
Parallelizing Irregular Applications for Distributed Memory
Scalability: Case Studies from Genomics

Marquita Ellis
Katherine A. Yelick, Ed.
James Demmel, Ed.
Aydin Buluç, Ed.
Daniel Rokhsar, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-133
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-133.html

June 3, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Parallelizing Irregular Applications for Distributed Memory Scalability: Case Studies from
Genomics

by

Marquita May Ellis

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Katherine Yelick, Chair
Professor James Demmel
Professor Daniel Rokhsar

Adjunct Assistant Professor Aydın Buluç

Spring 2020

Parallelizing Irregular Applications for Distributed Memory Scalability: Case Studies from
Genomics

Copyright 2020
by

Marquita May Ellis

1

Abstract

Parallelizing Irregular Applications for Distributed Memory Scalability: Case Studies from
Genomics

by

Marquita May Ellis

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Katherine Yelick, Chair

Generalizable approaches, models, and frameworks for irregular application scalability is
an old yet open area in parallel and distributed computing research. Irregular applica-
tions are particularly hard to parallelize and distribute because, by definition, the pattern
of computation is dependent upon the input data. With the proliferation of data-driven
and data-intensive applications from the realm of Big Data, and the increasing demand
for and availability of large-scale computing resources through HPC-Cloud convergence, the
importance of generalized approaches to achieving irregular application scalability is only
growing.

Rather than o↵ering another software language or framework, this dissertation argues we
first need to understand application scalability, especially irregular application scalability,
and more closely examine patterns of computation, data sharing, and dependencies. As it
stands, predominant performance models and tools from parallel and distributed computing
focus on applications that are divided into distinct communication and computation phases,
and ignore issues related to memory utilization. While time-tested and valuable, these
models are not always su�cient for understanding full application scalability, particularly, the
scalability of data-intensive irregular applications. We present application case studies from
genomics, highlighting the interdependencies of communication, computation, and memory
capacities and performance.

The genomics applications we will examine o↵er a particularly useful and practical vantage
point for this analysis, as they are data-intensive irregular application targets for both HPC
and cloud computing. Further, they present an extreme for both domains. For HPC, they
are less akin to traditional, well-studied and well-supported scientific simulations and more
akin to text and document analysis applications. For cloud computing, they are an extreme
in that they require frequent random global access to memory and data, stressing intercon-
nection network latency and bandwidth and co-scheduled processors for tightly orchestrated

2

computation.

We show how common patterns of irregular all-to-all computation can be managed e�ciently,
comparing bulk-synchronous approaches built on collective communication and asynchronous
approaches based on one-sided communication. For the former, our work is based on the
popular Message Passing Interface (MPI) and makes heavy use of globally collective commu-
nication operations that exchange data across processors in a single step or, to save memory
use, in a set of irregular steps. For the latter, we build on the UPC++ programming frame-
work, which provides lightweight RPC mechanisms, to transfer both data and computational
work between processors. We present performance results across multiple platforms including
several modern HPC systems and, at least in one case, a cloud computing platform.

With these application case studies, we seek not only to contribute to discussions around
parallel algorithm and data structure design, programming systems, and performance mod-
eling within the parallel computing community, but also to contribute to broader work in
genomics through software development and analysis. Thus, we develop and present the
first distributed memory scalable software for analyzing data sets from the latest generation
of sequencing technologies, known as long read data sets. Specifically, we present scalable
solutions to the problem of many-to-many long read overlap and alignment, the compu-
tational bottleneck to long read assembly, error correction, and direct analysis. Through
cross-architectural empirical analysis, we identify the key components to e�cient scalability,
and highlight the priorities for any future optimization with analytical models.

i

To the two people who have continuously supported and inspired me from the first, in ways
and depths that words cannot express: Carmen and Lorenna, my mom and sister.

ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Introduction 1

2 Preliminaries 6
2.1 Reads, Errors, and k-mers . 6
2.2 Alignment . 7
2.3 Many-to-Many Long Read Overlap and Alignment as Hypergraph Construc-

tion and Refinement . 10
2.4 k-mer Lengths and Frequency-Based k-mer Filtering 13
2.5 Scalability Analysis . 13

3 Scalable Bulk-Synchronous Hash Table Construction for Irregular Hy-
pergraphs 17
3.1 Introduction . 17
3.2 Distributed Memory Management of Input Reads 20
3.3 Load Balanced Hypergraph Construction . 21
3.4 Minimizing Memory Requirement by Filtering-Out Singleton k-mers 23
3.5 Analytical & Empirical Results for a Long Read and a Short Read Workload 24
3.6 Precise Cardinality Estimation Trade-O↵s 26
3.7 Heavy Hitters Detection Trade-O↵s . 30
3.8 Overall Performance . 34
3.9 Conclusions . 35

4 Cross-Architectural Analysis of Bulk-Synchronous Overlap Hypergraph
Construction, Traversal, & Refinement 38
4.1 Bulk-Synchronous Parallel Pipeline Overview 39
4.2 Empirical Analysis Overview . 40
4.3 Hypergraph Traversal & Task Redistribution 43

iii

4.4 Overlap Hypergraph Refinement via Many-to-Many Alignment 47
4.5 Overall Pipeline Performance . 49
4.6 Summary & Conclusions . 52
4.7 Future Work: Overlap Hypergraph Data Analysis 55

5 Asynchronous versus Bulk Synchronous Overlap Hypergraph Refinement 57
5.1 Introduction: Challenges and Opportunities 58
5.2 A Baseline Asynchronous Many-to-Many Alignment Algorithm 60
5.3 Empirical Results . 61
5.4 Summary . 66
5.5 Conclusions & Future Work . 67

6 Related & Ongoing Work 69
6.1 Distributed k-mer Based Hypergraph Construction 69
6.2 Many-to-Many Long-Read Overlap & Alignment 70
6.3 E�cient Long-Read Pairwise Alignment . 73
6.4 Multiple Sequence Alignment . 75

7 Conclusions & Future Work 76

Bibliography 79

A Alternative Mathematical Formulations of Long Read Overlap and Align-
ment 85
A.1 k-mer Based Long Read Overlap Detection as Bipartite Graph Construction

and Refinement . 85
A.2 Partitioning the Bipartite Graph . 86
A.3 Many-to-Many Pairwise Alignment as Hypergraph Construction and Traversal 86

iv

List of Figures

2.1 Illustrates the computation of the three k-mers (6-mers) on the right from the
underlined regions of the string on the left. 7

2.2 The 6-mers shared between two strings on the left are used to seed the alignment
of the same two strings on the right. 7

2.3 Example input reads, in no particular order, sharing circled 5-mers. 11
2.4 Reads and 5-mers from Figure 2.3 arranged according to the underlying unknown

genome. 11
2.5 The hypergraph corresponding to Figure 2.3. Reads (hyperedges) are shown with

solid and dashed lines connecting alignment tasks (vertices). 12
2.6 A possible partitioning of the read set in Fig. 2.3 between 2 processors, X and Y.

Alignment tasks from Fig. 2.3- 2.5 are included. 12

3.1 Toy example illustrating de Bruijn subgraph traversal with three 6-mer vertices.
The path from Vertex 1 to 2 is computed by appending vertex 1’s forward exten-
sion, ‘G’, to the last k � 1 characters of vertex 1, “CCAGA”. Likewise, the path
from vertex 2 to 3 is computed by appending the forward extension, ‘A’, to the
last k�1 characters of vertex 2, “CAGAG”. Only forward traversal, and forward
extensions with corresponding edges, are shown for simplicity. The result of the
forward traversal is the string “TCCAGAGA”. 18

3.2 The global hash table for the toy example in Figure 3.1. The backward extensions,
that were elided in Figure 3.1 for simplicity, are shown. The quality scores and
counts shown were arbitrarily chosen. 18

3.3 Diagram of the diBELLA’s hash table elements. Read identifiers are denoted
r1, ..., rm. k-mer positions are denoted p1, ..., pm. The global frequency of the
respective k-mer is denoted i. 19

3.4 DiBELLA’s global hash table for the toy example in Figures 2.3. Sets of read
identifiers and corresponding k-mer locations stored in fixed-size arrays in the
illustration. 19

v

3.5 Strong scaling speedup of HipMer’s de Bruijn graph construction given an Illu-
mina short read human data set with 100⇥ coverage. Speedup (y-axis) is cal-
culated relative to performance on the minimum number of nodes required to
process the data set (64). The number of nodes is shown on the x-axis. MPI
ranks are pinned to cores (24 ranks per node). 25

3.6 Speedup of diBELLA’s overlap hypergraph construction on Edison, given a PacBio
long read human data set with 10⇥ coverage. Speedup (y-axis) is calculated rel-
ative to the performance on 64 nodes. MPI ranks are pinned to cores (24 ranks
per node). The number of nodes is shown on the x-axis. 25

3.7 Comparison of empirical Bloom filter sizes initialized with the “Simple” versus
the HyperLogLog (“HLL”) cardinality estimation techniques. The comparison is
across 3 data sets and 4 scales each (x-axis). The number of partitions is 2 raised
to the power of the value on the x-axis times 24 – 1 partition per Edison core was
used in experiments, Edison has 24 cores per node. 27

3.8 Compares ratios of the estimated to the actual k-mer set cardinality for each
estimation approach, the “Simple” and the HyperLogLog (“HLL”), across 3 data
sets. 27

3.9 Compares the (log-scaled) runtime of each estimation technique, the “Simple”
and the HyperLogLog (“HLL”), strong scaling with the Human 54⇥ data set on
Edison. 27

3.10 Strong scaling comparison of the irregular all-to-all k-mer exchange time. (Lower
is better.) The heavy-hitters optimization improves the exchange performance
and scalability. 31

3.11 Strong scaling comparison of time spent packing k-mers for the irregular all-
to-all exchange. The heavy-hitters optimization requires more packing time to
consolidate heavy-hitters at the source(s). 31

3.12 Performing partial counts of heavy hitters at their sources in the optimized version
increases the computation time negligibly (0� 7%) over the reference version. . 31

3.13 Shows the overall heavy-hitters optimized performance with (+) and without
(�) the cost of the optimization itself, alongside the overall performance of the
reference implementation. 31

3.14 Strong scaling comparison of the irregular all-to-all k-mer exchange time. (Lower
is better.) The heavy-hitters optimization improves the exchange performance
and scalability. 32

3.15 Strong scaling comparison of time spent packing k-mers for the irregular all-
to-all exchange. The heavy-hitters optimization requires more packing time to
consolidate heavy-hitters at their sources. 32

3.16 Performing partial counts of heavy hitters at their sources in the optimized version
increases the computation 10-20% over the reference version. 32

3.17 Shows the overall heavy-hitters optimized performance with (+) and without
(�) the cost of the optimization itself, alongside the overall performance of the
reference implementation. 32

vi

3.18 Hash table and Bloom filter construction runtime breakdown, strong scaling with
the Human 10⇥ data set on Edison. 35

4.1 An illustration of DiBELLA’s 3-stage Single Program Multiple Data (SPMD)
bulk-synchronous pipeline. By the end of step 1, the initial overlap hypergraph
is constructed. By the end of step 2, hyperedge set intersections, identifying
alignment tasks for the last step, are computed and re-balanced. By the end of
step 3, the hypergraph has been refined, and pairwise alignment information for
overlapping reads is ready for output. 40

4.2 Strong scaling (percent) runtime breakdown of the DiBELLA pipeline from 4 to
64 nodes on Titan, each running 1 MPI rank per Integer core / L1 cache (16
total per node). All pairwise seed-and-extend alignments for all seeds (k-mers)
discovered and retained from hypergraph construction were computed. The time
spent in any component (communication, computation, or I/O) of any other stage
(construction, traversal, refinement) are barely visible even at 64 nodes / 1,024
cores because the pairwise alignment computation (yellow) in the refinement stage
almost completely dominates the runtime (from 99.4% to 96.8% across scales).
Over 4 nodes / 64 cores, the pairwise alignment computation speedup is 10.1⇥
(versus a perfect 16⇥), and the overall speedup is 9.9⇥. At 1,024 cores, the
second bottleneck is the construction stage, though it is still less than 3% of the
runtime. Overall, the runtime was reduced from 1.8 hours to 10 minutes. 42

4.3 Example: computing candidate overlaps from a hash table element. Reads are
represented by integer identifiers in the hash table value tuple; k-mer locations
and frequencies are elided from the value tuple for simplicity. See Figures 3.3-3.4
for full illustrations of hash table elements. 45

4.4 Cross-architecture performance of the traversal and task exchange in millions of
retained k-mers/second given E. coli 30⇥ one-seed. 47

4.5 Strong scaling e�ciency of the traversal and exchange on AWS with the E. coli
30⇥ one-seed workload. Includes fitted trendlines of roughly y ⇡ e0.2x for the
computation and y ⇡ e�0.9x for the exchange. 48

4.6 Strong scaling e�ciency of the traversal and exchange on Titan with the E. coli
30⇥ one-seed workload. Includes fitted trendlines of y ⇡ x2 for the computation
and y ⇡ �

p

x for the exchange. 48
4.7 Cross-architecture hypergraph refinement stage performance in millions of align-

ments / second, strong scaling the E. coli 30⇥ one-seed workload. 50
4.8 Load imbalance of the hypergraph refinement stage, strong scaling E. coli 30⇥

one-seed. Load imbalance is calculated using maximum over average stage times
across ranks (1.0 is perfect). The apparent spike at 16 nodes on Cori and Edison is
due to the fact that communication time is included in this metric, and that there
is a spike in communication time on Edison and Cori at 16 nodes as discussed in
Section 4.3. 50

vii

4.9 Overall strong scaling e�ciency, relative to one node, on Cray XC40 (Cori) over
2 data sets, E. coli 30⇥ and E. coli 100⇥, varying seed constraints (one-seed, all
seeds separated by q =1K characters, and all seeds with q = k = 17) for each
data set. 52

4.10 Strong scaling runtime breakdown on Cori with minimum computational-intensity
workload (E. coli 30⇥, one-seed). The y-axis is percent of total runtime. 53

4.11 Strong scaling runtime breakdown on Cori with the E. coli 100⇥ all-seeds q =
1Kbps workload, the input size of which is 3.5⇥ larger and computes roughly
20⇥ more alignments than the workload of Figure 4.10. The y-axis is percent of
total runtime. 53

4.12 E�ciency of the whole pipeline for all architectures, strong scaling with minimally
compute-intensive workload (E. coli 30⇥ one-seed). Overall e�ciency is shown on
the left and e�ciency of the exchanges is shown on the right. E�ciency (y-axis)
in both is calculated relative to single node performance. 54

4.13 Cross-architecture strong scaling performance of the pipeline as a whole, in terms
of millions of alignments per second given the E. coli 30⇥ one-seed workload. . . 54

4.14 Long-read by long-read matrix dot plot. Non-zeros are overlaps discovered with
DiBELLA. The number of non-zeros over the number of reads squared is 0.008.
Reads are numbered according to an essentially random ordering of the reads. . 56

4.15 The data in Figure 4.14 re-plotted: reads are numbered by their relative lengths,
increasing left-to-right and top-to-bottom. The number of overlaps per read in-
creases with the length, but not perfectly linearly. 56

5.1 Strong scaling performance of the asynchronous algorithm implemented in UPC++,
varying the maximum number of RPC’s in-flight (per thread, UPC++ rank).
Concurrency in terms of the number of threads increases along the x-axis. Threads
are pinned to cores, except, at x=128, they are pinned to hardware hyperthreads,
up to 2 per core. The overall runtime in seconds is shown on the y-axis (lower is
better). 61

5.2 Strong scaling performance of the asynchronous algorithm implemented in UPC++
alongside the performance of the bulk synchronous algorithm implemented in MPI
2.0. Performance is shown as overall runtime in seconds (y-axis). Concurrency in
terms of the number of threads increases along the x-axis. Threads, UPC++/MPI
ranks, are pinned to cores, up to 1 rank per L1 cache. 61

5.3 Comparative strong scaling (overall) e�ciency with the E.coli 100x data set on
Cori KNL. E�ciency (y-axis) is computed relative to single node (64 core) over-
all performance. The asynchronous (Async) version achieves up to 9% higher
e�ciency than the bulk synchronous (BSP) version. 63

5.4 Comparative strong scaling speedup of each version’s computation with the E.coli
100x data set on Cori KNL. Speedup is computed relative to single node (64 core)
performance. The computational speedup of each version is perfect. 63

viii

5.5 Strong scaling runtime breakdown with the E.coli 100x data set on Cori KNL. The
bulk synchronous (BSP) version completes all read exchanges in a single round.
The asynchronous version (Async) hides nearly all communication overhead. . . 63

5.6 Overall strong scaling e�ciency of the asynchronous (“Async”) and bulk syn-
chronous (“BSP”) codes, processing the same Pacbio CCS human workload on
Cori KNL. Between 8 and 32 nodes (left), BSP performs the many-to-many read
exchanges in multiple rounds in order to stay within processor memory limits,
and the Async is up to 16% more e�cient. From 64-512 nodes (right), there is
su�cient per processor memory for the bulk synchronous version to complete the
exchange in a single round. 65

5.7 Strong scaling runtime comparison of the bulk synchronous (BSP) and asyn-
chronous (Async) codes, processing the same Pacbio CCS human workload on
Cori KNL. Async successfully hides the communication overhead. 65

ix

List of Tables

2.1 Evaluated platforms. ⇤128 byte Get message latency in microseconds. †Using the

optimal number of cores per node. ‡ Measured over approx. 2K cores or maximum

(128 for Ethernet Cluster). § MB/s with 8K message sizes. ↵ CPU nodes only 15
2.2 Common variables used in equations related to workload sizes that depend on

genomes, sequencing data, other domain specific characteristics, or the available
parallelism. 16

2.3 Reference table for common units and abbreviations. 16
2.4 Data sets used for evaluation. For each data set, we listed the name of the dataset,

the scientific name of the species, the size of the FASTQ file containing the raw
reads, and the source link. 16

4.1 Evaluated platforms. ⇤128 byte Get message latency in microseconds. †Using the
optimal number of cores per node. ‡Measured over approx. 2K cores. §MB/s
with 8K message sizes. ↵CPUs only. 41

6.1 Single node, 64 thread runtime (seconds) comparison (excluding I/O) across 3
data sets on Cori Haswell w/ 128 GB RAM. Reported DALIGNER times also
exclude all pre- and post- processing. 72

x

Acknowledgments

I cannot thank Kathy Yelick, my advisor, enough; I have learned so much from her expertise
and example, yet I believe I could spend years learning more. I also thank my committee,
Jim Demmel, Aydın Buluç, and Dan Rokhsar, for their valuable feedback and investment in
this work.

I can only begin to list the people I would like to thank for their support in so many
varied, technical and non-technical, ways: first, Maurice Herlihy, who introduced me to
parallel computing and pointed me down the road to a research career – I may have missed
that sign post if not for him, and his fascinating research and teaching on concurrency and
synchronization; my other professors at Brown University, especially John Savage and Andy
van Dam, for their advice and encouragement toward graduate school; my academic siblings
at Berkeley who preceded me, especially, Evangelos Georganas and Penporn Koanantakool,
and those who succeed me, especially, Giulia Guidi, Yang You, and Benjamin Brock; my
peers, Emmeline Kao, Ph.D., and Kayla Wolf, Ph.D, for their camaraderie and inspiring
examples in science and engineering; Paul Riggins, Ph.D., for his valuable perspectives on
scientific communications; Dr. Ira Young, Audrey Sillers, Shirley Salanio, among so many
other faculty and sta↵ who work, seemingly tirelessly, to support graduate students and
recruit diverse thinkers, enriching the department, the university, and the world; Joseph
Brown, for so patiently explaining for-loops to me in my first computer science class; my
students and mentees, including my little sisters in WICSE and AWE, for reminding me why
continuing to push forward is so important, even beyond the technical contributions.

This work was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative e↵ort of the U.S. Department of Energy O�ce of Science and the National
Nuclear Security Administration as part of the ExaBiome project at Lawrence Berkeley
National Laboratory and by the National Science Foundation as part of the SPX program
under Award number 1823034 at UC Berkeley. This research used resources of the National
Energy Research Scienti�c Computing Center (NERSC) under contract No. DE-AC02-
05CH11231, and the Oak Ridge Leadership Computing Facility under DE-AC05-00OR22725.
all supported by the O�ce of Science of the U.S. Department of Energy. The information
presented here does not necessarily reflect the position or the policy of the Government and
no o↵cial endorsement should be inferred.

1

Chapter 1

Introduction

Several important trends in parallel and distributed computing, both long standing and more
recent, provide the framework for this dissertation work. These include the proliferation of
Big Data applications; the increasing heterogeneity in computer architectures; the phenom-
ena known as HPC-Cloud convergence; and the challenge of mapping irregular applications
onto parallel machines. A more specific question is the debate over whether, when, and how
bulk-synchronous parallelism o↵ers a superior model to asynchronous parallelism and vice
versa. We consider these challenges and questions concretely with application case studies
of important bioinformatics applications. The broader impact of this work is in supporting
bioinformaticians working toward new energy, food, environmental sustainability, and med-
ical discoveries, among so many other areas of worldwide interest. We shall briefly describe
each of the computing trends mentioned, beginning with HPC-cloud convergence, and then
outline specific application case studies.

At its inception, cloud computing looked very di↵erent from High Performance Com-
puting (HPC). Its purpose was broadening computing accessibility supported by clusters of
computers with commodity hardware and networks. HPC on the other hand has historically
supported compute-intensive scientific discovery, on supercomputers with special purpose
hardware and highest-speed interconnects. For a long time, the two subfields developed
in di↵erent directions, working with di↵erent design goals and constraints, both physical
and financial. In recent years, however, particularly with the rise of Big Data, we have
been observing the phenomena known as HPC-Cloud convergence. Cloud providers, faced
with massive and growing demand for both small and large scale computing resources, have
been adapting techniques and machinery developed for HPC. The “Tech Giants” of today
including Google, Microsoft, and Amazon have all made notable strides in this direction.
Demand for large scale resources is growing with the availability of data sets from all sec-
tors of science and society, along with increasing knowledge and motivation for analyzing
it. This increase in data and data analysis tools has also impacted HPC. In the past, HPC
primarily supported scientific simulation. Currently, however, the ability to analyze massive
data sets is just as important, from analyzing Cosmic Microwave Background data to Large
Hadron Collider data to Event Horizon Telescope data. Motivating applications span many

CHAPTER 1. INTRODUCTION 2

other domains as well, from material science, to genomics, to cross-domain document search
and analysis. We expect the HPC-Cloud convergence trend to continue, from the common
incentive to support Big Data analysis and the need to adapt to basic constraints of large
scale computing such as power consumption, heat dispersion, and so on.

Complicating the architectural design space in both HPC and cloud domains, is the rise
of extreme on-board heterogeneity, with network design and interface. Computer architec-
tures have evolved from single-CPU and single memory hierarchy to multi-CPU, multi-core,
and many-core designs, with uniform and non-uniform memory access, NIC-on-chip, and a
variety of accelerators, from FPGAs to GPUs. With such a large design space, a natural
question from computer architecture is, what is the right balance of computational
power, memory rates and capacities, and network performance to support a
broad or targeted class of applications? While this dissertation will not dive deeply
into architectural design, we will consider this high-level question for specific irregular ap-
plications.

Irregular applications are becoming increasingly important to both cloud and HPC.
Hence, an old problem in parallel and distributed computing resurfaces, what are gen-
eralizable approaches, models, and programming paradigms for maximizing ir-
regular application parallelism and scalability? Irregular applications are particularly
challenging to parallelize and distribute because, by definition, the pattern of computation
is determined by the input data and is not known until runtime. Irregularity may mani-
fest in the data structures (e.g. unbalanced trees, irregular graphs, unstructured grids), the
control flow (e.g. data-dependent branching), and the data access and communication pat-
terns. Irregular application parallelization must therefore be adaptive at runtime (dynamic)
and/or rely on domain-specific expertise. The drawbacks of dynamic parallelization and
optimization are well-known. In the extreme, dynamic methods solve the problem before
they can solve it e�ciently. For example, to load balance the computation, communication,
and storage for analyzing relationships across input data, one might compute the structure
of the associated graph and partition it accordingly; however, then the analyses might be
complete. More e↵ective dynamic approaches, that analyze some smaller aspect of the data
or runtime behavior, still often yield sub-linear speedups due to their runtime overhead,
except under rare and usually architecture-specific conditions. Parallelization approaches
that employ domain-specific expertise, on the other hand, have been highly successful in a
number of cases. However, they entail two simple inherent drawbacks. One is that they
require a domain expert. The other is that they are domain-specific (usually lacking in gen-
eralizability), in some cases, even across varying constraints on the same problem. It comes
as no surprise that a considerable portion of Big Data applications fall into the category of
irregular applications, given their data-driven nature.

Data-intensive applications from bioinformatics o↵er a valuable vantage point from which
to study the intersection of these trends and the related questions. Bioinformatics applica-
tions are unlike standard physical or scientific applications, relying on integer and string
operations, rather than typical floating point operations. In this regard, they are similar
to text and document analyses. However, unlike general document analysis, the impact or

CHAPTER 1. INTRODUCTION 3

success of biological analyses depends on exact character-to-character level accuracy in the
end results. Thus, bioinformatics applications represent an extreme for irregular applica-
tion analysis. Furthermore, bioinformaticians seek support from both the cloud and HPC
facilities to run their analyses, due to various constraints on access and availability. This
dissertation therefore works with application case studies from bioinformatics to shed light
on these broader questions in computing as well as to support bioinformatics research.

Before moving to the outline and contributions of the dissertation, we briefly visit the
last above-mentioned open question. There is a long-standing debate over two competing
models of parallel computation, bulk-synchronous parallelism[61] (BSP) and asynchronous
parallelism. Asynchronous parallelism o↵ers an arguably more natural way to conceptualize
and therefore to program parallel computation graphs. On the other hand, BSP o↵ers a sim-
pler framework for correctness and performance analysis, and is su�ciently expressive for all
kinds of computation even if it is a less “natural” for programming certain applications. The
debate is particularly relevant for irregular applications. Asynchrony may support a more
adaptive style of communication and computation, and therefore be the more natural choice
for a given irregular application. However, because successful bulk-synchronous program-
ming requires balancing communication and computation in well-defined steps, any strategies
for “regularizing” an irregular application that prove successful under a bulk-synchronous
model, are likely useful across paradigms. In any case, such strategies may provide a better
starting point for parallelization and optimization. The general question is, for what kinds
of computations or under what circumstances does bulk-synchronous parallelism
provide a superior model to asynchronous parallelism, and visa versa?

