Evolving Robotic Leg Shapes via Deep Reinforcement
Learning

Hayden Sheung
Ronald S. Fearing, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2020-103
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-103.html

May 29, 2020

Copyright © 2020, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| would like to thank my advisor, Professor Ronald Fearing, for all of his
guidance and support over the past two years. | would also like to thank
every member of the Biomimetic Millisystems Lab, especially Dr. Liyu Wang
for his mentorship. | am fortunate to work in this laboratory. | am also
grateful for Professor Kristofer Pister for agreeing to be the second reader
of this thesis.

| would also like to express my gratitude to Alma Chen, who has been an
invaluable and supportive friend in the last two years. Finally, | want to thank
my parents and sister for their unconditional and unlimited support
throughout all the years.

Evolving Robotic Leg Shapes via Deep Reinforcement Learning

by

Hayden Yui Sheung

A thesis submitted in partial satisfaction of the
requirements for the degree of
Masters of Science
in
Electrical Engineering and Computer Sciences
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Ronald S. Fearing, Advisor
Professor Kristofer S. J. Pister, Second Reader

Spring 2020

Evolving Robotic Leg Shapes via Deep Reinforcement Learning

by Hayden Yui Sheung

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan I1.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Ronald S. Fearing
Research Advisor

May 28, 2020
(Date)

k %k ok ok sk ok ok

7

7 L

Professor Kristofer S. J. Pister
Second Reader

5/7,15’ O

(Date)

Abstract

Evolving Robotic Leg Shapes via Deep Reinforcement Learning

by

Hayden Yui Sheung

Masters of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ronald S. Fearing, Advisor

In the current state of the art for deep reinforcement learning in robotics, the primary
focus is on maximizing an objective function by controlling an unchanged agent. On the
other hand, there is a subfield called evolutionary robotics. As implied by the name, it
involves using evolutionary algorithms to develop better hardware for robots’ performances.
However, the field is a little outdated. The core of the aged evolutionary algorithm is that
given a set number of shapes, a subset of them (called “parents”) is chosen, based on their
performances in the environment. They are the foundations for the next generation’s shapes,
and the program mutates the “parents” set to acquire the next set of shapes to examine.
The experiment is then run for a fixed number of generations, and the best shapes are picked

from the last generation.

An exciting crossover between the two fields is using the new advanced deep reinforcement
learning algorithms in evolutionary robotics. Namely, instead of merely picking the best N
shapes in each generation based on their performances in the environment, deep reinforce-
ment learning methods are used to identify the most optimal shape. Then, some mutations

are applied to this shape, and it serves as the starting position for the next generation.

The design of the agent is parameterized and allows the agent to learn its body parts during
the simulation. The primary objective of the robot is to crawl on the desired path on a chosen
terrain. REINFORCE and actor-critic are the deep reinforcement learning optimization
algorithms applied. The results indicate that, with the new proposed approach, agents can

learn body parts to facilitate their movements in the given environments.

Dedicated to the memories of my grandparents, who always believed in me.

Contents

Contents

List of Figures
List of Tables
1 Background

2 Related Work

2.1 OpenRoACH
2.2 Previous work
3 Methods
3.1 Datasource e
3.2 Metrics e
3.3 Shapes parameterizationo
3.4 Proposed evolutionary algorithm
3.5 REINFORCE e
3.6 Actor-critic

4 Experiments and Setup

5 Results
5.1 Flat surface, straight path oL
5.2 Hilly surface, straight path
5.3 Flat surface, curved patho
5.4 Hilly surface, curved path oo

6 Analysis
7 Conclusion

8 Future Work

i

ii

iv

vi

32

35

36

Bibliography

iii

38

v

List of Figures

3.1

3.2
3.3

3.4

4.1
4.2
4.3
4.4

5.1

5.3

5.4

9.5

5.6

The robot with the coordinate system. The red arrow represents the x-axis, the
green arrow represents the y-axis, and the blue arrow represents the z-axis. This
axis system is in the robot’s body frame. 6
The robot with the standard leg shape, created by Andrew Pullin. 7
The left table displays how the legs look with no joint. The right table contains
examples of the legs with one joint each. The variables are the sizes of the tips
of the leg, the spring constants of the joints that are connecting to the tips, the
numbers of joints per leg, and the shapes of the tips. 8
An example of the robot used in the experiment with a O-joint design for its legs. 8

