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Abstract

Deep Autoregressive Models for Join Cardinality Estimation1

by

Amog Kamsetty

Master of Science in Electrical Engineering Computer Sciences

University of California, Berkeley

Professor Ion Stoica, Chair

Database query optimizers rely on accurate cardinality estimates to produce optimal exe-
cution plans. Despite decades of research, existing cardinality estimators are inaccurate for
complex queries, due to making lossy modeling assumptions and not capturing inter-table
correlations. In this work, we show that it is possible to learn the correlations across all
tables in a database without any independence assumptions. We present NeuroCard, a join
cardinality estimator that builds a single neural density estimator over an entire database.
Leveraging join sampling and modern deep autoregressive models, NeuroCard makes no inter-
table or inter-column independence assumptions in its probabilistic modeling and is able to
e�ciently capture the rich multivariate distributions of relational data. In addition, Neuro-
Card is able to summarize the data with out any supervision and therefore does not require
execution of any training queries and is robust to workload shifts. NeuroCard achieves orders
of magnitude higher accuracy than the best prior methods (a new state-of-the-art result of
8.5⇥ maximum error on JOB-light) and scales to dozens of tables, while being compact in
space (several MBs) and e�cient to construct or update (seconds to minutes).

1This report is adapted from the following conference papers: Deep Unsupervised Cardinality Es-

timation by Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter
Abbeel, Joseph M. Hellerstein, Sanjay Krishnan, & Ion Stoica published in VLDB 2020 and NeuroCard:

One Cardinality Estimator for All Tables by Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang,
Yan Duan, Xi Chen, & Ion Stoica, in submission to VLDB 2021. Please cite these conference papers instead
of this report.
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Chapter 1

Introduction

Database query optimizers are used to translate declarative queries into optimal execution
plans, with optimality usually determined by execution time. These optimizers are critical
not only for relational databases, but even for modern analytical engines such as Spark [1]
and Presto [39]. While query optimizers are comprised of multiple components, cardinality
estimation often plays a larger role than the cost model to join order enumeration [24].
The goal of cardinality estimation is to predict the selectivity of a query result, or the
number of rows in the output, without actually executing the query itself. These estimates
are used as input to a cost model, and these costs are used to score various query plans.
Therefore, accurate cardinality estimates lead to more accurate costs and ultimately better
execution plans. However, despite its importance, cardinality estimation is an extremely
di�cult problem, especially for complex queries containing multiple joins. There is wide
agreement that this problem is still unsolved [25]. In fact, open source and commercial
database systems often produce up to 104

�108
⇥ errors on complex queries containing many

joins and tables with many attributes.
The fundamental di�culty of cardinality estimation comes from condensing information

about data into summaries [14]. The predominant approach in database systems today is
to collect single-column summaries (e.g., histograms and sketches) for each relation, and to
combine these coarse-grained models assuming column independence. This represents one
end of the spectrum, where the summaries are fast to construct and cheap to store, but
compounding errors occur due to the coarse information and over-simplifying independence
assumptions. On the other end of the spectrum, when given the joint data distribution

of a relation (the frequency of each unique tuple normalized by the relation’s cardinality),
perfect selectivity “estimates” can be read o↵ or computed via integration over the distri-
bution. However, the exact joint is intractable to compute or store for all but the tiniest
datasets. Thus, traditional selectivity estimators face the hard tradeo↵ between the amount
of information captured and the cost to construct, store, and query the summary.

An accurate and compact joint approximation would allow better design points in this
tradeo↵ space. Recent advances in deep unsupervised learning have o↵ered promising tools in
this regard. While it was previously thought intractable to approximate the data distribution
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learned in a single deep 
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Figure 1.1: NeuroCard uses a single probabilistic model, which learns all possible correlations
among all tables in a database, to estimate join queries on any subset of tables.

of a relation in its full form [7, 2], deep autoregressive models, a type of density estimator,
have succeeded in modeling high-dimensional data such as images, text, and audio [44, 36, 45,
46, 3]. Deep autoregressive models allow us to reject the tradeo↵ that traditional cardinality
estimators face, as these types of models provide an extremely accurate approximation of
the full joint data distribution in an e�cient manner.

In this work, we propose NeuroCard, a novel cardinality estimator that leverages these new
autoregressive density estimators. NeuroCard’s distinctive feature is the ability to capture
the correlations across multiple joins in a single deep autoregressive model, without any
independence assumptions. Once trained, this model can handle all queries issuable to the
schema, regardless of what subset of tables is involved, as shown in Figure 1.1. Having a
single estimator has two key benefits: simplicity and accuracy. Having multiple estimators—
each covering a specific join template (a table subset)—does not scale for a large number of
tables, as the number of possible join templates increases exponentially. In addition, it is
easier for a DBMS to operationalize a single estimator rather than many estimators. Most
importantly, having multiple estimators can hurt accuracy. This is because estimating the
cardinality of a query on a table subset not covered by any single estimator, but by multiple
estimators, requires some form of independence assumption to combine these estimators. If
the independence assumption does not hold, the accuracy will su↵er.

Figure 1.2 shows the high-level architecture of NeuroCard. The primary component of
NeuroCard is the autoregressive core, a single autoregressive model that learns the joint
distribution of the full join (§3). Because we are using a autoregressive model, we make
no independence assumptions across tables and are therefore able to accurately learn the
distribution of the join.

In order to train the autoregressive model, we prepare an unbiased join sampler by
building or loading existing single-table indexes on join keys and computing join count tables



CHAPTER 1. INTRODUCTION 3

Tables

T
1

T
n

. . .

Join Sampler

Autoregressive 
Core

Indexes Unbiased
Sampler

Join Count Tables
indexed 
lookup

base 
tuples

Join 
Schema

prepare

Learned 
Distribution
p𝜃(all tables)

tuples from join

Inference
Algorithms

Figure 1.2: Overview of NeuroCard. The Join Sampler (§4) provides correct training data
(sampled tuples from join) by using unbiased join counts. Sampled tuples are streamed to
an autoregressive model for maximum likelihood training (§3). Inference algorithms (§5) use
the learned distribution to estimate query cardinalities.

for the specified join schema (§4). We train the deep AR model by repeatedly requesting
batches of sampled tuples from the sampler, usually 2K at a time. The sampler fulfills this
request in the background, potentially using multiple sampling threads.

Once the estimator is built, it is ready to compute the cardinality estimates for given
queries. For each query, we use probabilistic inference algorithms (§5) to compute the cardi-
nality estimate by (1) performing Monte Carlo integration on the learned AR model, and (2)
handling schema subsetting. With these inference algorithms, a single estimator can handle
queries joining any subset of tables, with arbitrary range selections.

By combining all of these ingredients, NeuroCard achieves state-of-the-art estimation
accuracy, including in the challenging tail quantiles (§6).
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Chapter 2

Related Work

At a high level, there are two approaches to cardinality estimation: query-driven and data-

driven. While query-driven estimators rely on query feedback to produce better cardinality
estimates, data-driven estimators attempt to approximate the data distribution, usually
disregarding queries. From a machine learning perspective, query-driven estimators are
considered to be a supervised learning approach. These estimators rely on collecting (encoded
query, true cardinality) pairs which are used as training data to learn a mapping from the
query representation to a predicted cardinality. Learning based data-driven estimators are
considered unsupervised or self-supervised because they directly learn from the actual data
itself, and do not need to collect training data through actual query execution. We discuss
various lines of research from these two approaches below. We also look at other applications
of machine learning to database systems.

Unsupervised data-driven cardinality estimators.

This family of estimators approximates the data distribution and dates back to System
R’s use of 1D histograms [37]. These histograms are calculated on a per-attribute basis
for each table. Any output cardinality can be predicted by combining various estimates
from these histograms. However, the main drawback with using histograms for cardinality
estimation are the assumptions that are made. In particular, combining estimates from
histograms relies on independence assumption across attributes and tables which often do
not hold. In addition, the granularity of histogram bins plays an important role as uniformity
is assumed within each bin. Due to these assumptions, simply using 1D histograms leads
to poor cardinality estimates, and alternate approaches with higher quality density models
have been proposed throughout the years:

Classical Methods

Multidimensional histograms [33, 10, 30, 34] are more precise than 1D histograms by cap-
turing inter-column correlations. Probabilistic relational models (PRMs) [7] rely on a Bayes
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Net (conditional independence DAG) to factor the joint into materialized conditional prob-
ability tables. Tzoumas et al. [43] propose a variant of PRMs optimized for practical use.
Dependency-based histograms [2] make partial or conditional independence assumptions to
keep the approximated joint tractable (factors stored as histograms). Despite their im-
provements over 1D Histograms, these approaches either still make certain independence
assumptions or are not feasible for practice.

Sum-Product Networks

SPNs, a tree-structured density estimator, were proposed about 10 years ago [32]. Each leaf
is a coarse histogram of a slice of an attribute, and each intermediate layer uses either ⇥ and
+ to combine children information. Due to their heuristics (e.g., inter-slice independence),
SPNs have limited expressiveness : there exists simple distributions that cannot be e�ciently
captured by SPNs of any depth [29]. DeepDB [13] is a recent cardinality estimator that uses
SPNs. NeuroCard is similar to DeepDB in the following aspects. (S1) Both works use the
formulation of learning the full outer join of several tables. (S2) Our “schema subsetting”
capability builds on the querying algorithms proposed by DeepDB, while generalizing them
by removing their PK-FK assumptions (§5.3).

NeuroCard di↵ers from DeepDB in the following. (D1) Modern density model: Neuro-

Card’s choice of a deep autoregressive model is a universal function approximator hence
fundamentally more expressive. Unlike SPNs, no independence assumption is made in the
modeling. (D2) Correlations learned: NeuroCard argues for capturing as much correlation
as possible across tables, and proposes learning the full outer join of all tables of a schema.
DeepDB, due to limited expressiveness, learns multiple SPNs, each on a heuristically chosen
table subset (⇠ 1–3 tables). Conditional independence is assumed across table subsets. (D3)
Sampling from true data distribution of joins: NeuroCard identifies the key requirement of
sampling from the data distribution in an unbiased fashion. In contrast, DeepDB obtains
join tuples either from full computation or using the Index Based Join Sampling algorithm
[23] which samples from a biased distribution. Due to these di↵erences, NeuroCard outper-
forms DeepDB by up to 70⇥ in accuracy and is much faster to construct (§6). We expect
that our components (e.g., unbiased sampling (§4), column factorization (§3.5) can improve
DeepDB in accuracy or space; similarly, their probabilistic inference algorithms can be added
to NeuroCard to handle approximate query processing.