In order to contribute to this discussion in computing from an application-grounded
standpoint, and to have an even more immediate, positive impact beyond computing, we
consider these questions through software development and performance analysis for bioinfor-
matics, more specifically, for genomics. First, we consider two particular but representative
types of data-driven graph construction applications for genomics, de Bruijn and overlap
graph construction in Chapter 3 - each will be defined in (Chapters 2-3). We consider a
bulk-synchronous approach to these irregular applications, and likewise, the extent to which
necessary “regularization” techniques are successful. We find that certain approaches to
managing memory go hand-in-hand with communication and computation optimization. For
other optimizations in the same case study, we observe trade-o↵s between communication
scalability and computational or memory costs.

In Chapter 4, we present a bulk-synchronous approach to overlap graph traversal and
refinement. Together with the overlap graph construction presented in Chapter 3, we ana-
lyze its performance, across several HPC architectures as well as a cloud o↵ering, which o↵er
various balancing points between computation and communication resources. We find a very
tight coupling between communication and computation e�ciency, that determines overall
performance and scalability outcomes across architectures. As a significant contribution
of this dissertation, the overlap graph construction, traversal, and refinement were imple-
mented by this author in the DiBELLA [13] software pipeline, the first distributed memory
scalable software for long read analysis and alignment - a problem defined in Chapter 2.

CHAPTER 1. INTRODUCTION 4

DiBELLA expands our related work on BELLA [23], a well-formalized methodology for ac-
curate long read overlap detection and alignment, that uses global information from across
the input. The DiBELLA work focuses on the challenges of parallelizing this application
in distributed memory. In addition, the DiBELLA software supports a range of alternative
accuracy constraints and models, via user parameters and modular implementation.

In Chapter 5, we revisit overlap graph refinement with an asynchronous approach for
balancing memory, communication, and computation. We compare the performance of our
asynchronous implementation presented in Chapter 5 to our bulk-synchronous implementa-
tion from Chapter 4. The analysis sheds light on the di↵erent circumstances under which
either approach, a bulk-synchronous or an asynchronous approach, to parallelism leads to a
more optimal design for this application.

Chapters 3-5 together ultimately present a case for memory, communication, and com-
putation to be considered together in distributed memory performance models for data-
intensive parallel applications. As expounded further in the conclusions and future work in
Chapter 7, such models would greatly benefit the work of application developers and hard-
ware architects seeking to support irregular and data-intensive applications across domains.
Since each of the main chapters 3-5 present algorithms, pertinent implementation details,
and analytical and empirical analysis for each case study, related work is presented more
fully in Chapter 6.

Finally, the contributions of this dissertation, including algorithms, software, and ana-
lytical and empirical performance analysis, are as follows:

1. An in-depth analysis of techniques and optimizations (with their limitations and trade-
o↵s) for enabling bulk-synchronous scalability of two irregular applications from ge-
nomics, short read de Bruijn and long read overlap graph construction (Chapter 3),

2. A first distributed memory scalable, bulk-synchronous approach and implementation to
long read overlap graph construction, based on successful approaches to extreme-scale
short read de Bruijn graph construction[18] (Chapter 3),

3. A first distributed memory scalable, bulk-synchronous algorithm for long read overlap
graph traversal and refinement, with implementation in MPI 2.0 (Chapter 4),

4. A performance analysis of bulk-synchronous long read overlap graph construction,
traversal, and refinement across several HPC architectures and one cloud o↵ering,
highlighting the computation-communication balance and scalability bottlenecks for
this problem (Chapter 4),

5. A distributed memory scalable, alternative (asynchronous) algorithm for long read
overlap graph refinement, with implementation in UPC++ (Chapter 5),

6. An empirical performance comparison of our bulk-synchronous and asynchronous ap-
proaches to long read overlap graph refinement (Chapter 5),

CHAPTER 1. INTRODUCTION 5

7. The software pipeline for long read overlap graph construction, traversal, and refine-
ment, named DiBELLA (Chapter 3-4),

8. A foundation for future and alternative pipeline optimizations and implementations; a
foundation composed of software, performance models, and empirical cross-architecture
and cross-workload performance results (Chapter 3-7).

6

Chapter 2

Preliminaries

This chapter establishes terminology and definitions used in the following chapters.

2.1 Reads, Errors, and k-mers

Genome sequencing technologies translate DNA into sequences of the characters A, C, T,
and G, corresponding to the four nucleotide bases, adenine, cytosine, guanine, and thymine.
Sometimes, sequencing technologies also emit the character N when a base is detected but
its type cannot be determined with confidence. These sequences, strings over the alphabet
{A, C, T, G, N}, are referred to simply as reads. The literature further distinguishes reads
from next generation or shotgun sequencing and from third generation or Single Molecule
Real Time [12] sequencing as short reads and long reads, respectively. The names come from
their relative typical lengths. Short reads are typically 100 to 250 characters whereas long
reads range from 1, 000 to 100, 000 characters.

Due to limitations in the technology, the confidence with which a sequencer makes a base
call is not 100%. Sequencer confidence scores for each base are included in FASTQ files, a
standard type of input file for our genome analysis tools. An erroneous base call might be,
for example, emitting an A in a position where the genome actually has some nucleotide
base other than adenine. The confidence score for this call may be low, but it does not tell
us which other base might be there. Moreover, errors can also be insertions and deletions of
characters. The frequency at which a sequencer emits errors is referred to as the error rate.
State-of-the-art short read sequencers have very low error rates, from 0.001% [57] to 2% [62],
but the distribution of errors is usually unknown. Long read sequencers have much higher
error rates, within 5 - 35% historically. However, certain long read sequencers also guarantee
uniform distributions of errors [12] - a helpful guarantee for computational models [7][49][23].

A common strategy for coping with or eliminating errors in both types of reads is to parse
them into substrings called k-mers . K-mers are substrings computed by moving a sliding
window of length k over the reads, usually one character at a time. Figure 2.1 illustrates
computing 6-mers from an example read. Once k-mers are computed, certain strategies

CHAPTER 2. PRELIMINARIES 7

TCCAGAGA TCCAGA
CCAGAG
CAGAGA

Computed k-mers k=6

Figure 2.1: Illustrates the computation of
the three k-mers (6-mers) on the right from
the underlined regions of the string on the
left.

TC CAGAGA
CAGAGA GG

TCCAGAGA--
--CAGAGAGG

Figure 2.2: The 6-mers shared between two
strings on the left are used to seed the align-
ment of the same two strings on the right.

attempt to eliminate error-containing k-mers based on the frequency of distinct k-mers ,
the confidence scores, inter k-mer relationships, and other means. The specific strategies
employed depend on the application. In general, the frequencies of distinct k-mers , i.e. the k-
mer histogram for a data set, are often useful in and of itself in bioinformatics. Hence, a wide
variety of tools have been created specifically to count k-mers and output k-mer histograms
(see Chapter 6 regarding related work). In the types of genome analyses presented in this
dissertation, k-mer counting will be employed, but as a feature or component to solving a
larger analysis problem (see Chapter 3)

2.2 Alignment

The first distributed-memory-scalable many-to-many pairwise aligner, diBELLA[13], is a
contribution of this dissertation. Chapters 4-5 describe algorithms for bulk synchronous and
asynchronous approaches to many-to-many pairwise alignment, and analyze the performance
characteristics thereof across architectures. This section provides the necessary definitions
and descriptions for understanding the many-to-many pairwise alignment problem and for
distinguishing it from other alignment problems.

Pairwise Alignment

A formal definition of pairwise alignment [11][63] for pairs of strings over the alphabet
⇤ = {A,C, T,G}

⇤1 is as follows. Let ⇤0 be the alphabet extending ⇤ with the gap character
‘�’, that is, ⇤0 = ⇤ [{�}. A pairwise alignment of a string s 2 ⇤ of length m, and a string
t 2 ⇤ of length n, is the pair of strings (s0, t0) 2 ⇤0 if and only if:

1. |s0| = |t0| = l, where max(m,n)  l  m+ n,

1For concreteness, ⇤ is defined here with respect to DNA. However, the pairwise alignment definition is
easily extended for other applications by substituting the alphabet for e.g. RNA, ⇤RNA = {A,U,G,C}, or
the 24 characters representing amino acids in protein analyses.

CHAPTER 2. PRELIMINARIES 8

2. s is the string obtained by removing all ‘�’ from s0, and t is the string obtained by
removing all ‘�’ from t0,

3. Letting s0
i

indicate the character at position i in string s0, and likewise letting, t0
i

indicate
the character at position i in t0

i

, such that 1  i  l, there is no value of i for which
s0
i

= t0
i

= ‘�’.

In general, there are exponentially many possible valid alignments of two strings, exponen-
tial in the length of the strings. However, one is generally interested in only high quality
alignments as determined by a scoring scheme. A scoring scheme assigns numeric penalties
to the following edit operations :

• s0
i

= �, called “insertion”

• t0
i

= �, called “deletion”

• s0
i

6= � ^ t0
i

6= �, called “substitution”

Scoring schemes may also numerically reward matches. The sum of the rewards and
penalties for a particular alignment is its score. An alignment is optimal if its score is
the maximum achievable for the given pair of strings - or the minimal achievable for the
dual minimization problem. Finding an optimal alignment is attainable via a dynamic
programming algorithm such as Needleman-Wunsch [50] or Smith-Waterman [59], and is
an O(m · n) computation. In place of full dynamic programming for pairwise alignment,
one can also search only for solutions with a limited number of mismatches (banded Smith-
Waterman) and terminate early when the alignment score drops significantly (x-drop) [69].
Such approximations usually attain lower average-case complexity bounds by relaxing or
modifying guarantees about the resulting alignments.

Seed-and-Extend Pairwise Alignment with k-mer Seeds

Alternatives to exact dynamic programming approaches for pairwise alignment include seed-
and-extend approaches. These treat a given substring, a “seed”, as a partial alignment
between the two strings. Figure 2.2 illustrates a simple alignment between two strings seeded
with matching k-mers . The alignment computation “extends” the alignment by searching
forward in each string for an alignment that includes the seed. An alignment that is extended
in the opposite direction or both directions may be computed by reversing the strings and
the seed and repeating the procedure. The alignment in Figure 2.2 is extended in both
directions. The extension in this example simply determines what is done with the leading
and trailing two characters around the seed in the respective strings. Even for these short
example strings, this seed-and-extend alignment is significantly less costly than computing a
full Smith-Waterman or Needleman-Wunsch alignment. The intuition behind the seed-and-
extend paradigm is that any read pair that aligns well is likely have such seeds in common.
Chapter 6 discusses seeding strategies besides exact-matching k-mers . Chapters 4-5 use
exact-matching k-mers as seeds for pairwise alignment.

CHAPTER 2. PRELIMINARIES 9

Pairwise versus Multiple Sequence Alignment

Multiple sequence alignment2 is a generalization of pairwise alignment for finding a consensus
across a set of two or more sequences (strings). An optimal multiple sequence alignment
minimizes or maximizes the alignment score across (all) strings in the set. A series of pairwise
alignments do not necessarily produce an optimal multiple-sequence-alignment. Due to the
high error rates of long reads and the priority for high accuracy in overlap detection, we
employ pairwise alignment on potentially overlapping reads, even when we have detected a
set of more than two reads that all potentially overlap. We will expand on this point in later
chapters.

Many-to-Many Pairwise Alignment

One of the key problems addressed in this dissertation is many-to-many pairwise alignment.
To describe the many-to-many alignment problem, we extend pairwise alignment to sets.
Given sets of strings S and T , where S and T may be the same, we are interested in all
high-scoring pairwise alignments of strings (s, t) 2 {S ⇥ T} | s 6= t, given some scoring
scheme. The many-to-many alignment problem additionally di↵ers from the straightforward
problem of computing all pairwise alignments in {S ⇥ T} in that we are only interested in
high-scoring alignments. In other words, there is an opportunity to reduce the number of
pairwise alignment computations across the set if we can detect and filter pairs of strings that
are unlikely to have a su�ciently high-scoring alignment. Given that such similarity detection
depends on runtime analysis of the input, however, this presents the challenge of balancing
the subsequent pairwise alignment computations in distributed memory parallelization.

One-to-Many or Many-to-One versus Many-to-Many Alignment

In order to clarify the challenges distributed many-to-many alignment, we distinguish it
from a category of alignment algorithms and software that we dub “one-to-many” or “many-
to-one” aligners. These include software tools that align many reads to a single reference;
we can think of a reference as long string representing the whole genome, the result of
previous assembly. For example, one may seek an alignment against a human reference
genome. Many algorithms and software tools alternatively perform database or database-like
searches for a single string or substring, called a query, in a collection of reads or references.
In both cases, the mapping is one-to-one or one-to-many. The respective distributed memory
parallelization is simple, because the reference or query can be replicated across processors
and aligned to database or read set partitions independently in parallel. While these tools can
technically be extended or used to solve many-to-many alignment problems in either shared
or distributed memory, they tend to be ine�cient, not having been designed or optimized for
parallel many-to-many alignment. Many-to-many alignment is required for analysis and/or

2also called “multi-sequence” or “multi-way” alignment in the literature

CHAPTER 2. PRELIMINARIES 10

assembly of reads from genomes for which references do not exist or are not reliable. Many-
to-many alignment is much more challenging for distributed memory parallelization than
many-to-one alignment is, because many reads must be aligned to many other reads in a
pattern that cannot be determined until runtime, as it depends on the underlying (unknown)
genome. A brute-force all-to-all approach to many-to-many alignment is feasible for very
small data sets but quickly becomes intractable with increasing data set sizes. One of the foci
and contributions of this work is a first scalable distributed memory many-to-many aligner,
diBELLA[13].

2.3 Many-to-Many Long Read Overlap and
Alignment as Hypergraph Construction and
Refinement

The many-to-many long read overlap and alignment process can be understood in terms of
the construction and refinement of an irregular hypergraph, in which reads are hyperedges
and vertices contain information that is common to multiple reads and useful for alignment
and refinement. We will use Figures 2.3-2.6 as running illustrations. The results of many-
to-many alignment are useful for reconstructing the sequenced genome (de novo assembly).
Also, before or in lieu of complete assembly, the results are useful for error-correction of the
reads and direct analysis, with or without error-correction. In order to avoid the compu-
tational cost associated with computing all pairwise alignments directly (see Section 2.2),
less expensive computations are employed to first detect similarity between reads. Similarity
detection finds “candidate” read-to-read overlaps. Pairwise alignments are then computed
only on these candidates to determine whether and how the reads overlap with one another.
In other words, they construct an initial hypergraph that is refined through many-to-many
pairwise alignment. Given the error rates of long reads, accurate similarity detection is not
straightforward. Our approach computes and filters k-mers to both find candidate overlaps
and the locations at which they are likely to overlap (see Figures 2.3-2.4) before alignment;
the k-mers become seeds for seed-and-extend pairwise alignment. See Chapter 6 for related
work. The formulation of the problem as hypergraph construction and refinement is not
specific to k-mer based approaches, however; any read-to-read similarity computation can
be substituted for k-mer matching in the following description.

Figure 2.3 illustrates a set of reads, numbered 1 to 4; the k-mers used to construct the
hypergraph illustrated in Figure 2.5 are circled. The hyperedges in Figure 2.5 are reads. Hy-
peredge set intersections identify potential overlap between reads, and also alignment tasks
for the refinement step. A pre-refinement traversal computes hyperedge set intersections.
The refinement step computes associated pairwise alignments for the vertices in these in-
tersections. If a resulting alignment score is relatively low, the respective vertex is pruned
from the hypergraph. Otherwise, the alignment information is added to the information in
the hypergraph. The ideal end-result is an overlap hypergraph in which exactly those reads

CHAPTER 2. PRELIMINARIES 11

Figure 2.3: Example input reads, in no particular order, sharing circled
5-mers.

Figure 2.4: Reads and 5-mers from Figure 2.3 arranged according to the underlying
unknown genome.

(hyperedges) that were sequenced from the same part of the genome (see Figure 2.4) have
intersecting hyperedge sets, and furthermore, all vertices are labeled with pairwise alignment
information for the respective pair of reads.

Figure 2.6 illustrates one of the challenges of distributed memory parallel refinement
with two processors, X and Y . In order to compute the hypergraph in Figure 2.5, suppose
the four input reads in Figure 2.3 were split roughly evenly between the two processors
as shown in Figure 2.6. After constructing the hypergraph and identifying hyperedge set
intersections, we see that the processors each have one alignment task that can be computed
entirely locally. The remaining 3 tasks each require 1 read from both processors. We can
move the task to either process and roughly balance the number of tasks computed, but any
way we divide the tasks, we will need to replicate and/or communicate reads between the
processors.

While many alternative formulations are reasonable (see Appendix A), this formulation
is convenient in discussing distributed memory parallelization challenges of many-to-many
long read overlap and alignment. Distributed memory parallelization is particularly advan-
tageous for processing workloads that do not fit in the memory of a single computer and
for speeding-up the computation of many alignments (see Section 2.2 on the complexity of
individual pairwise alignment). However, partitioning this hypergraph to balance the load

CHAPTER 2. PRELIMINARIES 12

Align
(1, 2)

Align
(3, 4)

Align
(1, 3)

Align
(2, 4)

Align
(2, 3)

Read 4 Read 1

Read 3

Read 2

Figure 2.5: The hypergraph corresponding to Figure 2.3. Reads (hy-
peredges) are shown with solid and dashed lines connecting alignment
tasks (vertices).

Read 1

Read 2

Read 3

Read 4

Processor X Processor Y

Align
(1, 2)

Align
(2, 4)

Align
(3, 4)

Align
(1, 3)

Align
(2, 3)

Figure 2.6: A possible partitioning of the read set in
Fig. 2.3 between 2 processors, X and Y. Alignment tasks
from Fig. 2.3- 2.5 are included.

is particularly challenging due to its irregular, data-dependent nature. In any partitioning
that cuts hyperedges, reads will need to be duplicated and/or moved across partitions in
order to compute pairwise alignments between reads in di↵erent partitions. In general, long
reads are [103, 105] characters in length, and the lengths vary widely within the same data
set. Our running toy example shows 4 reads; the number of reads in real inputs depends on
the underlying genome size � and the sequencing coverage depth d. We will discuss these
parameters in more depth in the following chapters.

CHAPTER 2. PRELIMINARIES 13

2.4 k-mer Lengths and Frequency-Based k-mer
Filtering

The right choice of k-mer lengths, k, for detecting similarity across reads (potential overlaps)
in a given data set, balances the representation of distinctive genome characteristics with
the need to detect similarities and/or eliminate errors across the data set. Maintaining
distinctiveness (rare characteristic subsequences from the actual genome) tends to larger k’s,
while error-tolerant similarity or error detection tends to shorter k’s (higher redundancies).
However, if k is too short, as an extreme, all reads may share all k-mers , even ones containing
errors. In other words, it may be impossible to separate the signal from the noise. On the
other hand, with a large enough k, all of the k-mers parsed from a data set may be unique,
leading to a very uninteresting histogram, to say the least. If k is large, it may be impossible
to find exact matching substrings. The best choice of k depends on the size of a given genome
and the error rate of the input data set. Given the high error rates of long read data sets, k
tends to be k 2 [14, 17] for long read analyses. For short read single genome analyses, on the
other hand, k values tend to be much larger, for example k = 51. Models for choosing k for
long read overlap detection, relative to long read error rates, are supplied in our associated
work on the Berkeley Long-Read to Long-Read Overlapper and Aligner (BELLA) [23].

Additionally, BELLA formalizes the concept of reliable k-mers for long read overlap detec-
tion. In short, reliable k-mers are probabilistically correct and unique length-k subsequences
in the underlying genome, according to their global frequency in the data set. Calculating
the expected frequency of a unique k-mer depends on k and the known coverage and error
rate of the data set, which can be calculated from the input FASTQ file. As a simplifying
example, in a world with error-free sequencing, the expected frequency of a k-mer that was
unique in the genome would be equal to the sequencing coverage depth. The uniqueness
property of reliable k-mers avoids incorrectly detecting overlaps between repetitive but oth-
erwise unrelated regions of the genome. However, it may also fail to detect overlaps between
reads that cover the same region of the genome, but do not include a subsequence that is
unique in the genome overall. The distributed memory parallel pipeline, (di)BELLA relaxes
the notion of reliable k-mers , and defines retained k-mers simply as those retained after
a frequency-based filtering step. The frequency of retained k-mers is greater than one, as
k-mers that occur only once cannot be used to detect overlaps between pairs of reads. The
maximum frequency of a retained k-mer is a user-set parameter; the calculation for reliable
k-mers in BELLA [23] can be used by default or an alternative supplied. The distinction
is useful as we seek to support flexible range of analyses, as the technologies and models
change and improve.

2.5 Scalability Analysis

Our empirical evaluations primarily focus on scaling behavior of the parallel algorithms and
codes presented. To evaluate scalability, analytically and empirically, we frequently employ

CHAPTER 2. PRELIMINARIES 14

two important metrics, speedup and e�ciency. We also employ a variety of evaluation plat-
forms for generality, and in order to study specific architectural trade-o↵s for our applications
and workloads. Our workloads vary in size and sequencing characteristics, and all are used
in real analysis of the respective genomes, rather than being synthetically generated.

Strong Scaling and Weak Scaling Performance Analysis

In our empirical scalability analysis we frequently study strong scaling performance. That is,
we study the performance of a code given a fixed workload with increasing parallelism, defined
in terms of the number of parallel processors, P . We also study weak scaling performance
but indirectly. Weak scaling studies increase the workload size relative to P . In this work,
we analyze strong scaling performance across a number of (real) workloads which vary in size
(see Table 2.4), but we do not examine weak scaling performance more directly. Speedup
and e�ciency, defined below, are therefore defined with strong scaling performance in mind.

Speedup

Traditionally, speedup, S, is calculated as the serial time, T1, over the time on P parallel
processors, T

P

, to complete a computation. See Equation 2.1. Perfect strong scaling speedup
is S = P .

S =
T1

T
P

(2.1)

Occasionally, slight variations of this definition are used in the following chapters; whenever
the active definition departs from the traditional definition, that is specified in context.

E�ciency

E�ciency is similar to speedup except that it measures the amount of work of each parallel
processor with respect to the work by a serial processor running alone. See Equation 2.2.

S/P =
T1

T
P

⇤

1

P
(2.2)

In general, while speedup captures absolute improvement in running time due to paralleliza-
tion, e�ciency highlights the amount of overhead introduced by parallelization. Perfect
strong scaling e�ciency is S/P = 1. Super-linear speedup can be seen in an e�ciency
greater than 1.

Architectures

Empirical performance analysis in this dissertation is conducted across a wide range of archi-
tectures for generality and to study varying balancing points between computing, memory,

CHAPTER 2. PRELIMINARIES 15

Cori II
Cray XC40

Edison
Cray XC30

Titan
Cray XK7↵

Genepool
Ethernet
Cluster

Processor
Intel Xeon-Phi

(Knights
Landing)

Intel Xeon
(Ivy Bridge)

AMD
Opteron
16-Core

Intel Xeon
(Haswell)

AMD
Opteron
8376 HE

Freq (GHz) 1.4 GHz 2.4 GHz 2.2 GHz 2.3 GHz 2.3 GHz
Cores/Node 68 cores 24 cores 16 cores 32 cores 32 cores

Intranode LAT†⇤ 3.3µ 0.8µ 1.1µ 2.7µ 0.6µ
BW/Node †

‡§ 57.3 MB/s 436.2 MB/s 99.2 MB/s 113.0 MB/s 1.2 MB/s
Memory (GB) 96 GB 64 GB 32 GB 256 GB 512 GB
Network &
Topology

Aries
Dragonfly

Aries
Dragonfly

Gemini
3D Torus

Infiniband
Mellanox

Ethernet
1Gb & 10Gb

Table 2.1: Evaluated platforms. ⇤128 byte Get message latency in microseconds. †Using the
optimal number of cores per node. ‡ Measured over approx. 2K cores or maximum (128 for
Ethernet Cluster). § MB/s with 8K message sizes. ↵ CPU nodes only

and communication resources. Table 2.1 shows a number of the characteristics of the ma-
chines used in our studies. These include Cori, Edison, and Genepool at the National Energy
Research Scientific Computing Center (NERSC)3, an ethernet cluster at the Joint Genome
Institute (JGI)4, and Titan at Oak Ridge Leadership Computing Facility5. A few additional
architectures, including an Amazon Web Services cluster, are introduced later in context.

Workloads

Most of the empirical analysis presented throughout this dissertation is strong scaling per-
formance analysis across the various (real) workloads presented in Table 2.4. For general
analytical bounds, we capture important variables related workload specific characteristics; a
reference list is supplied in table 2.2. These will also defined in the context in which they are
used. Table 2.3 lists abbreviations and units commonly utilized throughout the dissertation.

3https://www.nersc.gov/systems/
4https://jgi.doe.gov
5https://www.olcf.ornl.gov/olcf-resources/compute-systems/

CHAPTER 2. PRELIMINARIES 16

Table 2.2: Common variables used in equations related to workload sizes that depend on
genomes, sequencing data, other domain specific characteristics, or the available parallelism.

P number of parallel processors
� a variable for the size in base pairs or characters of a given genome
k the length of the character subsequences known as k-mers
d the average number of times a base pair in the genome is sequenced i.e. the coverage depth
c or C with or without subscript, reserved for Big O notation of a context-defined constant

Table 2.3: Reference table for common units and abbreviations.

Abbreviation/Unit Definition
bp or bps nucleotide base pair (bp) or base pairs (bps) plural

byte 8 bits
KB 1 thousand bytes or 210 bits
MB 1 million bytes or 220 bits
GB 1 billion bytes or 230 bits

Table 2.4: Data sets used for evaluation. For each data set, we listed the name of the dataset,
the scientific name of the species, the size of the FASTQ file containing the raw reads, and
the source link.

