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Abstract

Among different ADC architectures, the successive approximation register (SAR) ADC has

flexible architecture, high power efficiency and is suitable for the digital CMOS process. Its

building blocks rely on MOS switches and latches, which makes it strongly benefits from

technology scaling. Time-interleaving (TI) architectures can provide a higher sampling rate

because they help relax the power-speed trade-offs of ADCs. Therefore, combining SAR

with time-interleaving becomes a good solution to many digital signal processing applica-

tions that require power-efficient analog-to-digital conversion. Based on Berkeley Analog

Generator (BAG), a time-interleaved SAR ADC generator has been implemented in differ-

ent technologies. To explore the design flow using circuit generators, this report discusses

the working principle and implementation of time-interleaved SAR ADC. A test chip has

been taped out in Intel22nm FFL process, containing 6 different versions of ADCs. In each

design, a 9-bit 16-way TI-SAR ADC samples at 10GS/s with a memory block storing the

digitized result from ADC.
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Chapter 1

Introduction

1.1 Motivation

Analog-to-digital converter (ADC) has been one of the most commonly used building blocks

of mixed-signal circuit as they act as the interface between analog and digital realm. It

is used to acquire analog signals from different sources and convert them into digital form

for analysis or transmission. Therefore, one of the keys to the success of different digital

systems which operate at a wide range of continuous-time signal has been the advance in

ADC design. The speed and performance of ADC are often the bottleneck when building

modern systems.

New applications have continuously been driving research in the ADC targeting at higher

speed and resolution. For the application that benefits from the fast evolution of the digital

integrated circuit, the steady increase in the performance naturally leads to more sophisti-

cated signal processing in the digital domain and moves ADC closer to the input of chip in

order to capture more analog information. Communication systems that enable higher data

rates will demand ADC with higher sampling rates. And higher resolution is also needed

when complex modulation is applied.

Figure 1.1 shows the Walden figure of merit of ADCs published at ISSCC and VLSI

Symposium [1]. The standard Walden figure of merit here is defined as

FoM =
P

2 ·min(fs/2, BWeff ) · 2ENOB
(1.1)
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Figure 1.1: Figure of merit of all ADCs published at ISSCC and VLSI Symposium from
1997 to 2019 [1].

Where P is the sampling frequency, fs is the sampling frequency and BWeff is the effective

resolution band width.

It is evident from the plot that different architectures ADC has been adopted for different

applications with specific speed and performance requirements. Specifically, ADCs work at

multi-gigasample per second with moderate resolution is widely used in high-performance

electronic/optical link and radar/lidar sensing system([2], [3]). As stated above, these sys-

tems naturally scale to advanced technology nodes for both technological and economic

benefits. Therefore, ADCs that enable SoCs to use digital power reduction brought by

technology scaling should adopt architectures that benefit scaling as well.

One problem for circuit design in an advanced technology node is that as devices size has

shrunk exponentially, the number of design rules also increases exponentially, making it diffi-

cult to quickly prototype design in modern processes. A generator-based design methodology
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can help to deal with stringent and complicated rules. Circuit generators can shorten the

time spent in post-layout verification, help accelerate the design cycle, and enable designers

to explore circuits under different technologies.

1.2 Research goals

The goal of this research is to develop a circuit generator based on SAR architecture for

energy-efficient data conversion for moderate resolution and working at moderate to high

frequency. SAR architecture can be combined with time-interleaving technique to achieve a

flexible range of configuration.

The function of an ADC is to generate a N-bit digital output such that the analog signal

can be approximated as VDAC = D/2N ·Vref , where Vref is the reference voltage. Depending

on the approach of getting the final value, there are different categories of ADCs. An ADC’s

sample rate (fs) can be chosen either for Nyquist rate operation (fs = 2 × fBW ) or for

oversampled operation (fs >> 2 × fBW ). ADC architectures like flash, pipeline, successive

approximation register (SAR) sample input signal at Nyquist frequency while sigma-delta

(Σ∆) ADC working with a higher sample rate.

Each of these typologies has their own unique advantages in terms of power, speed and

resolution that makes them suitable for a certain particular use scenario. For example,

pipeline ADCs perform analog-to-digital conversion by cascade low-resolution stages that

sample, coarse quantizing and amplify residue for the next stage. While this architecture

is suitable for high-speed applications, the requirement of precise active amplifiers in each

stage make it analog-intensive and take much power. In oversampled ADCs, which typically

implemented as Σ∆ converter, higher resolution is provided through oversampling and noise

shaping. A broad range of Σ∆ converters can also be implemented in advanced technology

nodes. But it still not able to benefit from power reduction with CMOS scaling because

op-amps usually are needed to construct analog integrator in loop filter.

In SAR architecture, a binary search algorithm is performed. It typically uses capacitor

digital-to-analog converter to substract a quantized amount of reference voltage from sampled

voltage. In most cases, only a clocked digital-like comparator and digital logic are needed.

This results in a primary reason for modern SAR ADCs to thrive. The MOS switches and

latches strongly benefit from aggressive technology scaling. The digital-intensive highly effi-

cient operation makes SAR ADC a strong candidate in modern systems. It is shown in Figure
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Figure 1.2: Diagram of time-interleaved concept.

1.1 that SAR-based design (marked in red) achieve leading-edge performance for sampling

rate (fs) range from tens of kilohertz to tens of gigahertz [4]. In the low-frequency regime,

there are designs like [5], [6] for medical application. For moderate frequency, SAR or SAR

assisted ADCs such as [7] and [8] can offer moderate resolution at low power level( 1mW). At

the ultra-high-speed region, a 90 GS/s design [9] is demonstrated to be suitable for optical

and electrical data link applications.

Time-interleaving originally was used as an effective method with area and power penalty[10].

But it turns out to be a good solution for power-speed trade-off and will relieve many prob-

lems even when speed is not of primary limitation. The basic working principle is shown in

Figure 1.2. As the speed of a single-channel ADC approaches the limits of the technology, the

power-speed trade-off becomes nonlinear and demanding a disproportionately higher power

for the desired increase in speed. Time-interleave relaxes the trade-off and makes pushing

to higher conversion speed possible. And this benefit comes with the overhead of sampling

clock phase generation, which makes the energy efficiency of equivalent single channel con-

version worse. And also the multi-channel structure suffers from mismatches in gain, offset

and bandwidth, which usually requires some calibration techniques.

1.3 Report organization

Overall, this report evaluates the design methodology and generator-based implementation

of high-speed time-interleaved SAR ADC. Also, both the generator-based design flow and

the LAYGO layout generation engine in BAG are introduced
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In Chapter 2, the design considerations in various building blocks of SAR ADC is ex-

plained. By exploring the design space of each building block, especially for those well-

understood parts, an automated generator-based design flow can be applied to accelerate

design iterations.

Chapter 3 explains the working principles of generator-based design flow and the layout

generation engine. Also, some example code are presented to show the layout and schematic

generation steps.

