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Abstract

We study phenomena that arise during classification using linear and lifted models in overparame-
terized settings, presenting new perspectives on the work in Muthukumar et al. [19, 18]. To simulate
real-world setups where only some of our features are actually useful, we consider the simplified
1-sparse model. We review a sharp characterization of generalization of min-`2 interpolation on
Gaussian data [18].

In the hard-margin support vector machine (HM-SVM) problem, we show for the stylized ridge
featurization that for a sufficient degree of “effective overparameterization”, all training points be-
come support vectors. We remark how this simple featurization captures the essential behavior
in other featurizations as well. A consequence of this theorem is the HM-SVM problem is indis-
tinguishable from the min-`2 binary interpolator. Along with prior work that gradient descent
initialized at 0 on the squared loss converges to the min-`2 binary interpolator, and that gradient
descent on the logistic loss converges to the HM-SVM, our work conveys that the choice of loss
function does not have a large effect on the learned parameters in overparameterized settings.

In the regimes that the above theorem holds, we examine whether margin-based explanations
for generalization are able to account for some observations for our problem. We observe for
linear models that a) the resultant bounds on the probability of misclassification on a test point
exceed 1 and are hence tautological and b) a model with a larger margin often does not have
a better generalization performance. For kernel-inspired models, we investigate what the right
normalization for margins is, and design two new notions of margin that are appropriate for these.

As a preliminary exposition of ongoing work, we examine the ramifications of our results for
adversarial performance on the Fourier featurization. We discover, using visualizations that our
learned function exhibits Gibbs-like behavior around jump discontinuities, and this causes adver-
sarial examples to proliferate in the vicinity of training points.
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Chapter 1

Introduction

The “Unreasonable Effectiveness of Data” identifies how remarkable and surprising it is that so
much of human behavior can be explained and predicted by data [12]. However, in recent times, data
has also been unreasonably effective in another way: small amounts of data are able to successfully
train large and complex models like neural networks! From the perspective of a practitioner, it
would seem like a good thing that our learning systems are working better than we might predict
from our theory. However, the pessimistic theorist might dampen the practitioner’s enthusiasm by
pointing out that our inability to predict the behavior of our deep learning systems has negative
consequences: training neural networks often requires hours of ad-hoc tuning of hyperparameters
and architectures in unpredictable ways, these models take many hours to train even on a GPU,
and the learned models are susceptible to adversarial attacks and hence unreliable in sensitive
settings. Perhaps this theorist can be more gently described as ambitious rather than pessimistic
because (s)he believes that theoretically understanding our models can make them even more useful
practically. This thesis aims to take some small steps towards this goal.

Theories of generalization for supervised learning problems assume that there is an underlying
joint distribution (x, y) ∼ D, from which the training set and test set are drawn. Often it is also
assumed that there is a true function f∗ that maps the features to the labels. Hence, the training
set can be thought of as a set of function-evaluations of f∗. Our goal is use this set to capture the
essential structure underlying f∗ within a learned model f̂ . If it is possible to use the evaluations of
f̂ to successfully perform some task (e.g regression, classification) on samples not contained within
the training set, then we say that f̂ generalizes well.

To find f̂ , a family of parameterized functions, F is first chosen and an optimization problem is
then solved to determine what the best choice of parameters is. Folk wisdom from classical machine
learning (ML) theory states that if our problem is overparameterized i.e the number of parameters
of F is much greater than the number of training points provided, then our goal of identifying
the salient structure of f∗ is out of reach. However, despite being frequently overparameterized,
deep learning problems often generalize well; this means that classical results are not helpful with
explaining the remarkable success of deep learning. The success of overparameterized models can
be recovered in linear and kernelized models as well, and these will be the setups considered in this
thesis. Overparameterization is at the heart of these quandaries, and lies at the backdrop of each
of the results presented in this thesis.

Often we know or assume information about f∗ in a form other than function evaluations at
specific points - for instance, we might know, that many of its parameters are zero (sparsity). We
encode this extra information into the learning process as an inductive bias that encourages the
learner to choose certain models over others. The inductive bias plays a very different role in
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underparameterized and overparameterized cases.
In underparameterized setups, the training data is usually not perfectly explainable by the

family of hypotheses models being considered. This means that the training error is usually positive,
which allows it to act as a “razor” to differentiate between the hypotheses models. A concern here
is that the training set does not capture the essence of the distribution from which the data is
drawn, either because it contains noise (for example, due to errors in the data collection process)
or that the natural variance of the data distribution would play a too-large role in shaping what
the sampled training data looks like.

This is where the inductive bias comes in. By encoding our knowledge about f∗ into our
learning algorithm, we are able to overcome the aforementioned deficiencies of the training data.
Often this is done by some kind of regularization - either by adding a regularization penalty term
to the optimization objective or some other way. The partially-reliable training data along with
the inductive bias allow the learner to select a model that generalizes well.

Contrarily, in the overparameterized case, there are multiple models that achieve zero or near-
zero training error. It is often found that some of these models generalize well to the test set but
others do not. The training data alone is unable to offer any help in differentiating between these
good and bad models. Because of this, the inductive bias must play a larger role in this case to
drive the model-selection process. To understand learning in overparameterized setups, we must
thus understand what the right notions of inductive bias for our algorithms are.

Recent work has advocated for encouraging the learner to choose functions with large-margins
as the right inductive bias to use for classification problems [2, 22, 15, 7]. But are large margins
truly the panacea for all our theoretical conundrums regarding generalization in overparameterized
classification problems? Chapter 3 adopts the position that while having large margins may indeed
be a good sign for many problems, it perhaps does not deserve a status as a “one size fits all”
explanation for generalization.

Another interesting question to ask is: Are all problems created equal in terms of how good
the inductive bias needs to be? In Chapter 1.4, I recap a proof that, for certain stylized models,
classification tasks are less sensitive to having the right inductive bias than regression problems.

In Chapter 2, I make an observation that for multiple different choices of featurizations, for
high levels of overparameterization, the inequality constraints of the hard-margin SVM problem
are likely to be held with equality. I prove this fact for a stylized featurization, which I argue
captures the essence of the phenomenon.

What is the role of the inductive bias in learning adversarially robust solutions? What is
the relationship between adversarial robustness and large margins? Answering these questions is
the focus of Chapter 4. Before exploring these questions further, I review some core concepts
from classical statistical theory in Section 1.1 and make some key distinctions between concepts in
Section 1.2 that will help with presentation of the results.

1.1 Historical explanations for generalization

For a particular function class F , uniform convergence bounds conservatively approximate the
generalization error of f ∈ F by that of the least generalizable function in F . For classification
problems, the size/complexity of F is often measured by evaluating the VC dimension, which counts
the number of possible labelings on finite datasets [24]. The Rademacher complexity is also often
used which is a scale-sensitive measure that can also be used for regression problems [1]. When
the complexity of F is small, then the approximation is good, as evidenced by the success of these
bounds to explain the generalization of machine learning models in classical setups. A more detailed
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exposition of these ideas can be found in Bousquet et al. [5].
However, when the complexity F is sufficiently large, then the approximation is worse and the

quality of predictions of these bounds suffer. This was first brought into focus by examining the
generalization of boosting: a type of ensemble-learning that combines the predictions from many
primitive simpler models to generate the final prediction [21]. The main observation was that
even after the training 0-1 loss became zero, increasing the number of primitive classifiers in the
boosted model still reduced the test error. Since the model complexity is increasing here but the
generalization error is reducing, VC-dimension style analysis is unable to offer an explanation for
these observations. In Chapter 3, we recall how margin-based explanations were able to explain
these seemingly surprising boosting results. And how these explanations are being employed to
explain the surprising success of overparameterized learning (which includes deep learning) as well;
we explore whether margins are explanatory in these cases as well.

