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Abstract

Learning affordances of unseen objects is an important aspect of learning
how to interact with and understand the world. However, current research
on this subject is restricted to small datasets that are limited in variety. Re-
cent efforts developing weakly-supervised approaches show progress in mak-
ing affordance prediction more generalized, but performance gaps remain
from supervised methods. This paper attempts to close this gap by propos-
ing that affordance prediction is primarily a representation learning task be-
tween inactive images and active videos. As a result, this paper proposes
using an unsupervised representation learning task that can be be trained
on images not in the training data. The final model improves robustness of
learning Grounded Interactions Hotspots to changes in model types and to
out-of-domain objects and further bridges the gap between weak and strong
supervision approaches all while requiring no extra parameters.
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1. Introduction

In computer vision, most modern research on objects deals with detection,
recognition, and localization. More generally, most frameworks attempt to
understand what components exist in a scene, not how components in a scene
can interact. Learning how objects interact is both non-trivial to understand
and yet vital for scene understanding. When we understand how interaction
affects the environment, we can further understand how to improve embodied
and intelligent behavior and interaction in a scene.

The theory of affordances as suggested in [14, 13] by J. J. Gibson and later
elaborated in a book by Donald Norman [32] poses that a major component
of how the world is perceived is through the action possibilities of objects.
An object is said to afford some action if that action can be achieved or
completed with that object. Further, an object can afford multiple different
actions at once; a fork can be held, eaten with, flung, or washed, among
other actions. This suggests that objects also have different parts that afford
each action. Therefore, the problem of understanding affordances can also
be thought of as an object segmentation problem.

Understanding object affordances are an important part of both video and
scene understanding. Popular deep learning models that are made for video
understanding focus on what is happening in a scene [46, 48, 27, 44]. More
recent work has explored the questions of where something is happening in a
scene [30, 31, 12]. Implicitly, learning object affordances both tell the what
and where of a scene through the context of objects. This extends past videos
too. Being able to understand and predict where to interact with an inactive
object given an action query is an important step for intelligent agents to
interact with their environments.

The theory of affordances is also strongly rooted in neuroscience. A study
by Michael Land [25] recorded eye fixations across different tasks. The re-
sulting findings show that eye fixations are strongly associated with the task
being attempted. Even though some tasks are seen as trivial, the eyes still
lead motor function every step of the way. Implicitly then, humans perceive
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and understand object affordances when interacting with the environment
around them. Further understanding how object affordances are perceived
and emerge from object design could improve our understanding of how peo-
ple also perceive and interact with the world.

The task of predicting affordances for object interaction is highly non-
trivial. There consists multiple problems with current research regarding
object interaction. First, shape-based understanding of objects for learning
interactions pose potential limitations to unseen objects with new shapes or
ways of interaction. Second, current datasets for deep learning approaches
are small and consist of limited domains. This poses an issue to supervised
approaches that require large amounts of data for high performance. It also
prevents generalization to new domains as well as robustness to hard examples
within the domain trained.

Weakly supervised approaches propose exciting and strong results for ob-
ject affordance prediction. Using limited labels, these methods can poten-
tially be trained on larger and richer datasets than their supervised counter-
parts and as a result be more generalizable and robust. However, one primary
issue with these approaches is caused by the fact that the optimization ob-
jective may not always coincide with the true objective. Lower test loss does
not necessarily mean a better final metric.

Similar to how humans and animals learn, visual systems can be taught
through visual demonstrations of an expert. By grounding the predictions
of visual systems to these demonstrations, [30] suggests that affordances can
be learned through the weakly-supervised task of video action classification.
Implicitly a classifier learns to attend to afforded regions of an object in order
to understand the action occurring. Using a modified version of Grad-CAM
[36], [30] has to ability to visualize this attention. These attention maps can
thus be effectively used as heatmaps for visual object affordance.

We follow [30] in this paper. While this method still suffers from the
same afflictions as other weakly supervised, a key insight is that this method
is fundamentally a contrastive learning problem. The goal of the method is
to learn features of a static non-active image in a way that is similar to the
features of an active frame or video.

Through reframing the problem of affordance prediction to contrastive
learning, we propose the following solution to the framework. Given the
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unsupervised similarity learning task in [30] we show that as long as novel
input has video, the model parameters for the task can be updated, even
after training.

