously
uncovered code can be used as the basis for subsequent mutation. In this way, fuzzing can
become feedback-directed and test inputs can evolve over time. The vast majority of recent
progress in fuzz testing [118], both in terms of new research and new discoveries of serious
software bugs, has stemmed from the field of coverage-guided fuzzing (CGF). Chapters 4–6
describe new algorithms that improve upon or retarget the core ideas developed in CGF. We
next describe how this technique works in detail.

2.5 Coverage-Guided Fuzzing (CGF)
Algorithm 1 describes how CGF works at a high level. The CGF algorithm takes as input
an instrumented test program p and a set of user-provided seed inputs I. CGF maintains
three global states: (1) S is a set of saved inputs to be mutated by the algorithm, (2) F is
a set of bug-revealing inputs corresponding to test failures, and (2) totalCoverage tracks the

CHAPTER 2. BACKGROUND 14

cumulative coverage of the program on the inputs in S. CGF can track any kind of coverage;
in practice, branch coverage or edge coverage is commonly used. S is initialized to the set of
user-provided seed inputs (Line 1) and totalCoverage is initialized to the empty set (Line 3).
The main fuzzing loop of CGF (Line 4) keeps making passes over the set of inputs (Line 5),
selecting an input i from the set S. With some probability (Line 6) determined by an
implementation-specific heuristic function fuzzProb(i), CGF decides whether to mutate
the input i or not. If i is selected for mutation, CGF randomly mutates i to generate i′
(Line 7). The random mutation can be selected from a set of predefined mutations such as
bit flipping, byte flipping, arithmetic increment and decrement of integer values, replacing
of bytes with handpicked interesting values, etc. CGF then executes the program p with the
newly generated input i′ (Line 8). The coverage corresponding to this execution is collected
into the variable coverage. The variable result whether the execution terminated normally
or abnormally (e.g. with a crash or timeout). Inputs corresponding to test failures are
added to a set F (Line 10). If the observed coverage coverage when executing a non-failing
input contains some new coverage point that is not present in the global cumulative coverage
totalCoverage (Line 11), then the new input i ′ is added to the set of saved inputs S (Line 12)
and totalCoverage is updated to include the new coverage (Line 13). The input i′ will then
get mutated during a future iteration of the fuzzing loop. The fuzzing loop continues until
a time budget has expired (Line 17). Finally, the generated test corpus S and the set of
failing inputs F are returned as the result of fuzzing (Line 18).

2.5.1 Contemporary CGF Tools: AFL and libFuzzer

CGF was popularized by AFL [196]—which stands for American Fuzzy Lop—an open-source
fuzzing tool developed by Michał Zalewski at Google. We next describe some implementation
heuristics of AFL in detail, since many of these heuristics are inherited or borrowed by
PerfFuzz (Chapter 4), Zest (Chapter 5), and FuzzFactory (Chapter 6).

AFL is designed to test standalone programs that process inputs either as a single file
or via the standard-input stream. AFL therefore generates inputs as fixed size binary files.
AFL uses inter-process communication (IPC) to transfer inputs to and receive code coverage
feedback from an instrumented program under test. The IPC is done via fixed-size shared
memory. Instead of restarting the test program for every test execution, which would be
very slow, AFL uses a fork server [199] mechanism that uses the Unix fork system call to
create copies of a partially initialized process.

AFL starts fuzzing using a user-provided set of seed input files, corresponding to set I
in Algorithm 1. The mutations applied by AFL to generate new inputs include:

• Bitflips/byteflips at random locations.

• Setting bytes to random or interesting (0, MAX_INT) values at random locations.

• Deleting/cloning random blocks of bytes.

CHAPTER 2. BACKGROUND 15

AFL also occasionally performs splicing mutations, more commonly called a crossover muta-
tion. For a candidate input i, a splicing mutation chooses a random input i′ in S and pastes
a random sub-sequence from i′ at a random offset in i. This stage runs only when AFL
has not discovered new coverage in several cycles of the main fuzzing loop. AFL also allows
users to specify a dictionary of keywords or magic byte sequenees that are then randomly
inserted into mutated inputs.

AFL ships with wrappers for GCC and Clang that can instrument C/C++ programs at
compile time. The instrumentation logic collects edge coverage in a 64KB data structure
called the bitmap [197]. The basic strategy is as follows: (a) every basic block is assigned
a pseudo-unique 16-bit random identifier at compile time, (b) during program execution,
at the entry of each basic block, a 16-bit edge identifier is computed as a hash function of
the identifiers of the current and previously visited basic block, (c) a one-byte entry in the
bitmap at the offset corresponding to the edge identifier is incremented. Thus, the bitmap
is essentially a hashmap of 216 entries, which tracks the number of times (between 0–255) an
edge is executed3. At the end of test program execution, for a single test input, AFL buckets
the counter for every entry in the bitmap. Roughly, the highest order bit of the counter value
is retained wheras the lower bits are set to zero. So, a count of 1000 would be bucketed to
512, a count of 35 to 32, etc. Finally, the set bits in the post-processed bitmap are returned
as the set coverage in Algorithm 1. This allows AFL to save inputs that not only increase
edge coverage, but also inputs whose edge execution count differs from the execution counts
for the same edge by any previously saved inputs by an order of magnitude.

LibFuzzer is another widely used CGF tool that targets the LLVM platform. Since around
2016, libFuzzer [111] has been included as part of the LLVM project. libFuzzer borrows many
ideas from AFL, but differs in two important ways. First, libFuzzer is designed to fuzz library
functions instead of command-line programs. LibFuzzer repeatedly invokes a user-provided
program function that accepts a variable-sized byte array with fuzzed input values. LibFuzzer
runs the entire fuzzing session in one process; therefore, the throughput of libFuzzer—in
terms of number of test executions per unit time—is much higher than that of AFL. Second,
libFuzzer also provides some additional features such as user-defined mutators and other
instrumentation hooks. LibFuzzer has therefore become a popular reusable component for
use in fuzzing programs written in other applications, such as Rust [32].

Together, AFL and libFuzzer have been used to discover thousands of security vulner-
abilities, mostly in C/C++ programs such as Google Chrome, OpenSSL, Mozilla Firefox,
Adobe Flash, VLC Media Player, and others.

3Hash collisions and integer overflows can introduce inaccuracies in this measurement.

16

Chapter 3

Travioli: Dynamic Analysis of
Data-Structure Traversals

We start by addressing the problem of identifying algorithmic performance bottlenecks in
programs using only developer-provided functional test cases, as motivated in Section 1.1.

This chapter presents Travioli [144]1, a dynamic analysis for identifying a special class
of algorithmic performance bottlenecks: redundant data-structure traversals. A redundant
traversal occurs when a program traverses the same data structure (of size say n) multiple
times (say m times) even though the data structure is not updated between each traversal,
and where m and n are non-constant values derived from program input. A redundant
traversal has worst-case algorithmic complexity of at least O(mn). Redundant traversals
often indicate a “performance bug”; that is, a sub-optimal implementation choice of data
structures or algorithms. Section 3.1 motivates the problem with an example and discusses
prior work that identified this class of performance issues.

Travioli aims to identify redundant traversal bugs using dynamic program analysis;
that is, by running a program with some inputs and analyzing its execution. In particular,
Travioli is designed to analyze the execution of programs on readily available functional
test cases. Functional tests, such as unit tests, rarely stress the run-time performance of a
program, use very small input sizes, and almost never exercise worst-case behavior. Travi-
oli therefore addresses two important challenges: (1) identifying where data structures are
traversed, and (2) identifying which data-structure traversals are potentially redundant. Sec-
tions 3.2 and 3.3 describe Travioli’s dynamic analysis.

In order to keep the technique as general as possible, we implement Travioli as an
analysis of JavaScript programs. Unlike other popular languages such as Java, C++, and
Python, there is no standard data-structure library in JavaScript. Moreover, JavaScript’s
exceedingly dynamic type system makes it very challenging to statically reason about which
objects represent data structures or nodes of a data structure. Finally, the dynamic nature

1A portion of this chapter was previously published in a conference proceedings [144], which are under
copyright © IEEE 2017. Reproduced with permission as per rights retained by the original author.

CHAPTER 3. TRAVIOLI 17

of JavaScript also makes it very hard to reason about a program’s call graph, which further
complicates analysis of recursive data-structure traversals. Travioli can (1) identify data-
structures composed of a mix of arrays and objects connected by references, (2) identify
traversals that involve a mix of loops and recursive function calls (including complex mutual
recursion), (3) does not depend on any type information, and (4) can analyze program
executions on very small input sizes.

We implemented Travioli and used it to analyze 5 popular JavaScript projects—
express, d3-collection, d3-hierarchy, immutable-js, mathjs—by running off-the-shelf
unit tests provided by the developers. Section 3.4 describes the results of our empir-
ical evaluation. Travioli was able to identify two redundant traversal bugs, one each
in d3-hierarchy—a redundant O(n2) traversal that can be optimized to O(n log n)—and
express—a redundant O(mn) traversal that can be optimized to O(n). Both bugs have
been confirmed by their respective developers; D3 has also incorporated our proposed fix.

The implementation of Travioli and scripts to reproduce the experiments listed in this
chapter are available at: https://github.com/rohanpadhye/travioli.

3.1 Motivation
Consider the JavaScript function containsAll shown in Figure 3.2. The function containsAll
takes as input a linked list list and an array arr and returns true if an only if all items in
the array are also present in the list, by repeatedly invoking the contains function defined
in Figure 3.1. The list is traversed multiple times without any change to its data—this is a
case of redundant traversal. If the list contains n elements and the array is of length m, then
the worst-case complexity of containsAll is O(mn). This is an example of a redundant
data-structure traversal. Such instances are often indicative of performance bugs and can be
fixed by using different data structures (such as hashed sets) or caching.

This class of performance bugs was identified in prior work; we are aware of at least
two program analysis techniques that have been proposed to identify such issues. First,
Clarity [135] uses static analysis to detect program functions which perform O(n) data-
structure traversals O(m) times without any changes to the data structure between the
traversals. Functions containing such redundant traversals can often be modified to use
different data structures that improve the function’s performance. However, Clarity, being
a static analysis technique, makes conservative assumptions and cannot capture fine grained
information about traversals along different conditional branches in a program (e.g. traversal
of a binary-search tree). Second, Toddler [131] uses dynamic analysis to detect similar
performance issues by discovering statistical similarities in memory access patterns at a
program location. However, Toddler requires specially constructed performance tests and
does not capture an abstract notion of data-structure traversal. Moreover, both techniques
primarily analyze program loops, and do not capture recursive data-structure traversals such
as contains defined in Figure 3.1.

https://github.com/rohanpadhye/travioli

CHAPTER 3. TRAVIOLI 18

1 /* Check if a linked list contains a value */
2 function contains(list , x) {
3 if (list === null) {
4 return false;
5 } else if (list.data === x) {
6 return true;
7 } else {
8 var tail = list.next;
9 return contains(tail , x);
10 }
11 }

Figure 3.1: A recursive function containing a traversal.

1 /* Does ‘list ‘ contain everything in ‘arr ‘? */
2 function containsAll(list , arr) {
3 for (var i = 0; i < arr.length; i++) {
4 var item = arr[i];
5 if (contains(list , item) == false) {
6 return false;
7 }
8 }
9 return true;
10 }

Figure 3.2: A function that redundantly traverses a list.

A key advantage of Travioli is that it can detect a traversal even if a program is
executed on a small unit test—the program does not need to execute a program location
many times to detect a traversal. Another key advantage of Travioli is that it can detect
a traversal even if the traversal involves recursive function calls and loop iterations.

3.2 Identifying Data-Structure Traversals
Before we can identify redundant data-structure traversals, we must first be able to identify
where a program actually performs a data-structure traversal. But what exactly constitutes
a data structure traversal? Surprisingly, even though traversal is a fundamental concept in
computer science, it is not easy to find a precise definition that distinguishes a traversal from
simply an access of some records of a data structure. For example, Skiena [174] describes a
traversal as an algorithm that systematically visits some or all of the data items of a data
structure.

CHAPTER 3. TRAVIOLI 19

1 /* Sum values in records in array */
2 function sum(arr) {
3 var result = 0, record , i;
4 for(i = 0; i < arr.length; i++){
5 record = arr[i];
6 result += record.val;
7 }
8 return result;
9 }

Figure 3.3: A function that traverses an array.

1 /* Compute the length of linked list */
2 function len(list) {
3 var count = 0;
4 while (list != null) {
5 count ++;
6 list = list.next;
7 }
8 return count;
9 }

Figure 3.4: A function that traverses a linked list.

We note that the running time of program functions that perform traversals usually
increases with the increase in the size of the input data structures. In contrast, the running
time of a program function that simply accesses a bounded number of records of a data
structure is not considered a traversal. With this insight, we identify program functions
that operate on data structures and whose running time could be arbitrarily increased by
increasing the size of the input data structure. We call such functions traversing functions.

3.2.1 Traversing Functions

Consider the function sum in Figure 3.3. The function iterates over an input array of
objects, arr, and computes the sum of the val field of the objects it contains. The function is
an example of a simple data-structure traversing function. The running time of the function
can be increased by increasing the size of the input array.

Although in this example we could easily identify the input to the function (i.e. the
array arr), this may be non-trivial for complex functions where inputs could be passed via
global or static variables. We define read footprint to precisely capture the set of inputs to
a function.

CHAPTER 3. TRAVIOLI 20

1 /* Add values from a pair of array elements. */
2 function addPair(arr) {
3 var rx = arr [0];
4 var ry = arr [1];
5 return rx.val
6 + ry.val;
7 }

Figure 3.5: A non-traversing function.

Definition 2 (Memory Location). A memory location is the address of a piece of memory
which stores a program value that can be read by a program. A memory location is often
denoted in a program by a variable, an element of an array, or a field of an object.

Definition 3 (Read Footprint). The read footprint of a function execution consists of all
memory locations that are read during the function execution without any prior write to
them during the same execution. Such memory locations could be treated as the input to
the function.

For example, the read footprint of the sum function consists of the array arr, all its elements
(accessed via arr[i]), the length field of the array (accessed via arr.length), and the field
val of the objects stored in the array (accessed via record.val). In contrast, the memory
locations denoted by the variables i, record and result are not part of the read footprint,
because, in any execution of sum, sum first writes them before reading them.

Definition 4 (Traversing Function). We say that a program function is a traversing function
if the size of its read footprint is unbounded. We say that a function contains a traversal if
and only if it is a traversing function.

The function sum in Figure 3.3 contains a traversal because the size of the read footprint
increases if the size of the input array arr is increased.

The function len in Figure 3.4 is another example of a traversing function. The read
footprint of the len function consists of the memory location denoted by list and the
memory locations denoted by the next field of all objects reachable from list by following
the next field zero or more times. The read footprint of this function can be increased by
increasing the size of the list passed as an argument.

In contrast, the function addPair in Figure 3.5 is not a traversing function. The function
addPair adds the values of the first two elements of the input array. While this function
also reads multiple elements of arr, it is not a traversing function because the size of its
read footprint is always bounded regardless of the size of the input array or the values it
contains.

CHAPTER 3. TRAVIOLI 21

3.2.2 Detecting Traversing Functions

The problem of determining if a function contains a traversal is undecidable in general (see
Theorem 1 in Section 3.3.4). However, in many cases, one can determine whether a function
has a traversal either by analyzing the source code or by analyzing an execution of the
function. We now describe a dynamic analysis technique, called Travioli, to determine if a
function contains a traversal. Travioli works by checking a set of conditions on an execution
of the function—if the conditions are satisfied then we say that the function contains a
possible traversal. Our technique is approximate in the sense that it can give both false
positives and negatives. However, we have identified a set of conditions which, if satisfied,
often accurately indicate the presence of a traversal. A key feature of Travioli is that we
do not need to invoke the function on an input having a large read footprint—Travioli can
detect a traversal by analyzing the execution of the function on a small test input.

Travioli uses program instrumentation to generate a trace of events corresponding to
reads and writes of memory locations. In the following discussion, whenever an execution of
a function reads a memory location that the function execution has not written before, we
call it an input-read event. An input-read event contains the address of the memory location
being read, the value being read, and the program location where the read is performed by
the function. Travioli determines the input-read events during each function execution
and analyzes them to determine if the function has a traversal.

From executions of sum and len in Figures 3.3 and 3.4, respectively, one can observe that
different memory locations are read at the same program location: sum reads the elements
of the array arr at line 5 and len reads the next field of the list objects at line 6. This
observation suggests that a traversal should satisfy the following two conditions:

C1. At least two input-read events at some program location ` access different memory
locations, and

C2. the memory locations involved in the input-read events either belong to the same
object, or belong to different objects connected by a series of pointers.

Note that addPair in Figure 3.5 does not satisfy the first condition because the two
elements of the array are read at different program locations—lines 3 and 4, respectively.
Further, the above two conditions result in a false positive for the function third in Fig-
ure 3.6. The function third calls n twice, and line 8 accesses next field of objects connected
by a pointer. Thus both conditions are satisfied. However, third does not contain a traver-
sal, since its read footprint is bounded to at most two linked-list nodes. The imprecision
stems from the first condition, which requires two input-read events to occur at similar exe-
cution points, where two execution points are deemed similar if they have the same program
locations. This notion of similarity of two execution points is too coarse-grained. We can
alleviate this problem if we say two execution points are similar if they are executing the
same program location and have identical call stacks. We capture such a state of execution
in a concept called execution contexts.

CHAPTER 3. TRAVIOLI 22

1 /* Get the third element of a linked list */
2 function third(list) {
3 var node = n(list);
4 node = n(node);
5 return node.data;
6 }
7 function n(node) {
8 return node.next;
9 }

Figure 3.6: Another example of a non-traversing function.

Definition 5 (Execution Context). The execution context of an event with respect to an
execution of a function f is a sequence (f1 : `1)(f2 : `2) . . . (fn : `n), where

• f1 is the function f ,

• for each i such that 1 ≤ i < n, `i is the program location within function fi where fi+1

is invoked in the current execution, and

• the function fn is currently executing the program location `n to generate the input-
read event.

For example, in an execution of the function third in Figure 3.6, the two input-read events
at line 8 have the execution contexts (third:3)(n:8) and (third:4)(n:8) with respect to
the execution of the function third. Unless otherwise specified, we always refer to execution
contexts with respect to the execution of the function being analyzed for traversals. In order
to remove the false positive for third, we refine the first condition for traversal as follows:

C1. At least two input-read events at some execution context access different memory
locations.

The revised condition gives no false positive for any of the previous examples. Unfor-
tunately, this revision, which uses a fine-grained notion of similarity of execution points,
introduces false negatives—it fails to detect data-structure traversals via recursive functions,
such as the function contains defined in Figure 3.1.

In the function contains, a recursive traversal occurs at line 8, but its execution does
not meet condition C1 because the execution contexts of the input-read events at this
program location are different. In particular, the execution context is (contains:8) for
the first input-read event, (contains:9)(contains:8) for the second input-read event,
(contains:9)(contains:9)(contains:8) for the third input-read event, and so on. Such
execution contexts become more complicated for more complex functions involving mutual
recursion, such as the function alt in Figure 3.7.

CHAPTER 3. TRAVIOLI 23

1 /* Alternately add and subtract from items. */
2 function alt(obj) {
3 return p(obj.items , true , 0);
4 }
5 function p(node , flag , total) {
6 if (node != null) {
7 var value = node.data;
8 return flag ? q(node , flag , total + value)
9 : q(node , flag , total - value);
10 } else {
11 return total;
12 }
13 }
14 function q(node , flag , total) {
15 var tail = n(node);
16 return p(tail , !flag , total);
17 }
18 function n(node) {
19 return node.next;
20 }

Figure 3.7: Mutually recursive functions containing a traversal.

The function alt traverses the linked list rooted at obj.items and alternately adds and
subtracts values of its nodes to the total. The boolean flag passed to function p at line 8
decides which operation to perform, and this flag is toggled by the function q at line 16.
Here, p and q are mutually recursive, and the traversal of the linked list occurs at line 19
after q calls n at line 15. The first time program control reaches line 19, the execution context
is (alt:3)(p:8)(q:15)(n:19); the second-time a different branch is taken in p, and thus
the context is (alt:3)(p:8)(q:16)(p:9)(q:15)(n:19), and so on.

In Travioli, a key observation we make is that, despite the differences in the execution
contexts of the input-read events involved in a traversal, the contexts are equivalent modulo
recursion (i.e. after removing any cycles). Such reduced execution contexts, which we define
next, are called acyclic execution contexts (AEC) and they are constructed as follows. For
an execution context (f1 : `1)(f2 : `2) . . . (fn : `n), we first construct an execution-context graph
consisting of a node for each unique function fi and a special node end. Moreover, let
start denote the node corresponding to f1. For every consecutive pair (fi : `i)(fi+1 : `i+1) in
the execution context, we add a directed edge from fi to fi+1 with label `i and weight i.
Additionally, we add an edge from fn to end with label `n and weight n. For the example in
Figure 3.7, the execution-context graph for the second input-read event at line 19 is shown
in Figure 3.8, where the edges are labeled by the program locations ` and weights w.

CHAPTER 3. TRAVIOLI 24

alt p q n end
(start)

`=3,w=1 `=8,w=2

`=16,w=3

`=9,w=4

`=15,w=5`=19,w=6

Figure 3.8: Execution-context graph for the execution context
(alt:3)(p:8)(q:16)(p:9)(q:15)(n:19).

Example Execution contexts AEC
Fig. 3.6, (third:3)(n:8) (third:3)(n:8)
Line 8 (third:4)(n:8) (third:4)(n:8)

Fig. 3.4, (len:6) (len:6)
Line 6 (len:6) (len:6)

Fig. 3.1, (contains:8) (contains:8)
Line 8 (contains:9) (contains:8) (contains:8)

Fig. 3.7, (alt:3)(p:8)(q:15)(n:19) (alt:3)(p:8)(q:15)(n:19)
Line 19 (alt:3)(p:8)(q:16)(p:9)(q:15)(n:19) (alt:3)(p:8)(q:15)(n:19)

Table 3.1: Execution contexts and AECs for first two read events.

Definition 6 (Acyclic Execution Context). The acyclic execution context (AEC) of an
execution context is the sequence (f1 : `1)(f2 : `2) . . . (fk : `k) such that f1

`1−→ f2 . . . fk
`k−→ fk+1

is the shortest weighted path from start to end in its execution-context graph.

For the graph in Figure 3.8, the acyclic execution context is (alt:3)(p:8)(q:15)(n:19).
As the edge weights correspond to the position of the edge in the sequence, multiple edges
between two nodes are disambiguated by choosing the edge corresponding to the least recent
function invocation.

Two distinct execution contexts that have the same AEC are the recursive analog of
distinct iterations of a single loop. Unlike execution contexts that can grow unboundedly,
AECs are bounded because the number of permutations of distinct functions in a program
is finite. We found AECs to be a useful abstraction for clustering execution contexts of
input-read events involved in a traversal—such an abstraction helps us to merge execution
points involved in a traversal in a precise way irrespective of whether the traversal involves
recursive calls or loop iterations.

Table 3.1 lists, for some example functions and program locations (column 1), the exe-
cution contexts (column 2) and corresponding AECs (column 3) for the first two input-read
events, when the functions are provided an input linked list containing at least two nodes.
The first row shows that the AECs for input-read events at line 8 in the function third are
distinct, since third does not contain a traversal. The last three rows show that for the
functions len, contains and alt, multiple input-read events at the given locations have a
common AEC; therefore, they are traversing functions.

CHAPTER 3. TRAVIOLI 25

We can now refine the conditions that a traversing function should satisfy in terms of
AECs as follows:

C1. At least two input-read events having same the AECs access different memory loca-
tions, and

C2. the memory locations involved in the input-read events either belong to the same
object, or belong to different objects connected by a series of pointers.

We call the AEC of such input-read events a traversal point. In general, a traversing function
may contain more than one traversal point.

3.2.3 Detecting Redundant Traversals

In order to determine if a traversal in a function is redundant, we need to analyze the sequence
of concrete memory locations (i.e. actual memory addresses) read at a traversal point of the
function. If the sequence contains repeated contiguous subsequences, then we know that the
memory locations in these contiguous subsequences are traversed repeatedly. We then say
the function has a redundant traversal. Formally, if the sequence of memory locations read
at a traversal point can be partitioned into the contiguous subsequences β1, β2, . . . , βk where
k ≥ 2 and for each 1 ≤ i, j ≤ k, either βi is a prefix of βj or βj is a prefix of βi, then the
sequence of memory locations indicate a possibly redundant traversal.

For example, if a, b and c are concrete memory locations, then the sequence of reads
abcaba can be partitioned into repeating contiguous subsequences (abc)(ab)(a) indicating
redundant traversals. On the other hand, the sequence abcacab is partitioned as (abc)(ac)(ab)
and does not indicate a redundant traversal because ac is not a prefix of ab and vice versa.

Consider the execution of containsAll (Fig. 3.2) on an input linked list list containing
the elements [’a’, ’b’, ’c’] and an array arr containing [’c’, ’b’, ’a’]. If the mem-
ory locations corresponding to the first three nodes of the linked list list are denoted as a,
b, and c respectively, then the sequence of reads at AEC (containsAll:5)(contains:8) is
abcaba, which can be partitioned into repeating contiguous subsequences as above; therefore,
Travioli will identify containsAll as containing a potentially redundant traversal.

In general, a redundant traversal can be detected by a memory location sequence as short
as aba or aab; therefore, Travioli can detect redundant traversals from functional unit tests
alone. Moreover, Travioli can detect redundant traversals in functions that use recursion,
such as the example in Figure 3.2, which could not be detected using prior approaches [131,
135].

3.3 Dynamic Analysis Implementation
Travioli identifies the traversing functions in a program by analyzing an execution of
the program. Travioli first instruments the program under analysis to generate run-time

CHAPTER 3. TRAVIOLI 26

events. The instrumented program is executed with a suitable set of inputs to generate a
trace of run-time events. From the generated trace, Travioli determines the input-read
events for every function execution. Travioli then analyzes each sequence of input-read
events to detect traversals. We next describe each of these steps formally.

3.3.1 Events and Traces

Travioli tracks reads and writes of every memory location during an execution of a program.
In a program, a memory location can be denoted by a local variable, a global variable, a
field of an object, or an element of an array. A memory location is represented by a pair
(obj,fld), where obj is the address of an object (or array), and fld is the name of a field (or
index of an array element). Local variables are treated as fields of special activation record
objects corresponding to the stack frames in which they are allocated. Global variables are
treated as fields of a special globals object.

Travioli instruments a program to generate the following four kinds of events:

1. Read〈`, obj,fld, val〉 denotes the read of a memory location (obj,fld) at program loca-
tion `. The result of the read, val, can be a scalar or the address of another object.

2. Write〈`, obj,fld, val〉 denotes the write of a memory location (obj,fld) at program
location `. Here, val is the new value that is written to the memory location. At
function calls, write-events are generated for each argument passed to the function,
where each formal parameter is treated as a local variable.

3. Call〈`, f, a〉 is an event corresponding to the invocation of function f at the program
location (i.e. call site) `. Here, a is a freshly generated unique identifier for the newly
created activation record object for this function invocation.

4. Ret〈`, a〉 is an event corresponding to a function returning to its caller. Here, ` is
the program location of the return instruction and a is the identifier of the current
activation record, which is about to be destroyed. Note that each unique value of a
appears in exactly one call and one return event in the program execution.

The execution of an instrumented program generates a trace of events. We identify the
execution of a function started by the event Call〈`, f, a〉 by the activation record identifier
a. For a function execution denoted by a, we use trace(a) to denote the sequence of events
generated by the function execution, including the call and return events that start and end
the execution of the function, respectively. If a function f ′ is invoked during the execution
of a function f with activation record a, and if this invocation creates an activation record
a′, then trace(a′) is a subsequence of trace(a).

CHAPTER 3. TRAVIOLI 27

3.3.2 Read-Traces and Read-Footprints

To compute the read footprint of a function execution, we need to determine the set of
memory locations that are read before being written during the execution. We define the
read trace of a function execution a, denoted by rtrace(a), as the largest set of events ei
such that:

• ei = Read〈∗, obj,fld, ∗〉

• ei ∈ trace(a)

• ∀j : (ej = Write〈∗, obj,fld, ∗〉) ∈ trace(a)⇒ j > i

The third condition ensures that if there is a write to the memory location (obj,fld) in
the trace, then it must occur after ei. Then, the read footprint of a function execution a,
denoted by fp(a), is computed as:

fp(a) = {(obj,fld, val) | Read〈∗, obj,fld, val〉 ∈ rtrace(a)}

3.3.3 Traversing Functions

Let fX denote the execution of a function f with input X, where X represents the state of
the entire program memory before such an execution, including the state of any arguments
passed to f as parameters. A function f is a traversing function (ref. Definition 4) if and
only if the following condition holds:

∀X1 : fX1 halts,∃X2 : |fp(fX2)| > |fp(fX1)|

3.3.4 Detecting Traversals

Theorem 1. The problem of determining if an arbitrary function contains a traversal is
undecidable.

Proof. Assume we have a function called traverses(f) that determines if an input function
f is a traversing function. Now, we can construct another function halts that takes as input
another function p and some input x that and returns true if an only if p halts when provided
with the input x:
1 function halts(p, x) {
2 var f = function(arr) {
3 p(x); // Must halt for ‘arr ‘ to be traversed
4 for (var i = 0; i < arr.length; i++) {
5 print(arr[i]);
6 }
7 }
8 return traverses(f); // True iff p(x) halts
9 }

CHAPTER 3. TRAVIOLI 28

But we know that the halting problem is undecidable. Hence, the function traverses
cannot exist.

Travioli therefore uses heuristics to determine whether a function is a traversing func-
tion.

For every function execution a and for each event e in trace(a), we compute the exe-
cution context of e with respect to a, denoted by ec(a, e) as follows:

• If e is the first event of trace(a) and is of the form Call〈`, f, a〉, then ec(a, e) = ε,
i.e. the empty sequence.

• If e is not the first event of trace(a) and is generated at program location `, and
if the latest call-event before e without a matching return event before e is e′ =
Call〈`′, f ′, a′〉, then ec(a, e) = ec(a, e′).(f ′, `), where s.(f, `) is the sequence obtained
by appending the pair (f, `) to the sequence s.

This is a formal version of Definition 5 given in Section 3.2.2.
Once we have computed the execution context of an event with respect to a function

execution, we determine its acyclic execution context as per Definition 6. Let us denote the
acyclic execution context of an event e with respect to a function execution a by aec(a, e).

We define a reachability relation a
 between objects accessed in function execution a:

o1
a
 on holds if and only if there exists a sequence (o1, f1, o2), (o2, f2, o3), . . . (on, fn, val),

such that each element of the sequence is in the read footprint fp(a). This relation is
reflexive and transitive.

We can now formalize the conditions we check to detect if an execution a of function f
contains a traversal: if there exist two input-read events ei = Read〈`, obji, f ldi, vali〉 and
ej = Read〈`, objj, f ldj, valj〉 such that:

• ei, ej ∈ rtrace(a)

• (obji, f ldi) 6= (objj, f ldj)

• aec(a, ei) = aec(a, ej) = α

• obji
a
 objj or objj

a
 obji

then we mark the function f as a traversing function and the AEC α as a traversal point.
There may be more than one acyclic execution context marked as a traversal point for a
function f across one or more of the function’s executions.

CHAPTER 3. TRAVIOLI 29

3.3.5 Detecting Redundant Traversals

Consider an AEC α that is marked as a traversal point during the execution a. If we observed
r events in trace(a) having AEC α with respect to a, then let the sequence of memory
locations read in these events be M = m1,m2, . . .mr. To determine if this AEC is the point
of a possibly redundant traversal (cf. Section 3.2.3), we perform the following steps:

1. We find all indexes i in [1..r] wheremi = m1, the first memory location in the sequence.
If we find k such positions, and arrange them in increasing order, let the resulting
sequence of positions be p1, p2 . . . pk. Naturally, p1 = 1. If k = 1, then we quit early as
there is no repetition. Otherwise, let pk+1 = r, as an upper bound.

2. We divide the read sequence into k partitions π1 . . . πk. For all j in [1..k], the jth
partition πj is the subsequence mpj ,mpj+1,mpj+2, . . .mpj+1−1. At least one partition
must have a length greater than one, because the traversal criteria insists on at least
two distinct memory locations.

3. For all pairs of distinct partitions πi and πj, if πi is a prefix of πj or if πj is a prefix of
πi, then the complete sequence M consists of repeating subsequences. In that case, we
mark α as a point of redundant traversal.

3.3.6 Access Graphs

Travioli can discover traversal points in functions that traverse input data structures. In
order to identify the data structure being traversed, and to visualize the traversal across one
or more AECs, we develop the concept of access paths and access graphs.

A memory location in a read footprint, which we call an input-memory location, can be
reached from a program variable via a series of one or more fields or array indices, called an
access path.

Definition 7 (Access Path). An access path π in a function execution is a finite non-empty
sequence of the form v.k1.k2 · · · kn, where n ≥ 0, v is a variable name, and each ki is either a
field name or an array index. The access path v represents the value of the variable v before
the function execution starts, and the access path π.k represents the value stored in the field
or array index k of the object whose access path is π.

For example, the input-memory locations read by the function third in Figure 3.6 can be
represented by access paths list, list.next, list.next.next, and list.next.next.data.
More than one access path may refer to the same memory location.

Since traversing functions have read footprints that are unbounded, we found it useful
to represent the unbounded set of access paths involved in a data-structure traversal using a
finite graph, called an access graph. Figure 3.9 lists access graphs for various examples used
in this chapter.

CHAPTER 3. TRAVIOLI 30

Definition 8 (Access Graph). In an access graph, nodes represent a set of values, which may
be scalars or object addresses. There are two types of nodes: variable nodes and AEC nodes.
A variable node with label v represents the value stored in variable v at the beginning of the
function execution. An AEC node with label α represents the values read by an input-read
event at AEC α. There is an edge with label k from any node n to an AEC node α if the
field k of an object denoted by the n-node is read in an input-read event at the AEC α. If
more than one field of objects represented by node n are read at the AEC α, then the edge
from the n node to the α node is labeled with ∗. This happens when multiple elements of
an array or multiple fields of an object are read at the AEC α.

According to this definition, variable nodes do not have incoming edges. Moreover, all AEC
nodes are reachable from at least one variable node. An AEC node is colored grey if the
corresponding AEC is a traversal point.

An access graph concisely captures the access paths of all input-memory locations read
at each AEC. In particular, a path in the graph from a variable node v to an AEC node α
corresponds to an access path that begins with v and is followed by the sequence of edge
labels along the path in the access graph. For example, in Fig. 3.9a, the access path of an
input-memory location read at AEC (third:5) is list.next.next.data. In Fig. 3.9b, the
access graph contains a cycle. Therefore, the access paths of the input-memory locations
read at AEC (contains:5) are list.data, list.next.data, list.next.next.data, and
so on. In this manner, an access graph provides a bounded representation of an unbounded
number of access paths.

Figures 3.9b, 3.9c and 3.9d represent access graphs of three functions that traverse linked
lists in different ways, but the access graphs provide similar abstractions, because, in each
case, the input lists are traversed via the next field at a single AEC. Figures 3.9e and 3.9f
depict access graphs for functions that read array elements. In addPair, array elements are
read at two distinct AECs; therefore, the graph contains two branches starting from arr.
On the other hand, sum traverses the array and this is captured by the wild-card ∗ that
labels the edge from arr to the AEC (sum:5). The access paths that reach this AEC are
arr.*, which indicate that more than one field (or in this case, more than one array index)
of the variable arr is read at the AEC (sum:5). Similarly, the access paths that are read
at AEC (sum:6) are arr.*.val, which represent the val fields of the elements contained in
the array arr.

Access graphs were first used in a static liveness analysis [98] to represent an unbounded
set of heap-memory locations that may be live at a program point. Our access graphs are
similar in that a node can represent a regular pattern of access paths. However, we distinguish
nodes based on AECs rather than program locations as in the original formulation; therefore,
our access graphs are context-sensitive.