The flat and the hilly surfaces for the robot to crawlon. 13
The straight paths followed by the robot in the flat and hilly scenes. 13
The curved paths followed by the robot in the flat and hilly scenes. 14
The red lines are the ideal paths on the hilly surfaces, plotted in the contour
maps for both scenes. 14
Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,

and actor-critic on a flat surface, for the robot walking on a straight path over
o0 generations. L L. 15
The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a flat

surface and a straight path. oo 17
Metrics 3.1 (left) and 3.2 (right) for the last generation, on a flat surface and a
straight path. L 18

Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on a
flat surface, for the robot walking on a straight path over 50 generations. Initial-
ized with five randomly generated configurations for each optimization method. 18
Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a flat surface, for the robot walking on a straight path over
50 generations. For these experiments, Equation 3.3 replaces Equation 3.1 in
Algorithm 2.. 19

5.7

5.9

5.10

5.11

5.12

5.14

5.15

5.16

5.17

5.19

5.20

5.21

Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a hilly surface, for the robot walking on a straight path over
50 generations. Lo 20
The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a hilly

surface and a straight path. 0 L. 22
Metrics 3.1 (left) and 3.2 (right) for the last generation, on a hilly surface and a
straight path. 22
Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on a

hilly surface, for the robot walking on a straight path over 50 generations. Ini-
tialized with five randomly generated configurations for each optimization method. 23
Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a flat surface, for the robot walking on a curved path over 50
generations. Lo e 24
The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a flat

surface and a curved path.o oo 26
Metrics 3.1 (left) and 3.2 (right) for the last generation, on a flat surface and a
curved path.o 26
Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on a

flat surface, for the robot walking on a curved path over 50 generations. Initialized
with five randomly generated configurations for each optimization method. . . . 27
Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a hilly surface, for the robot walking on a curved path over
50 generations. 28
The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a hilly
surface and a curved path. 30
Metrics 3.1 (left) and 3.2 (right) for the last generation, on a hilly surface and a
curved path. 30
Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on a
hilly surface, for the robot walking on a curved path over 50 generations. Initial-
ized with five randomly generated configurations for each optimization method. 31

List of Tables

5.1
5.2

5.3

5.4
9.5

5.6

5.7
5.8

The final parameters after 50 generations on a flat surface with a straight path.
The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a straight path on a flat surface with REINFORCE,
actor-critic, and hill-climbing (baseline), respectively, after 50 generations. The
variables optimized are the shapes of the tips, the sizes of the tips, the spring
constants of the joints connecting the tips and the legs, and the numbers of joints
inthelegs. L
The ranges of the final parameters for each optimization method with the robot
crawling on a flat surface and a straight path. Each trial starts at a randomly
generated configuration and runs for 50 generations. For the primitive shapes,

the number in each row represents how often the shape is chosen as the final shape.

The final parameters after 50 generations on a hilly surface with a straight path.
The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a straight path on a hilly surface with REINFORCE,
actor-critic, and hill-climbing (baseline), respectively, after 50 generations. The
variables optimized are the shapes of the tips, the sizes of the tips, the spring
constants of the joints connecting the tips and the legs, and the numbers of joints
inthelegs.
The ranges of the final parameters for each optimization method with the robot
crawling on a hilly surface and a straight path. Each trial starts at a randomly
generated configuration and runs for 50 generations. For the primitive shapes,

the number in each row represents how often the shape is chosen as the final shape.