Using this approach, we show that this method can improve performance
across different size model architectures. We show across three backbone
networks - ResNet 18, ResNet 34, and ResNet 50 [18] - performance benefits to
test-time training across multiple evaluation metrics. We also show that this
method improves performance in out-of-distribution generalization. More
specifically, we show that this method generalizes well to objects not seen
during training.

Our method is evaluated across a diverse video-based dataset: Online
Product Reviews for Affordances (OPRA) [12]. OPRA, a third-person prod-
uct review dataset, contains a wide variety of videos as well as numerous
different objects and actions.

The contributions of this paper are as follows:

• We propose an unsupervised test-time training framework based on [30]
that can be trained on individual examples.

• We discuss the benefits and detriments of the framework and show
the performance gains of test-time training across different strength
backbone models.

• We show improvement in performance to out-of-distribution examples
such as object classes that were not seen during training.
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2. Related Work

Object Affordance Prediction

A common approach to affordance prediction is through the task of predicting
gaze or visual saliency. Works [5, 6] provide popular datasets for visual
saliency comparison while [7] suggests metrics to evaluate saliency prediction.
Alongside the popularity of these datasets, there has also been a rise of a
multitude of methods that attempt to predict gaze and visual salience [34,
24, 20, 26]. Other methods focus on how object shape can hint at specific
affordances [29, 19]. Hand pose [8, 42] can also give information about how
and where an object is used.

Other endeavors in affordance prediction emphasises focus on human
demonstration for affordances [22, 11, 1, 23]. Demo2Vec [12] provides OPRA,
a YouTube-sourced product review dataset containing videos of human in-
teraction as well as affordance heatmaps for each product. In addition, they
also propose a novel framework to encode action for use in affordance predic-
tion. More recently, [30] focuses on learning interaction hotspots grounded
by human demonstration. Using grounded affordances has also been used to
segment the enviroment and map it to distinct activity-centric zones [31].

Self-Supervised and Representation Learning

Self-supervised learning is a popular method to do representation learning
without the need for any labels. Commonly, methods use implicit schemas
and properties of the input data itself to learn representations. Image ro-
tation prediction [15] and Jigsaw puzzle solving [33] are simple but popular
approaches utilizing implicit assumptions about the placement of environ-
mental attributes in a scene. Methods such as [47] show how time can provide
a strong signal for deep learning. Using image color has also been utilized as
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a powerful method for some self-supervised and representation learning tasks
[45, 43].

To achieve strong metric learning performance on faces, triplet loss [35]
has been used. More recently, more sophisticated methods have been em-
ployed to get better feature representations through unsupervised learning.
Contrastive multiview coding [43] splits data into implicitly paired parts such
as LAB images, NYU depth+images, or different video frames and flow, and
learns to ensure the different views have the same feature representation. Mo-
mentum Contrast [17] ensures similar representations with a moving average
encoder model. SimCLR [9] tries to use augmentations between the same
data instance to learn a representation that is both meaningful and robust
to transformations. Other work has taken these recent methods and applied
them to videos [16, 21].

Test-Time Training

There has been a plethora of work focusing on only training on single ex-
amples [4, 37, 38, 39]. Some methods such as [2] adapt a trained model
to new instanced. Others use self-supervised methods to allow test-data to
be brought into the training process [3]. [37] and [38] show that individual
images contain enough self-similarity and pattern repetitions for meaningful
deep learning applications to be used such as scene-aware image resizing and
still-image animation. [39, 4] attempt to solve the task of super-resolution on
single instances. Finally, online learning has gained popularity with methods
like [28] highlighting how these methods could potentially improve inference
efficiency.

More recent work has focused on applications of test-time training to
supervised tasks. [40] adds the simple self-supervised task of image rota-
tion and tile location prediction to improve the domain adaptability of a
supervised classifier. Follow-up work [41] explores test-time training for out-
of-distribution robustness and generalizability as well as makes theoretical
arguments for why test-time training should work for classification.
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3. Method

3.1 Data

3.1.1 OPRA

OPRA is an affordance-specific dataset made by [12] to study the role of using
videos to predict affordances on still images. This dataset consists of 11.5k
interaction demonstrations across 2.5k objects. Overall there are 7 possible
actions and 32 object categories. This dataset covers numerous YouTube
videos of appliance reviews pulled from 6 different review channels. Each
train instance consists of a short video demonstration of a person using the
appliance, as well as a clean, static image with a white background and no
interaction visible (almost like an amazon product image). Along with this
information comes a noun and action label for the action done in the video.
This dataset was built so that a given product may have multiple actions
associated with it. Finally, each static image has associated points collected
via Amazon Mechanical Turk which are human annotations on the product.
Each point represents a label where each annotator thinks a part of the object
affords a specific action.