Chapter 4 talks about circuit and generator details. The implementation of generation in

Intel 22nm FFL is presented. Chapter 5 discusses the future work and possible improvement

on the speed and resolution of ADC generator.
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Chapter 2

SAR ADC Design Considerations

Generally, successive approximation register (SAR) ADCs don’t reply on high-performance

analog circuits such as precise amplification circuits. The performance of SAR ADC depends

on the precision/speed of voltage comparison and digital logic gates. The major power

consumption of SAR ADCs comes from charging and discharging capacitive DAC. Therefore,

as the technology scales, the speed of SAR ADC improves and the power scales according

to CtotV
2
dd.

To better adopt automatic generator-based design flow and develop the SAR ADC gen-

erator, this chapter review major aspects of design in SAR building blocks. Also, time-

interleaved (TI) topology that applied to ADCs is further examined to understand the ad-

vantages and limitations of it. First, this chapter will review the basic operation of SAR

ADC, then discuss major building blocks including comparators, capacitive DAC and SAR

logic. Lastly, the speed benefits in TI-SAR architecture, effects on metastability and major

challenges arise from multiple channel mismatches are explained.

2.1 General working principle of SAR ADC

Figure 2.1 shows a conceptual diagram of SAR ADC.It consists of capacitor DAC, digital

logic, comparator, and switches and the plot on the right shows an example conversion

waveform. The Algorithm 1 describes the binary search operation in SAR.

At the beginning of each conversion, the input voltage is sampled on the capacitor array

(top-plate in this example). Then the sampled voltage is compared with a reference voltage
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Figure 2.1: Conceptual diagram of SAR ADC with top-plate sampling.

and the comparator generates the result. Based on the first result, half of the total capacitor

flip makes the reference voltage change. This operation repeats and gradually drives the

differential input of the comparator toward zero. Then the conversion finishes with only the

quantization error (< 1
2N

) left.

This conversion process can benefit from modern nano-CMOS technology because new

technology is optimized for digital operation. So logic gates and MOS switches all naturally

become faster and consume less power. Also, some technology provides tall metal stack

and advanced lithography which makes metal fringe capacitor can be smaller while keeping

accuracy. Lastly, the voltage comparator in design can be implemented as a regenerative

dynamic latch. So the entire design can be implemented in a dynamic operation manner

and doesn’t consume static currents. For low-speed sensor applications, it works well even

at kilohertz and the power of the entire system is reduced by turning it into a ”sleep” state.

For aggressively high-speed application time-interleaved architecture that combines tens of

ADCs is also a good choice even a single-channel of ADC can only deliver moderate speed.

There are also non-idealities in each building block. First, the noise will be collected

from various sources and impact the general signal-to-noise (SNR) of design. Besides quan-

tization noise, thermal noise sampled onto capacitive DAC and input-referred noise from

the comparator also degrade the performance. Distortions caused by limited bandwidth and

non-linearity in track and hold circuit limit the SNDR it can achieve. Systematic errors arise

from the mismatch between DAC units and transistors in comparator cause trade-off with

conversion speed. As for the power consumption, the total power can be estimated by sum
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Algorithm 1 Successive approximation algorithm

Require: Vin ∈ [Vref,N , Vref,P ]
Vmax = (Vref,P − Vref,N)/2
Vref [0] = Vmax/2
for k = 1→ N − 1 do

if Vin > Vref [k] then
Vref [k + 1] = Vref [k] + Vman/2

k

Dout[k] = 1
else

Vref [k + 1] = Vref [k]− Vman/2
k

Dout[k] = 0

of contributions from each block: as the number of bits (Nbit) and sample frequency (fs) in-

crease logic stages energy (Elogic) as well as comparator energy (Ecmp) linearly increase. And

capacitor array consumes the major part of the power which proportional to the reference

voltage (Vref ) and supply (Vdd). Total power would be:

Ptot = (NbitEcmp +NbitElogic + CDAC,totVrefVdd) · fs (2.1)

Here it is assumed that capacitor array are fully charged and discharged in each conversion,

which would be modified by a switching factor α if use more sophisticated switching scheme.

2.2 Comparator

Comparators in SAR ADCs are used to generate a result of voltage comparison. It is a

critical block in building high-speed converters. The target of comparator design focus on

making a fast and accurate decision, reducing noise as well as lowering the meta-stability

rate. The specific implementation of the comparator may vary in different applications.

However, because of the reasons stated above, generally comparators are designed as a

clocked dynamic circuit. This section uses strong-arm comparator as an example to illustrate

detail considerations in this block.

Strong-arm comparator

Figure 2.2 shows an example of using strong-arm latches as a comparator. The pre-amplifier

in front of it is optional. The comparator is essentially a regenerative latch controlled by

clock phase Φ. When the clock is high, the tail current turns on and the input pair begins
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Figure 2.2: Example of comparator circuit in SAR ADCs.

to amplify input voltage difference. As the difference accumulates, the regenerative cross-

coupled inverters on the top form positive feedback to generate a digital output. And this

signal is buffered and drives latches in SAR logic. During Φ̄ phase, the current tail is off

and multiple reset transistors are shown in gray color turn on and pull corresponding nodes

to well-defined values. This operation helps eliminate both common-mode and differential

hysteresis impacts on the comparator.

Details on working phases

This kind of dynamic circuit is different in terms of analysis method from circuits in which

small-signal analysis can apply. To better understand each transistors’ working states and

sources of non-idealities and to form a scripted design method, the detailed working phases

are explained in this part. It is possible that we can divide the working process of strong-arm

into several phases in different ways. Here, Figure 2.3 shows equivalent circuits corresponding

to three different phases during decision making [11]. It is assumed that before phase A start,

internal nods are filly precharged to supply.

• Amplification: After the tail current is turned on by the clock, the input pair amplifies

input voltage. And in this phase, the current tail is fairly constant because input transistors

act as a differential pair. As the nodes P and N are being pulled down to different values,
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the comparator will enter phase B. During this period, the input pair produces an input

gain:

Av,A ≈
Vth · gm,in

Icm

This current mode amplification period takes τint to finish.

• Turns on NMOS: After entering this phase, the cross-coupled transistors form a feedback

loop and exponentially split the output nodes apart. In this period, the circuit is working

in a positive feedback loop and can be quantified by the time constant τreg. After several

time constants, the output continuously falls under Vdd − Vth,p and turns on the PMOS

pair.

• Regeneration: After PMOS’s are on, circuit it performing integration and finally have a

large enough output swing for output buffer to produce a digital output. And the positive

feedback will eventually pull one output to supply and another one to ground.

During each iteration of SAR operation, the amount of time used for comparison is critical

since it will directly limit the ADC speed. On the evaluation of comparator design, both τint

and τreg are important. For different input common-mode voltage, these two time constants

will vary accordingly. And one simple approach to estimate them is the approximate total

time it takes to produce a valid output as:

Ttot = τint + τreg · log(
Vdiff

Vin + Vos
) (2.2)

where Vdiff is a pre-defined output difference and Vos is the input-referred offset voltage. For

certain input common-mode voltage, three unknown variables can be estimated by simula-

tions with different values of Vdiff .