We can use access graphs to determine access paths that identify the data structure being
traversed. We call such an access path the root of the data-structure traversal.

Definition 9 (Root of a Data-Structure Traversal). In a traversing function f , a data-
structure traversal root is a minimal access path π such that in the access graph of f , the

CHAPTER 3. TRAVIOLI 31

list (third:3)(n:8)next (third:4)(n:8)next (third:5)data

(a) Access graph for third (Fig. 3.6)

x
(contains:8)

list

next
(contains:5)data

next

data

(b) Access graph for contains
(Fig. 3.1)

obj (alt:3)items

(alt:3)(p:8)(q:15)(n:19)
next

(alt:3)(p:7)data

next

data

(c) Access graph for alt (Fig. 3.7)

list (len:6)next

next

(d) Access graph for len
(Fig. 3.4)

arr

(addPair:3)
0

(addPair:4)
1

(addPair:5)val

(addPair:6)val

(e) Access graph for addPair
(Fig. 3.5)

arr (sum:5)* (sum:6)val

(f) Access graph for sum
(Fig. 3.3)

Figure 3.9: Access graphs for various examples presented in the chapter.

node n at the end of access path π satisfies the following two conditions: (1) there is an edge
from n to a grey node and (2) there is no grey node along the path π.

Since π is a minimal access path that satisfies these conditions, no prefix of π is also a root.
For example, the root of the data structure traversed in Fig. 3.9b is simply list, while
in Fig. 3.9c the data structure being traversed is obj.items. Roots can be identified by
determining the shortest path(s) from a variable node to an AEC node corresponding to a
traversal point such that the path does not pass through any other traversal point.

CHAPTER 3. TRAVIOLI 32

Table 3.2: Overview of experiments conducted to evaluate Travioli.

Application Test Suite Analysis
Test
Cases

Run.
Time
(normal)

Run.
Time
(w/instr)

Analysis
Time

Function
Invoca-
tions

Unique
Func.

(1) (2) (3) (4) (5) (6) (7)
d3-collection 233 0.21 7.95 3.88 1,340 37
immutable-js 418 0.65 81.12 149.69 260,642 513
d3-hierarchy 49 0.18 10.14 6.40 5,523 50
mathjs:matrix 357 0.59 43.80 44.33 26,931 282
express 696 2.12 81.09 91.52 53,382 158

Table 3.3: Results of experimental evaluation: traversals discovered by Travioli.

Application All Traversals Redundant Traversals
Unique
Func.

Unique
Roots

Unique
AECs

Unique
Func.

Unique
Roots

Unique
AECs

(1) (8) (9) (10) (11) (12) (13)
d3-collection 13 15 36 0 0 0
immutable-js 239 460 2,859 45 62 106
d3-hierarchy 20 23 88 1 1 1
mathjs:matrix 128 226 2,261 31 13 1,444
express 50 81 1,847 2 2 2

3.4 Evaluation
We have implemented Travioli using the Jalangi framework [163] for instrumenting JavaScript
programs. We evaluate Travioli on a set of five open-source JavaScript projects. The
projects were chosen because they are widely used, they have comprehensive unit tests
that can be launched from command-line using Node.js [132], and they represent a va-
riety of scenarios where data-structure performance may be important. The projects in-
clude d3-collection [47], a data-structure library used in the popular D3 [49] visualiza-
tion toolkit, immutable-js [90], an immutable data-structure library developed by Face-
book, d3-hierarchy [48], which provides algorithms for visualizing hierarchical data-sets,
express [59], a server-side web framework, and mathjs [119], an extensive math library. We
analyze the matrix module of mathjs.

Tables 3.2 and 3.3 provide an overview of experiments performed on a MacBook Pro with
an Intel Core i7-4770HQ processor and 16GB RAM running OS X 10.10 and Node.js v4.4.0.
All listed run-times are in seconds. In both tables, Column 1 lists the candidate projects
studied. In Table 3.2, column 2 lists the number of unit tests in their test suites, column 3
reports the running time of the corresponding test suites, and column 4 reports the running
time of the instrumented test suites, including the time to instrument the source files (project
+ dependencies) and the time to generate events. Columns 5–7 report the time required
to analyze these events, the number of function executions analyzed for traversals, and the
number of unique functions for which access graphs are generated respectively. Although

CHAPTER 3. TRAVIOLI 33

we compute the read trace for all function executions, we exclude analysis of functions from
the projects’ dependencies or test suites. In Table 3.3, columns 8–10 report the results of
traversal detection: the number of traversing functions, the number of distinct access paths
identified as roots of data structures (cf. Section 3.3.6), and the number of distinct AECs
marked as traversal points. Columns 11–13 repeat this information for redundant traversals.

To evaluate the quality of results provided by Travioli, we perform the following manual
investigation. For each candidate project, we randomly sample up to 10 access paths reported
as roots of data structures being traversed, and randomly pick one reported traversal point
for each access path. If a reported traversal point does not correspond to a traversing function
within the library, we classify it as a false positive. In all other cases, the traversal point lies
within a traversing function as per Definition 4, and is thus a true positive.

Of the 50 traversal points that were randomly sampled across all candidate projects,
we found only two false positives: one in immutable-js and another in express. In
immutable-js, an array data structure was incorrectly reported to be traversed. The false
positive resulted from a related traversal of a hash-map that mapped strings to integer values;
the resulting integers were used as indices to access a single element of different arrays. The
array accesses occurred within the same loop that traversed the hash-map, and in at least
two iterations a common array was accessed at the same AEC; therefore, the conditions that
Travioli checks for detecting traversals were satisfied. In express, one traversal point was
in the test suite itself, in a function that was supplied as a callback parameter to express.
Since the traversal was not really part of express we marked this as a false positive.

Similarly, we manually evaluate a random subset of the traversal points that are reported
as redundant. If the reported traversal point was not really redundant, we mark it as a
false positive. All other redundant traversals are true positives. Now, a traversing function
may be private to the library to which it belongs, and this library may use domain-specific
constraints to ensure that the function receives inputs of only a bounded size. We classify
true positives that belong to this category as restricted traversals. In such instances, even
though a program function may appear to contain a redundant traversal, it will likely not
become a performance bottleneck due to the constraints under which it is used. Finally, we
classify the remaining true positives as either bugs—when the implementation performs more
work than an optimal algorithm—or necessary redundancies—when the optimal algorithm
necessarily requires repeated traversals of a data structure (e.g. matrix multiplication).

From the reported redundant traversals, we sampled 10 data structures and one corre-
sponding traversal point from both immutablejs and mathjs. d3-hierarchy and express
contained fewer than 10 reports of redundant traversals and we analyzed all of those cases.
No redundant traversal was reported for d3-collection. We manually analyzed a total of
23 redundant traversals. Table 3.4 outlines the result of this manual evaluation.

All false positives were in immutable-js. The sequence of memory locations read at the
reported traversal points did contain repeated contiguous subsequences, but this was specific
to the particular inputs in the test suites. The corresponding traversing functions do not
perform redundant computations in general.

Of the 19 sampled redundant traversals that were true positives, we found 10 to be

CHAPTER 3. TRAVIOLI 34

Table 3.4: Evaluation of sampled redundant traversal points reported by Travioli.

Application False
Posi-
tives

Restricted
Traver-
sals

Necessary
Redun-
dancies

Perf.
Bugs

Total

d3-collection 0 0 0 0 0
immutable-js 4 6 0 0 10
d3-hierarchy 0 0 0 1 1
mathjs:matrix 0 3 7 0 10
express 0 1 0 1 2
Total 4 10 7 2 23

restricted traversals. For example, the implementation of maps in immutable-js uses
ArrayMap with linear-time lookup only when the number of elements is less than 8; for
larger maps the implementation switches to using hash-tables with constant-time lookup. In
express, one reported redundant traversal was restricted because the traversing function can
only ever be invoked internally with a list of HTTP methods (e.g. GET, POST), of which only
26 are supported; therefore, this function does not lead to performance issues. In mathjs,
all reported redundant traversals belonged to algorithms that required repeated traversals,
such as matrix multiplication, and thus were not classified as bugs.

Two of the reported redundant traversals were real performance bugs—they were con-
firmed by the developers. In d3-hierarchy, Travioli found a bug in the implementation
of binary tree-maps, which are a visualization of hierarchical data as rectangles that are
repeatedly partitioned into two sets. The implementation partitions an array of numbers by
computing an index such that the sums of the left and right sub-arrays are approximately
equal. This process is recursively repeated for each partition, resulting in a binary tree. We
detected, from a simple unit test, that the algorithm to find the index to partition the array
performed redundant traversals at each step to compute the sums of the sub-arrays. We were
able to show that in the worst-case the implementation had complexity O(n2). We reported
and fixed this bug (see https://github.com/d3/d3-hierarchy/issues/44), by computing
the sums of all prefixes of the input array ahead-of-time, and using a binary search to find
the partition index at each step. The fixed implementation is O(n log n) in the worst-case,
and provides about a 20× speed-up for a binary tree-map with 1,000 nodes.

The second bug was found in express. When an express application is configured to
support m URL patterns with n handlers using a particular API, the list of URL patterns is
redundantly traversed once per handler to construct a regular expression that combines all
patterns. As regex compilation is expensive, this implementation may lead to longer start-up
times for some applications. We reported this as a performance issue, which was subsequently
acknowledged by the developers (see https://github.com/expressjs/express/issues/
3065).

https://github.com/d3/d3-hierarchy/issues/44
https://github.com/expressjs/express/issues/3065
https://github.com/expressjs/express/issues/3065

CHAPTER 3. TRAVIOLI 35

3.5 Summary
In this chapter, we presented Travioli, a dynamic analysis technique to find algorithmic
performance bottlenecks using only functional test cases. Travioli identifies potentially
redundant data-structure traversals. Travioli’s key innovation is acyclic execution contexts,
which allows it to precisely identify complex ad-hoc data-structure traversals from analyzing
the execution of small unit tests. Travioli was able to identify two algorithmic performance
bugs in widely used JavaScript projects D3 and ExpressJS.

Travioli does suffer from several limitations. For example, Travioli reported several
potentially redundant traversals that turned out not to be performance bugs either because
they were not really traversals, because the program restricted traversal complexity by en-
forcing certain preconditions, or because the program uses algorithms that necessarily require
super-linear complexity (e.g. matrix multiplication). Further, since Travioli uses dynamic
analysis, it can only detect and report traversals if they occur during program execution.
We cannot precisely evaluate Travioli for false negatives, because it is not possible to stat-
ically determine all traversal points, and it is not feasible to manually evaluate all candidate
acyclic execution contexts. Finally, Travioli only points to program locations that may be
performance bottlenecks due to potentially redundant data-structure traversals. Test cases
corresponding to worst-case behavior must still be handcrafted in order to confirm or dismiss
such reports. The next chapter presents a solution that overcomes this limitation.

36

Chapter 4

PerfFuzz: Automatically Generating
Pathological Inputs

The previous chapter described a dynamic analysis to identify likely algorithmic performance
bottlenecks. Although the results were promising, the main limitation of this approach is that
it does not automatically produce the inputs that trigger worst-case algorithmic complexity.

This chapter presents PerfFuzz [107], a method to automatically generate pathological
inputs ; that is, inputs that exercise worst-case behavior, potentially revealing algorithmic
performance bottlenecks. PerfFuzz generates inputs via coverage-guided fuzzing (CGF).
To recap Section 2.5, CGF generates new inputs by mutating a previously saved input,
and new inputs are saved for future mutation if they execute a new program location (i.e.
they increase code coverage in a program under test). The key idea in PerfFuzz is to
associate each program location with an input that exercises that location the most. Inputs
that exercise some program location more than any previous input are saved and prioritized
for subsequent mutation. This enables PerfFuzz to find a variety of inputs that exercise
distinct hot spots in a program, i.e., program locations that are frequently executed.

Our experimental evaluation demonstrates the ability of PerfFuzz to find hot spots in
four real-world C programs commonly used in the fuzzing literature. The inputs generated
by PerfFuzz exercise the most-frequently executed program branch 2×–39× times more
often than the inputs generated by conventional coverage-guided fuzzing. We also com-
pare PerfFuzz with SlowFuzz [149], a prior work on discovering algorithmic complexity
vulnerabilities. PerfFuzz outperforms SlowFuzz in discovering inputs exercising worst-
case algorithmic complexity in micro-benchmarks. PerfFuzz is also better at generating
pathological inputs in macro-benchmarks, finding inputs that exercise the most-frequently
executed program branch 5×–69× times more and have 1.9×–24.7× longer execution paths.
Unlike SlowFuzz, which tries to maximize only the total execution path length, PerfFuzz
uses multi-dimensional feedback and independently maximizes the number of times each pro-
gram location is executed. However, the performance response of a program is not necessarily
a convex function of its input characteristics. We believe the multi-dimensional objective
helps PerfFuzz escape local maxima, which explains its better performance.

CHAPTER 4. PERFFUZZ 37

1 // Hash -map entry node , with ptr
2 // to resolve hash collisions
3 typedef struct entry_t {
4 char* key;
5 int value;
6 struct entry_t* next;
7 } entry;
8
9 // Fixed -size table of hash -map entries.

10 const int TABLE_SIZE = 1001;
11 entry* hashtable[TABLE_SIZE] = {0};
12
13 // Computes a hash value for a word.
14 unsigned int compute_hash(char* str) {
15 unsigned int hash = 0;
16 for (char* p = str; *p != ’\0’; p++){
17 hash = 31 * hash + (*p);
18 }
19 return hash % TABLE_SIZE;
20 }

21 // Increments a word count
22 void add_word(char* word) {
23 // access appropriate hash bucket
24 int bucket = compute_hash(word);
25 entry* e = hashtable[bucket];
26
27 // find matching entry
28 while (e != NULL) {
29 if (strcmp(e->key , word) == 0) {
30 // increment count
31 e->value ++;
32 return;
33 } else {
34 // traverse linked list
35 e = e->next;
36 }
37 }
38 // If no entry found , create one
39 hashtable[bucket] = new_entry(word ,

1, hashtable[bucket]);
40 }

Figure 4.1: Extract from a C program that counts the frequency of words in an input string.

4.1 A Motivating Example
The C program in Figure 4.1 is a simplified version of wf [185], a simple word frequency

counting tool that is packaged in the Fedora 27 RPM repository. The main program driver
(omitted from the figure for brevity) takes as input a string, splits the string into words at
whitespaces, and counts how many times each word occurs in the input. To map words to
integer counts, the program uses a simple hashtable (defined at Line 11) with a fixed number
of buckets. Each bucket is a linked list of entries holding counts for distinct words that hash
to the same bucket. As each word is scanned from the input, the program invokes the
add_word function (Lines 22–40). This function first computes a hash value for that word—
implemented in compute_hash (Lines 14–20)—and then attempts to find an existing entry
for that word (Lines 28–37). If such an entry is found, its count is incremented (Line 31).
Otherwise, a new entry is created with a count of 1 (Line 39).

When this program is used to compute word frequencies for an input containing English
text, the program does not exhibit any performance bottlenecks. This is because English
text usually contains words of short length (about 5 characters on average) and the number
of distinct words is not very large (less than 10,000 in a typical novel). However, there are
at least two performance bottlenecks that can be exposed by pathological inputs.

First, if the input contains very long words (e.g., nucleic acid sequences, a common ge-
nomics application), the program will spend most of its time in the compute_hash function.
This is because the compute_hash function iterates over each character in the word irre-
spective of its length. For most applications, it is sufficient to compute a hash based on a

CHAPTER 4. PERFFUZZ 38

bounded subset of the input, such as a prefix of up to 10 characters.
Second, if the input contains many distinct words (e.g., e-mail addresses from a server

log), the frequency of hash collisions in the fixed-size hashtable increases dramatically. For
such an input, the program will spend most of its time in the function add_word, traversing
the linked list of entries in the loop at lines 28–37. In the worst-case, the run-time of wf
increases quadratically with the number of words. This bottleneck can be alleviated by
replacing the linked list with a balanced binary search tree whenever the number of entries
in a bucket becomes very large.

Now, how does the developer of this program identify these performance bottlenecks?
If the inputs that exercised the behaviors outlined above were available, then they could
run the program through a standard profiling tool such as GProf [79] or Valgrind [129]
and observe the source locations where the program spends most of its time. They could
also use a statistical debugging tool [176] to compare runs of inputs that take a long time to
process versus inputs that are processed quickly. Alternatively, they could use an algorithmic
profiling tool [200] to estimate the run-time complexity by varying the size of pathological
inputs. But how does the developer acquire such inputs in the first place? Our performance
fuzzing technique addresses exactly this concern.

Our goal is to generate inputs that independently maximize the execution count of each
edge in the control-flow graph (CFG) of a program. We assume that we have one or more seed
inputs to start with. These seeds are test inputs designed for verifying functional correctness
of the program, and need not expose worst-case behavior. In our experiments, we use at
most 4 seeds, but usually only 1. In the absence of such seeds, we can also simply start
with arbitrary inputs such as an empty string or randomly generated sequences. The basic
outline of our input-generation algorithm, called PerfFuzz, is as follows:

1. Initialize a set of inputs, called the parent inputs, with the given seed inputs.

2. Pick an input from the parent inputs that maximize the execution count for some CFG
edge.

3. From the chosen parent input, generate many more inputs, called child inputs, by
performing one or more random mutations. These mutations include randomly flip-
ping input bytes, inserting or removing byte sequences, or extracting random parts of
another input in the set of parent inputs and splicing it at a randomly chosen location
in the parent.

4. For each child input, run the test program and collect execution counts for each CFG
edge. If the child executes some edge more times than any other input seen so far (i.e.,
it maximizes the execution count for that edge), then add it to the set of parent inputs.

5. Repeat from step 2 until a time limit is reached.

We walk through an execution of the PerfFuzz algorithm for the word frequency count-
ing program wf shown in Figure 4.1.

CHAPTER 4. PERFFUZZ 39

Suppose the seed input provided by a developer is the string "the quick brown fox
jumps over the lazy dog". This input consists of 9 words. This input does not have any
special characteristics that exhibit worst-case complexity. All of the 8 distinct words in this
input map to distinct buckets in the hashtable, and none are very long. PerfFuzz first runs
the program with this input and collects data about which CFG edges were executed. For
example, the function add_word is invoked 8 times, whereas the true branch of the condition
on Line 29 is executed only once to increment the count for the word "the".

In step 2, PerfFuzz picks this input and mutates it several times. Let us walk through
a few sample mutations to observe the outcome of each mutation.

1. The character at position 18 is changed from o to i, yielding the string "the quick
brown fix jumps over the lazy dog". Running the program with this input does
not increase the execution count for any CFG edge. Therefore, this input is discarded.
This is the most common outcome of mutation.

2. The character at position 7 (the i in quick) is replaced with a space, yielding the string
"the qu ck brown fox jumps over the lazy dog". This operation increases the
number of words, so running wf with this input leads to an additional execution of the
function add_word. As no previous input has executed the CFG edge that invokes this
function 10 or more times, the input is saved for subsequent fuzzing.

3. The character at position 16 (the space between brown and fox) is replaced with an
underscore, yielding the string "the quick brown_fox jumps over the lazy dog".
The words brown_fox and dog have the same hash value of 545, causing a collision-
resolving linked-list traversal at line 35. As this branch is executed for the first time,
this input is also saved.

Note that the last mutation, (3), actually reduces the total number of words, and therefore
the total end-to-end execution path length. This is important, and we will return to this
point later.

Newly saved inputs will be picked in the future as the parent for subsequent mutations,
and the process repeats. Inputs that maximize the execution count of at least one CFG edge
are favored ; that is, they are picked for fuzzing with higher probability. A favored input
may cease to be favored if newer inputs are found with higher execution counts for the same
edge. The number of favored inputs at any time is much smaller than the number of CFG
edges in the program due to correlations between execution counts of various edges in the
program—the same favored input may maximize the execution counts of correlated CFG
edges.

Most mutated inputs will not increase execution counts. However, executing a program
with a single input is a very fast operation, even in the presence of lightweight instrumenta-
tion for collecting profiling data. So, PerfFuzz can make steady progress in a reasonable
amount of time. For example, with our experimental setup, wf can be executed more than

CHAPTER 4. PERFFUZZ 40

6,000 times per second on average. Thus in one hour, PerfFuzz can go through over 20
million inputs.

After a predefined time budget expires, PerfFuzz outputs the current favored program
inputs and the execution counts for the CFG edges that they maximize (see Table 4.1 for an
example). For the running example, PerfFuzz outputs strings including

"tvÇ1PFEj??A4A+v!^?^AE!§^?MPttò8dg80ÿ(8mrÿÿÿÿ",

a single long word which maximizes the execution count of Line 17 in compute_hash, as well
as

"t t t t i nv t X t 1 9 t l t l t t t t t",

a string containing many short words which exercises repeated executions of the function
add_word(), and

"t <81>v ^?@t <80>!^?@t <80>!t t^Rn t t t t t t t t t",

which contains many words that hash to the same bucket as the word "t", exposing the worst-
case complexity due to repeated traversals of a long linked list. Section 4.3.1.2 describes in
detail the results of running PerfFuzz on wf-0.41.

An important feature of PerfFuzz is that it saves mutated inputs if they maximize the
execution count for any CFG edge, even if the mutation reduces the total execution path
length. This is in contrast to previous tools which use a greedy approach and consider only
increases in total path length [149]. This feature helps PerfFuzz find inputs exercising
worst-case behavior even when the performance response of the program is non-convex. For
example, finding inputs with many hash collisions in the example above usually requires
reducing the total path length when discovering the first few collisions—refer to mutation
3. But, the total path length becomes much larger once multiple collisions are found due
to the quadratic increase in the number of linked-list node traversals. Empirical results in
Section 4.3.1.2 support the importance of this multi-objective approach.

4.2 The PerfFuzz Algorithm
Algorithm 2 describes the high-level outline of PerfFuzz. The goal of PerfFuzz is to
generate inputs which achieve high performance values associated with some program com-
ponents. To generate inputs exhibiting high computational complexity, we take the program
components to be CFG edges and the values to be their execution counts. Chapter 6 de-
scribes a generalization of the ideas developed in this section that enable developing new
domain-specific fuzzing applications.

Algorithm 2 is a modification of the CGF algorithm, with important changes from Al-
gorithm 1 highlighted in grey. PerfFuzz is given a program, p, and a set of initial seed
inputs I. These seed inputs are used to initialize a set S (Line 2). Inputs in set S form

CHAPTER 4. PERFFUZZ 41

the base from which new inputs are generated via mutation. PerfFuzz also initializes two
mutable data structures: totalCoverage (Line 3), an initially empty set that will track the
code coverage achieved by fuzzed inputs, and cumulmap (Line 4), an initially zero-valued
map that will track the maximum performance values observed for each program component.

PerfFuzz then considers each input from the set S (Line 6) and probabilistically decides
whether or not to select that input for mutational fuzzing (Line 7). The selection probability
fuzzProb is 1 for an input that is currently favored because it maximizes a performance
value (see Definition 13 below) and a very small number otherwise.

PerfFuzz then executes the program under test with every newly generated input
(Line 9). During the execution, PerfFuzz collects two types of feedback: (1) coverage,
which includes code coverage information (e.g., which CFG edges were executed), and (2)
perfmap, which maps numeric values to program components of interest (e.g., how many
times each CFG edge was executed). If an execution results in new code coverage (Line 10)
or if it maximizes the value for some component (Line 14), then the corresponding input is
added to the set of inputs S for future fuzzing (Lines 11 and 15 respectively). Saving inputs
which explore new coverage is key to exploring different program behavior when the program
component, performance value pairs to be maximized are not simply CFG edges and their
hit counts. Finally, the cumulmap map is updated to reflect the element-wise maximum of
performance values observed for each program component, across all inputs generated so far
(Line 18). Once PerfFuzz completes a full cycle through the set S, it simply repeats this
process until a given time budget expires (Line 21).

We now define a series of concepts that are required to precisely describe what it means for
an input to maximize a value associated with a program component (i.e., satisfy newMax)
and for an input to be favored.

Definition 10. A performance map is a function perfmap : K → V , where K is a set of keys
corresponding to program components and V is a set of ordered values (≤) corresponding
to performance values at these components.

Given a K and V , perfmapi is the performance map derived from the execution of input i
on program p. The sets K and V have deliberately been left abstract to make the algorithm
flexible; in our implementation, K is the set of edges in the program’s control-flow graph
and V is the set of non-negative integers that represent execution counts for each program
location.

Definition 11. The cumulative maximum map at time step t is a function cumulmax t :
K → V . It maps each program component to the maximum performance value observed for
that component across all inputs generated up to time t. Precisely, if It is the cumulative
set of inputs executed up to time step t, then:

∀k ∈ K : cumulmax t(k) = max
i∈It

perfmapi(k).

CHAPTER 4. PERFFUZZ 42

Algorithm 2 The PerfFuzz algorithm. Changes to Algorithm 1 are highlighted in grey.
Input: an instrumented test program p, a set of initial seed inputs I
Output: a corpus of automatically generated inputs S, a set of failing test inputs F
1: t← 0
2: S ← I
3: totalCoverage ← ∅
4: cumulmax t ← λk.0
5: repeat . Main fuzzing loop
6: for i in S do
7: if sample fuzzProb(i) then
8: i′ ← mutate(i) . Generate new test input i′
9: coverage, perfmap← run(p, i’)
10: if coverage ∩ totalCoverage 6= ∅ then
11: S ← S ∪ {i ′} . Save i′ if new code coverage achieved
12: totalCoverage← totalCoverage ∪ coverage
13: end if
14: if newMax(perfmap, cumulmax t) then
15: S ← S ∪ {i’} . Save i′ if it maximizes a perf value
16: end if
17: t← t+ 1
18: cumulmax t ← λk.max(cumulmax t−1(k), perfmap(k))
19: end if
20: end for
21: until given time budget expires

The first key to the PerfFuzz algorithm is saving inputs which achieve a new maxi-
mum compared to previously observed values (Lines 14–15 in Algorithm 2). The function
newMax is defined as follows:

Definition 12. The function newMax will return true for a newly generated input i at
time step t if and only if the following condition holds:

∃k ∈ K s.t. perfmapi(k) > cumulmax t(k).

The second key to the PerfFuzz algorithm is the selection of inputs from S to mutate.
To define the selection probability of an input, fuzzProb, we must first define the concept
of favoring.

Definition 13. An input i maximizes a performance value for some component k if and
only if its performance profile registers the maximum value observed for that component so
far:

maximizest(i, k)⇔ perfmapi(k) = cumulmax t(k).

CHAPTER 4. PERFFUZZ 43

An input i is favored by PerfFuzz at time step t if and only if it maximizes a performance
value for some component. The favoring mechanism is a heuristic that allows PerfFuzz
to prioritize fuzzing those inputs that maximize the performance value of some program
component. The intuition behind this is that these inputs contain some characteristics that
lead to expensive resource usage in some program components. Thus, new inputs derived
from them may be more likely to contain the same characteristics. With this, we can define
the probability that an input will be selected as a parent for fuzzing:

Definition 14. The selection probability of an input i at time t is:

fuzzProbt(i) =

{
1 if ∃k ∈ K s. t. maximizest(i, k)
α otherwise

.

That is, favored inputs are always selected, and α is the probability of selecting a non-
favored input. In our experiments we use α = 0.01.

4.2.1 Implementation

PerfFuzz is implemented as a fork of AFL (ref. Section 2.5.1). In our implementation, the
performance map sent back to the program has K = E ∪ {total} and V = N, where E is the
program’s set of CFG edges and total is an additional key. For an input i, for each e ∈ E ,
perfmapi(e) is the total number of times the program executes e when run on input i, and
perfmapi(total) =

∑
e∈E perfmapi(e). The purpose of the total key is to save inputs which

have high total path length.
To produce this performance map, we simply augmented AFL’s LLVM-mode instru-

mentation, which inserts the coverage instrumentation described above into LLVM IR. Our
augmented instrumentation still creates the usual coverage map, whose keys are in E and
whose values are their 8-bit hit counts. Additionally, our augmented instrumentation creates
the performance map outlined above, with values as 32-bit integers.

The implementation of PerfFuzz is open-source and available at the following URL:
https://github.com/carolemieux/perffuzz.

4.3 Evaluation
In our evaluation of PerfFuzz, we seek to answer the following research questions:

RQ1. How does PerfFuzz compare to single-objective complexity fuzzing techniques such
as SlowFuzz [149]?

RQ2. Is PerfFuzz more effective at finding pathological inputs than fuzzing techniques
guided only by coverage?

https://github.com/carolemieux/perffuzz

CHAPTER 4. PERFFUZZ 44

RQ3. Does the multi-dimensional objective of PerfFuzz help find a range of inputs that
exercise distinct hot spots?

We chose four widely used C libraries (with appropriate entry points) as benchmarks for
our main evaluation: (1) libpng-1.6.34, (2) libjpeg-turbo-1.5.3, (3) zlib-1.2.11, and
(4) libxml2-2.9.7. We chose these benchmarks as they are (a) common benchmarks in
the coverage-guided fuzzing literature (b) fairly large—from 9k LoC for zlib and 30k LoC
for libpng and libjpeg, to 70k LoC for libxml—and (c) had readily-available drivers for
libFuzzer, an LLVM-based fuzzing tool [111]. The availability of good libFuzzer drivers
was key to being able to fairly compare PerfFuzz to SlowFuzz [149] in Section 4.3.1. While
AFL-based tools need only a program that accepts standard input or an input-file name,
libFuzzer-based tools rely on a specialized driver that directly takes in a byte array, does
not depend on global state, and never exits on any input. Creating drivers with this sec-
ond characteristic from command-line programs is especially tricky. The particular drivers
we chose (from the OSS-fuzz project [2]) exercised the PNG read function, the JPEG de-
compression function, the ZLIB decompression function, and the XML read-from-memory
function.

For each of these benchmarks, we ran PerfFuzz (and the tools with which we compare
it) for 6 hours on a maximum file size of 500 bytes. AFL ships with sample seed inputs in
formats including PNG, JPEG, GZIP and XML; we simply used the same inputs as seeds
for our evaluation. We chose the maximum size of 500 bytes as it was an upper bound on all
the seeds that we considered. As the fuzzing algorithm used by PerfFuzz as well as other
tools is non-deterministic, we repeated each 6-hour run 20 times to account for variability in
the results.

For our evaluation on discovering worst-case algorithmic complexity as a function of
varying input sizes (Section 4.3.1.2), we used three micro-benchmarks: (1) insertion sort
(because it was provided as the default example in the SlowFuzz repository), (2) matching
an input string to a URL regex [28] using the PCRE library, and (3) wf-0.41 [185], a simple
word-frequency counting tool found in the Feodra Linux repository.

To evaluate PerfFuzz against other techniques, we measure one or both of themaximum
path length and the maximum hot spot, where appropriate. More precisely, if E is the set of
CFG edges in the program under test, and It is the set of inputs generated by a fuzzing tool
up to time t, then:

Definition 15. The maximum path length is the longest execution path across all inputs
generated so far.

max. path length = max
i∈It

∑
e∈E

perfmapi(e).

Definition 16. The maximum hot spot is the highest execution count observed for any CFG
edge across all inputs generated so far.

max. hot spot = max
i∈It

max
e∈E

perfmapi(e).

CHAPTER 4. PERFFUZZ 45

These two values allow us to get a grasp of the overall computational time complexity of
generated inputs (the path length) as well as whether it is driven by a particular program
component (the hot spot) without having to look at the entire distribution of execution
counts of CFG edges, which is not practical to do over time.

4.3.1 Comparison with SlowFuzz

SlowFuzz [149] is a fuzz testing tool whose main goal is to produce inputs triggering algorith-
mic complexity vulnerabilities. Like PerfFuzz, SlowFuzz is also an input-format agnostic
fuzzing tool for C/C++ programs; therefore, we believe it is the most closely related work
to practically compare against.

The objective of SlowFuzz is one-dimensional: to maximize the total execution path
length for a program. As such, it serves as an important candidate for evaluating the
coverage-guided multi-objective maximization of PerfFuzz against a traditional single-
objective technique.

There are two other main algorithmic differences between SlowFuzz and PerfFuzz.
First, while PerfFuzz prioritizes inputs to fuzz using the concept of favored inputs (Line 7 of
Algorithm 1), SlowFuzz randomly selects a parent input to fuzz. Second, PerfFuzz applies
AFL’s havoc mutations to the input. SlowFuzz learns which mutations were successful in
producing slow inputs in the past, and applies these more often.

Finally, SlowFuzz is built on top of on libFuzzer (ref. Section 2.5.1). In practice,
libFuzzer is faster than AFL, running more inputs through the program per second;
therefore, SlowFuzz usually produces more inputs than PerfFuzz in the same time span.
Nonetheless, in our evaluation, we run both PerfFuzz and SlowFuzz for the same amount
of time.

We compare PerfFuzz with SlowFuzz on two fronts. First, we evaluate PerfFuzz and
SlowFuzz on their ability to maximize total execution path lengths as well as the maximum
hot spot on the four macro-benchmarks described above. Second, we compare the ability of
PerfFuzz and SlowFuzz to find inputs that demonstrate worst-case algorithmic complexity
in micro-benchmarks which are known to have worst-case quadratic complexity.

In all runs of SlowFuzz, we used the arguments provided in the example directory, ex-
cept that we used the “hybrid” mutation selection strategy. This was the strategy used
in SlowFuzz’s own evaluation [149], and we found that it performed best on a selection of
micro-benchmarks in our initial experiments.

4.3.1.1 Maximizing Execution Counts

Figure 4.2 shows the progress made by PerfFuzz and SlowFuzz during 6-hour runs in
maximizing total path length (on the left) and the maximum hot spot (on the right). The
lines in the plot represent average values over 20 repeated 6-hour runs, while the shaded
areas represent 95% confidence intervals, calculated with Student’s t-distribution.

CHAPTER 4. PERFFUZZ 46

0 2 4 6
Time (hrs)

0k

1000k

2000k

3000k

4000k

5000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(a) libpng - max. path length

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(b) libpng - max. hot spot

0 2 4 6
Time (hrs)

0k

500k

1000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(c) libxml2 - max. path length

0 2 4 6
Time (hrs)

0k

100k

200k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(d) libxml2 - max. hot spot

0 2 4 6
Time (hrs)

0k

2000k

4000k

6000k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(e) libjpeg - max. path length

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(f) libjpeg - max. hot spot

0 2 4 6
Time (hrs)

0k

10k

20k

30k

M
ax

im
um

 P
at

h
Le

ng
th

PerfFuzz
SlowFuzz

(g) zlib - max. path length

0 2 4 6
Time (hrs)

0k

5k

10k

15k

20k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
SlowFuzz

(h) zlib - max. hot spot

Figure 4.2: PerfFuzz vs. SlowFuzz on macro-benchmarks: maximum path length and
maximum hot spot found throughout the duration of the 6-hour fuzzing runs. Lines and
bands show averages and 95% confidence intervals across 20 repetitions; higher is better.

CHAPTER 4. PERFFUZZ 47

It is clear from Figure 4.2 that PerfFuzz consistently finds inputs that are signif-
icantly worse-performing than SlowFuzz’s by both the evaluated metrics—the maximum
path lengths found by PerfFuzz are 1.9×–24.7× higher and the maximum hot spots are
5×–69× higher. This is in spite of the fact that SlowFuzz produces more inputs in each of
this 6-hour runs (from 1.7× more for libxml2 to 17.7× more for libjpeg-turbo).

The results show that not only is PerfFuzz better than SlowFuzz at finding hot spots,
for which the PerfFuzz algorithm is tailored, but that PerfFuzz is superior to SlowFuzz
even for finding inputs that maximize total path length, for which SlowFuzz is tailored.
Intuitively, we believe that this is because the total path length is not a convex function
of input characteristics; a greedy approach to maximizing total path length is likely to get
stuck in local maxima. In contrast, PerfFuzz saves newly generated inputs even if the total
path length is lower than the maximum found so far, as long as there is an increase in the
execution count for some CFG edge. Thus, the multi-dimensional objective of PerfFuzz
allows it to perform better global maximization of total path lengths.