3.2 Data Processing

Video frames for the OPRA dataset are sampled at 5fps. Depending on the
experiment, between 2-8 frames are sampled. If a video has less frames than
needed at a given sample rate, the rest of the needed frames are padded with
black images.

Each data instance also contains point annotations for each of the static
images. While this is useful, it is not the proper format needed for to evaluate
against predictions using KL-Divergence, Similarity, and Area under the ROC
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curve. As a result, all points for a given image are placed spatially and
convolved with a Gaussian Kernel to generate a heatmap.

The start of the video frames are randomly sampled from each train in-
stance. Each image (both in the video and the static images) are then resized
to 256× 256 and then randomly cropped to a size of 224× 224. Each video
and static image are flipped horizontally with probability 1

2 .

3.3 Model

The primary model is based off of [30] which proposes a weakly supervised
model to predict affordance. This model can be split into two parts: super-
vised action detection, which trains multiple networks, and gradient-based
class activation mapping, which is used in conjunction with the model to
generate affordances.

The model proposed by [30] contains four neural networks. First, features
are extracted from both the video V and the static image I using a frozen
Imagenet-pretrained ResNet model (this model will vary as described in later
sections). The size of the ResNet output is enlarged in increase final heatmap
resolution to 28×28. When fed into the LSTM, video frames are pooled using
L2-pooling to flatten the spatial dimension. The video frames are next input
into an LSTM encoder for each time step. The final hidden layer of the
LSTM is then fed into an action classifier to predict the action of the video.
Separately from this, the static image I is featureized xI using the same
pretrained backbone. xI can be described as an “inactive” featurization since
no actions are present in the image. To convert the features to an “active”
featurization x̂I = Fant(xI), an anticipation network is used. These active
features, are also fed into the same action classifier network to compute an
auxiliary loss.
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Figure 3.1: The primary hotspots model. Each video frame is fed into a
ResNet backbone model φ. The the last hidden feature from the LSTM is
used by action classifier network A to predict an action for the video and
to compute the classification loss Lcls. Features for the static image I are
also computed using φ. Fant projects the static features into new “active”
features (as denoted as red boxes). The most “active” video frame’s features
are used to compare against the projected features using the anterior loss
Lant. Finally an auxilary classification loss Laux is also computed for the
projected features.

3.4 Training

The primary loss for the network is a cross entropy loss for the action classifier
on the video, denoted Lcls. To train the anticipation network we minimize it’s
difference from the most active frame features in the video. To find the most
“active” frame, [30] suggests taking the hidden cell from the LSTM that has
the lowest classification loss. Alternatively, we use the hidden cell that has
the highest class confidence. Given the active image feature x̂I and the most
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active video frame instance x∗t we compute a comparison loss between the
two features. Since OPRA static images are visually similar to the objects in
the video, a simple L2 loss can be used.

Lant = ||x̂I − x∗t ||2 (3.1)

Finally, an action classification loss for the action predictor prediction
given x̂I is used as an auxiliary loss Laux. The total loss is a weighted average
of the three losses mentioned before.

L(V , I, a) = λclsLcls + λantLant + λauxLaux (3.2)

For both datasets, λcls = λaux = 1 and λant = 0.1. All experiments are
trained for 20 epochs using an Adam optimizer with 1e-4 learning rate and
batch size 128.

3.5 Affordance Generation

Following [30], we use their modification of Grad-CAM to generate heatmaps
of the static objects. Heatmaps for an image I are generated by creating a
weighted sum of the features xI . This weighted sum is a element-wise product
of the backpropaged gradient, given some target action, and the L2-pooled
features xI . Like Grad-CAM, this allows attention maps to be generated
anywhere along the architecture as well as for all possible actions.
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4. Experiments

4.1 Setup

Experimental results for this paper are split into two parts: Model Robust-
ness, and Object-based Domain Adaptation.

4.2 Test-Time Training

After training a model, all parameters are frozen except for the anticipa-
tion module. The goal of the anticipation network, Fant, is to project the
output features from the trained backbone on the static, inactive, image to
an “active” featurization. This module is a two-layer nerual network with
28× 28× f size input where f is the number of channels output by the back-
bone (in ResNet 18, ResNet 34 it is 512 and in ResNet 50 it is 2048). The
output of the network represents the same feature width and height.

