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Abstract

Object Management in a Distributed Futures System

by

Edward Oakes

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Scott Shenker, Chair

In recent years, there has been an increasing demand for distributed data
processing across a wide range of application domains. In addition to the
previous generation of large scale data processing, there are also new emerg-
ing applications that are centered around novel artificial intelligence and ma-
chine learning techniques. These applications require a much more flexible
programming interface than the traditional static execution graph offered by
bulk synchronous parallel systems. In response, a number of domain-specific
distributed systems have been built to address the needs of each new type of
application. Ray has the promise to act as a unified execution engine for these
applications, enabling high-performance distributed execution with a simple
but flexible futures-based programming model. However, the system falls
short of these promises due to two key shortcomings: application-agnostic
least recently used (LRU) eviction for shared memory objects and high over-
head for small objects. This work proposes a novel object management ar-
chitecture for distributed futures that enables exact reference counting for
shared-memory objects and reduces the overhead for tasks that depend on
or produce small objects to that of nearly a single remote procedure call.
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Chapter 1

Introduction

The past two decades have seen a proliferation in the prevalence and capa-
bilities of large-scale data processing. Steered by the demand of increasingly
data-driven applications, a number of systems have been developed to per-
form computations over massive data sets using large-scale parallelism [19,
23, 43, 45]. These systems simply application development by providing a
high-level API and handling parallelism, resource scheduling, and fault tol-
erance under the hood.

These systems offer a bulk synchronous parallel (BSP) model [41]. While
this programming model drastically simplifies data analytics, recently it has
proven to be limiting for a growing class of parallel applications, including
reinforcement learning [33], video processing [38], and distributed machine
learning training [40]. These applications require a more complex execution
pattern than is supported by the BSP model, so application developers are
forced to build a new system from the ground up [38], rely on lower-level
primitives for distributed execution [40], or modify existing BSP systems [12].

In addition, in recent years there has been an explosion in interest in
data-intensive artificial intelligence (AI) and machine learning (ML) appli-
cations [25]. These techniques are applied in wide-ranging domains from
neuroscience [32], to computer networking [30], to speech recognition [10].
While these applications often require massive data sets for training and val-
idation, they are not well served by traditional BSP systems [18]. In order to
support the complex and rapidly-evolving demands of these applications, a
range of machine learning-specific systems have been developed [3, 7, 37, 40].

These developments point to a unified trend: emerging applications are
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increasingly reliant on large-scale distributed processing, but their complex
execution patterns cause the existing BSP model to fall short. Building a spe-
cialized, domain-specific system for each new emerging class of applications
limits the rate of innovation and forces researchers and application developers
to focus on infrastructure when they could instead be focus their efforts on
solving the problem at hand.

Ray [33] offers a potential solution to this problem, offering a simple but
flexible programming interface that supports dynamic task execution from
any point in an application. The two key building blocks to Ray programs
are tasks, or stateless remote functions, and actors, stateful remote classes.
Tasks can be invoked and actors can be created and their methods can be
called dynamically from any part of the application. When a Ray program
invokes a remote task or actor method call, the system returns a reference
to the result of the object, or future, immediately. The application can later
fetch the result of the call or pass the reference to other tasks or actor method
calls to encode data dependencies. A more detailed introduction to the Ray
programming model and architecture is provided in Chapter 3.

This simple but flexible interface supports a wide range of distributed
applications. In addition, the system provides two key benefits that enable
it to support high-performance applications with this simple programming
model:

• Shared memory. Many applications have shared data dependencies
across units of computation (in Ray, task and actor method calls).
Making redundant copies of this data is expensive and increases re-
source consumption. Ray transparently manages a shared-memory ob-
ject store that allows multiple processes on the same machine to read
a single immutable copy of each object.

• Fine-grained tasks. Task and actor method calls begin execution
on the order of single-digit milliseconds. This allows Ray to support
applications that are not possible on bulk synchronous parallel systems
that have an order of magnitude more overhead for each invocation [33].

While these benefits are already evidenced by a number of applications
written on top of Ray [29, 31, 33], they fall short in two key ways. First, while
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the shared memory subsystem enables efficient distribution and sharing and
of objects, it is completely decoupled from the rest of the system and as a
result relies on least recently used (LRU) eviction to delete objects. For many
applications, this behavior leads to adverse effects as the system may evict
objects that are still in use by the application. When this happens, in the best
case the system is able to transparently reconstruct the evicted object and the
application succeeds but experiences unnecessary performance degradation.
Even worse, the object may not be reconstructable because it was generated
by an external source or its generating tasks cannot safely be replayed. In this
case, the application crashes despite its working set not exceeding available
resources. Note that in some cases, even if the object is reconstructable an
eviction may lead to the application failing as the reconstructing an object can
lead to new objects being created, which may in turn lead to new evictions,
causing a loop of infinite reconstruction. This eviction behavior clearly limits
the set of viable application patterns that can be supported by the system.

Second, while the shared memory object store drastically improves per-
formance for applications with large objects, it also adds a static overhead
to each object creation and access. For applications that generate small ob-
jects (e.g., control plane messages or summary values), this can drastically
increase overhead compared to a system written using bare remote procedure
calls. Given that Ray is meant to be a general purpose distributed execution
framework, this overhead is unacceptable.

