
Leaderless Byzantine Fault Tolerance

Tian Qin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-121
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-121.html

May 29, 2020



Copyright © 2020, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I would like to express my appreciation to Jian Liu and Peng Gao for their
guidance, advice, and feedbacks during this research work.



 

 
 

Leaderless Byzantine Fault Tolerance 
 

by Tian Qin 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Dawn Song 
Research Advisor 

 
 

(Date) 
 
 
 

* * * * * * * 
 
 
 

Professor Sylvia Ratnasamy 
Second Reader 

 
 

Tian Qin
05/29/2020



Leaderless Byzantine Fault Tolerance

ABSTRACT
In this work, we propose Leaderless Byzantine Fault Tolerance
(LBFT), a novel consensus algorithm that combines Snowball algo-
rithm and Practical Byzantine Fault Tolerance (pBFT) algorithm,
two existing consensus algorithms. Achieving consensus in decen-
tralized systems has been di�cult as they lack certain properties
that many algorithms assume. Our approach looks to take advan-
tage of the decentralized aspect of Snowball and the deterministic
property of pBFT so that the weaknesses of Snowball’s probabilis-
tic property and pBFT’s reliance on "leader" are eliminated. The
algorithm we propose is applicable to decentralized systems such
as blockchain systems even though Snowball and pBFT both make
stronger assumptions than decentralized systems allow. By simu-
lating real-world environments and comparing with pBFT perfor-
mances, we show that LBFT is feasible in the context of real-world
decentralized systems and has su�cient performances that are close
to those of pBFT.

1 INTRODUCTION
A distributed system is simply a group of computers working to-
gether. Distributing a system brings many advantages such as hori-
zontal scalability, fault tolerance, low latency, etc. A core feature of
a distributed system is that it should appear as a single computer
during all interactions with users. The scalability, parallelism, and
communications among di�erent machines in a distributed sys-
tem shall be abstracted away. The power of distributed systems
comes with a downside: achieving consensus is di�cult due to
faults, malicious actors, and many other factors and without agree-
ment/coordination among individual nodes, a distributed system
fails.

Practical Byzantine Fault Tolerance [4] is one consensus algo-
rithm that carries out a three-phase procedure: pre-prepare, prepare,
and commit. pBFT is robust for distributed systems with the weak-
est assumptions: asynchronous networks, a type of networks where
consensus is very di�cult due to a complete lack of understanding
of timing of message transmissions.

Snowball [1] is a consensus algorithm that takes majority votes
from random subsets of the network to achieve network-wide agree-
ment in a probabilistic way. It is robust in partially synchronous
networks.

Both pBFT and Snowball are robust in presence of Byzantine
faults, which are conditions where there’s incomplete information
on whether a node has failed. However, each has its downsides.
During each round of consensus execution, pBFT relies heavily on a
node being the "leader" and such a centralized concept renders the
algorithm vulnerable to numerous attacks. Unlike pBFT, Snowball
is decentralized, but its consensus is probabilistic and is not robust
in asynchronous networks.

We propose a new consensus algorithm that doesn’t rely on
any notion of leaders and works in asynchronous environments
- Leaderless Byzantine Fault Tolerance (LBFT). It is applicable to
decentralized systems, in particular blockchains; it is leaderless and
deterministic: there is no di�erentiation among network nodes and

transaction commitment is deterministic; it is built upon a gossip
protocol to relay messages and data across the whole network, prac-
tical Byzantine Fault Tolerance algorithm to commit transactions
in a deterministic manner, and Snowball to realize decentralization
of nodes (i.e. leaderless).

In this paper, we identi�ed the requirements of a leaderless con-
sensus protocol, designed algorithmic architecture, built a gossip
protocol, the Snowball protocol, the pBFT protocol, and the LBFT
protocol, integrated optimization techniques such as transaction
pipeline to mitigate loss in performance of LBFT compared to pBFT,
and tested, evaluated, and cross-compared each of the four proto-
cols.