As shown in Table 4.1 video time length has little impact on the final
performance of the model. This may be because the location of a person’s
hand on an object is a simple predictor of the action occurring or the model
only needs to consider small motions to accurately predict the action. Con-
sequentially, both experiments are trained with only two video frames.
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Video Length KLD ↓ SIM ↑ AUC-J ↑

Max Length 8 1.427 0.360 0.806
Max Length 4 1.443 0.358 0.802
Max Length 2 1.434 0.360 0.805

Table 4.1: All models are run with ResNet 50 backbones. ↓ and ↑ represent
lower and higher is better, respectively. Max video length refers to the max-
imum number of frames that are fed into the LSTM. Videos with less than
the max number of frames are padded with zeros. Videos with more than
the max number of frames are randomly sampled for a contiguous sequence
with the max length.

Given the hallucinated “active” features, the features are compared to
the LSTM features of the most active video frame. Given the ground truth
action, simply choosing the frame that has the highest action classification
accuracy works well. Without the ground truth action, choosing the frame
with the most confident action prediction works roughly the same.

As described in Section 3.4, an anticipation loss is used to ensure similarity
between the two image embeddings. For OPRA, a simple L2 loss is used on
the L2-pooled embeddings. This can be done as the static images have no
background, perspective transformation, or occlusion.

Given a new video-image pair, the trained LSTM predicts the action
occurring and the most active frame is chosen. The features for the static
image are chosen and then projected. Next, only the anticipation loss is
computed. Given this fully unsupervised representation loss on the single
new example the anticipation network’s parameters can be updated. With
these new parameters, the anticipation module can predict a more “active”
embedding. Consequentially, a more refined object affordance heatmap is
predicted.

For both experiments, each individual test example updates the anticipa-
tion network 3 times before using the last prediction for the heatmaps. The
network is updated with a learning rate of 1e-4 with an Adam optimizer.
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4.2.1 Backbone Model Robustness

Three ResNet backbones are trained: ResNet18, ResNet34, and ResNet50.
Each model is trained for 20 epochs. It is important to note that due to the
size of the output channels, the anticipation network for Res18 and Res34 is
approximately 5.2 million parameters. For Res50, the anticipation network is
16 times larger at 83.8 million parameters. As a result, we expect the greatest
performance gain to come from the two models with the small anticipation
network, ResNet18 and ResNet34.

As noted in Section 4.2 the anticipation network is updated three times
for each test example using the anticipation loss before the final heatmap is
computed.

4.2.2 Out of distribution generalization

The training and testing process are similar to the previous section. In this
experiment, generalization to novel objects is tested. Only ResNet18 is used
for the analysis.

For the OPRA dataset, which consists of 26 different types of objects
(denoted nouns), training is split across three subsets of 13

26 randomly chosen
objects. Performance is then tested and compared for all test images, only the
objects seen during training, and only the objects not seen during training.
Results are averaged across the three splits.

4.3 Evaluation

Each static image generates a 28×28×1 normalized heatmap for each possible
action in the dataset. For each train and test instance, included is a list
of points collected from humans each picking a point on the image where
they think the object in the image affords a specific action. Given these
points, Section 3.2 describes a processing step to convert them into a single
normalized 28× 28× 1 heatmap.

There are three evaluation metrics used to compare the predicted heatmap
ĥ and the ground truth heatmap h: KL-Divergence (KLD), Similarity or
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2D histogram intersection (SIM), and Area under the ROC curve (AUC-
Judd/AUC).

• KL-Divergence treats both histograms as probability distributions. It
is defined as:

KL(h‖ĥ) =
∑
i

hi log

(
hi

ĥi

)
(4.1)

For this metric, lower values are better where two matching distribu-
tions have a KL-divergence of 0. KL-Divergence is sensitive to false
negatives. It is bounded by [0, ∞].

• Similarity (SIM) measures the intersection between two histograms. To
compute for normalized heatmaps h and ĥ, we simply need to take the
sum of the minimum value between each pixel of h and ĥ. Like KL-
Divergence, SIM is also sensitive to false negatives, moreso than other
metrics. SIM is bounded on [0, 1].

• AUC-J measures the area under an ROC curve. Since the heatmap
is normalized by range, each pixel value in the predicted heatmap can
be thought of as a predictor of if that pixel is on in the ground truth.
At multiple thresholds, the Receiver Operating Characteristic (ROC)
measures the true and false positive rate. AUC takes the area under
that curve. AUC tends to not penalize predictions with many low-
valued false positives. AUC is also bounded on [0, 1].