This work proposes an object management architecture that addresses
both of these problems, drastically improving performance for small objects
by inlining arguments and return values (Chapter 4) and enabling exact ref-
erence counting for shared memory objects (Chapter 5). The benefits of the
architecture are explored in Chapter 6.
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Chapter 2

Related Work

2.1 Distributed Dataflow Systems

Distributed data-parallel systems are optimized for processing large amounts
of data in parallel following a simple computational pattern. These sys-
tems [19, 23, 43, 46] require the user to specify a complete dataflow graph,
which the system then decomposes into stages that execute across a set of
worker nodes. The computation is orchestrated using some form of a central-
ized coordinator process that is responsible for scheduling execution, trans-
ferring intermediate results across worker nodes, and transparent recovery
from failure.

Similar to the work presented here, many of these systems use distributed
memory to minimize data movement and copies [23, 45]. However, these
systems primarily focus on coarse-grained computation, so they do not have
the same requirements for minimizing single-task latency Additionally, both
the user specifying the computation graph upfront and the system having
only one level of parallelism makes tracking the lifetime of objects simpler.

2.2 Actor Systems

The actor model is a distributed programming paradigm for stateful com-
putation [1, 13, 17, 22]. The model defines a set of general rules for how
system components should interact in order to simplify reasoning about the
concurrency and fault tolerance properties of the system.
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Traditionally in the actor model, all data is passed directly in messages
rather than referencing an external data source or shared memory. This is
prohibitively expensive for data-processing workloads that commonly have
tasks that operate on shared data dependencies. Ray extends this model by
supporting actors and introducing a shared memory object store that they
can use to send data dependencies by reference rather than only by value.
Note that while one of the key tenets of the actor system is that there should
not be shared state between actors, the Ray object store does not violate this
principle because all objects in the store are immutable.

The work presented here can be viewed as an extension of the actor model.
The system supports both stateless tasks and stateful actors, inlined objects
as described in Chapter 4 are similar to messages passed in an actor system,
and the use of shared memory extends the actor model to improve efficiency
for large data dependencies. Additionally, the failure properties of reference
counting for shared objects is similar in nature to the supervision model [13].

2.3 Parallel Programming Systems

MPI [21] is a parallel programming framework that exposes a low-level mes-
sage passing interface. MPI does not support distributed memory, instead
opting for a set of synchronization primitives like broadcast and all-reduce.
Given that the lifetimes of object references are less flexible than in Ray and
only exist as they are passed as message between processes, tracking them is
straightforward.

Other systems support dynamic dataflow graphs, similar to Ray [3, 34,
39]. Many of these systems have a similar notion of object references, but
rely on a centralized scheduler or master. The master handles all resource
requirements, task placements, and object reference counting in the system.
This simplifies the challenge of managing the lifetimes of objects due to the
centralized logic, but offers limited scalability.
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2.4 Distributed Memory

There is a large body of existing work on how to enable the appearance of
a single shared address space that references memory across a cluster of ma-
chines, called distributed shared memory (DSM) [35]. The original goal of
this work was to enable applications written for a single machine, where there
is a single virtual address space, to seamlessly be scaled to a cluster setting
where memory is distributed across many machines. The programming in-
terface is much lower-level than the work presented here, and the attempt
at maintaining this low-level abstraction has led to significant challenges in
performance, consistency, and fault tolerance [16, 26, 28, 35]. In contrast, the
abstraction provided by Ray is much higher level, only exposing the notion of
static-sized, immutable objects, and is tightly coupled with the programming
model [33], easing the requirements of the distributed memory subsystem.

The interface provided by the shared memory object store in Ray is simi-
lar in concept to that of many recently developed key-value stores [20, 27] and
other distributed memory architectures for parallel computing [11, 15, 36].
These systems have a broad range of performance and semantics require-
ments, and while they don’t explicitly support shared memory for processes
on the same machine, it would likely be a straightforward extension. Many
of these could likely be used in place of the Ray distributed memory subsys-
tem, but they have more complex requirements due to supporting a wider
range of applications. Additionally, these systems are not tightly coupled to
the programming model and therefore would still require a similar reference
counting solution to the one presented in this work.

2.5 Distributed Reference Counting and
Garbage Collection

There is a large body of research on general-purpose distributed reference
counting and garbage collection [8]. This work was largely an extension of
existing garbage collection protocols developed for programming languages
like Java [9]. The primary challenge in this body of work is supporting a very
general programming paradigm: objects can be distributed throughout the
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system arbitrarily and any object in the system may hold a reference to any
other object. This flexibility requires addressing classically difficult problems
such detecting reference cycles [24] and performing liveness checks [44]. In
Ray, object lifetimes are tightly coupled with the programming model, so the
lifetime of an object can be determined on a single process without applying
these techniques.
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Chapter 3

Ray Overview

This chapter provides a brief overview of Ray [33] as required to understand
Chapter 4 and Chapter 5. This chapter describes the existing programming
interface and system architecture of Ray as of version 0.7.7 [5].

Programming Model

Ray supports stateless distributed computation via tasks. A simple example
program using tasks is shown in Figure 3.1. Tasks are defined as simple
functions and are executed in worker processes across the cluster. When the
application submits a task, the system immediately returns a reference to the
eventual result of the task and asynchronously submits the task for execution.
The application can then use the reference to fetch the result of the task or
pass it to another task as a data dependency.