Deep autoregressive models

A breakthrough in density estimation, deep AR models are the current state-of-the-art
density models from the ML community [35, 6, 46, 3]. They tractably learn complex,
high-dimensional distributions in a neural net, capturing all possible correlations among
attributes. Distinctively, AR models provide access to all conditional distributions among
input attributes. Because of their expressiveness and e�ciency, NeuroCard leverages these
models for cardinality estimation.
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Supervised query-driven cardinality estimators

Leveraging past or collected queries to improve estimates dates back to LEO [40]. Interest in
this approach has seen a resurgence partly due to an abundance of query logs [47] or better
function approximators (neural networks) [18, 41] that map featurized queries to predicted
cardinalities. Hybrid methods that leverage query feedback to improve density modeling
have also been explored, e.g., KDE [11, 15] and mixture of uniforms [52]. Supervised es-
timators can easily leverage query feedback, handle complex predicates (e.g., UDFs), and
are usually more lightweight [4]. NeuroCard has demonstrated superior estimation accuracy
to representatives in this family §6, while being fundamentally more robust since it is not
a↵ected by out-of-distribution queries. Complex predicates can also be handled by executing
on tuples sampled from NeuroCard’s learned distribution.

Join sampling

Extensive research has studied join sampling, a fundamental problem in databases. Neu-

roCard leverages a state-of-the-art join sampler to obtain training tuples representative of
a join. NeuroCard adopts the linear-time Exact Weight algorithm from Zhao et al. [53],
which is among the top-performing samplers they study. This algorithm provides uniform
and independent samples, just as NeuroCard requires. While IBJS [23] and Wander Join [26]
provide unbiased estimators for counts and aggregates, they do not provide uniform samples
of a join and thus are unsuitable for collecting training data. Lastly, we show that it is
advantageous to layer a modern density model on join samples.

Learned Database Components

ML for Query Optimizers

There are other approaches revolving around using machine learning for full query optimiza-
tion. For example, in Neo [28], a learned query optimizer, embeddings for all attributes are
pre-trained, and later, a network takes them as input and additionally learns to correct or
ignore signals from the input. Neo along with other approaches such as DQ [22] and Re-
JOIN [27] use reinforcement learning to produce the final optimal plan, and do not deal with
cardinality estimation directly. As a result, these approaches may benefit from NeuroCard’s
improved cardinality estimates.

ML for other Database Components

A great deal of work has recently applied either classical ML or modern deep learning to other
various database components, e.g., indexing [21], data layout [51]. Being able to model inter-
table and inter-column correlations without any independence assumptions, NeuroCard’s use
may go beyond query optimization to other tasks that require an understanding of tables

and attributes (e.g., data imputation [48] or indexing [49]).
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Chapter 3

Autoregressive Models for Cardinality
Estimation

In this section, we describe the autoregressive core of NeuroCard. We give an overview of
autoregressive models, how they can be adapted to learn the distribution of relational data,
and how to train these models.

Problem Overview

We estimate the selectivities of queries of the following form. Consider a set of tables,
T1, . . . , TN . We define their join schema as the graph of join relationships, where vertices are
tables, and each edge connects two joinable tables. We consider a query to be executed over
any arbitrary subgraph of the overall schema. We assume the schema and queries submitted
to the estimator are acyclic (§4.2 discusses relaxations), so they can be viewed as trees. A
query on a subgraph is a conjunction of single-column boolean predicates, over arbitrary
subsets of columns in the join result of the subgraph. A predicate contains an attribute, an
operator, and a literal, and is read as Ai 2 Ri (attribute i takes on values in valid region Ri).
Our formulation includes the usual =, 6=, <,, >,� predicates, the rectangular containment
Ai 2 [li, ri], or even IN clauses. For ease of exposition, we use range to denote the valid
region Ri or, for the whole query, the composite valid region R1 ⇥ · · ·⇥Rn. We assume the
domain of each column, Ai, is finite: since a real dataset is finite, we can take the empirically
present values of a column as its finite domain.

We make a few remarks. First, disjunctions of such predicates are supported via the
inclusion-exclusion principle. Second, our formulation follows a large amount of existing
work on this topic [2, 7, 11, 33, 52] and, in some cases, o↵ers more capabilities. Certain
prior work requires each predicate be a rectangle [18, 11] or columns be real-valued [20, 11];
our “region” formulation supports complex predicates and does not make these assumptions.
Lastly, the relation under estimation can either be a base table or a join result.
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3.1 Probabilistic Modeling of Tables

Consider a table T with column domains {A1, . . . , An}. This table induces a discrete joint

data distribution, defined as the probability of occurrence of each tuple (f(·) denotes number
of occurrences):

P (a1, . . . , an) = f(a1, . . . , an)/|T |.

The n-dimensional data distribution (the joint) P (·) allows us to compute a query’s
cardinality as follows. Define a query Q as � : A1⇥ · · ·⇥An ! {0, 1}. Then, the selectivity—
the fraction of records that satisfy the query—can be computed as a probability: P (Q) =P

a12A1
· · ·

P
an2An

�(a1, . . . , an) · P (a1, . . . , an). The cardinality is obtained by multiplying
it with the row count: |Q| = P (Q) · |T |.

Data-driven cardinality estimators can be grouped along two axes: (1) joint factorization,
and (2) the density estimator used.

Joint factorization, or the modeling assumption, determines how precisely data distri-
bution p is factored. Any modeling assumption risks losing information about correlations
across columns, which ultimately leads to a loss in accuracy. For example, the widely used 1D
histogram technique assumes the columns are independent. As a result, it factors p into a set
of 1D marginals, bP ⇡

Q
n

i=1
bP (Ai), which can lead to large inaccuracies when the columns’

values are strongly correlated. Similarly, other data-driven cardinality estimators such as
graphical models [7, 8, 2, 42, 43] either assume conditional independence or partial indepen-
dence among columns. For instance, Probabilistic Relational Models [7, 8] from the early
2000s leverage the conditional independence assumptions of Bayesian Networks (e.g., joint
factored into smaller distributions, { bP (A1|A2, A3), bP (A2), bP (A3)}. Dependency-Based His-
tograms [2] use decomposable interaction models and rely on partial independence between
columns (e.g., bP (A1, A2, A3) ⇡ bP (A1) bP (A2, A3)). Both methods are marked improvements
over 1D histograms since they capture more than single-column interactions. However, the
tradeo↵ between richer factorizations and costs to store or integrate is still unresolved. Ob-
taining selectivities becomes drastically harder due to the integration now crossing multiple
attribute domains. Most importantly, the approximated joint’s precision is compromised
since some forms of independence are still assumed.

One exception is the autoregressive (product-rule) factorization,

bP =
nY

i=1

bP (Ai|A<i), (3.1)

which precisely expresses the overall joint distribution as the product of the n conditional
distributions.

The density estimator determines how precisely the aforementioned factors are actu-
ally approximated. The most accurate “estimator” would be recording these factors exactly
in a hash table. Unfortunately, this leads to enormous construction and inference costs (e.g.,
in the case of bP (An|A1:n�1)). Recently, deep autoregressive (AR) models [3, 35, 36] have
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emerged as the density estimator of choice. Deep AR models compute { bP (Ai|A<i)} without
explicitly materializing them by learning the n conditional distributions in compact neural
networks. Deep AR models achieve state-of-the-art precision, and, for the first time, provide
a tractable solution for implementing the autoregressive factorization.

3.2 Deep Autoregressive Models

We now show how we use deep autoregressive models to approximate the joint data distri-
bution.

Overview

NeuroCard uses a deep autoregressive model to approximate the joint distribution. We
overview the statistical features they o↵er and how those relate to selectivity estimation.

Access to point density bP (x).

Deep autoregressive models produce point density estimates bP (x) after training on a set of
n-dimensional tuples T = {x1, . . . } with the unsupervised maximum likelihood objective.
Many network architectures have been proposed in recent years, such as masked multi-
layer perceptrons (e.g., MADE [6], ResMADE [3]) or masked self-attention networks (e.g.,
Transformer [46]).

Access to conditional densities { bP (xi|x<i)}.

Additionally, autoregressive models also provide access to all conditional densities present
in the product rule:

bP (x) = bP (x1, x2, · · · , xn)

= bP (x1) bP (x2|x1) · · · bP (xn|x1, . . . , xn�1)

Namely, given input tuple x = (x1, · · · , xn), one can obtain from the model the n conditional
density estimates, { bP (xi|x<i)}. The model can be architected to use any ordering(s) of the
attributes (e.g., (x1, x2, x3) or (x2, x1, x3)). In our exposition we assume the left-to-right
schema order.

NeuroCard chooses autoregressive models for selectivity estimation for two important rea-
sons. First, autoregressive models have shown superior modeling precision in learning im-
ages [44, 36], audio [45], and text [46]. All these domains involve correlated, high-dimensional
data akin to a relational table. Second, as we will show in §5.1, access to conditional densities
is critical in e�ciently supporting range queries.
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Table

Tuples

Autoregressive
Model

Data
Source

unsupervised loss
(maximum likelihood)

Selectivity
estimates

x1
x2
x3

bP(x1)
bP(x2|x1)
bP(x3|x1, x2)

Figure 3.1: Overview of the estimator framework. NeuroCard is trained by reading data
tuples and does not require supervised training queries or query feedback, just like classical
synopses.