14

5. Results and Analysis

5.1 Model Robustness

Figure 5.1: OPRA dataset comparison. Blue is the baseline model and green
is with test-time training.

Given smaller backbone architecture sizes, we see a clear decrease in per-
formance across all metrics. Although a decrease in performance is expected
with decreasing model size, the magnitude of degradation is surprisingly large.
We theorize the reason for this stark decrease in performance is due to the
the change in quality of the featurization of the images. Since each back-
bone is frozen during training, the features of the ResNets are fixed and
the other networks (LSTM and anticipation network) simply transform those
fixed features. Larger models in this case will have better featurization when
pretrained on ImageNet, and we see this is the case in the results. Since the
number of output features is also greater in ResNet50, there are more fixed
features to transform. In addition, due to ResNet50 having more features,
the size of the anticipation network and LSTM are significantly bigger as
well. All of these factors contribute to better performance of the ResNet50
model despite being similar in parameter count to ResNet34.
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Models KLD ↓ SIM ↑ AUC-J ↑

ResNet 18 1.952 0.296 0.713
ResNet 18T 1.579 0.339 0.744

ResNet 34 1.638 0.334 0.766
ResNet 34T 1.497 0.354 0.772

ResNet 50 1.434 0.360 0.805
ResNet 50T 1.453 0.361 0.798

Table 5.1: Comparison of performance for different backbone models. Each
model was trained for 20 epochs. T at the end of the model denotes Test-Time
Training performance where the anticipation network is updated for each new
example. ↓ and ↑ represent where lower and higher is better, respectively.

Both Figure 5.2 and Table 5.1 show the performance improvements to
each of the three models with the use of test-time training of the anticipation
network. As expected, the biggest gains come from the smallest model - with
ResNet 18T having better metrics in KLD and SIM than ResNet34 whilst
having no additional parameters. ResNet 34T also shows modest improve-
ment over the baseline ResNet 34. Surprisingly the performance of ResNet
50T slightly degrades across the metrics in comparison for ResNet 50. Over-
all, it seems that this method experiences diminishing returns with better
model backbones. Since featurization is worse in smaller models, the antici-
pation network seems to compensate the performance.

An important note is that the trend of model sizes yielding improvements
seems to break down after ResNet 50. Training with a ResNet 101 backbone
has worse performance across all metrics (KLD: 1.580, SIM: 0.334, AUC-J:
0.768). As a result, experiments were only run for models of smaller than
size ResNet101.
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5.2 Qualitative Improvements

Figure 5.2: The result of updating the anticipation network on individual ex-
amples. Red, blue, and green heatmaps are for actions hold, push, and rotate,
respectively. The left-most image is the original prediction, each successive
image towards the right are the computed heatmaps after each additional
update to the anticipation network.

5.3 Out of Distribution Generalization

The goal of this section is to measure the performance of the method to
adapt to different domains than the data that was trained on. For OPRA,
the domains can be split in multiple different ways such as by object type,
action performed, and video domain. Primarily we focus on splitting domains
by noun.
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5.3.1 Object Generalization

Baseline KLD ↓ SIM ↑ AUC-J ↑

Full Test Set 2.176 0.301 0.755
Seen Objects 2.070 0.302 0.766

Unseen Objects 2.255 0.280 0.749

Test-Time Training KLD ↓ SIM ↑ AUC-J ↑

Full Test Set 1.557 0.336 0.757
Seen Objects 1.518 0.346 0.764

Unseen Objects 1.611 0.329 0.754

Table 5.2: Performance of the baseline ResNet18 model versus the ResNet18T
model which uses test-time training. ↓ and ↑ represent where lower and higher
is better, respectively.

To view generalization performance, we opt to use the ResNet18 as the back-
bone to test since its performance degraded the most after removing half of
the object classes from training.

We see significant performance decrease across the whole test-set when
removing half of the objects from test, including objects seen during training.
As expected, unseen objects during test perform the worst.

The model was next evaluated for test-time training. Model parameters
are updated the same as in Section 5.1 and described in Section 4.2. As
shown in Table 5.2, the use of test-time training sees significant benefits to
the performance of the model across all metrics with KLD improving the
most and AUC-J improving the least. We attribute the domain adaptation
performance to the anticipation network due to the action classifier still hav-
ing an even split for action verbs. Effectively the model still performs well
on classifying the action of a novel video, but the features between the pro-
jected static image and the active video frame may be very different due to
the shallow size of the anticipation network. Improving the performance of
the anticipation network per-example allows the model to effectively keep its
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action classification performance while providing a better model for heatmap
generation.