Short Name Species FASTQ Size Source Link

E. coli 30⇥ Escherichia coli 266 MB https://bit.ly/2EEq3JM (CBCB)
E. coli 100⇥ Escherichia coli 929 MB https://bit.ly/2POV1Qs (NCBI)
C.elegans Caenorhabditis elegans 8.90 GB https://bit.ly/2SU7Tqs (PacBio)
Fruit Fly Drosophila melanogaster 30GB https://tinyurl.com/y9demqct (PacBio)
Human CCS Homo sapiens 25 GB https://tinyurl.com/y73tfgnw (NCBI)
Human 10⇥ Homo sapiens 62 GB https://tinyurl.com/ya2eyrrc (PacBio)
Human 54⇥ Homo sapiens 317 GB https://tinyurl.com/yd2wyyln (PacBio)

17

Chapter 3

Scalable Bulk-Synchronous Hash
Table Construction for Irregular
Hypergraphs

Managing memory, balancing load, and maximizing parallelism is especially challenging to do
for irregular applications in a distributed setting. This chapter looks closely at two irregular
and important applications from genomics, short read de Bruijn graph construction and long
read overlap hypergraph construction. In particular, we examine the key design decisions and
optimizations necessary for scaling these irregular applications within the arguably “regular”
model of bulk-synchronous parallelism [61]. Since a distributed hash table, representing the
respective hypergraph, is central to each application code, the patterns and optimizations we
explore are likewise relevant to other irregular applications relying on distributed hash table
construction. Our empirical analysis employs the code originally for de Bruijn graph con-
struction within the extreme-scale de novo genome assembler, HipMer [20][18], and extended
for long read overlap hypergraph construction by this author in diBELLA [13]. While our
empirical analysis focuses on long read overlap hypergraph construction workloads, as the
less well-explored of the two, the results are relevant to both applications, as we will addition-
ally describe with analytical results. Among our observations, a common theme stands-out:
the tight coupling between e↵ective memory management and e↵ective communication and
computational load balance.

3.1 Introduction

This chapter examines scalable distributed hash table construction for two primary applica-
tions, short read de Bruijn graph construction and long read overlap hypergraph construc-
tion. Computing global k-mer histograms is a third general use-case, and while the first two
use-cases compute k-mer histograms, the standalone use-case is not addressed in this work
(see related work in Chapter 6). De Bruijn graph construction for short reads sampled from

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 18

Figure 3.1: Toy example illustrating de Bruijn subgraph traversal with three 6-mer vertices.
The path from Vertex 1 to 2 is computed by appending vertex 1’s forward extension, ‘G’,
to the last k � 1 characters of vertex 1, “CCAGA”. Likewise, the path from vertex 2 to 3
is computed by appending the forward extension, ‘A’, to the last k � 1 characters of vertex
2, “CAGAG”. Only forward traversal, and forward extensions with corresponding edges, are
shown for simplicity. The result of the forward traversal is the string “TCCAGAGA”.

Figure 3.2: The global hash table for the toy example in Figure 3.1. The backward extensions,
that were elided in Figure 3.1 for simplicity, are shown. The quality scores and counts shown
were arbitrarily chosen.

a common genome involves parsing all fixed length substrings (k-mers) with their forward
and backward extensions (single characters preceding and succeeding a given k-mer in each
read). The k-mers are vertices in the graph. More appropriately, it is a de Bruijn (sub)graph
because only the strings present in the data are represented, not all possible length-k strings
over the respective alphabet. The forward (or backward) extensions with the last (or first)
k� 1 characters of a given k-mer form an edge in the graph; Figure 3.1 illustrates. Filtering
the k-mers based on frequency and the quality scores associated with each base pair (char-
acter) can be used to eliminate errors. HipMer stores this graph in a distributed hash table,
in which the keys are k-mers and the values are the forward and backward extensions along
with the quality scores. The global hash table for the toy example in Figure 3.1 is shown
in Figure 3.2. In subsequent steps, traversal of this graph to find connected components
produces sequences that are both error-free and longer than the original reads [18].

Long read overlap hypergraph construction, though semantically distinct (see Chapter 2,
Section 2.3), follows a similar pattern. Approaches to long read overlap detection that
are k-mer -based begin with parsing k-mers from long reads. Frequency-based filtering can

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 19

Figure 3.3: Diagram of the diBELLA’s hash table elements. Read identifiers are denoted
r1, ..., rm. k-mer positions are denoted p1, ..., pm. The global frequency of the respective
k-mer is denoted i.

Figure 3.4: DiBELLA’s global hash table for the toy example in Figures 2.3. Sets of read
identifiers and corresponding k-mer locations stored in fixed-size arrays in the illustration.

be applied to the detection of k-mers that are probabilistically correct and unique in the
underlying genome[23]. In turn, these filtered k-mers , or a superset of them, can be used
to detect pairs of reads that are likely to overlap in the underlying genome. In an abstract
representation in which k-mers are vertices in a hypergraph, reads are hyperedges that share
multiple k-mers with multiple other reads. The intersections of hyperedge sets identify reads
covering potentially overlapping regions of the genome. A distributed hash table is used to
store this information in diBELLA[13]; the k-mers are hash table keys and the set of read
locations in which the corresponding k-mer occurs are the values. A diagram of diBELLA’s
hash table elements is shown in Figure 3.3.

A global hash table for the toy example from Chapter 2, Section A.3, is shown in Fig-
ure 3.4.

The two applications share many computational patterns. Both parse and filter k-mers
from input reads in order to construct a distributed hash table, compactly representing
di↵erent kinds of graphs. In each application, k-mer frequencies supports k-mer analysis
and filtering. The associated k-mer histogram produced is also useful in and of itself for
genomic analysis. Both HipMer and diBELLA store the frequency of each k-mer as a value

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 20

in the hash table, along with the data described above, and optionally provide the histogram
to the user.

The following sections review techniques for distributed memory scalability for these ap-
plications - see also [20][13]. We additionally extend the analytical results that underpin
the success of certain techniques across these applications. We also present empirical re-
sults demonstrating the short-comings and trade-o↵s of certain techniques, not previously
discussed in as much depth. Furthermore, the empirical analysis employs long read work-
loads, which are less well-studied and are even more irregular than short read workloads, for
reasons explained in the context of each section.

At a higher level, there are two extremes for parallelizing this distributed hash table
construction. One extreme is a bulk-synchronous parallelization that computes and commu-
nicates all k-mers and associated data in one large step. Another extreme is an asynchronous
parallelization that overlaps the computation and communication of individual k-mers with
associated data (one at a time). One parallelization approach minimizes the number of mes-
sages but maximizes memory usage; the other minimizes memory usage but maximizes the
number of messages. This chapter examines an approach between these two extremes, a
phased bulk-synchronous parallelization with multiple steps of computation and aggregated
communication. The following chapters examine the other two extremes.

3.2 Distributed Memory Management of Input Reads

The lengths of input long reads are non-uniform and orders of magnitude longer than short
reads. Long reads lengths vary between 103 � 105 characters. Short reads are typically
between 100� 250 characters, a narrower range for variability. In both short read and long
read workloads, the total amount of data in the input depends on the underlying genome,
size �, and the average number of times each base pair (bp) is sequenced i.e. the coverage
depth, d. The input size, the result of sequencing a genome of size � to coverage depth d,
is O(� · d). Genome sizes vary widely, from 4.6 million bps of the Escherichia coli bacterial
genome, to the 3 billion bps of the Homo sapien genome, to the 150 billion base pairs of the
Paris japonica plant genome, to the sizes of so-called metagenomes, which are samples of
microbial communities, that may be orders of magnitude larger.

To scale large and variable sized genomic workloads, HipMer and diBELLA distribute
the input among P parallel processors. The non-uniformity of input read lengths is managed
by partitioning them by size in memory, such that each partition is as close to O(� · d/P)
as possible - respecting read boundaries. In our empirical analyses, we have found that
the parallel file I/O for reading the input, implemented with e�cient C code, is a minimal
and scalable runtime component. The algorithm and implementation is not so application-
specific, nor is it a significant contribution to existing parallel I/O literature, that we dwell
on it further.

In both applications, k is strictly less than typical read lengths. Computing all k-mers
for an input size of O(� ·d) alone increases the working data set size in memory to O(� ·d ·k).

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 21

With typical values of k between 10 and 100 in both applications, this is an increase of at
least one order of magnitude over the input. While the input data may fit in memory,
for some configuration of P parallel processors, the bag of all k-mers may not. Computing
the (set) of all k-mers is the goal, however, and it is expected that the cardinality of the
k-mer set is strictly smaller than the cardinality of the O(� · d) k-mer bag. We expect this
due to the redundancy of the sequencing process, which in an error-free world, would lead to
d copies of every k-mer that exists in the genome. From observation, we also expect inherent
redundancy in the genome. We cannot know the exact size of the k-mer set, relative to the
size of the k-mer bag, until runtime. We can avoid storing the entire k-mer bag in memory
at once though, by streaming the input while maintaining just the k-mer set. This is the
first optimization for alleviating memory pressure that HipMer and diBELLA employ. The
input is read in batches of roughly the same size, and the k-mers are computed and processed
from those batches before the next batch is read. The k-mer stream referred to throughout
the following is generated by this process. Streaming the input in batches serves not only
to reduce memory requirement. It also has the beneficial side-e↵ect of mitigating load
imbalance from overall skew of the workload. We will return to this topic when discussing
communication load balance in Section 3.3.

3.3 Load Balanced Hypergraph Construction

As a first step to hypergraph construction, k-mers are computed from input reads by moving
a sliding window of length k over each read 1 character at a time. From a read of length
L, therefore, L � k + 1 k-mers can be parsed. Let K

bag

be the k-mer multiset (“bag” for
short) computed from the input. The k-mer multiset cardinality, |K

bag

|, for the input of size
� · d, is given in Equation 3.1. Equation 3.2 emphasizes the subtle point that, (in the long
read case) where L is three to four orders of magnitude larger than k, (L � k + 1)/L ⇡ 1.
Note for clarity, the O(� ·d) k-mers computed from the input (Equation 3.2) would consume
O(� · d · k) space if not streamed as described in Section 3.2.

|K
bag

| = O(
� · d(L� k + 1)

L
) (3.1) O(

� · d(L� k + 1)

L
) ⇡ O(� · d) (3.2)

Partitioning the reads in the input by size load balances the initial computation of k-mers .
Parsing k-mers from read partitions is embarrassingly parallel – there are no dependencies
between parsing a k-mer in one partition and parsing any other k-mer in any partition.
However, reducing the k-mer bag to the corresponding k-mer set is a critical to constructing
the global k-mer histograms, necessary for frequency-based k-mer filtering and constructing
the final graphs. The distribution of k-mers in the input is unknown a priori, and, in

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 22

general,1 there is no locality in the input files that we can rely on for a load balanced
partitioning of the k-mer set. Hence, distinct k-mers are deterministically mapped to and
redistributed to unique locations in a partitioned global hash table. The processor owning
the respective partition is henceforward referred to as the owner of the k-mers that map to
its partition. With a hash function that maps k-mers to processors uniformly at random, the
growth in number of k-mers communicated (in aggregate) for each application is bounded
by Formulas 3.3 and 3.4.

O(
� · d(L� k + 1)

L
·

P � 1

P
) (3.3) O(� · d ·

P � 1

P
) (3.4)

The bulk synchronous implementation redistributes k-mers in an irregular all-to-all ex-
change, implemented with MPI Alltoallv. Given the expansion of the working data set size
from the k-mer computation described in Section 3.2, completing the exchange in a single
round may not be possible due to memory and runtime limitations. In such cases, the ir-
regular all-to-all exchange is conducted in multiple rounds. Communication-batch sizes per
round are limited by the same logic in each pipeline. Each parallel processor bu↵ers data for
remote processors until either of two conditions is met; (1) the amount of data bu↵ered lo-
cally for any given target meets or exceeds a given constant c1 or (2) the cumulative amount
of data in all local bu↵ers meets or exceeds another constant c2. The values of constants
c1 and c2 for the implementation were heuristically chosen and hand-tuned by the HipMer
development team for Edison, but are presented here as architecture-dependent variables for
generality. These imposed limitations not only avoid memory overflow and other undesirable
behaviors. They also limit the impact of skew in the irregular all-to-all exchange; for exam-
ple, per (1), the amount of data any processor receives from all other processors is limited
to (c2 · (P � 1)). We can lower bound the number of exchange iterations required at any
scale using workload characteristics, including the size of k-mers in memory Mk-mer, and
Formulas 3.5-3.6.

⌦((
� · d(L� k + 1)

L
·

P � 1

P
·Mk-mer) / (c2 · P)) (3.5)

⌦((� · d ·
P � 1

P
·Mk-mer)/ (c2 · P)) (3.6)

The communication volume for constructing the distributed hashtable in each application
depends on the representation of the metadata. Recall, the distributed hashtable represents
a de Bruijn subgraph in HipMer. The metadata therefore includes the forward and backward
extensions of each k-mer , single characters preceding and succeeding the k-mer in the read.

1With prior knowledge of the genome, some read reordering can improve locality. HipMer can, for
example, use the the human reference genome for assembling new human genome samples. In Metahipmer,
since the same input may be processed repeatedly for di↵erent values of k, information acquired on initial
runs may be employed for subsequent runs.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 23

These are necessary for traversing the de Bruijn subgraph. The quality scores corresponding
to these characters, which can be though of as confidence weights, are also important meta-
data. In diBELLA, the hash table represents a hypergraph of reads connected by common
k-mers , therefore the index of the source read is communicated along with each k-mer oc-
currence. The positions of shared k-mers between any two reads can be recomputed during
alignment. However, this implementation records locations of probabilistically correct and
globally rare k-mers by storing their positions along with the read index.

The scale at which both applications cross-over from being compute-bound to communication-
bound for any given workload can be predicted with Equations 3.7-3.8, where C

kmer

denotes
the computational cost of computing and hashing a k-mer , C

kmer

= O(k). The inverse
bandwidth (for irregular all-to-all exchanges) is denoted �, and the startup cost or latency
is denoted ↵. The cross-over occurs when the computation cost is equal to the communi-
cation cost. After reviewing the Bloom filter optimization in Section 3.4, we will exercise
these equations in Section 3.5 for two workloads, a de Bruijn and an overlap hypergraph
construction workload, to make the discussion more concrete.

(
1

P
)(

� · d · (L� k + 1)

L
· Ck-mer)  (

P � 1

P
)(

� · d · (L� k + 1)

L
)M

kmer

· � + ↵ (3.7)

(
� · d

P
) Ck-mer  (

P � 1

P
)(� · d)M

kmer

· � + ↵ (3.8)

3.4 Minimizing Memory Requirement by
Filtering-Out Singleton k-mers

The next optimization we discuss is filtering-out singleton k-mers , k-mers that occur only
once in the entire input, to avoid the associated memory cost. For both long read overlap
and de Bruijn subgraph construction, given a data set with su�cient coverage, singletons
are likely the result of sequencing errors. For long read overlap hypergraph construction in
particular, singleton k-mers are not useful for detecting overlaps between (pairs) of reads.
Singletons have been observed to dominate short read workloads by 50 � 60%[18]. For
long read workloads, singletons are potentially an even bigger problem, due to higher error
rates and the relatively much smaller values of k. In a first streaming of the k-mers , both
applications build a distributed Bloom filter to identify (with high probability) singleton
k-mers , which need not be stored. This also enables the initialization of the distributed
hash table with non-singleton k-mers . Briefly, a Bloom filter is a probabilistic data structure
for space- and time-e�cient set queries. It computes a number of hash functions for each
element inserted and sets the respective bits in an array. For queries, if all bits for the
queried element are set, the element may be in the set. Due to collisions, however a value
may not be in the array even if its hash bits are set. If at least one bit is zero for a given

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 24

element it is guaranteed to be absent from the set [4]. In other words, a Bloom filter query
may receive a false positives, but never a false negative. Section 3.6 discusses k-mer set
cardinality estimation techniques for minimizing the false positive rate while minimizing the
Bloom filter size and avoiding expensive resizing operations.

As mentioned, the input reads are distributed roughly uniformly by size over the proces-
sors using parallel I/O, but there are is no locality inherent in the input files. Each rank
in parallel parses its reads into k-mers , hashes the k-mers , and eventually sends them to
a processor indicated by the hash function. The hash function ensures that each rank is
assigned roughly the same number of k-mers . The algorithm proceeds in two logical steps,
the first exchanges k-mers (without metadata) to filter-out singleton k-mers and initialize
the hash table keys. The second logical step initializes hash table values, exchanging both
k-mers and metadata. In the first step, received k-mers are inserted into the local Bloom
filter partition on the destination processor. If a k-mer was already present, it is also in-
serted into the local hash table partition as a key. Although all O(� · d) k-mers are to
be computed, each step is performed in substages since only a subset of k-mers may fit in
memory at one time, as discussed in Section 3.2. The Bloom filter construction communi-
cates nearly all (roughly (P � 1)/P) of the k-mer instances to other processors in a series of
bulk synchronous phases. The total number of phases depends on the size of the input, as
described in Section 3.3. The only di↵erence between the communication for initializing the
Bloom filter (step one) and initializing the hash table (step two) is that only the k-mers , and
not also the metadata (e.g. source read identifiers for overlap hypergraph construction or
forward and backward extensions for de Bruijn subgraph construction), are communicated
for initializing the Bloom filter. The second step, initializing hash table keys, communicates
all k-mers (with metadata) in substages again. The destination processor only stores the
received metadata for k-mer keys already in the hash table. Empirical results for both the
Bloom filter and hash table initialization are presented together in Section 3.8, following the
discussion of optimizations in the next sections. Finally, after the hash table is initialized
with k-mer keys (for k-mers that occur more than once), the Bloom filter is freed.

3.5 Analytical & Empirical Results for a Long Read
and a Short Read Workload

Let us exercise the analytical bounds from Section 3.3 to understand the impact of workload
characteristics on the performance of HipMer and diBELLA’s respective hash table con-
structions. We employ two (real) workloads as examples, one short read Illumina and one
PacBio long read human data set. For each, � ⇡ 3 ⇥ 109. For processing long reads with
15% error, diBELLA employs k = 17; whereas for short reads with much less than 1% error,
HipMer employs k = 51, a value tuned by domain experts. The diBELLA and HipMer codes
represent k-mers with the same 2-bit encoding objects. The size of k-mers in memory at
compile time and runtime depends on k; diBELLA stores its 17-mers in 64bits and HipMer

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 25

1

2

4

8

16

32

64 128 256 512 1024 2048

Sp
ee

du
p

ov
er

 6
4

No
de

s

Number of Nodes (x24 Cores per Node)

HipMer Strong Scaling Short Read Human
(d=100) Workload on Edison

Perfect
Actual

Figure 3.5: Strong scaling speedup of Hip-
Mer’s de Bruijn graph construction given an
Illumina short read human data set with
100⇥ coverage. Speedup (y-axis) is calcu-
lated relative to performance on the mini-
mum number of nodes required to process
the data set (64). The number of nodes is
shown on the x-axis. MPI ranks are pinned
to cores (24 ranks per node).

1

2

4

8

16

32

64 128 256 512 1024 2048

Sp
ee

du
p

ov
er

 6
4

No
de

s

Number of Nodes (x64 Cores per Node)

DiBELLA Strong Scaling Long Read Human
(d=10) Workload on Edison

Perfect
Actual

Figure 3.6: Speedup of diBELLA’s overlap
hypergraph construction on Edison, given a
PacBio long read human data set with 10⇥
coverage. Speedup (y-axis) is calculated rel-
ative to the performance on 64 nodes. MPI
ranks are pinned to cores (24 ranks per
node). The number of nodes is shown on
the x-axis.

stores its 51-mers in 128bits. The average and median long read lengths of the PacBio data
set are roughly 7,400 and 6,300 bps, respectively; (6300� 17+ 1)/6300 ⇡ 1, so Equation 3.2
checks-out. The Illumina short reads are 101 bps, so roughly k 51-mers are computed from
each short read. A last important di↵erence between the two data sets is the coverage, d.
High-coverage short read data sets are available for the human genome, as evidenced by this
data set with d ⇡ 100. The long read data set on the other hand has coverage d = 10. We
will look at the results maintaining this di↵erence, and then discuss the impact of a fixed a
coverage between the two.

Let us plug the values of �, k, L, and d into Equations 3.3 and 3.4, respectively, to
calculate the expected, relative di↵erences in load. Given a 10⇥ di↵erence in coverage d, the
result is that HipMer computes and communicates over 5⇥ as many k-mers as the diBELLA
run (roughly 150 billion versus 30 billion). In the irregular all-to-all k-mer exchanges to
initialize the distributed Bloom Filter (which communicate only k-mers and no metadata),
this translates to 10⇥ di↵erence in aggregate communication volume, due to the 2⇥ di↵erence
in k-mer representations (128 bits for HipMer’s 51-mers versus 64 bits for diBELLA’s 17-
mers). HipMer’s representation of k-mers (with metadata) is 1.1⇥ the size of diBELLA’s
representation of k-mers (with metadata). HipMer’s aggregate communication volume for
initializing the hash table with metadata is almost 6⇥ higher than diBELLA’s.

The impact of the 10⇥ di↵erence in coverage on the communication volumes is as follows.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 26

If we were to fix d = 10 for both workloads, diBELLA would compute and communicate
2⇥ as many k-mers as HipMer (roughly 30 billion versus 15 billion). Given that HipMer’s
k-mer representation is 2⇥ larger than diBELLA’s, their communication volumes for Bloom
filter initialization would be roughly equal. For initializing the distributed hash table (with
metadata), given that Hipmer’s reprentation is only 1.1⇥ larger than diBELLA’s for this,
diBELLA’s communication volume would be 1.8⇥ higher than HipMer’s.

Returning to the real workload characteristics, we can estimate the number of exchange
iterations required at any scale using the aggregate communication volume (Equations 3.3-
3.4), the runtime settings for Edison, c1 = 2MB and c2 = 128MB, and Equations 3.5-3.6.
As we strong scale, the number of iterations needed to communicate the same aggregate
amount of data decreases inversely in both applications. With 1,024 nodes (24,576 parallel
processors) and up, HipMer’s graph construction can complete the exchange, for initializing
the distributed hash table, in a single iteration. For diBELLA’s workload, at least 256
nodes (6,144 parallel processors) are required to do the same according to the analytical
estimate. Empirically, two exchange iterations are required at the 256 node scale. The
second exchanges a small fraction of the overall communication volume and the first is under
the limit, implying that some processors met condition (1) with c1 in the first exchange.

Strong scaling results for the two workloads are presented in Figures 3.5 and 3.6. The scale
at which both applications cross-over from being compute-bound to communication-bound
for the respective workloads is predicted with Equations 3.7-3.8. Given the 5⇥ di↵erence
in the computational load, HipMer does not cross-over until 1, 024 nodes for this workload,
whereas diBELLA crosses-over around 256 nodes.

3.6 Precise Cardinality Estimation Trade-O↵s

This section examines the memory-computation trade-o↵ of precise k-mer set cardinality
estimation within our two applications. Our case in point is the near-optimal set cardi-
nality estimator, HyperLogLog [25], implemented in both HipMer [18] and diBELLA [13].
We discuss and compare the memory and computational costs of this algorithm against a
simple heuristic also implemented in both codes. First, we review the purpose of k-mer set
cardinality estimation in the context of these applications and discuss the pertinent details
of each estimator.

Estimating the cardinality of the k-mer set is primarily used for initializing the Bloom
filter described in Sections 3.4. The cardinality is used to determine the Bloom filter size
and number of hash function that will achieve the desired false-positive rate, while avoiding
expensive resizing operations. For the hash table, described in Section 3.3, knowing the set
cardinality is convenient but not critical. The hash table will contain the subset of k-mers
filtered by the Bloom filter. Rather than initializing the hash table size directly to the
estimated set cardinality, the actual code works with available memory and other methods
for handling hash table collisions.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 27

32

128

512

2,048

8,192

32,768

 8 9 10 11 8 9 10 11 8 9 10 11

Fruit Fly Human 10x Human 54x

Ki
lo

by
te

s p
er

 P
ar

tit
io

n

Number of Partitions (2x x 24) above Data Set Name

Bloom Filter Memory Consumption per Partition

Simple HLL

Figure 3.7: Comparison of empirical Bloom filter sizes initialized with the “Simple”
versus the HyperLogLog (“HLL”) cardinality estimation techniques. The comparison
is across 3 data sets and 4 scales each (x-axis). The number of partitions is 2 raised to
the power of the value on the x-axis times 24 – 1 partition per Edison core was used
in experiments, Edison has 24 cores per node.

3.29
6.46

20.58

1.02 1.22 0.99
0
2
4
6
8

10
12
14
16
18
20
22

Fruit Fly Human (10x) Human (54x)(E
st

im
at

ed
 /

Ac
ut

al
) S

et
 Si

ze
s

Ratios of Estimated to Actual
k-mer Set Cardinality

Simple/Actual
HLL/Actual

Figure 3.8: Compares ratios of the esti-
mated to the actual k-mer set cardinality for
each estimation approach, the “Simple” and
the HyperLogLog (“HLL”), across 3 data
sets.

0.1

0.5

2.0

8.0

32.0

128.0

 6,144 12,288 24,576 49,152

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Cores

Strong Scaling Runtime, Human 54X, Edison

HLL
Simple

Figure 3.9: Compares the (log-scaled) run-
time of each estimation technique, the “Sim-
ple” and the HyperLogLog (“HLL”), strong
scaling with the Human 54⇥ data set on
Edison.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 28

Therefore, cardinality estimation is not strictly necessary for ensuring correctness of
the main algorithm. Filtering-out singleton k-mers with the Bloom filter is a memory-
saving optimization. Avoiding storing singleton k-mers this way o↵ers significant memory
savings in practice, but otherwise it is not critical to the correctness of the main algorithm.
Further, Bloom filters only report false positives and never false negatives; in our context, this
means that independent of the cardinality estimation used to initialize the Bloom filter, non-
singleton k-mers are never mistakenly filtered-out. False positives in our context are singleton
k-mers that collide with some other k-mer in the Bloom filter, and therefore appear to the
Bloom filter to occur more than once in the data set. Accurately estimated (or overestimated)
cardinality is an alternative to expensive resizing operations for minimizing the Bloom filter’s
false positive rate. In both applications, however, there is additional handling in place for
eliminating Bloom filter false positives. Once the hash table is constructed and initialized
with k-mers that passed the Bloom filter, each processor independently in parallel traverses
its hash table partition to eliminate singletons that “fooled” the Bloom filter. For diBELLA
in particular, this step adds little to the O(� · d/P) parallel traversal that is performed
anyway, in order to remove k-mers that occur more frequently than a user-defined threshold2.
In short, cardinality estimation is not strictly necessary for ensuring correctness either of the
main algorithm, that relies on the global hash table, or of the Bloom filter optimization.