1.2 Some key distinctions

1.2.1 Imitating a function v/s succeeding at a task

Often f̂ succeeding at its task is conflated with the idea of f̂ being either exactly the same or very
similar to f∗. Consider the following examples when this may not be the case:

• Regression: Let f∗ be some continuous and differentiable functions that is defined on the
reals, R. And

f̂(x) =

{
∞, x ∈ Z
f∗(x), otherwise

Even though the test mean squared error would be exactly 0 for any continuous distribution,
we would probably feel uneasy to claim that f∗ and f̂ are the same functions.

• Binary classification: Let our labels be obtained by sgn(f∗x). Let our predictions be
obtained as sgn(f̂(x)), where f̂(x) = 100×f∗(x). On all test points, our labels and predictions
would agree; however, f∗ and f̂ are clearly not the same function.

In Chapter 4, we will observe a case where the signs of f̂ and f∗ similarly agree with high
probability; however, there are probabilistically unlikely, but very frequent, inputs which are
misclassified that can be exploited by an adversary.

1.2.2 Number of parameters v/s Number of features

In different families of parameterized models, the parameters may serve different purposes. Learning
in feedforward neural networks can be thought of as a two-step process of a) first learning an
appropriate featurization for the problem and b) learning a linear classifier on these learned weights.
Usually, most of the parameters of these models are used for part (a) above. In neural networks,
it is hence possible to increase the level of overparameterization without increasing the number
of features or changing the dimensionality of the input data. Contrarily, for linear models, each
parameter of the model is the weight placed on a given feature. Hence, to increase the number of
parameters, the numbers of features utilized for prediction must be increased, which increases the
input dimension; this plays a large role in the usefulness of margin bounds in Chapter 3.

To understand whether overparameterization is helpful with generalization and robustness tasks,
it is instructive to think about the nature of these new features being added. Here, the taxonomy
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of “useful/robust” features introduced by Ilyas et al. is helpful [14]. A feature is termed “useful”
if it is positively correlated with the labels, and it is termed “robust” if it is not very sensitive to
small changes in the inputs. The present work builds heavily on this perspective on features - the
term “spurious features” is sometimes used in this thesis as an alternate terminology for “useless
features”.

In the 1-sparse data generation considered in Chapter 1.4, only one feature is correlated with
the output whereas the other features are “useless”; overparameterization is thus detrimental to
generalization performance because it includes more “useless” features.

The weak features introduced by Belkin et al. can be thought of as akin to the “useful but non-
robust features” of Ilyas et al.. The choice of featurization in Definition 1.3.2 is inspired from here;
since each of the features are correlated with the labels, increasing the level of overparameterization
by including more features is helpful for generalization.

1.3 Setup

Throughout this thesis, unless otherwise explicitly stated, I use subscripts to index vectors and
matrices: ai is the ith entry of vector a, bi is the ith row of matrix B, and Bij is the ijth entry of
matrix B. As a matter of convention, I use lowercase to denote scalars and vectors and uppercase
to denote matrices. I use Greek letters flexibly to denote scalars, vectors, matrices or functions.
Let 1 denote the vector of ones and 0 denote the vector of zeros, with dimensions implicit; Id is the
d× d identity matrix. Let ei denote the ith canonical vector. Further, let N (µ, σ2) be the normal
distribution with mean µ and standard deviation σ2, let U(s, e) denote the uniform distribution
between start s and end e. The diag(·) function is defined such that if its input is a vector, it
returns a diagonal matrix with the input vector’s entries on the main diagonal; if it is provided a
matrix, it returns a vector that contains the entries on the main diagonal of the input matrix.

1.3.1 Generative model for data

Let Strain = {(x1, y1), . . . , (xn, yn)} ∈ (X ×{−1,+1})n represent our training dataset. Here, xi ∼ D
are drawn i.i.d from a known distribution. Let

Xtrain = [x1, x2 . . . xn]

be our training matrix and
ytrain = [y1, y2, . . . yn]T

be our vector of training labels. Sometimes, xi ∈ R is lifted to a higher dimension and otherwise,
xi ∈ Rd; hence, the convention above may abused and Xtrain may refer to either a vector or a matrix
depending on context.

In each of our cases, we consider φ : X → Rd is a known feature-map, and let the featurization

of a given point x be indexed as φ(x) =
[
φ1(x) . . . φd(x)

]T
for x ∈ X . Define shorthand for our

lifted training matrix

φtrain =


φ(x1)T

...
φ(xi)

T

...
φ(xn)T
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The data is generated by an unknown target linear function f∗(x) = 〈α∗, φ(x)〉, parameterized
by unknown weights α∗ ∈ Rd. Define Z ∈ Rn as

ztrain = [z1 . . . zn] = [f∗(x1), f∗(x2) . . . f∗(xn)]T .

The labels are obtained as yi = sgn(zi). We define a linear function with arbitrary weights α̂ as
fα̂(x) = 〈α̂, φ(x)〉, and as a shorthand, we denote fα∗ by f∗.

Analogues of the above objects at test time are denoted as Xtest, ytest, φtest and ztest.

1.3.2 Different choices for D and φ

In different sections of this thesis, I consider different choices of featurizations and data distributions.
Here, I list each of these. For the Gaussian and Weak features, there is no lifting.

Definition 1.3.1 (Gaussian features). Let xi ∼ N (0, Id) for i ∈ {1, . . . , n}. Since there is no
lifting, we have φtrain = Xtrain.

The above featurization is used most prominently in future Chapters to provide theoretical
characterization of phenomena.

Definition 1.3.2 (Weak features). for i ∈ {1, . . . , n}, we have Ui i.i.d. ∼ Unif(−1, 1) and Wi i.i.d. ∼
N (0, Id).

xi = Ui1 +Wi. (1.1)

Again, since there is no lifting, we have φtrain = Xtrain.

This definition is inspired by Belkin et al., where a similar featurization was used by the au-
thors to exhibit the phenomenon of double-descent : here, if d > n, increasing d is beneficial to
generalization.

For the two lifted featurizations below, we consider a feature-map φfourier(x) : R→ Rd:

φfourier(x) = [1, sin(x), cos(x) . . . sin

(
d− 1

2
x

)
, cos

(
d− 1

2
x

)
]T

Definition 1.3.3 (Fourier features, regularly spaced train). We have xi = 2× i
n − 1 and

φ(x) = φfourier(x)

Definition 1.3.4 (Fourier features, uniform train). We have xi ∼ U(−1, 1) and

φ(x) = φfourier(x)

These Fourier featurizations are often used for empirical illustrations. Their usage finds a
special relevance in Chapter 4 when investigating adversarial examples. Most of the phenomena
under discussion were first discovered in experimentation with Fourier features.
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1.3.3 Feature weighting

In addition to having a host of featurizations that we can experiment with, it is useful to be able
to adjust the variance of each of the columns. To achieve this end, we perform feature weighting.
We define a diagonal matrix Σ = diag(λ1, λ2 . . . λn) where λi is the weight on the ith column.
Then, if φtrain and φtest are the train and test matrices without weighting respectively, we apply the
weighting to each of these to obtain: φtrain = Σφtrain and φtest = Σφtest. Two schemes for generating
Σ are provided below.

As a sidenote, weightings are sometimes considered as modifying the optimization objective
at training time and not as part of the covariates themselves i.e instead of minimizing ‖α‖2, we
minimize ‖Σα‖2. However, this would mean that Σ does not influence the test-time data generation
at all; hence, while closely related, this perspective is nevertheless distinct from the one being used
here.