Sources of noise and distortion

Besides speed, the comparator must be able to accurately make a decision. Non-idealities

like noise, offset and metastability limit the performance of CMOS comparator in advanced

technology.

• Input-referred thermal noise One of the main limits of accuracy comes from the input-

referred thermal noise of comparators. The noise analysis involved in the circuit with non-

linear and time-varying nature. Therefore, the small-signal analysis is not quite suitable
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Figure 2.3: Strong arm comparator working phases.

for dynamic comparators. Intuitively speaking, the input pair will be a major source of

noise. It is simply because during phase A and B in Figure 2.3 input pair transistors

works as a current integrator to amplify the input signal. When the transconductance

(gm) of input pair increases, the noise current will be reduced. Also, thermal noise is

averaged on the parasitic capacitance Cx in Figure 2.2. A wide device with more parasitic

can also reduce the noise contribution from the input pair. Statistically speaking, with

longer integration time, because of the random nature of thermal noise, the noise tends to

average out on the parasitic capacitance. In summary, the input device should be wide and

have gm/Id value in order to optimize noise performance. And comparator’s input should

be sized as big as allowed by speed specification. The second largest noise contributor
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is NMOS’s in the cross-coupled inverter because they are involved in amplifying output

nodes when the difference is still small.

To simulate the noise from comparators, instead of using transient simulation which takes

a long time and has slow simulation speed, PSS noise analysis is a better method. Since

comparator is manifesting in a periodic way in system, assuming it is working at steady-

state, noise contribution during decision-making period can be integrated.

• Input-referred offset: Mismatches between input devices and regenerative inverter as

well as the capacitive loading bring input-referred error to comparators. The contribution

of offset can also be understood in a way similar to noise. In fact, if we consider the flicker

noise of transistors at a low frequency, the transfer function of low-frequency noise to

output will be very similar to mismatch. From this simulation, the main sources of offset

can be estimated. Mismatches can be modeled as zero-mean Gaussian random variables,

so increasing area and carefully layout can both reduce mismatch. Calibration is usually

necessary to correct the offset error, it can be implemented as either transistor paralleled

with input pair or capacitor arrays tied to the output node.

• Metastability: Metastability happens when differential input at comparator falls into a

small range that comparator is not able to resolve within an allocated time. Along with

the noise, metastability shapes the output code distribution of ADC [12]. While noise is an

error source that always happens at each iteration with tiny random error, metastability

happens very rarely but cause large mistake at the output digital code. Applications

sensitive to metastability error need to use specific calibration to correct it. If the time

pegriod allocated to the comparator is Tcmp and time constant is τreg, the metastability

rate can be modeled as:

MR = α · exp(− T1
τreg

) (2.3)

where α is a proportionality factor. Metastability is an important issue in measurement

applications, where requires a low error rate of ADC. In [13], additional logic is used to

detect the occasion of metastability and make corresponding correction.

• Kickback: Kickback occurs because the output of the comparator always has one side is

pulled down while the other side is pulled up. The kickback effect which couples input

nodes P and N in Figure 2.2 with CGD, will be signal dependent and therefore should be

minimized in high-resolution design. It can be modeled as capacitive divided voltage on
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Figure 2.4: Comparator design strategy.

input gates:

δVkickback =
CGD

CGD + CDAC

∆VPN (2.4)

With larger DAC array, the amplitude will be reduced. Also when circuit is sensitive to

kickback effect, an additional pre-amplifier can help relieve it.

From the analysis above, both noise and speed performance are closely related to input

common-mode voltage of the comparator. As shown in Figure 2.4, delay tends to reduce

and noise will increase with higher Vcm. It can be intuitively understood that the input pair

is stronger and reduce integration time, make noise have less time to average out. The third

plot shows the delay and noise trade-off for a specific design. It is possible to make design

choice simply from this plot to decide comparator sizing and corresponding common-mode

voltage it works at.

This analysis will oversimplify other non-idealities discussed above, but it shows that by

combining design algorithm with generator it is possible to make quick iterations on circuit

design and also automate design of some very well-understood circuits.

2.3 SAR Logic

The SAR logic often consists of two sets of registers. First one is used to monitor the current

conversion bit and the second one records the decision result for each bit and drives the

capacitor array. The diagram of the logic loop is shown in Figure. 2.5. In synchronous SAR

design, time for each evaluation is fixed and decided by worst-case delay. If the worst-case
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Figure 2.5: Diagram of logic loop and delay optimization.

time for resolving a certain bit is Tconv, total conversion time in a synchronous SAR at least

should be NTconv +Tsamp+Trst. In asynchronous SAR design [14], additional logic is inserted

to assert finish when bit is resolved and trigger the next conversion.

• Speed: To improve the speed of SAR ADC, usually asynchronous architecture is used,

because it is not limited by the worst-case delay. From an optimization perspective, the

loop delay can be analyzed as Figure 2.5 shows. The delay of going through a comparator,

SAR logic and settling the capacitor DAC is defined as Tcmp, Tlogic and TDAC separately.

First of all, a larger capacitor requires larger drive strength. The capacitor driver should

be sized up for different weights, and the delay is inversely proportional to driver gate

(as well as corresponding latch) Assumed that only one comparator is used, with different

loading at different bits, the logic delay increases linearly. As the plot shows that when

combining two delays, there will be a minimum point that overall loop speed can be

optimized. This result can be interpreted as a different strategies of architecture selection.

The main benefit of the asynchronous operation is getting rid of wasted extra time waiting

for bit that needs less time. But it is possible to carefully match delays in each iteration

so that they take approximately similar amount of conversion time. The advantage of

doing this is in decreasing number of gates inside the loop. Because in asynchronous

design, the additional logic used for the asynchronous clock generation will introduce tens

of picosecond delay even in an advanced technology.

• Power: The power consumption is fairly a fixed overhead, meaning that is not very
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Figure 2.6: (a) Synchronous operation (b) Asynchronous operation.

sensitive to different architectures and will directly benefit from technology scaling. The

power consumption of logic gates has a linear dependence on the different number of bits

Nbit, if the switching energy per iteration is fixed. But The switching energy can also scale

with Nbit because the number of logic gates scale with Nbit as well. In this case the power

consumption of digital logic is quadratically depends on number of bits.

