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Abstract

Towards Generalization of One-Shot Amodal-To-Modal Instance Segmentation Using
Shape Masks

by

Andrew Li

Fifth Year Master’s in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Image instance segmentation plays an important role in mechanical search, a task where
robots must search for a target object in a cluttered scene. Perception pipelines for this
task often rely on target object color or depth information and require multiple networks
to segment and identify the target object. However, creating large training datasets of real
images for these networks can be time intensive and the networks may require retraining
for novel objects. In this thesis, we propose a single-stage One-Shot Shape-based Instance
Segmentation algorithm (OSSIS) that produces the target object modal segmentation mask
in a depth image of a scene based only on a binary shape mask of the target object. We train
a fully-convolutional Siamese network with 800, 000 pairs of synthetic binary target object
masks and scene depth images, then evaluate the network with real target objects never
seen during training in densely-cluttered scenes with target object occlusions. The method
achieves a one-shot mean intersection-over-union (mIoU) of 0.38 on the real data, improving
on filter matching and two-stage CNN baselines by 21% and 6%, respectively, while reducing
computation time by 50x as compared to the two-stage CNN. This is achieved even though
the real target masks are in color and the training scenes are in depth, due to the binarization
of the shape target masks. Training and testing on multiple mediums of data has both the
potential to shore up data deficiencies and mitigate retraining of networks.
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Chapter 1

Introduction

Within the last decade, e↵orts in the field of robotics towards localizing and segmenting
target objects within cluttered scenes have incorporated deep learning methods to great
success in both academia and industry. For example, the impact of recent segmentation
breakthroughs are seen in mechanical search, the task of manipulating objects in the scene
to uncover and extract a target object. The specific variant of segmentation we discuss is
instance segmentation, where the goal is to produce a segmentation mask of all target objects
in a scene given both the object and the scene image. We refer to a singulated mask of the
target object as an amodal mask and an in-scene mask as a modal mask. As such, modal
masks take occlusions by other objects into account while amodal masks do not. Because
the target object is often occluded by other objects (known as “distractors”) in the scene,
the desired modal mask can appear di↵erent from the given amodal target mask.

Additionally, the di�culty of translating the success of a learning method in simulated
environments to the real world lies heavily in either hand-labeling a real world dataset or
adapting a segmentation model trained on simulated data to a new, real set of objects.
Because of the potential time and expense incurred with the former option, robotics and
computer vision research have seen the rapid development of novel methods to perform the
latter approach, known as sim-to-real transfer of deep networks [26, 47]. Many challenges
arise in performing sim-to-real transfer for the task of instance segmentation, including
reconciling di↵erent object poses and sets of objects. For instance, a target object may
have a dramatically di↵erent scale and pose in a provided target image as compared to its
scale and pose in the cluttered scene image. Additionally, for the task of one-shot instance
segmentation, an object seen at test time by a segmentation network may not be a member of
a training time class. In such settings, this prohibits using a standard pixel-wise classification
to produce the segmentation mask.

We present a learning-based approach to instance segmentation in this thesis, addressing
the issues of modal object occlusion, varying object pose, sim-to-real transfer, and the one-
shot setting using shape masks. The chapter on one-shot shape-based instance segmentation
is part of a joint e↵ort between Andrew Li, Michael Danielczuk, and Professor Ken Goldberg,
and was submitted to CASE 2020 with acceptance pending. My contributions and the
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contributions of everyone in the project can be found in Section 3.4.
This thesis contributes:

1. A formulation of the generalized instance segmentation problem and proposed solution.

2. A one-shot shape-based instance segmentation (OSSIS) method using a Siamese-U-Net
for estimating the target modal segmentation mask in a scene of real objects.

3. Experiments comparing OSSIS to a filter matching baseline and two-stage MaskRCNN
+ Siamese matching baseline. The algorithm outperforms the filter matching baseline
by 21% and the two-stage CNN by 6% in mean intersection-over-union on 6000 images
derived from the WISDOM-Real test dataset.