These weighting schemes are illustrated in Figure 1.1 and Figure 1.2: λi is plotted against i to
visualize how the parameters influence the resultant weights. For the bilevel weighting definition
below, the parameter q controls how much the early features are preferred.

Definition 1.3.5 (Bilevel weighting). The weighting scheme is parameterized by p > 1, 0 < q < 1
and 0 < r < 1.

λj =

{
γd
s , 1 ≤ j ≤ s

(1−γ)d
d−s , otherwise.

In particular, this ensemble sets parameters

d := np

s = nr

γ = n−q,

Definition 1.3.6 (Polynomial decay).

λk =
1

km
for all k ∈ {1, 2, . . . , d} (1.2)

1.3.4 Risk

Definition 1.3.7 (Regression Risk). The regression risk of a function fα̂ is the function R : Rd →
R:

R(α̂) = E
x
[‖f∗(x))− fα̂(x)‖22]

Definition 1.3.8 (Classification Risk). The classification risk of a function fα̂ is the function
R : Rd → R:

C(α̂) = E
x
[I(sgn(f∗(x)) = sgn(fα̂(x)))]

1.3.5 Learning algorithms

Definition 1.3.9 (Binary min-`2 Interpolator). We define

α̂binary := arg min
α∈Rd

‖α‖2

s.t φtrainα = ytrain

11



Figure 1.1: Illustration of the bilevel weighting scheme from Definition 1.3.5 for different choices of
parameter q. As q increases, the weighting becomes more equal. Since the sum of λi’s are fixed to
always equal d, the area under each of these curves is a constant.

Figure 1.2: Illustration of the polynomial decay weighting scheme from Definition 1.3.6. As the
parameter m increases, the weighting becomes less equal and more concentrated on early features.
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Definition 1.3.10 (Real min-`2 Interpolator).
α̂real := arg min

α∈Rd

‖α‖2

s.t φtrainα = ztrain

Definition 1.3.11 (Support vector machine).
α̂SVM := arg min

α∈Rd

‖α‖2

s.t. yifα(x) ≥ 1 for i = 1, . . . , n.

13



1.4 Classification is easier than regression

While the phenomena explored in later chapters are idiosyncratically classification phenomena, I
first contrast classification with regression to bring relevant attributes of classification into sharp
focus [18].

1.4.1 Analysis of Generalization for Gaussian features

1.4.2 Result

Assumption 1 (1-sparse linear model). Recall that the bi-level ensemble sets s := nr. For a given1

t ∈ {1, . . . , s}, we assume that α∗ = 1√
λt
· et, i.e. the parameter vector α∗ is 1-sparse.

Theorem 1. Assume that the true data generating process is 1-sparse (Assumption 1). For the
bi-level covariance matrix model, the limiting classification and regression error of the minimum-
`2-norm interpolation (of binary labels and real labels respectively) converge in probability, over the
randomness in the training data, as a function of the parameters (p, q, r) in the following way:

1. For 0 ≤ q < (1− r), we have

lim
n→∞

R(α̂real;n) = 0,

lim
n→∞

C(α̂binary;n) = 0.

In this regime, both regression and classification generalize well.

2. For (1− r) < q < (1− r) + (p−1)
2 , we have

lim
n→∞

R(α̂real;n) = 1,

lim
n→∞

C(α̂binary;n) = 0.

In this regime, classification generalizes well but regression does not.

3. For (1− r) + (p−1)
2 < q ≤ (p− r), we have

lim
n→∞

R(α̂real;n) = 1,

lim
n→∞

C(α̂binary;n) =
1

2
.

In this regime, the generalization is poor for both classification and regression.

1.4.3 Key to proof: Survival, Contamination

The proof for Theorem 1 is detailed in the journal presentation of these results [18]. Here, I
introduce the notions of survival and contamination from [19] and highlight the key takeaways
from the proof.

The 1-sparsity assumption that we have made on the unknown signal enables us to do this as
a function of natural quantities corresponding to the preservation of the true feature (survival)

1The intuition for this condition, also motivated in prior analyses of minimum-`2-norm interpolation [19], is that
for any reasonable preservation of signal, the true feature needs to be sufficiently preferred, therefore weighted highly.
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(Definition 1.3.11).
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and the pollution due to false features (contamination). In terms of the language from Ilyas et al.
brought up in Chapter 1, the survival can be thought of as the weight on the “useful” feature and
the contamination is a measure of the total weight on the “useless” features. If we assume that
the real labels are generated by the tth feature, α∗t , then we can define these quantities for any
solution α̂. First, as classically observed in statistical signal processing, the estimated coefficient
corresponding to the true feature α∗t will experience shrinkage and be attenuated by a factor that
we denote as survival. From Assumption 1, we defined α∗ := 1√

λt
·t, and so we have

SU(α̂, t) =
α̂t
α∗t

=
√
λtα̂t (1.3)

Second, we have the false discovery of features. We measure the effect of this false discovery for
prediction on a test point X by a contamination term:

B =

d∑
j=1,j 6=t

α̂jφj(X). (1.4)

Recall that X is random, and the features φ(X) are zero-mean. Therefore, B is a zero-mean
random variable. Accordingly, we can define the standard deviation of the contamination term on
a test point as below:

CN(α̂, t) =
√

[B2]

=

√√√√ d∑
j=1,j 6=t

λjα̂2
j . (1.5)

where the last step follows from the orthogonality of the d features.
In general, the larger the survival and the smaller the contamination, the better the general-

ization performance is. In regime 1 above, the survival is large enough and contamination is small
enough that both regression and classification work. In regime 2, the survival is less than regime
1 - this makes regression fail but classification still works. However, if the survival reduces even
further, then both regression and classification fail; this happens in regime 3.
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Chapter 2

How many support vectors?

I restate here the hard-margin SVM problem from Definition 1.3.11 in Chapter 1 for easy reference.

p∗ = min
α∈Rd

‖α‖2

s.t. yifα(xi) ≥ 1 for i = 1, . . . , n.

For some training points, yifα(xi) must be exactly one; otherwise the objective could be reduced
without violating any constraints. These points are called support vectors. Define the subset of
training points that are support vectors as M : {x : yifα(xi) = 1. When I refer to the fraction of

support vectors, I am referring to the ratio F = |M |
n .

What does it mean for a training point to be a support vector? In Chapter3, we will interpret
the quantity yifα(xi) is a measure of the confidence of prediction on a training point; the support
vectors are those training points for which our predictions are least confident. Here, we show that
if our optimizer places enough weight on spurious features, then all our training points are likely
to become support vectors i.e ∀(i, j) yifα(xi) = yjfα(xj) = 1.

2.1 Empirical observations and their significance

Consider the following fascinating empirical observations. In Figure 2.1, we find that for fixed
n and no feature weighting, the fraction of support vectors steadily increases as we increase d.
Further, as we make the features more equally weighted for n and d both fixed, the fraction of
support vectors increases. The effect from Figure2.1(a) is replicated for Fourier features in 2.2. It
certainly does seem that as we increase the “effective overparameterization”, the fraction of support
vectors increases.

Why might this be an interesting finding? As motivated in Chapter 1, understanding the
inductive bias used by our algorithms is of crucial importance in overparameterized settings. Usually
this inductive bias is encoded into our algorithm by means of a regularization term in our objective
function; however, recent works [15, 22, 11, 25, 20] show that gradient descent also has an “implicit
bias” that makes it prefer certain solutions over others. We learn that:

1. If we minimize the logistic loss using gradient descent on separable training data1, we will
converge to the hard-margin SVM [15, 22].