The design space of SAR logic is relatively limited and not many non-idealities are in-

volved. However, those delays are very sensitive to layout and matching delays in each

conversion step and require post-extraction simulation. By implementing these circuits us-

ing layout generators makes it possible to quickly verify the delay and reduce design time

cost. The difference in timing diagram for asynchronous [14] and synchronous operations

is shown in Figure 2.6. The synchronous operation relies on an internal clock that divides

the conversion phase into a uniform time interval for each bit. In relatively low-speed SAR

ADC design, clock generation is less critical. But for high-speed application, conversion

time is composed of maximum DAC settling time, comparator resolve time and margin for

worst-case clock jitter. The last part either elongates conversion time or imposes stringent

requirements on clock generation. Therefore the power and speed limitation will also be

limited by the internal clock circuit. It is obvious that in synchronous operation, the time

needs to accommodate the worst case, which usually is the last bit since it takes a much

longer time for the comparator to resolve voltage difference to around 1
2
LSB.
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Figure 2.7: (a) Clock jitter (b)DNL and INL of a 3-bit ADC with unit capacitor mismatch.

In asynchronous operation, there will still be a global clock drive the ADC into different

phases. But during the conversion phase, the asynchronous processing is triggered internally

from MSB to LSB. After the comparator resolves the current bit, it produces a DONE signal

to trigger the next bit’s conversion. This operation takes advantage of different conversion

bits have different times and each conversion time is not limited by the worst-case anymore.

A numerical analysis in [14] shows that worst-case for total conversion time happens when

input is 1
3
VFS or 2

3
VFS. And if only the comparator resolve time is considered, Tasync/Tsync

approaches 1/2 as the number of bits increases, where Tasync, Tsync are the total time for

asynchronous and synchronous operation respectively.

2.4 DAC and sampling

Sampling error: The error during sampling comes from several sources: thermal noise

during sampling, clock jitter, and distortion caused by switch non-linearity [15]. Those

factors demonstrate different effects when implementing ADCs in a time-interleaved fashion.

First, the impact of clock jitter is shown in Figure 2.7 (a). It is assumed that the input

voltage is sampled at fixed intervals. However, the uncertainty of the clock edges makes the

exact time of sampling uncertain. The difference between actual sample time and theoretical
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sample time is shown as ∆t in the plot. Clock jitter is critical in high-speed ADC design

while applications at low speed don’t have stringent requirements.

Thermal noise sampled on the capacitor DAC array comes from the resistance of the

sampling switch. The sampled thermal noise is inversely proportional to DAC sizing CDAC .

The total differential noise is 4kT/CDAC . Even without any other non-idealities, the reso-

lution of ADC still directly influenced by thermal noise. To get one more effective bit, it

is required improve the signal-to-noise ratio by 6dB, which equivalently is 4 × CDAC . As

discussed above, power consumption in SAR ADCs mainly comes from charging capacitor.

So thermal noise leads to the trade-off between power and resolution.

The distortion of sampling comes from the non-linearity of the sample-switch as well

as the resistance associated with the switch. To get enough sample switch bandwidth, the

switch needs to be sized up: while increasing the switch size, it loads itself and reach a point

that further improving size doesn’t help. Also, if we want to settle the input signal within

half LSB, it needs sampling time:

tsample = (Nbits + 1) · ln(2) · τsample (2.5)

to finish, where τsample is time constant of sampling switch, and that also means the input

signal frequency is limited to

fin <
1

2π · τsample

(2.6)

The distortion comes from the fact that MOS switch doesn’t maintain a fix VGS during

the entire sampling period. reducing the requirements on SFDR dramatically reduces the

minimum sizing needs in terms of 2nd and 3rd harmonics.

Capacitor DAC mismatch: Ideally the digital output of ADC should be:

Dout =

⌊
(2N − 1) · Vin − Vref,N

Vref,P − Vref,N

⌋
(2.7)

That means each step should have a uniform width like the red line shown in Figure

2.7. However, the mismatch of each capacitor unit creates a systematic error to Vin −Dout

transfer curve. At low frequency, the deviation from an ideal curve will also show up as

harmonic components in low-frequency simulation.
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Assume unit capacitor CL has normal distribution with variance σ2
u. The DNL variance

comes from switching from 2N−1−1 to 2N−1, it has variance σDNL = (2N−1)σu. The variance

of INL can be approximated by σINL = 2N−2σu. Therefore, careful layout is required during

DAC design. Otherwise, the matching problem will directly limit the best performance of

ADC. Figure 2.7(b) shows the transfer curve of a 3-bit binary DAC model in python, each

unit capacitor has the same σu. The blue line shows how it deviates from the ideal curve

with mismatch added. The thermometer code can also be used in capacitor DAC design.

The penalty from that is the number of switches exponentially increase with number of bits.

A combination of binary and thermometer code can have a good trade-off between number

of switches and mismatch.

The power consumption of capacitor DAC is a major part of the SAR ADC. Some parts

of power are technology scaling friendly, and reducing unit capacitor size utilize metal fringe

capacitors while maintaining good matching, can also reduce power. Some fixed overhead,

like thermal code to binary code decoding, should also be considered.

2.5 Time-interleaved ADC

Figure 2.8 shows the diagram of time-interleaved ADC. To get more acquisition and con-

version time, multiple channels are running in parallel with their clock signal phase shift

by 2π/N for adjacent slices. What is not shown here is that usually a clock generation

circuit is required to span the clock signal evenly across 2π. The input is sampled conse-

quently and digital output is multiplexed to construct digital output. Some non-ideal effects

are annotated in the diagram which will be discussed later. The benefits and penalties of

time-interleaved architecture are briefly explained in the rest of this chapter.

Advantages of time-interleaving

Speed and Power-speed trade-off: As a single-channel ADC’s sampling frequency in-

creases, the acquisition and conversion time both shrink. For acquisition, there are two

aspects that set the lower bound. First, the voltage on the sampling capacitor needs enough

time to settle. Generally, for an N-bits ADC settle to half LSB:

Tsettle = τsample · ln(Nbits + 1) (2.8)
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Figure 2.8: Detail diagram of time-interleaving operation.

If a ADC uses a half of clock cycle to sample, Tsettle < Tclk/2. Also Tclk/2 = 1/2fs =

1/4fin,max Thus

fin,max1 ≤
1

4τsample · ln(Nbits + 1)
(2.9)

As fin grows it will ultimately be limited by the above value. While with N-way time-

interleaved, the acquisition time is relaxed by N. However, the sampling switch and capacitor

will have an associate time constant that limits the bandwidth.

fin,max2 ≤
1

2πτsample

(2.10)
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With N increasing and fin,max1 > fin,max2, this doesn’t bring benefit to sampling speed any

more. Also, other limitations may also limit the frequency even becomes larger than fin,max.