Thus, this paper makes the following contributions:
• Design and Analysis of LBFT, which assumes asynchro-

nous network
• System implementation and testing of LBFT

2 BACKGROUND
Machines in a distributed system have shared states. Consensus is
unanimous agreement on state values across a network. A consen-
sus algorithm is a procedure that achieves such states in a network.
In other words, consensus algorithms coordinate network nodes in
a distributed setting. The ability to achieve consensus is at the core
of every distributed system.

To create formal proofs of consensus algorithms, distributed
systems are generally assumed to be synchronous, partially syn-
chronous, or asynchronous. These three timing models each have
di�erent properties regarding latency of message transmissions
among network nodes. In a synchronous model, which has the
strongest assumptions, message transmissions delays have a known
upper bound, message transmissions follow FIFO (�rst in, �rst out)
rule, and local clocks of all nodes in the network are synchronized;
in a partially synchronous model, there exists an upper bound on
transmission delay but it’s unknown; in an asynchronous model,
nodes’ clocks are not synchronized and message transmissions can
be delayed for an arbitrary amount of time and there’s no order
in message arrival. In The choice of timing model assumption is
important to correctness and liveness of consensus algorithms as
a distributed system’s timing model determines whether a node
can di�erentiate between a peer that has failed and one that is
just taking time to respond. Assumption of a more friendly timing
model makes designing consensus algorithms much easier.

The asynchronous model has the weakest assumptions and re-
sembles real-world systems themost, where nodes fail andmessages
get dropped all the time. Consequently, reaching consensus in a
real-world distributed system is di�cult in the presence of pro-
cess failures and communication failures. These challenges are laid
out in many theoretical scenarios such as The Byzantine Generals’
Problem, which describes a situation where consensus is very di�-
cult with presence of corrupt parties and false information. Many
distributed consensus algorithms have a notion of leaders, which
is a subset of all network nodes that make core decisions on how
the system should move forward. One example practical Byzantine
Fault Tolerance (Castro and Liskov, 1999). It proposes a pre-prepare,

2



prepare, commit process Not to mention that such a notion of leader
renders the system more vulnerable, these consensus algorithms
are not applicable to decentralized systems such as blockchains,
which are more robust than traditional distributed systems and thus
can uphold fewer assumptions that many consensus algorithms
rely on.

Practical Byzantine Fault Tolerance [4] is a consensus algorithm
that was introduced in the late 90s and its consensus procedure is
carried out in three phases: pre-prepare, prepare, and commit. Nodes
move through a succession of con�gurations called views and in
each view, one node is assigned as the primary. The pre-prepare and
prepare phases guarantee that non-faulty nodes agree on a total
order of requests within a view and the commit phase guarantees
a total order of requests across views. In pre-prepare phase, the
primary assigns a sequence number to the request and multicasts
the request, digest of the request, the sequence number, and the
view number to all other nodes, who then transition to prepare
phase if message and signature are correct and sequence number
and view number are valid. In prepare phase, each node multicasts
to every other network node a prepare message that includes view
number, sequence number, digest, and its own node ID. A node
accepts a prepare message if sequence numbers, view numbers, and
digests match. If a node accepts at least 25 prepare in a network
of size 35 + 1, it enters commit phase. In commit phase, a node
multicasts view number, sequence number, digest, and node ID
to other nodes. After receiving 25 + 1 commit messages, a node
executes the request. Since a total order of requests is agreed upon,
non-faulty nodes execute requests in the same order.

Several attacks on pBFT have been carried out that exploited
the fact that pBFT consensus execution relies on certain nodes
being leaders/primaries that take on additional responsibilities. One
example was introduced in paper “Honey Badger” [5]: the attack
causes pBFT to halt by introducing a network scheduler that breaks
the weakly synchronous hypothesis of pBFT. Speci�cally, when
one faulty node becomes the leader, it holds the %'⇢_%'⇢%�'⇢
message longer than the timeout to trigger a view change of the
entire network. Then, the network scheduler delays the delivery of
+ �⇢, _⇠��#⌧⇢ messages to all potential next leader nodes. Since
the new leader doesn’t receive + �⇢, _⇠��#⌧⇢ messages from
other nodes, it will not broadcast #⇢, _+ �⇢, message, leading
to timeout of view change of other nodes. So all other nodes will
choose a new leader and broadcast + �⇢, _⇠��#⌧⇢ messages.
With the loop continuing, the leader will never be settled and the
pBFT network halts.