1The implicit bias has also been characterized for the more difficult non-separable case [15], but we focus here on
separable data as this will always be the case for an overparameterized setting.
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Figure 2.1: Fraction of support vectors for Gaussian features. As d is increased, and as feature
weighting becomes more equal across features, the fraction of support vectors increases.

2. If we minimize the squared loss on training data using an overparameterized model, we will
converge to the minimum-`2-norm interpolation [8, Theorem 6.1] provided the initialization
is equal to zero.

In Figure 2.3, these results are represented by the left and right vertical arrows. The empirical
results above suggest something new: if all training points are support vectors, α̂SVM and α̂binary

are equivalent as well. This is represented by the horizontal arrow in Figure 2.3, and proving this
for a specialized featurization will be the task of the next section. In Muthukumar et al., we proved
the result for Gaussian features; however, I choose a different simplistic featurization here to bring
the reason for proliferating support vectors into sharp focus [18].

2.2 Setup

Here, xi ∈ R is a scalar and Xtrain = [x1, x2 . . . xn]T is a column vector.

Definition 2.2.1 (Ridge features, uniform train). This featurization is parameterized by λ. We
have xi ∼ U(−1, 1) and

φ(xi) = [xi, λe
T
i ]

Using this definition of φ, we can write our lifted train matrix as:

φtrain = [Xtrain |λIn]

Further, assume that α∗ = e1. This means that yi = sgn(xi). Only the first feature matters
and the others can be thought of as spurious features.

This choice of featurization is interesting because each spurious feature has the special property
that it only influences the prediction for a single training point. Further, these features have a
connection to Tikhonov regularization; Muthukumar et al. show that the minimizer of the squared
loss with a Tikhonov regularization term on the original data is equivalent to the binary interpolator,
α̂binary if ridge features are appended to the data [19].
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The number of training points, n = 32 is fixed. As d is increased, the fraction of support vectors
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Figure 2.3: Equivalence of training procedures in overparameterized settings. Theorem 2 in this
paper highlights exact equivalence between the hard-margin SVM and minimum-`2-norm interpo-
lation under sufficient effective overparameterization for the special case of ridge features.
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Figure 2.4: As λ is increased, the strength of the spurious features increases, making these more
attractive to the optimizer. This causes the fraction of support vectors to increase until all training
points are support vectors.

2.3 Characterization for ridge features

Theorem 2 (Condition for all support vectors). For the ridge featurization from Definition 2.2.1
with no weighting and α∗ = e1, we have that |S| = n if and only if:

λ >

√√√√ n∑
i=1

|xi|(‖Xtrain‖∞ − xi) = λT (2.1)

Before we understand what the theorem intuitively states, consider the constraint for the ith
training point in the SVM problem: yi(α1xi) + yi(λαi+1) ≥ 1. Since the optimizer is trying to
keep the values in α small, as the value of λ increases for fixed xi’s, αi+1 will increase and α1 will
decrease. In other words, the larger λ is, the cheaper the spurious features are for the optimizer.

Theorem 2 informally asserts that as energy is redirected onto spurious features from true
features (i.e as contamination increases), the fraction of support vectors increases. Figure 2.4
displays corroborates the theorem empirically; we see that are theorem is strong and is able to
exactly predict the threshold of λ before all training points become support vectors.

Figure 2.5 and Table 2.3 illustrate the effects of λ on α̂ and the fraction of support vectors by
means of a simple example. The choice of λ = λT corresponds to the orange line in Figure 2.5
and the second row in Figure 2.3. As λ increases, the weight on the true feature, α̂1 decreases and
the weights on the spurious features increase. When λ > λT , all training points become support
vectors.

Further we recognize that the simple ridge featurization preserves the order of Theorem 1 in
Muthukumar et al. which states that d > O(nlog(n)) for all support vectors. Here, we expect
‖Xtrain‖∞ to scale as log(n) and xi to scale as n; hence our threshold on λ here is O(

√
nlog(n)),

remarkably similar to the result on Gaussian features.
This intuition is explanatory for the other featurizations in Figure 2.1 and Figure 2.2 as well. For

both Fourier and Gaussian features, as d increases, the number of spurious features are increasing,
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λ Num support α̂1 α̂2 α̂3 α̂4 α̂5

0.01 2.0 4.00 0.00 -0.08 0.08 0.00
0.50 4.0 1.33 0.00 -1.33 1.33 0.00
2.00 4.0 0.38 -0.36 -0.45 0.45 0.36

Table 2.1: For the purposes of illustration of Theorem 2, data is chosen to be regularly spaced:
Xtrain = [−0.75,−0.25, 0.25, 0.75]T . In this case, we have λT = 0.5, which corresponds to the second
row here. As λ increases, we can see that α̂1 decreases and the weights on the spurious features
increase.
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x

4

3

2

1

0

1

2

3

4

y

a1*x; lambda = 0.01

a1*x; lambda = 0.5

a1*x; lambda = 2.0

train data

Figure 2.5: The experimental setup is the same as Table 2.3. As λ is increased, the weight on
the true feature decreases, as evidenced by the decreasing slopes of the lines α̂1x above. When
α̂1 <

1
0.75 (see Lemma 2.4), then all training points become support vectors; this happens at the

orange line.
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and this pulls energy from the true featurization. For a fixed d, reducing the weighting on early
features makes the spurious features cheaper; this can be thought of as analogous to increasing λ.

2.3.1 Intuition for the result

Since true features all correlate with the labels, they also all correlate with each other. Hence, if we
use only true features, we are likely to have high confidences on some points. However, weak/useless
features are not likely to agree with each other: even on strong points, some of these features will
have low confidences. Thus, if we place more weight on such features, we are less likely to have
a large distribution of confidences over the training points. Loosely restated: If we are making a
decision and only have experts to advise us, we will be more confident (because all the experts
agree) than if we had many amateurs on our advisory board (amateurs don’t agree and tend to
confuse!).

Let us understand the dependence on the different terms in the theorem. Again looking at
the ith constraint we see that, the larger that xi is, the less likely the ith point is to be a support
vector. Hence, of all the training points, the arg maxi xi point will be most unwilling to become
a support vector; this explains the dependence on the maxi |xi| term. However, it is not only the
point with maximum xi that matters. To understand this, consider two choices of Xtrain with the
same maximum xi: [1, 2, 4]T and [1, 2, 3, 4]T . We realize that the placing weight on the true feature
helps with increasing the margin of each training point; however, placing weight on any single
spurious feature only changes the margin of a single training point. Hence, in the two examples
considered, the true feature is more attractive in the second; thus, a higher λT would be required
to entice the optimizer towards the spurious features instead.

We can think of each of the spurious features as analogous to the “slack variables” in the
soft-margin SVM problem; while the actual features are applied to each of the points, each slack
variable is only applied to one point each. As the penalty on the slacks becomes smaller, they
become more attractive to the optimizer and less weight is placed on the other features. Further, if
a slack variable is used, the corresponding training point must be a support vector; this is analogous
to the usage of a spurious features increasing |M |. The takeaway here is that there exist features
that purport to be true features, but actually behave more like slack variables because they do not
actually carry much information about the labels.

2.4 Proof of Theorem 2

Here is an outline of the proof:

1. We can write the optimal weights on each of the spurious features, {α̂i, i 6= 1} as a function
of the weight on the true feature, α̂1.

2. This allows us to reduce our support vector machine optimization problem into a 1-d uncon-
strained convex problem in α1, that is solved in closed form.