4.3.1.2 Algorithmic Complexity Vulnerabilities

SlowFuzz was designed to find algorithmic complexity vulnerabilities, where programs exhibit
worst-case behavior that is asymptotically worse than their average-case behavior. Such
programs pose a security risk if they process untrusted inputs: an attacker can send carefully
crafted inputs that exercise worst-case complexity and exhaust the victim’s computational
resources, resulting in a Denial-of-Service (DoS) attack [45]. We now show that PerfFuzz
can also address this use case, and in fact can out-perform SlowFuzz in some cases.

We considered three micro-benchmarks: (1) insertion sort on an array of 8-bit inte-
gers, which is the only benchmark provided in the SlowFuzz repository, (2) matching an
input string against a regular expression to validate URLs using the PCRE library, and (3)
wf-0.41, the word-frequency counting program from the Fedora Linux repository. These
benchmarks are very similar to those used to evaluate SlowFuzz. Each of these micro-
benchmarks have an average-case run-time complexity that is linear in the size of the input,
and a worst-case complexity that is quadratic.

For each of these benchmarks, we varied the upper bound on the input size between 10
and 60 bytes with 10-byte intervals. We then ran each tool on the micro-benchmarks for
a fixed duration: 10 minutes for insertion sort and 60 minutes for PCRE and wf. In all
cases, we provided a single input seed: a sequence of zero-valued bytes of maximum length
for insertion sort and PCRE (these represent trivial base cases), and (truncations of) the
string “the quick brown fox jumps over the lazy dog” for wf, as it leads to average-
case performance. For each input length, we performed 20 runs to account for variability.
Finally, we measured the maximum path length observed over all the inputs produced in
these runs.

Figure 4.3 shows the results of these runs: points plot the average maximum path length,
while lines show 95% confidence intervals.

CHAPTER 4. PERFFUZZ 48

10 20 30 40 50 60
Max Input Length (bytes)

0

1000

2000

3000

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(a) Insertion Sort

10 20 30 40 50 60
Max Input Length (bytes)

100k

200k

300k

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(b) PCRE URL regex

10 20 30 40 50 60
Max Input Length (bytes)

100

200

300

400

500

M
ax

im
um

 P
at

h
Le

ng
th PerfFuzz

SlowFuzz

(c) wf

Figure 4.3: PerfFuzz vs. SlowFuzz on micro-benchmarks: maximum path length found
with given time budget, for varying input sizes; higher is better.

For insertion sort, for all input lengths, PerfFuzz found a significantly (at 95% confi-
dence) longer maximum path length, but as Figure 4.3a shows, the difference is minimal for
small input lengths. For input lengths 10 and 20, PerfFuzz consistently found the worst-
case—a reverse-sorted list—while SlowFuzz had non-zero variance in its results. Figure 4.3a
also shows that for larger input sizes, PerfFuzz finds lists that require more comparisons to
sort than SlowFuzz. Overall, both tools discover the worst-case quadratic time complexity
for this benchmark.

However, in Figure 4.3b we see a major difference between the worst-case inputs found by
PerfFuzz and SlowFuzz on the PCRE URL benchmark. PerfFuzz finds inputs that lead
to worst-case quadratic complexity, while SlowFuzz finds only a slight super-linear curve.
An example of a 50-byte input found by PerfFuzz in one of the runs was:

fhftp://ftp://ftp://ftp://f.m.m.m.m.m.m.m.m.m.m.

This is remarkable because the seed input was an empty string and PerfFuzz was not
provided any knowledge of the syntax of URLs. On the other hand, SlowFuzz has difficulty in
automatically discovering substrings such as ftp in the input string. We suspect that this is
because of its one-dimensional objective function, which does not allow it to make incremental
progress in the regex matching algorithm unless there is an increase in total path length.
Additionally, Figure 4.3b shows that there is much more variance in SlowFuzz’s performance
(see large confidence intervals for length 50 and 60) on this benchmark, indicating that any
such progress likely relies on a sequence of improbable random mutations.

wf is a much harder benchmark, as the worst-case behavior is only triggered when distinct
words in the input string map to the same hash-table bucket (ref. Section 4.1). Figure 4.3c
shows that PerfFuzz clearly finds inputs closer to worst-case time complexity in the given
time budget. We noticed that in nearly all runs (i.e., 19 of the 20 runs for 60-byte inputs),
PerfFuzz produced inputs with a very peculiar structure: first a few distinct words with
the same hash code, then a single 1-letter word repeated multiple times. For example,
PerfFuzz generated this input in one of its runs:

t <81>v ^?@t <80>!^?@t <80>!t t^Rn t t t t t t t t t

CHAPTER 4. PERFFUZZ 49

Table 4.1: A snapshot of the output of PerfFuzz after one 6-hour run on libpng. For each
of 3 favored inputs, the table shows the top 3 CFG edges—represented by start and end line
numbers—by their execution count.

Input #9189 Input #10520 Input #10944

Count CFG edge Count CFG edge Count CFG edge

2,071,824 pngrutil.c:3715->3715 289,536 pngrutil.c:3842->3842 225,489 pngread.c:387->396
274,212 pngrutil.c:3715->3712 144,536 pngrutil.c:3416->3419 225,489 pngread.c:405->456
274,178 pngrutil.c:3712->3715 144,536 pngrutil.c:3419->3404 225,489 pngread.c:456->459

What is amazing about this input is how precisely it exercises worst-case complexity. First,
a small word is inserted into some hash bucket. Then, the next few words have the exact
same hash code and are inserted at the front of the linked list in that bucket; the first word is
now the last node in this linked list. Finally, the repeated occurrences of the first word cause
wf to traverse the entire linked list multiple times. The worst inputs produced by SlowFuzz
had some hash collisions, but still had several different hash codes and no traversal-stressing
structure like the input above.

Overall, we see that in the same time constraints, PerfFuzz is able to find inputs with
significantly longer paths than SlowFuzz, and can out-perform SlowFuzz in discovering inputs
exercising near worst-case algorithmic complexity.

4.3.2 Comparison with Coverage-Guided Fuzzing

With the insight that PerfFuzz’s efficacy is in part due to its multi-objective. coverage-
guided progress, we ask whether PerfFuzz performs better than just AFL off-the-shelf. To
evaluate this aspect, we ran AFL on our four C macro-benchmarks. Like PerfFuzz, AFL
was configured to use only havoc mutations (-d option), because this configuration has been
shown to result in faster program coverage [198]. This experiment tests the value-add of
PerfFuzz’s performance maps and maximizing-input favoring heuristics.

We begin by looking at the evolution of the maximum hot spot found by each technique
through time, shown in Figure 4.4. For the libpng, libjpeg-turbo, and zlib benchmarks
(Figures 4.4a, 4.4c, 4.4d), we see that PerfFuzz rapidly finds a hot spot with a significantly
higher execution count. For the libxml2 benchmark (Figure 4.4b), AFL initially finds a hot
spot with higher execution count, but quickly plateaus. On the other hand, PerfFuzz
finds a hot spot with over 2× higher execution count after 6 hours. Overall, Figure 4.4
demonstrates that PerfFuzz’s performance-map feedback has a significant effect on its
ability to generate pathological inputs, exercising hot spots with 2×–18× higher execution
counts.

Figure 4.4 shows only the execution counts for the maximum hot spot, as this is easy
to visualize through time. However, we were curious as to whether the maximum execution

CHAPTER 4. PERFFUZZ 50

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k
M

ax
im

um
 H

ot
 S

po
t

PerfFuzz
AFL

(a) libpng

0 2 4 6
Time (hrs)

0k

50k

100k

150k

200k

250k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(b) libxml2

0 2 4 6
Time (hrs)

0k

500k

1000k

1500k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(c) libjpeg

0 2 4 6
Time (hrs)

0k

5k

10k

15k

20k

M
ax

im
um

 H
ot

 S
po

t

PerfFuzz
AFL

(d) zlib

Figure 4.4: PerfFuzz vs. AFL: Time evolution of the maximum hot spot through the 6-
hour runs. Lines and bands show averages and 95% confidence intervals across 20 repetitions.
Higher is better.

counts found by PerfFuzz are significantly higher than those found by AFL over all hot
spots in the program. Figure 4.5 provides this information.

In particular, Figure 4.5 shows the maximum execution count per CFG edge found by
each technique at the end of the 6 hour runs. We plot the median of this measure across the
20 repeated runs. For clarity, we sort the CFG edges by the counts achieved by PerfFuzz
and truncate the data to show only those edges with execution counts within 2 orders of
magnitude of the maximum hot spot found by PerfFuzz. The omitted tails of the distri-
butions are indistinguishable. Figure 4.5 confirms that PerfFuzz’s gains are not limited
to only the maximum hot spot in the program. Across the four benchmarks, there are 453
of the plotted edges which PerfFuzz-generated inputs exercise over 2x more times than
AFL-generated inputs, and 238 edges which PerfFuzz-generated inputs exercise over 10x
more times.

CHAPTER 4. PERFFUZZ 51

0 50 100 150 200
CFG Edge

0k

500k

1000k

1500k
M

ax
im

um
 E

xe
cu

tio
n

Co
un

t
PerfFuzz
AFL

(a) libpng

0 10 20 30 40
CFG Edge

0k

100k

200k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(b) libxml2

0 100 200 300
CFG Edge

0k

500k

1000k

1500k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(c) libjpeg-turbo

0 20 40 60
CFG Edge

0k

5k

10k

15k

20k

M
ax

im
um

 E
xe

cu
tio

n
Co

un
t

PerfFuzz
AFL

(d) zlib

Figure 4.5: Distribution of maximum execution counts across CFG edges, as found by by
PerfFuzz and AFL after 6-hour runs. Plots show median values of this measurement across
20 repetitions.

4.3.3 Case Studies

PerfFuzz is designed to generate inputs that demonstrate pathological behavior in pro-
grams across different program components (in this evaluation, CFG edges). In Section 4.3.1.2
we saw that the inputs generated by PerfFuzz exercised close-to worst-case algorithmic
complexity on micro-benchmarks. We decided to manually analyze the inputs generated by
PerfFuzz—in a single run each—on the four macro-benchmarks to see where the hot spots
were located and how different input characteristics affected these hot spots.

At the end of each run, PerfFuzz outputs its set of favored inputs—those that maximize
the execution count of at least one CFG edge—as well as the execution counts for each CFG
edge that it maximizes. Table 4.1 shows an example of this output: it is a snippet from the
results obtained from one run of PerfFuzz on the libpng benchmark, showing the top 3
CFG edges by execution count for the top 3 favored inputs.

CHAPTER 4. PERFFUZZ 52

void png_do_read_interlace(png_row_infop row_info , ...) {
...
switch (row_info -> pixel_depth) {

case 1:
{

for (i = 0; i < row_info ->width; i++)
3715: for (j = 0; j < jstop; j++)

...
}
...
case 4:
{

for (i = 0; i < row_info ->width; i++)
3842: for (j = 0; j < jstop; j++)

...
}

}
}

Figure 4.6: Snippet from pngrutil.c showing hot spots which can only be exercised by
inputs with distinct features.

4.3.4 libpng

From Table 4.1, we can directly look at the source code locations to see which features each
input exercises. This alone already highlights different hot spots in the code. For illustra-
tion, we look at a snippet from pngrutil.c in Figure 4.6, which shows an excerpt from a
function that performs PNG interlacing. The argument row_info contains data parsed from
the input file. This snippet of code shows two distinct hot spots—sets of input-dependent
nested loops—guarded by a switch on an input characteristic. Therefore, these hot spots
can only be exercised by distinct inputs. As illustrated in Table 4.1, input #9189 maximizes
the number of executions of the inner loop when pixel depth is 1 (Line 3715 of Figure 4.6),
corresponding to a monochrome image. Input #10520, on the other hand, maximizes ex-
ecutions of the inner loop for a pixel depth of 4 (Line 3842 of Figure 4.6), corresponding
to an image segment with 16 color-palette entries. Other inputs stress completely different
parts of the code. For example, input #10944 from Table 4.1 maximizes execution counts
for CFG edges in a loop whose bounds are proportional to the height of the PNG image, as
declared in the PNG header: each iteration processes one row of pixels at a time.

From a quick glance at just three favored inputs, we can see that PerfFuzz has enabled
us to discover some of the key features which have an effect on the performance of parsing a
PNG image independent of the file size, such as the image’s geometric dimensions and color
depths declared in the header. We repeat this exercise for the other benchmarks, but omit
the actual outputs and code snippets for brevity.

CHAPTER 4. PERFFUZZ 53

4.3.5 libjpeg-turbo

In the libjpeg benchmark, we saw a similar distribution of inputs where the hot spots were
related to JPEG image properties. For example, one input’s hot spot was in processing for
an image with 4 : 4 : 0 chroma sub-sampling; the input also had a huge number of columns.
Other inputs stressed various points in the arithmetic decoding algorithms. PerfFuzz
discovered inputs that stressed processing for both one-pass and multi-pass images.

4.3.6 zlib

Compared to image formats, the functionality of the zlib decompressor is relatively straight-
forward. This was reflected by the fact that there were very few edges exercised a huge
number of times; that is, there were fewer hot spots. Nonetheless, PerfFuzz discovered an
input with a compression factor of nearly 126×, whose processing lead to a long execution
path.

4.3.7 libxml

The inputs produced by PerfFuzz for the libxml2 benchmark revealed what appears to
be quadratic complexity in the parsing process. The largest hot spot was the traversal of
the characters of a string in a string-duplication function. For a 500 byte input, there were
226,512 iterations of this loop. By running the input, it was quickly apparent that the
source of this quadratic complexity came from repeatedly printing out the context of errors
in the input. Naturally, inputs generated by random mutation are not well-formed XML
files. In fact, these inputs had so many errors that they caused the same work—printing the
error context—to be done over and over again. PerfFuzz also stressed error handling code
that repeatedly traversed the input backwards to check whether a parent tag had a given
name-space; essentially, PerfFuzz learned to produce errors deep in the XML tree, causing
pathological behavior.

These case studies indicate that the inputs generated by PerfFuzz lead to non-trivial hot
spots being uncovered. The inputs generated for libxml2 also reveal potential inefficiencies
in the program performance. Overall, this analysis suggests that PerfFuzz successfully
produces inputs that stress various program functionalities, and may be useful by themselves
or as references for creating performance tests on these benchmarks.

4.3.8 Google Closure Compiler

We have also implemented a version of PerfFuzz for testing Java programs using the
JQF framework (described in Section 5.3). Using PerfFuzz, we were able to generate
pathological inputs for the Google Closure Compiler [78], which optimizes JavaScript pro-
grams. Some of the inputs generated by PerfFuzz resulted in timeouts; parsing a small
60-byte JavaScript program required more than 10 seconds. Upon further investigation,

CHAPTER 4. PERFFUZZ 54

we found that the Closure Compiler’s parser had worst-case exponential complexity, which
was certainly suboptimal. We reported the performance bug to the developers, who soon
acknowledged the issue1.

4.4 Threats to Validity
Like many other input generation techniques founded on evolutionary search, PerfFuzz
relies solely on heuristics to produce inputs that achieve its testing goal, which is to exercise
pathological program behaviors. In combination with the fact that PerfFuzz is a dynamic
technique, this means that PerfFuzz is not guaranteed to find all hot spots in a program
or the absolute worst-case behavior for each hot spot it discovers.

In this chapter, we focused on discovering bottlenecks due to increase in computational
complexity; therefore, we measure execution counts of CFG edges instead of total running
time. This helps ensure that our measurements are accurate and deterministic, but also
means that the identified bottlenecks may not be the points in which the program spends
the most time. This gap could be mitigated by using a different cost model for CFG edges,
i.e. to find bottlenecks due to other factors such as I/O operations. Chapter 6 presents a
framework that makes it easy to prototype such fuzzing applications.

Finally, we believe that the reason that PerfFuzz outperforms greedy techniques such
as SlowFuzz is due to the ability to overcome local maxima in a non-convex performance
space. Although we have anecdotal evidence to back this intuition, such as the observations
with the wf tool described in Section 4.1, we have not mapped the performance spaces of
our benchmarks to measure their convexity. Doing this would require searching through all
possible mutations from each generated input, which is infeasible.

4.5 Summary
In this chapter, we presented PerfFuzz, an algorithm for generating inputs that exercise
pathological behavior in various program components, using only functional test cases as a
starting point. Like fuzz testing tools such as AFL, PerfFuzz is input-format agnostic. We
empirically evaluated the efficacy of PerfFuzz in generating pathological inputs in com-
parison with that of SlowFuzz [149], a similar feedback-directed fuzzing tool designed to find
algorithmic complexity vulnerabilities. PerfFuzz’s multi-dimensional feedback allows it to
escape local maxima and generate inputs that exercise the most-frequently executed program
branch 5×–69× times more and have 1.9×–24.7× longer execution paths than those gener-
ated by SlowFuzz. We also empirically evaluated the efficacy of PerfFuzz in generating
pathological inputs in comparison with that of AFL, a conventional coverage-guided fuzzing
tool. The inputs generated by PerfFuzz exercise the most-frequently executed program
branch 2×–39× times more often than the inputs generated by AFL. Finally, we performed

1https://github.com/google/closure-compiler/issues/3173

https://github.com/google/closure-compiler/issues/3173

CHAPTER 4. PERFFUZZ 55

a manual analysis of the hot spots discovered by PerfFuzz. We were able to identify how
varying input features affect the performance of different program components.

Together, Travioli and PerfFuzz have demonstrated that the information embedded
in functional test cases can be sufficient to find algorithmic performance bottlenecks when
combined with smart heuristics for dynamic program analysis and fuzz testing respectively.

56

Chapter 5

JQF and Zest: Coverage-Guided
Generator-Based Fuzzing

In the previous chapter, we saw the effectiveness of using a feedback-directed random fuzzing
algorithm for automatically generating test inputs. However, CGF and CGF-like algorithms
(e.g. PerfFuzz) still rely on random mutations of inputs represented as sequences of bytes;
therefore, they are limited in scope to testing programs that process binary data or parsers
of simple text formats.

This chapter concerns automatic testing for complex input-processing pipelines, as shown
in Figure 1.1 in Section 1.2. Off-the-shelf CGF tools such as AFL mostly find bugs only in the
syntax parsing stages of such programs. Automatic generation of test inputs that have the
required structure and semantics to exercise the main logic of the program is a challenging
problem. We motivate this with a detailed example in Section 5.1.

We observe that the software developers who otherwise write manual test cases for such
software have knowledge about the expected syntax and semantics of test programs. This is
evidenced by the fact that in the absence of fuzzing tools, developers hand-craft functional
test cases with hard-coded inputs having this structure. We therefore investigate whether
we can leverage the knowledge of such domain experts to capture information about input
structure and/or semantics in a manner that can be used for coverage-guided fuzzing.

A well-known abstraction for sampling complex inputs—such as XML documents and
abstract syntax trees–is that of generators ; these are simply functions whose job is to return
a randomly constructed object of a user-defined type. Popularized by QuickCheck [37], this
approach has been adopted by many generator-based testing tools [55, 43, 11, 68, 145, 87,
4, 103]. QuickCheck-like test frameworks are now available in many programming languages
such as Java [88], PHP [58], Python [89], JavaScript [96], Scala [162], and Clojure [180]. Many
commercial black-box fuzzing tools, such as Peach [146], beSTORM [21], Cyberflood [46], and
Codenomicon [39], also leverage generators for network protocols or file formats. However, in
order to effectively exercise the semantic analyses in the test program, the generators need to
be tuned to produce inputs that are not only syntactically valid but also semantically valid.
For example, the developers of CSmith [192], a tool that generates random C programs for

CHAPTER 5. JQF AND ZEST 57

testing compilers, spent significant effort manually tuning their generator to reliably produce
valid C programs and to maximize code coverage in the compilers under test.

In this chapter, we present Zest [141] in Section 5.2, a technique for automatically guid-
ing simple QuickCheck-like input generators to exercise various code paths in the semantic
analysis stages of programs. Zest incorporates feedback from the test program in the form
of semantic validity of test inputs and the code coverage achieved during test execution. The
feedback is then used to generate new inputs via mutations. Zest adapts the algorithm used
by coverage-guided fuzzing (CGF) tools in order to quickly explore the semantic analysis
stages of test programs.

Zest treats QuickCheck-like random-input generators as deterministic parametric gener-
ators, which map a sequence of untyped bits, called the “parameters”, to a syntactically valid
input. The key insight in Zest is that bit-level mutations on these parameters correspond
to structural mutations in the space of syntactically valid inputs. Zest then applies a CGF
algorithm on the domain of parameters, in order to guide the test-input generation towards
semantic validity and increased code coverage in the semantic analysis stages.

Effectively, Zest combines the user-provided domain knowledge that can be encoded into
generator-based testing tools with the proven effectiveness of the feedback-driven approach
popularized by CGF tools.

This chapter also describes the JQF framework [140] in Section 5.3. JQF was developed
to implement parametric generators and the Zest algorithm. JQF has been open-sourced
and is available at the following URL: https://github.com/rohanpadhye/JQF. JQF builds
on junit-quickcheck [88], which is a port of QuickCheck [37] to the popular JUnit testing
framework for Java programs. JQF converts off-the-shelf junit-quickcheck generators to
parametric generators. JQF also allows customizing the guidance; that is, the algorithm
that determines which parameter sequence to use for each test execution in the fuzzing loop.
Zest is implemented in JQF along with several other guidances (see Section 5.3.4).

Finally, in Section 5.4, we describe an experimental evaluation of Zest on five real-world
Java benchmarks and compare it to AFL and junit-quickcheck. Our results show that
the Zest technique achieves significantly higher code coverage in the semantic analysis stage
of each benchmark. Further, during our evaluation, we find 10 new bugs in the semantic
analysis stages of our benchmarks. We find Zest to be the most effective technique for
reliably and quickly triggering these semantic bugs. For each benchmark, Zest discovers an
input triggering every semantic bug in at most 10 minutes on average. Zest complements
AFL, which is best suited for finding syntactic bugs.

5.1 Problem Motivation

5.1.1 Generator-Based Testing

Generator-based testing tools [37, 55, 43, 68, 145, 192, 87, 4] allow users to write generator
programs for producing inputs that belong to a specific type or format. These random-input

https://github.com/rohanpadhye/JQF

CHAPTER 5. JQF AND ZEST 58

generators are non-deterministic, i.e., they sample a new input each time they are executed.
Figure 5.1 shows a generator for XML documents in the junit-quickcheck [88] framework,
which is a Java port of QuickCheck [37]. When generate() is called, the generator uses the
Java standard library XML DOM API to generate a random XML document. It constructs
the root element of the document by invoking genElement (Line 4). Then, genElement
uses repeated calls to methods of random to generate the element’s tag name (Line 9), any
embedded text (Lines 19, 20, and in genString), and the number of children (Line 13);
it recursively calls genElement to generate each child node. We omitted code to generate
attributes, but it can be done analogously.

Figure 5.2 contains a sample test harness method testProgram, identified by the @Property
annotation. This method expects a test input xml of type XMLDocument; the @From annota-
tion indicates that inputs will be randomly generated using the XMLGenerator.generate()
API. When invoked with a generated XML document, testProgram serializes the document
(Line 3) and invokes the readModel method (Line 9), which parses an input string into a
domain-specific model. For example, Apache Maven parses pom.xml files into an internal
Project Object Model (POM). The model creation fails if the input XML document string
does not meet certain syntactic and semantic requirements (Lines 11, 13). If the model
creation is successful, the check at Line 4 succeeds and the test harness invokes the method
runModel at Line 5 to test one of the core functionalities of the program under test.

An XML generator like the one shown in Figure 5.1 generates random syntactically valid
XML inputs; therefore Line 11 in Figure 5.2 will never be executed. However, the generated
inputs may not be semantically valid. That is, the inputs generated by the depicted XML
generator do not necessarily conform to the schema expected by the application. In our
example, the readModel method could throw a ModelException and cause the assumption
at Line 4 to fail. If this happens, QuickCheck simply discards the test case and tries again.
Writing generators that produce semantically valid inputs by construction is a challenging
manual effort.

When we tested Apache Maven’s model reader for pom.xml files using a generator similar
to Figure 5.1, we found that only 0.09% of the generated inputs were semantically valid.
Moreover, even if the generator manages to generate semantically valid inputs, it may not
generate inputs that exercise a variety of code paths in the semantic analysis stage. In
our experiments with Maven, the QuickCheck approach covers less than one-third of the
branches in the semantic analysis stage than our proposed technique does. Fundamentally,
this is because of the lack of coupling between the generators and the program under test.

5.1.2 Coverage-Guided Fuzzing

Coverage-guided fuzzing (CGF) tools (ref. Section 2.5) instrument programs under test and
utilize feedback from each test execution in the form of code coverage. However, a key
limitation of existing CGF tools is that they work without any knowledge about the syntax
of the input. State-of-the-art CGF tools [196, 111, 24, 155, 108, 34] treat program inputs as
sequences of bytes. This choice of representation also influences the design of their mutation

CHAPTER 5. JQF AND ZEST 59

1 class XMLGenerator implements Generator <XMLDocument > {
2 @Override // For Generator <XMLDocument >
3 public XMLDocument generate(Random random) {
4 XMLElement root = genElement(random , 1);
5 return new XMLDocument(root);
6 }
7 private XMLElement genElement(Random random , int depth) {
8 // Generate element with random name
9 String name = genString(random);

10 XMLElement node = new XMLElement(name);
11 if (depth < MAX_DEPTH) { // Ensures termination
12 // Randomly generate child nodes
13 int n = random.nextInt(MAX_CHILDREN);
14 for (int i = 0; i < n; i++) {
15 node.appendChild(genElement(random , depth +1));
16 }
17 }
18 // Maybe insert text inside element
19 if (random.nextBool ()) {
20 node.addText(genString(random));
21 }
22 return node;
23 }
24 private String genString(Random random) {
25 // Randomly choose a length and characters
26 int len = random.nextInt(1, MAX_STRLEN);
27 String str = "";
28 for (int i = 0; i < len; i++) {
29 str += random.nextChar ();
30 }
31 return str;
32 }
33 }

Figure 5.1: A simplified XML document generator.

1 @Property
2 void testProgram(@From(XMLGenerator.class) XMLDocument xml) {
3 Model model = readModel(xml.toString ());
4 assume(model != null); // validity
5 assert(runModel(model) == success);
6 }
7 private Model readModel(String input) {
8 try {
9 return ModelReader.readModel(input);

10 } catch (XMLParseException e) {
11 return null; // syntax error
12 } catch (ModelException e) {
13 return null; // semantic error
14 }
15 }

Figure 5.2: A junit-quickcheck property that tests an XML-based component.

CHAPTER 5. JQF AND ZEST 60

operations, which include bit-flips, arithmetic operations on word-sized segments, setting
random bytes to random or “interesting” values (e.g. 0, MAX_INT), etc. These mutations are
tailored towards exercising various code paths in programs that parse inputs with a compact
syntax, such as parsers for media file formats, decompression routines, and network packet
analyzers. CGF tools have been very successful in finding memory-corruption bugs (such as
buffer overflows) in the syntax analysis stage of such programs due to incorrect handling of
unexpected inputs.

Unfortunately, this approach often fails to exercise the core functions of software that
expects highly structured inputs. For example, when AFL (ref. Section 2.5.1) is applied on
a program that processes XML input data, a typical input that it saves looks like:

<a b>acTa>
which exercises code paths that deal with syntax errors. In this case, an error-handling
routine for unmatched start and end XML tags. It is very difficult to generate inputs that
will exercise new, interesting code paths in the semantic analysis stage of a program via
these low-level mutations. Often, it is necessary to run CGF tools for hours or days on end
in order to find non-trivial bugs, making them impractical for use in a continuous integration
setting.

5.2 Semantic Fuzzing with Zest

Zest adds the power of coverage-guided fuzzing to generator-based testing. Zest treats
a random-input generator as an equivalent deterministic parametric generator. Zest then
searches through the parameter space using an algorithm we call semantic fuzzing. This
technique augments the CGF algorithm by keeping track of code coverage achieved by valid
inputs. This enables it to guide the search towards deeper code paths in the semantic analysis
stage.

5.2.1 Parametric Generators

Before defining parametric generators, let us return to the random XML generator from
Figure 5.1. Let us consider a particular path through this generator, concentrating on the
calls to nextInt, nextBool, and nextChar. The following sequence of calls will be our
running example (some calls ommitted for space):

CHAPTER 5. JQF AND ZEST 61

Call → result Context

random.nextInt(1, MAX_STRLEN)→ 3 Root: name length (Line 26)
random.nextChar()→ ‘f’ Root: name[0] (Line 29)
random.nextChar()→ ‘o’ Root: name[1] (Line 29)
random.nextChar()→ ‘o’ Root: name[2] (Line 29)
random.nextInt(MAX_CHILDREN)→ 2 Root: # children (Line 13)
random.nextInt(1, MAX_STRLEN)→ 3 Child 1: name length (Line 26)

...
random.nextBool()→ False Child 2: embed text? (Line 19)
random.nextBool()→ False Root: embed text? (Line 19)

The XML document produced when the generator makes this sequence of calls looks like:

x1 = <foo><bar>Hello</bar><baz /></foo>.

In order to produce random typed values, the implementations of random.nextInt,
random.nextChar, and random.nextBool rely on a pseudo-random source of untyped bits.
We call these untyped bits “parameters”. The parameter sequence for the example above,
annotated with the calls which consume the parameters, is:

σ1 = 0000 0010︸ ︷︷ ︸
nextInt(1,...)→3

0110 0110︸ ︷︷ ︸
nextChar()→‘f’

. . . 0000 0000︸ ︷︷ ︸
nextBool()→False

.

For example, here the function random.nextInt(a, b) consumes eight bit parameters as
a byte, n, and returns n%(b− a) + a as a typed integer. For simplicity of presentation, we
show each random.nextXYZ function consuming the same number of parameters, but they
can consume different numbers of parameters.

We can now define a parametric generator. A parametric generator is a function that
takes a sequence of untyped parameters such as σ1—the parameter sequence—and produces
a structured input, such as the XML x1. A parametric generator can be implemented by
simply replacing the underlying implementation of Random to consult not a pseudo-random
source of bits but instead a fixed sequence of bits provided as the parameters.

While this is a very simple change, making generators deterministic and explicitly depen-
dent on a fixed parameter sequence enables us to make the following two key observations:

1. Every untyped parameter sequence corresponds to a syntactically valid input—assuming
the generator only produces syntactically valid inputs.

2. Bit-level mutations on untyped parameter sequences correspond to high-level structural
mutations in the space of syntactically valid inputs.

Observation (1) is true by construction. The random.nextXYZ functions are implemented
to produce correctly-typed values no matter what bits the pseudo-random source–or in our
case, the parameters—provide. Every sequence of untyped parameter bits correspond to

CHAPTER 5. JQF AND ZEST 62

some execution path through the generator, and therefore every parameter sequence maps
to a syntactically valid input. We describe how we handle parameter sequences that are
longer or shorter than expected with the example sequences σ3 and σ4, respectively, below.

To illustrate observation (2), consider the following parameter sequence, σ2, produced by
mutating just a few bits of σ1:

σ2 = 0000 0010 0101 0111︸ ︷︷ ︸
nextChar()→‘W’

. . . 0000 0000.

As indicated by the annotation, all this parameter-sequence mutation does is change the
value returned by the second call to random.nextChar() in our running example from ‘f’
to ‘W’. So the generator produces the following test-input:

x2 = <Woo><bar>Hello</bar><baz /></Woo>.

Notice that this generated input is still syntactically valid, with “Woo” appearing both
in the start and end tag delimiters. This is because the XML generator uses an internal
DOM tree representation that is only serialized after the entire tree is generated. We get
this syntactic-validity-preserving structural mutation for free, by construction, and without
modifying the underlying generators.

Mutating the parameter sequence can also result in more drastic high-level mutations.
Suppose that σ1 is mutated to influence the first call to random.nextInt(MAX_CHILDREN)
as follows:

σ3 = 0000 . . . 0000 0001︸ ︷︷ ︸
nextInt(MAX_CHILDREN)→1

. . . 0000.

Then the root node in the generated input will have only one child:

x3 = <foo><bar>Hello</bar>�</foo>

(� designates the absence of <baz />). Since the remaining values in the untyped parameter
sequence are the same, the first child node in x3—<bar>Hello</bar>—is identical to the
one in x1. The parametric generator thus enables a structured mutation in the DOM tree,
such as deleting a sub-tree, by simply changing a few values in the parameter sequence.
Note that this change results in fewer random.nextXYZ calls by the generator; the unused
parameters in the tail of the parameter sequence will simply be ignored by the parametric
generator.

For our final example, suppose σ1 is mutated as follows:

σ4 = 0000 0011 . . . 0000 0001︸ ︷︷ ︸
nextBool()→True

0000 0000︸ ︷︷ ︸
nextInt(1,...)→1

.

Notice that after this mutation, the last 8 parameters are consumed by nextInt instead
of by nextBool (ref. σ1). But, note that nextInt still returns a valid typed value even
though the parameters were originally consumed by nextBool.

CHAPTER 5. JQF AND ZEST 63

At the input level, this modifies the call sequence so that the decision to embed text
in the second child of the document becomes True. Then, the last parameters are used by
nextInt to choose an embedded text length of 1 character. However, one problem remains:
to generate the content of the embedded text, the generator needs more parameter values
than σ4 contains. In Zest, we deal with this by appending pseudo-random values to the end
of the parameter sequence on demand. We use a fixed random seed to maintain determinism.
For example, suppose the sequence is extended as:

σ′4 = 0000 . . . 0001 0000 0000 0100 1100︸ ︷︷ ︸
nextChar()→‘H’

0000 0000︸ ︷︷ ︸
nextBool()→False

Then the parametric generator would produce the test-input:

x4 = <foo><bar>Hello</bar><baz>H</baz></foo>.

5.2.2 The Zest Algorithm for Semantic Fuzzing

Algorithm 3 shows the Zest algorithm, which guides parametric generators to produce inputs
that get deeper into the semantic analysis stage of programs. We call this technique semantic
fuzzing. The Zest algorithm resembles Algorithm 1, but acts on parameter sequences rather
than the raw inputs to the program. It also extends the CGF algorithm by keeping track
of the coverage achieved by semantically valid inputs. We highlight the differences between
Algorithms 3 and 1 in grey.

Like Algorithm 1, Zest is provided a program under test p. Unlike Algorithm 1 which
assumes seed inputs, the set of parameter sequences is initialized with a random sequence
(Line 1). Additionally, Zest is provided a generator q, which is automatically converted to a
parametric generator g (Line 5). In an abuse of notation, we use g(S) to designate the set of
inputs generated by running g over the parameter sequences in S, i.e. g(S) = {g(s) : s ∈ S}.

Along with totalCoverage, which maintains the set of coverage points in p covered by all
inputs in g(S), Zest also maintains validCoverage, the set of coverage points covered by the
(semantically) valid inputs in g(S). This is initialized at Line 4.

New parameter sequences are generated using standard CGF mutations at Line 9. The
program p is executed on inputs that are generated by running the sequences through the
parametric generator (Line 10). During the execution, in addition to code-coverage and
failure feedback, the algorithm records in the variable result whether the input is valid or
not. In particular, result can be one of {Valid, Invalid,Failure}. An input is considered
invalid if it leads to a violation of any assumption in the test harness (e.g. Figure 5.2 at
Line 4), which is how we capture application-specific semantic validity.

As in Algorithm 1, a newly generated parameter sequence is added to the set S at
Lines 14–16 of Algorithm 3 if the corresponding input produces new code coverage. Further,
if the corresponding input is valid and covers a coverage point that has not been exercised by
any previous valid input, then the parameter sequence is added S and the cumulative valid
coverage variable validCoverage is updated at Lines 18–20. Adding the parameter sequence

CHAPTER 5. JQF AND ZEST 64

Algorithm 3 The Zest algorithm for semantic fuzzing. Changes to Algorithm 1 highlighted
in grey.
Input: an instrumented test program p, a user-provided generator q
Output: a set of test inputs and failing inputs
1: S ← {random }
2: F ← ∅
3: totalCoverage← ∅
4: validCoverage← ∅
5: g ← makeParametric(q)
6: repeat
7: for i in S do
8: if sample fuzzProb(i) then
9: i′ ← mutate(i, S)
10: coverage, result ← run(p, g(i′))
11: if result = Failure then
12: F ← F ∪ {i′}
13: else
14: if coverage ∩ totalCoverage 6= ∅ then
15: S ← S ∪ {i′}
16: totalCoverage← totalCoverage ∪ coverage
17: end if
18: if result = Valid and coverage ∩ validCoverage 6= ∅ then
19: S ← S ∪ {i′}
20: validCoverage← validCoverage ∪ coverage
21: end if
22: end if
23: end if
24: end for
25: until given time budget expires
26: return g(S), g(F)

to S under this new condition ensures that Zest keeps mutating valid inputs that exercise
core program functionality. We hypothesize that this biases the search towards generating
even more valid inputs and in turn increases code coverage in the semantic analysis stage.