The final parameters after 50 generations on a flat surface with a curved path. .
The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a curved path on a flat surface with REINFORCE,
actor-critic, and hill-climbing (baseline), respectively, after 50 generations. The
variables optimized are the shapes of the tips, the sizes of the tips, the spring
constants of the joints connecting the tips and the legs, and the numbers of joints
inthelegs.

vi

16

19
20

23
24

9.9

5.10
5.11

5.12

vil

The ranges of the final parameters for each optimization method with the robot
crawling on a flat surface and a curved path. Each trial starts at a randomly
generated configuration and runs for 50 generations. For the primitive shapes,
the number in each row represents how often the shape is chosen as the final shape. 27
The final parameters after 50 generations on a hilly surface with a curved path. 28
The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a curved path on a hilly surface with REINFORCE,
actor-critic, and hill-climbing (baseline), respectively, after 50 generations. The
variables optimized are the shapes of the tips, the sizes of the tips, the spring
constants of the joints connecting the tips and the legs, and the numbers of joints
inthelegs. 29
The ranges of the final parameters for each optimization method with the robot
crawling on a hilly surface and a curved path. Each trial starts at a randomly
generated configuration and runs for 50 generations. For the primitive shapes,
the number in each row represents how often the shape is chosen as the final shape. 31

viii
Acknowledgments

First and foremost, I would like to thank my advisor, Professor Ronald Fearing, for his
guidance and support over the past two years. I would also like to thank every member
of the Biomimetic Millisystems Lab, especially Justin Yim for his help with lab logistics,
Anusha Nagabandi for her assistance with machine learning-related questions, and Dr. Liyu
Wang for his mentorship. I am fortunate to work in this laboratory. I am also grateful for

Professor Kristofer Pister for agreeing to be the second reader of this thesis.

I am incredibly appreciative of everyone I have met in Berkeley. Each of them has helped
me through this journey and becoming the person I am today. In particular, I would like to
express my gratitude to Simon Lau, who has ignited my interest in research, and to Alma
Chen, who has been an invaluable and supportive friend in the last two years. Finally, I want
to thank my parents for their unconditional and unlimited support, including immigrating
to the United States, driving me to Berkeley for countless times, and paying for my tuition.
I also want to thank my sister for editing my essays, including this thesis, and for being my

confidant during my time at Berkeley.

Chapter 1

Background

Designing robotic parts takes a lot of staff-hours and expertise knowledge. Besides, hand-
crafted designs may not be the most optimal, as the search space can be too broad for

humans to pick out the best shapes for a specific task.

Evolutionary robotics offers a convenient alternative to designing the parts by hand [Nolfi
et al., 2000]. It involves having the algorithm to search for the best shape iteratively. Al-
gorithm 1 summarizes the high-level steps of the iterative approach for finding the best

shapes.

Algorithm 1: Summary of the iterative algorithm to pick the best robotics design

in evolutionary robotics
candidates = Randomly initialize shapes

for G generations do
Perform the tasks for the shapes in the candidates shape set

parents = The best N shapes based on the chosen metric out from the candidates
Mutate the parents set by slightly changing the parameters that determine the

shapes

candidates = parents
end

Output the candidates shapes

However, with the advances in machine learning in the last twenty years, the iterative ap-

CHAPTER 1. BACKGROUND 2

proach may be outdated. Specifically, the way to choose the best shapes can be expensive,
as each shape requires an iteration to determine the reward, and there can be many shapes

to test for in each iteration.

The fact that organisms can adapt to their specific goals and environments, such as athletes
performing weightlifting for enhancing their performances in sports [Tricoli et al., 2005],
inspires the possibility for the agent to learn and adapt its body parts. The idea of artificial

evolution on body parts was proposed as earliest as 1994 [Sims, 1994a,b].

This report suggests a new evolutionary algorithm, in which other machine learning algo-
rithms replace the iterative genetic method. The new algorithm is still evolutionary in the
sense that there is a fixed number of generations. Due to the time constraints, this report
focuses on the evolution of the body parts only, instead of a co-evolutionary approach that
improves the designs and the control simultaneously. The initial plan was to perform a
majority of the learning in simulations powered by a physics engine named V-REP, and the
results would be validated through actual robotic experiments. Due to the complications of
COVID-19 and the closure of physical laboratories, all investigations are accomplished via

simulations instead.