The merits precise cardinality estimation are that it can avoid expensive resizing opera-
tions, while minimizing the size of the Bloom filter, compared to high overestimation. The
HyperLogLog algorithm is a proven near-optimal cardinality estimate for sets that can be
represented numerically [25]. In the context of our applications, a numerical representation
for k-mers is derived from a hash function. Our alternative estimator, used as a baseline for
comparison, is a heuristic that estimates the k-mer set cardinality to be directly proportional
to the k-mer bag size. Thus this simple heuristic overestimates the k-mer set cardinality
in practice and supports a minimal Bloom filter false-positive rate without resizing. A key
di↵erence between the two estimation techniques is their relative complexity. The simple
heuristic requires only the input file size to estimate the k-mer bag size. With this, the calcu-
lation can be done independently in parallel, and is essentially constant-time. HyperLogLog
on the other hand requires the maximal element, the most frequently occurring element.3

Finding the maximal element requires another streaming of the input k-mers , an O(� · d/P)
computation in addition to the communication costs.

Figures 3.7-3.9 compare the relative space costs, runtime overhead, and accuracy of the
two cardinality estimators across three real long read workloads, Fruit Fly , Human 10⇥, and
Human 54⇥. Figure 3.8 shows a comparison of the accuracy achieved with HyperLogLog
(“HLL”) versus the “Simple” heuristic for these three workloads. Cardinality estimation
accuracy is calculated as the ratio of the estimated to the actual k-mer set cardinality of
the given data set for k = 17, our default k for long read analysis[23]. Across data sets, the

2As described elsewhere, these can be considered “noise” for the purpose of detecting k-mers that are
unique in the genome (detecting reads that overlap along unique regions of the genome).

3More precisely, it requires the number of leading zeros in the binary representation of the maximal
element; conditions, caveats, and full details are provided in the associated publication [25].

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 29

HyperLogLog (“HLL”) estimate is within 22% of the true set cardinality. It is only o↵ by
2% for the Human 10⇥ workload. For the Human 54⇥ data set, it slightly underestimates
the cardinality, leading to a higher false-positive Bloom filter rate than the overestimated
cardinality. This leads to more k-mers being inserted into and then removed from the hash
table afterward than otherwise. However, given that the estimate is still within 1% of the
true cardinality, the overhead of this is negligible. The simple heuristic based on the k-mer
bag sizes (labeled “Simple” in the figures), overestimates the cardinality in all cases, by a
factor of roughly ⇡ 3⇥ for the Fruit Fly workload, up to a factor of ⇡ 20⇥ for the Human
54⇥ workload.

While HyperLogLog clearly o↵ers higher accuracy in these results, we also examine the
runtime cost in practice. Figure 3.9 shows the performance of each estimator for the largest
data set, Human 54⇥, strong scaling across 256 � 2048 nodes (with 24 cores per node) on
Edison. As expected, the O(� · d/P) HyperLogLog algorithm (“HLL” in the figure) takes
as long as any other phase of the main algorithm that streams all the k-mers . It also scales
similarly to those; at first, it scales linearly from 2566 � 512 nodes (6, 144 � 12, 288 cores),
but the speedup gradually tapers o↵ between 1024 � 2048 nodes (24, 576 � 49, 152 cores).
The “Simple” heuristic on the other hand takes less than 0.5s across scales, a negligible
amount of time relative to the rest of the application. The tail increase from roughly 0.1s to
0.5s is presumably due to file system ine�ciencies, in supporting 24, 576�49, 152 concurrent
readers across 1, 024� 2048 nodes. That it increases so little for these concurrency levels is
a virtue of the HPC file system.

Finally we examine relative space costs across the three workloads. Figure 3.7 shows
the absolute size in memory of the Bloom filter partitions (initialized using each estimate).
Just as one would infer from the results in Figure 3.8, the Bloom filters initialized with the
“Simple” estimate are much larger than those initialized with the HyperLogLog (“HLL”)
estimate. However, the absolute space consumption is small. For example, Bloom filter
partitions, initialized with the simple estimate for the Fruit Fly workload, are 2MB. On the
architecture on which these results were collected, Edison’s Intel Xeon cores, 2MB is 0.07%
of the per core memory. Even on a hypothetical 1GB/core architecture, that is 0.1% of the
per core memory. For the largest example workload, Human 54⇥, Bloom filter partitions
initialized using the simple heuristic are at most 16MB – 0.6% of the per core memory on
Edison. When strong scaling, all data structure partition sizes, including the Bloom filter
partition sizes, decrease linearly with the total number of partitions.

In summary, the HyperLogLog optimization provides highly accurate cardinality estima-
tion both in theory and for our demonstration workloads (Figure 3.8). However, given the
runtime overhead, its necessity is debatable given the space savings, except for extremely
small ratios of memory to computational resources. Bloom filters, as a space e�cient data
structure by design, o↵er a small memory footprint even for highly overestimated set cardi-
nalities, as demonstrated for the workloads in Figure 3.7. Furthermore, the memory cost is
distributed across processor partitions and scales. The computational overhead (essentially
another streaming of the k-mers) is far from free (see Figure 3.9) when not combined with
another essential streaming of the k-mers . In Hipmer[18], the streaming of the k-mers for

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 30

cardinality estimation is combined with that of the heavy hitters optimization. The next
section reviews the heavy hitters optimization, its necessity and e↵ectiveness. Particularly,
the next section examines cases in which the heavy hitters optimization cost outweighs the
associated benefits, and is therefore relevant to the current discussion on precise cardinality
estimation as well.

3.7 Heavy Hitters Detection Trade-O↵s

The distribution of k-mers in the input is not known until runtime, and moreover, can be
extremely skewed. Borrowing a term originating from the database literature, k-mers that
occur extremely frequently in an input stream are referred to as heavy hitters. Heavy hitters
are generally problematic in networks and distributed systems that use identity mapping to
distribute load.

One highly scalable solution to heavy-hitter k-mers was proposed by Georganas et al.
and implemented in HipMer for short read analysis [20]. Their optimization detects heavy
hitters with a high performance implementation [6] of the Misra-Gries counting algorithm
[46]. The optimization in HipMer computes k-mers in an initial streaming of the input, in
order to detect heavy hitters. In a second streaming of the input, following the detection
phase, the algorithm does not immediately send heavy hitters to their respective owner(s).
Rather, the source(s) compute a partial sum of each heavy hitter, and send both the k-mer
and its count (once) to the respective owner. The optimization essentially redistributes the
computational load of counting high frequency k-mers among the owner and the sources,
and it avoids hammering the network with those k-mers . In other words, it adjusts load
imbalance in both the computation and in the irregular all-to-all communication from heavy
hitters. Georganas et al. demonstrated the e�cacy of this approach for extremely skewed
workloads, including the hexaploid bread wheat lines, “Synthetic W7984”[20].

Among other factors, heavy-hitter k-mers arise due to the relationship of k to the length
and frequency of inherently redundant genomic sequences. For long read workloads, unlike
short read workloads, k is extremely small relative to average read lengths. Between two
hypothetical short and long read workloads, sequenced from the same genome with the same
coverage depth, it is therefore possible for the long read workload to contain significantly
more high-frequency k-mers . In this section, we compare the overhead of the heavy hitters
optimization to the empirical performance benefit of its load balancing e↵ects on two long
read workloads. We show that the benefit of this optimization does not always outweigh
the cost. As part of the study, we use essentially the same optimized and unoptimized
implementations as Georganas et al. [20] [18]. We also use the same experimental setup with
Edison at NERSC, except for that we scale to larger numbers of nodes in powers of 2 (up
to 2, 048 versus 640 nodes). In all experiments, each node is populated with 24 MPI ranks,
1 pinned to each core. The experiments are scaled out to 49, 152 cores. Figures 3.10-3.17
provide strong scaling results from two example long read workloads in which the overhead
of the optimization ultimately obviates its improvement to overall performance.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 31

0.5

1.0

2.0

4.0

8.0

64 128 256 512 1024 2048

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Nodes x24 Cores per Node

Strong Scaling Human 10x (Exchange)

Reference
Optimized

Figure 3.10: Strong scaling comparison of
the irregular all-to-all k-mer exchange time.
(Lower is better.) The heavy-hitters op-
timization improves the exchange perfor-
mance and scalability.

0.25

0.50

1.00

2.00

4.00

8.00

64 128 256 512 1024 2048
Lo

g-
Sc

al
ed

 R
un

tim
e

(s
)

Number of Nodes x24 Cores per Node

Strong Scaling Human 10x (Packing)

Reference
Optimized

Figure 3.11: Strong scaling comparison of
time spent packing k-mers for the irregular
all-to-all exchange. The heavy-hitters opti-
mization requires more packing time to con-
solidate heavy-hitters at the source(s).

0.25
0.50
1.00
2.00
4.00
8.00

16.00
32.00

64 128 256 512 1024 2048

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Nodes x24 Cores per Node

Strong Scaling Human 10x (Computation)

Reference
Optimized

Figure 3.12: Performing partial counts of
heavy hitters at their sources in the op-
timized version increases the computation
time negligibly (0 � 7%) over the reference
version.

1
2
4
8

16
32
64

128

64 128 256 512 1024 2048

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Nodes x24 Cores per Node

Strong Scaling Human 10x (Overall)
Opt. (+)Overhead
Reference
Opt. (-)Overhead

Figure 3.13: Shows the overall heavy-hitters
optimized performance with (+) and with-
out (�) the cost of the optimization itself,
alongside the overall performance of the ref-
erence implementation.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 32

1.0

2.0

4.0

8.0

16.0

256 512 1024 2048

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Nodes x24 Cores per Node

Strong Scaling Human 54x (Exchange)

Reference
Optimized

Figure 3.14: Strong scaling comparison of
the irregular all-to-all k-mer exchange time.
(Lower is better.) The heavy-hitters op-
timization improves the exchange perfor-
mance and scalability.

1.0

2.0

4.0

8.0

256 512 1024 2048
Lo

g-
Sc

al
ed

 R
un

tim
e(

s)
Number of Nodes x24 Cores per Node

Strong Scaling Human 54x (Packing)

Reference
Optimized

Figure 3.15: Strong scaling comparison of
time spent packing k-mers for the irregular
all-to-all exchange. The heavy-hitters opti-
mization requires more packing time to con-
solidate heavy-hitters at their sources.

1.0

2.0

4.0

8.0

16.0

32.0

256 512 1024 2048

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Nodes x24 Cores per Node

Strong Scaling Human 54x (Computation)

Reference
Optimized

Figure 3.16: Performing partial counts of
heavy hitters at their sources in the opti-
mized version increases the computation 10-
20% over the reference version.

4

8

16

32

64

128

256

256 512 1024 2048

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Nodes x24 Cores per Node

Strong Scaling Human 54x (Overall)
Reference
Opt.(-)Overhead
Opt.(+)Overhead

Figure 3.17: Shows the overall heavy-hitters
optimized performance with (+) and with-
out (�) the cost of the optimization itself,
alongside the overall performance of the ref-
erence implementation.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 33

Figures 3.10-3.13 show the results of strong scaling hash table construction, described
in Section 3.3, for the Human 10⇥ data set with 64 � 2048 Edison nodes (1, 536 � 49, 152
cores). The performance of the code labeled “Reference” is from running the code without
the heavy-hitters optimization; the k-mers are not streamed to detect heavy hitters and
there is no consolidation before communication of any of the k-mers . The e↵ects of the
heavy-hitters load balancing optimization on exchange, packing, and computation time are
apparent. As shown in Figure 3.10, both the absolute runtime and the scalability of the
irregular all-to-all k-mer exchange improves. With 64 nodes (1, 536 cores) the improvement
over the Reference version is only 0.4⇥, but unlike the Reference exchange, it scales linearly
to 512 nodes (12,288 cores). With 1024 � 2048 nodes, the improvement over the Reference
is ⇡ 2.7⇥. However, turning now to Figure 3.11, the optimized version spends more time
packing than the Reference version. This is expected, since the optimized version additionally
traverses its local data structure of heavy hitters to pack them. Still, at any scale, neither
version spends a significant portion of the overall runtime in packing. Figure 3.12 shows the
strong scaling computation time of each version. The computation time in the optimized
version includes time to compute correct partial sums of heavy hitters; the initial pass,
executing the Misra-Gries algorithm[46] on the k-mer stream, only guarantees the identity
and lower bound on the frequency of heavy hitters. The overhead of this computation in the
optimized version, however, is negligible. The computation of both implementations speeds-
up super-linearly, as we observed in all other k-mer analysis passes. The results labeled
“Opt. (-)Overhead” (blue triangle-marked line) in Figure 3.13 show how the improvement
in the exchange time and scalability, the increase in packing time, and the slight increase in
computation time balance out in the overall performance (not including the overhead of the
optimization itself). The reference performance is marked “Reference” in the same figure.
The scalability improvement to these components over the reference is clear. Figure 3.13
also shows the overall performance (computation, packing, exchange) combined with the
overhead of the optimization itself (see “Opt. (+)Overhead”, the red ⇥-marked line). While
the optimized version scales better than the reference, the runtime is roughly double
that of the Reference across scales due to the additional streaming of all k-mers . The
optimized version speeds-up perfectly to 256 nodes, whereas the reference speeds-up perfectly
only to 128 nodes. The reference is 1.7⇥ faster than the optimized version with 2048 nodes.

The second workload in our analysis, Human 54⇥, is sequenced from the same genome
with much higher sequencing coverage. The input size alone is over 300GB, an over 5⇥
increase over the previous workload. From both the increase in size and redundancy from
higher sequencing coverage, we expect heavy hitters to be a larger problem for this workload
than for the Human 10⇥ workload. As we will see, however, the heavy hitters optimization
does not quite payo↵. Figures 3.14- 3.17 show hash table construction strong scaling results
with 256�2, 048 Edison nodes (6, 144�49, 152 cores). Again, the performance and scalability
of the irregular all-to-all k-mer exchange is improved significantly, as shown in Figure 3.14.
The cost of packing more than doubles however (Figure 3.15). The increase in computation
is also more apparent with this workload (Figure 3.16); it increases by 20% with 256 nodes
but drops down to 10% with 2048 nodes. The speedup in the computation of both versions

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 34

is superlinear from 256 � 512 nodes (8, 704 � 12, 288 cores). From 1, 024 � 2, 048 nodes
(24, 576-49, 152 cores) however, the speedup very gradually tapers-o↵. Let us examine how
these competing e↵ects balance-out in overall performance (Figure 3.17). The optimization
improves the overall runtime and scalability of hash table construction (see the blue triangle-
marked line, labeled “Opt.(-)Overhead”) over the reference (black diamond-marked line).
However, the cost of the optimization combined with the improved performance (labeled
“Opt.(+)Overhead”) is more than the runtime of the reference version. Only at the 2048
node scale does the optimized version come close to closing the gap between it and the
Reference.

From the results presented elsewhere for HipMer[20][18], and in Figures 3.10 and 3.14, we
learn that the heavy hitters optimization is particularly e↵ective for improving the scalability
of the irregular all-to-all k-mer exchanges. Georganas notes this optimization is essentially
free when combined with the cardinality estimation [18] discussed in Section 3.6. This is
because the heavy hitters optimization keeps track of the most frequently occurring (set)
of elements (k-mers) per partition, while the HyperLogLog cardinality estimation only re-
quires the single most frequently occurring element. In other words, in scenarios in which
the HyperLogLog cardinality estimation is worthwhile, or the heavy-hitters optimization is
worthwhile, the overhead of running both instead of just one is negligible. However, as
discussed in this and the previous section, the benefit of either optimization may not out-
weigh the respective cost. From the other results presented in this section, we learn that
unless (any) additional streaming of all k-mers is necessary to the application, the overhead
is not mitigated by the performance and scalability improvements for every workload. We
remark for future work, however, that there is clear potential to minimize this overhead with
probabilistic algorithms that do not sample the entire k-mer data set.

3.8 Overall Performance

The final set of results we present is the combined strong scaling performance of the hash
table and Bloom filter construction (Sections 3.3-3.4) from diBELLA for the long read Hu-
man 10⇥ data set. The experiment excludes those optimizations described and shown to
be unnecessary for this workload in Sections 3.6-3.7, namely the HyperLogLog cardinality
estimation and the heavy hitters optimization. Figure 3.18 shows the runtime broken down
into communication and computation for constructing each data structure. The computa-
tion for both, which includes computing and hashing all k-mers , speeds-up linearly. The
runtime switches from being computation bound to communication bound at 512 � 1024
nodes (12, 288 � 24, 576 cores) – see Equation 3.8. The absolute runtime drops from just
over a minute with 64 nodes to just over 5s with 1024 nodes.

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 35

0

10

20

30

40

50

60

1,536 3,072 6,144 12,288 24,576

64 128 256 512 1024

Ru
nt

im
e

(s
)

Strong Scaling Runtime Breakdown Human 10x

Communication (Hash Table)
Computation (Hash Table)
Communication (Bloom Filter)
Computation (Bloom Filter)

Cores

Nodes

Figure 3.18: Hash table and Bloom filter construction runtime break-
down, strong scaling with the Human 10⇥ data set on Edison.

3.9 Conclusions

In this chapter, we have closely examined several techniques for “regularizing” two irregular
applications, de Bruijn graph construction in HipMer [18] and overlap hypergraph construc-
tion in diBELLA [13], for distributed bulk synchronous parallelism. By “regularizing” we
simply mean, forcing the computational pattern into uniform computational steps separated
by uniform communication steps according to the original BSP model [61] – as nearly as
possible, that is, given the irregularity of our applications. Sources of irregularity in these
applications arise from variable genome sizes, error rates, unknown a priori coverage and
read set cardinality, non-uniform and unknown distributions of read lengths, at-runtime
knowledge of k and unknown numbers and distributions of k-mers . These irregularities
present themselves more extremely in long read overlap hypergraph construction, in which
reads vary between 103�105 (versus 100�250 short read) character lengths, and error rates
historically have been between 5 � 35% (versus below 1% for short reads). As such and
because it is the less well-studied problem, we focused our empirical analysis on long read
overlap hypergraph construction.

As observed, design decisions for e↵ective memory management, given such irregularity,
also lead to improved performance and load balance in both the computation and commu-
nication. Partitioning non-uniform reads by size not only balanced memory (Section 3.2)
but also resulted in linear k-mer computation speedups due to the relationships described in

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 36

Equations 3.1-3.2 and 3.7-3.8 (see Section 3.3 and Figures 3.12, 3.16, 3.18). Processing reads
and k-mers in batches not only supported workload processing within limited amounts of
memory (Section 3.3), but also had the beneficial side-e↵ect of limiting the impact of overall
workload skew on irregular all-to-all k-mer exchanges.

While we examined several techniques such as these in which memory management and
load imbalance design decisions have gone hand-in-hand, we also examined optimizations
that essentially trade additional computation and communication costs for memory, or addi-
tional computation for memory and communication balance. Filtering-out singleton k-mers
via a Bloom filter saves large amounts of memory and minimized the amount of wasted
computation on singletons (Section 3.4). Then again, it also costs as much computation and
communication as the hash table (graph) construction itself (Figure 3.18). While detecting
and specially handling skew from heavy hitter k-mers greatly improved subsequent k-mer
exchanges, we showed the cost of the optimization does not always outweigh the benefit
(Section 3.7). Similarly, we presented cost-benefit trade-o↵s of precise cardinality estimation
with HyperLogLog in Section 3.6. We showed that while it is possible to get highly accurate
k-mer set cardinality estimates, and doing so does minimize the amount of memory used by
the Bloom filter, the absolute saving thereof must be weighed against the cost of streaming
the bag of k-mers . We highlighted that simple overestimates based on the k-mer bag size
(see also Section 3.3) can su�ce for the purposes of both applications.

This case study o↵ers several takeaways for irregular application parallelization in general.
It demonstrates that simple complexity analysis is not a tool we should underestimate in the
face of complicated irregular application parallelization. Though there are many sources of
irregularity in this application’s data, e.g. read lengths and distributions, error rates, and so
on, by identifying the dominant term in the complexity analysis, we have identified the source
of irregularity requiring the most attention (the k-mers). The analysis relating k-mer lengths
to error rates, read lengths, coverage depth and genome size confirms that all these other
sources of irregularity are managed by managing the irregularity from k-mers . Furthermore,
extending the analysis with the ↵ � � model, we have approximated the scales at which it
pays-o↵ to employ optimizations that trade more computation for improved communication
performance i.e. the computation-communication cross-over for any given workload. We
also highlighted the memory dimension to design decisions with respect to communication
(dictating communication batch sizes and iterations) and computation (determining whether
or when the Bloom filter optimization is necessary).

In general, memory management is often considered an orthogonal consideration in ana-
lytical performance modeling, especially in distributed systems in which additional memory
is “free” (but unfortunately only in theory). Though aggregate memory may be unlimited
with the addition of more nodes, in practice, the ratio of computation to memory resources
on-node is limited, and maximally utilizing computational resources on-node may not be
possible with the available on-node memory. Further, application users have limited node
resources, and may not be able to run at the scales required by codes that always, for
example, trade memory to lessen computation.

Thus we have highlighted in this chapter the interdependencies of memory, computation,

CHAPTER 3. SCALABLE BULK-SYNCHRONOUS HASH TABLE CONSTRUCTION
FOR IRREGULAR HYPERGRAPHS 37

and communication design for our irregular applications. This is a theme we shall revisit
throughout the thesis, ultimately presenting a case for all three to be included in perfor-
mance model for irregular applications. Such models are relevant to application designers
and hardware architects making decisions regarding balancing memory, computation, and
communication consumption and resources. As an inseparable consideration, we will also
consider an alternative programming paradigm for balancing these constraints in irregu-
lar applications. Before we do so however, the next chapter considers a bulk-synchronous
approach to long read overlap hypergraph traversal and refinement, building on the bulk-
synchronous overlap hypergraph construction presented in this chapter.

38

Chapter 4

Cross-Architectural Analysis of
Bulk-Synchronous Overlap
Hypergraph Construction, Traversal,
& Refinement

This chapter builds on the long read overlap hypergraph construction, designed for dis-
tributed bulk-synchronous parallelism, presented in the previous chapter. Given the overlap
hypergraph, built using short common subsequences (k-mers), hypergraph traversal and re-
finement is necessary to verify and to determine the extent of overlap between reads sharing
k-mers . As described in Chapter 2, hyperedges in the hypergraph are reads sharing multiple
intersecting sets of k-mers . Hyperedge set intersections indicate potential overlap between
reads. To determine whether and how reads truly overlap, given that the reads contain errors
at high rates, read-to-read alignments are computed. The alignment information for reads
that truly overlap is essential for direct analysis of the underlying genome, for long read error
correction, and for assembly. Irregularity in the overlap hypergraph and the read lengths
alone present challenges for balanced distributed memory computation and communication.

This chapter presents a bulk-synchronous approach to overlap hypergraph traversal and
refinement in DiBELLA. DiBELLA’s hypergraph construction presented in the previous
chapter, with the traversal and refinement presented in this chapter, constitute the first long
read to long read alignment pipeline designed for distributed memory scalability.1 However,
the larger focus of this chapter is the balance of memory, computational, and communication
capacities that support e�cient bulk-synchronous scalability of this application. This will be
explored through extensive empirical performance analysis across three HPC architectures
and one cloud o↵ering. Each represents di↵erent balancing points between communication,
memory, and computational resources. Though the hypergraph construction step is not re-

1Some of this work was originally published in “DiBELLA: Distributed Long Read to Long Read Align-
ment” by M. Ellis et al. [13].

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 39

described in this chapter (see the previous chapter, Chapter 3), its performance is included
in the performance analysis of the pipeline as a whole.

4.1 Bulk-Synchronous Parallel Pipeline Overview

DiBELLA [13] is a 3-stage software pipeline for distributed memory scalable many-to-many
long read overlap and alignment. We refer to the 3 stages as overlap hypergraph con-
struction, traversal, and refinement. DiBELLA’s Single Program Multiple Data (SPMD)
bulk-synchronous pipeline is illustrated in Figure 4.1. It begins by partitioning the reads by
size in memory over the processors, labeled P0, P1, ..., Pn�1 in Figure 4.1, via parallel I/O. As
described more thoroughly in Chapter 3, batches of k-mers are computed in parallel from
read partitions, filtered, and re-balanced via one or more many-to-many k-mer exchanges.
A complete global k-mer histogram is optionally saved for the user, and can be collected by
running the whole pipeline or just the first stage in standalone mode.

The k-mers , filtered by global frequency, are stored in local partitions of a distributed
hash table. Along with the retained k-mers and their counts, k-mer metadata, specifically
the locations of instances of the respective k-mer in the input read set, are stored in hash
table value tuples (see Figures 3.3-3.4). The hash table partitions are traversed independently
in parallel to compute candidate overlaps, which correspond to pairwise alignment tasks for
the next stage (see Figure 4.3). Due to the k-mer load balancing strategy described in
Chapter 3, the owner of any given retained k-mer is not guaranteed to also be the owner of
any or all of the reads in which the k-mer appears. Hence, candidate overlaps, represented
by pairs of read identifiers, are consolidated at the owner of one or both of the indicated
reads via a many-to-many exchange. The locations of the retained k-mer instance in the
respective read pair are communicated with the read identifiers. The k-mers common to any
read pair can be recomputed locally, but the k-mers stored in the hash table were filtered by
(global) characteristics of the data. The filtered k-mers are used to seed respective pairwise
seed-and-extend alignments in the third stage. The second stage is described more fully in
Section 4.3. The first two stages can be run standalone to collect candidate overlaps without
alignment information – the unrefined hypergraph.

The third and final stage computes all pairwise alignments for all candidate overlaps
identified in the previous stage. Before the computation, a many-to-many exchange of the
reads necessary to more than one processor (cut hyperedges in the hypergraph partitioning,
see Chapter 2, Section 2.3) is performed. Once these reads are exchanged, the many-to-many
alignment computation can proceed independently in parallel. The refined hypergraph with
pairwise alignment information is output via parallel I/O. This stage is described more fully
in Section 4.4. This pipeline was initially implemented in MPI 2.0, using MPI Alltoall and
Alltoallv for the many-to-many exchanges.

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 40

Figure 4.1: An illustration of DiBELLA’s 3-stage Single Program Multiple Data (SPMD)
bulk-synchronous pipeline. By the end of step 1, the initial overlap hypergraph is con-
structed. By the end of step 2, hyperedge set intersections, identifying alignment tasks for
the last step, are computed and re-balanced. By the end of step 3, the hypergraph has been
refined, and pairwise alignment information for overlapping reads is ready for output.