As in Algorithm 1, the testing loop repeats until a time budget expires. Finally, Zest
returns the corpus of generated test inputs g(S) and failing inputs g(F).

CHAPTER 5. JQF AND ZEST 65

1 @RunWith(JQF.class)
2 class TrieTest {
3 @Fuzz /* Arguments are generated randomly by JQF */
4 public void testMap2Trie(String key , Map <String ,Integer > map){
5 assumeTrue(map.containsKey(key));
6 Trie trie = new PatriciaTrie(map); // Map2Trie
7 assertTrue(trie.containsKey(key));
8 }
9 }

Figure 5.3: A sample property test using JQF that checks the construction of a Trie data
structure in Apache Commons from an input JDK Map. Fires an assertion violation (bug
COLLECTIONS-714) when fuzzing with ZestGuidance.

5.3 The JQF Framework
In order to implement Zest, we need a way to take existing QuickCheck-like generators and
control the parameter sequences that drive the pseudo-random choices they make.

To this end, we developed a framework called JQF on top of junit-quickcheck [88],
which itself is a Java port of the popular QuickCheck [37] tool. JQF enables the controlled
guidance of junit-quickcheck generators using feedback from test execution in the form of
code coverage. JQF has been made available at: https://github.com/rohanpadhye/JQF.
Zest is implemented as a special case of a guidance that implements Algorithm 3.

Practitioners can use JQF to automatically generate test inputs for parameterized test
methods using coverage-guided fuzzing. Figure 5.3 shows an example of a JQF test driver
written in Java, which aims to check a basic property of the class PatriciaTrie from Apache
Commons Collections. A trie data structure can be constructed from a pre-existing mapping
of strings in a JDK Map object.

The test method testMap2Trie checks the following property: Given an arbitrary string
key and a JDK map whose keys are strings, if key exists within map, then a trie constructed
from this map should also contain the same key. The @Fuzz annotation on the test method
enables JQF to automatically generate random instances of map and key to verify this
property. The JUnit Assume API allows the user to specify preconditions on the generated
inputs (e.g. Line 5). Test generation can be launched via JQF’s Apache Maven plugin1:

mvn jqf:fuzz -Dclass=TrieTest -Dmethod=testMap2Trie

By default, JQF uses the Zest algorithm to generate test inputs. Fuzzing continues either
until it is explicitly stopped, until a user-specified timeout expires, or until a test failure is
encountered.

For the test in Figure 5.3, the Zest fuzzing engine often finds a test failure in about 5
seconds, after executing about 5,000 test inputs (of which over 1,700 satisfy the precondition
on Line 5). The failing test case leads to an assertion violation at Line 7 due to a very special

1Non-Maven users can launch JQF programatically or via command-line scripts.

https://github.com/rohanpadhye/JQF

CHAPTER 5. JQF AND ZEST 66

1 public interface Guidance {
2 boolean hasInput ();
3 InputStream getInput ();
4 void handleResult(Result result , Throwable error);
5 Consumer <TraceEvent > generateCallBack(Thread thread);
6 }

Figure 5.4: The Guidance interface provided by JQF.

corner case, which reveals a bug2 in Apache Commons Collections v4.3. If the input map
contains two distinct keys that differ only in a trailing null character, say "x" and "x\u0000",
then the trie cannot distinguish between them and ends up storing only one of the two keys.
If the input key is also "x", then the bug is revealed.

JQF was specifically designed to enable practitioners to write test methods in the fa-
miliar style of property-based testing. Thus, the test driver in Figure 5.3 can still be run
with vanilla junit-quickcheck, which randomly generates test inputs without using code
coverage feedback. However, random-from-scratch input generation is exceedingly unlikely
to generate inputs fitting precise bug-revealing conditions, like those described above. Pure
random generation does not find a failing test case for Figure 5.3 even after 30 minutes (over
7 million executions).

We next explain how JQF generates random inputs, such as map and key in Figure 5.3,
using coverage-guided algorithms called guidances.

5.3.1 The Guidance Interface

Figure 5.4 shows the Guidance interface. Researchers can implement this interface to specify
a coverage-guided fuzzing algorithm. Guidance instances are stateful objects whose methods
are invoked by the JQF framework in a fuzzing loop (depicted in Figure 5.5).

The Guidance method hasInput() returns whether a new input is available; the re-
turn value false ends fuzzing. The getInput() method returns the next input generated
by the Guidance, as an InputStream. This stream is used to generate structured inputs
such as Map objects (see Section 5.3.2). The structured inputs, called args in Figure 5.5,
are then used to execute the test method via JUnit (Line 7). Test execution generates
TraceEvents, whose handling is described in Section 5.3.3. At the end of test execution, the
Guidance.handleResult() method is invoked. The result can either be SUCCESS, INVALID,
or FAILURE, depending on whether the test method returned normally (Line 8), due to a
violation of assume (Line 10), or due to an exception/assertion violation (Line 12), respec-
tively. The Guidance instance updates its internal state based on the handling of code
coverage events and the test result. The internal state is then used to generate new inputs
in subsequent iterations of the fuzzing loop.

2https://issues.apache.org/jira/browse/COLLECTIONS-714

https://issues.apache.org/jira/browse/COLLECTIONS-714

CHAPTER 5. JQF AND ZEST 67

1 TestMethod test = ...; // @Fuzz test driver
2 Guidance guidance = ...; // Fuzzing algorithm
3 while (guidance.hasInput ()) {
4 // Generate args for test method
5 Object [] args = JQF.gen(test , guidance.getInput ());
6 try {
7 JUnit.run(test , args); // fires TraceEvent(s)
8 guidance.handleResult(SUCCESS , null);
9 } catch (AssumptionViolatedException e) {

10 guidance.handleResult(INVALID , e);
11 } catch (Throwable t) {
12 guidance.handleResult(FAILURE , e);
13 }
14 }

Figure 5.5: Pseudo-code of JQF’s fuzzing loop.

5.3.2 Parametric Generators

The arguments to a test method—such as map and key in Figure 5.3—are generated using
the same mechanisms as supported by junit-quickcheck. In general, inputs of type T are
generated by a backing Generator<T>, which provides a method to randomly sample a new
instance of T. junit-quickcheck can either (1) implicitly pick a suitable generator from a
library that it provides, (2) be directed to synthesize such a generator automatically, e.g.
using the constructors or public fields of class T, or (3) be provided with a hand-written
Generator<T>.

In all cases, the generator uses a SourceOfRandomness object, which provides an API
for making non-deterministic decisions such as: choosing from a list of alternatives (e.g.
whether to instantiate a TreeMap or HashMap for map in Figure 5.3), picking random sizes
(e.g. how many entries to insert in map), or populating primitives (e.g. what keys and
values to insert in map). In junit-quickcheck, the default SourceOfRandomness is backed
a pseudo-random stream of bytes. JQF overrides this source to use the stream returned by
Guidance.getInput() instead (ref. Line 5 in Figure 5.5), thereby making the generators
deterministically dependent on the guidance.

5.3.3 Code Coverage Events

When coverage-guided fuzzing is launched (e.g. via mvn jqf:fuzz), the test program’s
classes are instrumented on-the-fly using the ASM bytecode manipulation library [138]. The
instrumentation adds logic to generate TraceEvents during test execution. For example, a
BranchEvent is generated when a test program executes a conditional branch, a CallEvent
accompanies a method invocation, and an AllocEvent signals the creation of a new object
or array on the heap. These event objects contain information about their source program
locations as well other event-specific data. When a trace event e is generated in thread
t, JQF invokes the function handle_t(e), where handle_t is the callback returned by

CHAPTER 5. JQF AND ZEST 68

Guidance.generateCallBack(t). The guidance must choose how to update its internal
state based on this coverage information, which will presumably be used to generate subse-
quent inputs.

5.3.4 Guidances

JQF currently ships with the following Guidance implementations.

5.3.4.1 No Guidance

The most trivial guidance, called NoGuidance, returns an infinite stream of random values
every time getInput() is called. This guidance completely ignores code coverage events.
This guidance is almost equivalent to using vanilla junit-quickcheck.

5.3.4.2 Zest Guidance

JQF’s default guidance implements the Zest algorithm (ref. Section 5.2.2), which is specifi-
cally designed for coverage-guided property testing. The ZestGuidance returns dynamically
sized parameter sequences via the getInput() method, which are generated randomly for
the first iteration of the fuzzing loop. Dynamic sizing allows the parameter sequences to
be lazily extended (if the Generator needs to make more choices than expected) or to be
efficiently truncated (if the Generator makes fewer choices).

Zest maintains a set of saved parameter sequences. The ZestGuidance generates new
inputs by randomly mutating previously saved parameter sequences. Byte-level mutations on
these parameter sequences correspond to structural mutations in the generated test inputs.
For example, a random mutation in the parameter sequence for map in Figure 5.3 may lead to
the corresponding Generator<Map> to produce the next map with an additional entry. Since
java.util.Random polls byte-sized chunks from its underlying stream of pseudo-random
bits, Zest performs mutations on the parameter sequences (Algorithm 3, Line 9) at the
byte-level. The basic mutation procedure is as follows: (1) choose a random number m of
mutations to perform sequentially on the original sequence, (2) for each mutation, choose a
random length ` of bytes to mutate and an offset k at which to perform the mutation, and
(3) replace the bytes from positions [k, k + `) with ` randomly chosen bytes. The random
numbers m and ` are chosen from a geometric distribution, which mostly provides small
values without imposing an upper bound. We set the mean of this distribution to 4, since
4-byte ints are the most commonly requested random value.

Further, Zest separately tracks code coverage achieved by all test executions and code
coverage by valid test executions (i.e., those whose result is SUCCESS). If a mutated parameter
sequence leads to new code coverage overall, or if it leads to a valid test that covers code which
has not been covered by any previous valid test, then the sequence is saved for subsequent
mutation. See Algorithm 3 for details.

CHAPTER 5. JQF AND ZEST 69

5.3.4.3 AFL Guidance

JQF supports input generation using the popular AFL [196] tool, unmodified. This is
possible because AFL, which is designed to fuzz C/C++ programs and x86 binaries, com-
municates with instrumented test programs via inter-process messages and a code coverage
map in shared memory. The AFLGuidance in JQF implements this communication protocol
via a proxy program. The proxy mocks an AFL-instrumented test target that reads input
from a specific file. AFLGuidance.getInput() simply returns the contents of this file, which
is continuously updated by AFL. During test execution, AFLGuidance collects code coverage
information by handling TraveEvents. When AFLGuidance.handleResult() is invoked,
the coverage information is written to AFL’s shared memory region via the proxy. Calls to
AFLGuidance.hasInput() block until AFL is ready with the next input.

AFL’s mutation strategy uses various heuristics that are applicable to programs that
parse fixed-size binary files (e.g. media players). Further, AFL does not explicitly distinguish
between INVALID and FAILURE results. Due to these reasons, JQF’s AFLGuidance is most
effective when used with test methods that take only one argument of type InputStream
(since Generator<InputStream> returns the guidance-generated input stream as-is), and
that do not use any assume statements. For example, AFLGuidance has been used to fuzz
OpenJDK’s ImageIO library that reads PNG and JPEG files3, as well as Apache PDFBox’s
processing of PDF documents4.

5.3.4.4 PerfFuzz Guidance

PerfFuzz (ref. Chapter 4) is a fork of AFL that extends its code coverage map with
performance feedback in the form of 〈k, v〉 pairs where v is a value to be maximized for every
key k. PerfFuzz saves a mutated input either if it leads to new code coverage, or if it
maximizes the value of v for some key k.

JQF’s PerfFuzzGuidance is a sub-class of AFLGuidance which overrides handleResult()
to communicate this additional performance map via the proxy program. PerfFuzzGuidance
can be configured either to find hot spots (where keys are branch locations and values are
execution counts for the corresponding branch) or to find memory consumption issues (where
keys are allocation sites and values are number of bytes allocated at the corresponding site).
For example, we used PerfFuzzGuidance to find an algorithmic complexity bug in the Google
Closure Compiler, where reporting a specific case of syntax error in a JavaScript program can
take time that is exponential in the size of the input program5. With the memory allocation
feedback, we found an issue in OpenJDK’s handling of PNG images that specify very large
dimensions6.

3https://bugs.openjdk.java.net/browse/JDK-8191073
4https://issues.apache.org/jira/browse/PDFBOX-4333
5https://github.com/google/closure-compiler/issues/3173
6https://bugs.openjdk.java.net/browse/JDK-8190332

https://bugs.openjdk.java.net/browse/JDK-8191073
https://issues.apache.org/jira/browse/PDFBOX-4333
https://github.com/google/closure-compiler/issues/3173
https://bugs.openjdk.java.net/browse/JDK-8190332

CHAPTER 5. JQF AND ZEST 70

Table 5.1: Number of new bugs discovered using JQF.

Project Bugs Found Bugs Fixed

OpenJDK - ImageIO 9 9
OpenJDK - DateTime 2 1
Apache Commons - Lang 1 1
Apache Commons - Compress 2 2
Apache Commons - Collections 1 0
Apache Maven 3 3
Apache Ant 1 1
Apache BCEL 8 0
Apache PDFBox 4 4
Apache Tika 2 2
Google Closure Compiler 4 1
Mozilla Rhino 5 0

Total 42 24

5.3.4.5 Repro Guidance

Finally, the ReproGuidance is a trivial guidance whose getInput() method returns the
contents of a given file on disk, and then ends the loop. This guidance enables debugging of
saved test failures.

5.3.5 New Software Bugs Uncovered

Table 5.1 summarizes the impact that JQF has had in discovering previously unknown bugs
in widely used Java software. These bugs were found over the course of various experiments
performed throughout 2017–2019.

Of the total 42 bugs found using JQF, 11 semantic bugs were found using ZestGuidance
with appropriate generators, 29 syntax parsing bugs were found using AFLGuidance without
using generators, and 2 bugs were found using PerfFuzzGuidance. 24 of the 42 reported
bugs have been fixed at the time of writing, while the rest await patches.

Notably, 7 of the 42 bugs (including 4 security vulnerabilities with assigned CVEs) were
discovered by two independent practitioners not affiliated with this author. We were made
aware of JQF’s success via social media [3] and blog posts [136]. All 7 of these bugs have
been fixed. We are encouraged by these findings, and believe that they provide evidence to
support JQF’s usefulness to the software testing community at large.

CHAPTER 5. JQF AND ZEST 71

5.4 Evaluation of Zest

We evaluate Zest by measuring its effectiveness in testing the semantic analysis stages of
five benchmark programs. We compare the implementation of ZestGuidance in JQF with
two baseline techniques: AFL, via AFLGuidance in JQF, and vanilla junit-quickcheck, via
NoGuidance in JQF (referred to as simply QuickCheck hereon). AFL is known to excel in
exercising the syntax analysis stage via coverage-guided fuzzing of raw input strings. We use
version 2.52b, with “FidgetyAFL” configuration, which was found to match the performance
of AFLFast [198]. QuickCheck uses the same generators as Zest but only performs random
sampling without any feedback from the programs under test. Specifically, we evaluate the
three techniques on two fronts: (1) the amount of code coverage achieved in the semantic
analysis stage after a fixed amount of time, and (2) their effectiveness in triggering bugs in
the semantic analysis stage.

Benchmarks We use the following five real-world Java benchmarks as test programs for
our evaluation:

1. Apache Maven [9] (99k LoC): The test reads a pom.xml file and converts it into an
internal Model structure. The test driver is similar to the one in Figure 5.2. An input
is valid if it is a valid XML document conforming to the POM schema.

2. Apache Ant [7] (223k LoC): Similar to Maven, this test reads a build.xml file and
populates a Project object. An input is considered valid if it is a valid XML document
and if it conforms to the schema expected by Ant.

3. Google Closure [78] (247k LoC) statically optimizes JavaScript code. The test driver
invokes the Compiler.compile() on the input with the SIMPLE_OPTIMIZATIONS flag,
which enables constant folding, function inlining, dead-code removal, etc.. An input is
valid if Closure returns without error.

4. Mozilla Rhino [125] (89k LoC) compiles JavaScript to Java bytecode. The test driver
invokes Context.compileString(). An input is valid if Rhino returns a compiled
script.

5. Apache’s Bytecode Engineering Library (BCEL) [8] (61k LoC) provides an API to
parse, verify and manipulate Java bytecode. Our test driver takes as input a .class
file and uses the Verifier API to perform 3-pass verification of the class file according
to the Java 8 specification [110]. An input is valid if BCEL finds no errors up to Pass
3A verification.

Experimental Setup We make the following design decisions:

CHAPTER 5. JQF AND ZEST 72

Table 5.2: Description of benchmarks with prefixes of class/package names corresponding to
syntactic and semantic analyses.

Name Version Syntax Analysis Classes Semantic Analysis Classes

Maven 3.5.2 org/codehaus/plexus/util/xml org/apache/maven/model
Ant 1.10.2 com/sun/org/apache/xerces org/apache/tools/ant
Closure v20180204 com/google/javascript/jscomp/parsing com/google/javascript/jscomp/[A-Z]
Rhino 1.7.8 org/mozilla/javascript/Parser org/mozilla/javascript/(optimizer|CodeGenerator)
BCEL 6.2 org/apache/bcel/classfile org/apache/bcel/verifier

• Duration: We run each test-generation experiment for 3 hours. Researchers have
used various timeouts to evaluate random test generation tools, from 2 minutes [139,
65] to 24 hours [24, 100].

Our experiments justify this choice, as we found that semantic coverage plateaued
after 2 hours in almost all experiments. Specifically, the number of semantic branches
covered by Zest increased by less than 1% in the last hour of the runs.

• Repetitions: Due to the non-deterministic nature of random testing, the results may
vary across multiple repetitions of each experiment. We therefore run each experiment
20 times and report statistics across the 20 repetitions.

• Seeds and Dictionaries: To bootstrap AFL, we need to provide some initial seed
inputs. There is no single best strategy for selecting initial seeds [157].

Researchers have found success using varying strategies ranging from large seed corpora
to single empty files [100]. In our evaluation, we provide AFL one valid seed input per
benchmark that covers various domain-specific semantic features. For example, in the
Closure and Rhino benchmarks, we use the entire React.JS library [156] as a seed.

We also provide AFL with dictionaries of benchmark-specific strings (e.g. keywords,
tag names) to inject into inputs during mutation. The generator-based tools Zest and
QuickCheck do not rely on meaningful seeds.

• Generators: Zest and QuickCheck use hand-written input generators. For Maven
and Ant, we use an XML document generator similar to Figure 5.1, of around 150
lines of Java code. It generates strings for tags and attributes by randomly choosing
strings from a list of string literals scraped from class files in Maven and Ant. For
Closure and Rhino, we use a generator for a subset of JavaScript that contains about
300 lines of Java code. The generator produces strings that are syntactically valid
JavaScript programs. Finally, the BCEL generator (~500 LoC) uses the BCEL API to
generate JavaClass objects with randomly generated fields, attributes and methods
with randomly generated bytecode instructions. All generators were written in less
than two hours each. Although these generators produce syntactically valid inputs, no

CHAPTER 5. JQF AND ZEST 73

0 1 2 3
Time (hrs)

0

5

10

15

%
 S

em
an

tic
 B

ra
nc

he
s C

ov
er

ed

Zest
AFL
QuickCheck

(a) maven

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hrs)

0

1

2

3

%
 S

em
an

tic
 B

ra
nc

he
s C

ov
er

ed

Zest
AFL
QuickCheck

(b) ant

0 1 2 3
Time (hrs)

0

5

10

15

%
 S

em
an

tic
 B

ra
nc

he
s C

ov
er

ed

Zest
AFL
QuickCheck

(c) closure

0 1 2 3
Time (hrs)

0

10

20

30

%
 S

em
an

tic
 B

ra
nc

he
s C

ov
er

ed

Zest
AFL
QuickCheck

(d) rhino

0 1 2 3
Time (hrs)

0

5

10

15

20

%
 S

em
an

tic
 B

ra
nc

he
s C

ov
er

ed
Zest
AFL
QuickCheck

(e) bcel

Figure 5.6: Percent coverage of all branches in semantic analysis stage of the benchmark
programs. Lines designate means and shaded regions 95% confidence intervals.

effort was made to produce semantically valid inputs; doing so can be a complex and
tedious task [192].

All experiments are conducted on a machine with Intel(R) Core(TM) i7-5930K 3.50GHz
CPU and 16GB of RAM running Ubuntu 18.04. A replication package that includes all the
generators, seeds, and dictionaries has been made publicly available at https://doi.org/
10.1145/3339069.

Syntax and Semantic Analysis Stages in Benchmarks Zest is specifically designed
to exercise the semantic analysis stages of programs. To evaluate Zest’s effectiveness in
this regard, we manually identify the components of our benchmark programs which corre-
spond to syntax and semantic analysis stages. Table 5.2 lists prefix patterns that we match
on the fully-qualified names of classes in our benchmarks to classify them in either stage.
Section 5.4.1 evaluates the code coverage achieved within the classes identified as belonging
to the semantic analysis stage. Section 5.4.2 evaluates the bug-finding capabilities of each
technique for bugs that arise in the semantic analysis classes. Section 5.5 discusses some
findings in the syntax analysis classes, whose testing is outside the scope of Zest.

5.4.1 Coverage of Semantic Analysis Classes

Instead of relying on our own instrumentation, we use a third party tool, the widely used
Eclemma-JaCoCo [86] library, for measuring code coverage in our Java benchmarks. Specif-

https://doi.org/10.1145/3339069
https://doi.org/10.1145/3339069

CHAPTER 5. JQF AND ZEST 74

ically, we measure branch coverage within the semantic analysis classes from Table 5.2; we
refer to these branches as semantic branches for short.

To approximate the coverage of the semantic branches covered via the selected test
drivers, we report the percentage of total semantic branches covered. Note, however, that
this is a conservative, i.e. low, estimate. This is because the total number of semantic
branches includes some branches not reachable from the test driver. We make this approx-
imation as it is not feasible to statically determine the number of branches reachable from
a given entry point, especially in the presence of virtual method dispatch. We expect the
percent of semantic branches reachable from our test drivers to be much lower than 100%;
therefore, the relative differences between coverage are more important than the absolute
percentages.

Figure 5.6 plots the semantic branch coverage achieved by each of Zest, AFL, and
QuickCheck on the five benchmark programs across the 3-hour-long runs. In the plots, solid
lines designate means and shaded areas designate 95% confidence intervals across the 20
repetitions. Interestingly, the variance in coverage is quite low for all techniques except
QuickCheck. Since AFL is initialized with valid seed inputs, its initial coverage is non-zero;
nonetheless, it is quickly overtaken by Zest, usually within the first 5 minutes.

Zest significantly outperforms baseline techniques in exercising branches within the se-
mantic analysis stage, achieving statistically significant increases for all benchmarks. Zest
covers as much as 2.81× as many semantic branches covered by the best baseline tech-
nique for Maven (Figure 5.6a). When looking at our Javascript benchmarks, we see that
Zest’s advantage over QuickCheck is more slight in Rhino (Figure 5.6b) than in Closure
(Figure 5.6c). This may be because Closure, which performs a variety of static code optimiza-
tions on JavaScript programs, has many input-dependent paths. Rhino, on the other hand,
directly compiles valid JavaScript to JVM bytecode, and thus has fewer input-dependent
paths for Zest to discover via semantic fuzzing.

Note that in some benchmarks AFL has an edge in coverage over QuickCheck (Fig-
ure 5.6a, 5.6b, 5.6e), and vice-versa (Figure 5.6c, 5.6d). For BCEL, this may be because the
input format is a compact syntax, on which AFL generally excels. The difference between
the XML and JavaScript benchmarks may be related to the ability of randomly-sampled
inputs from the generator to achieve broad coverage. It is much more likely for a random
syntactically valid JavaScript program to be semantically valid than a random syntactically
valid XML document to be a valid POM file, for example. The fact that Zest dominates
the baseline approaches in all these cases suggests that it is more robust to generator quality
than QuickCheck.

5.4.2 Bugs in the Semantic Analysis Classes

Each of Zest, AFL, and QuickCheck keep track of generated inputs which cause test failures.
Ideally, for any given input, the test program should either process it successfully or reject the
input as invalid using a documented mechanism, such as throwing a checked ParseException
on syntax errors. Test failures correspond either to assertion violations or to undocumented

CHAPTER 5. JQF AND ZEST 75

Table 5.3: The 10 new bugs found in the semantic analysis stages of benchmark programs.
The tools Zest, AFL, and QuickCheck (QC) are evaluated on the mean time to find (MTF)
each bug across the 20 repeated experiments of 3 hours each as well as the reliability of this
discovery, which is the percentage of the 20 repetitions in which the bug was triggered at
least once. For each bug, the highlighted tool is statistically significantly more effective at
finding the bug than unhighlighted tools.

Bug ID Exception Tool Mean Time to Find (shorter is better) Reliability

ant B IllegalStateException
Zest (99.45 sec) 100%
AFL (6369.5 sec) 10%
QC (1208.0 sec) 10%

closure C NullPointerException
Zest (8.8 sec) 100%
AFL (5496.25 sec) 20%
QC (8.8 sec) 100%

closure D RuntimeException
Zest (460.42 sec) 60%
AFL 7 0%
QC 7 0%

closure U IllegalStateException
Zest (534.0 sec) 5%
AFL 7 0%
QC 7 0%

rhino G IllegalStateException
Zest (8.25 sec) 100%
AFL (5343.0 sec) 20%
QC (9.65 sec) 100%

rhino F NullPointerException
Zest (18.6 sec) 100%
AFL 7 0%
QC (9.85 sec) 100%

rhino H ClassCastException
Zest (245.18 sec) 85%
AFL 7 0%
QC (362.43 sec) 35%

rhino J VerifyError
Zest (94.75 sec) 100%
AFL 7 0%
QC (229.5 sec) 80%

bcel O ClassFormatException
Zest (19.5 sec) 100%
AFL (5.85 sec) 100%
QC (142.1 sec) 100%

bcel N AssertionViolatedException
Zest (19.32 sec) 95%
AFL (1082.22 sec) 90%
QC (15.0 sec) 5%

run-time exceptions being thrown during test execution, such as a NullPointerException.
Test failures can occur during the processing of either valid or invalid inputs; the latter can
lead to failures within the syntax or semantic analysis stages themselves.

Across all our experiments, the various fuzzing techniques generated over 95,000 failing
inputs that correspond to over 3,000 unique stack traces. We manually triaged these failures

CHAPTER 5. JQF AND ZEST 76

by filtering them based on exception type, message text, and source location, resulting in a
corpus of what we believe are 20 unique bugs. We have reported each of these bugs to the
project developers. At the time of writing: 5 bugs have been fixed, 10 await patches, and 5
reports have received no response. See Section 5.3.5 for a summary of all new bugs found
using the JQF framework.

We classify each bug as syntactic or semantic, depending on whether the corresponding
exception was raised within the syntactic or semantic analysis classes, respectively (ref.
Table 5.2). Of the 20 unique bugs we found, 10 were syntactic and 10 were semantic.

Here, we evaluate Zest in discovering semantic bugs, for which it is specifically designed.
Section 5.5 discusses the syntactic bugs we found, whose discovery was not Zest’s goal.

Table 5.3 enumerates the 10 semantic bugs that we found across four of the five benchmark
programs. The bugs have been given unique IDs—represented as circled letters—for ease of
discussion. The table also lists the type of exception thrown for each bug. To evaluate the
effectiveness of each of the three techniques in discovering these bugs, we use two metrics.
First, we are interested in knowing whether a given technique reliably finds the bug across
repeated experiments. We define reliability as the percentage of the 20 runs (of 3-hours each)
in which a given technique finds a particular bug at least once. Second, we measure the mean
time to find (MTF) the first input that triggers the given bug, across the repetitions in which
it was found. Naturally, a shorter MTF is desirable. For each bug, we circle the name of
the technique that is the most effective in finding that bug. We define most effective as the
technique with either the highest reliability, or if there is a tie in reliability, then the shortest
MTF.

The table indicates that Zest is the most effective technique in finding 8 of the 10 bugs;
in the remaining two cases (F and O), Zest still finds the bugs with 100% reliability and
in less than 20 seconds on average. In fact, Zest finds all the 10 semantic bugs in at most
10 minutes on average; 7 are found within the first 2 minutes on average. In contrast, AFL
requires more than one hour to find 3 of the bugs (B , C , G), and simply does not find 5
of the bugs within the 3-hour time limit. This makes sense because AFL’s mutations on the
raw input strings do not guarantee syntactic validity; it generates much fewer inputs that
reach the semantic analysis stage. QuickCheck discovers 8 of the 10 semantic bugs, but since
it relies on random sampling alone, its reliability is often low. For example, QuickCheck
discovers B only 10% of the time, and N only 5% of the time; Zest discovers them 100%
and 95% of the time, respectively. Overall, Zest is clearly the most effective technique in
discovering bugs in the semantic analysis classes of our benchmarks.

Case studies In Ant, B is triggered when the input build.xml document contains both
an <augment> element and a <target> element inside the root <project> element, but when
the <augment> element is missing an id attribute. This incomplete semantic check leads to
an IllegalStateException for a component down the pipeline which tries to configure an
Ant task. Following our bug report, this issue has been fixed starting Ant version 1.10.6.

In Rhino, J is triggered by a semantically valid input. Rhino successfully validates the

CHAPTER 5. JQF AND ZEST 77

input JavaScript program and then compiles it to Java bytecode. However, the compiled
bytecode is corrupted, which results in a VerifyError being generated by the JVM. AFL
does not find this bug at all. The Rhino developers confirmed the bug, though a fix is still
pending.

In Closure, C is an NPE that is triggered in its dead-code elimination pass when handling
arrow functions that reference undeclared variables, such as "x => y". The generator-based
techniques always find this bug and within just 8.8 seconds on average, while AFL requires
more than 90 minutes and only finds it in 20% of the runs. The Closure developers fixed
this issue after our report.

D is a bug in Closure’s semantic analysis of variable declarations. The bug is triggered
when a new variable is declared after a break statement. Although everything immediately
after a break statement is unreachable code, variable declarations in JavaScript are hoisted
and therefore cannot be removed. Zest is the only technique that discovered this bug. A
sample input Zest generated is:
while ((l_0)){

while ((l_0)){
if ((l_0)) { break;;var l_0;continue }
{ break;var l_0 }

}
}

U was the most elusive bug that we encountered. Zest is the only technique that finds
it and it does so in only one of the 20 runs. An exception is triggered by the following input:
((o_0) => (((o_0) *= (o_0))

< ((i_1) &= ((o_0)((((undefined)[(((i_1, o_0, a_2) => {
if ((i_1)) { throw ((false).o_0) }

})((y_3)))])((new (null)((true))))))))))

The developers acknowledged this bug but have not yet published a fix. These complex
examples demonstrate both the power of Zest’s generators, which reduce the search space
to syntactically valid inputs, as well as the effectiveness of the semantic fuzzing technique.

5.5 Discussion and Limitations
Zest and QuickCheck make use of generators for synthesizing inputs that are syntactically
valid by construction. By design, these tools do not exercise code paths corresponding to
parse errors in the syntax analysis stage. In contrast, AFL performs mutations directly on
raw input strings. Byte-level mutations on raw inputs usually lead to inputs that do not
parse. Consequently, AFL spends most of its time testing error paths within the syntax
analysis stages.

In our experiments, AFL achieved the highest coverage within the syntax analysis classes
of our benchmarks (ref. Table 5.2), 1.1×-1.6× higher than Zest’s syntax analysis coverage.
Further, AFL discovered 10 syntactic bugs in addition to the bugs enumerated in Table 5.2:

CHAPTER 5. JQF AND ZEST 78

3 in Maven, 6 in BCEL, and 1 in Rhino. These bugs were triggered by syntactically invalid
inputs, which the generator-based tools do not produce. Zest does not attempt to target
these bugs; rather, it is complementary to AFL-like tools.

Zest assumes the availability of QuickCheck-like generators to exercise the semantic
analysis classes and to find semantic bugs. Although this is no doubt an additional cost,
the effort required to develop a structured-input generator is usually no more than the
effort required to write unit tests with hand-crafted structured inputs, which is usually an
accepted cost. In fact, due to the growing popularity of generator-based testing tools like
Hypothesis [89], ScalaCheck [162], PropEr [145], etc. a large number of off-the-shelf or
automatically synthesized type-based generators are available. The Zest technique can, in
principle, work with any such generator. When given a generator, Zest excels at exercising
semantic analyses and is very effective in discovering semantic bugs.

We did not evaluate how Zest’s effectiveness might vary depending on the quality of
generators, since we hand-wrote the simplest generators possible for our benchmarks. How-
ever, our results suggest that Zest’s ability to guide generation towards paths deep in the
semantic analysis stage make its performance less tied to generator quality than pure random
sampling as in QuickCheck.

The effectiveness of CGF tools like AFL is usually sensitive to the choice of seed in-
puts [100]. Although the relative differences between the performance of Zest and AFL will
likely vary with this choice, the purpose of our evaluation was to demonstrate that focusing
on feedback-directed search in the space of syntactically valid inputs is advantageous. No
matter what seed inputs one provides to conventional fuzzing tools, the byte-level mutations
on raw inputs will lead to an enormous number of syntax errors. We believe that approaches
like Zest complement CGF tools in testing different components of programs.

5.6 Summary
In this chapter, we presented Zest, a technique for generating inputs to test complex input-
processing pipelines. Zest leverages the domain knowledge in handwritten QuickCheck-
like generator functions, which can be used to sample syntactically valid inputs, as well as
predicates that specify whether an input is semantically valid. Zest introduces semantic
fuzzing, a technique to automatically guide QuickCheck-like generators towards producing
inputs that are both likely to be semantically valid and increase code coverage in the program
under test. We also presented an experimental evaluation of Zest on five real-world Java
programs. Our evaluation showed that Zest outperforms vanilla junit-quickcheck as well
as AFL in generating inputs that exercise code paths within the semantic analysis stages of
our test programs. Zest was also able to find previously unknown bugs in these programs
more quickly and reliably than either junit-quickcheck or AFL.

We also presented JQF, a framework for controlling the pseudo-random choices made
in junit-quickcheck generators. JQF allows researchers to develop new coverage-guided
algorithms for generating structured inputs for Java programs. Zest is implemented in JQF,

CHAPTER 5. JQF AND ZEST 79

along with several other guidance algorithms. JQF has been used to find 42 previously
unknown bugs in widely used open-source Java software, of which more than half have
already been fixed.

Together, JQF+Zest have shown that a combination of domain expertise—provided by
software developers in the form of input generators and validity predicates—with sophisti-
cated coverage-guided fuzzing algorithms can effectively perform automated testing of large
complex programs that process highlight structured inputs.

80

Chapter 6

FuzzFactory: Domain-Specific Fuzzing
with Waypoints

Fuzz testing has applications beyond finding program crashes. In Chapter 4, we saw how
PerfFuzz can be used to find performance hot spots. In Chapter 5, we saw how JQF
and Zest can be used to perform property-based testing. Fuzz testing can also be used
for directed testing [23], differential testing [148], side-channel analysis [130], discovering
algorithmic complexity vulnerabilities [149]. In each case, researchers have modified the
original fuzzing algorithm to produce a specialized solution. Similarly, researchers have
tweaked the original CGF algorithm to leverage domain-specific information from programs
in order to improve code coverage, such as the use of magic bytes in file formats [102, 155,
109] or measures of input validity [142, 101, 150].