3. We obtain a iff condition on α̂1 for all the training points to be support vectors. This is done
in Lemma 2.4. See Figure 2.5 and Table 2.3 for an illustration of this lemma.

4. Since we have an explicit expression for α̂1 from above, this yields an equivalent condition in
λ, which is our theorem.

First we introduce some notation that will help us with the proof. Recall that the ith training
point is said to be a support vector iff the above constraint holds with equality, and that the optimal
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solution is denoted by α̂. Realize that for ridge features parameterized by λ, the constraint for the
ith point can be rewritten as:

yi(α1xi + αi+1λ) ≥ 1 (2.2)

Let M be the set of training points that are support vectors. Let S1 =
∑
xi∈M

|xi| and S2 =
∑
xi∈M

x2
i .

Let ri = 1− α1|xi|.

2.4.1 Steps 1 and 2

Since all our decision variables other than α1 appear in only a single constraint, we can rewrite our
optimization problem as:

min
α1...αn+1

α2
1 +

n∑
i=1

pi(α1) (2.3)

Here, pi : R→ R is defined as:

pi(α1) = minα2
i+1 (2.4)

s.t yi(α1xi + αi+1λ) ≥ 1

Lemma 2.1 (Solution to inner optimization).

∀i, α̂2
i+1 = max

(
0,

1− α̂1|xi|
λ

)2

Proof. The constraint in (2.4) above can be rewritten as

sgn(xi)αi+1λ ≥
ri
λ

Consider the two cases:

• ri ≤ 0

• ri ≥ 0

Since we are trying to minimize α2
i+1 in the objective, in the first case we would just set αi+1 = 0.

Now consider the second case. If yi = 1, our constraint is αi+1 ≥ ri
λ ; to minimize |αi+1|, we would

set αi+1 = ri
λ exactly. Similarly if yi = −1, we would set αi+1 = − ri

λ . Upon squaring, we obtain
our desired expression.

Lemma 2.2 (Solution to outer optimization).

α̂1 =

S1

λ2

1 +
S2

λ2

Proof. We can plug in our solution to (2.4) from Lemma 2.1 to simplify (2.3) to a 1-d convex
optimization in only α1:

min
α1...αn+1

α2
1 +

n∑
i=1

max

(
0,

1− α̂1|xi|
λ

)2

Setting the gradient of the objective with respect to α1 to 0, we obtain the desired.
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2.4.2 Step 3

Lemma 2.3. ith training point is a support vector ⇐⇒ α̂1 ≤ | 1
xi
|

Proof. Start with the forward direction.

yi(α̂1xi + α̂i+1λ) = 1

=⇒ yiα̂1xi ≤ 1

=⇒ |α̂1xi| ≤ 1

=⇒ | 1
xi
| ≤ 1

The third implication follows because we know that α1 > 0 from Lemma 2.2 and that yi = sgn(xi).
Now, moving to the backward direction.

| 1
xi
| ≤ 1 =⇒ |α̂1xi| ≤ 1

By plugging our expression for αi+1 from Lemma 2.1, our consequent follows.

Lemma 2.4. α̂1 ≤ 1
‖Xtrain‖∞

⇐⇒ all training points are support vectors

Proof. Consider the forward direction. From the antecedant, we have that α̂1 < | 1
xi
|. Invoking

Lemma 2.3, our result follows.
Now, we move to the backward direction. Let imax = arg maxi xi. As a special case of the

antecedent, we have that the imax
th point is a support vector. By apppealing to Lemma 2.3, our

result follows.

2.4.3 Step 4

First, we prove the forward direction. If all training points are support vectors, our expression for
α1 from Lemma 2.2 simplifies to:

α1 =

∑n
i=1 |xi|
λ

1 +

∑n
i=1 x

2
i

λ2

Setting α1 <
1

‖Xtrain‖∞
and solving for λ, we obtain the desired condition in Theorem 2.

Now, we prove the backward direction. We assume the condition on λ from Theorem 2. For
the sake of contradiction, assume that all training points are not support vectors i.e M 6= Strain.
Then, from Lemma 2.4,

α1 >
1

‖Xtrain‖
. (2.5)

Using the expression for α1 from Lemma 2.2, (2.5) is shown to be equivalent to

λ2 <
∑
xi∈M

‖Xtrain‖∞ (|xi| − x2
i )

This is contradictory to our assumed condition on λ from Theorem 2; hence, M = Strain must be
true. This completes our proof.
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Chapter 3

Do large margins indicate good
generalization?

An explanation that is often provided for generalization in classification problems is that classifiers
with larger margin on the training data generalize better than those with smaller margin. In
this Chapter, I first recap the intuition behind this idea and the problems for which it has been
successful. Then, I take a closer look at margins in overparameterized settings; I examine where
the explanation might fall short, and why.

3.1 Definitions and geometry

Consider a classifier f (does not have to be linear) that makes its prediction by first learning a
real-valued function g ∈ G and then discretizing the outputs of g. In this section, we restrict our
attention to the binary case: f(x) = sgn(g(x)). Let us call g the score function associated with f .

Definition 3.1.1 (Pointwise margin). The margin of a classifier f of the above form at a point x
with label y is: γpw(x) = yg(x).

The intuition is that the large the magnitude of the score |g(xi)| is on a correctly classified
point is, the more confident the prediction on that point is. Most often “margin” is spoken about
in the context of a classifier γ = minxiγpw(xi), and γ is often referred to as the “margin of f”. It
is important to be cognizant of this distinction between the min-margin γ and the distribution of
pointwise margins γpw(xi).

A problem that comes up here is that the margin of f could be arbitrarily increased by scaling
the function by a positive scalar a: f2 = sgn(ag). However, the binary outputs of f and f2

are exactly the same for any given input; so, we would not expect any reasonable indicator of
generalization to be vastly different for these two functions. To resolve this issue, instead of looking
at γ, we first normalize the margin by the lipschitz constant of f . Informally, the Lipschitz constant
is a measure of how sensitive the outputs of f are to changes in its inputs. Often, deducing the right
normalization is the key to obtaining a margin expression that explains generalization performance
- we will explore this further in Section 3.4.

Margins are most commonly spoken about in the context of hard-margin SVM’s. For a linear
classifier f(x) = αTx, the Lipschitz constant is ‖α‖. In this case, the pointwise normalized margin
γ(xi) is exactly equal to the Euclidean distance of xi from the decision boundary hyperplane
H = {x : αTx = 0}.
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Figure 3.1: The data is i.i.d N (0, 2) and α∗ = [2, 3]T . Both the black and the magenta decision
boundaries perfectly seperate the training data; However, the black decision boundary has the
largest margin, denoted by the dotted lines.

xi[0] xi[1] yi γpw
0 0.36 3.31 1 2.29
1 0.92 1.18 1 1.00

2 0.61 -1.84 -1 1.31
3 -1.50 -0.10 -1 1.00
4 1.58 -2.00 -1 1.00
5 -0.94 -0.95 -1 1.36

Table 3.1: Data corresponding to Figure 3.1. Points indexed 1, 3, 4 are the support vectors.

Consider Figure 3.1, which works with a small dataset reproduced in Table 3.1. While both
the purple and black line separate the training data perfectly, the purple line has a small margin
= 0.72 and is very close to training point number 3. Contrastingly, the black line has a margin
of 1.18 which cannot be improved upon; the margin is shown by the dashed black lines. The γpw
of the max-margin black line are shown in the last column of the table; we identify that points
{1, 3, 4} are the support vectors.