4.2 Empirical Analysis Overview

Since empirical results are included in each of the following sections, alongside the respective
algorithm descriptions, we begin with an overview of the empirical evaluation procedures.
Our experiments were conducted on four computing platforms, which include HPC systems
with varying balance points between communication and computation, as well as a com-
modity AWS cluster. This gives us performance insights into trade-o↵s between extremes
of network capabilities. Evaluated platforms include the Cori Cray XC40 and Edison Cray
XC30 supercomputers at NERSC, the Cray XK7 MPP at the Oak Ridge National Lab, and
an Amazon Web Services (AWS) c3.8xlarge cluster. Details about each architecture are
presented in Table 4.1. Titan has GPUs and CPUs on each node, but we use only the CPUs
and total 16 Integer 2 cores per node. AWS does not reveal specifics about the underly-

2There are technically 8 “full” cores per node since the microarchitecture splits certain resources; we
adopt the common albeit somewhat imprecise description, “Integer” cores, throughout to disambiguate. In
all experiments presented, MPI ranks are mapped to exclusive L1 caches and Integer Units since these are
most important to the application.

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 41

Table 4.1: Evaluated platforms. ⇤128 byte Get message latency in microseconds. †Using
the optimal number of cores per node. ‡Measured over approx. 2K cores. §MB/s with 8K
message sizes. ↵CPUs only.

Processor Cori I Cray XC40 Edison Cray XC30 Titan Cray XK7↵

Intel Xeon (Haswell) Intel Xeon (Ivy Bridge) AMD Opteron

Freq (GHz) 2.3 2.4 2.2
Cores/Node 32 24 16
Intranode LAT⇤† 2.7 0.8 1.1
BW/Node†‡§ 113.0 436.2 99.2
Memory (GB) 128 64 32
Interconnect Aries Dragonfly Aries Dragonfly Gemini 3D Torus

ing node architecture or interconnect topology, other than an expected 10 Gigabit injection
bandwidth. Based on our measurements, the AWS node has similar performance to a Titan
CPU node. Both data sets are small enough to fit in the memory of a single node, and in
all experiments, MPI Ranks are pinned to cores.

Figure 4.2 shows the pairwise alignment computation almost entirely dominating the
runtime with near linear speedups. We currently employ an even more recent version of
an e�cient CPU implementation of the X-drop seed-and-extend algorithm[69] from the Se-
qAn library[10]. Given that algorithmic and software improvements to (pairwise) alignment
constitute an old yet highly active research area, we expect to and have already benefitted
from improvements in pairwise alignment software. In order to reveal cross-network per-
formance and communication bottlenecks while pairwise aligners continue to improve, most
of our experiments use an input data set and runtime parameters that result in minimal
computational intensity.

The primary data set in our experiments is from the E. coli bacterial genome, sequenced
with a depth of d = 30 (referred to hereforward as E. coli 30⇥). It consists of 16, 890 long
reads from the from Escherichia coli MG1655 strain, resulting in a 266 MB input file. It was
sequenced using PacBio RS II P5-C3 technology and has an average read length of 9, 958
base pairs (bps). The second data set, E. coli 100⇥, was sequenced using PacBio RS II P4-
C2 with a depth of d = 100. It consists of 91, 394 long reads from the same strain, with an
average read length of 6, 934 bps, resulting in a 929 MB input file. DiBELLA’s hypergraph
construction and traversal identifies approximately 2.3 million potentially overlapping read
pairs for the first data set and 24.9 million for the second one.

Computational intensity is most a↵ected by the number of alignments performed for each
pair of reads, since each pair shares varying numbers of k-mers (alignment seeds). Some of
these seeds reflect a shifted version the same overlapping region, whereas others may be
independent (and ultimately incorrect) overlaps. We use three di↵erent workload configu-
rations to vary computational intensity. At the two extremes, the one-seed configuration
computes a seed-and-extend pairwise alignment on exactly one seed per pair, while the all-

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 42

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

64 128 256 512 1024

Pe
rc

en
t R

un
tim

e

Number of Cores

Runtime Breakdown by Stage
Refinement
(Computation)
Refinement
(Communication)
Traversal
(Computation)
Traversal
(Communication)
Construction
(Computation)
Construction
(Communication)
I/O (Output)

I/O (Input)

Figure 4.2: Strong scaling (percent) runtime breakdown of the DiBELLA pipeline from 4 to
64 nodes on Titan, each running 1 MPI rank per Integer core / L1 cache (16 total per node).
All pairwise seed-and-extend alignments for all seeds (k-mers) discovered and retained from
hypergraph construction were computed. The time spent in any component (communication,
computation, or I/O) of any other stage (construction, traversal, refinement) are barely
visible even at 64 nodes / 1,024 cores because the pairwise alignment computation (yellow)
in the refinement stage almost completely dominates the runtime (from 99.4% to 96.8%
across scales). Over 4 nodes / 64 cores, the pairwise alignment computation speedup is
10.1⇥ (versus a perfect 16⇥), and the overall speedup is 9.9⇥. At 1,024 cores, the second
bottleneck is the construction stage, though it is still less than 3% of the runtime. Overall,
the runtime was reduced from 1.8 hours to 10 minutes.

seeds configuration computes a seed-and-extend pairwise alignment on all the available seeds
separated by at least the k-mer length, which is k = 17 for these workloads. We denote the
minimum distance between seeds as q; e.g. for the all-seeds workload, q = k = 17. As
an intermediate point we consider only seeds separated by at least q = 1Kbps - a setting
used in quality-focused analyses in related work [23]. In terms of computational intensity,
this is an intermediate point between the one-seed and all-seeds extremes because, while it
produces a filtered subset of all seeds, we expect more than one seed per read pair given
typical read lengths in range [103, 105]. For the E. coli 100⇥ data set, the average number
of seeds with q = 1Kbps is 1.8 per candidate overlap; the workload computes approximately
45.7 million seed-and-extend alignments total. Similarly, for the E. coli 30⇥ workload with
q = 1Kbps, the average number of seeds per candidate overlap is 2.2; approximately 5.1
million seed-and-extend alignments are computed overall. For all workloads, a fixed, rela-
tively low x-drop value is used, so that attempts to align reads that do not overlap fail fast

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 43

- avoiding excessive computation. All data sets are su�ciently small that the working set
size fits on a single node across the platforms in our comparison. This choice enables us
to show the performance impact of intra-node to inter-node communication on the overall
pipeline performance and highlight scaling bottlenecks, and to explore strong scaling on a
modest number of nodes, important for comparison with AWS. Memory requirements and
the relationship thereof to parallelization approaches is a topic of the next chapter.

4.3 Hypergraph Traversal & Task Redistribution

Chapter 3 describes the process of building the initial overlap hypergraph, represented with
a distributed hash table that stores both the k-mer frequency and the locations of respective
k-mers in the original reads. The distributed hash table maps retained k-mers to their source
locations (sets of read identifiers, “RIDs”, and corresponding positions). Abstractly, reads
are hyperedges sharing multiple k-mer vertices. Hyperedge intersections are candidate read
overlaps. To compute the intersections, we traverse the hypergraph, identifying overlapping
read pairs, and consolidate the k-mers shared between every read pair. These k-mers will be
used for pairwise seed-and-extend alignment in the refinement step. We hereforward refer to
these read pairings with their k-mers as computational or alignment “tasks”. The distributed
hash table is a compressed vertex-centric representation of this sparse hypergraph. Once it
is constructed, traversing the hypergraph to compute hyperedge set intersections (identify
read pairs that share k-mers) is straightforward.

The traversal is performed independently in parallel from hash table partitions. Algo-
rithm 1 illustrates this simple, direct computation of the set of all pairs of reads represented
by identifiers (r

a

, r
b

), where r
a

and r
b

share retained k-mer (s). Each k-mer “contributes”
to the discovery of [2, m(m� 1)/2] read pairs where m is the maximum frequency retained
k-mers . This frequency, m, is calculated according to the BELLA model [23] or defined
by the user. Each of these represents a candidate overlap, which is verified or pruned in
the refinement step via pairwise alignment. However, according to the uniformly random
distribution of k-mers and the independent partitioning of the reads for load balanced hy-
pergraph construction (see Chapter 3), the owner of the k-mer matching (r

a

, r
b

) may not be
the owner of either involved read. To maximize locality in the alignment stage (minimize
the movement of reads) each task is bu↵ered for the owner of r

a

or r
b

(which may be the
same owner), according to the simple odd-even heuristic in Algorithm 1. Reads in the input
are unordered and partitioned uniformly by size in memory. Hash table values (RID sets)
are also unordered. Hence, for fairly uniform distributions of reliable k-mers in the input,
we expect this heuristic to roughly balance the number of alignment tasks assigned to each
processor. Under the assumption that the input file is not externally reordered between runs,
the load balancing strategy is deterministic across runs of the same scale. Load balancing
by (number) of tasks is still imperfect, since individual pairwise alignment tasks may have
di↵erent costs in the alignment stage. The computational impact of various features, such as
read lengths and k-mer similarity, could be used for estimating the cost changes within the

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 44

pairwise alignment kernel. We leave further analysis of the relationship between the choice
of pairwise alignment kernel and overall load balancing to future work. Our expectations of
the general load balancing strategy are discussed further with empirical results in the con-
text of the alignment stage description, Section 4.4. The final steps of the traversal are the
irregular all-to-all (or many-to-many) communication of bu↵ered tasks, implemented with
MPI Alltoallv, and the (optional) output of the candidate overlaps.

Algorithm 1: Parallel (SPMD) hash table traversal

Result: All pairs of reads sharing at least 1 retained k-mer in hash table partition,
H, and corresponding k-mer positions (elided) are composed into alignment
tasks. Each task, with read identifiers (r

a

, r
b

), is stored in a message bu↵er
for the owner of r

a

or r
b

. Let m
kmer

, such that m
kmer

, m be the number
of reads associated with a given k-mer , identified by the key k

hash

.
for each k

hash

in hash table H do
for i = 0 to (m

kmer

� 2) do
for j=i+1 to (m

kmer

� 1) do
(r

a

, r
b

) = task(H[k
hash

][i] , H[k
hash

][j],...)
if (r

a

%2 = 0 AND r
a

> r
b

) OR (r
a

%2 6= 0 AND r
a

< r
b

) then
bu↵er[owner(r

a

)] (r
a

, r
b

)
else

bu↵er[owner(r
b

)] (r
a

, r
b

)
end

end
end

end

Neither the number of overlapping read pairs nor the number of retained k-mers common
to each pair can be determined for a given workload until runtime. However, from a few
simple observations, we can derive a practical estimate of the number of retained k-mers
before processing the entire input. As detailed in Chapter 3, the total number of k-mers
parsed from the input is roughly equal to the number of characters in the input (Formula 3.2),
and the size of this k-mer multiset in memory is one order of magnitude larger than the input,
given typical values of k 2 [14, 17]. However, only distinct k-mers with frequency within [2,
m] in the k-mer multiset are retained and stored, where m is the maximum frequency of
retained k-mers . As in Chapter 3, let K

bag

be the k-mer multiset (“bag” for short), and its
cardinality be |K

bag

|. To distinguish the k-mer multiset from the set of all k-mers , let K
set

be
the set of all k-mers , and |K

set

| be its cardinality. Likewise, let the subset of retained k-mers
of interest to the application be K

subset

, and |K
subset

| be its cardinality. Note, we expect K
bag

to be strictly larger than the corresponding set of all k-mers , K
set

, and both to be larger
than the subset of retained (non-singleton) k-mers , K

subset

. Let the ratio of retained k-mers
to the total number of k-mers be ◆

bag

= |K
subset

|/|K
bag

|, and the ratio of retained k-mers

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 45

Figure 4.3: Example: computing candidate overlaps from a hash table element. Reads are
represented by integer identifiers in the hash table value tuple; k-mer locations and frequen-
cies are elided from the value tuple for simplicity. See Figures 3.3-3.4 for full illustrations of
hash table elements.

to the k-mer set size be ◆
set

= |K
subset

|/|K
set

|. The importance of the distinction is that
|K

subset

| cannot be known until the k-mer set is computed and filtered, which in our case, is
done during the hypergraph construction step described in Chapter 3. |K

bag

|, on the other
hand, can be very closely estimated from the number of characters in the input (Chapter 3,
Section 3.3, Formulas 3.1-3.2). Further, |K

set

|  |K
bag

|, and thus ◆
set

� ◆
bag

. We can think
of ◆

bag

and ◆
set

as general “filtering factors”. In our cross-genome analysis, ◆
set

2 [0.04, 0.12].
In practice, observed values of ◆

bag

and ◆
set

can be used to roughly estimate the cardinality
of the retained k-mer subset, |K

subset

|, before processing the entire input at runtime. This is
useful in the absence of a model for the frequency of unique or rare k-mers in genome data
sets.

The analysis overall is useful for estimating the overlap computation and communica-
tion costs as well, and applicable beyond our particular implementation. An upper bound
on the total (global) number of overlaps follows in Equation 4.1. The lower bound (Equa-
tion 4.2) follows from the fact that retained k-mers must occur in at least two distinct reads
(identifying at least one overlap) or they are discarded. The parallel computational com-
plexity of Algorithm 1 (with P parallel processors) is shown in Formula 4.3, which assumes
constant-time storage of read pair identifiers. The hidden constant in Formula 4.3 is halved
by exploiting asymmetry.

O(◆
set

·K
set

·m2) < O(◆
bag

·K
bag

·m2) (4.1)

O(◆
set

·K
set

) < O(◆
bag

·K
bag

) (4.2)

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 46

O(
◆
set

·K
set

·m2

P
) (4.3)

Ignoring the constant for the memory size of a pair of read identifiers and positions,
the aggregate communication volume is also bounded above by Equation 4.1, and below by
Equation 4.2.

As a last computational step, after tasks are computed from the parallel traversal and
communicated, the consolidated lists of common k-mers may be filtered further depending on
certain runtime parameters. That is, some subset of the set of k-mers shared by potentially
overlapping read pairs will be used to seed the alignments in the refinement step. This subset
may be equal to the whole set, or a proper subset determined by certain runtime parameters.
These runtime parameters can be thought of as “exploration” constraints. They include the
minimum required distance between seeds, denoted q, and the maximum number of seeds
to explore per candidate-overlap. In general, increasing q and/or decreasing the maximum
number of seeds for pairwise alignments can decrease the computational intensity. Decreasing
q and increasing the maximum number of seeds can increase the computational intensity.
The seed positions and numbers are ultimately determined by the workload, however, so
shifting these parameters does not guarantee a shift in computational intensity. Note also, a
discussion of these settings in relation to overlap verification accuracy versus computational
cost is presented in the BELLA analysis [23]. In general, increasing the number of seeds to
explore per overlap increases computational cost of the alignment stage; but not necessarily
linearly, as it depends on the pairwise alignment kernel employed and its parameters. Because
the number of seeded alignments to try for a given pair of reads is still an open research
topic, we present results varying the number of seeds in Section 4.4.

Strong scaling results for the hypergraph traversal are shown in Figure 4.4. These are
presented across our evaluated platforms in terms of millions of retained k-mers processed
per second. One unexpected feature of this hypergraph is the dip in Cori’s performance trend
at 16 nodes, due to an unexpected spike in the communication exchange time that does not
continue to 32 nodes. This result was consistent across repeated experiments, varying 32
node allocations, and even considering the minimum exchange times as well as the average
and median exchange times across all runs. We suspect it is the result of a performance bug in
the MPI Alltoallv implementation for this particular configuration, communication volume,
and data layout. Because the traversal and exchange is dominated by this communication
time at 16 nodes, the spike brings the Cori performance down to Titan and AWS’s at 16
nodes.

Additionally, it is notable that the AWS cluster slightly outperforms the Titan super-
computer from 1 to 8 nodes. Only from 16 to 32 nodes does Titan finally overtake AWS.
A broken down view of their respective strong scaling e�ciencies, in terms of Exchange,
Computation, and Overall e�ciency, is shown in Figures 4.5-4.6. E�ciency is calculated
relative to performance on 1 node, employing all 16 cores; an e�ciency of 1 is perfect. In
figure 4.5, the computation on AWS speeds-up super-linearly up to 3.1⇥ at 32 nodes, due to
shrinking partition sizes and good cache behavior. The AWS Exchange e�ciency, however,
drops from 1 to just 0.33 between 1 to 2 nodes, and continues to degrade near exponen-

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 47

Cori (XC40)
Edison (XC30)
Titan (XK7)
AWS

re
ta

in
ed

 k
-m

er
s/

se
c

(in
 m

illi
on

s)

0

50

100

150

nodes (16-32 cores/node)
1 2 4 8 16 32

Overlap Performance

Figure 4.4: Cross-architecture performance of the traversal and task exchange in millions of
retained k-mers/second given E. coli 30⇥ one-seed.

tially. Trend lines fitted to the computation and exchange e�ciency are shown in the same
figure; the exponents are 0.2 and �0.9 for the computation and exchange, respectively. The
Overall e�ciency is determined primarily by the e�ciencies of both the Computation and
the Exchange, and so hovers around 1 between 1 to 8 nodes, drops to 0.75 at 16 nodes, and
finally to 0.17 at 32 nodes as the workload becomes increasingly communication-dominated.
Titan’s strong scaling e�ciency is shown in Figure 4.6. The computation speeds-up super-
lineary but not quite as quickly as the computation on AWS; the fitted trend line shown
alongside the results is roughly y = x2. From absolute runtimes for the same workloads, it
appears AWS has the faster cores with potentially larger caches than Titan’s Integer cores.
Titan’s communication e�ciency degrades as we strong scale, but also not quite as rapidly
as the AWS communication e�ciency; the fitted trend line is roughly y = x�1/2. The result
is that Titan maintains e�ciency close to 1 as we scale out, and even slightly exceeds 1 at
16 nodes. While both workloads are communication-dominated between 16 to 32 nodes, the
performance of Titan’s HPC interconnect ultimately results in Titan overtaking AWS in the
overall performance comparison shown in Figure 4.4.

4.4 Overlap Hypergraph Refinement via
Many-to-Many Alignment

The k-mer load balancing strategy described in Chapter 3 enables uniform k-mer load bal-
ancing in the overlap hypergraph construction, and in its traversal described in Section 4.3.
Every pair of reads sharing one or more k-mers is a candidate-overlap. A pairwise alignment

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 48

0

1

2

3

4

1 2 4 8 16 32Ef
fic

ie
nc

y
ov

er
 1

 N
od

e

Number of Nodes (x16 Cores)

AWS, Traversal & Exchange
Computation
Overall
Exchange

Figure 4.5: Strong scaling e�ciency of
the traversal and exchange on AWS
with the E. coli 30⇥ one-seed workload.
Includes fitted trendlines of roughly y ⇡
e0.2x for the computation and y ⇡ e�0.9x

for the exchange.

0

1

2

3

4

1 2 4 8 16 32Ef
fic

ie
nc

y
ov

er
 1

 N
od

e

Number of Nodes (x16 Cores)

Titan, Traversal & Exchange
Computation
Overall
Exchange

Figure 4.6: Strong scaling e�ciency of
the traversal and exchange on Titan
with the E. coli 30⇥ one-seed workload.
Includes fitted trendlines of y ⇡ x2 for
the computation and y ⇡ �

p

x for the
exchange.

is computed for every candidate-overlap to see if the alignment score meets some minimal
threshold, indicating that the two reads, in all likelihood, came from intersecting regions of
the sequenced genome. Candidate-overlaps that do not meet the scoring criteria are pruned
from the hypergraph. The alignment information for retained vertices is included in the final
output, as it is essential for any direct analysis, error correction, and assembly of long reads.
We refer to the process of traversing and computing pairwise alignments for vertices in the
hypergraph as overlap hypergraph refinement (also described in Chapter 2).

The hypergraph vertices, initially, are all candidate-overlaps, also called alignment tasks.
The reads required by multiple candidate-overlaps or alignment tasks are the hyperedges.
Any given mapping of the vertices to parallel processors may cut hyperedges. Hence the
data represented by hyperedges (reads) will need to be communicated across the respective
cuts eventually. Only k-mers and read identifiers (not the actual reads) are communicated
in earlier steps of the pipeline. Note, though all k-mers shared between any two reads
could be recomputed, we instead store these specific k-mers because these are the locations
of (globally) rare k-mers , and information on the global prevalence of k-mers cannot be
recomputed from just the pair of reads. After the traversal and subsequent task exchange,
each alignment task with its list of shared k-mer positions, is stored with the owner of at
least one, but not necessarily both, of the involved reads. Computing the pairwise alignment
of any candidate-overlap necessarily involves both reads.

The properties of the overlap hypergraph underpin the initial communication design for
our application. The size of the retained k-mer set determines the size and sparsity of the
overlap hypergraph. From our filtering steps, we expect this hypergraph to be sparse; from
empirical observations across data sets, the filtering typically reduces the k-mer set size

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 49

by 85-98%. To e↵ectively maximize locality and bandwidth utilization under these condi-
tions, we first explore the performance of a bulk synchronous exchange implemented via
MPI Alltoallv. Note that once the reads are communicated, the alignment computation can
proceed independently in parallel. We expect that speedups from the subsequently embar-
rassingly parallel alignment computations (which are quadratic for exact pairwise alignment
and at least linear in the length of the long reads for approximate pairwise alignment) will
compensate for ine�ciencies in the communication to some workload-dependent degree of
parallelism.

Each candidate-overlap shares an unknown a priori number of retained k-mers that are
used to seed the alignment. Any number between one or all of these seeds will be explored in
application runs, depending on the user’s objectives and runtime settings. For the purposes
of genome assembly, for example, the alignment should find only one single best alignment
between any read pair (covering the region of the genome from whence they originated during
sequencing), or the alignment computation should determine that the read pair does not
actually overlap despite sharing some short k-mer matches. Figure 4.7 shows performance
(alignments per second) across our evaluated platforms using one seed per alignment, the
setting with minimum computational intensity. Here, the number and speed of the cores per
node determine the relative performance ranking (see Table 4.1), with Cori’s 32 cores/node
clearly surpassing the other systems.

The load balancing strategy described in Sections 4.3-4.4 produces near perfect load
balancing in terms of the number of alignments computed per parallel process, but imperfect
load balancing in terms of time to exchange and compute all alignments. Figure 4.8 shows the
latter load imbalance, calculated as maximum per rank alignment stage times over average
times across ranks (1.0 is perfect). There are two reasons for this load imbalance in terms
of compute and exchange costs: (1) reads have di↵erent lengths, which e↵ect both the
exchange time and the pairwise alignment time, (2) the X-drop algorithm returns much
faster when the two sequences are divergent and does not compute the same number of cell
updates. A smarter read-to-processor assignment could optimize for variable read lengths,
eliminating the exchange imbalance. However, the imbalance due to x-drop can not be
optimized statically as it is not known before the alignment is performed. To mitigate the
impact of (2), one would need dynamic load balancing, which is known to be high-overhead in
distributed memory architectures. The load imbalance in terms of the number of alignments
performed per processor is less than 0.002% across all machines and scales. Future work
should consider not only the number of alignments per processor but other kernel-dependent
characteristics a↵ecting the cost of each pairwise alignment.

4.5 Overall Pipeline Performance

The performance rates of each stage show similar results across machines, with the more
powerful Haswell CPU nodes and network on Cori (XC40) giving superior overall perfor-
mance. As expected, all-to-all style communication for irregular many-to-many exchanges

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 50

0

1

2

3

4

5

6

1 2 4 8 16 32

Al
ig

nm
en

ts
 /

se
c

(in
 M

illi
on

s)

Number of Nodes (x16-32 Cores)

Refinement Stage Performance
Cori (XC40)
Edison (XC30)
AWS
Titan (XK7)

Figure 4.7: Cross-architecture hypergraph refinement stage performance in millions of align-
ments / second, strong scaling the E. coli 30⇥ one-seed workload.

1.0

1.2

1.4

1.6

1.8

2.0

1 2 4 8 16 32

Lo
ad

 Im
ba

la
nc

e
(P

er
fe

ct
 =

 1
.0

)

Number of Nodes (x16-32 cores per node)

Refinement Stage Load Imbalance

Cori (XC40)
Edison (XC30)
Titan (XK7)
AWS

Figure 4.8: Load imbalance of the hypergraph refinement stage, strong scaling E. coli 30⇥
one-seed. Load imbalance is calculated using maximum over average stage times across ranks
(1.0 is perfect). The apparent spike at 16 nodes on Cori and Edison is due to the fact that
communication time is included in this metric, and that there is a spike in communication
time on Edison and Cori at 16 nodes as discussed in Section 4.3.

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 51

scales poorly on all networks, but especially with the commodity AWS network. Somewhat
more surprising is the high level of superlinear speedup on some stages once the data fits in
cache or other memory hierarchy level. The question for overall performance is how these
two e↵ects trade o↵ against one another and how the stages balance out. Figure 4.9 shows
diBELLA’s overall pipeline e�ciency on Cori, across varying workloads and computational
intensity. Two data sets are used, E. coli 30x and E. coli 100x, and 3 seed constraints,
one-seed, all seeds separated by at least q = 1Kbps, and all seeds separated by q = k = 17
bps, in Figure 4.9. Clearly, increasing the computational intensity with larger inputs and
seed counts does not alone determine overall e�ciency. While the computational e�ciency
increases with higher computational intensity, the overall e�ciency is significantly impacted
by the degrading e�ciency of exchanges.

Let us consider runtime breakdowns by stage. Note, the pipeline is implemented in
the logical stages of construction, traversal, and refinement, so that each (primarily the
dominant stages of construction and refinement) can be run standalone as needed. This
design facilitates our performance analysis with respect to runtime breakdowns by stage as
well. Figures 4.10 and 4.11 respectively show runtime breakdown by stages on Cori for E.
coli 30⇥ exploring 1 seed per overlapping pair of reads, and E. coli 100⇥, using all seeds
separated by a minimum of q = 1Kbps. As described in Section 4.2, the E. coli 30⇥ one-seed
workload is a minimally compute-intensive workload in our study. Relative to this workload,
the E. coli 100⇥ input file is 3.5⇥ larger, and the configuration with q = 1Kbps computes
roughly 20⇥ more alignments. In Figures 4.10 and 4.11, the communication time is broken
out for each pipeline stage. The stages are fairly evenly balanced, although alignment is more
computationally expensive than the other stages (and dominates to 32 nodes in the more
computationally intense workload). Focusing on Figure 4.10, the communication time in the
Bloom filter stage is surprisingly higher than the rest of the construction stage. The rest
of the construction stage initializes the distributed hash table; its communication volume
is 2.5x higher and its communication pattern and number of messages is identical. Further
investigation revealed that the problem is the first call to the MPI Alltoallv routine, which
is almost twice as expensive the first time as the second, so later calls benefit from whatever
internal data structure and communication initialization happened in the Bloom Filter step.
This e↵ect was visible to varying degrees on all 4 platforms. This kind of behavior is most
noticeable for workloads with lowest computational intensity.