In this chapter, we present FuzzFactory [143], a framework for implementing domain-
specific fuzzing applications. Our framework is based on the following observation: many
domain-specific fuzzing problems can be solved by augmenting the coverage-guided fuzzing
algorithm to selectively save newly generated inputs for subsequent mutation, beyond those
that only improve code coverage. We call these intermediate inputs waypoints, inspired
by the corresponding term in the field of navigation. These waypoints give the fuzzing
algorithm steps towards a domain-specific goal. A domain-specific fuzzing application for
domain d is specified via a predicate: is_waypoint(i,S, d). This predicate answers the
following question: given a newly generated input i and a set of previously saved inputs
S, should we save input i to S? FuzzFactory provides a simple mechanism for defining
is_waypoint , based on domain-specific feedback that can be dynamically collected during
test execution. A domain-specific fuzzing application can instrument programs under test
to collect such custom feedback via a small set of APIs provided by FuzzFactory.

FuzzFactory enables development of domain-specific fuzzing applications without re-
quiring changes to the underlying search algorithm. We were able to easily re-implement
three algorithms from prior work and evaluate their strengths and weaknesses: SlowFuzz [149],
PerfFuzz [107], and validity fuzzing [142]. We also used FuzzFactory to prototype three
novel applications: for smoothing hard comparisons, for generating inputs that allocate ex-

CHAPTER 6. FUZZFACTORY 81

1 void* Test(int16_t a, int16_t b) {
2 if (a % 3 == 2) {
3 if (a > 0x1000) {
4 if (b >= 0x0123) {
5 if (a == b) {
6 abort();
7 } else {
8 return malloc(a);
9 }

10 }
11 }
12 }
13 }

(a) Sample function in the test program.
Parameters a and b are the test inputs.

Seed

Target

New coverage

Waypoint
(mem)

Waypoint
(cmp)

Legend:
a=0x0000, b=0x0000

a=0x0020, b=0x0000

a=0x1220, b=0x0000

a=0x1220, b=0xF020

a=0x1220, b=0xF000

a=0x1220, b=0xF220

a=0x1220, b=0x1220

a=0xF320, b=0xF000

a=0xFF20, b=0xF000

a=0xFFFE, b=0xF000

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

(b) Sample fuzzed inputs starting with initial seed a =
0, b = 0. Arrows indicate mutations.

Figure 6.1: A motivating example

cessive amounts of memory, and to perform incremental fuzzing following code changes. We
describe these six domain-specific fuzzing applications as well as our experimental results on
six real-world benchmark programs from a test suite released by Google [77].

A key advantage of FuzzFactory is that domain-specific feedback is naturally com-
posable. We combine our domain-specific fuzzing applications for exacerbating memory
allocations and for smoothing hard comparisons to produce a composite application that
performs better than each of its constituents. The composite application automatically gen-
erates LZ4 bombs and PNG bombs: tiny inputs that lead to dynamic allocations of 4GB in
libarchive and 2GB in libpng respectively.

FuzzFactory has been made publicly available at: https://github.com/rohanpadhye/
FuzzFactory.

6.1 Motivation
Consider the sample test program in Figure 6.1a. The function Test takes as input two

16-bit integers, a and b. A common test objective is to generate inputs that maximize code
coverage in this program. We apply Algorithm 1 to perform CGF on this test program. Let
us assume that we start with the seed input : a=0x0000, b=0x0000. The seed input does
not satisfy the condition at Line 2. The CGF algorithm randomly mutates this seed input
and executes the test program on the mutated inputs while looking for new code coverage.
Figure 6.1b depicts in grey boxes a series of sample inputs which may be saved by CGF,
starting with the initial seed input i1 in an yellow box. A solid arrow between two inputs, say

https://github.com/rohanpadhye/FuzzFactory
https://github.com/rohanpadhye/FuzzFactory

CHAPTER 6. FUZZFACTORY 82

i and i′, indicates that the input i is mutated to generate i′. After some attempts, CGF may
mutate the value of a in i1 to a value such as 0x0020, which satisfies the condition at Line 2.
Since such an input leads to new code being executed, it gets saved to S. In Fig. 6.1b, this
is input i2. Small, byte-level mutations enable CGF to subsequently generate inputs that
satisfy the branch condition at Line 3 and Line 4 of Fig. 6.1a. This is because there are many
possible solutions that satisfy the comparisons a > 0x1000 and b >= 0x0123 respectively;
we call these soft comparisons. Fig. 6.1b shows the corresponding inputs in our example: i3
and i4. However, it is much more difficult for CGF to generate inputs to satisfy comparisons
such as a == b at Line 5; we call these hard comparisons. Random byte-level mutations on
inputs i1–i4 are unlikely to produce an input where a == b. Therefore, the code at Line 6
may not be exercised in a reasonable amount of time using conventional CGF.

Now, consider another test objective, where we would like to generate inputs that maxi-
mize the amount of memory that is dynamically allocated via malloc. This objective is useful
for generating stress tests or to discover potential out-of-memory related bugs. The CGF
algorithm enables us to generate inputs that invoke malloc statement at Line 8, such as i4.
However, this input only allocates 0x1220 bytes (i.e., just over 4KB) of memory. Although
random mutations on this input are likely to generate inputs that allocate larger amount
of memory, CGF will never save these because they have the same coverage as i4. Thus, it
is unlikely that CGF will discover the maximum memory-allocating input in a reasonable
amount of time.

6.1.1 Waypoints

Both of the challenges listed above can be addressed if we save some useful intermediate
inputs to S regardless of whether they increase code coverage. Then, random mutations on
these intermediate inputs may produce inputs achieving our test objectives. We call these
intermediate inputs waypoints. For example, to overcome hard comparisons such as a == b,
we want to save intermediate inputs if they maximize the number of common bits between
a and b. Let us call this strategy cmp. The blue boxes in Fig. 6.1b show inputs that may be
saved to S when using the cmp strategy for waypoints. In such a strategy, the inputs i5 and
i6 are saved to S even though they do not achieve new code coverage. Now, input i6 can
easily be mutated to input i7, which satisfies the condition a == b. Thus, we easily discover
an input that triggers abort at Line 6 of Fig. 6.1a. Similarly, to achieve the objective of
maximizing memory allocation, we save waypoints that allocate more memory at a given
call to malloc than any other input in S. Fig. 6.1b shows sample waypoints i8 and i9 that
may be saved with this strategy, called mem. The dotted arrow from i9 to i10 indicates that,
after several such waypoints, random mutations will eventually lead us to generating input
i10. This input causes the test program to allocate the maximum possible memory at Line 8,
which is almost 64KB.

Now, consider a change to the condition at Line 4 of Figure 6.1a. Instead of an inequality,
suppose the condition is b == 0x0123. To generate inputs that invoke malloc at Line 8,
we first need to overcome a hard comparison of b with 0x0123. We can combine the two

CHAPTER 6. FUZZFACTORY 83

strategies for saving waypoints as follows: save a new input i if either it increases the number
of common bits between operands of hard comparisons or if it increases the amount of
memory allocated at some call to malloc. In Section 6.4, we demonstrate how a combination
of these strategies allows us to automatically generate PNG bombs and LZ4 bombs, i.e. tiny
inputs that allocate 2–4 GB of memory, when fuzzing libpng and libarchive respectively.

We propose a framework, called FuzzFactory, which enables users to implement strate-
gies for choosing waypoints. To do so, the user specifies what custom feedback they need to
collect from the execution of a program under test in addition to coverage information. The
user also specifies a function for aggregating such feedback across a collection of inputs; the
aggregated feedback is used to decide whether an input should be considered a waypoint.

We next describe the framework and its underlying algorithm. The framework has en-
abled us to rapidly implement three existing strategies in the literature and four new strate-
gies, including a composite strategy.

6.2 The FuzzFactory Framework
Our goal is to construct a framework which allows users to build a domain-specific fuzzing
application d by simply defining a custom predicate: is_waypoint(i,S, d). The predicate
tells the fuzzer whether a new input i is a waypoint ; that is, whether i should to be saved to
the set of saved inputs S so that later on it can be mutated to generate new inputs.

In the conventional CGF algorithm, the decision of whether to save an input is defined
in terms of the dynamic behavior of the program on the input i. Specifically, if the coverage
of the program on the input i includes a coverage point that is not present in the coverage
cumulatively attained by the program on the inputs in S, then CGF deems i as interesting
and saves it to S. The decision is based on a specific kind of feedback (i.e. coverage) from
the execution of the program on i. The feedback is directly related to the goal of CGF,
which is to increase the coverage of the program.

Although improving code coverage is important for discovering new program behavior, we
believe that a fuzzer could be made more effective and diverse if it was guided by other testing
goals, such as: discovering performance bottlenecks or memory usage problems, covering
recently modified code, exercising valid input behavior, etc.

FuzzFactory enables users to prototype fuzzers that target user-defined custom goals.
To support custom or domain-specific goals, the user needs to specify: (1) the specific kind of
feedback to collect from the execution of the program on any input, and (2) how this feedback
should be used to determine if the input should be considered interesting and saved.

We next describe the mechanism with which the FuzzFactory user specifies the kind of
domain-specific feedback they want from an execution. We then explain how the is_waypoint
predicate uses such custom feedback to determine if an input needs to be saved. We also
describe how to compose such domain-specific feedback. Finally, we show how to extend the
CGF algorithm in Algorithm 1 to take domain-specific feedback into account.

CHAPTER 6. FUZZFACTORY 84

6.2.1 Domain-Specific Feedback

In FuzzFactory, we provide a mechanism for users to specify a domain and to collect
custom domain-specific feedback (DSF) from the execution of the program under test. A
domain-specific feedback (DSF) is a map of the form dsf i : K → V , where i is a program
input, K is a set of keys (e.g. program locations) and V is a set of values (usually a
measurement of something we want to optimize). The map is populated by executing the
program under test on input i. As an example, if we are interested in generating inputs on
which the program execution increases memory allocation, then dsf i is a map from L to N,
where L is the set of program locations where a memory allocation function (e.g. malloc) is
called and N is the set of natural numbers. dsf i(k) represents the total amount of memory
in bytes that is allocated at program location k during the execution of the program on the
test input i.

In general, the user specifies a domain as a tuple of the form d = (K,V,A, a0,�) where
K is a set of keys, V is a set of values, A is a set of aggregation values, a0 is an initial
aggregation value, and � : A × V → A is a reducer function. The user specifies how
to update the map dsf i during an execution of the test program on input i, by inserting
appropriate instrumentation in the test program. We explain the meaning of A, a0, and �
in a user-defined domain in the next subsection.

6.2.2 Waypoints

We use the dsf i map from the execution of the test program on input i in order to determine
if i needs to be saved. To do so, FuzzFactory aggregates the domain-specific feedback
collected from the executions of multiple test inputs into a value that belongs to the user-
defined set A. To compute this aggregate value, the user provides an initial aggregate value
a0 ∈ A and a reducer function � : A × V → A as part of the domain. A reducer function
must satisfy the following properties for any a ∈ A and any v, v′ ∈ V :

a� v � v = a� v (6.1)
a� v � v′ = a� v′ � v (6.2)

These rules imply idempotence and application-order insensitivity, respectively, in the second
operand. For the memory-allocation domain (say dmem): both V and A are the set of
natural numbers N. The initial aggregate value a0 = 0, and � is the max operation on
natural numbers. We can therefore define dmem = (L,N,N, 0,max). Property 6.1 is satisfied
because max(max(a, v), v) = max(a, v) for any a, v ∈ N. Property 6.2 is satisfied because
max(max(a, v), v′) = max(max(a, v′), v) for any a, v, v′ ∈ N. The properties help ensure that
the every saved waypoint contributes towards domain-specific progress; this point will be
visited when encountering Theorem 2 below. Note that these properties are not statically
verified by FuzzFactory; it is the responsibility of the user to ensure that their chosen
reducer function satisfies Properties 6.1 and 6.2.

CHAPTER 6. FUZZFACTORY 85

In general, let dsf i be the DSF map populated during the execution of program p with
i. For a given set of inputs S = {i1, i2, . . . , in}, we define the aggregated domain-specific
feedback value A(S, k, d) for the domain d and for key k ∈ K as follows:

A(S, k, d) def
= a0 � dsf i1(k)� dsf i2(k)� . . .� dsf in(k), where d = (K,V,A, a0,�) (6.3)

Due to the Properties 6.1 and 6.2, the value of A(S, k, d) is uniquely defined; the choice of
ordering i1, . . . , in does not matter.

For the memory-allocation domain, the aggregated feedback value A(S, k, dmem) repre-
sents the maximum amount of memory allocated at program location k ∈ L across all inputs
in S. For this domain, we would like to save an input i to set S if the execution on i causes
more memory allocation at some program location k than that of any of the allocations
observed at k during the execution of the inputs in S.

In FuzzFactory, we define the predicate is_waypoint(i,S, d) as follows:

is_waypoint(i,S, d) def
= ∃k ∈ K : A(S, k, d) 6= A(S ∪ {i}, k, d), where d = (K,V,A, a0,�)

(6.4)
The definition implies that we will save input i if the execution on the input results in a
change in the aggregated domain-specific feedback value for some key.

6.2.2.1 Monotonicity of Aggregation

In order to decide if an input i should be considered a waypoint, we only check if the total
aggregation changes ; i.e., whether A(S, k, d) 6= A(S ∪ {i}, k, d). However an important
consequence of Properties 6.1 and 6.2 is that this change is always in a direction that implies
some sort of domain-specific progress, denoted by a partial order � on A. In other words, the
function A is monotonic in its first argument with respect to partial order �. For example,
in the memory allocation domain dmem : if A(S, k, dmem) 6= A(S ∪ {i}, k, dmem) for some
program location k ∈ L, this means that the memory allocated at k during the execution of
i is more than the memory allocated at k by any other input in S. The partial order in this
example is simply the total ordering on natural numbers: ≤. More generally, we can state
the following theorem:
Theorem 2 (Monotonicity of Aggregation). A domain d = (K,V,A, a0,�) whose reducer
function � satisfies properties 6.1 and 6.2 imposes a partial order � on A such that the
function A is monotonic in its first argument with respect to �. That is, the following
always holds for any such domain d, any key k ∈ K, and for some binary relation � on A:

S1 ⊆ S2 ⇒ A(S1, k, d) � A(S2, k, d)

In order to prove Theorem 2, we first need to demonstrate a few lemmas.
Lemma 1 (No ping-pong). Given a reducer function � : A×V → A satisfying Properties 6.1
and 6.2, then ∀a ∈ A and any n ≥ 0 terms v1, . . . , vn ∈ V , if a� v1 � . . .� vn = a, then:

∀0 ≤ k ≤ n : a� v1 � . . .� vk = a

CHAPTER 6. FUZZFACTORY 86

In other words, if we start with aggregate value a and then apply n reductions, and if the
final result is also the value a, then the result of all the intermediate reductions must also be
a. This lemma states that aggregate values cannot ping-pong ; that is, they cannot oscillate
between distinct values.

Proof. For n = 0, the lemma is trivially true. For n > 0, we prove the lemma by contradic-
tion: given that a � v1 � . . . � vn = a, assume that there exists some k, where 1 ≤ k ≤ n,
such that a 6= a� v1 � . . .� vk. In this inequality, we can substitute the value of a on both
sides with the equivalent a� v1 � . . .� vn, to get:

a� v1 � . . .� vn 6= a� v1 � . . .� vn � v1 � . . .� vk

Then, we can repeatedly apply Property 6.2 on the right-hand side to rearrange terms:

a� v1 � . . .� vn 6= a� v1 � v1 � v2 � v2 � . . .� vk � vk � vk+1 � vk+2 � . . .� vn

Then, we can repeatedly apply Property 6.1 on the right-hand side to remove redundant
terms:

a� v1 � . . .� vn 6= a� v1 � . . .� vn

This is a contradiction; therefore, no such k can exist.

Definition 17 (Progress). If � : A × V → A is a reducer function, then we can define a
binary relation � on A called progress as follows:

a � b⇔ ∃ v1, . . . , vn ∈ V, where n ≥ 0, such that a� v1 � . . .� vn = b

Lemma 2 (Reflexivity of progress). If � : A × V → A is a reducer function and � is its
progress relation, then ∀a ∈ A : a � a.

Proof. Straightforward from Definition 17 with n = 0.

Lemma 3 (Transitivity of progress). If � : A × V → A is a reducer function and � is its
progress relation, then ∀a, b, c ∈ A : a � b ∧ b � c⇒ a � c.

Proof. If a � b and if b � c, then by Definition 17 there exist some terms u1, . . . , um ∈ V
and v1, . . . , vn ∈ V for m,n ≥ 0 such that:

a� u1 � . . .� um = b (6.5)

b� v1 � . . .� vn = c (6.6)

Substituting the b on the LHS of Equation 6.6 with the LHS of Equation 6.5, we can write:

a� u1 � . . .� um � v1 � . . .� vn = c (6.7)

Which, by Definition 17, means a � c.

CHAPTER 6. FUZZFACTORY 87

Lemma 4 (Anti-symmetry of progress). If � : A × V → A is a reducer function and � is
its progress relation, then a � b ∧ b � a⇒ a = b.

Proof. If a � b and if b � a then by Definition 17 there exist some terms u1, . . . , um ∈ V
and v1, . . . , vn ∈ V for m,n ≥ 0 such that:

a� u1 � . . .� um = b (6.8)

b� v1 � . . .� vn = a. (6.9)

Substituting the b on the LHS of Equation 6.9 with the LHS of Equation 6.8, we can write:

a� u1 � . . .� um � v1 � . . .� vn = a.

By Lemma 1, all intermediate aggregates must be equal to a, in particular:

a� u1 � . . .� um = a

Plugging this result into the LHS of Equation 6.8, we get a = b.

Proof of Theorem 2. Let � be the progress relation for the reducer �. From Lemmas 2, 3,
and 4, it follows that this relation is a partial order. Now, let S1 ⊆ S2. From the definition
of A in Equation 6.3, we can write:

A(S2, k, d) = A(S1, k, d)� v1 � . . . vn

where {v1, . . . , vn} = S2 \ S1. From Definition 17, this implies that A(S1, k, d) � A(S2, k, d);
that is, A is monotonic in its first argument with respect to �.

Corollary 1. An input i is considered a waypoint iff the aggregated domain-specific feedback
strictly makes progress for some key k, without sacrificing progress for any other key. In
particular:

is_waypoint(i,S, d)⇔(∀k ∈ K : A(S, k, d) � A(S ∪ {i}, k, d))
∧(∃k ∈ K : A(S, k, d) ≺ A(S ∪ {i}, k, d))

where a ≺ b⇔ a � b ∧ a 6= b

Proof. Follows from the definition of is_waypoint in Eq. 6.4 and Theorem 2.

CHAPTER 6. FUZZFACTORY 88

Algorithm 4 The domain-specific fuzzing algorithm. The grey boxes indicate changes to
Algorithm 1.
Input: an instrumented test program p, a set of initial seed inputs I, a set of domain-specific

feedback D
Output: a corpus of automatically generated inputs S
1: S ← I
2: totalCoverage ← ∅

3: repeat . Main fuzzing loop
4: for i in S do
5: if sample fuzzProb(i) then
6: i ′ ← mutate(i) . Generate new test input i′

7: coverage, dsf 1
i′ , . . . , dsf

|D|
i′ ← execute(p, i ′) . Run test with new input i′

8: if coverage ∩ totalCoverage 6= ∅ then
9: S ← S ∪ {i ′} . Save i′ if new code coverage achieved
10: totalCoverage← totalCoverage ∪ coverage
11: end if
12: if is_waypoint(i′,S, D) then
13: S ← S ∪ {i ′} . Save i′ to fuzzing corpus
14: end if
15: end if
16: end for
17: until given time budget expires
18: return S

6.2.3 Composing Domains

FuzzFactory allows the user to naturally compose multiple domains for a program under
test. This enables fuzzing to target multiple goals simultaneously.

Assume that the user has specified a set of domains D, where d = (K,V,A, a0,�) for
each d ∈ D. Then we extend the definition of the predicate is_waypoint to D as follows:

is_waypoint(i,S, D)
def
=

∨
d∈D

is_waypoint(i,S, d) (6.10)

which says that is_waypoint(i,S, D) is true for a set of domains D iff is_waypoint(i,S, d)
is true for some domain d ∈ D. We save the input i in S if is_waypoint(i,S, D) is true. Note
that Corollary 1 naturally extends to a composition of multiple domains: is_waypoint(i,S, D)
implies strict progress in at least one key in at least one domain d ∈ D.

CHAPTER 6. FUZZFACTORY 89

6.2.4 Algorithm for Domain-Specific Fuzzing

Algorithm 4 describes the domain-specific fuzzing algorithm implemented in FuzzFactory.
The algorithm extends the conventional coverage-guided fuzzing algorithm described in Al-
gorithm 1. The extensions are marked with grey background. The extension is quite straight-
forward: during the execution of the program p on an input i′, the algorithm not only collects
coverage, but also collects domain-specific feedback maps dsf 1

i′ , . . . , dsf
|D|
i′ for each domain

in D. It then uses those maps in the call to is_waypoint(i′,S, D) to determine if the new
input i′ should be added to the set of saved inputs S. Unlike Algorithm 1, the FuzzFac-
tory algorithm does not necessarily track failures, although failure tracking can be easily
added to Algorithm 4. This is because not all domain-specific testing objectives have readily
identifiable failure cases; for example, when trying to discover performance bottlenecks (ref.
Chapter 4). The high-level goal of Algorithm 4 is to generate a corpus of test inputs that
may be interesting to investigate in a domain-specific post-processing step.

6.3 Domain-Specific Fuzzing Applications
We demonstrate the applicability of FuzzFactory by instantiating six independent domain-
specific fuzzing applications. Some of these fuzzing algorithms were already proposed and
implemented in prior work. Our motivation behind implementing these algorithms was to
evaluate whether we could prototype these algorithms in our framework, without changing
the underlying fuzzing algorithm or search heuristics. Sections 6.3.3 through 6.3.8 describe
six domains, in increasing order of complexity:

1. slow: An application for maximizing execution path lengths, based on SlowFuzz [149].
This is the most trivial domain to implement in FuzzFactory.

2. perf: An application for discovering hot spots by maximizing basic block execution
counts, based on PerfFuzz (Chapter 4). In FuzzFactory, this naturally generalizes
slow.

3. mem: A novel application for generating inputs that maximize dynamic memory allo-
cations.

4. valid: An application of the validity fuzzing algorithm [142], which attempts to bias
input generation towards inputs that satisfy program-specific validity checks.

5. cmp: A domain for smoothing hard comparisons. Although a lot of prior work address
this application, our particular solution strategy is novel.

6. diff: A novel application for incremental fuzzing after code changes in a test program.

For each application, (1) we define the domain d in terms of the tuple (K,V,A, a0,�)
(2) we describe, with the help of some utilities defined Table 6.1, how we instrument test

CHAPTER 6. FUZZFACTORY 90

Table 6.1: Definition of instrumentation functions used for injecting code which updates
domain-specific feedback maps. They are used in Table 6.2 through 6.7. Hooks are activated
when corresponding syntactic objects are encountered during a compile-time pass over the
program under test. The handler logic for these hooks can inject code in the program under
test. Actions are the functions that are used to actually inject code during instrumentation.
Utility functions are available to the handler logic at compile-time.

Instrumentation Hooks Description

new_basic_block() Activated at the beginning of a basic block in the control-flow
graph of the program under test.

entry_point() Activated at the entry point for test execution (e.g. start of the
main function).

fn_call(name, args) Activated at an expression that invokes function named name
with arguments args.

binop(type, left , op, right) Activated at an expression with binary operator of the form
‘left op right ’ (e.g. x == 42), where the operands have type type
(e.g. long).

switch(type, val , cases) Activated when encountering a switch statement on value val of
type type, where cases is a list of the case clauses.

Instrumentation Actions Description

ins_after(inst) Inserts an instruction inst immediately after the instruction
whose instrumentation hook is currently activated.

ins_before(inst) Inserts an instruction inst immediately before the instruction
whose instrumentation hook is currently activated.

Utility functions Description

current_program_loc() Returns the program location (i.e., a value in set L) correspond-
ing to the current instrumentation location.

target_program_loc(case) Returns the program location (i.e., a value in set L) that is the
target of a case within a switch statement.

comm_bits(a, b,n) Counts the number of common bits between two n-byte operands
a and b. For example, comm_bits(1025, 1026, 4) = 30, since only
2 bits in these 32-bit operands differ.

CHAPTER 6. FUZZFACTORY 91

programs to populate the map dsf i during test execution on input i1, and (3) we report
the results of applying the domain-specific fuzzing implementation to a set of real-world
programs.

A key advantage of FuzzFactory is that it enables us to naturally compose multiple
domain-specific fuzzing applications with no extra effort. In Section 6.4, we describe a
composition of cmp and mem that smooths hard comparisons in order to exacerbate memory
allocations. Remarkably, we find that such a composition can perform better than just the
sum of its parts.

6.3.1 Program Instrumentation

Sections 6.3.3 through 6.3.8 describe how test programs are instrumented to implement
each of the six domains that we present in this chapter. The instrumentation enables the
collection of domain-specific feedback in the map dsf i when executing the test program on an
input i. Such instrumentation is performed at compile-time. Although our implementations
performs instrumentation at the LLVM IR level, for ease of presentation we describe the
instrumentation logic for each of the six domains at a higher level of abstraction. Table 6.1
lists some hooks, actions, and utility functions that we use in our abstract descriptions
of domain-specific instrumentation. We next describe how to interpret the information in
Table 6.1.

A hook is activated at compile-time by an instrumentation framework (e.g. LLVM)
whenever a corresponding element in a program is encountered while making a pass over
the test program. For example, the fn_call(name, args) hook is invoked at compile-time
for every function call expression in the program. Here, name is a string and args is a list
of references to the syntactic expressions that form the arguments to the function call. An
instrumentation pass, such as the one we write for each fuzzing domain, specifies some logic
to handle such hooks. The handler logic can optionally insert new code before or after the
program element whose hook is currently activated. For example, a handler for fn_call can
statically look at name (say f) to decide whether to insert code around a call to f . Code is
inserted by invoking actions such as ins_after and ins_before. The inserted code can use
compile-time constants or refer to static program elements such as: one or more arguments
to f , global variables, or user-defined functions. For ease of presentation, we will show the
inserted code as source-level pseudocode instead of an instruction in some IR. Commonly,
we will insert code that updates the dsf i map—in practice, we insert an instruction that
invokes one of the APIs listed in Section 6.6.1. The handler logic is unrestricted; in our
implementation, it is arbitrary C++ code that uses the LLVM API. The handler logic can
make use of utility functions provided by FuzzFactory at compile-time. Table 6.1 only
lists the hooks and utility functions required to describe the six domains presented in this
chapter (Tables 6.2–6.7). To implement new domains, other language constructs such as
branches, loads, stores, etc. can also be instrumented.

1We will drop the subscript i from dsf i when it is clear from context.

CHAPTER 6. FUZZFACTORY 92

6.3.2 Experimental Setup

For our experiments, we use six benchmark programs from the Google fuzzing test suite [77].
This suite contains specific historical versions of programs that have been thoroughly fuzzed
using the OSS-fuzz infrastructure [75]. The six benchmarks we use include: (1) libpng-1.2.56,
(2) libarchive-2017-01-04, (3) libjpeg-turbo-07-2017, (4) libxml2-v2.9.2, (5) vorbis-2017-12-
11, and (6) boringssl-2016-02-12.2 The benchmarks are written in C or C++. Benchmarks
(1)–(4) were chosen because they are commonly used in the fuzzing literature [107, 108,
147, 34, 35, 150]. Benchmarks vorbis and boringssl were chosen because they expect
markedly different input formats. We only used six benchmarks from Google’s test suite
because of resource constraints: for our evaluation, we spent two CPU-years fuzzing these
six benchmarks alone.

All experiments were run on Amazon AWS ‘c5.18xlarge’ instances. Each experiment was
repeated 12 times to account for variability in the randomized algorithms. Unless otherwise
stated, our fuzzing experiments used the initial seed inputs provided in the benchmark suite,
limited input sizes to at most 10KB during fuzzing, and were run for 24 hours at a time.

For each application, we evaluate the following research question: “Does FuzzFactory
help achieve domain-specific fuzzing goals, without modifying the underlying search algo-
rithm? ”. FuzzFactory is implemented as an extension to AFL, and inherits its mutation
and search heuristics (ref. Section 2.5.1). For each application domain, we thus compare the
results of domain-specific fuzzing with the baseline: conventional coverage-guided fuzzing
using AFL. Naturally, the metrics on which we perform this comparison vary depending on
the domain.

6.3.3 slow: Maximizing Execution Path Length

Fuzz testing can be used to generate inputs that exacerbate the algorithmic complexity of a
program under test. SlowFuzz [149] introduced this idea using a resource-guided evolutionary
search. The search uses a fitness function that counts the number of basic blocks executed
during the execution of a single test input. We call this metric the execution path length.

Our first domain-specific fuzzing application is a port of SlowFuzz to our framework. The
goal of this application is to generate inputs that maximize the execution path length in the
program under test. We want to define the is_waypoint(i,S, d) predicate as follows: an
input i should be saved if its execution leads to a higher path length than any other input
in S.

The first row of Table 6.2 defines this domain (say d) as follows. The domain-specific
feedback map dsf maps the single key 0 (K = {0}) to a natural number (V = N). In
the map, dsf (0) represents the execution path length for a test input i. These values are
aggregated into a number (A = N) which represents the maximum execution path length
observed across a set of inputs (a0 = 0, a� v = max(a, v)).

2For boringssl, we use the target fuzz/server.cc, which fuzzes the server side of the TLS handshake
protocol, instead of the default fuzz/privkey.cc, which fuzzes the parsing of private key files.

CHAPTER 6. FUZZFACTORY 93

Table 6.2: slow: Application for maximizing execution path length

Domain d: K = {0}, V = N, A = N, a0 = 0, a� v = max(a, v)

Hook Instrumentation

entry_point() ins_after(‘dsf (0)← 0’)
new_basic_block() ins_after(‘dsf (0)← dsf (0) + 1’)

vorbis libarchive libxml libpng jpeg boringssl
Benchmarks

0

2,000K

4,000K

6,000K

8,000K

M
ax

im
um

 P
at

h
Le

ng
th

afl
slow

Figure 6.2: Maximum execution path lengths achieved by baseline (afl) and domain-specific
fuzzing application (slow). Higher is better.

Table 6.2 also describes how we instrument test programs to correctly update entries
in the map dsf at run-time. We make use of the instrumentation hooks entry_point and
new_basic_block , and the action ins_after , all defined in Table 6.1. Using these functions,
we can interpret the description in Table 6.2 as follows: At the entry point of the program
under test, insert a statement that sets dsf (0) to 0. Then, at each basic block in the program,
insert a statement that increments the value stored at dsf (0). Thus, during a test execution,
the value of dsf (0) is incremented by one each time a basic block is visited. At the end of
the test input execution, the value of dsf (0) will contain the execution path length. Since
the reducer function for this domain is defined to be max with an initial value of 0 (see first
row of Table 6.2), the aggregated value of the domain-specific feedback A(S, 0, d) will be the
maximum execution path length observed across all the inputs in S.

6.3.3.1 Experimental Evaluation

Figure 6.2 shows the results of our experiments with this application on our benchmark
programs. We evaluate the maximum execution path lengths (across the generated test
corpus) for the baseline (afl) and our domain-specific fuzzing application (slow), after 24

CHAPTER 6. FUZZFACTORY 94

hours of fuzzing. The figure plots the mean value and standard error of this metric across
12 repetitions. For libpng, the domain-specific feedback enables the generation of inputs
whose path lengths are more than 2.5× that of the baseline. For boringssl and libxml,
the increase is not as significant. Interestingly, the maximum execution path length for slow
is actually lower than that found by afl on the remaining three benchmarks. One possible
explanation for this result is that slow attempts to aggressively maximize execution path
lengths starting from the very first input. On the other hand, afl spends its time maximizing
code coverage and discovers longer execution paths in components of the test program that
are not exercised by the seed inputs.

The difference is most noticible in libarchive. Among all of the benchmarks we consid-
ered, libarchive is the only benchmark for which the initial seed input provided in Google’s
test suite is invalid. That is, the initial seed input for libarchive leads the test program to
exit early in an error state. Since AFL spends its 24 hours increasing only code coverage, it
is able to eventually generate inputs that are valid archives (e.g. ZIP files), whose processing
leads to longer execution paths. On benchmarks such as libpng, the provided seed input is
valid and already covers interesting code paths within the test programs; therefore, slow is
able to maximize path lengths effectively. This SlowFuzz-inspired approach appears to work
best when initial seed inputs already provide good code coverage.

6.3.4 perf: Discovering Hot Spots

PerfFuzz uses fuzz testing for generating inputs with pathological performance. As de-
scribed in Chapter 4, PerfFuzz independently maximizes execution counts for each basic
block in the program under test. To do this, PerfFuzz extends the coverage-guided fuzzing
algorithm to save newly generated inputs if they increase the maximum observed execution
count for any basic block. In this domain, the goal is to find inputs that execute the same
basic block many times.

Table 6.3 describes how we implement PerfFuzz in our framework. The first line defines
the domain. The keys in the DSF map (i.e. K) range over the set of program locations L.
The values of the DSF map as well as the aggregated values represent execution counts (i.e.
V = N and A = N). The reducer function (i.e. �) is max with initial value a0 = 0, just as
in SlowFuzz.

Table 6.3 also describes how we instrument the program under test. At the start of
every test execution (entry_point), we initialize the entire DSF map with values 0. Each
time a new basic block k is visited, we increment the value stored at dsf (k). This is done
in the instrumentation hook function new_basic_block , using the current_program_loc()
function to statically get the program location of the basic block being instrumented (ref.
Table 6.1). At the end of test execution, dsf (k) will contain the number of times that basic
block k was executed. Since the reducer function is max , a newly generated input will be
considered a waypoint if it increases the execution count for any basic block k in the test
program.

CHAPTER 6. FUZZFACTORY 95

Table 6.3: perf: Application for discovering hot spots

Domain d: K = L, V = N, A = N, a0 = 0, a� v = max(a, v)

Hook Instrumentation

entry_point() ins_after(‘∀k ∈ K : dsf (k)← 0’)
new_basic_block() k ← current_program_loc()

ins_after(‘dsf (k)← dsf (k) + 1’)

vorbis libarchive libxml libpng jpeg boringssl
Benchmarks

0

500K

1,000K

1,500K

2,000K

2,500K

M
ax

im
um

 H
ot

 S
po

t

afl
perf

Figure 6.3: Maximum basic block execution counts achieved by baseline (afl) and domain-
specific fuzzing application (perf). Higher is better.

6.3.4.1 Experimental Evaluation

Figure 6.3 contains the results of our experiments with this application on our benchmark
programs. We evaluate the FuzzFactory domain-specific fuzzing application (perf) with
the baseline (afl), on the metric max hot spot. As per Definition 16, the max hot spot is the
maximum execution count for any basic block across all inputs in the generated test corpus.
The figure plots the mean value and standard error of this metric across 12 repetitions.

Figure 6.3 shows that perf is able to generate inputs that significantly maximize hot
spots for three of the six benchmarks: vorbis, libpng, and libpjeg-turbo. For libpng
and libjpeg-turbo, the hot spots discovered by perf execute 2× and 1.7× more than
those discovered by the baseline afl. For libarchive, the perf application performs much
worse. Similar to the experiments reported in the previous section, the main problem here
is that the initial seed inputs provided with libarchive lead to an early exit. Since baseline
AFL spends more time increasing code coverage rather than basic block execution counts, it
eventually generates valid archive files (e.g. ZIP). Given that libarchive is a program that
performs decompression, the generation of a valid archive is sufficient to discover a huge hot

CHAPTER 6. FUZZFACTORY 96

Table 6.4: mem: Application for exacerbating memory allocation

Domain d: K = L, V = N, A = N, a0 = 0, a� v = max(a, v)

Hook Instrumentation

entry_point() ins_after(‘∀k ∈ K : dsf (k)← 0’)
fn_call(name, args) if name ∈ {‘malloc′, ‘calloc′} :

k ← current_program_loc()
bytes ← args [0]
ins_after(‘dsf (k)← dsf (k) + bytes ’)

vorbis libarchive libxml libpng jpeg boringssl
Benchmarks

0.0

4,882

9,765

14,648

19,531

M
ax

im
um

 M
em

or
y

Al
lo

ca
te

d
(K

B) afl
mem

Figure 6.4: Maximum amount of dynamic memory allocated (in KB) due to inputs generated
by baseline (afl) and domain-specific fuzzing application (mem). Higher is better.

spot in the code component that performs decompression. On the other hand, perf only
discovers hot spots in libarchive’s parsing of file meta-data.