Autoregressive Models for Relational Data

NeuroCard allows any autoregressive model M to be plugged in. In general, such model has
the following functional form:

M(x) 7!
h
bP (X1), bP (X2|x1), · · · , bP (Xn|x1, . . . , xn�1)

i
(3.2)

Namely, one tuple goes in, a list of conditional density distributions comes out, each being a
distribution of the ith attribute conditioned on previous attributes. (The scalars required to
compute the point density, { bP (xi|x<i)}, are read from these conditional distributions.) How
can a neural net M attain the autoregressive property, e.g., that bP (X3|x1, x2) only depends
on, or “sees”, the information from the first two attribute values (x1, x2) but not anything
else?

Information masking is a common technique used to implement autoregressive models [6,
46, 44]; here we illustrate the idea by constructing an example architecture for relational data.
Suppose we assign each column i its own compact neural net, whose input is the aggregated
information about previous column values x<i. Its role is to use this context information to
output a distribution over its own domain, bP (Xi|x<i). Consider a travel checkins table
with columns city, year, stars. Assume the model is given the input tuple, hPortland,
2017, 10i. First, column-specific encoders Ecol() transform each attribute value into a nu-
meric vector suitable for neural net consumption, [Ecity(Portland), Eyear(2017), Estars(10)].
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Then, appropriately aggregated inputs are fed to the per-column neural nets Mcol:

0!Mcity

Ecity(Portland)!Myear

� (Ecity(Portland), Eyear(2017))!Mstars

where � is the operator that aggregates information from several encoded attributes. In
practice, this aggregator can be vector concatenation, a set-invariant pooling operator (e.g.,
elementwise sum or max), or even self-attention [46].

Notice that the first output, from Mcity, does not depend on any attribute values (its
input 0 is arbitrarily chosen). The second output depends only on the attribute value from
city, and the third depends only on both city and year. Therefore, the three outputs can
be interpreted as h

bP (city), bP (year|city), bP (stars|city, year)
i

Thus, autoregressiveness is achieved via such input masking.
Training these model outputs to be as close as possible to the true conditional densities

is done via maximum likelihood estimation. Specifically, the cross entropy [5] between the
data distribution P and the model estimate bP is calculated over all tuples in relation T and
used as the loss:

H(P, bP ) = �
X

x2T

P (x) log bP (x) = �
1

|T |

X

x2T

log bP (x) (3.3)

It can be fed into a standard gradient descent optimizer [16]. Lastly, the Kullback-Leibler
divergence, H(P, bP )�H(P ), is the entropy gap (in bits-per-tuple) incurred by the model. A
lower gap indicates a higher-quality density estimator; thus, it serves as a monitoring metric
during and after training.

3.3 Join Problem Formulation

A join schema induces the full outer join of all tables in the schema, T = T1 ./ · · · ./ TN .
Our goal is to build a single autoregressive probabilistic model on the full join consisting of
all tables’ columns:

Model: bP (T ) ⌘ bP (T1.col1, T1.col2, . . . , TN .colk) (3.4)

In this setting, we define T as the full outer join of all tables within a schema. Consequently,
the deep AR model learns the correlations across all tables. Next, we need to sample tuples
with probabilities prescribed by the true distribution P . Otherwise, bP would approximate
an incorrect, biased distribution. To achieve this, we use a sampler that emits simple random

samples from the full join T (§4).
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3.4 Workflow & Architecture

Figure 3.1 outlines the workflow of building the autoregressive core for NeuroCard. Batches
of random tuples from T (the full outer join) are read to train NeuroCard. For each tuple,
NeuroCard encodes each attribute value using column-specific strategies (§3.4). The encoded
batch then gets fed into the model to perform a gradient update step to maximize the
predicted likelihood of the data:

Sample i.i.d. x ⇠ p (3.5)

Take gradient steps to maximize log p✓(x) (3.6)

The various encoding strategies that NeuroCard employs are described below.

Encoding and Decoding Strategies

NeuroCard models a relation as a high-dimensional discrete distribution. The key challenge is
to encode each column into a form suitable for neural network consumption, while preserving
the column semantics. Further, each column’s output distribution bP (Xi|x<i) (a vector of
scores) must be e�ciently decoded regardless of its datatype or domain size.

For each column NeuroCard first obtains its domain Ai either from user annotation or
by scanning. All values in the column are then dictionary-encoded into integer IDs in range
[0, |Ai|). For instance, the dictionary can be Portland 7! 0, SF 7! 1, etc. For a column with
a natural order, e.g., numerics or strings, the domain is sorted so that the dictionary order
follows the column order. Overall, this pre-processing step is a lossless transformation (i.e.,
a bijection).

Next, column-specific encoders Ecol() encode these IDs into vectors. The ML community
has proposed many such strategies before; we make sensible choices by keeping in mind a
few characteristics specific to relational datasets:

Encoding small-domain columns: one-hot.

For such a column Ecol() is set to one-hot encoding (i.e., indicator variables). For instance, if
there are a total of 4 cities, then the encoding of SF is Ecity(1) = [0, 1, 0, 0], a 4-dimensional
vector. The small-domain threshold is configurable and set to 64 by default. This encoding
takes O(|Ai|) space per value.

Encoding large-domain columns: embedding.

For a larger domain, the one-hot vector wastes space and computation budget. NeuroCard

uses embedding encoding in this case. In this scheme—a preprocessing step in virtually all
natural language processing tasks—a learnable embedding matrix of type R|Ai|⇥h is randomly
initialized, and Ecol() is simply row lookup into this matrix. For instance, Eyear(4) 7! row 4
of embedding matrix, an h-dimensional vector. The embedding matrix gets updated during
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gradient descent as part of the model weights. Per value this takes O(h) space (NeuroCard
defaults h to 64). This encoding is ideal for domains with a meaningful semantic distance
(e.g., cities are similar in geo-location, popularity, relation to its nation) since each dimension
in the embedding vector can learn to represent each such similarity.

Decoding small-domain columns.

Suppose domain Ai is small. In this easy case, the network allocates an output layer to
compute a distribution bP (Xi|x<i), which is a |Ai|-dimensional vector of probabilities used for
selectivity estimation. We use a fully connected layer, FC(F, |Ai|), where F is the hidden unit
size. For example, for a city column with three values in its domain, the output distribution
may be [SF = 0.2;Portland = 0.5;Waikiki = 0.3]. During optimization, the training loss seeks
to minimize the divergence of this output from the data distribution.

Decoding large-domain columns: embedding reuse.

If the domain is large, however, using a fully connected output layer FC(F, |Ai|) would be
ine�cient in both space and compute. Indeed, an id column in a dataset we tested on has
a large domain size of |Ai| = 104, inflating the output layer beyond typical scales.

NeuroCard solves this problem by an optimization that we call “embedding reuse”. In
essence, we replace the potentially large output layer FC(F, |Ai|) with a much smaller version,
FC(F, h) (recall that h is the typically small embedding dimensions; defaults to 64). This
immediately yields a saving ratio of |Ai|/h. The goal of decoding is to take in inputs x<i and
output |Ai| probability scores over the domain. With the shrunk-down output layer, inputs
x<i would pass through the net arriving at an h-dimensional feature vector, H ✓ R1⇥h. We
then calculateHET

i
, where Ei ✓ R|Ai|⇥h is the already-allocated embedding matrix for column

i, obtaining a vector R1⇥|Ai| that can be interpreted as the desired scores after normalization.
We have thus decoded the output while cutting down the cost of compute and storage. This
scheme has proved e↵ective in other large-domain tasks [35].

Model Architecture

For our experiments, we utilize a standard AR architecture, ResMADE [3]. As has been
studied [50], a simple masked multi-layer perceptron such as ResMADE strikes a good bal-
ance between e�ciency and accuracy. The design of NeuroCard can accommodate any deep
AR architecture if more advanced architectures are desired.

3.5 Optimization: Reducing Model Size with Lossless
Column Factorization

A key challenge of using an autoregressive model for high-cardinality data is that the size of
the model parameters can scale linearly with the numbers of distinct values in the columns. In
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Column

Domain: 106

1,000,000

1

Binary representation

1111010000  1001000000             

0000000000  0000000001 

Subcol 1

976

0

Subcol 2

576

1

Domain: ≤ 2NChunk every N=10 bits    

Figure 3.2: Lossless column factorization (§3.5).

the model architecture we use (§3.4), each column (any data type; categorical or numerical)
is first dictionary-encoded into integer token IDs. Then a per-column embedding layer is
applied on these token IDs. The size of the trainable embedding matrix (essentially, a hash
table) for each column C scales linearly with |AC |, i.e., the number of distinct values in the
domain. Even a moderately sized column with up to 106 distinct values, therefore, easily
takes up 128MB of space, assuming 32-dimensional embeddings are used.

To handle high-cardinality columns e�ciently, we propose an optimization that we call
lossless column factorization. This optimization is inspired by the popular use of “subword
units” [38] in modern natural language processing, and also shares characteristics with “bit
slicing” in the indexing literature [31]. Di↵erent from subword units, column factorization
does not use a statistical algorithm such as byte pair encoding to determine what subwords
to use (a potential optimization). Di↵erent from bit slicing, we slice a value into groups of
bits and convert them back into base-10 integers.

Figure 3.2 illustrates the idea on a simple example. Suppose a column (any datatype) has
a domain size of |AC | = 106. Naively supporting this column would require allocating |AC | ·h
floats as its embedding matrix, where h is the embedding dimension. Instead, NeuroCard
factorizes each value on-the-fly during training: we convert an original-space value into its
binary representation, then slice o↵ every N bits, the factorization bits hyperparameter.
Each sliced o↵ portion becomes a subcolumn, now in base-10 integer representation. These
subcolumns are now treated as regular columns to learn over by the autoregressive model.
Crucially, a much smaller embedding matrix is now needed for each subcolumn containing
at most 2N · h floats. In this example, we can reduce 128MB to 250KB—a more than 500⇥
space reduction.

Lossless = factorization + autoregressive modeling.