Snowball [1] is a leaderless consensus protocol proposed by
Team Rocket. It repeatedly does the following:

(1) take a random subset of the network
(2) get vote from each node in the subset
(3) determine majority vote and increase its count by 1
(4) take the majority vote with maximum counts, if the count

passes a high enough threshold, adopt the value in that
majority vote

Snowball protocol reaches consensus in a probabilistic way: the
more rounds each node samples and takes majority votes, the more
likely network is in consensus.

Snowball’s probabilistic nature and pBFT’s vulnerability to attack
vectors due to centralization are the two properties we want to
eliminate in our algorithm.

On the other hand, blockchain systems have shown potential
in revolutionizing many �elds such as �nance, supply chain, and
internet of things. However, current widely deployed consensus
algorithms have di�erent drawbacks: ine�ciency, unfairness, etc.
As consensus algorithms have been a bottleneck for adoption of
blockchain systems, an e�cient and secure consensus algorithm for
blockchain systems has been a widely pursued area of research and
our proposed algorithm also looks to contribute to it. By combining
pBFT and Snowball, we aim to arrive at an algorithm that’s robust
in decentralized systems.

3 OVERVIEW
The protocol consists of two layers of implementation:

• a peer-to-peer (p2p) base layer
• a consensus layer on top of the p2p layer that implements

a deterministic and leaderless consensus algorithm built
upon Snowball and practical Byzantine Fault Tolerance

The peer-to-peer layer utilizes a gossip protocol to route data to
all members of network. A gossip protocol speci�es a method of
peer-to-peer communication in a similar manner to how epidemic-
s/gossips spread. When new information arrives at a machine, it
picks a neighbor at random to share that piece of news.

The consensus layer implements an algorithm that combines
two existing algorithms: • Practical Byzantine Fault Tolerance: a
deterministic algorithm that relies upon nodes taking on “leader”
roles for consensus processes to carry forward • Snowball: a proba-
bilistic algorithm that does not assign certain nodes as “leaders”,
i.e. does not di�erentiate among nodes

pBFT being deterministic means that during each consensus step,
we know with certainty whether network has reached consensus
or not. Similarly, Snowball algorithm being probabilistic means that
we only have a probabilistic notion on whether consensus has been
achieved.

We propose substituting the “leader/primary” notion in pBFT
with Snowball, thus achieving a deterministic and leaderless pro-
tocol. In other words, the “pre-prepare, prepare, commit” phase in
pBFT is appended to Snowball execution. When a new client re-
quest comes in, instead of one single node (the primary) proposing
a sequence number, the entire network will �rst agree on one by
executing Snowball algorithm and then carry out the rest of pBFT
steps. In other words, the leader’s tasks are carried out by every
node in the network and there’s no single node that every other
node relies upon for consensus to move forward. Such an approach
does not have as strong assumptions as pBFT does and thus is more
robust. We expect system throughput to fall but security level to
rise.

4 DESIGN OF LEADERLESSBFT
We took a layered approach to our algorithm design. As outlined in
Figure 1, the bottom layer is a peer-to-peer communication layer
that relays messages based on a gossip protocol (resembling how
an epidemic spreads). On top of that we implement the Snowball
protocol and the pBFT protocol that use the gossip layer to transmit
protocol messages. Finally, on top of Snowball and pBFT, we im-
plemented LBFT, which combines Snowball procedure with pBFT
procedure without interacting directly with the Gossip layer.

3



Figure 1: Layered Approach to LBFT
4.1 Gossip
The peer-to-peer layer provides basic communication API by im-
plementing a general gossip protocol that spreads a piece of infor-
mation quickly across a network.

A node can be in the following three states for a message

• unknown: node does not know about the message
• on-route: node has been poked about the message and will

receive it soon
• known: node knows about the message

A node stores its own IP address, IP addresses of its peers/neigh-
bors, whether it has stored a given request, and a list of known
requests. Node - follows the following steps to transmit message
" to node . : poke . to see whether . knows about or is about to
receive" and if . is in state unknown regarding" , transmit" to
. , otherwise don’t transmit.