6.3.5 mem: Exacerbating Memory Allocations

We now describe a novel application of FuzzFactory: generating inputs that exacerbate
memory allocation. There are several use cases for such a domain such as discovering the
maximum amount of memory the program under test may dynamically allocate for a given
size input, discovering inputs that could lead to bugs related to out-of-memory conditions,
or generating a corpus of memory-stress tests for benchmarking purposes.

Table 6.4 describes our instrumentation for the memory-allocation domain. The definition
of the domain on the first line of this table, as well as the initialization of dsf at the entry
point, is exactly the same as that of the PerfFuzz domain (Table 6.3). However, instead
of incrementing the values in the DSF map at every basic block, we instrument expressions

CHAPTER 6. FUZZFACTORY 97

1 void Test(uint8_t* data , int size) {
2 /* set up png_ptr */
3 if (png_get_IHDR(png_ptr , ...) != 0)
4 return; // invalid header
5 /* process PNG data */
6 }

(a) Original test driver

1 void Test(uint8_t* data , int size) {
2 /* set up png_ptr */
3 assume(png_get_IHDR(png_ptr , ...)
4 == 0); // valid header
5 /* process PNG data */
6 }

(b) Modified test driver

Figure 6.5: Sample change to libpng test driver to enable validity fuzzing.

in the test program that invoke the function malloc or calloc. Whenever the test program
allocates new memory using malloc or calloc at program location k, we increment the
value of dsf (k) by the number of bytes allocated. At the end of test execution, the value
of dsf (k) contains the total number of bytes allocated at program location k for all such
locations k.

6.3.5.1 Experimental Evaluation

Figure 6.4 shows the results of our experiments with this application on our benchmark
programs. We evaluate the domain-specific fuzzing application (mem) as well as the baseline
(afl) on the maximum amount of dynamic memory allocated by generated inputs after the
24-hour fuzzing runs. The plots show means and standard errors of this metric across 12
repetitions.

The benchmark libxml did not seem to perform any input-dependent dynamic mem-
ory allocations. On the benchmarks vorbis, libpng, libjpeg-turbo and boringssl, our
domain-specific fuzzing application generated inputs that allocate 1.5×–120× more mem-
ory. For libpng our application generated input PNG images whose metadata specified
the maximum allowable image dimensions–as per the validation rules hard-coded in the test
driver—of 2 million pixels. Even though such PNG files themselves were only about 1KB in
size, their processing required over 24MB of dynamically allocated memory. In Section 6.4,
we discuss a composite domain-specific fuzzing application that generates PNG images of
dimensions smaller than one thousand pixels, but whose processing required over 2GB of
dynamic memory allocation from libpng.

Just like with slow and perf (ref. Sections 6.3.3 and 6.3.4 respectively), the mem appli-
cation was not effective on libarchive. Recall that this is the only benchmark in our suite
where the initial seed input leads to an early exit due to a validation error.

6.3.6 valid: Validity Fuzzing

A major problem associated with CGF is that most randomly generated inputs are in-
valid; that is, they cause the test program to exit early with an error state. For example,

CHAPTER 6. FUZZFACTORY 98

Table 6.5: valid: Application for validity fuzzing

Domain d: K = L, V = N, A = 2N, a0 = ∅, a� v = a ∪ log2(v)

Hook Instrumentation

entry_point() ins_after(‘∀k ∈ K : dsf (k)← 0’)
new_basic_block() k ← current_program_loc()

ins_after(‘dsf (k)← dsf (k) + 1’)
fn_call(name, args) if name = ‘assume′ :

cond ← args [0]
ins_before(‘if cond = false then ∀k ∈ K : dsf (k)← 0’)

vorbis libarchive libxml2 libpng libjpeg
Benchmarks

0

200

400

600

800

1000

1200

1400

1600

Br
an

ch
es

 C
ov

er
ed

 b
y

Va
lid

 In
pu

ts afl
valid

Figure 6.6: Branch coverage among valid inputs, as achieved by inputs generated by baseline
(afl) and domain-specific fuzzing application (valid). Higher is better.

traditional CGF on libpng is unlikely to generate many valid PNG images, even if fuzzing
is seeded with valid inputs to begin with.

Most of the code coverage achieved by the newly generated inputs lies in code paths
that deal with input validation and error reporting. Therefore, CGF algorithms struggle to
effectively test and find bugs in the main functionalities of such programs.

In many cases, it is desirable to generate valid inputs that maximize code coverage. For
example, one may want to test programs such as image viewers and media players that
download and process files that were uploaded on a social media website. Most likely, such
websites do not allow users to upload invalid files. Bugs in the image viewers or media
players would then manifest only during the processing of valid files.

Validity fuzzing [142] addresses the problem of generating valid inputs. In validity fuzzing,
test programs are augmented to return feedback about whether or not an input is valid,

CHAPTER 6. FUZZFACTORY 99

according to some program-specific notion of validity, e.g. whether an input to libpng is a
valid PNG file. During the fuzzing loop, newly generated inputs are saved either (1) if they
increase overall code coverage, or (2) if the newly generated input is valid and it covers code
that has not been covered by any previously generated valid input. The first criterion allows
saving intermediate inputs regardless of validity as long as they produce new cumulative
code coverage. The hope is that mutating these inputs will lead to more interesting valid
inputs being generated later on. The second criterion attempts to maximize code coverage
among the valid inputs. Validity fuzzing is equivalent to Zest’s semantic fuzzing technique
(Algorithm 3), but without the use of parametric generators. Other researchers have also
used notions of program-specific validity to guide the fuzzing search towards generating more
valid inputs [101, 150].

We now demonstrate how we implemented the validity fuzzing algorithm in our frame-
work. First, we modified the test drivers that ship with the benchmark suite to add program-
specific assume(expr) statements. The semantics of assume is similar to that of the more
familiar assert: if the argument expr evaluates to true at run-time, then the statement is
a no-op; otherwise, the test execution is stopped. Figure 6.5 demonstrates one of the three
single-line changes we made to the libpng test driver. Instead of exiting early due to an
invalid PNG header, we simply wrap the validity check with an assume statement. We were
able to make such small changes in the test drivers of all benchmarks except boringssl.
Across the five benchmarks whose drivers we modified, we added 1–3 assume statements that
wrapped existing validity checks in the test drivers, changing 1–11 lines of code. Second,
we instrumented the test program to populate the DSF map with information about code
coverage during test execution, similar to traditional coverage-guided fuzzing. At runtime,
if any of the arguments to assume evaluates to false, the entire DSF map is reset to the
initial state before exiting. Therefore, the DSF map mirrors the traditional code coverage
information if and only if the test input is valid. Invalid inputs produce no domain-specific
feedback. This scheme leads to the following behavior for Algorithm 4: a newly generated
input is saved if either it leads to new cumulative code coverage, or if the input is valid and
achieves more code coverage (i.e., changes the aggregate domain-specific feedback) than any
other valid input seen so far (i.e., among inputs that produce domain-specific feedback).

Table 6.5 describes the validity fuzzing application more formally. The first line of this
table defines the domain. The DSF map for this domain maps program locations (i.e.
K = L) to execution counts (i.e. V = N), similar to the perf application (ref. Section 6.3.4).
However, when aggregating domain-specific feedback, the validity fuzzing application collects
a set of orders of magnitude of the execution counts for each basic block (i.e. A = 2N). This
mirrors the heuristics used by AFL in collecting code coverage [197]. The aggregation is
defined by the reduce operator: a � v = a ∪ log2(v), where log2(v) extracts the position
of the highest set bit in the value v extracted from the DSF map. The initial value is the
empty set: a0 = ∅. Such information allows for differentiation between inputs that execute
the same code fragment, say, 2 times versus 4 times (since these counts have different orders
of magnitude), but not, say, 10 times versus 11 times (since these counts have the same
order of magnitude). The actions described for hooks entry_point and new_basic_block

CHAPTER 6. FUZZFACTORY 100

in Table 6.5 are exactly the same as those for the perf application (Table 6.3). The hook
for fn_call handles calls to assume(). The instrumentation inserts code that performs the
required logic: if the argument to assume evaluates to false, then clear all entries in the
DSF map before calling assume, which stops the test.

6.3.6.1 Experimental Evaluation

Figure 6.6 contains the results of our experiments with this application on our benchmark
programs. We evaluate the domain-specific fuzzing application (valid) as well as the baseline
(afl) on the branch coverage achieved by valid inputs after the 24 hour fuzzing runs. Branch
coverage is computed using gcov [177]. The plots show means and standard errors of branch
coverage across 12 repetitions.

The experiments show that validity fuzzing enables improvement in branch coverage
among valid inputs for libpng (3%) and libjpeg-turbo (39%). For vorbis, validity feed-
back did not appear to have any impact. For libxml, the validity fuzzing algorithm produced
30% less branch coverage among valid inputs. Unlike the other benchmarks, which process
binary input data, libxml expects valid inputs to conform to a context-free grammar. For
such a domain, validity fuzzing by itself does not appear to be sufficient. Intuitively, mutat-
ing valid XML files using byte-level mutations does not necessarily help produce more valid
XML files with diverse code coverage. On libarchive, as usual, the domain-specific fuzzing
application is not very effective. Since libarchive is seeded with an invalid input, most
of the inputs generated during the first few hours of fuzzing lead to assumption failures.
Naturally, the validity fuzzing algorithm relies on having some valid inputs to begin with in
order for its domain-specific feedback to be useful.

6.3.7 cmp: Smoothing Hard Comparisons

We next describe a novel solution to a well-known problem, that of hard comparisons. Recall
the motivating example in Figure 6.1, which required generating inputs a and b that were
equal to each other. For CGF, similar obstacles arise when encountering operations such
as strncmp, memcmp, and switch-case statements. The problem of hard comparisons has
been addressed by several researchers in the past [102, 178, 155, 109, 147, 195]. Common
solutions to this problem include, but are not limited to: (1) starting with seed inputs
that already satisfy most of the complex invariants, (2) mining magic constants—such as
0x0123—from the test program and then randomly inserting these values as part of the
mutation process, (3) transforming the test program to “unroll” an n-byte comparison into
a sequence of branches performing 1-byte comparisons, and (4) performing sophisticated
static analysis, dynamic taint analysis, or symbolic execution to identify and overcome hard
comparisons. Some solutions, such as statically mining magic constants or unrolling multi-
byte comparisons, do not work with hard comparisons of variable-length arguments, e.g.
memcmp(a, b, n), where all operands are derived from the program input.

CHAPTER 6. FUZZFACTORY 101

Table 6.6: cmp: Application for smoothing hard comparisons

Domain d: K = L, V = N, A = N, a0 = 0, a� v = max(a, v)

Hook Instrumentation

entry_point() ins_after(‘∀k ∈ K : dsf (k)← 0’)
binop(type, left , op, right) if op ∈ {‘==′, ‘! =′} :

k ← current_program_loc(), n← sizeof(type)
ins_after(‘dsf (k)← max(dsf (k), comm_bits(left , right , n)’)

fn_call(name, args) if name ∈ {‘memcmp′, ‘strncmp′, ‘strncasecmp′} :
k ← current_program_loc()
left ← args [0], right ← args [1], n ← args [2]
ins_after(‘dsf (k)← max(dsf (k), comm_bits(left , right , n)’)

switch(type, val , cases) for case ∈ cases :
k ← target_program_loc(case), n← sizeof(type)
ins_after(‘dsf (k)← max(dsf (k), comm_bits(val , case, n)’)

vorbis libarchive libxml2 libpng libjpeg boringssl
Benchmarks

0

500

1000

1500

2000

2500

3000

3500

Br
an

ch
es

 C
ov

er
ed

afl-zero
cmp-zero

Figure 6.7: Branch coverage, as achieved by inputs generated by baseline (afl-zero) and
domain-specific fuzzing application (cmp-zero). The suffix zero indicates that seed inputs
were simply strings of zeros. Higher is better.

CHAPTER 6. FUZZFACTORY 102

We show how we can prototype a solution for overcoming hard comparisons using Fuz-
zFactory. We do not rely on the domain knowledge in seed inputs or on expensive symbolic
analysis. Table 6.6 describes our domain-specific fuzzing application. The core idea is to pro-
vide domain-specific feedback for each comparison operation in the test program (K = L),
where the feedback represents the number of bits V = N that are common between the
two operands being compared. The feedback is aggregated using the max reduce operator;
therefore, a newly generated input will be saved as a waypoint if it maximizes the number
of bits that match at any hard-comparison operation in the program under test. Table 6.6
goes on to describe the program instrumentation strategy. Refer to Table 6.1 for definitions
of binop, switch, target_program_loc, and comm_bits . The instrumentation strategy is as
follows: First, the DSF map is initialized to 0 at the entry point. Then, operations such as
integer equality, string comparisons, and switch-case statements are instrumented. The
inserted code populates the DSF map entries corresponding to their program location with
the maximum observed count of common bits between their operands.

6.3.7.1 Experimental Evaluation

Figure 6.7 contains the results of our experiments with this application on the benchmark
programs. For this experiment alone, we do not use the initial seed inputs provided in the
benchmark suite, but instead seed all fuzzers with an input containing a string of zeros.
We do this so that we can study how hard comparisons can be overcome without relying on
program-specific knowledge embedded in the seeds. This experiment also simulates a scenario
where one wishes to fuzz a program that has an unknown input format, and therefore has
no seed inputs available. We evaluate the domain-specific fuzzing application (cmp-zero)
as well as the baseline (afl-zero) on the branch coverage (as computed by gcov) achieved
by inputs after the 24 hour fuzzing runs. The suffixes zero indicate that these experiments
did not use meaningful seed inputs. The plots show means and standard errors of branch
coverage across 12 repetitions.

From the figure, we see that cmp-zero achieves higher code coverage than the baseline
in four benchmarks: vorbis, libarchive, libpng, and boringssl. Manual investigation
revealed that these programs expected their inputs to either contain magic values or to satisfy
strict invariants that required hard comparisons. On vorbis, the cmp front-end achieved 5×
more code coverage. On libpng, the baseline (afl-zero) performed particularly poorly,
since the PNG image format requires an 8-byte magic value at the beginning of every input
file; the test program exits early if this magic value is not found. The cmp front-end effortlessly
surpassed this hard comparison and was able to cover over 100× more branches. On libxml
and libjpeg-turbo, the cmp front-end does not appear to be useful. In these benchmarks,
we did not find any input-dependent hard comparisons between operands larger than two
bytes in size. Thus, the baseline approach was sufficient.

CHAPTER 6. FUZZFACTORY 103

Table 6.7: diff: Application for incremental fuzzing

Domain d: K = L× L, V = N, A = 2N, a0 = ∅, a� v = a ∪ log2(v)

Hook Instrumentation

entry_point() c ← current_program_loc()
ins_after(‘∀k ∈ K : dsf (k)← 0’)
ins_after(‘hits_diff ← false’)
ins_after(‘p ← c’)

new_basic_block() c ← current_program_loc()
if within_diff (c):

ins_after(‘hits_diff ← true’)
ins_after(‘if hits_diff then dsf (〈p, c〉)← dsf (〈p, c〉) + 1’)
ins_after(‘p ← c’)

1 int foo(int a, int b) {
2 int d = a;
3 if ((a + b) % 2) {
4 - d = 2 * a;
4 + d = 2 - a;
5 }
6 if (a % 3 && a > 0) {
7 return b/d;
8 } else {
9 return 0;

10 }
11 }

(a) Program with a diff: the * in Line 4 is
modified to a -.

Input Execution Path

i1 : a=3,b=4 〈2, 4〉, �, 〈4, 6〉, 〈6, 9〉
i2 : a=4,b=4 〈2, 6〉, 〈6, 7〉
i3 : a=4,b=3 〈2, 4〉 �, 〈4, 6〉, 〈6, 7〉

(b) Inputs and their execution paths
through the program in Figure 6.8.
〈x, y〉 designates an executed edge be-
tween x and y, and � the hitting of a
diff. 〈x, y〉 highlights the first time an
input exercises 〈x, y〉 after hitting the
diff during execution.

Figure 6.8: Example motivating new post-diff edge as DSF for incremental (diff) fuzzing.

6.3.8 diff: Incremental Fuzzing

We now describe another novel application of FuzzFactory: incremental fuzzing after
code changes. It is common practice to let fuzzing tools run for many hours or days in order
to find bugs in stable versions of complex software. However, if a developer makes a change
to such software, there is currently no straightforward way for them to quickly fuzz test their
changes. They could use the test corpus generated by the long-running fuzzing session on the
previous version of the software as a regression test suite, but those inputs may not exercise
code paths affected by the changes to the software. They could also start a new fuzzing
session with the previously generated corpus of inputs as the initial seeds. However, they

CHAPTER 6. FUZZFACTORY 104

vorbis libarchive libxml libpng jpeg boringssl
Benchmarks

0.5

1.0

2.0

Re
la

tiv
e

Po
st

-d
iff

 B
BT

s C
ov

er
ed

afl
diff

Figure 6.9: Relative coverage of edges after five minutes of incremental fuzzing with the
domain-specific diff front-end. The baseline is the average coverage achieved by afl.

have no way to communicate to the fuzzing engine that it should focus on the code paths
affected the changes to the software. Directed fuzzing tools such as AFLGo [23] address
this application, but can require several hours of static analysis to pre-compute distances
to target program locations3. Such approaches may not be practical for use in continuous
integration environments where a developer wishes to perform quick regression tests after
every code change.

To this end, we propose and implement a domain-specific fuzzing application for incre-
mental fuzzing. The goal of this application is to guide fuzzing towards quickly discovering
interesting code paths that visit the lines of code that have just been modified. We refer to
the set of modified lines of code as the diff. To measure the variety of paths executed by the
inputs, we will focus on edges in the control-flow graph rather than basic blocks alone.

Consider the example program given in Figure 6.8a. This program performs a division
at Line 7. In the original program, the divisor d was always a multiple of the input a, so the
division at Line 7 was always safe. Unfortunately, the new change to the program, which
switches 2 * a to 2 - a in Line 4, makes a division by zero possible. Figure 6.8b shows
some inputs and the execution paths they take through this program. The execution path is
represented as the sequence of edges executed by the input. We use 〈x, y〉 to represent the
transition from the basic block starting at line x to the basic block starting at line y. We
represent the execution of a diff-affected basic block with the symbol �.

Consider the three inputs in Figure 6.8b. Input i1 (a=3,b=4) exercises the diff, but not
the division at Line 7. Input i2 (a=4,b=4) exercises the division at Line 7, but not the diff
at Line 4. Notice that input i3 (a=4,b=3) does not exercise new edges compared to inputs i1
and i2, so regular coverage-guided fuzzing would not save it. However, input i3 is the first to
exercise the true branch leading to Line 7 after having hit the diff. We call the edges executed

3https://github.com/aflgo/aflgo/issues/21

https://github.com/aflgo/aflgo/issues/21

CHAPTER 6. FUZZFACTORY 105

after hitting the diff as post-diff edges ; the newly exercised post-diff edges are highlighted
in blue in Figure 6.8b. Since input i3 covers a new post-diff edge, it is interesting in an
incremental fuzzing setting because it exercises a new code path affected by the change in
the diff. In fact, it is only one mutation away from a=2, b=3, which would trigger a division
by zero.

Our FuzzFactory application, diff, ensures that input such as i3 are saved as way-
points. It does so by populating the DSF map with the number of times each edge is
executed after the diff code has been executed (i.e., it must keep track of the edges after
the �). For example, for input i1, the DSF map is {〈4, 6〉 7→ 1, 〈6, 9〉 7→ 1}. For input i2, the
DSF map is {} because input i2 does not hit the diff. Finally, for input i3, the DSF map is
{〈4, 6〉 7→ 1, 〈6, 7〉 7→ 1}.

Table 6.7 formally defines the incremental fuzzing domain and describes the instrumen-
tation. Since we keep track of edges rather than simply basic blocks, K = L× L. To better
approximate paths, the DSF map collects order-of-magnitude aggregation of edge execution
counts, similar to that used for domain valid (ref. Section 6.3.6). Thus, A = 2N, a0 = ∅,
and the reducer function is a � v = a ∪ log2(v). To keep track of edges, the instrumenta-
tion adds a global variable p to track the location of the previously visited basic block. p is
combined with the current block c to create the edge tuple 〈p, c〉. This is inspired by AFL’s
edge tracking logic [197].

To make sure that we only track post-diff edges, the instrumentation also defines a new
global variable hits_diff in the test program. This variable is set to false at the test
entry point. At each basic block, the instrumentation adds a check to see whether the basic
block is within_diff —that is, the basic block was added or modified in the code change of
interest—and sets hits_diff to true if that is the case. Then, the DSF for the edge 〈p, c〉
is only incremented if hits_diff is true, effectively counting only post-diff edges.

6.3.8.1 Experimental Evaluation

To simulate the incremental fuzzing environment on our benchmarks without cherry-picking
diffs, we perform the following procedure. For each benchmark, we randomly choose one of
the saved input directories from our 24-hour runs of AFL on the benchmark. This is our
new starting set of test inputs, I. To find a relevant code change, we then advance the code
repository by one git commit until we find a diff that (1) affects code in the main test driver,
and (2) is exercised by at least one input in I. We keep advancing through the commit
history, and accumulate the diffs, until such a diff is found, or until the most recent commit.

To evaluate utility in a continuous integration environment, we run the tools for five
minutes each. Since we are interested in evaluating the power of the tools to generate inputs
with high code coverage downstream from the diff, we logged any input AFL generated that
hit the diff in the five minute run. In our coverage evaluation, we augment AFL’s regular
saved inputs with these.

Figure 6.9 contains the results of our 5-minute incremental fuzzing evaluation. The figure
plots means and standard errors of the number of post-diff edges hit by all generated inputs,

CHAPTER 6. FUZZFACTORY 106

vorbis libxml2 libjpeg boringssl
0.0

1.9

3.8

5.7

7.6

9.5

11.4

13.4

15.3
M

ax
im

um
 M

em
or

y
Al

lo
ca

te
d

(M
B) afl

mem
cmp
cmp-mem

libarchive libpng
0.0

0.9

1.9

2.8

3.7

M
ax

im
um

 M
em

or
y

Al
lo

ca
te

d
(G

B) afl
mem
cmp
cmp-mem

Benchmarks

Figure 6.10: Evaluation of composing cmp and mem into the cmp-mem domain. Bars show
the maximum dynamic memory allocated—in MB on the left and in GB on the right—at a
single program location. Higher is better.

relative to the baseline afl. We plot the coverage achieved by our domain-specific fuzzing
application, called diff, relative to afl. For libpng and libjpeg-turbo, the diffs yielded
by our procedure were hit by all inputs in the starting corpus, and for vorbis, no inputs in
the seed corpus initially hit the diff. This resulted in very large diffs. As expected for such
large diffs, diff and afl were equally successful at finding a variety of post-diff behaviors
on these benchmarks. For libarchive and boringssl, only a few inputs hit the initial
diff, and the diff was not very large. These more closely mirrored the incremental changes
motivated by our techniques. For these benchmarks, the FuzzFactory domain-specific
fuzzing application diff achieves 2.5-3× more coverage downstream from the diff than afl.

6.4 Composing Multiple Domains
Due to the clean separation between domain-specific feedback maps and the underlying
fuzzing algorithm, we can easily compose multiple domain-specific fuzzing applications in
the same test program binary. Composing two domain-specific fuzzing applications requires
no more than incorporating the instrumentation associated with each domain. In our imple-
mentation, this is as simple as setting compile-time flags for each domain. Each domain’s
associated instrumentation only updates its own DSF map. Similarly, our domain-specific
fuzzing algorithm aggregates feedback from each registered domain independently (ref. Al-
gorithm 4).

Figure 6.10 shows the results of our experiments with a composition of cmp (ref. Sec-
tion 6.3.7) and mem (ref. Section 6.3.5). The goal of this experiment is to maximize memory
allocation in the test programs, while also smoothing hard comparisons which may be re-
quired to exercise hard-to-reach program branches. This experiment used the initial seed

CHAPTER 6. FUZZFACTORY 107

inputs that ship with the benchmark suite. We compare the composite domain (cmp-mem)
with the baseline (afl) as well each independent application (cmp and mem). For most
benchmarks, the composite application cmp-mem generates inputs that allocate more (or
equal amounts of) memory than those generated by cmp or mem. In particular, the combined
cmp-mem application was able to generate inputs that allocate the maximum memory possible
with libarchive and libpng—4GB and 2GB respectively. For libarchive, this result is
remarkable because the mem domain itself performed much worse than the afl baseline, due
to the fact that the initial seed inputs were invalid (ref. Section 6.3.5). However, when com-
bined with the application that smooths hard comparisons, it was able to quickly generate
valid archive files and eventually generated a LZ4 bomb: a small input that when decoded
leads to excessive memory allocation. Similarly, in libpng, the cmp-mem application was
able to generate a PNG bomb. Unlike the most memory-allocating input discovered by mem
alone, which was an image that declared very large geometric dimensions in its metadata (ref.
Section 6.3.5), the PNG bomb generated by cmp-mem exploits the decoding of pCAL/sCAL
chunks. Such an input demonstrates a known bug: simply capping an image’s geometric
dimensions does not limit memory usage when decoding PNG files. We can conclude that a
composition of the cmp and mem domains can perform better than the sum of its parts.

6.4.1 New bugs discovered

Since the benchmark suite used in our experiments contains old, historical versions of heavily
fuzzed software, we expected to only find previously known bugs, if any, while fuzzing. To
our surprise, we found that the inputs saved by cmp-mem when fuzzing the January 2017
snapshot of libarchive revealed two previously unknown bugs in the latest (March 2019)
version: a memory leak4 and an inadvertent integer sign cast that leads to huge memory
allocation5.

6.5 Discussion
Our framework allows developers and researchers to control the process of fuzz testing by
defining a strategy to selectively save intermediate inputs. Our framework does not currently
provide any explicit hooks into various other search heuristics used in the CGF algorithm,
such as the mutation operators or seed selection strategies. In principle, it should be possible
to port general-purpose heuristics such as those used in AFLFast [24] or FairFuzz [108] to
work with any of the various domain-specific fuzzing applications described in this chapter.
The work on improving general-purpose fuzzing heuristics is orthogonal to this chapter’s
contributions. Our main contribution is the proposed separation of concerns between the
fuzzing algorithm and the choice of feedback from the instrumented program under test.

4https://github.com/libarchive/libarchive/issues/1165 and CVE-2019-11463
5https://github.com/libarchive/libarchive/issues/1237

https://github.com/libarchive/libarchive/issues/1165
https://nvd.nist.gov/vuln/detail/CVE-2019-11463
https://github.com/libarchive/libarchive/issues/1237

CHAPTER 6. FUZZFACTORY 108

type dsf_t; /* Domain -specific feedback map */

/* Register a new domain. To be invoked once during initialization. */
dsf_t new_domain(int key_size , function reduce , int a_0);

/* Updates to the DSF map. To be invoked during test execution. */
int dsf_get(dsf_t dsf , int k); // return dsf[k]
void dsf_set(dsf_t dsf , int k, int v); // dsf[k] = v
void dsf_increment(dsf_t dsf , int k, int v); // dsf[k] = dsf[k] + v
void dsf_union(dsf_t dsf , int k, int v); // dsf[k] = dsf[k] | v
void dsf_maximize(dsf_t dsf , int k, int v); // dsf[k] = max(dsf[k], v)

Figure 6.11: API for domain-specific fuzzing in pseudocode.

In theory, a basic increase in code coverage can itself be considered a domain-specific
feedback. That is, we could define a domain d where is_waypoint(i,S, d) is satisfied when
input i leads to the execution of code that is not covered by any input in S. However,
in Algorithm 4, we always save an input if it increases code coverage, instead of modeling
this criteria through yet another domain. In practice, we found that an increase in code
coverage is useful for all domains, since it leads to discovering new program behavior. To
put it another way, we always compose every custom domain with a default domain that
tries to maximize code coverage. Our implementation allows disabling the default domain
via an environment variable if desired.

Recently, even more specialized fuzzers that fit our abstraction of waypoints have ap-
peared: e.g. (1) Coppik et al. [42] save inputs that read/write new values to input-dependent
memory addresses, and (2) Nilizadeh et al. [130] discover side-channel vulnerabilities by
saving inputs whose execution paths maximally differ from a reference path. Such work
strengthens the case for FuzzFactory.

6.6 Implementation
We have implemented FuzzFactory as an extension to AFL and made it publicly available
at: https://github.com/rohanpadhye/FuzzFactory. In FuzzFactory, domain-specific
fuzzing applications are implemented by instrumenting test programs. In our applications, we
performed instrumentation using LLVM. However, test programs can also be instrumented
using any other tool, such as Intel’s Pin [115]. In fact, domain-specific fuzzing applications
can also be implemented by manually editing test programs to add code that calls the
FuzzFactory API. We next describe this API.

6.6.1 API for Domain-Specific Fuzzing

Figure 6.11 outlines the API provided by FuzzFactory. The type dsf_t defines the
type of a domain-specific map. In our implementation, the keys and values are always 32-bit

https://github.com/rohanpadhye/FuzzFactory

CHAPTER 6. FUZZFACTORY 109

unsigned integers. However, users can specify the size of the DSF map; that is, the number
of keys that it will contain.

The API function new_domain registers a new domain whose key setK contains key_size
keys. The arguments reduce and a_0 provide the reducer functions (of type int x int ->
int) and the initial aggregate value respectively. For the slow domain, key_size is 1. For
applications where K is a set of program locations L, we use key_size of 216 and assign
16-bit pseudorandom numbers to basic block locations, similar to AFL. For the incremental
fuzzing applications, where K = L× L, we use a hash function to combine two basic block
locations into a single integer-valued key. The sets V and A are defined implicitly by the
usage of DSF maps and the implementation of the reduce function. For applications such
as validity fuzzing, where A is a set of orders of magnitude, we use bit-vectors to represent
sets.

The function new_domain returns a handle to the DSF map, which is then used in subse-
quent APIs listed in Fig. 6.11, such as dsf_increment. Calls to the new_domain are inserted
at test program startup, before any tests are executed. It is up to the user to ensure that the
provided reducer function satisfies properties 6.1 and 6.2, which in turn guarantee monotonic
aggregation (Theorem 2). API functions that start with ‘dsf_’ manipulate the DSF map.
The argument key must be in the range [0, key_size).

6.7 Summary
In this chapter, we presented FuzzFactory, a framework for specifying domain-specific ap-
plications using custom feedback collected dynamically during test executions. We described
FuzzFactory’s domain-specific fuzzing algorithm, which incorporates custom feedback as
well as user-provided reducer functions to selectively save intermediate inputs, called way-
points. We identified key properties that reducer functions must satisfy in order to guar-
antee that every saved waypoint contributes towards domain-specific progress. We then
described the implementation of six domain-specific fuzzing applications implemented using
our framework, along with results of our experimental evaluation of these applications on six
real-world test programs. We also demonstrated how FuzzFactory can be used to compose
multiple domain-specific fuzzing applications and empirically show how such compositions
can perform better than their constituents. Finally, we described the API provided by our
domain-specific fuzzing framework and provided a URL to its publicly available source code.

FuzzFactory highlights yet again how a powerful combination of domain expertise and
sophisticated feedback-directed fuzzing algorithms can unlock the capability of targeting new
automated testing applications.

110

Chapter 7

Related Work

This chapter discusses related work in automatically finding algorithmic performance is-
sues, coverage-guided fuzzing, automatically generating complex structured test inputs, and
customizing fuzzing algorithms.

7.1 Algorithmic Performance Bugs
Crosby and Wallach [45] were the first to demonstrate how algorithmic complexity bugs
can be the target of denial-of-service (DoS) attacks. Subsequent work on detecting and
preventing DoS attacks [6, 201, 54] has typically focused on measuring aggregate resource
exhaustion and does not specifically identify input characteristics that exploit worst-case
algorithmic complexity.

Input-sensitive profiling techniques [73, 41, 200] help estimate the algorithmic complex-
ity of a program function empirically by profiling its execution under varying input sizes.
However, such techniques require worst-case inputs to already be available.

7.1.1 Redundant Computation Analysis

Redundant data-structure traversals, as targeted by Travioli (Chapter 3), have been the
subject of past study on automatically finding algorithmic performance bugs. Clarity [135]
uses static analysis to detect program functions in which anO(n) traversal occursO(m) times
redundantly. As Travioli’s’ analysis is dynamic, we can determine if repeated traversals
are redundant at a finer granularity. For example, if a binary-search-tree is repeatedly
queried for different values, we do not report a redundancy if at least two traversals follow
different paths in the tree. Clarity conservatively assumes all conditional branches to be
equally likely, and thus cannot make such fine-grained distinctions automatically. Clarity
therefore uses source-level annotations to recognize operations on standard Java collections
that have sub-linear average-time complexity. However, Clarity’s static analysis is a sound
over-approximation, while our dynamic analysis is subject to false negatives.

CHAPTER 7. RELATED WORK 111

Toddler [131] uses dynamic analysis to detect similar memory access patterns at the same
execution context. It detects redundancies by analyzing the execution of long-running perfor-
mance tests and extracting similarities in memory accesses across loop iterations. Travioli’s
use of acyclic execution contexts (AECs) and object connectivity allow us to detect traver-
sals from as little as two iterations, and therefore we can detect redundant traversals using
unit tests alone. Moreover, AECs enable the detection of recursive data-structure traversals,
which is not supported by either of these tools.

MemoizeIt [51] uses dynamic analysis to detect functions whose computation can be
memoized—this includes a special case of redundant traversals where the repeating subse-
quences are exactly equal. MemoizeIt can therefore detect the type of bug Travioli found
in express, but not the bug we found in d3-hierarchy.

7.1.2 Data-Structure Analysis

A number of techniques have been developed to analyze data structures using dynamic anal-
ysis. HeapViz [1] summarizes relationships between Java collections to provide a concise
visualization of the heap. MG++ [172] generates representations of dynamically evolving
data structures. Pheng and Verbrugge [151] measure the number of data structures created
and modified over time in Java programs. Laika [44] detects data structures in executing
binaries using Bayesian unsupervised learning. DSI [187] identifies pointer-based data struc-
tures in C programs. Raman and August [154] detect recursive data structures and profile
structural modifications in order to measure their stability.

Similarly, several static analysis techniques aim to discover abstract representations of
data structures used in a program, and this body of work usually falls into the category of
shape analysis [67]. Sophisticated frameworks can be used to prove complex data-structure
invariants [161].

In all these techniques, the central theme has been identifying the type of data structures
or their representation in program memory, and not on identifying functions that traverse
these data structures to perform work.

7.1.3 Execution Contexts and AECs

In dynamic analysis, execution indexing [191] allows uniquely identifying a point in a pro-
gram execution. Such execution indices are too fine-grained for Travioli. The problem
of reasoning about an unbounded number of calling contexts in recursive programs is well-
known in the field of static analysis [171, 169]. Travioli’s approach of constructing AECs
by removing cycles in execution contexts is similar to the approach employed by Whaley
and Lam [186] for context-sensitive pointer analysis, where connected components in the
call graph are collapsed to a single node. A subtle difference is that we retain the sequence
of functions on paths from the entry of a connected component to its exit; therefore, the
resulting AEC is a valid sequence of call sites that can be used for stack-trace debugging.