In addition to stateless tasks, Ray also supports stateful computation via
actors. A simple example program using an actor is shown in Figure 3.2.
A program defines an actor as a class that can be initialized and supports
a number of remote methods. When an actor is instantiated by the appli-
cation, the actor class is initialized within a worker process on the cluster
and consumes its resources for the actor’s lifetime. The application can then
submit remote method calls on the actor, which have the same behavior as
tasks except that they are only executed in the target actor process and can
read and mutate the state of the actor class.

If an object containing the result of a task is lost due to a node failure
or eviction, the system attempts to transparently reconstruct the object by
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object_id_1 = f.remote()

object_id_2 = f.remote()

ray.get(add.remote(

object_id_1, object_id_2))

Figure 3.1: Python code illustrating the API for Ray tasks. f.remote is called twice,
asynchronously executing the tasks and immediately returning futures (called Object IDs)
that reference their outputs. These futures are passed into another remote task, add.remote.
The result of add.remote is retrieved synchronously using ray.get, which will return once
all three tasks have finished executing.

@ray.remote

class Counter:

def __init__(self):

self.counter = 0

def increment(self, count):

self.counter += count

return self.counter

counter = Counter.remote()

intermediate = generate_count.remote()

ray.get(counter.increment(intermediate))

Figure 3.2: Python code illustring the API for Ray actors. The actor is defined as an
ordinary class, Counter, and decorated with @ray.remote. This class is instantiated as a
remote actor and then remote method calls can be made on it. These method calls behave
like remote tasks, executing asynchronously and returning futures referencing their outputs.

resubmitting its lineage, or the chain of tasks that created it, using a lineage
stash protocol [42]. This may not be possible in all cases, for instance if the
task depends on an actor method call (which cannot be reconstructed due
to internal actor state) or an object created directly from an external data
source.
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System Architecture

A high-level overview of the Ray system architecture is shown in Figure 3.3.
A description of each system component and its role in distributed execution
is provided below.

Global
Control
Store

RayletObject 
Store

Driver Worker

Node 1

Object
StoreRaylet

Worker Worker

Node 2

... ...

Object 
Transfers

Global
Metadata

Figure 3.3: Overview of the Ray system architecture. Nodes in the system are uniform and
each consists of a raylet that manages the node resources, a shared memory object store,
and a set of worker processes. The global control store holds global metadata about each
node and the locations of objects.

Driver Process Each application consists of a single driver process that
executes the top-level user-input program. The driver process submits tasks
and creates actors across the cluster by submitting them to its local raylet.
The driver process can be located on any node in the cluster and is equivalent
to a worker process except that it cannot execute tasks or actors.

Worker Processes A number of worker processes are started on each node
in the cluster. These worker processes execute remote tasks and actors that
are submitted by the driver process or other worker processes. While exe-
cuting tasks or actor method calls, worker processes may create new actors,
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submit tasks, or create or read objects from the shared memory object store.
When an actor is instantiated, it is created within a worker process and
consumes the worker process for its lifetime.

Raylets Each node has a single raylet process that manages its resources.
When a driver or worker process on the node wants to submit a task, it sends
it to its local raylet which is responsible for making a scheduling decision.
Object retrieval also goes through the raylet: when a process wants to retrieve
an object, it first requests the raylet to fetch the object if it is not local. Then,
once the object has been written to the local object store, the process reads
it directly from shared memory. The raylet sends periodic heartbeats with
information about the node to the global control store (GCS).

Shared Memory Object Store Objects passed as input to tasks and
returned as results of tasks are placed in the shared memory object store,
where a single copy can be read by any process on the same machine. These
objects are immutable once they have been created and transfers of objects
across machines are managed by the raylets. When a new object is created
but there is not sufficient space for it in the object store, the object store
evicts the objects that were least recently accessed to make space.

Global Control Store The Global Control Store (GCS) holds global meta-
data about each node, including a potentially out-of-date view of its resource
availability, the actors placed on it, and the objects it contains in its shared
memory object store. Raylet processes on each node exchange resource in-
formation by writing and reading periodic heartbeats to and from the GCS.
When a task is submitted, the raylet uses this information to make a schedul-
ing decision of where to execute the task (described in more detail in Chap-
ter 4.
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Chapter 4

Selective Object Inlining
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Figure 4.1: The protocol for (1) writing and (2) retrieving shared memory objects. The
locations of all shared memory objects are stored in the Global Control Store (GCS). When
a process creates a shared memory object, it writes the object to its local object store (1.1)
and notifies its local raylet that the object has been created (1.2). The raylet then writes
the object location to the GCS (1.3). When another process tries to retrieve this object, it
requests its local raylet to fetch the object (2.1). If the object is not local, the raylet then
looks up the object’s locations in the GCS (2.2), fetches the object from a raylet that has
the object (2.3), and writes the object to the local object store (2.4). The local process then
directly reads the object from the local object store (2.5).

Shared memory provides compelling benefits for applications with tasks
that have shared data dependencies, particularly when the data is large.
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However, managing this transparent shared memory system also introduces
substantial static overhead per object for tasks that create and read objects.

Figure 4.1 describes the protocols for a creating and retrieving shared
memory objects. In order to create an object (e.g., the return value of an
executed task), a worker must write the object to the object store and indicate
that the object is available to its local raylet, which then writes the object
location to the GCS for future lookups. On the retrieving side, a process
requests its local raylet to fetch the object. The local raylet looks up the
object’s locations in the GCS, then retrieves the object and writes it to the
local object store. Finally, the raylet returns to the retrieving process which
then directly reads the object from the local object store.