4. Ablation studies exploring how the augmentations to both the dataset and algorithm
a↵ect quantitative performance and computational expense.
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Chapter 2

Related Work

2.1 Instance Segmentation Methods

E↵orts in the field of computer vision towards image segmentation began with region and
graph based methods [13, 25, 35, 14]. Commonly, these methods partition the image into
subsets of similar intensity or features. These methods typically do not require large training
datasets, and can be chosen based on the domain at hand [54].

Convolutional encoder-decoder neural networks have been more recently found to be
e↵ective in localizing and segmenting objects for applications such as autonomous driving
and robot grasping [2, 6, 24]. Some networks rely first on a bounding box generator before
performing segmentation [16, 37, 23], while others output a confidence map over all pixels
in the image and threshold the results to produce the final masks [2, 33, 19]. We leverage
the computational advantage of the latter approach, where only one forward pass through a
network is required to both localize and segment a target object.

Fully convolutional networks have been found to be e↵ective for semantic segmenta-
tion [9]. While our task aims at segmenting individual objects, one similarity to semantic
segmentation is that we have a known number of target instances and classes per image, our
classes being “the object” and “not the object”. As opposed to standard instance segmen-
tation, the method presented in this thesis instead targets singular objects. Convolutional
Siamese neural networks provide a unique paired structure that quantifies similarity between
two input images, namely the scene image and the target object mask [22, 5]. Furthermore,
Ronneberger et al. provide a rich restructuring in the decoder stage through upsampling
[39]. We employ the strengths of both approaches in our method, and additionally choose a
deep learning baseline with a Siamese network.

2.2 Binary Masks as Weak Supervision

Binary masks have been commonly used as a form of weak supervision for 3D reconstruction
from single or multiple object views [31, 4]. Yan et al. [53] introduce a loss based on con-
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sistency of silhouettes from di↵erent perspectives, and Gwak et al. [15] extend this result by
adding an adversarial constraint. Tulsiani et al. [50] directly use binary masks or noisy depth
images as training inputs, learning a network that can reconstruct 3D objects from these
single-view inputs based on a ray consistency loss across multiple views during training. For
instance segmentation, Eitel et al. [11] and Pathak et al. [36] use binary masks as part of
a self-supervised pipeline that leverages push and grasp actions to generate training data
and improve segmentation across actions. In contrast to these works, we aim to generate
our labels entirely in simulation without interaction and focus on segmenting unseen target
objects. Because real camera intrinsics and scenes are mimicked in simulation, object shape
is a consistent signal that carries over from sim to real.

2.3 Segmentation Datasets and WISDOM

Several image datasets have been developed within the last two decades towards motivating
and aiding the development of object segmentation methods. Martin et al. [30] and Nene
et al. [34] created image datasets used in the aforementioned graph-based methods such as
Felzenszwalb et al. [13]. The creation of larger segmentation datasets, in turn, fueled the
success of more recent deep learning based methods such as those mentioned in Section 2.1.
ImageNet and Microsoft’s Common Objects in Context are two such widely used datasets
that have helped standardize segmentation performance benchmarks [10, 27, 40]. For seg-
mentation in industrial settings, the Warehouse Instance Segmentation Dataset for Object
Manipulation (WISDOM) provides both simulated and real test scenes and objects [8]. Be-
cause we aim to perform sim-to-real instance segmentation in the context of mechanical
search or bin-picking, for experiments we utilize WISDOM.

2.4 Sim-to-Real Transfer

Since collecting data for high-quality real world visual inference can often be expensive and
time-consuming, training on datasets created in simulation and transferring to the real do-
main requires less manual labor and time [41, 17, 45, 42]. Several approaches have been
taken to both decrease the generalization gap between sim and real performance when train-
ing on a simulated dataset. In the process of sim-to-real fine-tuning, a network is first
trained on a large simulated dataset and then additionally trained on a small real dataset [1,
52]. Domain randomization randomly modifies lighting, pose, and textures in the simulated
training dataset to bridge the sim-to-real gap [47, 48]. We choose inputs that have been
shown to transfer easily from sim-to-real [8, 43, 29] and augment our dataset with target
mask rotations, as binary masks are not a↵ected by changes in lighting or texture.