Upon receiving a request, a node appends it to its list of requests
and the node is considered as "knowing" the request, i.e. gossip has
reached this node.

4.2 Snowball
Snowball protocol is implemented on top of the Gossip layer. Each
Snowball node stores for each request counts of votes for each
proposed sequence number. Upon receiving a new request, a node
initiates snowball protocol: sample a random subset of the network,
multicast a Snowball query to get each node’s vote, store majority,
and repeat. The number of rounds we run Snowball query to de-
termine the sequence number of each request \ is 4

3 ⇤ ⇢ ['], where
⇢ ['] is the expected number of rounds consensus is reached, which
can be calculated by the formula proved in [1]. Such \s are exper-
imentally stable in reaching consensus without too big a loss in
performance. Finally, when a node counts one identical majority
votes more than the threshold number of times [1], the node adopts
this majority vote.

4.3 pBFT
The design of pBFT is identical to the one described before [4]:
a three-phase process - pre-prepare, prepare, and commit. Upon a
client request, the primary node assigns a sequence number and
sends out pre-prepare messages. Once nodes enter prepare phase,
they multicast preparemessages and once enough preparemessages
are received, nodes enter commit phase. In commit phase, nodes
wait for 25 + 1 valid commit messages in a network of size 35 + 1
to execute client request.

All protocol message transmissions take place on the Gossip
layer. Each node has a bu�ered channel that stores incoming pro-
tocol messages and processes them as soon as possible, similar to
how a reader/writer queue works.

4.4 LBFT
The functionality of an LBFT node consists entirely of Snowball and
pBFT. When an LBFT node receives a new client request request, it
�rst relays the request to the Snowball layer for the entire network
to achieve a consensus on the sequence number of that request
by calling the gRPC method provided by Snowball layer. After the
network has reached a consensus on the sequence number for this
transaction, the regular phases of pre-prepare, prepare, and commit
carry on just like in pBFT except now that sequence number has
been agreed upon across network, nodes can skip sequence number
veri�cation.

In our design, we use Snowball to replace functionalities of a
"leader" node in pBFT. The aforementioned attack in Honey Badger
will no longer work because our design is a leaderless consensus.
There is no distinction of nodes in our design and an attacker cannot
�gure out whose messages they should withhold. Moreover, the
attacker cannot thwart consensus by delaying a small number of
nodes because transactions (clients’ requests) are distributed in a
way of “network-wide random querying” and a small number of
“dead” nodes will not have in�uence on the overall process.

More concisely, LBFT executes as follows:

(1) On a new client request, initiate Snowball protocol across
entire network for nodes to reach consensus on its se-
quence number

(2) Run the three pBFT phases of pre-prepare, prepare, and
commit, after which a total order of requests has been
achieved

(3) Execute the request and reply to client

4.5 Optimization
Due to its decentralized nature, LBFT is slower than pBFT in execu-
tion and to account for such loss of performance, we implemented
transaction pipeline as an optimization. Pipeline is the idea in com-
puter architecture of processing requests in a time-sliced and over-
lapped fashion. Without pipeline, a following request cannot enter
consensus process until the previous one is all the way through
the entire consensus process. With pipeline, nodes can process a
second request while �rst request is in second stage of consensus
execution, and a third request while �rst request is in third stage
and second request in second stage, and so on.

5 IMPLEMENTATION
Our implementations of gossip, Snowball, pBFT, and LBFT proto-
cols are all in Go and inter-process communications are facilitated
by gRPC, an open source remote procedure call system. Protocol
Bu�ers are used to succinctly de�ne gRPC services/APIs.

Generation of network graph con�guration is written in Python
3.7. Deployment and testing are carried out through bash scripts.

4



6 EVALUATION
6.1 Experimental Setup
Testing framework is deployed on Savio cluster, a UC Berkeley high
performance research computing cluster. Savio cluster consists of
600 nodes, has over 15,300 cores, and can achieve a peak perfor-
mance of 540 teraFLOPS (CPU). The machines where deployment
and testing are carried out run Scienti�c Linux 7 as software and
each have 96 GB RAM and Skylake processor (2x16 @ 2.1 GHz).