This protocol is very flexible, allowing an object to be dynamically fetched
from any process in the system with a reference to it. However, it also
introduces substantial overhead: communicating between multiple local and
remote processes and writing to and reading from remote memory.

For large objects, the cost of making copies and transferring the data
is high. This cost dominates the static per-object cost of the overheads
described above, and enabling multiple processes to read the same object via
shared memory has huge benefits. Therefore, the trade-off is clear for large
objects: while this shared memory system adds a small amount of overhead,
the benefits of shared memory far outweigh this cost.

However, applications with small data dependencies must also pay this
performance penalty without reaping the benefits. Consider the common
case where a driver submits a task that returns a small value such as a
status. In this case, the cost to copy and transfer the data is negligible and
the flexibility of sharing references to the object is unnecessary. Instead of
using this heavyweight protocol, this overhead could be avoided by directly
send the result from the executing process to the retrieving process without
making the object globally accessible.

This chapter describes a hybrid approach that transparently enables the
benefits of shared memory for large objects while instead opting for a low-
overhead, direct remote procedure call (RPC) path for small objects. The
design goals for this hybrid approach are as follows:

• Minimal overhead for small objects. The overhead for executing and
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fetching the result of a task that has both small data inputs and outputs
should be as close as possible to the baseline of a single RPC call.

• Transparency from the perspective of the application. The system
should automatically select between the execution paths for small and
large objects to maximize performance without requiring input from
the application. Furthermore, a single application should be able to
benefit from both execution paths across different tasks.

Section 4.1 describes the direct RPC execution path implemented to re-
duce overhead for small objects and Section 4.2 describes how the system
dynamically selects between the direct RPC path and the existing shared
memory path for each object created in the system.

4.1 Direct RPC Task Submission

Ray supports both stateful actors and stateless tasks. Actors consume re-
sources for their entire lifetime, but individual remote method calls on them
do not require any form of scheduling. However, for tasks, a scheduling deci-
sion must be made for each invocation. The existing scheduling procedure for
tasks is described in Figure 4.2. Raylet processes manage the resource usage
and scheduling of each node and communicate this information globally via
heartbeats to the Global Control Store (GCS). When a process executes a
task, it submits the task to its local raylet, which either schedules it on a
local worker if there are resources available or forwards it to a remote raylet.
This forwarding is called spillback scheduling.

A näıve approach to minimize overhead for small objects would be to
inline them directly into the message to execute or finish executing a task.
However, the current scheduling architecture requires that these messages
pass through both the local and remote raylets. Adding data transfer to
these messages, even if objects are small, could substantially increase the
load on both the submitting and executing raylets due to additional memory
copies. Instead, if the messages were sent directly between the submitting and
executing workers, there would not be any additional overhead introduced.
This section describes modifications made to task scheduling to support such
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Figure 4.2: The raylet-based task submission protocol. The raylet on each node is respon-
sible for scheduling local resources. When a driver process wants to execute a task, it first
submits the task to its local raylet. If there are sufficient resources to execute the task on
the local node, the raylet will execute it on a local worker process. Otherwise, the raylet
will perform spillback scheduling by forwarding the submitted task to a remote raylet with
sufficient resources. Then, the remote raylet will execute the task on a worker process on its
local node.

a protocol where task execution and returns are made via direct RPCs be-
tween the calling and executing worker processes.

Converting actor method calls to direct RPCs is straightforward: a ref-
erence to an actor simply contains that actor’s RPC address (i.e., the IP
address and port that it is listening on). Then, processes submitting method
calls on the actor send the task specification directly to the actor. The actor
queues and executes calls locally, responding directly to the caller when each
call is finished.

However, submitting tasks via direct RPC is less straightforward. The
protocol must still respect resource scheduling, but clearly if each process
submitting tasks independently chooses a worker process to execute tasks on,
these scheduling decisions may conflict. Instead, there must be a consistent
view of system resources for each node.

To achieve this, the protocol is modified to continue to use the raylet for
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the control plane, making scheduling decisions, but removing it from the data
plane, actually submitting tasks and returning their results. The modified
scheduling protocol is shown in Figure 4.3. Instead of the submitting worker
sending the full task specification to the raylet, which then makes a schedul-
ing decision and forwards the task along accordingly, the submitting worker
instead sends only the metadata about a task and the raylet responds with
a scheduling decision. If the raylet has sufficient resources to schedule the
task locally, it returns a worker lease for a worker on its local node. While
the submitting worker holds this lease, it will not be handed out to any other
requesting workers and it can submit tasks directly to the worker, which will
also respond directly when the task completes. If the raylet does not have
sufficient resources to schedule the task locally, it instead returns a spillback
redirect to a remote raylet. The submitting worker then sends the same initial
request to the remote raylet returned in the redirect. This process repeats
until a worker lease is granted.

Note that this protocol adds additional overhead for each scheduling deci-
sion because the worker must wait for and process a response from each raylet
before actually submitting the task. This cost is amortized by caching worker
leases across multiple requests with the same resource requirements (mean-
ing that the scheduling decision made for the initial request that granted the
worker lease is still valid). The submitting worker returns the worker lease
to the raylet when it runs out of tasks with the given resource shape or a
timeout is reached (500 ms by default), whichever comes first.