Fine-tuning can also be e↵ective for this problem, but many one-shot methods in seg-
mentation omit this for the sake of e�ciency and reduced training iterations [44, 51]. We
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mitigate the need for fine-tuning by using binary shape masks as targets, and depth images
to represent scenes as in Mahler et al. [28] and Johns et al. [20].

2.5 One-Shot Object Detection and Segmentation

In a similar vein, generalizing to previously unseen object classes for detection or segmen-
tation can be useful when data is limited. One-shot methods learn from training datasets
that may not contain all the object classes in the evaluation set. Recently, there has been
significant interest in both one-shot object detection [18] as well as few-shot [12] or one-shot
instance [32] or semantic [38] segmentation. However, in contrast to these methods, we do
not leverage a large dataset of labeled real RGB images. Instead, we train only on synthetic
data with a weaker form of supervision.
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Chapter 3

One-Shot Depth Instance

Segmentation

3.1 Problem Statement

Definitions

Let O be a set of objects. Let S be a set of scenes comprised of objects drawn from O.
Let si 2 S be a scene consisting of mi objects arranged in a pile, where we desire to locate
and segment the target object ot 2 O among the mi� 1 distractor objects o1, . . . omi�1 2 O.
Let depth camera C be positioned with pose TC, such that it observes the depth image
I
(si) 2 RHs⇥Ws

+ . Based on the camera’s pose and how the distractor objects occlude the
target object, within Is there exists a set of pixels Mt ⇢ I

(si) belonging to the visible
portion of the target object. We refer to Mt as the “modal segmentation mask”, or modal
segmask. By our assumptions, this pixel set Mt is connected and unique; that is, ot is the
only target object and is in one continuous piece.

Furthermore, let each object ot be associated with a set At of kt amodal target masks
At := {Aj|j 2 1, . . . , kt}, each representing a singulated instance of ot in an arbitrary pose.
We refer to any Aj as an ”amodal target mask”. Note that the set of pixels in the depth
image may be scaled, rotated, and translated as compared to the corresponding pixels in the
amodal target mask.

Then, the objective for target object modal instance segmentation is to find a function
that estimates the modal segmentation mask Mt for any given (si, ot) and their respective
images (I(si), Aj), such that the pixelwise distance between the function’s output and ground-
truth target mask Mt is minimized. We call this function

f : (I(si), Aj)! M̂t (3.1)

denoting the estimated segmentation mask as M̂t.
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Figure 3.1: An example target object and scene from the WISDOM-Real dataset [7], in full
color for visualization purposes. In the scene (right), the watermelon (left) is in a di↵erent
pose and at a di↵erent scale compared to its target image, as well as being heavily occluded.

Metrics and Objective

To quantify the pixelwise distance between M̂t and Mt, we employ the commonly used
intersection-over-union metric (IoU). This is the ratio of correctly identified pixels to the
total of correctly identified, extraneously identified pixels, and missed pixels of the modal
target object in the scene. It is mathematically defined as

IoU(M̂t,Mt) =

���M̂t

T
Mt

���
���M̂t

S
Mt

���
. (3.2)

A method f achieves a mean intersection-over-union (mIoU) over a validation or test
dataset equal to the mean of its IoU on each pair I(si), Aj. Equipped with this metric, we
restate our earlier objective as

f = argmax
g

1

n

nX

i=1

1

mi

miX

j=1

1

kt

ktX

k=1

IoU(g(I(si), Ak),Mj) (3.3)

with the right hand side representing the average IoU over all scenes, all objects, and all
target masks of each object.

We additionally use an mIoU-like metric calculated over all scenes and all objects, which
takes the maximum IoU out of the target masks associated with an object. This is equiva-
lently defined as

f = argmax
g

1

n

nX

i=1

1

mi

miX

j=1

max
k

IoU(g(I(si), Ak),Mj) (3.4)
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This is meant to reflect the availability of all target masks during real-world evaluation,
and we additionally report our evaluations of OSSIS and the baselines on this metric.