From the power-speed trade-off standpoint, time-interleaved architecture is a very useful

method. It can be better illustrated by considering and SAR ADC as an example. In SAR

ADCs, the conversion time is mainly decided by delay of digital gates, if we consider the

capacitor DAC as the final loading for gates. For a differential topology shown in 2.1, the

loading is CDAC/2. So each conversion takes time that proportional to τ · ln(CDAC

2Cu
). The Cu

and τ are parameters that highly depend on the process. For an N-bit ADC the conversion

time is roughly:

Tconv = Nbit · τ · ln(
CDAC

2Cu

) (2.11)

Although many approaches can be taken to optimize this value, it still highly depends on

technology and won’t be possible to fundamentally break this limitation. It is still assumed

that there is a fixed overhead and some design parameters that can be optimized:

Tconv = Toverhead + Tp (2.12)

Where Tp is the delay time that depends on logic gates sizing. In modern process the power-

speed are traded off in an inverse proportional dependency. The design space we have to

further improve ADC speed focuses on those part that can be improved, for single ADC:

P = Poverhead +
k

Tconv − Toverhead
= Poverhead +

k

Ts − Toverhead
(2.13)

For time-interleaved ADC, the second part becomes

Pscale =
Nk

NTs− Toverhead
(2.14)

And as the N increase the power is benefit from interleaving.

Metastability rate: Use the same approximation in comparator metastable rate anal-

ysis, the metastablity is proportional to

P = α · exp(−Tcompare

τreg
) (2.15)

With longer time for conversion as stated above, the timing for comparator is relaxed. For

interleaving ratio N, the result becomes exponentially better.

P = α · exp(−NTcompare

τreg
) (2.16)
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Figure 2.9: Effects of errors in time domain.

Error sources in time-interleaved ADCs

Time-interleaved ADCs suffer from mismatches among different channels such as offset, gain

and clock mismatch. This part analyses the impact of those effects in time and frequency

domain [16]. The time-interleaved ADC is modeled in Python script that includes different

non-idealities.

Gain mismatch: In Figure 2.8, the gain mismatch is annotated as different gain Gi.

Gain mismatch exhibits itself as the slopes difference in different sub-ADC’s transfer curve.

It comes from different sources, such as the sampling process and reference voltage change.

The first plot in Figure 2.9 shows the time domain waveform illustrating the influence of gain

mismatch and the frequency response is shown in Figure 2.10. For an N-way time-interleaved
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Figure 2.10: Effect of different mismatch in frequency domain.

ADC, the error in frequency domain happens repetitively every N/fs and the error amplitude

is modulated by the input signal. Therefore, this effect exhibits as an amplitude-modulated

noise at frequency peaks at

fgain,noise = ±fin ±
k

N
fs(k = 1, 2, ..., N) (2.17)

The gain mismatch degrades the SNR and the extent to which performance is influenced

also depends on the amplitude of the input signal.

Offset mismatch: Offset sources in the signal chain like the offset of the comparator

can be moved forward to input as an input offset for ADC like Vos,i shown in Figure 2.8.

The time-domain waveform shows a repetitive error that happens every N/fs. The average

offset in each channel generates a DC component. The noise frequency response in Figure
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Figure 2.11: Output spectrum of an 4-channel ADC influenced by channel mismatches.

2.10 peaks at

foffset,noise =
k

N
fs(k = 1, 2, ..., N) (2.18)

Timing mismatch: The mismatch caused by different sampling edges for each ADC is

composed of both clock skew (systematic error) and clock jitter (random error), it is shown in

Figure 2.8. This effect causes the largest error when the slope of the input signal is steepest.

Therefore in Figure 2.9 the phase of the error waveform is shifted by π/2. It is essentially a

phase-modulated noise and the noise frequency peaks also locate at

ftime,noise = ±fin ±
k

N
fs(k = 1, 2, ..., N) (2.19)

In the frequency domain, this error will overlap with error caused by gain mismatch and the

phase of the error is shifted.

Bandwidth mismatch: Different sampling bandwidth for different channels will also

cause a error. The switches can be modeled by the R-C model and because the frequency

response of the gain and phase varies during sampling are different for each channel.

Vsampled = GiA cos

(
2πfin

N

fs
+ θi

)
(2.20)
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Where Gi and θi are different different gain and phase shift caused by sampling bandwidth

mismatch. It is both amplitude- and phase-modulated noise and that will show its effect

similar to gain and time mismatch. The noise frequency peaks locate at

fBW,noise = ±fin ±
k

N
fs(k = 1, 2, ..., N) (2.21)

To summarize, the frequency response of a 4-channel time-interleaved ADC model is

shown in Figure 2.11. Different frequency components are annotated in the plot. The gain

and timing skew mismatch effects are added together. It is clear that those non-ideal effects

need to be calibrated, otherwise they will greatly degrade the performance of time-interleaved

ADCs.
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Chapter 3

Generator-Based Design

3.1 Design-based design methodologies

The performance of circuit in advanced technology nodes relies on device characterization,

considering the post-layout effects. Especially in high-speed circuit design, the layout qual-

ity tends to influence the speed significantly. Also, device matching needs to be carefully

simulated with the actual layout parasitic. On the other hand, porting circuit design to

different technologies is time-consuming, even if the changes are as simple as a metal stacks

will require completely re-design. Therefore, generator-based design methodology can help

reduce the design cost. It improves designers’ ability to explore design space and make it

possible to realize more performance optimization.

A typical generator-based design flow is shown in Figure 3.1. It starts from a design script

which handles circuit specifications and translates them into circuit chosen by designer,

device sizing and layout strategies. Those information are organized in a structural way

that can be taken by some script-based generators to implement actual schematic, layout

and testbench. A schematic generator will take a pre-defined template and map the input

parameters to actual sizing of each components inside. And layout generator needs to follow

the scripted layout strategies that are able to handle layout in different situations. The

input to layout generators are super-set of schematic input that include other parameters

like wire space and width. Designers need to construct generator scripts in a way that they

are DRC/LVS clean for a reasonable combinations of devices’ size in different technology.

Each circuit will have specific requirements. So designers also need to construct testbench

generators that instantiate testbench for the generated circuit instance, run simulation and
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Figure 3.1: Diagram of generator-based design.

process data. If the simulation results show that the generated instance fails to meet specs,

the design script should be able to handle the result returned from the simulator and make

iteration based on information acquired. This agile approach makes sure that each time the

circuit can be verified with post-layout effects.

The time-interleaved SAR ADC generator in this work uses Berkeley Analog Generator

(BAG) [17] for layout and schematic generation. The rest of this chapter will introduce

implementations of schematic and layout generator.

3.2 LAYGO layout generator

Introduction to LAYGO

The ADC generator uses LAYGO (LAYout with Gridded Objects) layout generation engine

to automatically generate layout based on given parameters [18]. LAYGO is one of the

layout generator engines in BAG that uses hand-crafted primitives and build layout based

on that.
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Figure 3.2: Example of LAYGO layout generation flow.

To make a process portable layout generator, LAYGO adopts the approach similar to the

Lego block. The layout methodology of LAYGO is shown in Figure 3.2. It handles complex

design rules by hand-made primitives and pre-defined routing grids. The unit blocks such as

different unit transistors are equivalent to the Lego blocks, and the routing grid is the Lego

bump. Imagine what happens if the size of Lego blocks become smaller, as long as they are

still assembled according to smaller Lego bumps, we will still get the same result except the

difference in dimension.