To further drill down on network and processor balance, Figure 4.12 shows the overall
e�ciency of the pipeline, along with the exchange e�ciency, across all 4 networks. From
an e�ciency standpoint, the Cray XK7 using only the CPU features on each node gives the
best network balance for this problem, even though the network is an older generation than
on the XC30 and XC40.

Let us now consider performance in terms of alignments computed per second (dubbed
“alignment rate”) over the whole pipeline run, for which the total number of alignments is
fixed for a given input configuration. Results for each architecture are shown in Figure 4.13.
While not well balanced for e�ciency, the higher speed processor and network on Cori
(XC40), outperform the others in running the full diBELLA pipeline. The performance

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 52

Figure 4.9: Overall strong scaling e�ciency, relative to one node, on Cray XC40 (Cori) over
2 data sets, E. coli 30⇥ and E. coli 100⇥, varying seed constraints (one-seed, all seeds
separated by q =1K characters, and all seeds with q = k = 17) for each data set.

anomaly at 16 nodes for Cori, which was seen in the other stages, is apparent here in
the overall performance, probably due to a performance issue in the MPI implementation.
With that exception and an apparent drop on AWS at 32 nodes, due to the relative network
performance, all of the systems show increasing alignment rates with increasing node counts.
Recall, that our standard problem used here (E. coli at 30x coverage with only 1 seed used
per read pair for alignment) was specifically chosen as the low end of computational intensity,
and so highlights scaling limits of the machines.

4.6 Summary & Conclusions

We presented a bulk-synchronous approach, for irregular hypergraph construction, traversal,
and refinement for long read overlap hypergraphs. Our implemention, DiBELLA, is the first
distributed memory scalable software for this problem, making it possible to analyze data
sets that are too large for a single shared memory and or making heroic computations routine.
We performed a thorough performance analysis on three leading HPC platforms as well as
one commodity cloud o↵ering, showing good parallel performance of our approach, especially
for realistic scenarios that perform multiple alignments per pair of input reads. While the
HPC systems o↵er superior performance to the cloud, the performance across 4 platforms

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 53

0%

25%

50%

75%

100%

1 2 4 8 16 32
Number of Nodes (x32 Cores)

Refinement (R)

(R) Exchange

Traversal (T)

(T) Exchange

Construction (C)

(C) Exchange

Bloom Filter (B)

(B) Exchange

Figure 4.10: Strong scaling runtime breakdown on Cori with minimum computational-
intensity workload (E. coli 30⇥, one-seed). The y-axis is percent of total runtime.

0%

25%

50%

75%

100%

1 2 4 8 16 32
Number of Nodes (x32 Cores)

Refinement (R)

(R) Exchange

Traversal (T)

(T) Exchange

Construction (C)

(C) Exchange

Bloom Filter (B)

(B) Exchange

Figure 4.11: Strong scaling runtime breakdown on Cori with the E. coli 100⇥ all-seeds
q = 1Kbps workload, the input size of which is 3.5⇥ larger and computes roughly 20⇥ more
alignments than the workload of Figure 4.10. The y-axis is percent of total runtime.

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 54

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16 32
Number of Nodes (x16-32 Cores)

Cross-Pipeline Overall Efficiency

Titan
Edison
AWS
Cori

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 4 8 16 32
Number of Nodes (x16-32 Cores)

Cross-Pipeline (Exchange) Efficiency
Titan
Cori
Edison
AWS

Figure 4.12: E�ciency of the whole pipeline for all architectures, strong scaling with min-
imally compute-intensive workload (E. coli 30⇥ one-seed). Overall e�ciency is shown on
the left and e�ciency of the exchanges is shown on the right. E�ciency (y-axis) in both is
calculated relative to single node performance.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16 32

A
lig

nm
en

ts
 /

 s
ec

 (i
n

M
ill

io
ns

)

Number of Nodes (x16-32 Cores)

diBELLA Overall Pipeline Performance

Cori (XC40)
Edison (XC30)
Titan (XK7)
AWS

Figure 4.13: Cross-architecture strong scaling performance of the pipeline as a whole, in
terms of millions of alignments per second given the E. coli 30⇥ one-seed workload.

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 55

benefits from the multi-node parallelization. The application is dominated by irregular all-
to-all (many-to-many) style communication and the study reveals some of the performance
anomalies on particular systems, as well as general scaling issues at larger node counts.
We believe that in addition to being a useful tool for bioinformatics, either standalone or
as part of a larger pipeline, DiBELLA also represents an important parallel workload to
understand and drive the design of future HPC system and communication libraries. It is
also a foundation for future optimizations in single node pairwise alignment, that retains the
e�ciency of the sparse interactions.

The empirical evaluation presented simulates anticipated changes in long read overlap
hypergraph analysis workloads over time. We anticipate the computational intensity, specif-
ically of the many-to-many alignment, to be reduced by improvements in three directions.
First, we expect improvements in overlap detection and seed selection (reducing the number
of alignments computed). Second, we expect ongoing improvements in pairwise alignment
algorithms, as an old yet vibrant area of research. Third, we expect improvements in pairwise
alignment software, including hardware accelerator utilization among other optimizations.
Since the original publication of these results [13], the first GPU implementation of the X-
drop algorithm was published in our related work [66] (See Chapter 6). Our simulation across
workloads varying computational intensity reveals that the bottleneck of the pipeline is the
alignment stage, and within the alignment stage, the scalability bottleneck is the many-to-
many read exchange. The analysis also reveals the opportunity to overlap communication
and computation, even under computational minimal settings (see Figures 4.10-4.11).

To study computation and communication balance, the study has thus far set aside
memory. The next chapter will reintroduce memory requirements into the overall study, and
highlight that memory capacity is not an independent consideration for scalable design ap-
plication design. Thus, the next chapter presents and evaluates an alternative asynchronous
approach overlapping communication and computation while minimizing memory footprint.

4.7 Future Work: Overlap Hypergraph Data Analysis

The output of DiBELLA, right before or after refinement, can be used to analyze the un-
derlying overlap hypergraph. This may be useful for future partitioning and load balancing
optimizations, as well as for biological analysis. Overlap data collected with DiBELLA for
the E. coli 30⇥ workload is shown in Figures 4.14-4.15. The data is plotted as a read-by-read
matrix; the numbers on the x-axis and y-axis correspond to reads. Non-zeros indicate an
overlap between the respective read pair. Note, only the upper/lower triangle of the logically
symmetric matrix is plotted; that is, for each overlap (a, b) between read a and read b, only
(a, b) or (b, a) is plotted (not both). The total number of non-zeros over the number-of-
reads-squared is 0.008. In order for the non-zeros to be visible in the plot, the dots marking
non-zeros are disproportionately displayed. In Figure 4.14, reads are numbered according
to an essentially random ordering; there is little to no visually identifiable structure. In
Figure 4.15, reads are numbered by their relative lengths, increasing left-to-right and top-

CHAPTER 4. CROSS-ARCHITECTURAL ANALYSIS OF BULK-SYNCHRONOUS
OVERLAP HYPERGRAPH CONSTRUCTION, TRAVERSAL, & REFINEMENT 56

Figure 4.14: Long-read by long-read matrix
dot plot. Non-zeros are overlaps discovered
with DiBELLA. The number of non-zeros
over the number of reads squared is 0.008.
Reads are numbered according to an essen-
tially random ordering of the reads.

Figure 4.15: The data in Figure 4.14 re-
plotted: reads are numbered by their rela-
tive lengths, increasing left-to-right and top-
to-bottom. The number of overlaps per read
increases with the length, but not perfectly
linearly.

to-bottom; the number of overlaps per read appears to increase with the read length, as we
might expect. While we have made several other observations from analyzing this and other
data sets, analyzing such data is wide-open for future research. DiBELLA is a useful tool
for collecting overlap hypergraph data across small and large genomes, with a flexible set of
parameters for adjusting how overlaps are detected.

57

Chapter 5

Asynchronous versus Bulk
Synchronous Overlap Hypergraph
Refinement

In distributed computing models, memory capacity is often considered an orthogonal con-
cern to computation and communication performance. As demonstrated for the applications
in Chapter 3, however, there are trade-o↵s between memory and computational and com-
munication resource utilization in practice. This chapter will consider these trade-o↵s for
distributed long read overlap hypergraph refinement.

Long read overlap hypergraph refinement is a challenging problem for distributed memory
parallelization due to its highly irregular nature, as described in Chapters 2 and 4. Chap-
ter 4 examined the computational and communication balance for this problem; and the
empirical evaluation therein isolated these components from memory consumption rates, for
the purposes of that study. This chapter describes the memory requirements, and highlights
the interdependence of balancing memory, computation, and communication for successful
parallelization of long read overlap hypergraph refinement.

To begin the discussion, we provide upper and lower bounds on aggregate space require-
ments, relative to the characteristics of our hypergraph formulation from Chapter 2. In
contrast to bulk-synchronous approaches, asynchronous approaches have the potential to
meet the space lower bound, while hiding the communication latency of the fine-grained
communication necessary for doing so. In general, either approach can work within the
limits of available memory, however. Therefore, we describe and implement the necessary
extensions to the bulk-synchronous approach introduced in Chapter 4. We also introduce a
basic asynchronous algorithm and implementation thereof in UPC++. Our empirical eval-
uation uses three workload configurations to establish comparability, and to examine the
performance gap between the two, under memory limitations determined by real working
data set sizes.

While we demonstrate the potential of asynchronous approach in this process, we high-
light the path to achieving scalability under each approach. We leave more extensive cross-

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 58

architectural analysis to future work. Ultimately, this study contributes to the broader dis-
cussion of asynchronous versus bulk-synchronous parallelism from an application-grounded
standpoint.

5.1 Introduction: Challenges and Opportunities

Before describing challenges and opportunities in the following subsections, we briefly re-
capitulate the overlap hypergraph abstraction from Chapter 2, with notation that will be
helpful for the following analyses. In Chapter 2, we formulated the long read many-to-many
alignment problem as the complete traversal and refinement of an irregular hypergraph,
G0 = {V,H, ~ , ~w}. Each vertex in the hypergraph, v(a,b) 2 V | (a, b) 2 H, must be visited
(the respective pairwise alignment computed) to both refine the hypergraph (remove vertices
depending on the pairwise alignment score) and to produce precise alignment information
for retained vertices. In order to compute the pairwise alignment represented by vertex
v(a,b), the information in the hyperedges a and b (reads) are required. The variability in
the lengths or sizes in memory of the reads is represented with weight vector ~w, such that
8h 2 H 9 w

h

2 ~w. For later convenience, we use l
avg

to denote the average read length
l
avg

= ⌃~w/|H|. The variability in pairwise alignment computational costs is similarly rep-

resented by a weight vector ~ such that 8 v 2 V 9
v

2

~ . We will use this formulation
to establish analytical performance bounds in terms of the characteristics of a given overlap
hypergraph throughout the chapter.

Memory Footprint Minimization

Minimizing memory footprint is a priority for supporting application runs across a broad
range of distributed architectures and user constraints (limited compute resources). These
include small distributed memory architectures and clusters, and architectures (large or
small) in which the ratio of memory to compute resources is relatively low; it includes not
only “skinny” node architectures but also “fat” node architectures in which fully utilizing
the compute resources severely limits per-core memory, such as on various multi- and many-
core architectures. The experimental evaluation in this chapter includes one such many-core
architecture, Cori KNL at NERSC.

While the bulk-synchronous algorithm for communicating reads (cut hyperedges in the
partitioned hypergraph), presented in previous chapter, maximizes bandwidth utilization, it
also maximizes memory footprint. The bulk-synchronous read exchange requires memory for
all replicated reads up front, at both the target and destination. Recall, the original algorithm
assumes nothing about the order of reads in the input. The partitioning strategy is data-
independent, in the sense that partitions are computed with respect to size of the input data
in memory and no other characteristic of the data. The pairwise alignment computations
(vertices in the hypergraph, V 2 G0) are distributed with respect to the existing partitioning
of the reads (hyperedges, H 2 G0). The invariant that every vertex v(a,b) 2 V is mapped to a

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 59

partition containing either a 2 H or b 2 H is preserved. Furthermore, vertices are distributed
across the given P processors such that each processor’s partition contains roughly the same
number of tasks, ⇡ |V |/P . In the worst-case, there is exactly one cut of a hyperedge for
every vertex v 2 V .

Equation 5.1 is an upper bound on the growth of the aggregate memory requirement
relative to the number of characters in the input (� · d) and the vertex set size, |V |. The
constant c1 denotes the memory cost of representing and alignment task in memory while
l
avg

denotes the size of a read with respect to the average length of reads in the input. The
(2 · l

avg

) term follows from the fact that we must allocate space at both the target and the
destination of any replicated and communicated read. The size of the vertex set will depend
on the input and on the overlap detection algorithm.

� · d+ |V |c1 + |V | · 2 · l
avg

= O(� · d+ |V |(l
avg

)) (5.1)

This is a problem in practice because the aggregate minimum memory requirement (for
communication alone) may be many times larger than the memory required for the input
reads alone, based on the size of the (not yet refined) overlap hypergraph. A simple solution
is to reduce the bulk-synchronous superstep sizes such that the memory required for incoming
and outgoing message bu↵ers is equal to that available. This strategy reduces bandwidth
utilization and also incurs the overhead of multiple many-to-many exchanges.

� · d+ |V | · c1 + P · l
avg

· c2 = O(� · d+ |V |+ P · l
avg

) (5.2)

Alternatively, an asynchronous approach can not only hide communication latency of
retrieving reads, but can also meet the aggregate space lower bound shown in Equation 5.2.
The lower bound follows from the fact that each parallel processor needs to store a constant
number of additional reads at any given time for all P processors to compute all alignments
involving remote reads. The constant c2 in the lower bound is 2, one for a remote read
required for local computation, and one read replicated from the local partition in response
to a request. Message aggregation optimizations may be included in the model by increasing
c2.

In the following, we will focus on a bulk synchronous strategy that adjusts superstep
sizes to available memory, and on an asynchronous strategy that simply meets the space
lower bound. We will return to the topic of message aggregation and other optimizations,
after introducing the basic asynchronous algorithm and implementation, which will serve as
a baseline in our empirical evaluation. Note, while we focus on these two approaches, they
form the basis of hybrid approaches as well.

Communication-Computation Overlap

The bulk-synchronous algorithm for communicating reads and computing alignments (travers-
ing the hypergraph of alignments in parallel) in Chapter 4 does nothing to hide the overhead
of communicating reads (cut hyperedges). Some workloads are so dominated by the pairwise

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 60

alignment computation (e.g. by 97-99%, Figure 4.2), that even this communication over-
head is a negligible component of the overall runtime. However, with improvements in the
pairwise alignment computation or at higher scales, the exposed communication overhead
can be significant. The results in Figure 4.11 , shows a runtime breakdown of the pipeline’s
strong scaling performance on a workload with limited computational intensity. At 32 nodes
(1,024 cores), the communication overhead of the alignment stage is one of the two dom-
inant bottlenecks; the computation of pairwise alignments is the other. At all scales, the
runtime breakdown shows there is enough computation to completely hide the communica-
tion overhead, even with computational intensity limited to an extreme by runtime settings.
In general, the opportunity for computation and communication overlap depends on the
average time to compute a batch of pairwise alignments involving a given remote read a
relative to the communication latency for retrieving read a.

5.2 A Baseline Asynchronous Many-to-Many
Alignment Algorithm

We present a basic algorithm for asynchronously communicating reads and computing align-
ments. It will serve as a baseline for our theoretical and empirical performance analyses.
The single program multiple data (SPMD) algorithm begins with each parallel processor
organizing the alignment computations (a.k.a. tasks) assigned to it. Recall, task assignment
from the previous chapter preserves the invariant that 8v(a,b) 2 V either read a 2 H or read
b 2 H is local, or both (a, b) are local to the processor that will perform the task v(a,b). In
our asynchronous algorithm, each task involving a remote read b and local read a is indexed
under b; those tasks for which both reads are local may be indexed under either. Once the
tasks are organized by remote read, the algorithm proceeds by issuing a one-sided request
for each remote read. A callback is attached to the request; once a remote read b arrives,
all alignment computations involving b are executed. As in the original bulk-synchronous
algorithm, only those alignments which meet or exceed the user or default scoring criteria
are saved for output.

The author implemented this algorithm in UPC++, a C++ library for high-performance
asynchronous communication and computation. Over other asynchronous languages and
libraries, UPC++ supported by GASNet-EX [5] claims lower one-sided message latencies
and better programmability [2]. Given that read lengths are highly variable and that, there-
fore, the number of reads per parallel processor is non-uniform, our implementation employs
UPC++ remote procedure calls (RPCs) to lookup and return reads from remote data struc-
ture partitions. This avoids additional layers of indirection or additional auxiliary data
structures for lookups. Furthermore, the use of RPCs in UPC++ ensures read requests from
remote processors are answered one-at-a-time, avoiding potential memory overflow from read
replication for multiple simultaneous requests. We also note, it has been demonstrated [27]
that RPCs can outperform remote direct memory accesses (RDMA) for large messages and

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 61

32

64

128

256

512

8 16 32 64 128

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Threads

Intranode Strong Scaling Varying the Max.
Number of RPC's in-Flight per Thread on Cori KNL

Max=1

Max=16

Figure 5.1: Strong scaling performance of
the asynchronous algorithm implemented in
UPC++, varying the maximum number of
RPC’s in-flight (per thread, UPC++ rank).
Concurrency in terms of the number of
threads increases along the x-axis. Threads
are pinned to cores, except, at x=128, they
are pinned to hardware hyperthreads, up to
2 per core. The overall runtime in seconds
is shown on the y-axis (lower is better).

32
64

128
256
512

1024
2048
4096

1 2 4 8 16 32 64

Lo
g-

Sc
al

ed
 R

un
tim

e
(s

)

Number of Cores

Intranode Strong Scaling (E.coli 30x) Cori KNL

BSP
Async

Figure 5.2: Strong scaling performance of
the asynchronous algorithm implemented in
UPC++ alongside the performance of the
bulk synchronous algorithm implemented in
MPI 2.0. Performance is shown as overall
runtime in seconds (y-axis). Concurrency
in terms of the number of threads increases
along the x-axis. Threads, UPC++/MPI
ranks, are pinned to cores, up to 1 rank per
L1 cache.

for data structure lookups that involve both an index lookup and retrieval of the data itself.
This most closely matches our use-case. We leave a thorough investigation of RDMA versus
RPC performance for our application to future work however. An additional consideration
for implementations in general are the progress guarantees of the underlying language and
runtime regarding RPCs and callbacks. In our UPC++ implementation, regular application-
level polling is required to ensure read requests are answered and callbacks are processed.
Beyond this, GASNet-EX ensures read requests and callbacks are delivered, under the usual
assumptions about the network. The next sections examine the performance of this baseline
implementation against the bulk-synchronous algorithm’s implementation.

5.3 Empirical Results

Intranode Performance

We establish the comparability of the two codes by examining relative performance on a single
node. We collected strong scaling experimental results using a real data set small enough
to process within the memory of a single node of Cori Haswell and Cori KNL. Since the
scalability trends are roughly the same between the two architectures, Figures 5.1-5.2 show

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 62

the results on the architecture with higher core and hardware threads counts, Cori KNL. We
explore the impact of overlapping communication and computation on node by imposing a
limit on the maximum number of RPC’s in-flight (per UPC++ rank) and varying the limit.
The “Max=1” trendline in Figure 5.1 shows the case where communication-computation
overlap is most limited. Each request for a remote read waits for a response, computes the
respective alignments with the received read, and then issues the request for the next remote
read. While waiting, however, it may respond to requests from other processors for reads –
this is managed by the UPC++ runtime. We varied this limit until a performance plateue
was reached. For the Cori KNL nodes processing this workload, the plateue was reached
with a limit of 16. Figure 5.1 shows the results for 8 to 128 threads with a limit of 1 versus
a limit of 16. With a limit of 16, the speedup over the performance with limit 1 is 1.4 to
1.5⇥. For any setting, there was only marginal benefit from employing hyperthreads (see
x = 128 in Figure 5.1). Hereforward, we focus on the results from pinning ranks to full
cores (exclusive L1 caches). An intranode strong scaling performance comparison of our
asynchronous algorithm (“Async”) to our bulk synchronous algorithm (“BSP”) is shown in
Figure 5.2. The single core runtimes are approximately the same between the two versions.
Scaling within the node, the runtime for processing this workload with either version was
reduced from just under 1 hour on 1 core to just under 1 minute on 64 cores. Both the
bulk synchronous and the asynchronous version speed-up perfectly from 1-64 cores, with
negligible communication and synchronization overhead within the node. Now that we have
established the comparability of the implementations on a single node, let us turn to the
multinode performance.

Multinode Performance

We compare the asynchronous and bulk synchronous multinode performance with two real
data sets. The first is the E.coli genome sequenced with PacBio to 100⇥ coverage. It is
small enough to process on a single node, but over 3⇥ larger than the data set used for the
intranode scalability results in section 5.3. We employ it for a strong scaling comparison in
which there is su�cient per processor memory for the bulk synchronous version to exchange
all reads at once, achieving its lowest communication overhead. The second data set is a
human genome sequenced with PacBio Circular Consensus (CCS) technology. It is roughly
28⇥ larger than the E.coli 100⇥ data set, and the initial stages of the DiBELLA pipeline,
including building the hypergraph, cannot complete their processing with fewer than 8 Cori
KNL nodes. DiBELLA parameters for this analysis across workloads included setting k = 17
and the upper limit on k-mer frequencies (a.k.a. “noise threshold”) according to the BELLA
model [23], and limiting seed-and-extend alignment to one seed per candidate-overlap (see
discussion in Section 4.4 and throughout Chapter 4). For all experiments, processors are
pinned to each full core (L1 cache) on a node – there are 64 per node. Furthermore, time
spent in I/O is left-out; satisfactorily scalable parallel file I/O is employed in each version
but the implementations are di↵erent and file I/O is not the focus of this work.

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 63

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

64
128

256
512

1,024
2,048

4,096
8,192

Ef
fic

ie
nc

y

Number of Cores (64 per Node)

Comparative Strong Scaling Efficiency Cori KNL
BSP Async Perfect

Figure 5.3: Comparative strong scaling
(overall) e�ciency with the E.coli 100x data
set on Cori KNL. E�ciency (y-axis) is com-
puted relative to single node (64 core) over-
all performance. The asynchronous (Async)
version achieves up to 9% higher e�ciency
than the bulk synchronous (BSP) version.

1
2
4
8

16
32
64

128

64
128

256
512

1,024
2,048

4,096
8,192

Sp
ee

du
p

(o
ve

r 1
 N

od
e)

Number of Cores (64 per Node)

Strong Scaling Computation Speedup Cori KNL

Perfect
BSP
Async

Figure 5.4: Comparative strong scaling
speedup of each version’s computation with
the E.coli 100x data set on Cori KNL.
Speedup is computed relative to single node
(64 core) performance. The computational
speedup of each version is perfect.

0

50

100

150

200

250

300

350

400

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

1
64

2
128

4
256

8
512

16
1,024

32
2,048

64
4,096

128
8,192

Ru
nt

im
e (

se
co

nd
s)

Strong Scaling Comparison with E.coli 100x on Cori KNL

Communication
Synchronization
Computation

Node Count
Core Count

Figure 5.5: Strong scaling runtime breakdown with the E.coli 100x data set on
Cori KNL. The bulk synchronous (BSP) version completes all read exchanges in
a single round. The asynchronous version (Async) hides nearly all communication
overhead.

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 64

Figure 5.3 shows the e�ciency of the two implementations processing the E.coli 100x
workload, scaling out from 1 to 128 Cori KNL nodes (64 to 8K cores). E�ciency is com-
puted relative to the average runtime on a single node, 64 cores; we estimate it would take
approximately 7 hours to process the same workload using 1 Cori KNL core. With 64 cores
on 1 node, it takes roughly 6.5 minutes. Because the asynchronous version (labeled “Async”
in Figure 5.3) slightly outperforms the bulk synchronous version (“BSP”) on 1 node, and
e�ciency is compute relative to the average of the two versions on one node, the BSP e�-
ciency is slightly lower than 1.0 at 64 cores, and the Async e�ciency is slightly higher. From
1�128 nodes, the asynchronous version achieves higher e�ciency than the bulk synchronous
version, up to 9%. Figure 5.4 shows the (computational) speedup of the two version; it is
the same, as expected, and perfect.

We turn to the comparative runtime breakdown shown in Figure 5.5 to explain the
e�ciency disparity between the two versions. In both versions, the synchronization time
includes the gap in time between the shortest and the longest running process, respectively, to
finish all work. For the bulk synchronous version only, this includes time spent synchronizing
communication rounds. The read exchange for this workload can be performed in a single
round, and the additional synchronization time is negligible across scales. Between the two
versions, the time spent in synchronization roughly matches; the load imbalance is the same.
The communication overhead of the bulk synchronous version increases monotonically from
1% of the overall runtime on one node to 19% on 128 nodes. By contrast, the asynchronous
communication overhead is not always visible and at most 0.14% between 1 and 64 nodes.
At 128 nodes, the visible overhead is just under 5%. The absolute runtime of both versions
on 128 nodes is just under 10 seconds; a roughly 40⇥ speedup over the single node time,
and an estimated 2.5⇥ 103 speedup over a single core.

Figures 5.6- 5.7 show comparative strong scaling results on a larger workload, a PacBio
CCS human data set. Note, the minimum number of nodes required to process this workload
with our setup is 8, as determined by the memory requirement of the previous pipeline
stage. We scale the workload from 8 nodes to 512 nodes (512 to 32K cores respectively).
From 8�32 nodes, there is insu�cient memory for the bulk synchronous version (“BSP”) to
complete its read exchanges in a single round, it requires multiple exchange-compute rounds.
Figure 5.6 (left), the asynchronous version is (“Async”) is up to 16% more e�cient under
these conditions. From 64 � 512 nodes, however, there is su�cient per processor memory
to complete the exchange all at once. As shown in Figure 5.6 (right), the e�ciency of the
asynchronous version is still higher but only up to 3% higher. Figure 5.7 shows a runtime
breakdown of the two versions in terms of communication, synchronization, and computation
time. Similarly to the results in Figure 5.5, the pairwise alignment computation speeds-up
perfectly. The synchronization time between the two versions is roughly the same across
scales, as it is dominated by the load imbalance. The communication overhead of the bulk
synchronous version is the source of the e�ciency disparity (shown in Figure 5.6) between the
two versions. The communication overhead is 17% to 34% of the bulk synchronous version’s
runtime across scales, while the asynchronous version completely hides its communication
latency.