With factorization, a column is factorized into multiple subcolumns, which are then fed
into a downstream density estimator. However, if a density estimator with independence
assumptions, e.g., 1D histograms, is used, then this whole process is lossy. By modeling
p(subcol1, subcol2) ⇡ p(subcol1)p(subcol2), histograms would fail to capture any potential
correlation between the two subcolumns. In other words, other estimators could read in
subcolumn values and potentially reduce space usage, but their inherent quality and as-
sumptions determine how much information is learned about the subcolumns, and about
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Figure 3.3: Entropy Gap with varying chunk sizes.

their correlations with other columns. By using autoregressive modeling, NeuroCard forces
the AR model to explicitly capture such correlation, namely (ignoring other columns):

p(col) ⌘ p(subcol1, subcol2) = p(subcol1)p(subcol2|subcol1),

which has no inherent loss of information. Hence, we call the unique combination of factor-
ization and autoregressive modeling lossless.

Model size vs. statistical e�ciency.

As discussed in the previous section, in theory, by using autoregressive modeling no infor-
mation is lost in this translation so the precision of the learned distributions is not a↵ected.
However, in practice, this isn’t the case, as shown by Figure 3.3. In this experiment, we
trained various autoregressive models on a single column table containing 4.5M rows and
135k distinct values. Each model has the same configuration, except for a di↵erent chunk
size bits N . To evaluate how the chunk size a↵ects the model’s learning, we look at the KL
divergence, or entropy gap, between the model’s learned distribution and the true distribu-
tion of the data. As we can see, as we increase N , the entropy gap decreases, and the model
does a better job in estimating the true distribution. This is because since as we decrease N
in each chunk, we have more subcolumns, resulting in a more di�cult learning task for the
model due to long-range dependencies. Therefore, choosing the factorization bits N enables
a tradeo↵ between model size vs. statistical e�ciency.

Lower factorization bits, i.e., slicing into more subcolumns, generally underperform higher
ones that use more space. Because of this, we choose the factorization bits N to be as high
as possible as long as the model is still under the space usage budget.
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Chapter 4

Sampling From Joins

As discussed in the previous section, a key challenge in NeuroCard is computing an unbiased

sample of the full join (§3.3) to ensure that the learned distribution faithfully approximates
the full join distribution. Namely, every tuple in the full join J (a multiset) must be sampled
equally likely with probability 1/|J |. The samples should also be i.i.d., as required by
Equation 3.5. To access tuples from the full join, a straightforward treatment is to compute
it, then take uniform samples. Unfortunately, even on a small 6-table schema (the JOB-light
workload), the full join contains two trillion (2 ·1012) tuples, making it infeasible to compute
in practice. Instead, NeuroCard meets these requirements by using a sampler that produces
simple random samples with replacement without having to materialize the join result.

4.1 Algorithm

A tuple in the full join contains join key columns and content columns. Our sampler exploits
this decomposition. The first step of the sampler is to precompute join count tables, which
are per-table statistics that reflect the occurrence counts of the join keys in the full join. The
sampler then samples the join keys, table-by-table, with occurrence probabilities proportional
to their join counts. Lastly, it selects content columns from the base tables by looking up the
drawn join keys. This completes a batch of samples, which is sent to the model for training,
and the procedure repeats on demand.

Computing join counts. Zhao et al. [53] provide an e�cient algorithmic framework of
join sampling that produces simple random samples from general multi-key joins. NeuroCard
implements the Exact Weight algorithm from Zhao et al., adapted to full outer joins.

We illustrate the algorithm on a join schema (a tree) consisting of tables T1, . . . , TN . For
exposition, assume they only involve join keys (content columns are gathered later). Without
loss of generality, let T1 be the root table. The key idea is to sample a tuple through the
join tree, using the correct join counts as weights at each table. The join count of a tuple
t 2 Ti is the total number of tuples in the full outer join of all of Ti’s descendants that can
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A B C
x y

A.x

1
2

B.x B.y

1 a
2 b
2 c

C.y

c
c
d

(a) Schema and base tables

A.x B.{x, y} C.y

1 1 1, a 1 c 1

2 3 2, b 1 c 1

?1 4, c 2 d 1

?1 ?1

(b) Join counts

A.x B.x FB.x B.y C.y FC.y 1A 1B 1C

1 1 1 a ? 1 1 1 0
2 2 2 b ? 1 1 1 0
2 2 2 c c 2 1 1 1
2 2 2 c c 2 1 1 1
? ? 1 ? d 1 0 0 1

(c) Full outer join, with virtual
columns in blue

-- In full join , |A.x=2|=3.

-- Q1. True answer is 2.

SELECT COUNT (*)

FROM A JOIN B ON x

JOIN C ON y

WHERE A.x = 2;

-- Q2. True answer is 1.

SELECT COUNT (*)

FROM A WHERE A.x = 2;

(d) Schema subsetting

Figure 4.1: End-to-end example. (a) A join schema of three tables and their join key
columns. Content columns are omitted. (b) Join counts (blue) enable uniform sampling of
the full outer join and are computed in linear time by dynamic programming. Here, edges
connect join partners. (c) Learning target: the full outer join of the schema, with virtual

columns in blue. We show the fanouts F , the number of times a join key value appears in
the corresponding base table, for keys B.x and C.y. The fanouts for A.x and B.y are all
1 and omitted. Each indicator 1T denotes whether a tuple has a match in table T . (d)
Examples of schema subsetting, i.e., queries that touch a subset of the full join (§5.3).
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join with t. It is recursively defined as:

wi(t) =
Y

Tj2Children(Ti)

X

t02toTj

wj(t
0) 8i, 8t 2 Ti (4.1)

where to Tj denotes all tuples in Tj that join with t. For a leaf table with no descendants,
wi(·) is defined as 1. At the root table T1, w1(t) represents the count of t 2 T1 in the entire
full outer join. The join counts can be computed recursively bottom-up using dynamic
programming. The time complexity is therefore linear in the number of tuples in all tables,
O(|T1| + · · · + |TN |), in contrast with the exponential worst-case complexity of computing
the full join.

Sampling. Once the join counts are computed, the sampler produces a sample by traversing
the join tree in a top-down fashion. It starts by drawing a sample t1 from the root table
T1 using weights {w1(t) : t 2 T1} (i.e., with probabilities {w1(t)/

P
t02T1

w1(t0)}). It then
samples through all descendants of T1 in the breadth-first order. At a child table, say T2, it
samples t2 from t1 oT2 (all tuples in T2 that join with t1) using weights {w2(t) : t 2 t1 oT2}.
The procedure continues recursively until all tables are visited, and thus produces a sample
(t1, · · · , tN), each ti being a tuple of join keys from the respective table.

Example. Consider the schema in Figure 4.1a. Figure 4.1b shows the computed join counts.
The leaf table C has a count of 1 for every tuple. In B, since (2, c) can join with two tuples
in C, its join count is 2 = 1+1. Similar propagation happens for A.x = 2 which gets a count
of 3 = 1 + 2. Physically, we store the join counts indexed by join keys (e.g., for C, only one
mapping c! 1 is kept). For sampling, suppose A.x = 2 is first sampled. It has two matches
in B with weights 1 and 2, so the second match, (2, c), has an inclusion probability of 2/3.

NULL handling. To support full outer joins, we handle NULL keys as follows. We add a virtual
? tuple (which denotes NULL) to each table Ti, and make it join with all normal t 2 Tj that
have no matches in Ti, where Tj 2 Children(Ti). Similarly, any normal t 2 Parent(Ti) that
has no match in Ti joins with Ti’s ?. All-NULL is invalid. Propagation proceeds as before;
Figure 4.1b shows examples.

Constructing complete sample tuples. In the prior example, suppose h2; 2, c; ci is drawn.
We gather the content columns of A by looking up A.x = 2 and similarly for (B.x,B.y) =
(2, c)1 and C.y = c. On multiple matches, we pick a row uniformly at random. Their
concatenation represents a sampled tuple from the full join.

Computing the size of the full join (normalizing constant). Recall from §3.1 that the
row count |J | (the normalizing constant in probabilistic terms) is required to convert selec-
tivities into cardinalities. With join counts it can be computed exactly: |J | =

P
t2T1

w1(t).

Parallel sampling. Finally, the sampling procedure is embarrassingly parallel: after the
join count tables {wi(·)} are produced, parallel threads can be launched to read the join
counts and produce samples. Computation of the join count tables is also parallelizable,

1Either intersect two matching lists from both columns’ index lookups, or do a single lookup if a composite
index is available.
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although it is an one-time e↵ort. Sampling correctness is preserved even in the presence of
parallelism due to the i.i.d. property.

4.2 Comparison with other samplers

Our key requirements of uniform and i.i.d. samples from the full join render many related
sampling algorithms unsuitable. If either property is not satisfied, the sampling distribution
would be biased and thus compromise the quality of the learned AR model. As examples,
Index-based Join Sampling (IBJS) [23] is neither uniform nor independent; Wander Join [26]
produces independent but non-uniform samples. Both approaches do produce unbiased
estimators for counts or other aggregate statistics, but are not designed to return uniform join
samples. Reservoir sampling, a well-known technique, draws samples without replacement
(thus, non-independent) and requires a full scan over the full join, which is not scalable.
Lastly, the Exact Weight algorithm NeuroCard implements is among the most e�cient in
Zhao et al. [53]. They provide additional extensions to support general, potentially cyclic
joins (e.g., a cycle can be broken), which NeuroCard can leverage to broaden our formulation.
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Chapter 5

Querying NeuroCard

Once built, the autoregressive model summarizes the entire full outer join

Model: bP (T ) ⌘ bP (T1.col1, T1.col2, . . . , TN .colk) (5.1)

Now, we describe how to query the learned autoregressive model to produce cardinality esti-
mates. In the general case, assume we have learned the following distribution bP (X1, X2, ...Xn).
A query is then issued asking for the selectivity of the conjunction, sel(✓) = P (X1 2

R1, . . . , Xn 2 Rn), where each range Ri can be a point (equality predicate), an interval (range
predicate), or any subset of the domain (IN). The calculation of this density is fundamentally
summing up the probability masses distributed in the cross-product region, R = R1⇥· · ·⇥Rn.
We first discuss the straightforward support for equality predicates, then move on to how
NeuroCard solves the more challenging problem of range predicates.