Similarly, different templates are constructed in different technology. They are assembled

by the same script to generate layout. In advanced technology nodes, DRC rules becomes
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increasingly complex, but as long as the pre-defined unit blocks can capture different rules,

the generated layout will still be DRC clean. Generally speaking, the most difficult front-

end design rules are captured by different categories of hand-crafted cells. Going up to

higher-level the metal patterns are wired up following pre-defined routing grid with specific

spacing, width and via types. This approach is similar to digital circuit design that uses

standard cells. But different device types are free to choose as long as corresponding unit

block templates are implemented.

Primitives and layout example

In Figure 3.2, the left bottom side shows NMOS and PMOS templates with two fingers

and pre-defined width. Inside these templates, one unit transistor is implemented with a

bounding box which conveniently makes it easy to put in an array. The pins’ name G,D, S

stand for gate, drain, and source respectively, they are defined in coordinates that compatible

with corresponding routing grid (M1-M2 CMOS grid in this case). There are other types

of transistor templates available in order to handle different situations. For example, one

finger transistors with gate connections at left/right side are used to implement minimum

logic gates. When writing layout generators in python script, transistor templates are placed

in an array to implement different device size. It is guaranteed that there will be no DRC

issue in the middle. As for the boundary rules at two sides, it should be handled by N-type

and P-type boundary templates. For example, it left enough space at sides to make sure it

will not conflict with other primitives. Similar to transistor templates, there are also various

types of boundary cells can handle different situation.

Several routing grid examples are shown in the top middle of Figure 3.2. Routing grid

templates are less stringent as long as they meet metal width/space and via requirements

that specified by design rules. So designers have the flexibility that define different routing

grids for different purpose of layout. The M1-M2 CMOS grid is an example of an unevenly

spaced grid. In this case, the grid is only valid when putting complementary transistors with

their gates face each other. In this example, two routing tracks are used for source/drain

routing, one routing track is used to connect gates and there is one more track left between

gates of two transistors. Supply routing uses wider metal and double via. The M2-M3 basic

grid and M1-M2 basic grid in the figure are example of evenly spacing grid. They can be

used when multiple rows of same type of transistors are placed together.

The right side in the figures shows an example of NAND gate using the templates ex-
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Figure 3.3: Implementation of capacitor DAC generator in LAYGO.

plained above. There are two transistor templates placed in the middle use CMOS grid.

And boundary templates are aligned at two sides, making sure this layout can be tiled with

other gates without violating design rules. Inputs A and B pin are placed at Metal 2, output

signal is connected to Metal 3. All these connections use pre-defined CMOS routing grid,

meaning that the absolute coordinate is calculated from template primitives.

Besides transistors, other passive devices such as capacitor, diode and resistor are also

supported in LAYGO. A capacitor DAC layout example is shown in Figure 3.3. Unit capaci-

tor cells and dummy cells are implemented manually. The size of unit block and the location

of pins also need to be compatible with the transistor routing grid in order to be integrated

with transistor in higher level layout. This example shows a simple 5-bit capacitor DAC on

the right side of Figure 3.3.

The example above shows that building device primitives in LAYGO relies on correct

size and pin location. Specifically, a device primitive needs to have quantized dimension.

In our implementation, a PlacementGrid is used as the minimum grid for primitive block.

And all the pins in primitive blocks should compatible with at least one routing grid defined

in LAYGO. Also, LAYGO can take black-box and integrate that into layout in a similar

way. As long as the boundary of block handle the design rules properly and pins of block

are on-grid, it can be very flexible in specific implementation.
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Example code:

After completing the templates library, a python script is used to place templates and gen-

erate layout. And all the implementations of layout design such as the floorplaning, sizing

adjustment and routing need to be coded. Some example commands are listed below to

show how generators are implemented.

# Templates p lacement :

# ( x0 , y0 ) , ( x1 , y1 ) are the o r i g i n po i n t s i n s t s are p l a c ed

inst0 = laygen.relplace(cellname=’cellName0’,

gridname=’gridName’,

xy=[’x0’, ’y0’])

inst1 = laygen.relplace(cellname=’cellName1’,

gridname=’gridName’,

xy=[’x1’, ’y1’])

# Si gna l Routing :

# connect from one i n s t 0 ’ s p in to one i n s t 1 ’ s p in

laygen.route(gridname0=’gridName0’,

refobj0=inst0.pins[’pinName0’],

gridname1=’gridName1’,

refobj1=inst1.pins[’pinName1’])

# Supply Routing :

# connect source s o f i n s t to vdd/ v s s

for devName in [inst0, inst1]:

for pinName in [’S0’, ’S1’]:

laygen.route(gridname0=’gridName’,

refobj0=devName.pins[pinName],

refobj1=dev.bottom,

direction=’y’, via1=[0, 0])

# power and groud r a i l s

rvdd = laygen.route(gridname0=’gridName’,

refobj0=inst0.bottom left ,
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Figure 3.4: Example of strong arm comparator generator floorplan.

refobj1=inst0.bottom right)

rvss = laygen.route(gridname0=’gridName’,

refobj0=inst1.bottom left ,

refobj1=inst1.bottom right)

# Export pin

laygen.pin(name=’pinName’, gridname=’gridName’, refobj=inst0)

The typical layout design flow is very similar to the manual layout flow that requires

a floorplan first. And device arrangement and routing need to be considered carefully by

designers. However, the difference comes from the fact that a good layout generator generates

DRC- and LVS-clean layout with many different input parameters. The example in Figure

3.4 shows some considerations when making a strong-arm layout generator. The arrows show

the direction in which transistors expand. Each row is assigned to put transistors with a

specific function. In this way, the size can be easily adjusted. For example when changing

the size of input pair, layout can be easily extended toward two sides. Also, the schematic

shows an offset cancellation pair to adjust the input-referred offset of the comparator. It can

be implemented as an option in the layout generator. Because those transistors are put in a

different row, the option can be turned off when not needed.
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This example shows a very simple case but highlights some points when implement-

ing generators. First, since the generator itself doesn’t have any build-in algorithm for

auto-routing and placement. More complex layout strategies always need more algorithms

implemented in script. In this case, the offset cancellation transistor should be very small

for resolution consideration, but they are put in a separate row, which is definitely an area

inefficient strategy. Those transistors can be inserted into other rows but that might make

sizing adjustment harder. Second, this floorplan assumes the transistor can be infinitely

expanded to two sides. But it is very often that the layout has a width limitation or aspect-

ratio requirement. If so, the generator should be coded in a way that can fold transistors into

multiple rows when size exceed certain value. Third, when drawing layout it is very often

the case that some special wiring and placement are implemented. But in a generator-based

layout design, the designer prefers to some repetitive and regular items so it will usually

lead to different layout strategies when compared with manual layout. From this example.

Therefore, it is important to design the circuit in an efficient way that can utilize a reliable

generator to make iterations faster.