5.4 Failure Modes

There are a few ways that this method can fail. Misattribution of what is
causing an action is by far the most prevalent failure. As shown in Figure
5.3, to grind coffee, a person must both hold the handle as well as the side
of then grinder to rotate it. While the handle is the only part being rotated,
all demonstrations also require holding. This entanglement between actions
consequently will pose challenges deducing which part of an object really
affords the action.

Figure 5.3: Coffee grinder. The model
incorrectly attributes the side of the
grinder to both the actions hold and
rotate.

Cluttered scenes are another way
in which this method can fail. With-
out one main object to project fea-
tures, the anticipation network will
assign affordances across many ob-
jects. Due to OPRA being human-
annotated, the inherent ambiguity of
which of many objects afford an ac-
tion could cause a drop in perfor-
mance.

Finally, object affordance pre-
dicted heatmaps can also be incor-
rect or incomplete due to inherent
limitations in grounded human demonstration. Over the OPRA dataset,
most actions involve what the demonstrator’s hands do. As a result, parts
of an object that may afford an action can be occluded by the hand. Fine-
tuning on a demonstration that occludes key parts of an object may in fact
result in decreased performance. Differences in object perspective between
video and static images also can cause a drop in performance.
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6. Future Work

Despite the benefits of the proposed method, performance gaps between weak
and strong supervised approaches still exist. Further work in weakly super-
vised approaches possibly could close this performance gap between the two
approaches. From experimentation, it is apparent that temporal information
of the video frames are not fully leveraged. Further exploration in this realm
may either show better methods to utilize time or highlight that time is not
necessary to learn affordances.

Next, the anticipation network of this framework represents a significant
portion of the total parameters of the model. More exploration on the per-
formance trade offs between the number of parameters in each part of the
frame work may prove to increase overall efficiency of the framework.

While built off the current state-of-the-art weakly-supervised method, this
method still struggles with dichotomy between the training objective and the
final evaluation metrics. For example, training the current model including
the backbone results in significantly lower train and test loss but significantly
worse final performance compared to training with a frozen backbone.

While the current evaluation metrics are good, they are not extensive.
For example, while KL is not highly correlated with SIM and AUC, SIM
and AUC are moderately correlated. Furthermore, more metrics focusing
on precision and recall of the method could highlight further strengths and
failure modes of the method.

While both datasets provide a strong foundation for affordance prediction,
they also have some limitations. Both fully-annotated datasets are relatively
small in comparison to common image or video-based datasets. More actions,
nouns, or environments would also allow methods to be shown that they are
generalizable across object types, interactions, and scenes.

Learning affordances can also lead to efficiencies in other deep learning
tasks. For example, the task of action classification is very computationally
heavy due to the use of a time dimension as well as the use of 3D model
architectures. Since actions happen around interactions with objects and the
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environment, narrowing the spatial scope that a model looks at to just around
afforded regions poses potential opportunities for efficiency improvements.

Object affordances could also influence robotic interaction with it’s envi-
ronment. Novel object grasping is a popular task in vision-based reinforce-
ment learning and ties in well with the idea of object affordances. An agent
must implicitly learn what parts an object afford being held as well as other
actions if needed. Having model-based affordance prediction may yield im-
provements in learning efficiency and overall generalization.
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7. Conclusion

This method proposes an alteration of an existing framework to benefit from
test-time training. We claim that object affordance prediction can be thought
as primarily a similarity learning problem between a single “inactive” image
containing an object and an “active” video of that object being interacted
with.

As a result of this thought paradigm, we can construct an unsupervised
similarity learning objective that allows for the proposed model to be trained
on examples during test-time while still yielding performance benefits.

We show performance benefits to applying this approach to weaker back-
bone and anticipation models, showing this method can be an alternative to
simply increasing model size. As a result, more efficient affordance prediction
models are possible and potentially open the door to mobile and embedded
applications.

We also show that test-time training allows the model to be more general-
izable and be robust to domain shifts. Through holding out a large percentage
of objects in training, we show that the framework strongly improves results.

While requiring no-extra parameters, this method improves among exist-
ing methods in a simple and intuitive way. Allowing for greater robustness
across backbone models and improving generalizability gives this method
more applicability in areas where compute is more limited or where there is
limited training data, and further closes the gap between weak and strong
supervised approaches.
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