4.2 Selective Inlining

As described above, the overhead of going through the shared memory ob-
ject store for small arguments to and return objects from remote tasks and
actor calls is significant. However, given that with the modified schedul-
ing protocol described in Section 4.1, tasks are submitted directly between
worker processes via RPC, small objects can trivially be inlined into both the
submission and return RPCs.

Instead of only holding references to the shared memory object store, each
worker process also maintains an in-process object store that keeps small
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Figure 4.3: The direct RPC task ssubmission protocol. When a driver process wants to
execute a task, it sends the task scheduling information of the task (e.g., resource require-
ments and dependencies) to its local raylet. If there are sufficient resources on the local
node, the raylet will select a worker process to execute the task and return a lease to that
worker to the driver. The driver will then directly send an RPC to execute the task to that
worker. If the raylet does not have sufficient resources on its local node to execute the task,
it instead returns a redirect to the driver to a remote raylet. The driver then performs the
same leasing request to the remote raylet.

objects on the heap. When a remote task returns a small object, instead
of putting it in the object store and returning a reference to it, it instead
returns the object inline in the return RPC. The calling process then stores
the object in the in-process object store, which is transparently accessed by
the application using the same interface as the shared memory object store.
If the application submits another task with an object in the in-process store
as a dependency, the object will similarly be inlined in the submission RPC.

While this behavior improves performance for small objects, for large ob-
jects it is undesirable as the application can no longer benefit from shared
memory and object transfer speed may be lower as the worker processes
are not optimized for transferring large objects. Figure 4.4 shows two ex-
periments used to empirically determine an object size threshold for when
to inline objects and when to put them in the shared-memory object store.
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Figure 4.4: Comparing the latency and throughput of actor calls for varying object sizes
used for both input and output objects. Both throughput and latency are improved by
inlining for small objects: latency is better up to ∼500 KiB objects and throughput is better
up to ∼100 KiB objects.

Each of these experiments consists of two actors on separate AWS m4.xlarge
instances. All remote method calls take as input a single object of varying
size and return as output of the same size. The first experiment measures
latency by synchronously calling a task and fetching its result. The second
experiment measures throughput by asynchronously submitting a chain of
1000 tasks where each task depends on the previous task’s output. In both
experiments, the inlined objects case outperforms shared memory for small
objects and vice versa for large objects. Latency is better for inlined objects
of up to 500 KiB objects and throughput is better up to 100 KiB. Therefore,
a default threshold of 100 KiB for inlining objects is chosen.
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Chapter 5

Object Lifetime Management

The programming model of Ray is very flexible: objects can be created, tasks
can be invoked, and actors can be instantiated dynamically from any part of
the program. This flexibility offers great benefits in terms of expressibility
to applications, enabling novel applications such as distributed reinforcement
learning that could not be implemented with more limited programming mod-
els [29]. However, this flexibility also introduces challenges for the system to
track the complex life cycle of resources.

One key example of this is tracking the life cycle of objects in the shared
memory object store. These objects can be dynamically created by a call
to ray.put() or invoking a remote task or actor method call. References
to the objects can then be passed as dependencies into potentially many
future remote tasks or actor method calls. This mechanism is very flexible:
references to the objects can be held onto by the application for an indefinite
period before being retrieved or passed as dependencies and a single object
can be passed as a dependency for possibly many remote calls.

In Ray, these objects are simply evicted from the object store on each node
independently when that object store becomes full. Objects are chosen for
eviction using a Least Recently Used (LRU) policy. While this policy is ac-
ceptable for many applications, there are classes of applications for which this
behavior can cause degraded performance or the application to simply fail.
A trivial example of such an application is shown in 5.1. In this application,
an initial object is created before then processing a number of intermediate
results before finally fetching the result of the initial object. If enough inter-
mediate objects are created to fill the local object store before retrieving the
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initial_object = expensive_task.remote()

intermediates = []

for i in range(NUM_INPUTS):

intermediates.append(ray.get(compute.remote()))

ray.get(initial_object)

Figure 5.1: Python code for a simple Ray application that may fail under LRU eviction.
If enough intermediate objects are created to fill the local object store before retrieving the
initial object, the initial object would have been evicted. The object may or may not be
able to be transparently reconstructed.

initial object, the initial object would have been evicted. In the ideal case,
this initial object would be able to be reconstructed transparently (e.g., if the
creating task is pure), so the application would perform redundant work but
succeed. However, if the initial object cannot be reconstructed, the applica-
tion would fail despite being feasible given the resources on the node. This
behavior is inefficient because it causes unnecessary reconstruction, unpre-
dictable because the application does not know which objects will be evicted
and therefore which objects may be reconstructed, and limiting because it
prevents some applications from successfully running even when they have
enough resources to be feasible.

This chapter describes an exact reference counting protocol in Section 5.1
and an object pinning mechanism in Section 5.2 that together address this
issue. These extensions ensure that any object that has a reference in the
application has at least one copy pinned, meaning that the object cannot
be evicted. Having at least one pinned copy of an in-scope object prevents
spurious reconstruction or application failure due to premature eviction.

5.1 Reference Counting

There are two types of references that an application can have to an object
in Ray: application references and submitted task references.