CHAPTER 7. RELATED WORK 112

7.1.4 Worst-Case Execution Time

Researchers in the real-time and embedded systems community have developed methods to
estimate Worst-Case Execution Time (WCET) or to prove that a program’s WCET does
not exceed specified bounds [10, 62, 20, 188, 81]. However, many of these methods require
knowledge of loop bounds in the form of manually provided annotations or programming
language restrictions. These methods do not easily apply to arbitrary programs written in
languages such as C or JavaScript. Further, these methods do not generate the concrete
inputs that demonstrate worst-case behavior.

7.1.5 Generating Pathological Inputs Automatically

SlowFuzz [149] uses feedback-directed fuzz testing to automatically generate inputs that can
exacerbate algorithmic complexity vulnerabilities by saving intermediate inputs that increase
total execution path length. Such a greedy optimization algorithm makes SlowFuzz suscep-
tible to getting stuck in local maxima. PerfFuzz (Chapter 4) easily outperforms SlowFuzz
in finding performance bottlenecks, likely due to its multi-dimensional optimization.

Other tools similar to PerfFuzz include FOREPOST [80, 116] and GA-Prof [170]. These
automatically discover inputs that reveal performance bottlenecks in software, using repeated
executions of the test program with candidate inputs. FOREPOST learns rules to select a
subset of inputs from a known input space (e.g. a database of records) using unsupervised
learning. GA-Prof employs a genetic algorithm, where highly-structured inputs (such as a set
of URLs in a transaction) are encoded as genes. In contrast, PerfFuzz requires no domain
knowledge since its inputs are represented as byte sequences. PerfFuzz’s coverage-guided
feedback allows it to automatically discover variety in the input space in order to explore
deep program functionality.

Search-based software testing (SBST) [122, 83, 82, 194] leverages optimization techniques
such as hill climbing to optimize an objective function. These techniques work well when
the objective function is a smooth function of the input characteristics.

WISE [27] uses dynamic symbolic execution (ref. Section 2.3) to generate inputs that
exercise worst-case behavior. This requires an exhaustive search of all program paths to find
the longest path up to a bounded input length. Thus, WISE does not scale to large complex
programs. PerfPlotter [33] addresses this concern by probabilistically selecting paths to
explore, using heuristics to find best-case and worst-case execution paths. Zhang et al. [202]
automatically generate load tests using mixed symbolic execution and iterative-deepening
beam search. These tools are designed to maximize a single-dimensional objective function
(e.g., total path length, total memory consumption).

SpeedGun [153] automatically generates multi-threaded performance regression tests that
find bottlenecks due to synchronization. SpeedGun’s input space is quite different, as it
generates sequences of method calls in a Java class. On the other hand, PerfFuzz does
not specifically handle concurrent programs. PerfSyn [182] mutates Java programs to expose
bottlenecks in a particular method.

CHAPTER 7. RELATED WORK 113

7.2 Coverage-Guided Fuzzing
A large body of research exists on improving the heuristics of coverage-guided fuzzing (CGF)
tools such as AFL [196]. AFLFast [24] is an extension of AFL that models the fuzzing process
as a Markov chain in order to optimize seed selection (equivalent to tuning fuzzProb in
Algorithm 1). FairFuzz [108] modifies AFL to bias input generation towards branches that
are rarely executed. AFLGo [23] directs fuzzing towards program points of interest using
static analysis. Fuzzers such as VUzzer [155], Steelix [109], Angora [34], REDQUEEN [13]
perform lightweight analysis of program executions to direct mutations such that generated
inputs are likely to satisfy non-trivial constraints (e.g. magic bytes and checksums). These
techniques mostly focus on fuzzing programs that process process untrusted binary data,
such as network protocol implementations and media players. A survey on fuzzing by Manès
et al. [118] provides a deeper analysis on these fuzzing tools as well as several others.

In work that is outside the scope of this dissertation, we have applied CGF to test
ARM TrustZone-based operating systems. In this work, AFL is used as a module within
PARTEMU [84], a platform for performing dynamic analysis of trusted operated systems
using full-system emulation. The PARTEMU project helped identify over 40 security vul-
nerabilities in trusted applications across four major trusted operating systems that are
deployed on billions of Android devices.

7.3 Generating Complex Inputs for Testing
Zest (Chapter 5) addresses the problem of generating inputs when given a test driver and
an input generator. Randoop [139] and EvoSuite [66] generate JUnit tests for a particular
class by incrementally trying and combining sequences of calls. During the generation of
sequence of calls, both Randoop and EvoSuite take some form of feedback into account.
These tools produce unit tests by directly invoking methods on the component classes.

UDITA [68] allows developers to write random-input generators in a QuickCheck-like
language. UDITA then performs bounded-exhaustive enumeration of the paths through the
generators, along with several optimizations.

Targeted property-testing [113, 112] guides input generators used in property testing
towards a user-specified fitness value using techniques such as hill climbing and simulated
annealing. GödelTest [61] attempts to satisfy user-specified properties on inputs. It performs
a meta-heuristic search for stochastic models that are used to sample random inputs from a
generator.

Grammar-based fuzzing [121, 43, 173, 71, 22] techniques rely on context-free grammar
specifications to generate structured inputs. CSmith [192] generates random C programs
for differential testing of C compilers. LangFuzz [87] generates random programs using
a grammar and by recombining code fragments from a codebase. These approaches fall
under the category of generator-based testing, but primarily focus on tuning the underlying

CHAPTER 7. RELATED WORK 114

generators rather than using code coverage feedback. Zest is not restricted to context-free
grammars, and does not require any domain-specific tuning.

Several CGF tools developed concurrently with Zest also leverage input format specifi-
cations (either grammmars [12, 184], file formats [150], or protocol buffers [168]) to improve
the performance of CGF. These tools develop mutations that are specific to the input for-
mat specifications, e.g. syntax-tree mutations for grammars. Zest’s generators are arbitrary
programs; therefore, we perform mutations directly on the parameters that determine the
execution path through the generators, rather than on a parsed representation of inputs.

As a follow-up to the Zest project, we have explored the use of reinforcement learning
to guide structured-input generators using JQF: RLCheck [158] can quickly generate a large
number of diverse semantically valid inputs, which may be useful for applications such as
regression testing.

7.4 Customizing Fuzzing Algorithms
The JQF (Section 5.3) framework allows users to implement custom fuzzing algorithms for
guiding QuickCheck-like generators. In contrast, FuzzFactory (Chapter 6) is a frame-
work for implementing domain-specific fuzzing applications by providing custom feedback
from program execution. The main difference between these frameworks is the point of
customization. In JQF, the instrumentation is fixed, while the search algorithm can be cus-
tomized. In FuzzFactory however, the search algorithm is fixed, while the instrumentation
and program feedback can be optimized. In principle, these techniques could be combined
together in a framework that allows customizing input generation, program instrumentation,
feedback, and search. However, we believe that the separation of concerns is important for
preventing a combinatorial blowup of abstractions exposed to an end user. JQF is a great
platform for researchers who want to evaluate various fuzzing search heuristics, whereas
FuzzFactory is appropriate for researchers who wish to retarget fuzzing towards achieving
new testing objectives.

The LLVM-based Clang compiler [106] provides a customizable tracing framework for
C/C++ programs. With the use of command-line flags such as -fsanitize-coverage, one
can ask Clang to instrument basic blocks and comparison operations to call specially named
functions; users can link-in custom implementations of these functions to trace program
execution. LibFuzzer (ref. Section 2.5.1) uses these hooks to provide feedback from a pro-
gram under test in order to perform coverage-guided fuzzing. However, libFuzzer does not
provide a mechanism to provide arbitrary domain-specific feedback with custom aggregation
functions. That is, while LLVM provides hooks into a program’s execution, there is currently
no way to communicate information to the fuzzing algorithm. However, it is relatively easy
to use LLVM’s tracing hooks to call into FuzzFactory’s API for domain-specific fuzzing.

115

Chapter 8

Conclusion

This chapter first highlights the key takeaway from this dissertation, and then presents
opportunities for future work.

8.1 Key Takeaway
In Chapters 3 and 4, we described algorithms to find algorithmic performance issues using
developer intent captured implicitly via a simple abstraction: functional test cases. Devel-
opers need only provide functional tests that demonstrate common uses of their software.
Using clever algorithms, Travioli and PerfFuzz use these artifacts to automatically find
algorithmic complexity issues, via dynamic analysis and coverage-guided fuzzing respectively.

In Chapter 5, we showed how developer intent can be captured via the well-known ab-
stractions of generator functions and validity predicates. The generators and validity predi-
cates can be written in the same language as the program under test, and therefore do not
require developers to learn any new specification or sampling language. For developers, the
abstraction appears to only provide means to sample random instances of a type, say X,
and then discard any x ∈ X that do not satisfy the provided validity predicates. Algorithms
such as Zest use feedback from test execution to bias generation towards inputs that are
likely to be valid and increase code coverage; this mechanism is transparent to the user.
The JQF framework provides the reverse abstraction to fuzzing researchers: given some
program feedback in the form of coverage and validity, the guidance algorithm must provide
the next “input” represented as an infinite sequence of bytes. The fact that test programs use
generators and complex predicates is largely hidden from the guidance mechanism. In this
way, researchers developing guidances for JQF can utilize a developer’s domain knowledge
of their program’s input structure for free.

In Chapter 6, we presented the abstraction of waypoints. We found that many domain-
specific fuzzing applications can be effectively represented as a problem of determining which
inputs should be saved as waypoints during coverage-guided fuzzing. To specify waypoints,
FuzzFactory requires users to specify a reducer function and have the test program pop-

CHAPTER 8. CONCLUSION 116

ulate domain-specific key-value maps during test execution. Key-value maps are a well
known data structure; we believe the API to populate them should be entirely unsurpris-
ing to most developers. Reducer functions are commonly used in functional programming
languages—they are sometimes called folds. In this way, FuzzFactory avoids imposing a
burden on developers to learn new specification languages. The separation of concerns be-
tween input generation and feedback functions also allows for clean composition of multiple
domain-specific fuzzing applications.

The key takeaway from this dissertation can be summarized as follows:

Automated testing tools can be made smarter by utilizing artifacts that incorporate the
domain expertise of software developers. A good solution combines simple, clean

abstractions to capture users’ intent with sophisticated algorithms that can use this
information to dramatically transform the search space. Such combinations can make

challenging testing problems tractable and unlock new bug-finding capabilities.

8.2 Future Work
The next generation of program analysis tools may have to deal with an increasing reliance
on legacy software, rapid micro-deployments of code changes, client-side code validation,
and a heterogeneous mix of application domains. There is a continuing need for automated
testing tools that can effectively utilize a vast ecosystem of domain-specific data sources as
needed.

First, most contemporary bug-finding tools assume that the program under test has
never been seen before. In practice, however, critical software such as the GCC compiler
have been fuzzed for decades. What can we learn from past fuzzing campaigns? Can we
develop adaptive fuzzing approaches that can automatically adjust their heuristics based on
previous executions? An application of machine learning techniques on generators may prove
useful in isolating interesting input features. For example, we could perhaps learn that most
bugs found in GCC relate to use of bit-wise arithmetic in C programs. We could then bias
C-program generators towards producing a variety of bit-wise operators.

Second, a related problem is that of regression testing; that is, quickly finding bugs
introduced by code changes. Ideally, we would like to test only the parts of the program that
are affected by the change. With FuzzFactory, we presented a preliminary solution for this
problem (Section 6.3.8), but it relies on starting with previously saved inputs which exercise
the modified code. Other proposed approaches require too much time to statically analyze
the code changes [23]. It would be great to have human-in-the-loop tools where developers
can communicate what input features are desirable to test a particular code component. For
example, if a GCC developer updates its vectorizing optimizations, how can they tell their
fuzzing tool to generate C programs with lots of nested loops and array accesses?

Third, the use of program instrumentation for receiving feedback during fuzz testing slows
down test execution. In turn, this reduces the number of inputs that can be evaluated per

CHAPTER 8. CONCLUSION 117

unit time. Some recent work such as UnTracer [127] addresses this problem for conventional
coverage-guided fuzzing by dynamically un-instrumenting program points that have already
been covered by previous inputs. However, this does not generalize to domain-specific fuzzing
applications that capture more information than just code coverage. In this regard, static
program analysis may be helpful to identify in advance a small subset of program locations
whose instrumentation is most likely to help in achieving domain-specific testing objectives.
For example, to reveal performance bugs in GCC, static analysis might identify that it is
important to instrument the optimizer but not necessarily the parser.

Finally, the test oracle problem [18] continues to challenge bug-finding tools. For exam-
ple, Travioli identifies program points that likely perform redundant computations and
PerfFuzz automatically generates pathological inputs; yet, neither of these techniques can
precisely say whether their findings constitute a performance bug that requires a fix. Perhaps
a combination of data mined from past bug reports as well as machine learning techniques
may be useful here as well. For example, when we find a hot spot in GCC’s optimizer that
is only triggered in corner cases, can we use the information about the performance char-
acteristics of old versions of GCC or contemporary versions of other C compilers to guess
whether or not we have found a bug?

It is clear that there is tremendous opportunity for making significant advances in auto-
mated testing by utilizing external data sources and using humans in the loop. We hope this
dissertation helps seed further research in the area of effective and usable automated testing
tools that can be specialized to a variety of programs domains and test objectives. Our
hope is that such research will enable automated testing tools to permeate the mainstream
software development lifecycle and strengthen our society’s confidence in the quality and
security of critical software systems.

118

Bibliography

[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci, Sara L. Su, and
Samuel Z. Guyer. “Heapviz: Interactive Heap Visualization for Program Understand-
ing and Debugging”. In: Proceedings of the 5th International Symposium on Software
Visualization. SOFTVIS ’10. 2010, pp. 53–62. isbn: 978-1-4503-0028-5. doi: 10.1145/
1879211.1879222. url: http://doi.acm.org/10.1145/1879211.1879222.

[2] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and MeredithWhit-
taker. OSS-Fuzz—Continuous Fuzzing for Open Source Software. https://github.
com/google/oss-fuzz. Accessed April 17, 2019. 2016.

[3] Tim Allison. #threeCheersForFuzzing. https://twitter.com/_tallison/status/
1050455776848949249. Accessed April 17, 2019. 2018.

[4] Cláudio Amaral, Mário Florido, and Vıtor Santos Costa. “PrologCheck–property-
based testing in Prolog”. In: International Symposium on Functional and Logic Pro-
gramming. Springer. 2014, pp. 1–17.

[5] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. “JPF-SE: a symbolic execu-
tion extension to Java PathFinder”. In: Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). 2007.

[6] João Antunes, Nuno Ferreira Neves, and Paulo Jorge Verıssimo. “Detection and pre-
diction of resource-exhaustion vulnerabilities”. In: 2008 19th International Symposium
on Software Reliability Engineering (ISSRE). IEEE. 2008, pp. 87–96.

[7] Apache Ant. https://ant.apache.org. Accessed August 24, 2018. 2018.
[8] Apache Byte Code Engineering Library. https://commons.apache.org/proper/

commons-bcel. Accessed August 24, 2018. 2018.
[9] Apache Maven. https://maven.apache.org. Accessed August 24, 2018. 2018.
[10] Robert Arnold, Frank Mueller, David Whalley, and Marion Harmon. “Bounding

worst-case instruction cache performance”. In: Real-Time Systems Symposium, 1994.,
Proceedings. IEEE. 1994, pp. 172–181.

[11] Thomas Arts, John Hughes, Joakim Johansson, and Ulf T. Wiger. “Testing telecoms
software with quviq QuickCheck”. In: Proceedings of the 2006 ACM SIGPLAN Work-
shop on Erlang, Portland, Oregon, USA, September 16, 2006. 2006, pp. 2–10. doi: 10.
1145/1159789.1159792. url: http://doi.acm.org/10.1145/1159789.1159792.

https://doi.org/10.1145/1879211.1879222
https://doi.org/10.1145/1879211.1879222
http://doi.acm.org/10.1145/1879211.1879222
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://twitter.com/_tallison/status/1050455776848949249
https://twitter.com/_tallison/status/1050455776848949249
https://ant.apache.org
https://commons.apache.org/proper/commons-bcel
https://commons.apache.org/proper/commons-bcel
https://maven.apache.org
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/1159789.1159792
http://doi.acm.org/10.1145/1159789.1159792

BIBLIOGRAPHY 119

[12] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-
Reza Sadeghi, and Daniel Teuchert. “Nautilus: Fishing for Deep Bugs with Gram-
mars”. In: 26th Annual Network and Distributed System Security Symposium. NDSS
’19. 2019.

[13] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and Thorsten
Holz. “REDQUEEN: Fuzzing with Input-to-State Correspondence.” In: NDSS. Vol. 19.
2019, pp. 1–15.

[14] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. “Enhanc-
ing Symbolic Execution with Veritesting”. In: Proceedings of the 36th International
Conference on Software Engineering. ICSE 2014. 2014, pp. 1083–1094. isbn: 978-1-
4503-2756-5.

[15] Thomas Ball and James R. Larus. “Efficient Path Profiling”. In: Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture. MICRO 29.
1996, pp. 46–57. isbn: 0-8186-7641-8. url: http://dl.acm.org/citation.cfm?id=
243846.243857.

[16] Thomas Ball, Peter Mataga, and Mooly Sagiv. “Edge Profiling Versus Path Profiling:
The Showdown”. In: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’98. 1998, pp. 134–148. isbn: 0-89791-
979-3. doi: 10.1145/268946.268958. url: http://doi.acm.org/10.1145/268946.
268958.

[17] Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard Kemmerer,
and Giovanni Vigna. “SNOOZE: Toward a Stateful Network Protocol fuzZEr”. In: Pro-
ceedings of the 9th International Conference on Information Security. ISC’06. 2006,
pp. 343–358. isbn: 978-3-540-38341-3. doi: 10.1007/11836810_25. url: http:
//dx.doi.org/10.1007/11836810_25.

[18] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. “The
oracle problem in software testing: A survey”. In: IEEE transactions on software
engineering 41.5 (2014), pp. 507–525.

[19] Clark Barrett and Cesare Tinelli. “Satisfiability modulo theories”. In: Handbook of
Model Checking. Springer, 2018, pp. 305–343.

[20] Guillem Bernat, Antoine Colin, and Stefan M Petters. “WCET analysis of probabilis-
tic hard real-time systems”. In: Real-Time Systems Symposium, 2002. RTSS 2002.
23rd IEEE. IEEE. 2002, pp. 279–288.

[21] beStorm®Software Security. https://www.beyondsecurity.com/bestorm.html.
Accessed January 28, 2019. 2019.

[22] Michael Beyene and James H. Andrews. “Generating String Test Data for Code Cov-
erage”. In: Fifth IEEE International Conference on Software Testing, Verification and
Validation, ICST 2012, Montreal, QC, Canada, April 17-21, 2012. 2012, pp. 270–279.
doi: 10.1109/ICST.2012.107. url: https://doi.org/10.1109/ICST.2012.107.

http://dl.acm.org/citation.cfm?id=243846.243857
http://dl.acm.org/citation.cfm?id=243846.243857
https://doi.org/10.1145/268946.268958
http://doi.acm.org/10.1145/268946.268958
http://doi.acm.org/10.1145/268946.268958
https://doi.org/10.1007/11836810_25
http://dx.doi.org/10.1007/11836810_25
http://dx.doi.org/10.1007/11836810_25
https://www.beyondsecurity.com/bestorm.html
https://doi.org/10.1109/ICST.2012.107
https://doi.org/10.1109/ICST.2012.107

BIBLIOGRAPHY 120

[23] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
“Directed Greybox Fuzzing”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’17. 2017.

[24] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-based Grey-
box Fuzzing As Markov Chain”. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’16. 2016.

[25] Ella Bounimova, Patrice Godefroid, and David Molnar. “Billions and billions of con-
straints: Whitebox fuzz testing in production”. In: 2013 35th International Conference
on Software Engineering (ICSE). IEEE. 2013, pp. 122–131.

[26] Melvin A Breuer. “A random and an algorithmic technique for fault detection test gen-
eration for sequential circuits”. In: IEEE Transactions on Computers 100.11 (1971),
pp. 1364–1370.

[27] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. “WISE: Automated Test Genera-
tion for Worst-Case Complexity”. In: Proceedings of the 31st International Conference
on Software Engineering. 2009.

[28] Mathias Bynens. In search of the perfect URL validation regex. https://mathiasbynens.
be/demo/url-regex. 2014.

[29] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and Auto-
matic Generation of High-coverage Tests for Complex Systems Programs”. In: Pro-
ceedings of the 8th USENIX Conference on Operating Systems Design and Implemen-
tation. OSDI’08. 2008.

[30] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. “EXE: Automatically Generating Inputs of Death”. In: Proceedings of the
13th ACM Conference on Computer and Communications Security. CCS ’06. Alexan-
dria, Virginia, USA: Association for Computing Machinery, 2006, pp. 322–335. isbn:
1595935185. doi: 10.1145/1180405.1180445. url: https://doi.org/10.1145/
1180405.1180445.

[31] Cristian Cadar and Koushik Sen. “Symbolic execution for software testing: three
decades later”. In: Communications of the ACM 56.2 (2013), pp. 82–90.

[32] cargo fuzz. https://github.com/rust-fuzz/cargo-fuzz. Accessed June 30, 2020.
2019.

[33] Bihuan Chen, Yang Liu, and Wei Le. “Generating Performance Distributions via
Probabilistic Symbolic Execution”. In: Proceedings of the 38th International Confer-
ence on Software Engineering. ICSE ’16. 2016, pp. 49–60. isbn: 978-1-4503-3900-1.
doi: 10.1145/2884781.2884794. url: http://doi.acm.org/10.1145/2884781.
2884794.

[34] Peng Chen and Hao Chen. “Angora: Efficient Fuzzing by Principled Search”. In: Pro-
ceedings of the 39th IEEE Symposium on Security and Privacy. 2018.

https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/1180405.1180445
https://github.com/rust-fuzz/cargo-fuzz
https://doi.org/10.1145/2884781.2884794
http://doi.acm.org/10.1145/2884781.2884794
http://doi.acm.org/10.1145/2884781.2884794

BIBLIOGRAPHY 121

[35] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin Zhou,
Xun Jiao, and Zhuo Su. “EnFuzz: Ensemble Fuzzing with Seed Synchronization
among Diverse Fuzzers”. In: 28th USENIX Security Symposium (USENIX Security
19). Aug. 2019. url: https://www.usenix.org/conference/usenixsecurity19/
presentation/chen-yuanliang.

[36] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. “The S2E Platform:
Design, Implementation, and Applications”. In: ACM Transactions on Computer Sys-
tems. 30.1 (2012), p. 2.

[37] Koen Claessen and John Hughes. “QuickCheck: A Lightweight Tool for Random Test-
ing of Haskell Programs”. In: Proceedings of the 5th ACM SIGPLAN International
Conference on Functional Programming. ICFP. 2000.

[38] Lori A. Clarke. “A program testing system”. In: Proc. of the 1976 annual conference.
1976, pp. 488–491.

[39] Codenomicon Vulnerability Management. http://www.codenomicon.com/index.
html. Accessed January 28, 2019. 2019.

[40] Brian Cole, Daniel Hakim, David Hovemeyer, Reuven Lazarus, William Pugh, and
Kristin Stephens. “Improving your software using static analysis to find bugs”. In:
Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications. 2006, pp. 673–674.

[41] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. “Input-Sensitive Profiling”.
In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI ’12. 2012, pp. 89–98. isbn: 978-1-4503-1205-9.
doi: 10.1145/2254064.2254076. url: http://doi.acm.org/10.1145/2254064.
2254076.

[42] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. “MemFuzz: Using Memory Accesses
to Guide Fuzzing”. In: 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST). IEEE. 2019, pp. 48–58.

[43] David Coppit and Jiexin Lian. “Yagg: An Easy-to-use Generator for Structured Test
Inputs”. In: Proceedings of the 20th IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE ’05. 2005, pp. 356–359. isbn: 1-58113-993-4. doi:
10.1145/1101908.1101969. url: http://doi.acm.org/10.1145/1101908.
1101969.

[44] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. “Digging for Data
Structures”. In: Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation. OSDI’08. 2008, pp. 255–266. url: http://dl.acm.org/
citation.cfm?id=1855741.1855759.

https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
http://www.codenomicon.com/index.html
http://www.codenomicon.com/index.html
https://doi.org/10.1145/2254064.2254076
http://doi.acm.org/10.1145/2254064.2254076
http://doi.acm.org/10.1145/2254064.2254076
https://doi.org/10.1145/1101908.1101969
http://doi.acm.org/10.1145/1101908.1101969
http://doi.acm.org/10.1145/1101908.1101969
http://dl.acm.org/citation.cfm?id=1855741.1855759
http://dl.acm.org/citation.cfm?id=1855741.1855759

BIBLIOGRAPHY 122

[45] Scott A. Crosby and Dan S. Wallach. “Denial of Service via Algorithmic Complexity
Attacks”. In: Proceedings of the 12th Conference on USENIX Security Symposium -
Volume 12. SSYM’03. 2003, pp. 3–3. url: http://dl.acm.org/citation.cfm?id=
1251353.1251356.

[46] CyberFlood - Spirent. https://www.spirent.com/products/cyberflood. Accessed
January 28, 2019. 2019.

[47] d3-collection: Handy data structures for elements keyed by string. https://github.
com/d3/d3-collection. Retrieved: August 2016.

[48] d3-hierarchy: 2D layout algorithms for visualizing hierarchical data. https://github.
com/d3/d3-hierarchy. Retrieved: August 2016.

[49] D3: a JavaScript library for visualizing data with HTML, SVG, and CSS. https:
//d3js.org. Retrieved: August 2016.

[50] René David and Pascale Thévenod-Fosse. “Random testing of integrated circuits”. In:
IEEE Transactions on Instrumentation and Measurement 1 (1981), pp. 20–25.

[51] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. “Performance Problems
You Can Fix: A Dynamic Analysis of Memoization Opportunities”. In: Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. OOPSLA 2015. 2015, pp. 607–622. isbn: 978-
1-4503-3689-5. doi: 10.1145/2814270.2814290. url: http://doi.acm.org/10.
1145/2814270.2814290.

[52] Isil Dillig, Thomas Dillig, and Alex Aiken. “Static error detection using semantic
inconsistency inference”. In: Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 2007, pp. 435–445.

[53] Joe W Duran and Simeon C Ntafos. “An evaluation of random testing”. In: IEEE
transactions on Software Engineering 4 (1984), pp. 438–444.

[54] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and Angelos Stavrou. “Radmin:
early detection of application-level resource exhaustion and starvation attacks”. In:
International Workshop on Recent Advances in Intrusion Detection. Springer. 2015,
pp. 515–537.

[55] Roy Emek, Itai Jaeger, Yehuda Naveh, Gadi Bergman, Guy Aloni, Yoav Katz, Mon-
ica Farkash, Igor Dozoretz, and Alex Goldin. “X-Gen: A random test-case generator
for systems and SoCs”. In: High-Level Design Validation and Test Workshop, 2002.
Seventh IEEE International. IEEE. 2002, pp. 145–150.

[56] Dawson Engler and Ken Ashcraft. “RacerX: effective, static detection of race condi-
tions and deadlocks”. In: ACM SIGOPS operating systems review 37.5 (2003), pp. 237–
252.

http://dl.acm.org/citation.cfm?id=1251353.1251356
http://dl.acm.org/citation.cfm?id=1251353.1251356
https://www.spirent.com/products/cyberflood
https://github.com/d3/d3-collection
https://github.com/d3/d3-collection
https://github.com/d3/d3-hierarchy
https://github.com/d3/d3-hierarchy
https://d3js.org
https://d3js.org
https://doi.org/10.1145/2814270.2814290
http://doi.acm.org/10.1145/2814270.2814290
http://doi.acm.org/10.1145/2814270.2814290

BIBLIOGRAPHY 123

[57] Dawson Engler and Madanlal Musuvathi. “Static analysis versus software model
checking for bug finding”. In: International Workshop on Verification, Model Checking,
and Abstract Interpretation. Springer. 2004, pp. 191–210.

[58] Eris: Porting of QuickCheck to PHP. https://github.com/giorgiosironi/eris.
Accessed January 28, 2019. 2019.

[59] express.js: Fast, unopinionated, minimalist web framework for node. https://github.
com/expressjs/express. Retrieved: August 2016.

[60] Facebook. Infer Static Analyzer. https://fbinfer.com/. Retrieved: June 2020.

[61] Robert Feldt and Simon Poulding. “Finding test data with specific properties via
metaheuristic search”. In: 2013 IEEE 24th International Symposium on Software Re-
liability Engineering (ISSRE). IEEE. 2013, pp. 350–359.

[62] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael
Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm. “Reliable and
precise WCET determination for a real-life processor”. In: International Workshop on
Embedded Software. Springer. 2001, pp. 469–485.

[63] Justin E Forrester and Barton P Miller. “An empirical study of the robustness of
Windows NT applications using random testing”. In:

[64] Pascale Fosse and René David. “Random testing of memories”. In: GI—7. Jahresta-
gung. Springer, 1977, pp. 139–153.

[65] Gordon Fraser and Andrea Arcuri. “A Large-Scale Evaluation of Automated Unit
Test Generation Using EvoSuite”. In: ACM Trans. Softw. Eng. Methodol. 24.2 (Dec.
2014), 8:1–8:42. issn: 1049-331X. doi: 10.1145/2685612. url: http://doi.acm.
org/10.1145/2685612.

[66] Gordon Fraser and Andrea Arcuri. “EvoSuite: Automatic Test Suite Generation for
Object-oriented Software”. In: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering. ES-
EC/FSE ’11. 2011.

[67] Rakesh Ghiya and Laurie J. Hendren. “Is It a Tree, a DAG, or a Cyclic Graph?
A Shape Analysis for Heap-directed Pointers in C”. In: Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’96.
1996, pp. 1–15. isbn: 0-89791-769-3. doi: 10.1145/237721.237724. url: http:
//doi.acm.org/10.1145/237721.237724.

[68] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Viktor Kuncak,
and Darko Marinov. “Test generation through programming in UDITA”. In: Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010. 2010, pp. 225–234.
doi: 10.1145/1806799.1806835. url: http://doi.acm.org/10.1145/1806799.
1806835.

https://github.com/giorgiosironi/eris
https://github.com/expressjs/express
https://github.com/expressjs/express
https://fbinfer.com/
https://doi.org/10.1145/2685612
http://doi.acm.org/10.1145/2685612
http://doi.acm.org/10.1145/2685612
https://doi.org/10.1145/237721.237724
http://doi.acm.org/10.1145/237721.237724
http://doi.acm.org/10.1145/237721.237724
https://doi.org/10.1145/1806799.1806835
http://doi.acm.org/10.1145/1806799.1806835
http://doi.acm.org/10.1145/1806799.1806835

BIBLIOGRAPHY 124

[69] Global Software Testing Market 2017–2021. https://www.technavio.com/report/
software-testing-services-market-size-industry-analysis. Retrieved: June
2020.

[70] Patrice Godefroid. “Fuzzing: Hack, art, and science”. In: Communications of the ACM
63.2 (2020), pp. 70–76.

[71] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. “Grammar-based Whitebox
Fuzzing”. In: Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’08. 2008.

[72] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated
Random Testing”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’05. 2005.

[73] Simon F. Goldsmith, Alex S. Aiken, and Daniel S. Wilkerson. “Measuring Empiri-
cal Computational Complexity”. In: Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering. ESEC-FSE ’07. 2007, pp. 395–404. isbn:
978-1-59593-811-4. doi: 10.1145/1287624.1287681. url: http://doi.acm.org/
10.1145/1287624.1287681.

[74] Google. ClusterFuzz - README. https://github.com/google/clusterfuzz/
blob/2ae06a430c6f9bfcf418490f3416f28a94d51515/README.md. Retrieved: June
2020.

[75] Google. Continuous fuzzing of open source software. https://opensource.google.
com/projects/oss-fuzz. Accessed March 26, 2019. 2019.

[76] Google. Error Prone. https://errorprone.info/. Retrieved: June 2020.

[77] Google. Set of tests for fuzzing engines. https://github.com/google/fuzzer-
test-suite. Accessed March 20, 2019. 2019.

[78] Google Closure. https://developers.google.com/closure/compiler. Accessed
August 24, 2018. 2018.

[79] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. “Gprof: A call graph
execution profiler”. In: ACM Sigplan Notices. Vol. 17. 6. ACM. 1982, pp. 120–126.

[80] Mark Grechanik, Chen Fu, and Qing Xie. “Automatically Finding Performance Prob-
lems with Feedback-directed Learning Software Testing”. In: Proceedings of the 34th
International Conference on Software Engineering. ICSE ’12. 2012, pp. 156–166. isbn:
978-1-4673-1067-3. url: http://dl.acm.org/citation.cfm?id=2337223.2337242.

[81] Bogdan Groza and Marius Minea. “Formal modelling and automatic detection of
resource exhaustion attacks”. In: Proceedings of the 6th ACM Symposium on Infor-
mation, Computer and Communications Security. ACM. 2011, pp. 326–333.

[82] Mark Harman. “The current state and future of search based software engineering”.
In: 2007 Future of Software Engineering. IEEE Computer Society. 2007, pp. 342–357.

https://www.technavio.com/report/software-testing-services-market-size-industry-analysis
https://www.technavio.com/report/software-testing-services-market-size-industry-analysis
https://doi.org/10.1145/1287624.1287681
http://doi.acm.org/10.1145/1287624.1287681
http://doi.acm.org/10.1145/1287624.1287681
https://github.com/google/clusterfuzz/blob/2ae06a430c6f9bfcf418490f3416f28a94d51515/README.md
https://github.com/google/clusterfuzz/blob/2ae06a430c6f9bfcf418490f3416f28a94d51515/README.md
https://opensource.google.com/projects/oss-fuzz
https://opensource.google.com/projects/oss-fuzz
https://errorprone.info/
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://developers.google.com/closure/compiler
http://dl.acm.org/citation.cfm?id=2337223.2337242

BIBLIOGRAPHY 125

[83] Mark Harman and Bryan F Jones. “Search-based software engineering”. In: Informa-
tion and software Technology 43.14 (2001), pp. 833–839.

[84] Lee Harrison, Hayawardh Vijayakumar, Rohan Padhye, Koushik Sen, Michael Grace,
Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, Hayawardh Vijayaku-
mar, et al. “Partemu: Enabling dynamic analysis of real-world trustzone software us-
ing emulation”. In: Proceedings of the 29th USENIX Security Symposium. USENIX
Security 2020. 2020.

[85] Sam Hocevar. zzuf. http://caca.zoy.org/wiki/zzuf. Accessed Jan 2018. 2007.

[86] Marc R Hoffmann, B Janiczak, and E Mandrikov. Eclemma-jacoco java code coverage
library. 2011.

[87] Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with Code Fragments”.
In: Presented as part of the 21st USENIX Security Symposium (USENIX Security
12). 2012.

[88] Paul Holser. junit-quickcheck: Property-based testing, JUnit-style. https://pholser.
github.io/junit-quickcheck. Accessed January 11, 2019. 2014.

[89] Hypothesis for Python. https://hypothesis.works/. Accessed January 28, 2019.
2019.

[90] immutable.js: Immutable persistent data collections for Javascript. https://github.
com/facebook/immutable-js. Retrieved: August 2016.

[91] Darrel C. Ince. “The automatic generation of test data”. In: The Computer Journal
30.1 (1987), pp. 63–69.

[92] Ranjit Jhala and Rupak Majumdar. “Software model checking”. In: ACM Computing
Surveys (CSUR) 41.4 (2009), pp. 1–54.

[93] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. “Understand-
ing and Detecting Real-world Performance Bugs”. In: Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI
’12. 2012, pp. 77–88. isbn: 978-1-4503-1205-9. doi: 10.1145/2254064.2254075. url:
http://doi.acm.org/10.1145/2254064.2254075.

[94] William Johansson, Martin Svensson, Ulf E Larson, Magnus Almgren, and Vincenzo
Gulisano. “T-Fuzz: Model-based fuzzing for robustness testing of telecommunication
protocols”. In: 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation. IEEE. 2014, pp. 323–332.

[95] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. “Why
don’t software developers use static analysis tools to find bugs?” In: 2013 35th Inter-
national Conference on Software Engineering (ICSE). IEEE. 2013, pp. 672–681.