Chapter 2

Related Work

2.1 OpenRoACH

The simulated robot used for this research is derived from the OpenRoACH [Wang et al.,
2019]. It was developed by Liyu Wang, a former postgraduate researcher in my group.
OpenRoACH is a cheap and durable robot with the Robot Operating System (ROS) onboard.
One of the ultimate goals of OpenRoACH is to become multiuse. For example, in the case of
earthquakes, OpenRoACHs can be used to deliver the necessary resources, even on uneven
surfaces. To do so, OpenRoACHs need to have the ability to adapt their body parts and
control to move on various surfaces by switching their robotic parts at the repairing stations.

This objective is the origin of this project.

2.2 Previous work

In 1994, Karl Sims proposed the idea of artificial evolutions that are similar to the ones
organisms go through in nature [Sims, 1994a,b]. There is also some research done on au-
tomatically revolutionizing soft robots for the aquatic and terrestrial environments via a
physics simulation engine [Corucci et al., 2018]. A more recent publication attempts to

improve legs with Bezier splines, which gives the algorithm an ability to produce complex

CHAPTER 2. RELATED WORK 4

shapes with a high degree of freedom [Collins et al., 2018].

With the recent advances in robotics and machine learning, there are some studies on optimiz-
ing body designs and control simultaneously. There is a paper that examines the possibility
of learning locomotion with deep reinforcement learning for sim-to-real robots [Tan et al.,
2018]. Similarly, in [Ha, 2019], David Ha utilizes REINFORCE as the optimization algo-
rithm to modify the agent’s parts to accomplish missions such as walking on terrains with
holes. There is a study, perhaps the closest to the full version of this project, that attempts
to optimize control and designs alternately with reinforcement learning [Schaff et al., 2019].
In these analyses, they are all leveraging the regular reinforcement learning algorithms. In
contrast, this study tries to combine genetic algorithms and deep reinforcement learning

algorithms.

Chapter 3

Methods

This chapter discusses the various metrics and methods used in this project.

3.1 Data source

All of the data in this report are from simulations rendered in V-REP.

3.2 Metrics

Two objective functions are used in this project — the deviated distance (Equation 3.1) and
the cost of energy (Equation 3.2). These two metrics capture the main goal OpenRoACH
wants to accomplish in this project — to move along a specific path with an efficient body

part design. In the training phase, a weighted sum of them serves as the objective function.

S U=y)l + (2 — z4)] (3.1)

t=1

3.1: Deviated distance along the y- and z- axes

CHAPTER 3. METHODS 6

Figure 3.1: The robot with the coordinate system. The red arrow represents the x-axis, the
green arrow represents the y-axis, and the blue arrow represents the z-axis. This axis system
is in the robot’s body frame.

S Yy | Fil - (010 — 0i0-1))]
mgd

(3.2)

3.2: Cost of transport

The deviated distance (Equation 3.1) is a cumulative sum of the distance of the robot’s
center of mass from the x-axis (where the desired path lies on) during the whole simulation,
T timesteps. The vertical (z-axis) and horizontal (y-axis) deviations are included in the
metric as the robot should make an effort to stay on the floor and the path while crawling.

The lower this deviated distance is, the better.

The cost of transport (Equation 3.2) is a ratio between the energy required to move the robot
and the product of the distance traveled (d), the mass of the robot (m), and the gravitational
constant (g). Similar to the deviated distance, the lower the cost is, the better. The energy
produced is calculated in discrete timesteps. It is the product between the force at a joint
and the displacement of the joint in that timestep. Finally, the result is from summing these

products across all six legs. The energy is the cumulative sum across the whole simulation.

Sl —)| + (2 — z-1)]]

; (3.3)

3.3: Normalized deviated distance along the y- and z- axes

CHAPTER 3. METHODS 7

The normalized deviated distance (Equation 3.3) is another proposed metric. It is utilized
for validating if the deviated distance (Equation 3.1) is a credible metric for this study, since

Equation 3.1 is not normalized and may be unbounded with a growing path length, d.