CHAPTER 3. ONE-SHOT DEPTH INSTANCE SEGMENTATION 9

3.2 Methods

Dataset Generation

Training Dataset

We use the WISDOM-Sim to generate a simulated dataset to train the deep network. The
training dataset consists of 250k depth image, amodal target mask, and ground-truth modal
segmentation mask triples (I(si),Aj,Mt) from the WISDOM-Sim dataset [8]. The scene
images are scaled and cropped such that Ws = Hs = 384 to include all objects in the bin
and minimize downsampling. As hinted at by the mIoU objective in Section 3.1, for each
scene we iterate through each object, treating it as the target object for that iteration. We
scale, rotate and crop the amodal segmask of the object and use it as the target mask Aj,
such that the object is centered in the mask image and maintains a border of between 20 and
60 pixels in all directions (see Section 3.2). We additionally apply a rotation uniformly at
random between 0 and 360 degrees in the 2D plane to each mask. This process generates mi

triples per image; one for each visible object in the scene, with all other mi�1 objects acting
as distractors. The amodal target masks are scaled such that Ht = Wt = 128, which allows
for faster computation. The modal segmentation masks, as they provide the ground-truth
label for the target object pixels in the scene, have dimension (Hs,Ws).

It is important to note that we do not perform 3D transformations on the object pose
in training; however, the testing datasets described in Section 3.2 fully evaluate the model’s
capacity to segment objects with 3D transformations. The significance of this is that our

Figure 3.2: Inputs and output for a network f . We choose the amodal target mask to be
binary, notably, as opposed to using a depth mask. This allows it to be derived from many
common image mediums such as color or depth. The scene image remains encoded in the
original image medium.
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training method only requires existing 2D images and masks, while still being able to perform
well on real objects in varying 3D poses. This means that the

As stated by Danielczuk et al., there are an average of 6.5 object instances per scene
image, which yields approximately 325,000 total instances across the 50,000 image dataset.
We then remove instances where the target object is completely occluded in the scene.
Triplets are randomly assigned to the training and validation splits in an 80:20 ratio, leaving
us 200k images for training.

Algorithm 1 Training Dataset Generation Procedure

1: for i = 1, 2, . . . , n do

2: I
(si)  read from file(si)

3: Separate existing amodal segmask associated with si into Â1, . . . , Âmi

4: for j = 1, 2, . . . ,mi do

5: if |Aj| > 0 then

6: Mt  read from file(Mj)
7: Âj  crop(Âj)
8: Aj  rotate(Âj, 0, 360)
9: save as triplet(I(si),Aj,Mt)
10: end if

11: end for

12: end for

Figure 3.3: We use the original amodal ground-truth segmask to create the target mask.
In accordance with our assumptions (Section 3.2), we omit examples with no visible target
pixels, because the modal segmask set must be nonempty. A scene image is saved as a part
of several triplets; one for every object in the scene, with that object acting as the target.

One-Shot Datasets

We use the WISDOM-Sim and WISDOM-Real datasets to generate both a simulated and
real one-shot test dataset [8]. The one-shot datasets contain only scenes and objects that
have not been seen during training.

To evaluate model performance on the one-shot task without sim-to-real transfer, we
create a simulated test dataset comprised of 12.5k similarly-generated triplets containing
only scenes and objects that have not been seen during training. The generation of this
dataset exactly follows the algorithm for the training set using the new scenes and objects.

We also create a real test dataset comprised of 2.4k real scenes and objects that are also
unseen during training. However, as amodal masks cannot be easily determined even by
humans from a scene image when there are heavy occlusions, we use RGB images of the
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objects in the scene singulated on a black background in one of their stable poses. We then
similarly binarize the images to create the input target mask for our algorithm. Note that
this distinction results in the real image one-shot task being much more di�cult than in
simulation, as the modal segmentation mask of the target object in the scene may not be a
true subset of the amodal target mask given as input (i.e., the target may have an additional
3D rotation out of the image plane from the input target mask). The real test dataset
allows evaluation both of the model’s one-shot performance, sim-to-real transfer ability, and
capacity to segment novel 3D poses.