Equality Predicates

When values are specified for all columns, estimating conjunctions of these equality pred-
icates is straightforward. Such a point query has the form P (X1 = x1, . . . , Xn = xn) and
requires only a single forward pass on the point, (x1, . . . , xn), to obtain the sequence of con-
ditionals, [ bP (X1 = x1), bP (X2 = x2|X1 = x1), . . . , bP (Xn = xn|X1 = x1, . . . , Xn�1 = xn�1)],
which are then multiplied.

Range Predicates

It is impractical to assume a workload that only issues point queries. With the presence
of any range predicate, or when some columns are not filtered, the number of points that
must be evaluated through the model becomes larger than 1. (In fact, it easily grows to
an astronomically large number for the majority of workloads we considered.) We discuss
two ways in which NeuroCard carries out this operation. Enumeration exactly sums up the
densities when the queried region R is su�ciently small: all discrete points in this region
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Figure 5.1: The intuition of progressive sampling. Uniform samples taken from the query
region have a low probability of hitting the high-mass sub-region of the query region, in-
creasing the variance of Monte Carlo estimates. Progressive sampling avoids this by sampling
from the estimated data distribution instead, which naturally concentrates samples in the
high-mass sub-region.

are enumerated and fed into the model, in a batching fashion, whose corresponding point
densities are then summed up:

sel(X1 2 R1, . . . , Xn 2 Rn) ⇡
X

x12R1

· · ·

X

xn2Rn

bP (x1, . . . , xn).

When the region R is deemed too big—almost always the case in the datasets and work-
loads we considered—we instead use a novel approximate technique termed progressive sam-

pling (described next), an unbiased estimator that works surprisingly well on the relational
datasets we considered.

Lastly, queries with out-of-domain literals can be handled via simple rewrite. For exam-
ple, suppose year’s domain is {2017, 2019}. A range query with an out-of-domain literal, say
“year < 2018”, can be rewritten as “year  2017” with equivalent semantics. For equality
predicates with out-of-domain literals, NeuroCard simply returns a cardinality of 0. Hereafter
we consider in-domain literals and valid regions.

5.1 Range Queries via Progressive Sampling

The queried region R = R1⇥· · ·⇥Rn in the worst case contains O(
Q

i
Di) points, where Di =

|Ai| is the size of each attribute domain. Clearly, computing the likelihood for an exponential
number of points is prohibitively expensive for data/queries with even moderate dimensions.
NeuroCard proposes an approximate integration scheme to address this challenge.

First attempt (Figure 5.1, left). The simplest way to approximate the sum is via
uniform sampling. First, sample x(i) uniformly at random from R. Then, query the model
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to compute bpi = bP (x(i)). By naive Monte Carlo, for S samples we have |R|
S

P
S

i=1 bpi as an
unbiased estimator to the desired density. Intuitively, this scheme is randomly throwing
points into target region R to probe its average density.

To understand the failure mode of uniform sampling, consider a relation T with n cor-
related columns, with each column distribution skewed so that 99 of the probability mass
is contained in the top 1 of its domain (Figure 5.1). Take a query with range predicates
selecting the top 50 of each domain. It is easy to see that uniformly sampling from the
query region will take in expectation 1/(0.01/0.5)n = 1/0.02n samples to hit the high-mass
region we are integrating over. Thus, the number of samples needed for an accurate estimate
increases exponentially in n. Consequently, we find that this sampler collapses catastrophi-
cally in the real-world datasets that we consider. It has the worst errors among all baselines
in our evaluation.

Progressive sampling (Figure 5.1, right). Instead of uniformly throwing points into the
region, we could be more selective in the points we choose—precisely leveraging the power
of the trained autoregressive model. Intuitively, a sample of the first dimension x(i)

1 would
allow us to “zoom in” into the more meaningful region of the second dimension. This more
meaningful region is exactly described by the second conditional output from the autore-
gressive model, bP (X2|x

(i)
1 ), a distribution over the second domain given the first dimension

sample. We can obtain a sample of the second dimension, x(i)
2 , from this space instead of

from Unif(R2). This sampling process continues for all columns. To summarize, progres-
sive sampling consults the autoregressive model to steer the sampler into the high-mass part
of the query region, and finally compensating for the induced bias with importance weighting.

Example. We show the sampling procedure for a 3-filter query. Drawing the i-th sample for
query P (X1 2 R1, X2 2 R2, X3 2 R3):

1. Forward 0 to get bP (X1). Compute and store scalar bP (X1 2 R1) by summing over R1.

Then draw x(i)
1 ⇠

bP (X1|X1 2 R1).

2. Forward x(i)
1 to get bP (X2|x

(i)
1 ). Compute and store scalar bP (X2 2 R2|x

(i)
1 ) by summing

over R2. Draw x(i)
2 ⇠

bP (X2|X2 2 R2, x
(i)
1 ).

3. Forward (x(i)
1 , x(i)

2 ) to get bP (X3|x
(i)
1 , x(i)

2 ). Compute and store scalar bP (X3 2 R3|x
(i)
1 , x(i)

2 ).

The summation and sampling steps are fast since they are only over single-column distribu-
tions. This is in contrast to integrating or summing over all columns at once, which has an
exponential number of points. The product of the three stored intermediates,

bP (X1 2 R1) · bP (X2 2 R2|x
(i)
1 ) · bP (X3 2 R3|x

(i)
1 , x(i)

2 ) (5.2)

is an unbiased estimate for the desired density. By construction, the sampled point satisfies
the query (x(i)

1 is drawn from range R1, x
(i)
2 from R2, and so forth). It remains to show that

this sampler is approximating the correct sum:
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Algorithm 1 Progressive Sampling: estimate the density of query region R1 ⇥ · · · ⇥ Rn

using S samples.

1: function ProgressiveSampling(S;R1, . . . , Rn)
2: bP = 0
3: for i = 1 to S do . Batched in practice
4: bP = bP +Draw(R1, . . . , Rn)

5: return bP/S

6: function Draw(R1, . . . , Rn) . Draw one tuple
7: bp = 1
8: s = 0n . The tuple to fill in
9: for i = 1 to n do

10: Forward pass through model: M(s)
11: bP (Xi|s<i) = the i-th model output . Eq. 3.2
12: Zero-out probabilities in slots [0, Di) \ Ri

13: Re-normalize, obtaining bP (Xi|Xi 2 Ri, s<i)
14: bp = bp⇥ bP (Xi 2 Ri|s<i)
15: Sample si ⇠ bP (Xi|Xi 2 Ri, s<i)
16: s[i] = si
17: return bp . Density of the sampled tuple s

Theorem 1 Progressive Sampling estimates are unbiased.

The proof uses basic probability rules and is show in the Appendix. Algorithm 1 shows
the pseudocode for the general n-filter case. For a column that does not have an explicit
filter, it can in theory be treated as having a wildcard filter, i.e., Ri = [0, Di). We describe our
more e�cient treatment, wildcard-skipping, in §5.2. Our evaluation shows that the sampler
can cover both low and high density regions, and handles challenging range queries for large
numbers of columns and joint spaces.

Progressive sampling bears connections to sampling algorithms in graphical models. No-
tice that the autoregressive factorization corresponds to a complex graphical model where
each node i has all nodes with indices < i as its parents. In this interpretation, progressive
sampling extends the forward sampling with likelihood weighting algorithm [19] to allow vari-
ables taking on ranges of values (the former, in its default form, allows equality predicates
only).



CHAPTER 5. QUERYING NEUROCARD 24

5.2 Optimizations

Reducing Variance with Wildcard Skipping

NeuroCard utilizes wildcard-skipping, a simple optimization to e�ciently handle wildcard
predicates. Instead of sampling through the full domain of each wildcard column in a query,
Xi 2 ⇤, we could restrict it to a special token, Xi = MASKi. Intuitively, MASKi signifies
column i’s absence and essentially marginalizes it. In our experiments, wildcard-skipping
can reduce the variance of worst-case errors by several orders of magnitude.

During training, we perturb each tuple so that the training data contains MASK tokens.
We uniformly sample a subset of columns to mask out—their original values in the tuple are
discarded and replaced with corresponding MASKcol. For an n-column tuple, each column
has a probability of w/n to be masked out, where w ⇠ Unif[0, n). The output target for
the cross-entropy loss still uses the original values.

Inference for Factorized Subcolumns

Recall in §3.5, we describe how columns with a large domain size can be factorized into
subcolumns via bit chunking, leading to smaller model sizes. This technique requires some
modifications for inference as well. During probabilistic inference, a filter on an original
column needs to be translated into equivalent filters on subcolumns. We modify the standard
progressive sampling procedure to handle subcolumns by respecting each filter’s semantics.
Going back to our example in Figure 3.2, consider the filter col < 1,000,000. The filter for
the high-bits subcol1 is relaxed to  976 (note the less-equal). The inference procedure would
draw a subcol1 value in this range, based on which the low-bits filter is relaxed appropriately.
If the drawn subcol1 is 976, then the filter on subcol2 is set to “< 576”; otherwise, the high-
bits already satisfy the original filter so a wildcard is placed on the low-bits subcolumn. This
is an adaptation of range predicate processing on bit-sliced indexes [31]; NeuroCard applies
these processing logic in the new context of probabilistic inference for autoregressive models.

5.3 Schema Subsetting

In the previous sections, we described how NeuroCard can support all predicate types in an
e�cient manner. However, another challenge with querying this probabilistic model for a
selectivity estimate is that the query may restrict the space it touches to a subset of the full

join—a phenomenon we term schema subsetting. Consider:

T1.id : [1, 2] T2.id : [1, 1] �! T1 ./ T2 : [(1, 1), (1, 1), (2,?)]

Query: �id=1(T1)

The correct selectivity is 1
2 (1 row). However, in the full join distribution, P (T1.id = 1) = 2

3
(2 rows). This is because we have not accounted for the fanout produced by the missing
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table, T2. Since the selectivity estimate returned by the model assumes the probability space
to be the full outer join, rather than the query-specific restricted space, the estimate should
be downscaled appropriately during probabilistic inference.

NeuroCard handles schema subsetting by building o↵ of ideas proposed by Hilprecht et
al. [13] for querying subsets of tables on sum-product networks. We state their algorithms
below and discuss how to adapt them into our framework, thereby generalizing these algo-
rithms to (1) non PK-FK joins and (2) a new type of probabilistic model.