Application references are returned by API calls that directly create an
object or spawn a task or actor method call that returns an object. These
references are used by the application to wait for the object to be created
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object_id = f.remote()

ray.get(g.remote(object_id))

# Object still in scope due

# to application reference.

del object_id

# Object no longer in scope.

(a)

object_id = f.remote()

g.remote(object_id)

del object_id

# Object still in scope due

# to submitted task reference.

ray.get(g.remote())

# Object no longer in scope.

(b)

Figure 5.2: Two applications illustrating application and submitted task references. In
both cases, an object is initially created as the return value of a call to f.remote and then
passed into a second call to g.remote. In the first case (a), the application waits for both
tasks to finish, after which there are no submitted references but a local reference exists.
The application then removes the local reference, causing the object to go out of scope.
In the second case (b), the application deletes its local reference, after which there are no
local references but a submitted reference exists. The application then waits for the tasks to
finish, after which the submitted reference is removed and the object goes out of scope.

(e.g., the creating task to finish), pass a reference to the object to another
remote call, or retrieve the value of an object.

Submitted task references are created when the application passes an
object to a remote task or actor method call. The underlying object is then
presented as an argument to the implementation of the remote task or actor
method. Importantly, a submitted task reference can be created before an
object is actually available because the API is inherently asynchronous.

In order for an object to be considered out of scope, it must have a refer-
ence count of zero for both application references and submitted task refer-
ences. When this happens, the application can no longer use the underlying
value of the object, so it is safe to evict the object. An application can have
either application references but no submitted task references or submitted
task references but no application references. Figure 5.2 illustrates each of
these behaviors.

Note that while the primary motivation for this reference counting pro-
tocol is shared memory objects, the same protocol is also applied to evicting
objects that are returned in-line (as described in Section 4.2) from the in-
process object store.
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Application References

Application reference counting is largely delegated to the application lan-
guage frontend. The system keeps a simple counter of the number of applica-
tion references currently held by the application. This counter is initialized
to 1 when an object is first created. The application frontend is then re-
quired to increment the counter each time the object reference is copied and
to decrement the counter when a copy of the object reference is destroyed.

Submitted Task References

As described in Section 4.1, tasks and actor method calls are made as direct
RPCs between worker processes. This makes tracking submitted task ref-
erences simple: a worker increments the submitted task reference count for
each dependency of a task when the submission RPC is sent to the executing
worker and decrements the reference count for each of the dependencies when
the return RPC is received.

Limitations

In a garbage-collected language such as Java [14], it is possible that the appli-
cation reference count does not decrease until long after the application has
actually ceased to use a reference. This is also a problem for some reference-
counted languages such as Python that rely on garbage collection to break
reference cycles [2]. This does not pose a significant problem until the ob-
ject store is full, in which case an application will fail to create a new object
(as described in section 5.2). The problem is addressed by broadcasting a
global message to all processes in the system that triggers the local garbage
collector.

Additionally, the reference counting protocol as describe assumes that
references are limited to the process that creates them. While an object can
be shared as a dependency with a remote task or actor, the receiving task
or actor does not have a reference, so the object cannot outlive the lifetime
of the called task or actor method. The task or actor could instead return a
message to the caller indicating that it should send the object to another task
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or actor, but they cannot pass a reference directly. However, this behavior
could be supported by extending the protocol here using existing distributed
counting techniques [8].

5.2 Object Pinning

Section 5.1 describes a protocol for determining when references may be used
by the application in the future (or conversely when they may be safely
removed). Given this information, there are a few properties that the system
must support in order to guarantee application correctness:

• At least one copy of an object should be pinned in while a reference to
it exists in the application.

• Once no references exist to an object, the space it occupies should be
made available to new objects that may be created. This includes if the
process holding references to an object dies (or the node the process is
on is removed from the system).

In addition to these guarantees, the mechanism used to achieve them
should add limited overhead to the system.
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Figure 5.3: Object pinning protocol. The creating process sends a message to its local
raylet with the address of the owning process. The raylet then polls the owning process until
the object goes out of scope, at which point it frees the object.
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Figure 5.3 shows the mechanism used to achieve these guarantees. When
a process first creates an object, it sends a message to its local raylet with the
address of the owning process (i.e., the process that holds references to that
object), which may or may not be on the same node. Then, the raylet sends
a separate RPC to the owning process, which the owning process responds to
once the reference count for the object reaches zero. At that point, the raylet
frees the object from the local object store. This long-polling RPC doubles
as a failure detection mechanism: the raylet uses keepalive messages while
the RPC is outstanding to check that the owning process is still reachable.
If these keepalives fail, the raylet considers the object out of scope.

This protocol clearly meets the guarantees outlined above: while a refer-
ence to an object exists in the owning process, the raylet will ensure that it
is not evicted and once those references go out of scope, the raylet is tasked
with making the space available for new objects. However, there are further
considerations for how the raylet should maintain that the object remains
in the object store while there are references to it and subsequently how its
space is made available to other objects once the references are out of scope.
There are multiple possible mechanisms that could be used to meet these
requirements, which are summarized in Table 5.1.

First, the raylet could pin objects that are in scope, preventing them
from being evicted by the object store, and then unpin objects that go out
of scope. Pinning the objects guarantees that they will not be evicted and
unpinning them allows them to be lazily evicted from the object store when
new objects are created. However, this could artificially inflate the resource
usage of the object store because objects that are no longer in use may still
be consuming memory. Additionally, applications that rely on LRU eviction
(e.g., by keeping references to objects that are no longer needed) will fail
because the object store will fill with pinned objects.