Algorithm 2 Real One-Shot Dataset Generation Procedure

1: for i = 1, 2, . . . , n do

2: I
(si)  read from file(si)

3: for j = 1, 2, . . . ,mi do

4: Mt  read from file(Mj)
5: for k = 1, 2, . . . , kj do
6: Âk  read from file(Ak) . read separate amodal image from file
7: Âk  binarize(Âk). map non-zero pixel channels to 1 and zero to 0 to create

shape mask
8: Âk  crop(Âk)
9: Ak  rotate(Âk, 0, 360)
10: save as triplet(I(si),Ak,Mt)
11: end for

12: end for

13: end for

Figure 3.4: As opposed to the train set generation, we iterate through the amodal masks
found in separate files. In accordance with our assumptions (Section 3.2), we omit examples
with no visible target pixels, because the modal segmask set must be nonempty. For each
scene, and for each object in a scene, we utilize every amodal image of the object as the
target shape mask by binarizing it. In the case of the WISDOM-Real dataset, we have 5
color amodal images per object. Even though our data mediums are mismatched, we are
able to evaluate OSSIS on this dataset in the same way we evaluate OSSIS on the validation
dataset.

Dataset Augmentation

To improve the performance of the network on the simulated and real image test datasets, we
augment our base training dataset by rotating the amodal mask inputs. We create R-rotated
datasets for R = 1, 2, 4, where R = 1 denotes the base dataset. For our augmented datasets,
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Figure 3.5: Algorithm Overview: The network takes in a binary shape mask of the target
object and a depth image, and produces the modal segmentation mask of the target object
in the depth image. We augment the target shape mask before training by rotating the mask
randomly between 0 and 360 degrees, and treat each rotated mask as an individual training
point.

we form R data points per existing scene image, amodal mask and modal segmask triplet
by rotating the target object amodal mask between 0 and 360 degrees uniformly at random
R times. For each rotated amodal mask, we store an unchanged copy of the scene image
and segmask as a new triplet. This process results in two augmented datasets totaling 400k
and 800k images, respectively. These augmentations expose the model to a wider variety of
amodal target poses in the 2D plane. A key observation here is that rotations are the most
readily available augmentations to binary shape masks, since techniques such as domain
randomization would not a↵ect a texture-less and depth-less mask.

Training

We use a convolutional encoder-decoder which takes as input a scene image and a target
shape mask, and outputs a modal target object segmentation mask. This is advantageous
because it preserves both the high and low level features of input images. We employ
a modified Siamese U-Net architecture used by Michaelis et al. [32], which was originally
introduced by Bromley and LeCun [5]. To better process our larger scene images, we increase
the number of layers in the encoder by 1 to 6 and double the number of feature maps to
784. We also insert a dropout layer with factor 0.1 after the last convolutional layer of the
encoder to increase amodal robustness. The fully convolutional encoder allows for parallel
computation of the low-level feature tensors from the input images. As described by Michaelis
et al, the final output of the network is produced from feeding the inner and outer products of
these tensors into the decoder, which is aided by skip connections to corresponding decoder
layers. This network produces a heatmap of predicted confidences in the interval [0, 1] that
each pixel belongs to the mask. To produce the final binary segmentation we use a threshold
of 0.3 on the heatmap, having optimized for mIoU on the validation set over a range of 0.1
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to 0.5 with a step size of 0.05.
For the loss function, we use a weighted cross entropy loss based on the average number

of positive pixels in a sample of modal segmask labels. Specifically, we draw a sample of
100 triplets i.i.d. from the training dataset and sum their modal segmasks, dividing by 100
times the image dimensions. We use the reciprocal of this to weight the positive class term in
the cross entropy expansion. This improves results at convergence and removes a significant
portion of training time near the beginning where the network is stuck at a local optimum
of predicting no positive pixels.