We measured latency for gossip, Snowball, pBFT, and LBFT pro-
tocols. For each one, we test in networks of sizes 10, 50, 100, 200, 300,
400, and 500. As transaction pipeline optimization is implemented
in pBFT (and thus LBFT), we test pBFT and LBFT with and without
pipeline as well. In each test, we conducted the following procedure
10 times: send 100 requests in a row to the network, measure total
processing time, and calculate average processing time. Then we
further average the 10 average processing times to obtain a more
trustworthy latency measure.

We also measured throughput for pBFT and LBFT in networks
of size 10, 50, 100, 200, 300, 400, and 500. Again we tested each with
and without transaction pipeline optimization. For each setup, we
continuously send requests to the network until number of requests
processed per minute converges to a �xed number.

6.2 Latency

Figure 2: Latency of LBFT and PBFT
As we can see from Table 1, the gossip protocol tends to increase

very slowly in latency as network size increases while latency of
Snowball protocol increases more sharply. From Table 2, LBFT and
pBFT have very similar latency measures across all network sizes,
with LBFT having slightly larger results than pBFT, a trend con-
�rmed by Figure 2. As for pipelined LBFT and pBFT, latency tends
to increase more sharply as network sizes increase. When network
size is small, pipeline reduces latency much more than when net-
work size is large, the reasoning for which is that when network is
large, more messages are sent during each consensus step and the
network’s maximum capacity and each node’s maximum capacity
are much more quickly reached with just a few transactions than
when network is small, rendering pipelining ine�ective. However,
this e�ectiveness is a result of constraints in our testing environ-
ments and with a more powerful testing environment more lenient

on number of open sockets, pipelining should still have signi�cant
performance boosting.

6.3 Throughput
From Table 3, we can see that throughput decreases as network
size increases. For LBFT and pBFT without pipeline, the decrease
is very gradual while it’s very sharp for those with pipeline. In
our testing environment, pipeline has at least an order of magni-
tude throughput boosting for small network sizes and for larger
networks, we can’t measure pipeline as e�ectively due to testing
constraints, similar to testing latency. Expectedly, throughput of
LBFT is lower than that of pBFT across all network sizes. Again,
with a more powerful testing environment, we can realize more
accurate numbers for large network sizes. However, our results on
small network sizes demonstrate the performance of our algorithm
and signi�cance of pipeline optimization.

7 DISCUSSION
From both latency and throughput results, we see that pipelining
improves performance much more for small network sizes than it
does for large network sizes. This decreasing e�ect can probably be
migitated by further optimizations of the implementation. Set-up
of the testing automatically tests for correctness and we see that
LBFT does achieve correctness with latency similar to that of pBFT.
In fact, from the graph, we can see LBFT and pBFT have latency
plots right next to each other’s.

Due to limitation of maximum number of sockets in testing envi-
ronment, we had to restrict network connectivity, which increases
latency of message propagation. With more powerful testing envi-
ronments that simulate real-world systems better, the performances
can be further improved.

As we have shown, LBFT is a feasible algorithm that can be
deployed in an asynchronous environment and achieve safety and
liveness, properties carried from pBFT and Snowball. It has shown
great potential for small network sizes which don’t reach our testing
constraints. Thus, further studies should be done with stronger
testing environments to fully show its capability for large network
sizes.

8 RELATEDWORK
Bitcoin [6] is a cryptocurrency that uses Proof of Work to reach
consensus on a ledger of UTXO transactions. Unlike many tra-
ditional Byzantine Fault Tolerance protocols, Bitcoin assumes an
honest majority and gives a probabilistic guarantee. Bitcoin has
been struggling with its low throughput.

Similar to Bitcoin’s PoW algorithm, in the paper Avalanche [1],
the author(s) presented a family of probabilistic consensus proto-
cols, including Snowball. It outlines Snowball algorithm, presents a
simple scenario to illustrate its execution, and analyzes its security
properties. This paper also lists a comprehensive set of consensus
algorithms, some being modi�cations of pBFT, and what their as-
sumptions and properties are. The paper tests Snowball in a partially
synchronous network but analyzes it in a synchronous setting.