The notion of choosing a classifier, whose decision boundary is far from training points is
intimately connected with the notion of adversarial robustness, explored further in Chapter 4: the
amount of noise that needs to be added to a training point to flip its prediction is largest for the
max-margin classifier.

3.2 The historical role of margins

Let us revisit the surprising observations regarding boosting brought up in Chapter 1. If a new
theory could argue either that the relevant model complexity is not actually increasing or that the
relevant measure of training error is not actually zero, then they could explain these observations.
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Margin-based explanations were able to make both these arguments [21]. To do this, the surrogate
ramp loss lγ was utilized, parameterized by margin γ

Definition 3.2.1 (Ramp Loss).

lγ(z) :=


1 if z ≤ 0

1− z
γ if 0 < z ≤ γ

0 if z > γ.

Generalization guarantees were developed which bounded the test error by a sum of two terms:
a training loss term, under the ramp loss of g and a Rademacher complexity term of G. In the
boosting examples, it was found that Rademacher metric of G scaled more slowly with the number
of primitive models than the VC-dimension of F = sign(G), which is very sensitive to small real-
valued changes in output that cause changes in sign. Furthermore, it was found that even though
the classification training accuracy of f became zero, the ramp training loss of g reduced as the
number of primitive models increased1.

3.3 Linear case: Empirical exploration

To evaluate the predictive power of margins, I consider a sample margin bound below. Other margin
bounds have the same terms and are very similar, but this is the strongest one I encountered for a
linear classifier in overparameterized settings.

Theorem 3 (Theorem 21, [1]). For a random test point (x, y) drawn from the same distribution
as the training data, the following holds with probability (1− δ) over the training data {xi, yi}ni=1:

Pr[sgn(fα̂(x)) 6= y] ≤ 1

n

n∑
i=1

lγ(fα̂(x) · yi) +
4

γN
·
‖φtrain‖F

n
+

(
8

γ
+ 1

)
·
√

ln(4/δ)

2n
(3.1)

lγ is the ramp loss function in Definition 3.2.1.

When the training data are separable, we apply the above bound setting the first (average
training loss) term to 0, and only consider the the second term in the bound, i.e. we ignore the
high-probability term. Equation (3.1) reminds us that there is a critical dependence on the intrinsic
data dimension, captured by the term ‖φtrain‖F. We will shortly see that this dependence is critical
to track in the overparameterized regime.

3.3.1 Can margin explain the benefits of overparameterization?

We now investigate whether this generalization bound is effective in tracking the true test classifi-
cation error for the hard-margin SVM in our setting for a number of choices of featurization. We
plot the solution α̂binary in sufficiently overparameterized settings under which all training points
become support vectors with high probability; therefore, the un-normalized margin γ = 1 and the
normalized margin of the binary interpolating solution is exactly equal to γN = 1

‖α̂‖2
.

We study the evolution of margin, the ensuing upper bound in Equation (3.1), and the true test
classification error as we increase the level of overparameterization for two choices of featurizations:

1This understanding of margins was inspired by Alexander Rakhlin’s Generalization 3 lecture at the Simon’s
Institute in 2019.
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(a) Normalized margin. (b) Comparison of the generalization bound
(3.1) with true test classification loss.

Figure 3.2: Evolution of normalized margin, ensuing generalization bound and true classification
test loss as a function of number of features d for isotropic Gaussian features (n = 32 fixed).
Observe that the terms ‖φtrain‖F and ‖α̂‖2 cancel each other’s effect on the bound, leading to a
roughly constant bound. The true test error increases as d is increased.

isotropic Gaussian features (Definition 1.3.1) which generalize poorly according to Theorem 1 and
weak features (Definition 1.3.2), which are known to exhibit the double-descent behavior. For the
case of isotropic features, we retain our 1-sparse assumption from Section 1.4. For the case of weak
features, we consider yi = sgn(Ui) for i ∈ {1, . . . , n}.

Figure 3.2 plots the isotropic case, and Figure 3.3 plots the weak features case. For both figures,
we hold the number of training points, n constant and vary the number of features, d, to tune the
extent of overparameterization. In both Figures 3.2(a) and 3.3(a), the normalized margin increases
with increasing d, since the optimizer can use more features to meet the constraint in Equation (??).
The generalization bounds in Figure 3.2(b) and Figure 3.3(b) are consequently very similar as well.
However, while the test classification loss increases with d for isotropic features, it decreases with
d for weak features.

Figures 3.2 and 3.3 together show that the relationship between margin and generalization is
more complex than typically assumed in highly overparameterized regimes. We highlight a few
observations:

1. In both featurizations, the generalization bounds are always greater than 1, and hence, tauto-
logical. The ‖φtrain‖F term, which represents the scale of the data, effectively cancels out any
beneficial effect of increasing normalized margin2. Intuitively, it is clear that feature-space
margin-based bounds will have to scale with the intrinsic input dimension, which itself is
overparameterized for Gaussian featurization.

2. Whether margin is qualitatively predictive of generalization is also unclear, as evidenced
by the contrasting examples of weak features and isotropy. Under both featurizations, the
normalized margin increases with increased overparameterization; but the actual test error
behaves very differently (decreasing for weak features, but increasing for isotropy). In the

2In fact, for the case of minimum-`2-norm interpolation and isotropic features, this can be verified quantitatively,
as we know that ||α̂||2 ∼

√
n
d

and ||φtrain||F ∼
√
nd with high probability.
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(a) Normalized margin. (b) Comparison of the generalization bound
(3.1) with true test classification loss.

Figure 3.3: Evolution of normalized margin, ensuing generalization bound and true classification
test loss as a function of number of features d for weak features (n = 32 fixed, σ = 0.1). Observe
that the terms ‖φtrain‖F and ‖α̂‖2 cancel each other’s effect on the bound, leading to a roughly
constant bound. The true test error decreases as d is increased.

next subsection, I present an illustration of a simple case where higher margin does not mean
better generalization.

3.3.2 Is max-margin always the right inductive bias?

In Section 1.4, we find that generalization performance depends on survival - how much weight we
place on our first feature. Does maximizing margin increase our survival? Figure 3.4 investigates
through a simple 2-dimensional setup, similar to Figure 3.1 when maximizing margin may not be the
best strategy. In Figure 3.4(a), we have 5 data points and the ones with class “+1” are denoted by
“+” and those with class “-1” are denoted by circles. We again choose a 1-sparse α∗ = [1, 0]T , so that
only our first feature actually influences our labels; this yields the orange vertical axis as the true
decision boundary of our data. However the margin-maximizing αSVM learns the less generalizable
blue boundary instead. What happens as if we obtain more datapoints? Figure 3.4(b) considers
the same setup as Figure 3.4(a), but includes the new purple points into the training set in addition
to the old blue ones. The new training data now diminishes the effect of the margin-maximizing
inductive bias, and now our learned α̂ is much more similar to α∗. However, for this to happen we
needed n considerably greater than d, which would never happen in an overparameterized setup.

In Figure 3.5, we fix n and d and encourage the learner to prefer early features by increasing
m in the polynomial weighting scheme; the generalization error reduces due to increasing survival
but the margin decreases, confirming for our setup what Figure 3.4 suggests. This effect of having
a wrong inductive bias can be understood as an asymmetrical looseness of bounds: the bound
is tighter for the classifier with larger margin, which leads to smaller error estimates than other
classifiers.

The main takeaway from these Figures is that if our problem is sparse and our training matrix
is filled with “useless” features (see Section 1.2.2), then max-margin is likely to be the wrong prior
because it place non-zero weight on these “useless” features.
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(a) The max-margin solution places a
non-negligible weight on the second feature

and chooses the blue decision boundary
instead of the orange one, to the detriment of

its generalizability.