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 65

0.0
0.2
0.4

0.6
0.8
1.0

512 1,024 2,048

8 16 32

Ef
fic

ie
nc

y

Core Count / Node Count

Strong Scaling Efficiency, CCS Human, Cori KNL
BSP Async Perfect

0.0
0.2
0.4
0.6
0.8
1.0

4,096 8,192 16,384 32,768

64 128 256 512

Ef
fic

ie
nc

y

Core Count / Node Count

Strong Scaling Efficiency, Human CCS, Cori KNL

BSP Async Perfect

Figure 5.6: Overall strong scaling e�ciency of the asynchronous (“Async”) and bulk syn-
chronous (“BSP”) codes, processing the same Pacbio CCS human workload on Cori KNL.
Between 8 and 32 nodes (left), BSP performs the many-to-many read exchanges in multiple
rounds in order to stay within processor memory limits, and the Async is up to 16% more
e�cient. From 64-512 nodes (right), there is su�cient per processor memory for the bulk
synchronous version to complete the exchange in a single round.

0

20

40

60

80

100

120

140

160

180

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

BS
P

As
yn

c

8
512

16
1,024

32
2,048

64
4,096

128
8,192

256
16,384

512
32,768

Ru
nt

im
e (

s)

Strong Scaling Comparison with CCS Human Data on Cori KNL

Communication
Synchronization
Computation

Node Count
Core Count

Figure 5.7: Strong scaling runtime comparison of the bulk synchronous (BSP) and
asynchronous (Async) codes, processing the same Pacbio CCS human workload on
Cori KNL. Async successfully hides the communication overhead.

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 66

5.4 Summary

This chapter examined the memory, computation, and communication trade-o↵s of asyn-
chronous versus bulk-synchronous approaches to long read overlap hypergraph refinement.
We described in Section 5.1 how the choice of communication algorithm for this problem is
not independent from the memory footprint, and we established upper and lower bounds
for memory footprint based on the size of a given overlap hypergraph. We focused on com-
munication approaches for which the ratio of data communicated to data required by the
receiving processor is exactly 1, and narrowed our focus to two main approaches. The first
is an asynchronous approach that hides communication by overlapping pairwise alignment
computations, and meets the space lower bound by never requiring more than one remote
read at a time to make progress - though optimizations that take advantage of remaining
memory may, of course, be employed in practice. The second is a simple extension of the
bulk synchronous approach introduced in a previous chapter. Rather than communicating
all reads at once and then computing all alignments, the extension reduces the bulk syn-
chronous superstep size such that the communication of reads consumes no more memory
than that available; a workload is processed in potentially multiple rounds of read-exchanges
and pairwise alignment computations.

For comparative empirical analysis, we extended the bulk-synchronous code, presented in
the previous chapter, to process workloads in multiple exchange-compute rounds depending
on available memory. We also presented a simple asynchronous algorithm and its imple-
mentation in UPC++ [2]. Empirical strong scaling results were collected on Cori KNL at
NERSC across three real workloads. Both codes were e↵ective for scaling problems from a
single core to all cores within a node, and from a single node to hundreds of nodes and thou-
sands of cores. The intranode performance and scalability analysis established performance
comparability of the two implementations; the performance di↵erence was less than 3% of
the overall runtime across scales. For the respective workload, our codes reduced processing
time from just under one hour on 1 core, to just under one minute on 64 cores. To analyze
performance di↵erences under the best-case scenario for the bulk synchronous approach,
we used a workload for which the many-to-many exchange could be performed in a single
iteration, within the available memory of 1 to 128 nodes, strong scaling. The results demon-
strated that even in this case, the asynchronous version was able to obtain up to 9% higher
strong scaling e�ciencies by hiding communication latency. Overall, our codes reduced the
processing time for this workload from an estimated 7 hours on 1 core to around 10 seconds
on 4K-8K cores. Finally, we analyzed the relative strong scaling performance of the bulk
synchronous and asynchronous codes, processing a workload for which the many-to-many
exchange could not be performed in a single exchange at small scale. The comparison high-
lighted the bulk synchronous approach’s significant communication overhead (17 to 34%)
when forced to perform multiple irregular exchanges, in order to process a workload within
available memory. By contrast, the asynchronous version e↵ectively hid all communication
overhead for the same workload across all scales (8-512 nodes, 512-32K cores).

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 67

5.5 Conclusions & Future Work

The empirical results presented in this chapter demonstrate the great potential of asyn-
chronous approaches for this application. However, we emphasize that the relative perfor-
mance of bulk-synchronous versus asynchronous approaches is determined by the perfor-
mance of communication primitives for many-to-many exchanges and by the performance of
the pairwise alignment computation. Bandwidth for many-to-many exchanges supporting
bulk-synchronous approaches, versus the (balance of) alignment computation to one-sided
or point-to-point message latency supporting asynchronous approaches, determine the rel-
ative performance of each approach across workloads, implementations, and architectures.
We further emphasize that optimizing communication and computation performance is not
independent from memory capacity. Bulk-synchronous approaches trade memory for better
bandwidth utilization. Asynchronous approaches can take advantage of additional memory
to optimize communication and computation overlap.

On any architecture with su�cient many-to-many communication memory and band-
width, and with single message latencies that exceed pairwise alignment computation rates,
we expect the performance gap between the bulk-synchronous and asynchronous implementa-
tion to close or even switch directions. The optimizations necessary in such a setting to shift
the balance toward asynchrony involve reducing the number of and increasing the e�ciency
of single asynchronous messages. These include data compression and batching among other
possible optimizations. However, on su�ciently high-latency networks, such optimizations
may still not pay-o↵, as in our cross-architecture cross-paradigm evaluation of HipMer [14].
In that study, the Ethernet cluster’s high latency for the application’s many-to-many ex-
change via one-sided messages overwhelmed the communication-computation overlap, even
with batching and caching optimizations, causing egregious slowdowns. On the other hand,
in the same settings, the bulk-synchronous code, with synchronous many-to-many exchanges,
scaled linearly, remaining compute-bound across the available scales.

Furthermore, optimizations targeting just the computation will a↵ect the overall perfor-
mance of each approach di↵erently. For bulk-synchronous approaches, we expect improve-
ments to the computation to decrease overall runtime, and to lower the number of parallel
processors at which strong scaling overall application performance becomes communication-
bound rather than computation-bound. For the asynchronous approach, we expect overall
runtime to improve with alignment computation optimizations until average asynchronous
message latency exceeds the average pairwise alignment computation rate, at which point,
communication optimizations such as those mentioned, will be necessary for any further
computational optimizations to be e↵ective.

The results from both implementations also show there is a clear opportunity to opti-
mize load imbalance. The time to synchronize the shortest-running and the longest-running
processes was visible and comparable between the codes across scales. This highlights the
opportunity to optimize both the read and alignment task distributions. For all results in
this chapter, we used a direct “blind” hypergraph partitioning, that avoids re-partitioning
input reads and balances the (number) alignment tasks per processor with a simple heuristic,

CHAPTER 5. ASYNCHRONOUS VERSUS BULK SYNCHRONOUS OVERLAP
HYPERGRAPH REFINEMENT 68

described more fully in the previous chapter. The challenges of load balancing alignment
tasks, given that the associated costs vary dynamically, were also discussed in Chapter 4. In
this chapter, we focused on many-to-many communication approaches that are independent
of the underlying hypergraph partitioning approach. That is, for improvements in the under-
lying partitioning approach, we expect the communication performance of these approaches
to only improve respectively. Alternative approaches for distributing reads and alignment
tasks is an open area for future work.

Finally, the codes in our empirical evaluation both follow a flat rather than a hierarchical
or hybrid model. Neither code optimizes communication between processors within the same
shared memory node more than the respective underlying runtime systems do by default.
However, both the empirical and analytical results presented are useful for understanding
performance of hierarchical or hybrid approaches as well, with simple extensions.

69

Chapter 6

Related & Ongoing Work

This chapter reviews related work, primarily with respect to distributed k-mer based hyper-
graph construction and distributed many-to-many long read alignment and overlap. Some,
though not all, of the description and results included here were originally published in
“DiBELLA: Distributed Long Read to Long Read Alignment” (ICPP’19) [13].

6.1 Distributed k-mer Based Hypergraph
Construction

In Chapter 3, we discussed two k-mer based hypergraph construction applications, repre-
senting two widely accepted approaches to genomic analysis. These were de Bruijn sub-
graph construction for short reads, and overlap hypergraph construction for long reads.
In both cases, our k-mer analysis includes counting the abundance of each k-mer, but
also involves other metadata to store with each k-mer; implementations that purely count
k-mers may not be comparable. There is much existing work on de Bruijn subgraph
construction for genome assembly [58][40][17], and on simply k-mer counting and index-
ing [44][45][55][56][67][31][15][52][51]. However, only two primary works stand-out for o↵ering
distributed memory parallelism and scalability. The first is E. Georganas et al.’s algorithms
for and implementation of de Bruijn subgraph construction in HipMer1 for scalable genome
assembly [17][18]. The second is T. Pan et al.’s general distributed memory framework and
optimizations for k-mer counting and indexing [52][51]. The de Bruijn subgraph construction
module, also referred to as the k-mer analysis module, in HipMer can be run standalone,
and provides k-mer indices, k-mer histograms, as well as de Bruijn subgraphs. The stan-
dalone framework for k-mer counting and indexing by T. Pan et al., on the other hand,
is designed only for k-mer counting and indexing. To our application case studies from
Chapter 3, de Bruijn subgraph construction and overlap hypergraph construction, the addi-
tional information connected with k-mers is critical in the respective graphs. For de Bruijn

1It is noteworthy that HipMer forms the basis of the distributed memory scalable metagenome assembler,
MetaHipMer [19], as well; we primarily reference the single genome assembler HipMer for simplicity.

CHAPTER 6. RELATED & ONGOING WORK 70

subgraph construction, the single characters preceding and succeeding the k-mer , and their
associated quality scores, together with the respective k-mer form the edges in the subgraph.
For overlap hypergraph construction, as in DiBELLA, the reads associated with the k-mers
form the hyperedges; intersecting hyperedge sets reveal potential overlap between reads. The
k-mer histograms are useful for initial k-mer filtering and a valuable byproduct for analysis,
but they are not a key component post-filtering. Extending and adapting optimizations
proposed by T. Pan et al. for counting and indexing may be worthwhile future work. How-
ever, given that HipMer’s implementation was designed with k-mer metadata in mind, we
ultimately chose it for analysis and for extension to distributed memory overlap hypergraph
construction in DiBELLA.

Comparing the hypergraph construction in HipMer and that in DiBELLA, the Bloom
filter stage is identical while the hash table implementation is di↵erent. As mentioned, for
each k-mer , HipMer need only store the two neighboring bases with their respective quality
scores. DiBELLA instead needs to communicate and store information about the read where
the k-mer originated and the location in which each k-mer instance appeared. Both HipMer
and DiBELLA remove singleton k-mers , but DiBELLA also removes those k-mers whose
occurrence exceeds the high occurrence threshold, m. The hash tables also represent di↵erent
objects. The HipMer hash table represents a de Bruijn subgraph with k-mer vertices, and
their connections are computed by adding the k-mer extensions and shifting. The subgraph
is broken at points where there is no confidence in the most likely extension. The high
error rates in long reads would make such a graph very fragmented. DiBELLA’s hash table
represents a read hypergraph with read hyperedges sharing intersecting k-mer sets. Pairwise
seed-and-extend alignment, with k-mers as seeds, is used to extend and verify the region
of overlap between reads. This hypergraph representation, more often referred to as the
overlap graph2 in the literature, is more robust to sequencing errors and thus more suitable
for long-read data.

6.2 Many-to-Many Long-Read Overlap & Alignment

One of the biggest challenges for the analysis of sequencing data is de novo assembly [68],
which is the process of eliminating errors and assembling a more complete version of the
genome. This is especially important for plants, animals, and microbial species in which
no previously assembled high quality reference genome exists. The di↵erent error rates be-
tween short and long reads lead to di↵erent approaches to assembly. For long reads, the
first step is typically to find pairs of reads that overlap and resolve their di↵erences (due
to errors) by computing the alignments, i.e., the edits required to make the overlapping re-
gions identical [26, 8, 9, 42, 33]. The read-to-read alignment computation is not limited to
genome assembly, and is widely used in various comparisons across or within genomic data

2The alternative hypergraph formulation is introduced in this work primarily for discussing distributed
memory parallelization challenges. The overlap graph term comes from the bioinformatics and computational
biology literature.

CHAPTER 6. RELATED & ONGOING WORK 71

sets to identify regions of similarity caused by structural, functional or evolutionary relation-
ships [47]. Consequently, highly parallel long-read to long-read alignment can significantly
improve the e�ciency of these techniques, and enable analysis at unprecedented scales.

Distributed Memory Parallel Approaches

Until DiBELLA, existing distributed memory alignment codes primarily targeted the align-
ment of a read set against a fixed, modest-sized reference sequence such as the human
genome [24], where the reference can be replicated across nodes in advance. Conversely,
DiBELLA computes read-to-read pairwise alignment rather than read-to-reference align-
ment, and distributes data across nodes for each step of the pipeline. The most similar
implementation to ours, which is still quite disparate, is the end-to-end parallelization in
MerAligner [21]. DiBELLA addresses long read data characteristics, and accordingly, uses
a di↵erent parallelization and data layout approach. MerAligner aligns short reads to con-
tigs, sequences composed of error-free k-mers , in order to find connections between contigs.
Long reads are not only 2-3 orders of magnitude longer than short reads, but also contain
errors up to 35% (versus < 1% for short reads). Hence, appropriate k-mer lengths for long
read overlap and alignment are an order of magnitude shorter. These features combined
significantly increase the size of the k-mer data set (see Chapter 3). Further, in MerAligner,
the cardinality of the contig set is reduced significantly over the size of the input (see [18]
and [14]); whereas in long-read-to-long-read alignment, a potentially all-to-all comparison of
input reads may be performed. In summary, these di↵erences result, for the long read case,
in significantly higher communication, computation, and memory consumption rates, and a
fundamental di↵erence in pairwise alignment kernel and parameter choices (relating both to
quality and computational cost). While exploring a PGAS design for this application similar
to MerAligner’s is part of ongoing work, we do not provide a direct comparison since they
target significantly di↵erent problems.

Serial and Shared Memory Parallel Algorithms & Software

In addition to BELLA, which is the method that our distributed algorithm is based on, other
state-of-the-art (shared memory parallel) long-read to long-read aligners include BLASR [7],
MHAP [3], Minimap2 [36], MECAT [64], and DALIGNER [49]. These codes di↵er in how
they select pairs of reads for alignment and in the alignment algorithm. BLASR uses BWT
and an FM index to identify short k-mer matches and then groups k-mer matches within a
given inter-k-mer distance. Grouped k-mers are ranked based on a function of the k-mer fre-
quency and highly scored groups are kept for downstream analysis. MECAT and DALIGNER
use k-mer matches for identifying candidate overlapping pairs, similarly to BELLA and Di-
BELLA. MHAP computes an approximate overlap detection performing sketching on the
k-mer set using minHash. Compact sketches are used to estimate the similarity between
sequences. Minimap2 uses minimizers rather than all possible k-mers to obtain a compact

CHAPTER 6. RELATED & ONGOING WORK 72

Table 6.1: Single node, 64 thread runtime (seconds) comparison (excluding I/O) across 3
data sets on Cori Haswell w/ 128 GB RAM. Reported DALIGNER times also exclude all
pre- and post- processing.

E. coli 30x (sample) E. coli 30x E. coli 100x

DiBELLA 12.74 65.72 79.45
DALIGNER 7.31 52.04 63.70

representation of the original read. Colinear k-mers on a read are chained together and used
for finding possible matches with other sequences.

Like BELLA and DiBELLA, MECAT and DALIGNER use exact individual matches on
longer k-mers to identify reads that may align well. MECAT divides reads into blocks and
scans for identical k-mers which are used to calculate a distance di↵erence factor first between
neighboring k-mers hits, and then between neighboring blocks. DALIGNER computes a k-
mer sorting based on the position within a sequence and then uses a merge-sort to detect
common k-mers between sequences. DALIGNER supports problem sizes exceeding single
node resources through a scripting frontend, that divides work into a series of independent
execution steps. This script-generated-script can be executed directly (serially) on a single
node, or the user can modify it to run independent batch jobs, as individual node resources
become available in a distributed setting. For example, if the data is divided into blocks,
B1, ...Bn

then DALIGNER can be executed independently by aligning B1 to itself as one job,
B2 to itself and B1 as another, and so on. This approach addresses the memory limitations,
but it is not scalable. DALIGNER’s distributed memory approach reads B1 from disk n
times and the amount of work varies significantly across nodes. Given these di↵erences,
we do not provide a direct multi-node comparison, however for completeness, we provide a
single node runtime comparison of DiBELLA and DALIGNER in Table 6.1. We exclude I/O
time from each measurement, since each tool handles both input and output in significantly
di↵erent ways. For DALIGNER, we additionally exclude all pre-processing (initializing the
database and splitting it into blocks) and post processing (all commands for verifying and
merging results) time, and implicitly, the time required of DALIGNER users to extract
human-readable results of interest from the database. Table 6.1 shows that DiBELLA’s
single node runtime is competitive with DALIGNER’s across these data sets, even excluding
DALIGNER’s I/O, preprocessing, and postprocessing.

Of the alternatives, BELLA is the latest (and ongoing) work, with a comprehensive
quality comparison to all the above [23]. BELLA’s quality is competitive, especially excelling
in comparisons where the “ground truth” is known. Further, BELLA o↵ers a computationally
e�cient approach, yielding consistently high accuracy across data sets, and a well-explained
and supported methodology. The quality produced by DiBELLA is at least that of BELLA
(see [23] for quality comparisons over data sets also used in this study), and higher when
using less restricted sets of seeds for the same workloads [23].

De novo genome assembly depending on long-read alignment is becoming a crucial step

CHAPTER 6. RELATED & ONGOING WORK 73

in bioinformatics. Current available long-read de novo assemblers are Canu [33], which
uses MHAP as long-read aligner, Miniasm [35] which uses Minimap2, and HINGE [28] and
FALCON [9], which use DALIGNER. Flye [32] uses the longest jump-subpath approach [38]
to compute alignments. From a hardware acceleration standpoint, there has been increasing
interest in the long read alignment problem as well, as evidenced by recent work on hardware
acceleration of filtering and similarity-search [60][1]. Though we do not explore it in this
work, we leave it as a promising future direction.

6.3 E�cient Long-Read Pairwise Alignment

In Chapter 2, we defined the pairwise alignment problem and seed-and-extend pairwise
alignment. Here, we discuss the specific algorithm for seed-and-extend pairwise alignment
employed by BELLA and DiBELLA, its particular advantages for k-mer -seeded long-read to
long-read alignment, and recent related work. Distributed memory scalable many-to-many
alignment is the larger focus of DiBELLA, indeed the software is designed for modular sub-
stitution of pairwise alignment kernels. However, the properties of the alignment algorithm
used to align each pair of reads in the many-to-many alignment is relevant to understanding
computational intensity and to future related work.

For the long-read to long-read alignment problem, a case study of this dissertation, and
for long-read to reference alignment as well, seed-and-extend alignment has been shown to
be particularly practical, given their lengths (roughly 10, 000� 100, 000 characters) and the
quadratic cost of exact pairwise alignment with dynamic programming [59][50]. It has also
been shown to be su�ciently accurate in the presence of high, long read error rates. For
methodologies which carefully choose seeds for extension, it may be more accurate than
alternatives, such as, for example, searching for globally optimal alignments [50]. Several
notable long read aligners were developed using the seed-and-extend paradigm, including
BWA-SW [37], Bowtie2 [34], and GASST [54] among others. BELLA and DiBELLA improve
upon these ideas and are specifically designed for many-to-many long read alignment.

Many di↵erent forms of seeds are proposed in the literature, that vary by how many and
which types of errors should be permitted in the seed, the optimal lengths of seeds relative
to the given string pair, whether the length should be fixed or adaptive and so on. Some
of these are maximal exact matches (MEMs), maximal unique matches (MUMs), adaptive
seeds [29], q-grams[53], spaced or gapped seeds [43][39]. The most popular form of seeds in
the literature are fixed-length exact-matching k-mers . This is the type of seed used in the
development of BELLA[23] for long read to long read alignment, and also currently employed
by DiBELLA [13].

X-drop Seed-and-Extend Pairwise Alignment

The X-drop algorithm [69] is a seed-and-extend approach to pairwise alignment that can
achieve average-case linear complexity. It does so by terminating the alignment search early

CHAPTER 6. RELATED & ONGOING WORK 74

if the di↵erence in score between the best alignment discovered and the alignment actively
being explored falls below a certain threshold, X. Thus, it restricts the search space, focusing
only on relatively high scoring alignments extended from the given seed. With an appropriate
scoring matrix and value of X, the authors of X-drop have shown the algorithm can produce
the same alignments as exact dynamic programming algorithms [69]. The BELLA [23]
methodology, upon which the distributed memory parallel software DiBELLA is based, not
only defines a procedure for detecting probabilistically correct k-mers to use as seeds, but also
the procedure for dynamically choosing a final scoring threshold, such that the probability
of discarding a true overlap is minimized. The original versions of BELLA and DiBELLA
employ an e�cient C++ CPU implementation of X-drop from the SeqAn library [10]. The
next section discusses GPU accelerated alternatives.

Parallel Pairwise Alignment

Though long read pairwise alignment is costly relative to common string operations like
hashing, sorting, and even short read pairwise alignment, it does not involve su�cient work
or data for shared memory parallelization, and certainly not for distributed memory paral-
lelization. Finer grained parallelism such as SIMD or GPU parallelism is possible, though
even for GPUs, multiple pairwise alignments are typically batched.

There is a vast amount of literature regarding short read pairwise alignment accel-
eration, but only recently has long read pairwise alignment drawn attention. Existing
approaches focus on accelerating the exact dynamic programming approaches of Smith-
Waterman [59] and Needleman-Wunsch [50] and slight variants thereof. Among those for
which long read alignment support is possible, two primary works stand out, CUDASW++3
and MR-CUDASW++. CUDASW++3 [41] combines SIMD instructions and GPU paral-
lelism to accelerate the Smith-Waterman algorithm. Unlike many tools designed and op-
timized for short reads, it can align sequences longer than the typical short read lengths
of 100-250 characters. However, its performance for sequences longer than 400 charac-
ters is relatively much worse. Additionally, when utilizing only the GPU and not also
SIMD instructions, their maximum attained performance is roughly 1/3 of their peak per-
formance. Building on this work, A. Muhammadzadeh presented MR-CUDASW++ [48].
MR-CUDASW++ was inspired by CUDASW++3 but optimized for “medium length” reads.
A. Muhammadzadeh compares MR-CUDASW++ to other tools, with CUDASW++3 as its
closest contender, across sequences lengths of 103, 104, and 105. MR-CUDASW++ achieved
speedups of 1� 2⇥ over CUDASW++3.

While hardware acceleration e↵orts can reduce the practical runtime of Needleman-
Wunsch and Smith-Waterman, they do not change the algorithmic complexity from O(n2),
where n is the length of the longer read. Alternative approximate algorithms, such as X-drop,
restrict the alignment search space in order to achieve near linear average-case complexity.
However, because of the dynamic branching used to restrict the search space, they are much
harder to parallelize on GPUs. The potential payo↵ of successfully accelerating an O(n)
algorithm versus an (n2) algorithm is significant for long read to long read alignment, since

CHAPTER 6. RELATED & ONGOING WORK 75

n for long reads can be around 105 characters. Furthermore, BELLA and DiBELLA perform
many such pairwise alignments with an average-case O(n) rather than an O(n2) algorithm.
Therefore, in work related to but not included as part of this dissertation, we presented a
GPU adaptation and implementation of the X-drop algorithm named Logan in IPDPS’20
[66]. As far as we are aware, this is the first and latest attempt to accelerate the X-drop
algorithm on GPUs. The most closely related and recent work is by Feng et al. [16] and
accelerates the seed-chain-extend pairwise alignment algorithm in minimap2 [36]. The algo-
rithm is quadratic in the length of the reads when computing traceback and linear otherwise.
Both represent growing interest and progress in this area.

Part of ongoing and future work is integrating accelerated pairwise alignment into the
larger distributed memory pipeline. As highlighted by this dissertation, particularly for
many-to-many long read alignment in Chapters 4-5, balancing computation with communi-
cation, and communication design with memory will remain the main challenge. We expect
the integration of GPU acceleration to a↵ect not only the computation, but also memory
consumption and management, particularly for read replication and movement, and the
communication optimality.

6.4 Multiple Sequence Alignment

The overlap detection described in Chapters 2-4, finds sets of (at least) two reads that all
potentially overlap. As defined in Chapter 2, optimal multiple sequence alignment min-
imizes/maximizes the alignment score of a set of two or more sequences, so why do we
employ pairwise alignment rather than multiple sequence alignment? In the initial overlap
verification, performing multiple sequence alignment on a set of reads that do not certainly
overlap may produce poor alignments for subsets that truly overlap, because it would align
those that truly overlap to others that may not belong in the set in the first place. Once a
subset of reads has been verified to overlap with pairwise alignment, it would be reasonable
to incorporate multiple sequence alignment in downstream analyses. We leave additional
downstream analyses to future work however, and also note, pairwise alignment can be used
to approximate multiple sequence alignments.

76

Chapter 7

Conclusions & Future Work

Several patterns emerge across our case studies and in comparisons of alternative paral-
lelization. These include many-to-many computation and communication, domain-specific
filtering, hashing, and alignment. A discussion of all of these patterns, as they appear in
an even wider range of bioinformatics applications, is now available [65]. The predominant
pattern, from the lens of this study, is a kind of sparse, irregular many-to-many computation
and communication.