The model is trained with the Adam stochastic optimization method with default pa-
rameters and initial learning rate of 0.0005 for 10 epochs on a standard 80-20 train-val split
of our simulated dataset [21]. On the base simulated dataset, the network converges in ap-
proximately 12 hours with batch size 10 on an NVIDIA Titan X GPU. Each forward pass of
the network takes 45 ms for a single real scene image and target image pair (averaged over
1000 steps).
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Figure 3.6: Qualitative results from applying the algorithm on the test real depth image
dataset. We include the color image as well for visual clarity. The first three rows show
the ability of the network to segment partially occluded and rotated target objects at dif-
ferent scales. The final row displays a failure mode inherent to the shape-based approach of
confounding two similar shapes.
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3.3 Experiments

Metrics

Wemeasure the e↵ectiveness of each segmentation quantitatively using the mean-intersection-
over-union (mIoU) metric, which is the IoU metric defined in Section 3.1 averaged across
predictions. We define one-shot sim mIoU and one-shot real mIoU to be the network’s
performance on the simulated and real test sets, respectively. The first measures the model’s
generalization to unseen objects and the second measures generalization to unseen objects
and ability to transfer from the sim to the real domain.

Baselines

We use both classical filter matching and two-stage CNN-based methods as comparisons to
evaluate the performance and runtime of our model. These methods are chosen to illustrate
the di↵erence in performance and evaluation speed between non-CNN methods, two-stage
CNN methods, and our method.

The filter matching algorithm localizes the target object within the image by measuring
cosine similarity scoring for each convolution [3, 46, 49]. The target mask is chosen from
the set of masks rotated by angles in [0, 360] with increments of 10 degrees, such that it
maximizes mIoU.

The CNN-based approach uses an implementation of SD Mask-RCNN [8] to segment
all objects in a given depth scene and a Siamese matching network to select the mask
corresponding to the target object [7]. SD Mask-RCNN closely follows the architecture of
Mask-RCNN [16], but is adapted for depth images and uses a lighter ResNet-35 backbone.
As described by Danielczuk et al, the Siamese network combines a fixed ResNet-50 head
trained on ImageNet with two dense layers and outputs a probability that two input objects
are the same. To ensure a fair one-shot comparison between methods, we split the 50 objects
in the WISDOM-Real dataset randomly into 10 groups. Then, we train 10 instances of the
Siamese network, where for each we choose one of the 10 groups to be a test group and the
other 9 groups to be the training groups, resulting in 45 train objects and 5 test objects
for each network. When testing, we evaluate each of the networks on each instance of its
corresponding 5 test objects in the network and average IoU across all test instances from
all networks.

For the one-shot real test dataset, we use kt = 5 images of the target object from di↵erent
views. For the two-stage CNN, we report the IoU for the mask with the highest match
probability across all 5 views. For the filter-matching baseline, we report the maximum IoU
across the 5 images. For OSSIS, we report mIoU both when taking the mean and maximum
IoU across the 5 images.
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Method One-Shot Sim One-Shot Real

Filter Matching 0.186 0.171
Two-Stage CNN N/A 0.316

OSSIS (R=1, Mean) 0.357 0.250
OSSIS (R=1, Max) 0.357 0.250
OSSIS (R=4, Mean) 0.591 0.299
OSSIS (R=4, Max) 0.591 0.381

Table 3.1: We compare OSSIS trained on datasets with R = 1 and R = 4 rotations, as well
as using the mean and maximum IoUs across the 5 target images, to filter-matching and
two-stage CNN baselines using one-shot mean intersection-over-union (mIoU) on both the
simulated test set and the real test set, both of which are entirely made of objects unseen in
training. The baselines have access to depth and color target masks. In comparison, OSSIS
only makes use of target object shape information. OSSIS is better able to compensate for
target scale, rotation, and translation.

Results

We evaluate the filter-matching baseline and OSSIS trained on simulated datasets with
di↵erent numbers of target mask rotations and report one-shot mIoU on both the simulated
and real test datasets in Table 3.1. We also report one-shot mIoU for the two-stage CNN
baseline on the real test dataset. OSSIS achieves a 21% improvement over the filter-matching
baseline and outperforms the two-stage CNN by 6% on the real test dataset. There is little
di↵erence in the filter-matching performance on sim and real images, because there is no
generalization gap for the filter matching algorithm to bridge. OSSIS also successfully adapts
to previously unseen objects in the sim test dataset, with a low one-shot generalization gap
of under 4%.