(b) Upon including new training points, the
max-margin solution becomes more similar to
the true decision boundary.

Figure 3.4: The data is drawn from N (0, 3) and e1 =
[
1 0

]T
are the true weights. The ’+’ denote

the points with class +1 and the circles denote the points with class −1.
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(a) Normalized margin. (b) Comparison of the generalization bound
(3.1) with true test classification loss.

Figure 3.5: The number of training points, n = 529 and the number of features, d = 12167 is
fixed. The strength of preference for lower features is varied, as determined by rate of weight decay
λk = 1

km in Definition 1.3.6. As we increase m, the normalized margin decreases, but so does the
actual test loss
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3.4 Kernelized case: Proposed modifications

We find that the appropriate normalization for the case of linear classifiers is the `2 norm of the
weights vector. In the kernelized case where there is a feature-map φ that is not the identity, it
is less clear what the right notion of normalization is. While in the linear case, we obtained nice
geometrical understanding of margin in the native space, X , now there is also a distinct feature
space: the image of our feature-map, Im(φ). Bartlett et al. face a similar task when finding the right
notion of normalized margin for a feedforward neural network, and they choose an approximation of
the Lipschitz-constant as their normalization [2]. Recalling that in the linear case, the normalized
margin is the minimum perturbation of a training point required for misclassification, we can start
here in the kernelized case.

Definition 3.4.1 (Native margin). Native margin is the minimum perturbation in the native space
prior to featurization, X that induces a misclassification by the model. For fα̂, the native margin
on a point x with correct label y is:

γnative(x) = min
∆

∆

s.t sgn(y) 6= sgn(α̂Tφ(x+ ∆))

Notice that our definition is point-wise and not a summary statistic for the classifier. As a
special case, we realize that for already misclassified training points, γnative = 0. While γnative is
our quantity of interest, this optimization problem is difficult to solve because the φj ’s might be
arbitrary non-convex functions in ∆. Let us try to take a linear approximation to φ to alleviate
this trouble. Before we do that, first we lift our problem:

min
∆,u

∆

s.t sgn(y) 6= sgn(α̂Tu)

φ(x+ ∆) = u

Now, we can perform the first-order-approximation for each φi:

φi(x+ ∆)− φi(x) ≈ dφi(x)

dx
×∆.

Define S = diag(dφ(x)
x ). Using the element-wise approximation above, we can rewrite the second

constraint of our problem to reformulate our problem as:

min
∆,u

∆

s.t sgn(y) 6= sgn(α̂Tu)

φ(x) + ∆S1 = u

Using our second inequality, we would like to remove ∆ from our optimization entirely. However,
we realize that our second constraint (obtained through an approximation) contains d equations
containing ∆:

φi(x+ ∆)− φi(x)
dφi(x)
dx

≈ ∆
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Remembering that these were each obtained by an approximation, instead of just relying on any
one of these, we aggregate all of them:

n∑
i=1

(
φi(x+ ∆)− φi(x)

dφi(x)
dx

)2

≈ d∆2

1√
d

∥∥S−1(u− φ(x))
∥∥

2
≈ ∆.

Replacing ∆ in our objective and removing our second constraint:

1√
d

min
u

∥∥S−1(u− φ(x))
∥∥

2

s.t sgn(y) 6= sgn(α̂Tu)

This can be equivalently framed as below.

Definition 3.4.2 (Gradient Weighted Margin).

γGW(α̂, x) =
1√
d

min
u

∥∥S−1(u− φ(x))
∥∥

2

s.t α̂Tu = 0

The quality of this approximation to the native margin depends on the effectiveness of the Taylor
approximation. Recall the interpretation of the feature-space margin as the minimum perturbation
to cause a misclassification; the above resembles this. However, the “perturbation” u is weighted
in the objective by S−1 i.e the low gradient directions are penalized more heavily; this inspires the
name of the new margin. Using the change of co-ordinates and the projection theorem, we can
solve the optimization in closed form.

Theorem 4 (Gradient-weighted margin in closed form).

γGW(α̂, x) =
1√
d

α̂Tx

‖Sα̂‖2
(3.2)

Proof. Starting from the definition of γGW:

γGW(α̂, x) =
1√
d

min
u

∥∥S−1(u− φ(x)
∥∥

2
: α̂Tu = 0

Performing the change of co-ordinates β̂ = Sα̂, ũ = S−1u, φ̃(x) = S−1φ(x), we rewrite the above
as

=
1√
d

min
u

∥∥∥ũ− φ̃(x)
∥∥∥

2
: β̂Tu = 0

Using the projection theorem, we can write this in closed form and then change our co-ordinates
back to obtain the desired.

=
1√
d

β̂T φ̃(x)∥∥∥β̂∥∥∥
2

=
1√
d

wTφ(x)∥∥∥β̂∥∥∥
2
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3.4.1 Experimental inspection of proposed notions

We test the ability of the proposed γGW and γnative to explain generalization in the kernalized setup
with uniformly sampled Fourier features. We recognize that increasing d is not beneficial to gener-
alization because of the addition of more “useless” features that reduce our survival. We make the
following observations about the usual normalized margin in Figure 3.6(b) and Figure 3.6(c). Since
both the gradient weighted and native margins are evaluated for each training point individually,
we plot the medians and include the 40th and 60th percentile as error bars.

1. The naive normalized margin is unable to capture the trend in generalization performance;
while we would expect decreasing margins to indicate the worsening generalization, the mar-
gins increase.

2. The native and gradient-weighted margins both decrease as we would desire.

3. The gradient weighted margin, even though designed to approximate the native margin, is
consistently an underestimate. This suggests that the first order approximation does not hold
as well as we might have hoped.

4. The error bars for the native margin are extremely large in the bottom direction, indicating
a large distribution in native margins between training points.
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(b) The feature margin increases even though the classi-
fication loss gets worse.
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(c) The native margin and gradient weighted margin both decrease as d is in-
creased. The median over all training points is plotted and the top and bottom
error bars are the 40th and 60th percentile respectively.

Figure 3.6: Examination of ability of original and new margins to predict generalization error in
a kernelized setting. Here, we use uniformly sampled Fourier features (Definition 1.3.4). We fix
n = 32, use no weighting and increase d.
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Chapter 4

Adversarial examples

Almost a decade ago, Szegedy et al. discovered that small perturbations to input images, that
are imperceptible to the human eye, can trick image-classification convolutional neural networks
at test time into making misclassifications. The term adversarial examples was coined for these
benign-looking adversarially perturbed images, and this term is now used more generally outside
of image-classification tasks as well. The discovery of adversarial examples came as a surprise to
many, and inspired investigation into the creation of adversarial examples, the design of classifiers
that are resistant to such attacks, and other work that tries to interpret adversarial examples.

While it was commonly believed that adversarial examples were an artifact of neural networks,
Figure 4.1 illustrates that it is possible to construct such attacks for otherwise performant kernel
classifiers as well. Specifically, for m ∈ [0.15, 0.25], it is observed that despite low test classification
loss, test adversarial loss is very high. Hence, we see that these kernel models are a good playground
in which to investigate adversarial examples; a big benefit of identifying adversarial examples for a
problem with one-dimensional input is that the learned function and adversarial instances can be
easily visualized, like in Figure 4.2. This chapter presents a preliminary result from ongoing work
that aims to study robustness in relation to the findings from earlier chapters on generalization
performance, margins and equivalence between different training formulations.