3.3 Schematic generator

The schematic generation is relatively simple. First, the designer creates schematic templates

in VirtuosoTM by using instances from generator primitive library. The schematic primitive

library includes some wrappers that take the input of generator to set the parameters of

each device. Then the templates are imported from VirtuosoTM library to Python. Base on

the imported script, the designer can implement schematic design method in Python.

Some example codes for implementing schematic generators are listed below. The in-

stances in the templates can be accessed using self.instances[instance name] and the

generator configures instances using the design method. Schematic generators also offer the

flexibility that designers can make changes based on schematic templates. Instances can be

re-connected, arrayed or deleted. Dummy transistors can automatically be generated from

the information returned by layout generator. Since different number of dummies will be

added in layout to ensure matching and alignment, the connection and properties of dummies

are calculated by the layout generator when actual calculating the layout.

The testbench generator is similar to schematic generator. Testbenches are implemented

by copying and modifying testbench templates. The simulations are configured in VirtuosoTM
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, simulation parameters can be set by BAG. Simulation results are returned after simulation

finish, so all the data can be processed using BAG.

Example code:

# se t t r a n s i s t o r parameters

self.instances[’XP’].design(w=wp, l=lch, intent=intentp, nf=fg load)

self.instances[’XN’].design(w=wn, l=lch, intent=intentn, nf=fg amp)

# hand le dummy t r a n s i s t o r s

self.design dummy transistors(dum info , ’XDUM’, ’VDD’, ’VSS’)

# some o the r f u n c t i o n s

Change pins name: rename pin()

Remove instance: delete instance()

Replace instance templates: replace instance master()

Reconnect instance terms: reconnect instance terminal()

Create an array of instance: array instance()
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Chapter 4

ADC Generator Implementations

4.1 Overview

This chapter describes the implementation of the time-interleaved SAR ADC generator based

on the design methodology that introduced above and using LAYGO layout generation engine

to for layout generation. And the implementation of this generator in Intel 22nm FFL is

presented.

Figure 4.1 shows the overview of generator architecture. This generator can provide 4-10

Figure 4.1: Architecture of time-interleaved ADC generator.
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bits resolution and use time-interleaving architecture to achieve higher sampling rate. It is

composed of four main blocks: multi-phase clock generation, main SAR slice array, retimer

at the output, and the bias circuit(not shown here, which provides VREF for capacitor DAC

array) The blocks shown here are explained as the following:

• Clock Generation: It takes a half-rate differential clock input and uses a chain of delay

cells to generate N different clock signal phases in parallel that trigger each SAR slice to

sample input signal.

• ADC Core: The main part of SAR ADC that takes input signal, reference voltage as well

as the clock and outputs digital result. It consists of a capacitor DAC, comparator, SAR

logic and asynchronous clock generator. A fixed amount of time is allocated for sampling.

And it works in an self-timed, asynchronous way to convert sampled signal at frequency

fs,slice = fs/N .

• Retimer: Because each ADC slice is timed to different clock phase, a retimer block takes

digital output from each slice is necessary. It aligns output from each slice to the same

clock phase such that the ADC can transfer data to the digital interface.

The rest of part of this chapter will introduce several key generators in this ADC generator.

Some design details, floorplan and generator options will be explained.

4.2 Capacitive DAC

The performance of SAR ADC is greatly influenced by the capacitor ADC. A simplified

diagram of conversion steps is shown in Figure 4.2. The capacitors are radix-α weighted,

each capacitor is α times as larger as the previous one, where α is the radix of DAC.

C0 = Cu

Ci = αCi−1

(4.1)

The total capacitor is Ctot = Σn−1
i αiCu + Cu For a 4-bit conversion, first the input signal is

sampled on the capacitor DAC. In the consecutive steps, switches connect to either positive

(VREFP ) or negative (VREFN) reference voltage depending on the comparator’s decision.

When a bit is connected to positive reference voltage the compared reference voltage changes

by Ci

Ctot
(VREFP − VREFN).
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Figure 4.2: Example of 4-bit capacitor DAC switching.

The transfer function of ADC is 2N steps from VREFN to VREFP for a N-bit radix-2

capacitor DAC, all the step sizes are uniform. In reality, each capacitor does not match

perfectly and mismatch makes the transfer curve deviate from the ideal one. The random

variance of single unit matching σC is inversely proportional to unit capacitor area
√
Aunit.

As the area increases, the variance can be reduced. Also, from a thermal noise perspective,

a larger sampling capacitor makes the total thermal noise kBT
C

smaller, where kB is the

Boltzmann constant and T is the absolute temperature. However, this approach dramatically

increases the total power consumed by charging capacitor and increase the area as well.

When capacitor DAC that uses radix not equals to two, there are different effects on

the transfer function for ADC and DAC. Figure 4.3 shows transfer functions of DAC and

ADC for radix = 2.2 and radix = 1.8 separately. The left plot shows an extend horizontal

level which is interpreted as missing decision level and the right plot shows missing code.

The former effect can only be adjusted by reducing analog input while the last one can be

adjusted digitally by assigning different weights to each capacitor. From [19], it is sufficient
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Figure 4.3: Effect of different radix on ADC and DAC transfer curve.

that the transfer function can be adjusted to be free of missing decision when

Ci < C0 + Σi−1
k=0Ck = C0 + Σi−1

0 αkC0 (4.2)

The capacitor DAC generator is implemented in the way that the number of bits and

radix can both be adjusted. The conceptual diagram of the capacitor DAC generator is

shown in Figure 4.4. Unit capacitor and capacitor dummy primitives are hand-drawn. The

schematic template defines the connections and ports. With different input parameters listed

in the Figure 4.4, both schematic and layout of the capacitor are generated.

4.3 Comparator

The comparator generator implements both traditional strong-arm latch comparator and

the dual strong-arm latch comparator [20]. The additional second regenerative latch in dual

strong-arm latch helps reduce both offset sensitivity and offset while maintaining comparable

performance as the conventional one. The diagram of comparator generator is shown in

Figure 4.5. Two different schematic templates are necessary since these two circuits have

enough differences.

The generator selects different topology by changing option doubleSA. All the other

options are setting the sizing of each transistor. From the input parameters, the layout is
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Figure 4.4: Capacitor DAC generator.

generated used the selected topology and dummy transistor information is calculated from

the generated layout. The schematic generator map device sizing from the input parameter to

the schematic template, all the dummies are also added from layout information as explained

in previous chapter.

The floorplan of the conventional strong-arm comparator is shown in the figure as an

example. The input pair and tail current are put in two rows. Substrate connections are put

at the top and bottom of input and tail current transistors. The cross-coupled transistors are

placed at the top, reset devices and cross-coupled PMOS are placed in the same row. Each

row has dummy transistors to fill in space and also help the matching. Space or boundary

cell is put at two sides of the comparator core. It helps with alignment in each slice because

the slice width is fixed by either capacitor DAC or comparator width.