Additionally, OSSIS is 4 and 50 times faster than the filter matching and two-stage CNN
baselines, respectively, showing a large improvement in e�ciency during testing. This is in
large part due to the single stage nature of OSSIS.

Despite the two-stage CNN baseline having access to color information in addition to
shape information, OSSIS is still able to outperform it in the one-shot setting. This result
suggests that while the Siamese network may perform very well on objects within its training
distribution, it can struggle to generalize to novel objects. Indeed, when we train the Siamese
network on all of the objects (albeit only seen in their stable poses), removing the one-shot
aspect, it performs very well, achieving 0.69 mIoU.

We find that the combined one-shot and sim-to-real generalization gap for OSSIS is
21%. One reason for this disparity is that the real target images are taken with each object
in a stable pose, as mentioned in Section 3.2, which may be dramatically di↵erent from
the pose that the object is in when lying on top of or underneath other objects. On real
images, oversegmentation tends to occur more frequently, especially with similarly smooth
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Method Runtime Training Time

Filter Matching 180 ms N/A
Two-Stage CNN 2.5 s 24 hrs
OSSIS (R=1) 45 ms 18 hrs
OSSIS (R=4) 45 ms 38 hrs

Table 3.2: We compare the forward pass runtime and training times of OSSIS trained on
datasets with R = 1 and R = 4 random rotations with the two baselines. OSSIS runs 4
times faster compared to filter matching and over 50x faster than the two-stage CNN. A
major reason for the two-stage CNN taking significantly longer is that segmenting the entire
image and cross-comparing each resultant mask against the given object can be expensive
with many objects in the scene. OSSIS, by comparison, directly produces the target mask
in a single-stage. While OSSIS takes less time to train in on the base training dataset, it
takes significantly longer on the optimal rotated dataset.

or rectangular objects. Additionally, we find that the network may confuse two objects with
very similar, regular shapes (such as a rectangular prism or sphere), especially if there are
multiple distractor objects with this shape in the same scene as the target object. The
network shows robustness to change in pose and scale on both the sim and real datasets.

A visual study of segmentation successes and failures is shown in Figure 3.6. In the first
row, we see the partially occluded mango successfully segmented amongst several distractor
objects. The large bag clip in the second row is also successfully segmented, and is dramat-
ically rotated and scaled in the scene compared to its target pose. The final row shows an
inherent failure mode: the cylindrical nature of the Campbell soup can is not represented by
the target shape mask and the network mistakes the partially occluded lotion for the can,
as both shapes are rectangular.

Ablations

We characterize both the e↵ect of augmenting the dataset with rotations and the e↵ect
of dataset size on network performance. Table 3.7 suggests that as the total dataset size
increases by adding rotations, so does both the validation and one-shot mIoU. Rotating twice
(R=2) improves one-shot mIoU significantly but still has high variance, indicating good
performance on some images but failing to segment others almost entirely. Even though the
R=2 dataset does not present new scene data to the model, it shows significant improvement
over the base dataset by improve both mean and variance of mIoU. At R=8, the improvement
is marginal. Because the cost of generating the R=8 dataset is double that of the R=4 dataset
for the training datasets, which are not restricted in size, we use four rotations to generate
the training dataset used in the final results.
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Figure 3.7: We measure the e↵ects of rotating target masks on network performance. We
control for dataset size and number of unique scene images, and train a model on each
resulting dataset. Using four random rotations per target mask (R = 4) is the most e↵ective
in increasing mIoU and reducing variance while also having a low dataset generation cost.
We expect that using more than four rotations potentially yields diminishing returns because
with target shape masks there is no texture or color to break the symmetry when an object
with a high degree of symmetry in its shape is used as the target.