Instead, the raylet could leave all objects unpinned and explicitly free
all copies of objects from the object store when they go out of scope. This
approach addresses both the concern of inflated resource usage, as objects
will be explicitly freed, and the concern of applications that rely on LRU,
as this approach still falls back on LRU eviction when the working set ex-
ceeds available resources. However, the overhead to this approach may be
higher because the raylet must broadcast a message to explicitly free copies
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Mechanism Inflated Memory LRU Fallback Overhead

Pinning + unpinning Yes No Lower
Explicit free only No Yes Higher

Pinning + explicit free No No Higher

Table 5.1: Comparing object pinning and freeing strategies. Pinning + explicit free is
chosen as the default.

of object when it goes out of scope. Additionally, this approach may cause
unpredictable application behavior as applications may sometimes succeed
and sometimes fail based on the resource contention and eviction pattern of
the object store.

A hybrid approach could also be taken: pinning objects in scope and then
explicitly freeing them when they go out of scope. This addresses the concern
of inflated resource usage but not that of LRU-dependent applications, while
incurring the same overhead as the second approach.

These options are made configurable, but the hybrid approach is taken by
default in order to minimize resource usage and avoid unpredictable system
behavior.
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Chapter 6

Evaluation

The changes outlined in chapters 4 and 5 are implemented in Ray as a com-
bination of C++ and Python code. Each worker process and raylet runs a
gRPC [4] server and makes remote procedure calls to other worker processes
and raylets using asynchronous gRPC unary calls over TCP. Application ref-
erences are tracked using Python’s built-in object reference counting mech-
anisms. These changes were included across multiple official releases of Ray
from v0.8.0 to v0.8.5. Experiments evaluating the changes presented in this
work are run using Ray v0.8.5 [6] and Ray v0.7.7 is used as a baseline [5].

6.1 Object Pinning Overhead

This section evaluates the overhead of the object pinning mechanism de-
scribed in Section 5.2. Two separate experiments are run to evaluate the
impact on latency and throughput. To isolate the overhead of object pinning,
each experiment is run across two conditions: with object pinning enabled
and disabled. Object pinning is disabled by modifying worker processes to
not send an RPC to their local raylet when they create an object. This will
also prevent the raylet from sending RPCs to the owner process to wait for an
object to go out of scope. Additionally, object inlining is disabled for these
experiments, so even objects below the 100 KiB threshold are created in the
shared memory object store. Both experiments described below consist of
two AWS m4.xlarge instance nodes, each hosting a single Ray actor.

To measure latency, the first actor synchronously calls a remote method
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Figure 6.1: Overhead of object pinning. Each experiment is run both with object pinning
enabled and disabled. Object pinning is disabled by modifying worker processes to not send
an RPC to their local raylet to pin an object when they create it. Object inlining is disabled.

on the second actor and fetches the result. To isolate the overhead of the
pinning protocol on the second actor writing and the first actor fetching the
return object, the remote method call has no input and returns a single object
whose size is varied. Given that the object pinning protocol is asynchronous
from the perspective of both actors, we expect a very minimal impact on
latency: the only overhead on latency should be the cost of the second actor
sending an additional RPC to its local raylet to pin the object after creating it.
Additionally, we expect this overhead to be static with respect to the size of
the return object. The results of this experiment are shown in Figure 6.1 (a).
As expected, the impact of object pinning on latency is minimal, with an
average of 69 microseconds, and nearly constant across conditions.

To measure throughput, the first actor asynchronously submits a batch of
1000 independent remote method calls on the second actor and then fetches
their results. In this case, we expect more overhead than observed for the
latency experiment. When the raylet pins each object, it sends a message to
the local object store. This increases the load on the object store process,
which is the bottleneck both for creating return objects from the second actor
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Figure 6.2: Impact of direct RPC task submission, object inlining, and object pinning
on overall performance. A varying number of driver processes submit chains of tasks to a
varying number of worker nodes. One driver process is allocated for every five worker nodes.
Each driver process is placed on its own node in addition to the number of worker nodes
listed.

and retrieving them from the first. The overhead should be most impactful
for small object sizes, because for larger objects the actual data transfer
will dominate the runtime. The results of this experiment are shown in
Figure 6.1 (b). Pinning decreases throughput for this workload by from 17%
for zero-sized objects to 10% for 1 MiB objects. Note that here we have
object inlining disabled to examine the impact of object pinning, but in
practice there would be no object pinning overhead for objects 100 KiB and
smaller (which were shown here to be impacted the most).

6.2 Throughput and Scalability

This section evaluates the overall impact that direct RPC task submission,
selective inlining, and object pinning have on throughput and scalability for
fine-grained tasks. This is evaluated by running a large scale-experiment
where a number of driver processes submit chains of tasks to a number of
worker nodes (AWS m4.xlarge instances). Each task returns a single output,
either zero-sized or 1 MiB, and takes as input the output of the previous task
in the chain. The number of driver processes is varied alongside the number
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of worker nodes, with each driver process submitting tasks to its own set of
five worker nodes. To minimize resource contention, each driver process is
allocated on its own worker node.