Basic case: no table omitted.

The simplest case of schema subsetting is an inner join query on all tables. Consider
the example data in Figure 4.1a and an inner join query Q1 in Figure 4.1d. The query,
�A.x=2(A ./x B ./y C), restricts the probability space from the full join to the inner join.
Naively querying the model for |A.x = 2| would return a cardinality of |J | · (3/5) = 3 rows,
as 3 out of 5 rows in the full join J (Figure 4.1c) satisfy the filter. However, the correct row
count for this query is 2 (two rows in the inner join; both pass the filter). Left/right outer
joins can also exhibit this behavior.

To correct for this, Hilprecht et al. propose a simple solution by adding an indicator

column per table into the full join. A binary column 1T is added for each table T , with value
1 if a tuple (in the full join) has a non-trivial join partner with table T , and 0 otherwise.

NeuroCard adopts this solution as follows. First, during training, the sampler is tasked
with appending these virtual indicator columns on-the-fly to sampled tuples. Recall that
each sampled tuple is formed by querying base-table indexes with sampled join keys. If
a table T contains a join key, we set that sampled tuple’s 1T to 1, and 0 otherwise (see
Figure 4.1c). The autoregressive model treats these indicator columns as regular columns to
be learned.

Second, during inference, NeuroCard adds equality constraints on the indicator columns,
based on what tables are present in the query. The progressive sampling routine (Algo-
rithm 1) not only gets the usual filter conditions, {Xi 2 Ri}, but also {1T = 1} for any table
T that appears in the inner-join query graph1. In summary, for the no-omission case, the
routine now estimates the probability:

P ({Xi 2 Ri} ^ {1T = 1 : for all table T}) (5.3)

Example. Coming back to the example query Q1, �A.x=2(A ./x B ./y C), we compute
the selectivity under the full join as P (A.x = 2 ^ 1A = 1B = 1C = 1). Reading from
Figure 4.1c, this probability is 2/5, so the cardinality is correctly computed as 5 · (2/5) = 2
rows.

1The indicator columns can also be constrained appropriately for left or right joins.
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Omitting tables and fanout scaling.

The less straightforward case is if a query omits, i.e., does not join, certain tables. Consider
Q2 in Figure 4.1d: �A.x=2(A). When restricting the scope to table A, the row count of
A.x = 2 is 1, di↵erent from |J | ·P (A.x = 2^1A = 1) = 3 rows. The fundamental reason this
happens is because the operation of a full join has fanned out tuples from base tables. To
correctly downscale, Hilprecht et al. propose recording a per-join fanout column. We adapt
this solution in NeuroCard

2.
Specifically, for each join key column T.k, we insert into the full join a virtual fanout

column, FT.k, defined as the number of times each value appears in T.k. For example, 2
appears twice in B.x, so its fanout is FB.x(2) = 2; see Figures 4.1a and 4.1c. Again, we task
the join sampler with adding these fanout values on-the-fly to each batch of sampled tuples.
The inclusion of fanouts is piggybacked onto the index lookup path (querying the size of
each lookup result list), which adds negligible overheads.

On the inference side, Hilprecht et al. showed that the correct cardinality with omitted
tables can be computed via fanout scaling :

Cardinality(query Q) = |J | · P ({Xi 2 Ri} subsetted to query Q)

= |J | · E
X⇠J

"
1{Xi2Ri} ·

Q
T2Q 1TQ

R/2Q FR.key

#
.

(5.4)

In essence, the numerator handles the basic case above, while the denominator counts the
total number of times omitted tables {R /2 Q} have fanned out each tuple in query Q. It
loops through each omitted table R, finds its unique join key R.key that connects to Q in
the schema (discussed in detail below), and looks up the associated fanout value FR.key. We
incorporate this scaling as follows. Since the fanout columns are learned by the model, we
modify progressive sampling to draw a concrete value for each relevant FR.key per progressive
sample, compute the product of these fanouts, and divide the progressive sample’s estimated
likelihood by this product.

Example. Coming back to Q2, �A.x=2(A), the constraints are {A.x = 2, 1A = 1}. Reading
from Figure 4.1c, three rows satisfy the constraints and the relevant downscaling keys are
B.x and C.y. Thus the expectation expands as: 1

5 · ( 1
2·1 + 1

2·2 + 1
2·2) =

1
5 . Multiplying with

|J | = 5 arrives at the correct cardinality of 1 row.

2Our definition di↵ers slightly from Hilprecht et al. . In that work, each fanout column is bound to a
PK-FK join and stores the frequency of a value in the FK. Our treatment binds a fanout to each join key,
regardless of PK/FK, and is defined as the frequency each value appears in that key column itself. This
removes their assumption of PK-FK joins and supports general equi-joins where both join keys can have
duplicate values. Note that our formulation still requires the join keys to be pre-declared before model
training begins.
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Handling fanout scaling for multi-key joins.

Our formulation of fanout scaling supports multi-key joins, e.g., both x and y keys in the
example schema A.x = B.x ^ B.y = C.y (Figure 4.1a). The challenge of fanout scaling in
this case is determining the set of omitted keys to downscale. Let V be the set of all tables.
Let Q be the set of tables joined in a query, and the complement O = V \ Q the omitted
tables. Pick any table T 2 Q. There exists a unique path from each omitted TO 2 O to T ,
because the join schema graph is a tree (acyclic, connected). The join key attached to the
edge incident to TO on this path is the unique join key for table TO to downscale. Hence,
the fanout downscaling factor in Equation 5.4 is well-defined.

Going back to example Q2 where only A is queried, when considering the omitted table
B which has two join keys (B.x, B.y), we see that B.x is the unique fanout key since it lies
on the path A ! B.

Summary of schema subsetting.

To recap, NeuroCard’s probabilistic inference leverages the progressive sampling algorithm
from Naru and the idea of additional columns from Hilprecht et al. that we term virtual

columns. Our join sampler is modified to logically insert into the full join two types of
virtual columns, the indicators and the fanouts. Both are treated as regular columns to be
learned over by the density model, and both are used during progressive sampling to handle
various cases of schema subsetting.

Ordering virtual columns in the autoregressive factorization.

The autoregressive model requires some fixed ordering of columns in its factorization (§??).
Naru has shown that di↵erent orderings may have di↵erent performance in the tail error but
not in the lower error quantiles. We adopt the same practice as Naru in using an arbitrary
ordering for the content columns. For the virtual columns introduced above, we place them
after all the content columns, with indicators before fanouts. The intuition here is to ensure
that (1) the conditional distributions involving content columns do not get confused by the
presence of virtual columns, and (2) when sampling fanouts, placing them at the end allows
for prediction using a maximum amount of prior information.

In our early benchmarks this choice performed better than if virtual columns were placed
early in the ordering. We also experimented with multi-order training [6] in the autore-
gressive model, but did not see noticeably better performance. Thus, we opt for a simple
treatment and leave such optimizations to future work.
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Chapter 6

Evaluation

We evaluate NeuroCard on accuracy and e�ciency and compare it with state-of-the-art car-
dinality estimators. The key takeaways are:

• NeuroCard outperforms the best prior methods by 4–72⇥ in accuracy. On the
popular JOB-light benchmark, NeuroCard achieves a maximum error of 8.5⇥ using 4MB.

• NeuroCard scales well to more complex queries. On the two new benchmarks JOB-
light-ranges (more di�cult range filters) and JOB-M (more tables in schema), NeuroCard
achieves orders of magnitude higher accuracy than prior approaches.

• NeuroCard is e�cient to construct and query. A few million tuples, learned in less
than 5 minutes, su�ce for it to reach best-in-class accuracy.

• We study the relative importance of each component of NeuroCard. Out of all
factors, learning the correlations across all tables and performing unbiased join sampling
prove the most impactful.

6.1 Experimental Setup

Workloads

The various workloads that we use are described in Table 6.1. We adopt the real-world IMDB
dataset and schema to test cardinality estimation accuracy. Prior work [25, 24] reported that
correlations are abound in this dataset and established it to be a good testbed for cardinality
estimators. We test the following query workloads on IMDB:

• JOB-light: a 70-query benchmark used by many recent cardinality estimator propos-
als [41, 18, 13]. The schema contains 6 tables, title (primary), cast info, movie companies,
movie info, movie keyword, movie info idx and is a typical star schema—every non-primary
table only joins with title on title.id. The full outer join contains 2 · 1012 tuples. Each
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Table 6.1: Workloads used in evaluation. Tables : number of base tables. Rows, Cols, Dom.:
row count, column count, and maximum column domain size of the full outer join of each
schema. Feature characterizes the each workload’s queries.

Workload Tables Rows Cols Dom. Feature

JOB-light 6 2 · 1012 8 235K single-key joins
JOB-light-ranges 6 2 · 1012 13 134K +complex filters
JOB-M 16 1013 16 2.7M +multi-key joins
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Figure 6.1: Distribution of query selectivity (§6.1).

query joins between 2 to 5 tables, with only equality filters except for range filters on
title.production year.

• JOB-light-ranges: we synthesized this second benchmark containing 1000 queries derived
from JOB-light by enriching filter variety. We generate the 1000 queries uniformly dis-
tributed to each join graph of JOB-light (18 in total), as follows. For each join graph,
using our sampler we draw a tuple from the inner join result. We use the non-null col-
umn values of this tuple as filter literals, and randomly place 3–6 comparison operators
associated with these literals, based on whether each column can support range (draw
one of {,�,=}) or equality filters (=). Overall, this generator (1) follows the data dis-
tribution and guarantees non-empty results, and (2) includes more filters, in variety and
in quantity, than JOB-light. An example 3-table query is: mc ./ �info type id=99(mi idx) ./
�episode nr4^phonetic code�’N612’(t), where t.id is joined with other tables’ movie id.

• JOB-M: this last benchmark contains 16 tables in IMDB and involves multiple join keys.
For instance, the table movie companies is joined not only with title on movie id, but also
with company name on company id, and with company type on company type id, etc. We
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adapt the 113 JOB queries [24] by allowing each table to appear at most once per query
and removing logical disjunctions (e.g., A.x=1 _ B.y=1). Each query joins 2–11 tables.
We use JOB-M to test NeuroCard’s scalability as its full join is 5⇥ larger and has more
dimensions than the above (see Table 6.1).