3.3 Shapes parameterization

For the algorithms to learn the designs of the body parts during the simulation, this project
represents the shapes of the tips of the legs using a learnable parameter vector. This vector
determines the primitive shape (cubes, cylinders, spheres), the height, the width (in the case
of a sphere, the height is the same as the width), the mass, the spring constant of the joint
that connects the tip with the leg, and the number of joints each leg has. The number of
joints, which is best explained as the number of “knees” in each leg, is an intriguing factor
to examine because there are variations among different organisms. For example, humans
have one joint in each limb, but some insects have up to three joints per leg [Cruse et al.,
2009]. Finally, the volume of each leg is constrained to be less than 25% of the main body,
and the mass of each leg is limited to be less than 20% of the main body’s mass. These
restrictions exclude impractical designs from the search space. Then, the performances of
the shapes are compared to the standard shape developed by a former lab member, Andrew

Pullin. For simplicity, only the front two legs are modified in this study.

To illustrate, the following are the standard shape and examples of learned leg shapes.

Figure 3.2: The robot with the standard leg shape, created by Andrew Pullin.

CHAPTER 3. METHODS 8

Cylinder | Cube | Sphere Cylinder | Cube | Sphere
Small Small
Medium Medium
Large Large

Figure 3.3: The left table displays how the legs look with no joint. The right table contains
examples of the legs with one joint each. The variables are the sizes of the tips of the leg,
the spring constants of the joints that are connecting to the tips, the numbers of joints per
leg, and the shapes of the tips.

Figure 3.4: An example of the robot used in the experiment with a 0-joint design for its legs.

CHAPTER 3. METHODS 9

3.4 Proposed evolutionary algorithm

There are many evolutionary algorithms [Arias-Montano et al., 2012]. To summarize, there
are three main steps in an evolutionary algorithm: creating a new generation, mutating the

current generation, and selecting the best candidate.

The proposed algorithm progresses as follows. First, the starting design of the legs is initial-
ized with a random vector. Then, the design is evaluated in the given environment, and a
weighted sum of the two metrics is computed. The weights are chosen such that both quanti-
ties have roughly the same influences in the objective function. For this study, (0.025, 1) are
chosen to be the multipliers for the cost of transport and the deviated distance, respectively.
A deep reinforcement learning algorithm is then applied to the initial vector to reach an
optimal value. All the steps described count as one generation. For the next generation, a
mutation (small perturbations to the weights in the shape vector) is applied to the current
design. There are two goals for the mutation. First, the algorithm hopefully leaves the local
optimum in the search space for the shape vector. Second, the mutation initiates the next

generation of the evolutionary algorithm. Algorithm 2 summarizes the proposed algorithm.

Algorithm 2: The proposed evolutionary algorithm

candidate = Randomly initialize a shape parameter

for G generations do
Optimal shape = Start at the candidate design, perform a deep reinforcement

learning algorithm to find the optimal shape vector, with the reward function =
0.025- Equation (3.2) + Equation (3.1)
Mutate the optimal shape by slightly perturbing the shape vector
candidate = optimal shape
end
Output the candidate shape

CHAPTER 3. METHODS 10

3.5 REINFORCE

REINFORCE is one of the two deep reinforcement learning algorithms applied to find the
optimal shape vector. The following is a rundown of the algorithm [Williams, 1992; Ha,

2019).

w is the learnable vector representing the body designs. R is the expected cumulative reward.

7 is the policy. 6 is the variable the algorithm optimizing over.

J(0) = Eg[R(w)] = / R(w)(w, §)dw (3.4)

Computing the gradient of J(#) with the log-likelihood trick,

Vo J(0) = Eg[R(w)Vglogm(w,d)] (3.5)

With an N-size population, the gradient is approximately,

1

VeJ(0) ~ N > R(w")Vylogm(w',0) (3.6)

=1

Finally, 6 is optimized through gradient descent. « is the step size.

0 — 0+ aVeJ(0) (3.7)

The above steps are repeated until the algorithm finds the optimal 6.

3.6 Actor-critic

There are two primary problems with REINFORCE: noisy gradients and high variance. In
the actor-critic methods, these two issues are mitigated with two models to compete against

each other [Konda and Tsitsiklis, 2000].

CHAPTER 3. METHODS 11

The actor function decides which action to take, and the critic function informs the actor

how advantageous its action is and how it should adjust.