4.1 Notation

We specify a set of allowable perturbations for the adversary for point x as X (x). Now, we can
define the adversarial version of the classification loss for test sample (x, y) as follows:

Cadv(α̂) := E[ max
x̃∈X (x)

I[Y 6= sgn(〈φ(x̃), α̂〉]] (4.1)

This is our quantity of interest for this section: the worst-case expected loss if x is allowed to
be perturbed by small amounts. The extent of allowable perturbation is governed by the choice of
X .

In this section, I will be working with regularly spaced Fourier features (Definition 1.3.3).
Hence, we choose x ∈ R and we define

X (X) = {x̃ : |x̃− x| ≤ ε}.

We choose ε = 0.05. For higher dimensional input, the absolute value is usually replaced with
some choice of norm, the l∞ norm being the most common. Let the chosen norm be ‖·‖p, then let
‖·‖∗ be the dual norm.
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Figure 4.1: The regularly spaced fourier featurization, as in Definition 1.3.3 was is used here with
fixed n = 32 and d = 2000. The feature weighting, as in Definition 1.3.6 is tuned and classification
adversarial performance of the Binary Interpolation in Definition 1.3.9 is compared.

4.2 Related works

Here, I present related works on adversarial examples in the context of the findings from previous
chapters. I focus on works that aim to understand what properties of the learned function influence
susceptibility to adversarial examples; it does not review the literature on algorithms to create and
defend against adversarial examples.

4.2.1 Relation to margin

The interpretation of margin introduced in Chapter 3 as the amount of perturbation needed to in-
duce a misclassification on a training point suggests a relationship between margins and adversarial
examples.

The max-margin SVM solution can be thought of as a robust optimization solution to the prob-
lem of finding a linear decision boundary that perfectly seperates the data. Adversarial training, a
defense against adversarial examples that has proved to be successful, is an iterative method that
alternatively finds adversarial examples for the model iterate, and then updates the model by train-
ing on these adversarial examples [17]; this is also derived from a robust optimization formulation
of the problem. Charles et al. find that adversarial training on a binary linear classification problem
actually does increase the margin of the network at a much faster rate than ordinary training [7].
Further, in the same work where Bartlett et al. provide a margin-based generalization bound for
neural networks, they also conjecture that having large margins indicates adversarial robustness
[2].
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4.2.2 Relation to contamination

We conjecture that higher contamination and lower survival must increase susceptibility to adver-
sarial examples. In support of this hypothesis, we provide two arguments by utilizing findings from
related works.

Ford et al. relate robustness to adversarial noise and robustness to stochastic noise; they assert
that unless a classifier is robust to stochastic noise, it cannot be robust to adversarial noise [10].
Their arguments proceeds that unless your performance in stochastic environments is very almost
perfect, the probability of there existing a misclassified point in a ball around a test point is very
high. In the present setup, adding random noise to x should not change test performance much.
And we showed in Chapter 1 that higher contamination leads to poorer test performance; hence,
it should lead to poorer adversarial performance as well. In Figure 4.1, we observe that unless the
test classification loss is very close to 0, adversarial examples proliferate.

Ilyas et al. argue that the adversarial performance of a neural network is determined by the
robustness of the featurizations it learns [14]. They define what it means for a feature to be robust,
and if very high weight is placed on non-robust features, they find the classifier to be non-robust.
In the case of the Fourier featurization considered in Figure 4.2, the higher-frequency features are
more sensitive to perturbations in the inputs and hence more non-robust in the sense of Ilyas et al..
Contamination precisely measures how much weight we place on later features - hence, increasing
contamination should signal poorer adversarial performance.

4.2.3 Transferrability, Geometry, and other theoretical results

A fascinating observation was made by Szegedy et al. in their seminal paper that adversarial ex-
amples that were designed for one classifier transfer to another classifier i.e they are misclassified
for the second classifier as well [23]. Liu et al. investigated this finding for multiclass classification
problems through an extensive set of experiments [16]. They corroborated these findings for untar-
geted adversarial examples, which are designed to simply be misclassified without a preference for
which wrong class is chosen. However, they discover that targeted adversarial examples, that are
designed to trick the classifier into making a specific prediction on them rarely receive the same
prediction for a new classifier.

He et al. and Fawzi et al. investigate the geometrical properties of the decision boundaries of
the learned classifier to understand how this influences adversarial robustness [13, 9]. He et al.
attempted to estimate where the decision boundary lay by perturbing test examples until they
are just misclassified - this must mean that they just crossed the decision boundary. Fawzi et al.
investigate the shape of the decision boundary of neural networks - they find that in general, it is
quite flat but around adversarial examples, it is curved.

There are also some theoretical results for stylized setups that make hypotheses about what may
influence adversarial susceptibility. Yin et al. evaluate the Rademacher complexity of the adversarial
loss class, and find that it is considerably larger than the non-adversarial one; by doing this, they
imply that learning an adversarially robust classifier must require a much higher complexity than a
non-robust classifier [26]. This hypothesis is supported by Madry et al., who provide an intuitive toy
example to make a similar argument [17]. Bubeck et al. believe that learning an adversarially robust
classifier is computationally difficult, and in some cases intractable; according to them, this explains
the empirical difficulty of learning adversarially robust classifiers [6]. Belkin et al. find that wrong
labels in the training dataset causes regions of misclassification around these mislabeled training
examples, and assert that these regions are where adversarial examples thrive in [3]. Figure 4.2(a)
shows that even in the absence of label noise, adversarial examples can proliferate; we explore this
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further in the next section.

4.3 Adversarial examples can proliferate near training points

In Figure 4.2, we plot our learned predictor fα̂(x) on the independent axis and x on the dependent
axis. The blue diamonds denote the location of the train points and the red curves represent the
predictions. We choose φ to be the Fourier featurization. We choose m = 0.2 as the polynomial
decay weighting parameter because we want adversarial examples to be present.

We wish to examine where sgn(fα̂(x)) does not match with sgn(x). These are regions of mis-
classification. The objective of the adversary is to perturb x into one of these regions. We can
clearly observe the existence of these misclassification regions in the vicinity of the training points.
This is quite a general phenomenon, and is observed for other learning algorithms (SVM), other
feature families (Legendre) and for real labels.

Since fα̂ is very close to the zero-function generally, around training points, we have almost a
jump discontinuity. We see that these spikes to fit the training points are accompanied by troughs,
resembling the shape of the sinc function. This behavior has been replicated for other featurizations
as well and we conjecture that it captures a general phenomenon.

These troughs allow for the function to cross the horizontal axis in the neighbourhood of training
points, which leads to a change of sign and misclassification regions. This permits adversarial
examples to proliferate. The adversarial examples are represented by the black pentagons. Hence,
the closer the function is to the horizontal axis and the larger the troughs are, the more likely it is
to find adversarial examples.

The function plots in Figure 4.2 indicate that if we are able to suppress the oscillations around
the training points that allow for zero-crossings, then we might be able to defend against adversarial
examples. In Figure 4.2(b), we see that including the adversarial examples into the training set has
this desired effect.
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(a) Around training points, there is a spike and a trough, which spawns adversarial examples
nearby; this is reminiscent of Gibb’s phenomenon.

(b) Upon inclusion of the adversarial points (black pentagons) from (a) into the training
set,the Gibbs-like behavior from (a) can be controlled to reduce the proliferation of adversarial
examples.

Figure 4.2: Visualization of adversarial examples for regularly spaced Fourier features (Definition
1.3.3). d is fixed at 2000 and m = 0.2 in the polynomial decay weighting scheme from Defini-
tion 1.3.6. We fix = 0.05.
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