Metric

We report the usual Q-error distribution of each workload, where the Q-error of a query is
the multiplicative factor an estimated cardinality deviates from the query’s true cardinality:

Q-error(query) := max

✓
cardactual

cardestimate
,
cardestimate

cardactual

◆
.

Both actual and estimated cardinalities are lower bounded by 1, so the minimum attainable
Q-error is 1⇥. As reported in prior work [50], reducing high-quantile errors is much more
challenging than mean or median; thus, we report the quantiles p100, p99, p95, and the
median. For timing experiments, we report latency/throughput using an AWS EC2 VM
with a NVIDIA V100 GPU and 32 vCPUs.

Benchmark characteristics

Figure 6.1 plots the distributions of selectivities of these workloads, where we calculate
each query’s selectivity as cardactual/cardinner (denominator is the row count of the query join
graph—an inner join—without filters). The selectivity spectrums of our two benchmarks
(JOB-light-ranges and JOB-M) are much wider than JOB-light due to higher filter variety. The
median selectivity is more than 100⇥ lower, while at the low tail the minimum selectivities
are 1000⇥ lower.

Compared Approaches

We compare against several prevalent families of estimators. In each family, we aim to choose
a state-of-the-art representative. Related Work (§2) includes a more complete discussion on
all families and their representative methods.

Supervised query-driven estimators

We use MSCN [18] as a recent representative from this family. It takes in a featurized query,
runs the query filters on pre-materialized samples of the base tables, then use these bitmaps
as additional network inputs, and predicts a final cardinality. For JOB-light, we used the
training queries and sample bitmaps provided in the authors’ source code [17]. For JOB-

light-ranges, due to new columns, we generated 10K new training queries—generating and
executing them to obtain true cardinality labels took 3.2 hours—and used a bitmap size of
2K to match the size of other estimators in this benchmark. For JOB-light, we also cite the
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best numbers obtained by Sun and Li [41], termed E2E, which is a deep supervised net with
more e↵ective building blocks (e.g., pooling, LSTM) than MSCN.

Unsupervised data-driven estimators

We use DeepDB [13] as a recent representative in this family. It builds a (non-neural)
sum-product network [32] as density estimator on each heuristically chosen table subset.
Across table subsets, conditional independence is assumed. In contrast, NeuroCard uses a
neural network—the deep autoregressive model—and builds a single learned estimator over
all tables in a schema. We use two recommended configurations from DeepDB: a base version
that uses four 2-table models and an 1-table model, and a larger version that additionally
builds two 3-table models chosen by their inter-column correlation heuristics.

We found that the DeepDB source code [12] did not support range queries on categorical
string columns out-of-the-box. Since JOB-light-ranges contains such queries, we perform data
and query rewriting for this baseline, by dictionary-encoding the string values into integers.
Reported results are with this optimization enabled.

Join sampling

We implement Index-based Join Sampling (IBJS) [23], using 10,000 as the maximum sample
size. A query’s cardinality is estimated by taking a sample from the query’s join graph and
executing per-table filters on-the-fly.

Real DBMS

We use Postgres (v12), which carries out cardinality estimation using 1D histograms and
heuristics to combine them.

NeuroCard

We implement NeuroCard using the architecture described in §3.4 with layer sizes chosen to
match the space usage of baselines. We train NeuroCard on 7M tuples for JOB-light and 10M
for JOB-light-ranges/JOB-M. For inference, 512 progressive samples are drawn per query.

6.2 Estimation Accuracy

JOB-light

Table 6.2 reports each estimator’s accuracy on the 70 JOB-light queries. Overall, NeuroCard
exhibits high accuracy across the spectrum. It sets a new state-of-the-art maximum
error at 8.5⇥ using 3.8MB of parameters. This represents an > 8⇥ improvement over the
best prior method when controlling for size.
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Table 6.2: JOB-light, estimation errors. Lowest errors are bolded.

Estimator Size Median 95th 99th Max

Postgres 70 KB 7.97 797 3 · 103 103

IBJS – 1.48 103 103 104

MSCN 2.7 MB 3.01 136 1 · 103 103

E2E (quoting [41]) N/A 3.51 139 244 272
DeepDB 3.7 MB 1.32 4.90 33.7 72.0
DeepDB-large 32 MB 1.19 4.66 35.0 39.5

NeuroCard 3.8 MB 1.57 5.91 8.48 8.51

We now discuss a few observations. Not surprisingly, Postgres has the most inaccu-
rate median—indicating a systematic mismatch between the approximated distribution and
data—due to its use of coarse-grained density models (histograms) and heuristics. IBJS fares
better at the median, but falls o↵ sharply at tail, because samples of a practical size have a
small chance to hit low-density queries in a large joint space. Both MSCN and E2E are deep
supervised regressors which show marked improvements over prior methods. However, their
median and 95th errors are quite similar and have sizable gaps from the two data-driven
estimators.

NeuroCard vs. DeepDB shows interesting trends. NeuroCard is up to 4–8⇥ better at
tail (99th, max), and DeepDB is slightly better at lower quantiles. NeuroCard is more
robust at tail due to (1) a markedly better density model (neural autoregressive vs. non-
neural sum-product networks that use inter-column independence assumptions), and (2)
learning all possible correlations among the columns of all 6 tables, whereas DeepDB assumes
(conditional) independence across several table subsets. DeepDB-large, being 8.4⇥ bigger
and trained on 7.7⇥ more (54M) tuples, still trails NeuroCard at tail by more than 4⇥.
NeuroCard slightly trails at the lower quantiles (“easy” queries with high true density) likely
due to the mode-covering behavior of KL-divergence minimization [9].

JOB-light-ranges

This 1000-query benchmark adds equality/range filters on more content columns, using the
same join templates as JOB-light (which has range filters on one column only). Results are
shown in Table 6.3.

NeuroCard achieves the best accuracy across all error quantiles, and improves
on the best prior methods by up to 15–72⇥. It is also the only estimator with a
< 2⇥ median and a two-digit 95%-tile errors. Overall, all estimators produce less accurate
cardinalities, though the drops are of varying degrees. Compared with MSCN, NeuroCard
improves by 2⇥ at median, 7⇥ at 95th, 15⇥ at 99th, and 2⇥ at max. Compared with
DeepDB, NeuroCard improves the four quantiles by 2⇥, 9⇥, 21⇥, and 23⇥, respectively.
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Table 6.3: JOB-light-ranges, estimation errors. Lowest errors bolded.

Estimator Size Median 95th 99th Max

Postgres 70KB 13.8 2 · 103 2 · 104 5 · 106

IBJS – 10.1 4 · 104 106 108

MSCN 4.5 MB 4.53 397 6 · 103 2 · 104

DeepDB 4.4 MB 3.40 537 8 · 103 2 · 105

DeepDB-large 33.6 MB 2.35 441 1 · 104 3 · 105

NeuroCard 4.1 MB 1.87 57.1 375 8169
NeuroCard-large 23 MB 1.49 44.0 300 4116

Table 6.4: JOB-M, estimation errors. Lowest errors are bolded.

Estimator Size Median 95th 99th Max

Postgres 120 KB 174 1 · 104 8 · 104 1 · 105

IBJS – 61.1 3 · 105 4 · 106 4 · 106

NeuroCard 27.3 MB 3.2 283 1297 1 · 104

Comparing the enlarged versions of the two estimators (su�xed with -large), the accuracy
gains become 1.5⇥, 10⇥, 33⇥ and 72⇥, respectively.

NeuroCard’s improvements over baselines significantly widen in this benchmark, due to
prior approaches failing to capture the more complex inter-column correlations being tested.

JOB-M

This final benchmark tests NeuroCard’s ability to scale to a much larger and more complex
join schema. Di↵erent from the JOB-light schema, JOB-M contains 16 tables, with each
query joining 2–11 tables on multiple join keys (in addition to movie id only in JOB-light).
For baselines, we only include Postgres and IBJS, because MSCN’s query encoding does not
support the complex filters in this benchmark and DeepDB had intractable training time (did
not finish in 22 hours) on this 16-table dataset due to high-cardinality categorical columns.

Results in Table 6.4 show that NeuroCard’s accuracy remains high on this complex
schema. Postgres produces large errors, and IBJS also struggles, due to many intermediate
samples becoming empty as the number of joins grows. NeuroCard overcomes this challenge
and o↵ers more than 10⇥ better accuracy across the board. In terms of space e�ciency,
since the model needs to be trained on the full outer join of 16 tables and the maximum
domain size exceeds 2 million, a vanilla NeuroCard would require 900MB in model size. With
column factorization (§3.5), the model size is reduced to 27MB—less than 1% of the total
size of all tables.
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Figure 6.2: Statistical and physical e�ciency of NeuroCard.

6.3 E�ciency

Having established that NeuroCard achieves the best accuracy, we now study the statistical
and physical e�ciency of NeuroCard.

How many tuples are required for good accuracy?

Figure 6.2a plots accuracy (p99 on JOB-light and JOB-light-ranges) vs. number of tuples
trained. About 2–3M tuples are su�cient for NeuroCard to achieve best-in-class accuracy

(compare with Tables 6.2 and 6.3). Using more samples helps, but eventually yields dimin-
ishing returns. Reaching high accuracy using a total of ⇠ 107 samples out of a population
of 1012 data points (i.e., only 0.001% of the data)—many queries would inevitably touch
unseen data points—shows that NeuroCard generalizes well and is statistically e�cient.

How does sampling a↵ect training throughput?

Figure 6.2a plots the training throughput, in tuples per second, vs. the number of sampling
threads used to provide training data. Four threads su�ce to saturate the GPU used for
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training. At lower thread counts, the device spends more time waiting for training data than
doing computation. With a peak throughput of ⇠ 40K tuples/second, NeuroCard can finish
training on 3M tuples in about 1.25 minutes.