In this study, the baseline is used as the advantage function. The gradient now looks like

this, with s; as the state at time ¢, and v as the discount factor:

VoJ(0) = i (i ' R(w') — b(st)> Vologr(w', 0) (3.8)

=0 \¢/=t

A popular choice (and the one used for this project) for the baseline function is the value

function b(s;) = V(s;). In Equation 3.8, the policy 7 is the actor and V' (s;) is the critic.

12

Chapter 4

Experiments and Setup

All simulations are performed in V-REP, a physics engine that supports a Python API
to modify its scenes. garage (previously known as RLLab) [Duan et al., 2016] is used to
implement and evaluate the deep reinforcement learning algorithms. Unlike MuJuCo and
OpenAl Gym, V-REP is not compatible with the newer machine learning frameworks. Thus,
some infrastructure work is required to bridge the two platforms. All neural networks and

infrastructures are implemented in Tensorflow and Python.

The experiments include running the simulations on a flat surface and a hilly surface. Each
simulation consists of 800 time steps, with each simulated time step equals to 3 ms. The
robot is equipped with a vision-sensing controller, such that it attempts to walk along the
desired paths indicated on the floor. Each experiment contains G' = 50 generations. In the
end, the results from the two policy gradient methods are compared with the standard leg

shape’s performance.

Towards the submission deadline of this report, it is discovered that Equation 3.1 may grow
unlimitedly when the distance traveled in the simulation increases. Equation 3.3 is suggested
to replace Equation 3.1 in Algorithm 2 to address this issue. Due to the time constraints,
Equation 3.3 is only experimented with actor-critic in the scene with a straight path on a

flat surface, serving as an additional validator for the proposed algorithm.

Furthermore, for each of REINFORCE and actor-critic, five random starting points are

CHAPTER 4. EXPERIMENTS AND SETUP 13

selected and run to test for how sensitive the proposed algorithm is to the initial vectors.
For validation purposes, the same algorithm, trained by crawling on straight paths, is run
on the flat and hilly surfaces again, but with curved paths. The hill-climbing optimization

method acts as the baseline comparison against the proposed algorithm.

Finally, it is noteworthy that when testing for the number of joints, the more joints a
configuration has, the bigger the standard-shaped legs. This is to accommodate the fact

that the more joints each leg has, the farther raised from the floor the robot is.

— . - — -
- Satmcted otrects 3 IO 2
=

Figure 4.1: The flat and the hilly surfaces for the robot to crawl on.

Figure 4.2: The straight paths followed by the robot in the flat and hilly scenes.

CHAPTER 4. EXPERIMENTS AND SETUP 14

Figure 4.3: The curved paths followed by the robot in the flat and hilly scenes.

Figure 4.4: The red lines are the ideal paths on the hilly surfaces, plotted in the contour
maps for both scenes.

15

Chapter 5

Results

5.1 Flat surface, straight path

First trial

Figure 5.1: Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a flat surface, for the robot walking on a straight path over 50 generations.

CHAPTER 5. RESULTS 16

Initial Shape | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)
Height (m) 0.074 0.0635 0.0564 0.0831
Width (m) 0.0168 0.0635 0.0564 0.452
Mass (kg) 0.194 0.0081 0.0079 0.0138
Spring Constant (N/m) 0.019 0.0231 0.0296 0.043
Primitive Shapes Cylinder Sphere Sphere Cylinder
Number of Joints 0 1 1 1

Table 5.1: The final parameters after 50 generations on a flat surface with a straight path.

Initial | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)

Table 5.2: The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a straight path on a flat surface with REINFORCE, actor-critic,
and hill-climbing (baseline), respectively, after 50 generations. The variables optimized are
the shapes of the tips, the sizes of the tips, the spring constants of the joints connecting the
tips and the legs, and the numbers of joints in the legs.

CHAPTER 5. RESULTS 17

(a) Initial (b) REINFORCE

(¢) Actor-Critic (d) Hill-Climbing (Baseline)

Figure 5.2: The same shapes from Table 5.2 on the robot, for illustration purposes.