For any given workload, the exact many-to-many pattern, the data exchange volume, and
the computational work are determined by characteristics of the data that are not known
until runtime. To construct the distributed hash table, supporting scalable short read de
Bruijn subgraph construction and long read overlap hypergraph construction in Ch. 3, load
balancing k-mers from an unknown distribution requires a many-to-many k-mer exchange.
Redistributing alignment tasks requires a many-to-many exchange of task - represented by
pairs of read identifiers and seed locations, as described in Ch. 4. Long read overlap hyper-
graph refinenment, which labels vertices with exact alignment information, and also removes
vertices for which alignment scores are too low, requires a many-to-many exchange of the
reads is required to complete the pairwise alignment computations, as described in Ch. 4-5.
The pattern of all of these exchanges and the associated computation depends on unknown
structures in the data, and discovering those unknown structures in the input data, is at
least part of the goal of each runtime analysis.

The optimality of any approach to scaling these many-to-many application case studies
depends on the balance of computation to communication for fundamental units of data. The
fundamental unit of data in distributed hash table construction in Ch. 3, is the k-mer . The
fundamental unit of computation, is computing and hashing each k-mer ; the complexity
thereof is O(k). For the overlap hypergraph traversal that identifies candidate overlaps
(pairwise alignment tasks for the hypergraph refinement) in Ch. 4, the fundamental unit of
data is the information associated with potential read-to-read-overlap locations. In our case,
this is two integers identifying reads, and positions of the filtered k-mer seeds for seed-and-
extend alignment. The computation thereof reads integer pairs, stored consecutively in an
array, and computes a few integer and boolean logic operations – an O(1) computation. In

CHAPTER 7. CONCLUSIONS & FUTURE WORK 77

the case of long read overlap graph refinement, the fundamental unit of data are the reads,
and the computation is pairwise alignment of read pairs. As described in Ch. 2, pairwise
alignment in general is O(l2) for reads of length l, and average-case O(l) for the X-drop
seed-and-extend implementation employed by our work.

Identifying these units and their sizes in practice undergirds the respective performance
models and their parameters, performance models that can inform application design and
optimization across bulk-synchronous and asynchronous paradigms. In Ch. 3 on short read
de Bruijn and long read overlap graph construction, we highlighted that the size of k varies
by application. For short read k-mer analysis, k may be in range [30, 150] - more than
half of short read length. For long read k-mer analysis, k is typically in range [14, 19].
For metagenome k-mer analysis, k may range within [11, 21] and vary during the runtime
analysis. With this knowledge of practical k-values, we intuit that the O(k) computation
on k-mers is unlikely to balance out the cost of communicating k-mers (individually) across
nodes in the many-to-many k-mer exchange. Similar intuition follows for our overlap hyper-
graph traversal. For overlap hypergraph refinement on the other hand, we know expected
long read lengths are relatively large, in the range of [103, 105] characters. Our asynchronous
approach to refinement in Ch. 5 successfully hid the asynchronous communication costs,
because the computational cost of pairwise alignment was balanced against the cost of asyn-
chronous read retrieval. This was supported in part by high-performance UPC++ RPCs and
Cori KNL’s low-latency interconnect. With changes in communication primitives, alignment
kernels, interconnect performance, et cetera, these costs may need to be re-balanced for the
success of the same approach.

While the fundamental units of data that determine the computational complexity and
communication volumes of these workloads are key to application performance, so to are
architecturally-determined communication and computation rates. There is a huge variety
of communication primitives that can be used to implement many-to-many exchanges in prac-
tice. We have shown in other work the usefulness of one-sided put and get, with and without
atomic synchronization, for implementing the many-to-many communication patterns in our
applications [14][22]. In that work and in this, we also employ variable all-to-all MPI for
bulk-synchronous many-to-many exchanges. Remote Procedure Calls, point-to-point mes-
sage passing, and various forms of batched-asynchronous messaging, such as MPI 3.0’s, are
also alternatives. Measuring the cost of such communication primitives relative to compu-
tational costs on target platforms can usefully narrow the design and optimization space for
scalable many-to-many applications. For the extremes of one-at-a-time asynchronous and
all-at-once bulk-synchronous approaches to many-to-many communication, the key ques-
tions for future performance models are the following. For the one-at-a-time asynchronous
extreme, the key questions are: what is the performance of each fundamental unit of com-
putation and what are the latencies of respective asynchronous communication primitives,
are they balanced? While they are balanced, we can expect asynchronous approaches to
scale successfully. Optimizations targeting just the computation or just the communication
will have limited impact if the balance is neglected, and further, ignoring memory utilization
can yield designs that are unrealizable for a given data set and hardware platform. For the

CHAPTER 7. CONCLUSIONS & FUTURE WORK 78

bulk-synchronous extreme, the key questions are: how does bandwidth (particularly irregu-
lar all-to-all or many-to-many bandwidth) scale, does it keep up with the scalability of the
target application’s computation? In Ch. 4, scaling-out the bulk-synchronous implementa-
tion using MPI Alltoallv, we saw clear computation-communication cross-overs for 3 out of
the 4 platforms in the study, and computation rates balanced with the communication per-
formance across scales on only 1 platform, under specific conditions. As pointed out there,
the MPI Alltoallv exchange scaled poorly for the highly irregular many-to-many exchanges.
It highlights optimization opportunities for libraries, runtimes, and architectures.

As discussed throughout Ch. 3-5, memory capacity cannot be considered independently
from computation and communication in parallelizing these data-intensive many-to-many
applications. Bulk-synchronous approaches e↵ectively trade memory for bandwidth utiliza-
tion; achieving optimality under these approaches depends on su�cient available memory
resources. For asynchronous approaches with computation costs less than the associated
communication costs, lowering or amortizing the communication cost per computational unit
to balance them, may require message batching, data compression, or other optimizations
that are inherently space-oriented.

Alternative approaches to many-to-many computation and communication make similar
trade-o↵s. For example, Generalized Communication Avoiding (CA) [30] techniques target
applications with similar patterns, such as N-Body problems; albeit, these have only been
analyzed for the simpler “dense” case where the all-to-all interactions involve all pairs, not
a filtered subset, and the computational costs and data volumes are assumed equal across
tasks and elements (bodies). They avoid communication by replicating state upfront, before
the pattern of computation and communication is known. The replicated data is a superset
of the data that will be needed by local processors for the computation. For arithmetically-
intense applications or workloads that under-utilize memory, this is an e↵ective strategy.
Employing CA techniques at-scale with respect to the workload size, if extended to the
irregular case, is a promising direction for future work.

The fundamental units of data, computation, and communication, and the trade-o↵s
between memory, computation, and communication, appear across the case studies and
architectures in this work. All of these components form the basis of a performance model for
data-intensive irregular applications, characterized by the many-to-many motif. Such models
are essential to software-hardware codesign, supporting the scalability of this challenging
class of application. Because such important applications, such as those we have studied
for genomics, fall into this class of applications, this work is broadly impactful. Our future
and ongoing work is generalizing and validating analytical performance models built on this
work, and also on empirical microbenchmarks, extending our previously published work [22].
Together, the analytical and empirical models can broadly support e↵ective parallelization
and scalability of these important applications, and inform the design of future hardware
systems and programming systems, as well as algorithm and data structure libraries.

79

Bibliography

[1] Mohammed Alser et al. “Shouji: A Fast and E�cient Pre-Alignment Filter for Sequence
Alignment”. In: Bioinformatics (2019).

[2] John Bachan et al. “UPC++: A High-Performance Communication Framework for
Asynchronous Computation”. In: May 2019, pp. 963–973. doi: 10.1109/IPDPS.2019.
00104.

[3] Konstantin Berlin et al. “Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing”. In: Nature biotechnology 33.6 (2015), pp. 623–630.

[4] Burton H. Bloom. “Space/Time Trade-o↵s in Hash Coding with Allowable Errors”.
In: Communications of the ACM 13.7 (1970), pp. 422–426.

[5] Dan Bonachea and Paul H. Hargrove. “GASNet-EX: A High-Performance, Portable
Communication Library for Exascale”. In: (Oct. 2018). doi: 10.25344/S4QP4W.

[6] Massimo Cafaro and Piergiulio Tempesta. “Finding frequent items in parallel”. In:
Concurrency and Computation: Practice and Experience 23.15 (2011), pp. 1774–1788.

[7] Mark J. Chaisson and Glenn Tesler. “Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application and theory”.
In: BMC Bioinformatics 13.1 (2012), p. 238. issn: 1471-2105.

[8] Chen Shan Chin et al. “Nonhybrid, finished microbial genome assemblies from long-
read SMRT sequencing data”. In: PLoS Medicine 10.6 (Apr. 2013), pp. 563–569. issn:
1549-1277.

[9] Chen-Shan Chin et al. “Phased diploid genome assembly with single-molecule real-time
sequencing”. In: Nature methods 13.12 (2016), p. 1050.

[10] Andreas Döring et al. “SeqAn an e�cient, generic C++ library for sequence analysis”.
In: BMC bioinformatics 9.1 (2008), p. 11.

[11] Dannie Durand. Lecture notes in Computational Genomics and Molecular Biology. Last
accessed 05/22/20. 2016. url: http://www.cs.cmu.edu/

~

durand/03-711/2016/

Lectures/PW_sequence_alignment_2016.pdf.

BIBLIOGRAPHY 80

[12] John Eid et al. “Real-Time DNA Sequencing from Single Polymerase Molecules”.
In: Science 323.5910 (2009), pp. 133–138. issn: 0036-8075. doi: 10.1126/science.
1162986. eprint: https://science.sciencemag.org/content/323/5910/133.full.
pdf. url: https://science.sciencemag.org/content/323/5910/133.

[13] Marquita Ellis et al. “DiBELLA: Distributed Long Read to Long Read Alignment”.
In: 48th International Conference on Parallel Processing (ICPP 2019). Kyoto, Japan,
Aug. 2019. isbn: 978-1-4503-6295-5. doi: 10.1145/3337821.3337919.

[14] Marquita Ellis et al. “Performance characterization of de novo genome assembly on
leading parallel systems”. In: European Conference on Parallel Processing. Springer.
2017, pp. 79–91.

[15] Marius Erbert, Ste↵en Rechner, and Matthias Müller-Hannemann. “Gerbil: a fast and
memory-e�cient k-mer counter with GPU-support”. In: Algorithms for Molecular Bi-
ology 12.1 (2017), p. 9. issn: 1748-7188. doi: 10.1186/s13015-017-0097-9. url:
https://doi.org/10.1186/s13015-017-0097-9.

[16] Zonghao Feng et al. “Accelerating Long Read Alignment on Three Processors”. In:
Proceedings of the 48th International Conference on Parallel Processing. ICPP 2019.
Kyoto, Japan: ACM, 2019, 71:1–71:10. isbn: 978-1-4503-6295-5.

[17] E. Georganas et al. “Parallel De Bruijn Graph Construction and Traversal for De Novo
Genome Assembly”. In: SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 2014, pp. 437–448.

[18] Evangelos Georganas. “Scalable Parallel Algorithms for Genome Analysis”. PhD thesis.
EECS Department, University of California, Berkeley, 2016.

[19] Evangelos Georganas et al. “Extreme Scale de Novo Metagenome Assembly”. In: Pro-
ceedings of the International Conference for High Performance Computing, Network-
ing, Storage, and Analysis. SC ’18. Dallas, Texas: IEEE Press, 2018. doi: 10.1109/
SC.2018.00013. url: https://doi.org/10.1109/SC.2018.00013.

[20] Evangelos Georganas et al. “HipMer: an extreme-scale de novo genome assembler”. In:
International Conference for High Performance Computing, Networking, Storage and
Analysis (SC’15). 2015.

[21] Evangelos Georganas et al. “MerAligner: A fully parallel sequence aligner”. In: IEEE
International Parallel and Distributed Processing Symposium. Hyderabad, India: IEEE,
2015, pp. 561–570.

[22] Evangelos Georganas et al. “MerBench: PGAS Benchmarks for High Performance
Genome Assembly”. In: Proceedings of the Second Annual PGAS Applications Work-
shop (PAW17) (Nov. 2017).

[23] Giulia Guidi et al. “BELLA: Berkeley e�cient long-read to long-read aligner and over-
lapper”. In: bioRxiv (2018), p. 464420.

BIBLIOGRAPHY 81

[24] Runxin Guo et al. “Bioinformatics applications on apache spark”. In: GigaScience 7.8
(2018), giy098.

[25] “HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm”. In:
DMTCS Proceedings. 2008.

[26] Vasanthan Jayakumar and Yasubumi Sakakibara. “Comprehensive evaluation of non-
hybrid genome assembly tools for third-generation PacBio long-read sequence data”.
In: Briefings in Bioinformatics (2017), bbx147.

[27] Anuj Kalia, Michael Kaminsky, and David G. Andersen. “FaSST: Fast, Scalable and
Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs”. In: Proc.
12th USENIX OSDI. Savannah, GA, Nov. 2016.

[28] Govinda M Kamath et al. “HINGE: long-read assembly achieves optimal repeat reso-
lution”. In: Genome research 27.5 (2017), pp. 747–756.

[29] Szymon M Kie lbasa et al. “Adaptive seeds tame genomic sequence comparison”. In:
Genome research 21.3 (2011), pp. 487–493.

[30] Penporn Koanantakool. “Communication Avoidance for Algorithms with Sparse All-
to-all Interactions”. PhD thesis. UC Berkeley, 2017.

[31] Marek Kokot, Maciej D lugosz, and Sebastian Deorowicz. “KMC 3: counting and ma-
nipulating k-mer statistics”. In: Bioinformatics 33.17 (May 2017), pp. 2759–2761. issn:
1367-4803. doi: 10.1093/bioinformatics/btx304. eprint: https://academic.oup.
com/bioinformatics/article- pdf/33/17/2759/25163903/btx304.pdf. url:
https://doi.org/10.1093/bioinformatics/btx304.

[32] Mikhail Kolmogorov et al. “Assembly of long, error-prone reads using repeat graphs”.
In: Nature biotechnology (2019), p. 1.

[33] Sergey Koren et al. “Canu: scalable and accurate long-read assembly via adaptive k-
mer weighting and repeat separation”. In: Genome research 27.5 (2017), pp. 722–736.

[34] Ben Langmead and Steven L Salzberg. “Fast gapped-read alignment with Bowtie 2”.
In: Nature methods 9.4 (2012), p. 357.

[35] Heng Li. “Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences”. In: Bioinformatics 32.14 (2016), pp. 2103–2110.

[36] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences”. In: Bioinformatics
34.18 (2018), pp. 3094–3100.

[37] Heng Li and Richard Durbin. “Fast and accurate long-read alignment with Bur-
rows–Wheeler transform”. In: Bioinformatics 26.5 (Jan. 2010), pp. 589–595. issn:
1367-4803. doi: 10.1093/bioinformatics/btp698. eprint: https://academic.
oup.com/bioinformatics/article-pdf/26/5/589/16896917/btp698.pdf. url:
https://doi.org/10.1093/bioinformatics/btp698.

[38] Yu Lin et al. “Assembly of long error-prone reads using de Bruijn graphs”. In: Pro-
ceedings of the National Academy of Sciences 113.52 (2016), E8396–E8405.

BIBLIOGRAPHY 82

[39] Yongchao Liu and Bertil Schmidt. “Long read alignment based on maximal exact
match seeds”. In: Bioinformatics 28.18 (Sept. 2012), pp. i318–i324. issn: 1367-4803.
doi: 10 . 1093 / bioinformatics / bts414. eprint: https : / / academic . oup . com /
bioinformatics/article-pdf/28/18/i318/16910025/bts414.pdf. url: https:
//doi.org/10.1093/bioinformatics/bts414.

[40] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. “Parallelized short read assem-
bly of large genomes using de Bruijn graphs”. In: BMC bioinformatics 12.1 (2011),
p. 354.

[41] Yongchao Liu, Adrianto Wirawan, and Bertil Schmidt. “CUDASW++ 3.0: acceler-
ating Smith-Waterman protein database search by coupling CPU and GPU SIMD
instructions”. In: BMC bioinformatics 14.1 (2013), p. 117.

[42] Nicholas James Loman, Joshua Quick, and Jared T Simpson. “A complete bacterial
genome assembled de novo using only nanopore sequencing data”. In: bioRxiv (2015).

[43] Bin Ma, John Tromp, and Ming Li. “PatternHunter: faster and more sensitive homol-
ogy search”. In: Bioinformatics 18.3 (2002), pp. 440–445.

[44] Guillaume Marcais and Carl Kingsford. “A fast, lock-free approach for e�cient parallel
counting of occurrences of k-mers”. In: Bioinformatics 27.6 (Jan. 2011), pp. 764–770.
issn: 1367-4803. doi: 10.1093/bioinformatics/btr011. eprint: https://academic.
oup.com/bioinformatics/article-pdf/27/6/764/16902460/btr011.pdf. url:
https://doi.org/10.1093/bioinformatics/btr011.

[45] Páll Melsted and Jonathan K Pritchard. “E�cient counting of k-mers in DNA se-
quences using a bloom filter”. In: BMC Bioinformatics 12.1 (2011), p. 333. issn: 1471-
2105. doi: 10.1186/1471-2105-12-333. url: https://doi.org/10.1186/1471-
2105-12-333.

[46] Jayadev Misra and David Gries. “Finding repeated elements”. In: Science of computer
programming 2.2 (1982), pp. 143–152.

[47] David W Mount. “Sequence and genome analysis”. In: Bioinformatics: Cold Spring
Harbour Laboratory Press: Cold Spring Harbour 2 (2004).

[48] Amir Muhammadzadeh. “MR-CUDASW – GPU accelerated Smith-Waterman algo-
rithm for medium-length (meta)genomic data”. MA thesis. University of Saskatchewan,
Saskatchewan, July 2014.

[49] Gene Myers. “E�cient Local Alignment Discovery amongst Noisy Long Reads”. In:
Algorithms in Bioinformatics. Ed. by Dan Brown and Burkhard Morgenstern. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 52–67. isbn: 978-3-662-44753-6.

[50] Saul B Needleman and Christian D Wunsch. “A general method applicable to the
search for similarities in the amino acid sequence of two proteins”. In: Journal of
molecular biology 48.3 (1970), pp. 443–453.

BIBLIOGRAPHY 83

[51] Tony C Pan, Sanchit Misra, and Srinivas Aluru. “Optimizing high performance dis-
tributed memory parallel hash tables for DNA k-mer counting”. In: SC18: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analy-
sis. IEEE. 2018, pp. 135–147.

[52] Tony Pan et al. “Kmerind: A Flexible Parallel Library for K-Mer Indexing of Bio-
logical Sequences on Distributed Memory Systems”. In: Proceedings of the 7th ACM
International Conference on Bioinformatics, Computational Biology, and Health In-
formatics. BCB ’16. Seattle, WA, USA: Association for Computing Machinery, 2016,
pp. 422–433. isbn: 9781450342254. doi: 10.1145/2975167.2975211. url: https:
//doi.org/10.1145/2975167.2975211.

[53] Kim R Rasmussen, Jens Stoye, and Eugene W Myers. “E�cient q-gram filters for
finding all "-matches over a given length”. In: Journal of Computational Biology 13.2
(2006), pp. 296–308.

[54] Guillaume Rizk and Dominique Lavenier. “GASSST: global alignment short sequence
search tool”. In: Bioinformatics 26.20 (2010), pp. 2534–2540.

[55] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. “DSK: k-mer counting with
very low memory usage”. In: Bioinformatics 29.5 (Jan. 2013), pp. 652–653. issn: 1367-
4803. doi: 10.1093/bioinformatics/btt020. eprint: https://academic.oup.
com/bioinformatics/article-pdf/29/5/652/702231/btt020.pdf. url: https:
//doi.org/10.1093/bioinformatics/btt020.

[56] Rajat Shuvro Roy, Debashish Bhattacharya, and Alexander Schliep. “ Turtle: Iden-
tifying frequent k -mers with cache-e�cient algorithms ”. In: Bioinformatics 30.14
(Mar. 2014), pp. 1950–1957. issn: 1367-4803. doi: 10.1093/bioinformatics/btu132.
eprint: https://academic.oup.com/bioinformatics/article-pdf/30/14/1950/
17140212/btu132.pdf. url: https://doi.org/10.1093/bioinformatics/btu132.

[57] Jay Shendure and Hanlee Ji. “Next-generation DNA sequencing”. In: Nature biotech-
nology 26.10 (2008), p. 1135.

[58] Jared T Simpson et al. “ABySS: a parallel assembler for short read sequence data”.
In: Genome research 19.6 (2009), pp. 1117–1123.

[59] Temple F. Smith and Michael S. Waterman. “Identification of Common Molecular
Subsequences”. In: Journal of Molecular Biology 147.1 (), pp. 195–197.

[60] Yatish Turakhia, Gill Bejerano, andWilliam J Dally. “Darwin: A genomics co-processor
provides up to 15,000 x acceleration on long read assembly”. In: ACM SIGPLAN
Notices. Vol. 53. 2. ACM. 2018, pp. 199–213.

[61] Leslie G. Valiant. “A Bridging Model for Parallel Computation”. In: Commun. ACM
33.8 (Aug. 1990), pp. 103–111. issn: 0001-0782. doi: 10.1145/79173.79181. url:
https://doi.org/10.1145/79173.79181.

[62] Xin Victoria Wang et al. “Estimation of sequencing error rates in short reads”. In:
BMC bioinformatics 13.1 (2012), p. 185.

BIBLIOGRAPHY 84

[63] Sebastian Will. Lecture notes in Introduction to Computational Molecular Biology,
Foundations of Structural Bioinformatics. Last accessed 05/22/20. 2011. url: https:
//math.mit.edu/classes/18.417/Slides/alignment.pdf.

[64] Chuan-Le Xiao et al. “MECAT: fast mapping, error correction, and de novo assembly
for single-molecule sequencing reads”. In: Nature Methods 14.11 (2017), p. 1072.

[65] Katherine Yelick et al. “The parallelism motifs of genomic data analysis”. In: Philo-
sophical Transactions of the Royal Society A 378.2166 (2020), p. 20190394.

[66] Alberto Zeni et al. “LOGAN: High-Performance GPU-Based X-Drop Long-Read Align-
ment”. In: arXiv preprint arXiv:2002.05200 (2020).

[67] Qingpeng Zhang et al. “These Are Not the K-mers You Are Looking For: E�cient
Online K-mer Counting Using a Probabilistic Data Structure”. In: PLOS ONE 9.7
(July 2014), pp. 1–13. doi: 10.1371/journal.pone.0101271. url: https://doi.
org/10.1371/journal.pone.0101271.

[68] Wenyu Zhang et al. “A practical comparison of de novo genome assembly software
tools for next-generation sequencing technologies”. In: PloS one 6.3 (2011), e17915.

[69] Zheng Zhang et al. “A greedy algorithm for aligning DNA sequences”. In: Journal of
Computational biology 7.1-2 (2000), pp. 203–214.

85

Appendix A

Alternative Mathematical
Formulations of Long Read Overlap
and Alignment

This section provides one of the alternative formulations of overlap hypergraph construction,
traversal, and refinement that we considered - many others were considered and are possible.
Another is presented in our associated work [23]. The hypergraph abstraction in this work,
introduced in Chapter 2, was chosen because it can describe each step in reference to a
single abstract object (one hypergraph), rather than two or three, and it is the most general
– it can be used to describe any approach to long-read to long-read similarity detection and
alignment. Alternatives may be useful for future work. The notation introduced is specific
to this appendix and may not be consistent with the main publication.

A.1 k-mer Based Long Read Overlap Detection as
Bipartite Graph Construction and Refinement

We can understand the k-mer based long read overlap detection problem as the construction
and refinement of a bipartite graph. Let G = {S, T, E, }. The reads are represented by
vertices s 2 S, and the k-mers by vertices t 2 T . The bag of corresponding vertex-weights
(read sizes) is . Only S is given as input to the problem. T , E, and must be computed
from S. The construction process begins by computing k-mers from the set of input reads, S.
An edge e(s,t) 2 E is constructed for every read s 2 S that contains the corresponding k-mer,
t 2 T . We assume there is no isolated vertex in S (every read contains at least one k-mer, and
typically many k-mers, and hence each vertex, s 2 S, has at least one incident edge). At the
end of construction, G is a complete bipartite graph. After G = {S, T, E, } is constructed,
the first step of refinement is to remove all degree-1 vertices in T (k-mers found in exactly
1 read), since these are not useful for analyzing clusters or relationships between vertices
(reads). The refinement process then proceeds by removing vertices t 2 T $ degree(t) > m,

APPENDIX A. ALTERNATIVE MATHEMATICAL FORMULATIONS OF LONG
READ OVERLAP AND ALIGNMENT 86

for some given m representing a “noise” threshold. These are k-mers so common that they
do not distinguish interesting clusters. The result is a rank m bipartite graph.

A.2 Partitioning the Bipartite Graph

The input is the set of reads, vertices of S, and respective vertex-weights, , such that
8s 2 S9

s

2 . To distribute the load, we compute partitions of S, P
S

, such that 8|PS |

i=1Pi

2

P
S

(⌃
8v2Pi v

) ⇡ ⌃
|PS |

. For each k-mer computed from an input read s 2 S, we construct a

vertex {t}[T , and an edge {e(s,t)}[E. Note, the vertex-weight of each t 2 T is uniformly k.
Therefore, we partition T such that the cardinality of all partitions p 2 P

T

is roughly equal.
We assume no correspondence between the partitioning of S, P

S

, and the partitioning of T ,
P
T

.

A.3 Many-to-Many Pairwise Alignment as
Hypergraph Construction and Traversal

By traversing the bipartite graph G, described in section A.1, the alignment computation hy-
pergraph, G0 = {V,H, , w}, can be constructed. We construct a vertex {v(a,b)}[V 8 a, b 2
S $ 9e(a,t)^e(t,b) 2 E. That is, for each path (a, t, b) 2 G, the associated pairwise alignment
computation will be represented by a vertex {v(a,b)}[V, V 2 G0. The hyperedges H 2 G0 are
input reads shared by multiple pairwise alignment computations. The the vertex set S 2 G
corresponds exactly to the hyperedge set H 2 G0. Furthermore, for each vertex (computa-
tion), v 2 V , there is an associated weight w

v

, which represents a variable computational
cost, later important for load balancing. The final alignment computation is a traversal
of this hypergraph. For each vertex, v(a,c) 2 V , the pairwise alignment of reads a, b 2 H
is computed, and v(a,c) is labeled with the corresponding alignment information. For any
alignment that does not meet the predetermined alignment score criteria, the corresponding
vertex v(a,b) is removed.