Wall-clock training time comparison

Figure 6.2b compares the wall-clock time used for training the MSCN, DeepDB, and Neuro-

Card configurations reported in Tables 6.2 and 6.3. DeepDB runs on CPU, hence takes the
longest; its construction time is significantly increased on JOB-light-ranges, which has more
columns to learn. MSCN requires a separate phase of executing training queries to collect
true cardinalities, which takes much longer (3.2 hours for 10K queries) than just the training
time shown here. NeuroCard starts training after calculating the join count tables, which
takes 13 seconds for both datasets. Its construction is the most e�cient due to the use of
parallel sampling and accelerated GPU computation.

Wall-clock inference time comparison

Lastly, Figure 6.2c plots the latency CDF of the learning approaches for 1000 JOB-light-

ranges queries. As before, we use the base configurations reported in the accuracy Tables.
MSCN and NeuroCard run on GPU while DeepDB runs on CPU; all three approaches are
implemented in Python. MSCN is fastest because its lightweight network has fewer calcula-
tions involved. DeepDB’s latencies span a wide spectrum, from ⇠ 1ms for queries with low
complexity (numbers of joins and filters involved) to ⇠ 100ms for queries with the highest
complexity. NeuroCard’s latencies are more predictable, with 17ms at median and 12ms
at minimum: this is due to the higher number of floating point operations involved in the
neural autoregressive model. All approaches can be sped up by engineering e↵orts (e.g., if
run in a native language). For NeuroCard, model compression or weight quantization can
also reduce the computational cost.

6.4 Dissecting NeuroCard

To gain insights, we now evaluate the relative importance of primary components of Neuro-
Card, by varying them and measuring the change in estimation accuracy on JOB-light-ranges.
We use the smaller NeuroCard in Table 6.3 as the Base configuration, and ablate each com-
ponent in isolation. Table 6.5 presents the results.

In (A), using IBJS adapted for full joins1 as a biased sampler significantly decreases the
learned estimator’s accuracy. The large increase in the median error implies a systematic
distribution mismatch. Overall, this design choice is the second most important.

1The fact table title is ordered at front and a large intermediate size of 106 is used.
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Table 6.5: Ablation studies: varying primary components of NeuroCard. Unlisted values
are identical to the Base configuration. We show the impact of the sampler (A), column
factorization bits (B), autoregressive model size (C), inter-table correlations learned (D),
and whether to use an autoregressive model at all (E) on the 50% and 99%-tile errors of
JOB-light-ranges.

Sampler
Fact.
Bits

d↵; demb Correlations Learned p50 p99

Base
(4.1MB)

unbiased 14 128; 16 all tables in one AR 1.9 375

(A) biased 33 1 · 104

(B)
10

(2.2MB)
2.2 2811

12
(2.6MB)

2.0 936

None
(12MB)

1.6 375

(C)
128; 64
(23MB)

1.5 300

1024; 16
(31MB)

1.7 497

(D) one AR per table 40 7 · 106

(E) No model; uniform join samples only 4.0 3 · 106

Rows in group (B) vary the column factorization granularity. Using smaller bits results
in more subcolumns and yields a small drop in accuracy. Disabling factorization uses the
most space and appears to perform the best.

Group (C) varies the size of the autoregressive model, by changing the dimension of
the feedforward linear layers (d↵) or the embeddings (demb). An enlarged embedding proves
markedly more useful than enlarged linear layers, likely because each token’s captured se-
mantics becomes more finetuned during optimization.

In group (D) we vary the correlation learned by NeuroCard. While all configurations
above learn the distribution of all tables in a single model—capturing all possible correlations
among them—here we build one model (same architecture as Base) per table. Queries that
join across tables are estimated by combining individual models’ estimates via independence.
Without modeling inter-table correlations, this variant yields the lowest accuracy.

Finally, group (E) ablates away the AR model altogether. We test uniform join samples

as a standalone estimator: it uses our sampler (§4) to draw 104 simple random samples
(actual tuples in the database) from each query’s join graph. While the median error is
reasonable, it is 104

⇥ less accurate than an autoregressive model at tail as many queries
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Table 6.6: Updating NeuroCard, fast and slow. JOB-light.

Partitions Ingested

Strategy
Update

Time
Error 1 2 3 4 5

stale None p95 2.82 1848 105 104 104

p50 1 1 5.69 207 408

fast update ⇠ 3 sec p95 2.82 5.39 12.84 12.85 14.3
p50 1 1 1.32 1.37 1.51

retrain ⇠ 3 min p95 2.82 5.87 6.08 7.53 6.43
p50 1 1 1.16 1.20 1.52

have no sample hits. The AR model is more statistically e�cient than sampling, because
it provides access to conditional probability distributions—these conditional contributions
enable an e�cient probabilistic inference procedure, progressive sampling, which cannot be
used otherwise.

6.5 Update Strategies

NeuroCard handles new data by either retraining, or taking additional gradient steps, i.e., in-
cremental training. To test both strategies, we simulate the practice of time-ordered partition

appends : table title is range-partitioned on a year column into 5 partitions. Each partition
defines a distinct snapshot of the entire database and the full join, so running the same set
of queries at di↵erent partition count yields 5 sets of true cardinalities. We compare three
update strategies, all of which are trained fully for 7M tuples after the first ingest: (1) stale,
trained once on the first snapshot and never updated, (2) fast update, incrementally updated
after each new ingest on 70k additional samples (1% of the number of samples used for the
initial ingest), and (3) retrain, completely retraining a new model with 7M tuples after each
ingest. We also show the latency required to perform additional gradient steps.

Results are shown in Table 6.6. Without update, the stale NeuroCard significantly de-
grades in accuracy, which is expected as each partition adds a significant amount of new
information. A fast updated NeuroCard recovers most of the accuracy, incurring a minimal
overhead. Even fully retraining only requires a few minutes and yields the highest accu-
racy. Both the statistical e�ciency (number of tuples needed vs. accuracy) and the physical
e�ciency of NeuroCard contribute to these highly practical update strategies.
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Figure 6.3: Impact of biased vs. unbiased sampling (§6.6).

6.6 Biased vs. unbiased join sampling

In this section, we further dissect the impact of biased vs. unbiased join sampling by consid-
ering the worst case for biased join sampling. We synthesize a simple two-table schema to
highlight why biased sampling fails. Table A contains distinct keys {1, . . . , 106

}, and table
B contains the same keys but with a heavy hitter value, 500K, duplicated 107 times. The
join schema is A ./ B (which equals B) with a total size of 11M rows. We evaluate on 50
queries all of which are intervals that include the heavy hitter; we vary the intervals in size
so that the lowest-density query is an equality lookup on the heavy hitter, and the highest
queries the entire join result.

We compare the impact of biased vs. unbiased join sampling on this worst-case scenario.
As an example of biased join sampling, we run the DeepDB source code, which uses IBJS
to collect samples from a join [12]. As discussed in §4, it yields a biased data distribution.
As comparison, we build a NeuroCard estimator which uses unbiased join sampling. Both
methods are trained on 110K samples.

Figure 6.3 shows the Q-error distributions. As expected, unbiased sampling produces an
estimator that is 7 orders of magnitude more accurate. Biased sampling fails because its
samples all fail to hit the heavy hitter, so by training on these biased samples, the estimator
is essentially approximating A (the uniform keys) instead of the true distribution A ./ B.
We also see a 1000⇥ di↵erence in the median. The gaps become smaller as the true query
densities increase—for the easiest scan-all query, biased sampling becomes on par.

Takeaway: biased sampling can be made arbitrarily inaccurate. Various optimizations
or datasets with less severe skews may mitigate this problem, but NeuroCard’s proposal of
unbiased join sampling is a more principled solution and should be used to build unsupervised
cardinality estimators.
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Chapter 7

Conclusion

NeuroCard is built on a simple idea: learn the correlations across all tables in a database
without making any independence assumptions. NeuroCard applies established techniques
from join sampling and deep self-supervised learning to cardinality estimation, a funda-
mental problem in query optimization. It learns from data—just like classical data-driven
estimators—but captures all possible inter-table correlations in a probabilistic model: p✓(all tables).
To our knowledge, NeuroCard is the first cardinality estimator to achieve assumption-free
probabilistic modeling of more than a dozen tables. NeuroCard achieves state-of-the-art
accuracy for join cardinality estimation (4–72⇥ better than prior methods) using a single
per-schema model that is both compact and e�cient to learn. We believe NeuroCard will be
used as a robust and accurate cardinality estimator in classical and future learning-based
query optimizers.
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Appendix A

Proof of Theorem 1

The proof uses only basic probability rules. For ease of exposition, we prove the 3-column
case; the general N-column case follows the exact structure. Specifically, we need to show
the expectation of Equation 5.2,

E
x
(i)
1 ,x

(i)
2

h
bP (X3 2 R3|x

(i)
1 , x(i)

2 ) bP (X2 2 R2|x
(i)
1 ) bP (X1 2 R1)

i

equals the desired density. First, expanding the expectation over x(i)
1 gives

E
x
(i)
2

⇥ X

x1=K2R1

bP (x1 = K|x1 2 R1) bP (X3 2 R3|x1 = K, x(i)
2 )

bP (X2 2 R2|x1 = K) bP (X1 2 R1)
⇤

Applying Bayes’ rule to the new conditional term,

E
x
(i)
2

⇥ X

x1=K2R1

bP (x1 = K)
bP (X1 2 R1)

bP (X3 2 R3|x1 = K, x(i)
2 )

bP (X2 2 R2|x1 = K) bP (X1 2 R1)
⇤

Similarly, we expand the expectation over x(i)
2 and applying the same rule to get

X

x1=K2R1
x2=M2R2

⇥ bP (x2 = M |x1 = K)
bP (X2 2 R2|x1 = K)

bP (x1 = K)
bP (X1 2 R1)

bP (X3 2 R3|x1 = K, x2 = M) bP (X2 2 R2|x1 = K) bP (X1 2 R1)
⇤

Canceling terms, we obtain
X

x1=K2R1
x2=M2R2

⇥ bP (X3 2 R3|x1 = K, x2 = M) bP (x2 = M |x1 = K)

bP (x1 = K)
⇤

which is the density bP (X1 2 R1, X2 2 R2, X3 2 R3).