4.4 SAR Logic

The SAR logic is shown in Figure 4.6. The comparator is triggered by enable signal from

clock generation block inside each slice. After the comparator output signal is resolved, the

NAND gate triggers the clock generation block. Inside the clock generation block, there

are actually two paths of delay in parallel and one of them is selected to trigger clock edge

generation by the a MUX gate. Another loop of the circuit is from the output of clock
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Figure 4.5: Strong arm comparator generator.

generation to shift register, shift register set the current bit that needs to be decided and

change the connection of capacitor DAC. The comparator should only be triggered after the

voltage on the capacitor DAC is settled. Therefore it is important to adjust the delay of two

loops to match. The purpose of different delays in clock generation block is shown in Figure

4.7. The comparator output at the 3rd iteration corresponds to the blue line at the right

side. It takes T1 to resolve the result. And the last iteration takes T2 for the comparator

to resolve and shown as the pink line shows. For a small difference at the input, it takes a

longer time for the comparator to make decisions. Although later iterations take a shorter

time for capacitor DAC to settle, the later iterations tend to take a longer time than the
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Figure 4.6: Diagram of SAR logic generator.

Figure 4.7: Illustration of Comparator Response Time at Different Bit

first several bits because the comparator needs much more time to generate output signal

that trigger following gates. So the delay in clock generation block can be reduced in the

first several bits. And it helps maximize the speed of asynchronous operation.

As for the layout generation, various types of logic gates are implemented first. Similar

to digital circuit, the logic layout generators use these gates as standard cells to implement

different types of logic circuit.
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4.5 Top Level Generator and Implementation in

Intel22 FFL

At the top level, the generator compares the dimension of sub-blocks, makes arrangement

and connects different blocks. The example code below shows LAYGO generator that works

with hierarchical design. The information about generated instances such as pin locations

and block size are stored in a YAML file. When those instances are used in higher-level, the

generator loads the YAML use those those data to perform necessary calculation. After that

blocks are placed and connected.

Example code:

# Get s i z e o f b l o c k 0 and p l a c e b l o c k 0 a t o r i g i n

block size0 = laygen.get tempalte(cellname0 , libname0).size

block0 = laygen.relplace(instance name0 , template name0 , gridname,

xy=(0, 0), template lib0)

# Put b l o c k 1 nex t to b l o c k 0 use b l o c k s i z e 0

block1 = laygen.relplace(instance name0 , template name0 , gridname,

xy=(block size0[0], 0), template lib0)

# Get p ins from in s t anc e

pina = laygen.get inst pin xy(block0, pin0, gridname1)

pinb = laygen.get inst pin xy(block1, pin1, gridname1)

# Get midd le l o c a t i o n o f two p ins

mid y = (pina[1]+pinb[1])//2

# connect two p ins

laygen.route vhv(layerv0=layer1, layerh=layer2, layerv1=layer1,

xy0=inp xy m5 , xy1=inp xy m7 , track y=mid y ,

gridname0=gridname1 , gridname1=gridname2)

The top-level generator of ADC assembles the ADC slices, sampling circuit, clock gener-

ation block as well as the retimer. One feature of this top-level generator is that the order

of ADC slices is free to change for different applications. The time diagram of clock phases

is shown in Figure 4.8. It is related to clock generation block. The clock generation is
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Figure 4.8: Slice order option in top-level generator.

two chains of delay elements driven by differential clock signals. The correct clock phase is

guaranteed by the uniform delay from each delay cells. The delay of each cell is adjusted

by capacitor loading at each delay cell’s output. Therefore, when the slice order needs to be

adjusted, as long as the order of even and odd slices are put at two sides. and connected by

two different delay chains, the slice order can be easily changed. Two examples are shown

in the bottom diagram in Figure 4.8.

This generator has been implemented in Intel 22nm FFL with the updated options that

improve the sampling rate by decoupling the crosstalk between channels. The steps of

implementing this chip are shown in Figure 4.9. First, a 9-bit 16-way time-interleaved SAR

ADC core including decoupling capacitor and voltage references are fully generated by the

generator. It works at sampling rate 10GS/s and simulated SNDR is 37.6 dB at Nyquist

frequency. In order to set the configuration bits and read out quantized result. A digital

block includes memory as well as scan chain is manually integrated at the top level with

generated ADC core. Because generator makes it convenient to quickly generate different

designs. Six sub-chips with different configurations are generated and integrated in the same

way. They have different sampler sizes, different sampling strategies and different radixes

for capacitor DAC.
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Figure 4.9: Chip integration flow.
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Chapter 5

Conclusion and Future Work

The advantages of SAR ADC make it a popular ADC architecture in scaled CMOS process.

Generator-based design methodology improves the efficiency of circuit design in advance

technology nodes. The complex design rules are captured by generator and designers can

quickly get feedback from post-layout effect. Circuit design using BAG makes it possible to

reuse designs in different process technologies and generate designs with different specifica-

tions.

In this report, the working principle and design methodologies of high-speed time-interleaved

SAR ADC are presented. The main goal is investigating design methodology and combined

it with analog generators to enable design space exploration under different specifications.

Also, the LAYGO layout generation engine is introduced. This report demonstrated the

detail implementation of hand-made LAYGO primitives and the layout generation based on

that. Example layouts and code are used to illustrate the usage of BAG. The prototype

of time-interleaved SAR ADC generator is implemented in intel22 FFL with six different

configurations. The testing boards have been fabricated and assembled. Figure 5.1 shows

the testing board design for the chip. and the future work will be finish the measurement

of the prototype chip . Also, there are several improvements worth to be considered in the

future:

1. Complete design script for SAR ADC. While the layout and schematic genera-

tors have been implemented, main design procedure is still similar to traditional design

methodology that relies on the designer’s interpretation of the simulation result. A design

script that captures key performances of circuits can be implemented to close the loop of
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Figure 5.1: Testing board for prototype chip.

design automation.

2. Improve the speed of SAR ADC generator. Currently the single slice of ADC

is optimized for a higher sampling rate. And multiple slices are necessary when the

sampling rate goes beyond the capability of the single-channel design. However, the

number of slices cannot go infinitely large because of non-idealities in channel mismatches.

Also, increasing time-interleaving ratio brings the challenges to the sampling network.

Therefore, techniques that can provide a higher sampling rate for this ADC generator are

worth investigating.

3. Improve the resolution of ADC generator. The resolution of this SAR ADC gener-

ator is limited. The resolution of the ADC can also be improved by sampling circuit with

higher accuracy, better element matching and new calibration method. Adding a second

stage after SAR ADC will also be an effective way to improve resolution. Among differ-

ent ADC architectures, ring-oscillator based voltage-controlled oscillator ADCs and ring

amplifiers have demonstrated some highly competitive design metrics in scaled technolo-

gies. By combining and selectively enabling these two techniques, an adaptive-resolution

architecture can be developed and will be made available for broader use.
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