The results of this experiment are shown in Figure 6.2. For both small
and large objects, Ray v0.8.5 scales linearly with the number of drivers and
workers and Ray v0.7.7 scales nearly linearly. For the small objects case,
object inlining drastically improves performance, as the throughput of Ray
v0.8.5 outperforms Ray v0.7.7 by a margin of 2.72x for the 20-node condition
and 2.05x for the 100-node condition. For large objects, despite the addi-
tional overhead of object pinning demonstrated in Section 6.1, Ray v0.8.5
still outperforms Ray v0.7.7 by a margin of 1.22x for the 20-node condition
and 1.17x for the 100-node condition. This improvement is due to the direct
RPC task submission removing the remote raylet as a bottleneck.

6.3 Benefits of Exact Reference Counting

This section evaluates the performance and correctness benefits of exact ob-
ject reference counting. As illustrated in Chapter 5, there are some appli-
cations that are adversely impacted by the per-node Least Recently Used
object eviction employed by Ray v0.7.7. Here, we quantify this impact using
a simple workload representative of iterative data processing (e.g., k-means
clustering or stream processing). The workload runs 50 iterations, where each
iteration updates a 1 MiB cumulative object with the results of processing a
varied number of 1 MiB records. This is run for two conditions: one where a
new cumulative object is generated for each iteration and one where the same
cumulative object is updated repeatedly across iterations. The workload is
run on a single AWS m4.16xlarge (64-core) instance with 100 MiB allocated
for the shared memory object store.

The results of this experiment are shown in Figure 6.3. First examining
the results of the independent iterations experiment, running with object pin-
ning the runtime of the workload scales linearly with the number of updates
processed per iteration. The same is true of the condition without object
pinning until the total size of the updates processed per iteration exceeds the
allocated size of the object store. When this happens, LRU eviction evicts the
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Figure 6.3: Iterative data processing workload. Each iteration, one cumulative object is
updated with the results of processing a number of updates. All objects are 1 MiB each, the
workload is run for 50 iterations for each condition, and the number of updates per iteration
is varied. The workload is run on a single AWS m4.16xlarge instance with 64 cores and
100 MiB allocated for the shared memory object store.

cumulative object as well as some of the updates whose results have not yet
been processed. This causes the system to reconstruct the objects that were
evicted but still in use, causing redundant work and slowing the application.
This causes significant performance degradation, with the workload taking
3.2x longer to complete than with pinning for 200 updates per iteration.

For the chained update case, where each iteration depends on the output
of the previous, the negative impact of this behavior is amplified. In this
case, if the cumulative object is evicted for the condition without pinning, the
system must not only re-process updates from the current iteration, but also
potentially many previous iterations as well. Reconstructing these previous
iterations may in turn force more evictions, causing the system to enter into a
potentially infinite loop of reconstruction. This causes the condition without
pinning to completely fail to complete for all experiments with 70 or more
updates per iteration.
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Chapter 7

Conclusion

This work describes a new architecture for object management in a dis-
tributed, futures-based task execution system. By dynamically selecting be-
tween inlining values object values in direct RPC messages and sending refer-
ences to objects in a shared memory object store, the system simultaneously
achieves similar performance to low-level mechanisms for small objects and
high efficiency using shared memory for large objects. Further, the system
supports exact reference counting for objects in shared memory, supporting
a wide range of applications that would not be supported by more rudimen-
tary eviction-based approaches. The reference counting approach is tightly
coupled to the programming language, with reference counting metadata dis-
tributed throughout the cluster in the processes that require it rather than
in a centralized master or scheduler. This decentralized approach is demon-
strated to achieve high-performance and scalability, even for workloads with
many submitting and executing processes distributed throughout the cluster.

Limitations and Extensions

Much of the overhead incurred by the object pinning mechanism shown in
Section 6.1 is due to the fact that the data plane of the shared memory object
store on each node, the object store process, is located separately from the
control plane, the raylet process. Simply merging the object store and raylet
processes would remove the need for expensive interprocess communication
between the two while also reducing the amount of interprocess communi-
cation for driver and worker processes. Pinning overhead could be further
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reduced by simply merging the object store and raylet processes, which is
feasible given that they provide a single logical interface to the application.

Additionally, one key assumption made in this work is that the program-
ming model does not allow an object reference to escape the process that
created it. That is, even when processes send objects by-reference through
the object store, the receiving process is only exposed to the value of the
object and cannot directly pass a reference to it to another process without
making a copy. However, this behavior may be restrictive for some appli-
cations as it may require more complex control flow in order to coordinate
efficient data transfer between processes that are not the owner of an ob-
ject. The protocol could be expanded to include passing references between
processes using existing distributed reference counting techniques [8].

Finally, one limitation of the object pinning protocol presented in Sec-
tion 5.2 is that the initial copy of an object is always pinned on the node
that it was created on. In some situations, this may be limiting. For exam-
ple, consider the case where a single task generates the data dependencies
for many dependent tasks. In this case, the total size of the output objects
may exceed the size of the shared memory object store of the node the task
is running on, causing the task to fail despite there being sufficient memory
in the cluster for the objects. This can be addressed in the application by
splitting the generating task into multiple tasks, each one generating some
subset of the objects, but this requires the application to treat the capacity
of object store on each node independently instead of having a single logical
abstraction. A clear extension of this work would be to enable pinned copies
of objects to be dynamically relocated using some form of handoff protocol
between the raylets on each machine.
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