We see relatively little di↵erence < 1% between validation and one-shot results, likely
because the generic nature of the target mask lends itself to being applicable to objects in the
test split. It is important to note that there is an increase in the gap between one-shot and
validation mIoUs as the number of rotations increases. This may potentially be attributable
to slight overfitting to the scenes in the training set; having additional rotated shape masks
does not preclude overfitting given that the additional scenes still contain objects only from
the train split.

To demonstrate the e↵ect of 2D rotation augmentations beyond the increased dataset
size, we compared model performance across datasets with constant size (i.e., same number
of training triplets) that contained di↵erent numbers of unique scenes and target rotations.
For example, the dataset with 4 rotations of the target object contained 4x fewer images per
scene than the original dataset with a single target object rotation. Figure 3.7 shows the
results. Under this setup, we found that augmenting by rotating four times yielded the best
performance, suggesting that diversity in target object rotations for a given scene was more
important in training than more views of a scene (e.g., di↵erent camera poses for the same
arrangement of objects).

We additionally perform experiments to reduce network generalization error when evalu-
ating on either one-shot dataset. While we find L2 regularization penalty to have no positive
e↵ect on performance, dropout at the last convolutional layer improves one-shot sim mIoU.
This is potentially due to the amodality/modality disparity between the scene and target
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inputs; dropout at low feature map levels can allow for robustness against large occlusion of
the object in the scene. We note that too high of a dropout factor also leads to severe mIoU
loss, because the network begins to be unable to correctly segment even simple shapes. Using
these ablations, we determine e↵ective hyperparameters for optimizing mIoU performance
in our final results.

Figure 3.8: We measure the e↵ects of fine-tuning dropout and regularization factor on net-
work performance on network performance. Applying L2 penalty regularization does not
improve the output of the network. We find that slight dropout applied to the last layer is
e↵ective in increasing the one-shot sim mIoU for R = 4, but has no e↵ect when R = 1.
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3.4 Individual Contributions

This work on One-Shot Amodal-to-Modal Instance Segmentation was a joint e↵ort between
Andrew Li, Michael Danielczuk, and Professor Ken Goldberg. Our paper was submitted to
IEEE CASE 2020 and is under review. I was responsible for the design, implementation, and
evaluation of OSSIS and the classical baseline. Throughout the research process I ran over
100 experiments optimizing network architecture and testing di↵erent data sources. The code
for this project can be found at https://github.com/andrewyli/one-shot-segmentation.
Michael Danielczuk was responsible for implementing the one-shot setting of the CNN base-
line, helped with the design of OSSIS, and aided in the writing of the paper. Professor
Goldberg contributed valuable feedback and guidance throughout the project. This project
was completed during the COVID-19 pandemic.
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Chapter 4

Future Work

We present OSSIS, an algorithm trained entirely on simulated binary target masks and
depth images that predicts modal masks for novel target objects in real images, even in
the presence of rotations, scale di↵erences, and occlusions. We intend these results to be
a first step for this di�cult problem of one-shot shape-based instance segmentation, and
show that using binary target masks can allow for sim-to-real transfer and can be easily
generated from stronger forms of supervision across multiple datasets. Experiments suggest
that OSSIS outperforms a filter-matching baseline method by 21% in mIoU.

We observe that our experiments are centered around the WISDOM-Sim and WISDOM-
Real datasets, and in future work can generalize the shape-based method to other datasets.
Although we believe the shape-based method fits the industrial application setting, there are
potentially uses for it in more general segmentation applications as well. Furthermore, when
applying our methods towards di↵erent segmentation problems, we would like to perform
more experiments comparing established state-of-the-art results with the new shape-based
results to measure any dropo↵ in performance.

In future work, we will also continue to address the disparity between one-shot sim and
real images. We expect that incorporating all available amodal target masks as a batch will
be helpful in recognizing objects out of the training distribution. Additionally, we aim to
move in this direction because it more accurately reflects the challenges of a distribution
center or warehouse sorting through objects.

With access to the physical objects of WISDOM-Real, or lookalikes, inserting OSSIS into
a mechanical search pipeline would be informative and provide further ways to optimize the
method for practical use. In such a pipeline, having multiple cameras positioned at various
angles might showcase an instance where single-stage methods are desirable.
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