[96] JSVerify: Property-based testing for JavaScript. https://github.com/jsverify/
jsverify. Accessed January 28, 2019. 2019.

http://caca.zoy.org/wiki/zzuf
https://pholser.github.io/junit-quickcheck
https://pholser.github.io/junit-quickcheck
https://hypothesis.works/
https://github.com/facebook/immutable-js
https://github.com/facebook/immutable-js
https://doi.org/10.1145/2254064.2254075
http://doi.acm.org/10.1145/2254064.2254075
https://github.com/jsverify/jsverify
https://github.com/jsverify/jsverify

BIBLIOGRAPHY 126

[97] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. “Fast and accu-
rate static data-race detection for concurrent programs”. In: International Conference
on Computer Aided Verification. Springer. 2007, pp. 226–239.

[98] Uday P. Khedker, Amitabha Sanyal, and Amey Karkare. “Heap Reference Analysis
Using Access Graphs”. In: ACM Trans. Program. Lang. Syst. 30.1 (Nov. 2007). issn:
0164-0925. doi: 10.1145/1290520.1290521. url: http://doi.acm.org/10.1145/
1290520.1290521.

[99] James C. King. “Symbolic execution and program testing”. In: Commun. ACM 19 (7
July 1976), pp. 385–394. issn: 0001-0782.

[100] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. “Evaluating
Fuzz Testing”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18. 2018, pp. 2123–2138. isbn: 978-1-4503-5693-
0. doi: 10.1145/3243734.3243804. url: http://doi.acm.org/10.1145/3243734.
3243804.

[101] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
“RFUZZ: Coverage-directed Fuzz Testing of RTL on FPGAs”. In: Proceedings of the
International Conference on Computer-Aided Design. ICCAD ’18. 2018, 28:1–28:8.
isbn: 978-1-4503-5950-4. doi: 10.1145/3240765.3240842. url: http://doi.acm.
org/10.1145/3240765.3240842.

[102] LafIntel. Circumventing Fuzzing Roadblocks with Compiler Transformations. https:
//lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-
with-compiler-transformations/. Accessed March 20, 2019. 2016.

[103] Leonidas Lampropoulos and Konstantinos Sagonas. “Automatic WSDL-guided Test
Case Generation for PropEr Testing of Web Services”. In: Proceedings 8th Interna-
tional Workshop on Automated Specification and Verification of Web Systems, WWV
2012, Stockholm, Sweden, 16th July 2012. 2012, pp. 3–16. doi: 10.4204/EPTCS.98.3.
url: https://doi.org/10.4204/EPTCS.98.3.

[104] Axel van Lamsweerde. “Formal specification: a roadmap”. In: Proceedings of the Con-
ference on the Future of Software Engineering. 2000, pp. 147–159.

[105] David Larochelle and David Evans. “Statically detecting likely buffer overflow vul-
nerabilities”. In: 10th USENIX Security Symposium. 2001.

[106] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation”. In: Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and Runtime Optimization.
CGO ’04. 2004, pp. 75–. isbn: 0-7695-2102-9. url: http://dl.acm.org/citation.
cfm?id=977395.977673.

https://doi.org/10.1145/1290520.1290521
http://doi.acm.org/10.1145/1290520.1290521
http://doi.acm.org/10.1145/1290520.1290521
https://doi.org/10.1145/3243734.3243804
http://doi.acm.org/10.1145/3243734.3243804
http://doi.acm.org/10.1145/3243734.3243804
https://doi.org/10.1145/3240765.3240842
http://doi.acm.org/10.1145/3240765.3240842
http://doi.acm.org/10.1145/3240765.3240842
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://doi.org/10.4204/EPTCS.98.3
https://doi.org/10.4204/EPTCS.98.3
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673

BIBLIOGRAPHY 127

[107] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. “PerfFuzz: Au-
tomatically Generating Pathological Inputs”. In: Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. ISSTA 2018. 2018,
pp. 254–265. isbn: 978-1-4503-5699-2. doi: 10.1145/3213846.3213874. url: http:
//doi.acm.org/10.1145/3213846.3213874.

[108] Caroline Lemieux and Koushik Sen. “FairFuzz: A Targeted Mutation Strategy for
Increasing Greybox Fuzz Testing Coverage”. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ASE ’18. 2018.

[109] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. “Steelix: Program-state Based Binary Fuzzing”. In: Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2017. 2017.

[110] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 8 Edition. 1st. 2014. isbn: 9780133905908.

[111] LLVM Developer Group. libFuzzer. http : / / llvm . org / docs / LibFuzzer . html.
Accessed March 20, 2019. 2016.

[112] A. Loscher and K. Sagonas. “Automating Targeted Property-Based Testing”. In: 2018
IEEE 11th International Conference on Software Testing, Verification and Validation
(ICST). Vol. 00. Apr. 2018, pp. 70–80. doi: 10 . 1109 / ICST . 2018 . 00017. url:
doi.ieeecomputersociety.org/10.1109/ICST.2018.00017.

[113] Andreas Löscher and Konstantinos Sagonas. “Targeted Property-based Testing”. In:
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA 2017. 2017, pp. 46–56. isbn: 978-1-4503-5076-1. doi: 10.1145/
3092703.3092711. url: http://doi.acm.org/10.1145/3092703.3092711.

[114] Ada Augusta Lovelace. “Sketch of The Analytical Engine invented by Charles Bab-
bage, by L. F. Menabrea of Turin, Officer of the Military Engineers, with notes upon
the Memoir by the Translator”. In: Taylor’s Scientific Memoirs 3 (1842), pp. 666–731.

[115] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation”. In: Proceed-
ings of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’05. 2005, pp. 190–200. isbn: 1-59593-056-6. doi: 10.1145/
1065010.1065034. url: http://doi.acm.org/10.1145/1065010.1065034.

[116] Qi Luo, Denys Poshyvanyk, Aswathy Nair, and Mark Grechanik. “FOREPOST: A
Tool for Detecting Performance Problems with Feedback-driven Learning Software
Testing”. In: Proceedings of the 38th International Conference on Software Engineer-
ing Companion. ICSE ’16. 2016, pp. 593–596. isbn: 978-1-4503-4205-6. doi: 10.1145/
2889160.2889164. url: http://doi.acm.org/10.1145/2889160.2889164.

https://doi.org/10.1145/3213846.3213874
http://doi.acm.org/10.1145/3213846.3213874
http://doi.acm.org/10.1145/3213846.3213874
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/ICST.2018.00017
doi.ieeecomputersociety.org/10.1109/ICST.2018.00017
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
http://doi.acm.org/10.1145/3092703.3092711
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
https://doi.org/10.1145/2889160.2889164
https://doi.org/10.1145/2889160.2889164
http://doi.acm.org/10.1145/2889160.2889164

BIBLIOGRAPHY 128

[117] Ravichandhran Madhavan and Raghavan Komondoor. “Null Dereference Verification
via Over-ApproximatedWeakest Pre-Conditions Analysis”. In: Proceedings of the 2011
ACM International Conference on Object Oriented Programming Systems Languages
and Applications. OOPSLA ’11. Portland, Oregon, USA: Association for Computing
Machinery, 2011, pp. 1033–1052. isbn: 9781450309400. doi: 10 . 1145 / 2048066 .
2048144. url: https://doi.org/10.1145/2048066.2048144.

[118] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. “The art, science, and engineering of
fuzzing: A survey”. In: IEEE Transactions on Software Engineering (2019).

[119] Math.js: An extensive math library for JavaScript and Node.js. https://github.
com/josdejong/mathjs. Retrieved: August 2016.

[120] Peter M Maurer. “Design verification of the WE 32106 math accelerator unit”. In:
IEEE Design & Test of Computers 5.3 (1988), pp. 11–21.

[121] Peter M. Maurer. “Generating test data with enhanced context-free grammars”. In:
Ieee Software 7.4 (1990), pp. 50–55.

[122] Phil McMinn. “Search-Based Software Testing: Past, Present and Future”. In: Pro-
ceedings of the 2011 IEEE Fourth International Conference on Software Testing, Ver-
ification and Validation Workshops. ICSTW ’11. 2011, pp. 153–163. isbn: 978-0-7695-
4345-1. doi: 10.1109/ICSTW.2011.100. url: http://dx.doi.org/10.1109/ICSTW.
2011.100.

[123] Barton P. Miller, Louis Fredriksen, and Bryan So. “An Empirical Study of the Re-
liability of UNIX Utilities”. In: Commun. ACM 33.12 (Dec. 1990), pp. 32–44. issn:
0001-0782. doi: 10.1145/96267.96279.

[124] MITRE. 2019 CWE Top 25 Most Dangerous Software Errors. https://cwe.mitre.
org/top25/archive/2019/2019_cwe_top25.html. Retrieved: June 2020.

[125] Mozilla Rhino. https://github.com/mozilla/rhino. Accessed August 24, 2018.
2018.

[126] Glenford J. Myers. Art of Software Testing. Wiley, 1979. isbn: 0471043281.

[127] Stefan Nagy and Matthew Hicks. “Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing”. In: 2019 IEEE Symposium on Security and Privacy
(SP). IEEE. 2019, pp. 787–802.

[128] M. G. Nanda and S. Sinha. “Accurate Interprocedural Null-Dereference Analysis for
Java”. In: 2009 IEEE 31st International Conference on Software Engineering. 2009,
pp. 133–143.

[129] Nicholas Nethercote and Julian Seward. “Valgrind: A program supervision frame-
work”. In: Electronic notes in theoretical computer science 89.2 (2003), pp. 44–66.

https://doi.org/10.1145/2048066.2048144
https://doi.org/10.1145/2048066.2048144
https://doi.org/10.1145/2048066.2048144
https://github.com/josdejong/mathjs
https://github.com/josdejong/mathjs
https://doi.org/10.1109/ICSTW.2011.100
http://dx.doi.org/10.1109/ICSTW.2011.100
http://dx.doi.org/10.1109/ICSTW.2011.100
https://doi.org/10.1145/96267.96279
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://github.com/mozilla/rhino

BIBLIOGRAPHY 129

[130] Shirin Nilizadeh, Yannic Noller, and Corina S. Păsăreanu. “DifFuzz: Differential Fuzzing
for Side-channel Analysis”. In: Proceedings of the 41st International Conference on
Software Engineering. ICSE ’19. 2019, pp. 176–187. doi: 10.1109/ICSE.2019.00034.
url: https://doi.org/10.1109/ICSE.2019.00034.

[131] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. “Toddler: Detecting Per-
formance Problems via Similar Memory-access Patterns”. In: Proceedings of the 2013
International Conference on Software Engineering. ICSE ’13. 2013, pp. 562–571. isbn:
978-1-4673-3076-3. url: http://dl.acm.org/citation.cfm?id=2486788.2486862.

[132] Node.js. https://nodejs.org. Retrieved: August 2016.

[133] Bashar Nuseibeh and Steve Easterbrook. “Requirements engineering: a roadmap”. In:
Proceedings of the Conference on the Future of Software Engineering. 2000, pp. 35–46.

[134] Robert O’callahan and Jong-Deok Choi. “Hybrid dynamic data race detection”. In:
Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice of
parallel programming. 2003, pp. 167–178.

[135] Oswaldo Olivo, Isil Dillig, and Calvin Lin. “Static Detection of Asymptotic Perfor-
mance Bugs in Collection Traversals”. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI 2015. 2015,
pp. 369–378. isbn: 978-1-4503-3468-6. doi: 10.1145/2737924.2737966. url: http:
//doi.acm.org/10.1145/2737924.2737966.

[136] Tobias Ospelt. AFL-based Java fuzzers and the Java Security Manager. https://
www.modzero.ch/modlog/archives/2018/09/20/java_bugs_with_and_without_
fuzzing/index.html. Accessed April 17, 2019. 2018.

[137] OUSPG. radamsa: a general-purpose fuzzer. https://gitlab.com/akihe/radamsa.
Accessed June 30, 2020. 2007.

[138] OW2 Consortium. ObjectWeb ASM. https://asm.ow2.io. Accessed August 21,
2018. 2018.

[139] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. “Feedback-
Directed Random Test Generation”. In: Proceedings of the 29th International Confer-
ence on Software Engineering. ICSE ’07. 2007, pp. 75–84. isbn: 0-7695-2828-7. doi:
10.1109/ICSE.2007.37. url: https://doi.org/10.1109/ICSE.2007.37.

[140] Rohan Padhye, Caroline Lemieux, and Koushik Sen. “JQF: Coverage-guided Property-
based Testing in Java”. In: Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA 2019. 2019, pp. 398–401. isbn:
978-1-4503-6224-5. doi: 10.1145/3293882.3339002. url: http://doi.acm.org/
10.1145/3293882.3339002.

https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1109/ICSE.2019.00034
http://dl.acm.org/citation.cfm?id=2486788.2486862
https://nodejs.org
https://doi.org/10.1145/2737924.2737966
http://doi.acm.org/10.1145/2737924.2737966
http://doi.acm.org/10.1145/2737924.2737966
https://www.modzero.ch/modlog/archives/2018/09/20/java_bugs_with_and_without_fuzzing/index.html
https://www.modzero.ch/modlog/archives/2018/09/20/java_bugs_with_and_without_fuzzing/index.html
https://www.modzero.ch/modlog/archives/2018/09/20/java_bugs_with_and_without_fuzzing/index.html
https://gitlab.com/akihe/radamsa
https://asm.ow2.io
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/3293882.3339002
http://doi.acm.org/10.1145/3293882.3339002
http://doi.acm.org/10.1145/3293882.3339002

BIBLIOGRAPHY 130

[141] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon.
“Semantic Fuzzing with Zest”. In: Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. ISSTA 2019. 2019, pp. 329–340.
isbn: 978-1-4503-6224-5. doi: 10.1145/3293882.3330576. url: http://doi.acm.
org/10.1145/3293882.3330576.

[142] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon.
“Validity Fuzzing and Parametric Generators for Effective Random Testing”. In: Pro-
ceedings of the 41st International Conference on Software Engineering: Companion
Proceedings. ICSE ’19. 2019, pp. 266–267. url: https://dl.acm.org/citation.
cfm?id=3339777.

[143] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh Vi-
jayakumar. “FuzzFactory: domain-specific fuzzing with waypoints”. In: Proceedings of
the ACM on Programming Languages 3.OOPSLA (2019), pp. 1–29. doi: 10.1145/
3360600. url: https://doi.org/10.1145/3360600.

[144] Rohan Padhye and Koushik Sen. “Travioli: A dynamic analysis for detecting data-
structure traversals”. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering. ICSE’17. IEEE. 2017, pp. 473–483. doi: 10.1109/ICSE.2017.50. url:
https://ieeexplore.ieee.org/document/7985686.

[145] Manolis Papadakis and Konstantinos Sagonas. “A PropEr Integration of Types and
Function Specifications with Property-based Testing”. In: Proceedings of the 10th
ACM SIGPLAN Workshop on Erlang. Erlang ’11. 2011, pp. 39–50. isbn: 978-1-4503-
0859-5. doi: 10.1145/2034654.2034663. url: http://doi.acm.org/10.1145/
2034654.2034663.

[146] PeachFuzzer. https://www.peach.tech/. Accessed January 28, 2019. 2019.

[147] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. “T-Fuzz: fuzzing by program trans-
formation”. In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018,
pp. 697–710.

[148] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D Keromytis, and Suman
Jana. “Nezha: Efficient domain-independent differential testing”. In: 2017 IEEE Sym-
posium on Security and Privacy (SP). IEEE. 2017, pp. 615–632.

[149] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana. “SlowFuzz:
Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabili-
ties”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’17. 2017, pp. 2155–2168. isbn: 978-1-4503-4946-8. doi:
10.1145/3133956.3134073. url: http://doi.acm.org/10.1145/3133956.
3134073.

[150] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Razvan Caci-
ulescu, and Abhik Roychoudhury. “Smart greybox fuzzing”. In: IEEE Transactions on
Software Engineering (2019).

https://doi.org/10.1145/3293882.3330576
http://doi.acm.org/10.1145/3293882.3330576
http://doi.acm.org/10.1145/3293882.3330576
https://dl.acm.org/citation.cfm?id=3339777
https://dl.acm.org/citation.cfm?id=3339777
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1145/3360600
https://doi.org/10.1109/ICSE.2017.50
https://ieeexplore.ieee.org/document/7985686
https://doi.org/10.1145/2034654.2034663
http://doi.acm.org/10.1145/2034654.2034663
http://doi.acm.org/10.1145/2034654.2034663
https://www.peach.tech/
https://doi.org/10.1145/3133956.3134073
http://doi.acm.org/10.1145/3133956.3134073
http://doi.acm.org/10.1145/3133956.3134073

BIBLIOGRAPHY 131

[151] Sokhom Pheng and Clark Verbrugge. “Dynamic Data Structure Analysis for Java
Programs”. In: Proceedings of the 14th IEEE International Conference on Program
Comprehension. ICPC ’06. 2006, pp. 191–201. isbn: 0-7695-2601-2. doi: 10.1109/
ICPC.2006.20. url: http://dx.doi.org/10.1109/ICPC.2006.20.

[152] Benjamin C Pierce and C Benjamin. Types and programming languages. MIT press,
2002.

[153] Michael Pradel, Markus Huggler, and Thomas R. Gross. “Performance Regression
Testing of Concurrent Classes”. In: Proceedings of the 2014 International Symposium
on Software Testing and Analysis. ISSTA 2014. 2014, pp. 13–25. isbn: 978-1-4503-
2645-2. doi: 10.1145/2610384.2610393. url: http://doi.acm.org/10.1145/
2610384.2610393.

[154] Easwaran Raman and David I. August. “Recursive Data Structure Profiling”. In:
Proceedings of the 2005 Workshop on Memory System Performance. MSP ’05. 2005,
pp. 5–14. isbn: 1-59593-147-3. doi: 10.1145/1111583.1111585. url: http://doi.
acm.org/10.1145/1111583.1111585.

[155] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. “VUzzer: Application-aware Evolutionary Fuzzing”. In: Proceedings of
the 2017 Network and Distributed System Security Symposium. NDSS ’17. 2017.

[156] React.JS. https://reactjs.org. Accessed August 24, 2018. 2018.

[157] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David War-
ren, Gustavo Grieco, and David Brumley. “Optimizing Seed Selection for Fuzzing”. In:
Proceedings of the 23rd USENIX Conference on Security Symposium. SEC’14. 2014,
pp. 861–875. isbn: 978-1-931971-15-7. url: http://dl.acm.org/citation.cfm?id=
2671225.2671280.

[158] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. “Quickly Gener-
ating Diverse Valid Test Inputs with Reinforcement Learning”. In: 42nd International
Conference on Software Engineering (ICSE). ICSE ’20. 2020, pp. 23–29.

[159] Henry Gordon Rice. “Classes of recursively enumerable sets and their decision prob-
lems”. In: Transactions of the American Mathematical Society 74.2 (1953), pp. 358–
366.

[160] Olatunji Ruwase and Monica S Lam. “A Practical Dynamic Buffer Overflow Detec-
tor.” In: Proceedings of the 2004 Network and Distributed System Security Symposium.
Vol. 2004. NDSS ’04. 2004, pp. 159–169.

[161] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. “Parametric Shape Analysis via
3-valued Logic”. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’99. 1999, pp. 105–118. isbn: 1-58113-
095-3. doi: 10.1145/292540.292552. url: http://doi.acm.org/10.1145/292540.
292552.

https://doi.org/10.1109/ICPC.2006.20
https://doi.org/10.1109/ICPC.2006.20
http://dx.doi.org/10.1109/ICPC.2006.20
https://doi.org/10.1145/2610384.2610393
http://doi.acm.org/10.1145/2610384.2610393
http://doi.acm.org/10.1145/2610384.2610393
https://doi.org/10.1145/1111583.1111585
http://doi.acm.org/10.1145/1111583.1111585
http://doi.acm.org/10.1145/1111583.1111585
https://reactjs.org
http://dl.acm.org/citation.cfm?id=2671225.2671280
http://dl.acm.org/citation.cfm?id=2671225.2671280
https://doi.org/10.1145/292540.292552
http://doi.acm.org/10.1145/292540.292552
http://doi.acm.org/10.1145/292540.292552

BIBLIOGRAPHY 132

[162] ScalaCheck: Property-based testing for Scala. https://www.scalacheck.org/. Ac-
cessed January 28, 2019. 2019.

[163] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. “Jalangi: A
Selective Record-replay and Dynamic Analysis Framework for JavaScript”. In: Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ES-
EC/FSE 2013. 2013, pp. 488–498. isbn: 978-1-4503-2237-9. doi: 10.1145/2491411.
2491447. url: http://doi.acm.org/10.1145/2491411.2491447.

[164] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing En-
gine for C”. In: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ESEC/FSE-13. 2005.

[165] Koushik Sen, George Necula, Liang Gong, and Wontae Choi. “MultiSE: Multi-path
symbolic execution using value summaries”. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. 2015, pp. 842–853.

[166] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov.
“AddressSanitizer: A fast address sanity checker”. In: Presented as part of the 2012
{USENIX} Annual Technical Conference ({USENIX}{ATC} 12). 2012, pp. 309–318.

[167] Konstantin Serebryany and Timur Iskhodzhanov. “ThreadSanitizer: data race de-
tection in practice”. In: Proceedings of the workshop on binary instrumentation and
applications. 2009, pp. 62–71.

[168] Kostya Serebryany, Vitaly Buka, and Matt Morehouse. Structure-aware fuzzing for
Clang and LLVM with libprotobuf-mutator. 2017.

[169] Micha Sharir and Amir Pnueli. “Two approaches to interprocedural data flow anal-
ysis”. In: Program Flow Analysis: Theory and Applications. Ed. by Muchnick and
Jones. 1981.

[170] Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. “Automating Performance
Bottleneck Detection Using Search-based Application Profiling”. In: Proceedings of
the 2015 International Symposium on Software Testing and Analysis. ISSTA 2015.
2015, pp. 270–281. isbn: 978-1-4503-3620-8. doi: 10.1145/2771783.2771816. url:
http://doi.acm.org/10.1145/2771783.2771816.

[171] Olin Shivers. “Control-Flow Analysis of Higher-Order Languages”. PhD thesis. Carnegie
Mellon University, May 1991.

[172] V. Singh, R. Gupta, and I. Neamtiu. “MG++: Memory graphs for analyzing dynamic
data structures”. In: 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). Mar. 2015, pp. 291–300. doi: 10.1109/
SANER.2015.7081839.

https://www.scalacheck.org/
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447
http://doi.acm.org/10.1145/2491411.2491447
https://doi.org/10.1145/2771783.2771816
http://doi.acm.org/10.1145/2771783.2771816
https://doi.org/10.1109/SANER.2015.7081839
https://doi.org/10.1109/SANER.2015.7081839

BIBLIOGRAPHY 133

[173] Emin Gün Sirer and Brian N. Bershad. “Using Production Grammars in Software
Testing”. In: Proceedings of the 2Nd Conference on Domain-specific Languages. DSL
’99. 1999, pp. 1–13. isbn: 1-58113-255-7. doi: 10.1145/331960.331965. url: http:
//doi.acm.org/10.1145/331960.331965.

[174] Steven S. Skiena. The Algorithm Design Manual. second. 2009. isbn: 9781848000704.
url: https://books.google.com/books?id=7XUSn0IKQEgC.

[175] Software Fail Watch: 5th Edition. https : / / www . tricentis . com / resources /
software-fail-watch-5th-edition/. Retrieved: June 2020.

[176] Linhai Song and Shan Lu. “Statistical Debugging for Real-world Performance Prob-
lems”. In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’14. 2014, pp. 561–578.
isbn: 978-1-4503-2585-1. doi: 10.1145/2660193.2660234. url: http://doi.acm.
org/10.1145/2660193.2660234.

[177] Richard M. Stallman et al. Using The Gnu Compiler Collection: A Gnu Manual For
Gcc Version 4.3.3. 2009. isbn: 9781441412768.

[178] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Ja-
copo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. “Driller:
Augmenting Fuzzing Through Selective Symbolic Execution”. In: Proceedings of the
2016 Network and Distributed System Security Symposium. NDSS ’16. 2016.

[179] Robert Swiecki. hongfuzz. https://honggfuzz.dev/. Accessed June 30, 2020. 2010.

[180] test.check: QuickCheck for Clojure. https://github.com/clojure/test.check.
Accessed January 28, 2019. 2019.

[181] Nikolai Tillmann and Jonathan de Halleux. “Pex - White Box Test Generation for
.NET”. In: Proceedings of Tests and Proofs. Apr. 2008.

[182] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. “Synthesizing Programs
That Expose Performance Bottlenecks”. In: Proceedings of the 2018 International
Symposium on Code Generation and Optimization. CGO 2018. 2018, pp. 314–326.
isbn: 978-1-4503-5617-6. doi: 10.1145/3168830. url: http://doi.acm.org/10.
1145/3168830.

[183] David A Wagner, Jeffrey S Foster, Eric A Brewer, and Alexander Aiken. “A first step
towards automated detection of buffer overrun vulnerabilities.” In: Proceedings of the
2000 Network and Distributed System Security Symposium. NDSS ’00. 2000.

[184] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. “Superion: Grammar-Aware Grey-
box Fuzzing”. In: 41st International Conference on Software Engineering. ICSE ’19.
2019.

[185] wf - Simple word frequency counter. Accessed Jan 2018. 2017. url: https://fedora.
pkgs.org/27/fedora-x86_64/wf-0.41-16.fc27.x86_64.rpm.html.

https://doi.org/10.1145/331960.331965
http://doi.acm.org/10.1145/331960.331965
http://doi.acm.org/10.1145/331960.331965
https://books.google.com/books?id=7XUSn0IKQEgC
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://www.tricentis.com/resources/software-fail-watch-5th-edition/
https://doi.org/10.1145/2660193.2660234
http://doi.acm.org/10.1145/2660193.2660234
http://doi.acm.org/10.1145/2660193.2660234
https://honggfuzz.dev/
https://github.com/clojure/test.check
https://doi.org/10.1145/3168830
http://doi.acm.org/10.1145/3168830
http://doi.acm.org/10.1145/3168830
https://fedora.pkgs.org/27/fedora-x86_64/wf-0.41-16.fc27.x86_64.rpm.html
https://fedora.pkgs.org/27/fedora-x86_64/wf-0.41-16.fc27.x86_64.rpm.html

BIBLIOGRAPHY 134

[186] John Whaley and Monica S. Lam. “Cloning-based Context-sensitive Pointer Alias
Analysis Using Binary Decision Diagrams”. In: Proceedings of the ACM SIGPLAN
2004 Conference on Programming Language Design and Implementation. PLDI ’04.
2004, pp. 131–144. isbn: 1-58113-807-5. doi: 10.1145/996841.996859. url: http:
//doi.acm.org/10.1145/996841.996859.

[187] David H. White, Thomas Rupprecht, and Gerald Lüttgen. “DSI: An Evidence-based
Approach to Identify Dynamic Data Structures in C Programs”. In: Proceedings of
the 25th International Symposium on Software Testing and Analysis. ISSTA 2016.
2016, pp. 259–269. isbn: 978-1-4503-4390-9. doi: 10.1145/2931037.2931071. url:
http://doi.acm.org/10.1145/2931037.2931071.

[188] ReinhardWilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika
Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Sten-
ström. “The Worst-case Execution-time Problem – Overview of Methods and Survey
of Tools”. In: ACM Trans. Embed. Comput. Syst. 7.3 (May 2008), 36:1–36:53. issn:
1539-9087. doi: 10.1145/1347375.1347389. url: http://doi.acm.org/10.1145/
1347375.1347389.

[189] David A Wood, Garth A Gibson, and Randy H Katz. “Verifying a multiprocessor
cache controller using random test generation”. In: IEEE Design & Test of Computers
7.4 (1990), pp. 13–25.

[190] Yichen Xie, Andy Chou, and Dawson Engler. “Archer: using symbolic, path-sensitive
analysis to detect memory access errors”. In: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIGSOFT international sympo-
sium on Foundations of software engineering. 2003, pp. 327–336.

[191] Bin Xin, William N. Sumner, and Xiangyu Zhang. “Efficient Program Execution
Indexing”. In: Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’08. 2008, pp. 238–248. isbn: 978-1-
59593-860-2. doi: 10.1145/1375581.1375611. url: http://doi.acm.org/10.
1145/1375581.1375611.

[192] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and Understanding
Bugs in C Compilers”. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’11. 2011.

[193] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. “Droidfuzzer: Fuzzing the
android apps with intent-filter tag”. In: Proceedings of International Conference on
Advances in Mobile Computing & Multimedia. 2013, pp. 68–74.

[194] Shin Yoo and Mark Harman. “Pareto efficient multi-objective test case selection”. In:
Proceedings of the 2007 international symposium on Software testing and analysis.
ACM. 2007, pp. 140–150.

https://doi.org/10.1145/996841.996859
http://doi.acm.org/10.1145/996841.996859
http://doi.acm.org/10.1145/996841.996859
https://doi.org/10.1145/2931037.2931071
http://doi.acm.org/10.1145/2931037.2931071
https://doi.org/10.1145/1347375.1347389
http://doi.acm.org/10.1145/1347375.1347389
http://doi.acm.org/10.1145/1347375.1347389
https://doi.org/10.1145/1375581.1375611
http://doi.acm.org/10.1145/1375581.1375611
http://doi.acm.org/10.1145/1375581.1375611

BIBLIOGRAPHY 135

[195] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. “QSYM: A Prac-
tical Concolic Execution Engine Tailored for Hybrid Fuzzing”. In: Proceedings of the
27th USENIX Conference on Security Symposium. SEC’18. 2018, pp. 745–761. isbn:
978-1-931971-46-1. url: http://dl.acm.org/citation.cfm?id=3277203.3277260.

[196] Michał Zalewski. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl. Accessed
March 20, 2019. 2014.

[197] Michał Zalewski. American Fuzzy Lop Technical Details. http://lcamtuf.coredump.
cx/afl/technical_details.txt. Accessed March 20, 2019. 2017.

[198] Michał Zalewski. FidgetyAFL. https://groups.google.com/d/msg/afl-users/
fOPeb62FZUg/CES5lhznDgAJ. Accessed Jan 28th, 2019. 2016.

[199] Michał Zalewski. Fuzzing random programs without execve(). https://lcamtuf.
blogspot.com/2014/10/fuzzing- binaries- without- execve.html. Accessed
March 20, 2019. 2014.

[200] Dmitrijs Zaparanuks and Matthias Hauswirth. “Algorithmic Profiling”. In: Proceed-
ings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’12. 2012, pp. 67–76. isbn: 978-1-4503-1205-9. doi: 10.1145/
2254064.2254074. url: http://doi.acm.org/10.1145/2254064.2254074.

[201] Saman Taghavi Zargar, James Joshi, and David Tipper. “A survey of defense mecha-
nisms against distributed denial of service (DDoS) flooding attacks”. In: IEEE Com-
munications Surveys & Tutorials 15.4 (2013), pp. 2046–2069.

[202] Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. “Automatic Generation of
Load Tests”. In: Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering. ASE ’11. 2011, pp. 43–52. isbn: 978-1-4577-
1638-6. doi: 10.1109/ASE.2011.6100093. url: http://dx.doi.org/10.1109/ASE.
2011.6100093.

http://dl.acm.org/citation.cfm?id=3277203.3277260
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
https://groups.google.com/d/msg/afl-users/fOPeb62FZUg/CES5lhznDgAJ
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.com/2014/10/fuzzing-binaries-without-execve.html
https://doi.org/10.1145/2254064.2254074
https://doi.org/10.1145/2254064.2254074
http://doi.acm.org/10.1145/2254064.2254074
https://doi.org/10.1109/ASE.2011.6100093
http://dx.doi.org/10.1109/ASE.2011.6100093
http://dx.doi.org/10.1109/ASE.2011.6100093

136

Author’s Biography

Rohan Padhye is completing a Ph.D. in Computer Science at UC Berkeley, advised by
Koushik Sen. He previously worked at IBM Research India and holds a master’s degree from
the Indian Institute of Technology Bombay. His research focuses on dynamic program anal-
ysis and automatic test-input generation. Complementing his doctoral work, he interned at
Microsoft Research and Samsung Research America, developing techniques to automatically
find software bugs in large-scale production systems. He is also the lead designer of the
ChocoPy programming language, which currently underpins the undergraduate compilers
course at Berkeley. He is the recipient of an ACM SIGSOFT Distinguished Paper Award, an
ACM SIGSOFT Distinguished Artifact Award, a Tool Demonstration Award, an SOSP Best
Paper Award, the C.V. Ramamoorthy Distinguished Research Award, and an Outstanding
Graduate Student Instructor Award.

In Fall 2020, Rohan Padhye will join Carnegie Mellon University’s School of Computer
Science as an Assistant Professor in the Institute for Software Research.

	Contents
	List of Figures
	List of Tables
	Introduction
	Algorithmic Performance Bugs
	Semantic Bugs in Input-Processing Pipelines
	Domain-Specific Testing Objectives

	Background
	Software Bugs
	Program Analysis
	Automatic Test-Input Generation
	Random Fuzz Testing
	Coverage-Guided Fuzzing (CGF)
	Contemporary CGF Tools: AFL and libFuzzer

	Travioli: Dynamic Analysis of Data-Structure Traversals
	Motivation
	Identifying Data-Structure Traversals
	Traversing Functions
	Detecting Traversing Functions
	Detecting Redundant Traversals

	Dynamic Analysis Implementation
	Events and Traces
	Read-Traces and Read-Footprints
	Traversing Functions
	Detecting Traversals
	Detecting Redundant Traversals
	Access Graphs

	Evaluation
	Summary

	PerfFuzz: Automatically Generating Pathological Inputs
	A Motivating Example
	The PerfFuzz Algorithm
	Implementation

	Evaluation
	Comparison with SlowFuzz
	Maximizing Execution Counts
	Algorithmic Complexity Vulnerabilities

	Comparison with Coverage-Guided Fuzzing
	Case Studies
	libpng
	libjpeg-turbo
	zlib
	libxml
	Google Closure Compiler

	Threats to Validity
	Summary

	JQF and Zest: Coverage-Guided Generator-Based Fuzzing
	Problem Motivation
	Generator-Based Testing
	Coverage-Guided Fuzzing

	Semantic Fuzzing with Zest
	Parametric Generators
	The Zest Algorithm for Semantic Fuzzing

	The JQF Framework
	The Guidance Interface
	Parametric Generators
	Code Coverage Events
	Guidances
	No Guidance
	Zest Guidance
	AFL Guidance
	PerfFuzz Guidance
	Repro Guidance

	New Software Bugs Uncovered

	Evaluation of Zest
	Coverage of Semantic Analysis Classes
	Bugs in the Semantic Analysis Classes

	Discussion and Limitations
	Summary

	FuzzFactory: Domain-Specific Fuzzing with Waypoints
	Motivation
	Waypoints

	The FuzzFactory Framework
	Domain-Specific Feedback
	Waypoints
	Monotonicity of Aggregation

	Composing Domains
	Algorithm for Domain-Specific Fuzzing

	Domain-Specific Fuzzing Applications
	Program Instrumentation
	Experimental Setup
	slow: Maximizing Execution Path Length
	Experimental Evaluation

	perf: Discovering Hot Spots
	Experimental Evaluation

	mem: Exacerbating Memory Allocations
	Experimental Evaluation

	valid: Validity Fuzzing
	Experimental Evaluation

	cmp: Smoothing Hard Comparisons
	Experimental Evaluation

	diff: Incremental Fuzzing
	Experimental Evaluation

	Composing Multiple Domains
	New bugs discovered

	Discussion
	Implementation
	API for Domain-Specific Fuzzing

	Summary

	Related Work
	Algorithmic Performance Bugs
	Redundant Computation Analysis
	Data-Structure Analysis
	Execution Contexts and AECs
	Worst-Case Execution Time
	Generating Pathological Inputs Automatically

	Coverage-Guided Fuzzing
	Generating Complex Inputs for Testing
	Customizing Fuzzing Algorithms

	Conclusion
	Key Takeaway
	Future Work

	Bibliography
	Author's Biography