In the paper Practical Byzantine Fault Tolerance [4], pBFT was
proposed and a detailed execution of pBFT is described and tested in
an asynchronous environment. The paper also includes correctness
and liveness analyses and several optimizations.

5



Network Size Gossip Snowball
10 0.01 0.04
50 0.06 0.72
100 0.17 2.05
200 0.51 4.08
300 0.9 7.1
400 1.46 10.39
500 1.87 16.34

Table 1: Latency of Gossip and Snowball (second/request)
Network Size LBFT w/o Pipeline LBFT w/ Pipeline pBFT w/o Pipeline pBFT w/ Pipeline

10 8.439 0.389 7.21 0.116
50 8.66 0.53 7.4 0.178
100 9.153 1.782 7.911 0.702
200 9.758 5.513 8.4 1.857
300 10.556 8.913 9.771 6.65
400 15.926 14.927 13.112 10.655
500 21.904 20.737 18.157 18.526

Table 2: Latency of LBFT and PBFT (second/request)
Network Size LBFT w/o Pipeline LBFT w/ Pipeline pBFT w/o Pipeline pBFT w/ Pipeline

10 11.5 2040 22 2230
50 11 150 19.5 220
100 10 42 16 60
200 7.5 12 12 18
300 6 6 8.5 10
400 4 4 5 5
500 3 3 4 4

Table 3: Throughput of LBFT and pBFT (number of requests per minute)
Other works have been building on top of pBFT as well. Large-

scale BFT [7] allows for arbitrary number of replicas and failure
threshold, resulting in a probabilistic guarantee of liveness for some
failure ratio while protecting safety with high probability.

In the paper Honey Badger of BFT protocols [5], the authors
described a detailed attack on the leader notion of pBFT (described
in Section 2) that causes consensus to halt. Other protocols that
have leaders include Tendermint [3], which rotates the leader for
each block.

Another leaderless protocol that also takes advantage of gossip
is Hashgraph [2]. It builds directed acyclic graph via randomized
gossip and is essentially also a variant of pBFT.

9 CONCLUSION
We have presented Leaderless Byzantine Fault Tolerance, a novel
consensus algorithm applicable to any asynchronous system (e.g.
decentralized systems) or any that has stronger properties (e.g.
partially synchronous). We extracted pBFT’s deterministic prop-
erty and Snowball’s leaderless property and achieved a robust de-
terministic Byzantine fault tolerance protocol whose latency and
throughput are close to those of pBFT, thanks to high performance
of Snowball protocol. By essentially making pBFT leaderless, we
constructed an algorithm suitable for real-world blockchain sys-
tems.

Future work can dive into security properties of the new algo-
rithm, further improve its performance through optimizations such
as block compression and message aggregation, and compare the
algorithm with state-of-art blockchain consensus algorithms such
as Proof of Work, Proof of Stake, etc.

6



REFERENCES
[1] Snow�ake to avalanche : A novel metastable consensus protocol family for cryp-

tocurrencies team rocket. 2018.
[2] Leemon Baird, Mance Harmon, and Paul Madsen. Hedera: a public hashgraph

network & governing council.
[3] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.

2016.
[4] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Pro-

ceedings of the Third Symposium on Operating Systems Design and Implementation,
OSDI ’99, page 173–186, USA, 1999. USENIX Association.

[5] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey
badger of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 31–42, New York, NY, USA,
2016. Association for Computing Machinery.

[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography
Mailing list at https://metzdowd.com, 03 2009.

[7] Rodrigo Rodrigues, Petr Kuznetsov, and Bobby Bhattacharjee. Large-scale byzan-
tine fault tolerance: safe but not always live. page 17, 06 2007.

7


	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 Design of LeaderlessBFT
	4.1 Gossip
	4.2 Snowball
	4.3 pBFT
	4.4 LBFT
	4.5 Optimization

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Latency
	6.3 Throughput

	7 Discussion
	8 Related Work
	9 Conclusion
	References