Figure 5.3: The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a flat surface and a
straight path.

CHAPTER 5. RESULTS 18

Figure 5.4: Metrics 3.1 (left) and 3.2 (right) for the last generation, on a flat surface and a
straight path.

Trials with five random starting points

Figure 5.5: Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on a
flat surface, for the robot walking on a straight path over 50 generations. Initialized with
five randomly generated configurations for each optimization method.

CHAPTER 5. RESULTS

19

REINFORCE | Actor-Critic | Hill-Climbing (Baseline)

Height (m) 0.0478 - 0.07828 | 0.0361 - 0.0645 0.0579 - 0.187

Width (m) 0.0478 - 0.07828 | 0.0361 - 0.0645 0.109 - 0.557

Mass (kg) 0.0073 - 0.012 | 0.0068 - 0.0083 0.0102 - 0.0151

Spring Constant (N/m) 0.012- 0.029 | 0.0105 - 0.0358 0.0352 - 0.0563
Primitive Shapes - Sphere 10 10 6
Primitive Shapes - Cube 0 0 0
Primitive Shapes - Cylinder 0 0 4

Number of Joints 1 1 0-1

Table 5.3: The ranges of the final parameters for each optimization method with the robot
crawling on a flat surface and a straight path. Each trial starts at a randomly generated
configuration and runs for 50 generations. For the primitive shapes, the number in each row
represents how often the shape is chosen as the final shape.

Validating with Equation 3.3 in place of Equation 3.1

Due to the time constraints, Equation 3.3 is only experimented with actor-critic in the scene

with a straight path on a flat surface. It is used in place of Equation 3.1 in Algorithm 2.

Figure 5.6: Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a flat surface, for the robot walking on a straight path over 50 generations.
For these experiments, Equation 3.3 replaces Equation 3.1 in Algorithm 2.

CHAPTER 5. RESULTS 20

5.2 Hilly surface, straight path

First trial

Figure 5.7: Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a hilly surface, for the robot walking on a straight path over 50 genera-
tions.

Initial Shape | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)
Height (m) 0.068 0.1418 0.0840 0.1791
Width (m) 0.21 0.1418 0.0840 0.240
Mass (kg) 0.179 0.1065 0.0873 0.153
Spring Constant (N/m) 0.001 0.0548 0.0674 0.0589
Primitive Shapes Cube Sphere Sphere Cylinder
Number of Joints 0 1 1 1

Table 5.4: The final parameters after 50 generations on a hilly surface with a straight path.

CHAPTER 5. RESULTS 21

Initial | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)

Table 5.5: The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a straight path on a hilly surface with REINFORCE, actor-critic,
and hill-climbing (baseline), respectively, after 50 generations. The variables optimized are
the shapes of the tips, the sizes of the tips, the spring constants of the joints connecting the
tips and the legs, and the numbers of joints in the legs.

(a) Initial (b) REINFORCE

(¢) Actor-Critic (d) Hill-Climbing (Baseline)

Figure 5.8: The same shapes from Table 5.5 on the robot, for illustration purposes.

CHAPTER 5. RESULTS 22

Figure 5.9: The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a hilly surface and a
straight path.

Figure 5.10: Metrics 3.1 (left) and 3.2 (right) for the last generation, on a hilly surface and
a straight path.

CHAPTER 5. RESULTS

Trials with five random starting points

23

Figure 5.11: Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on
a hilly surface, for the robot walking on a straight path over 50 generations. Initialized with
five randomly generated configurations for each optimization method.

REINFORCE | Actor-Critic | Hill-Climbing (Baseline)
Height (m) 0.102 - 0.1418 | 0.0787 - 0.0844 0.1579 - 0.2384
Width (m) 0.102 - 0.1418 | 0.0787 - 0.0844 0.209 - 0.282
Mass (kg) 0.0781 - 0.1295 | 0.0798 - 0.0903 0.101 - 0.162
Spring Constant (IN/m) 0.0452 - 0.0748 | 0.0602 - 0.0689 0.0352 - 0.0872
Primitive Shapes - Sphere 10 10 7
Primitive Shapes - Cube 0 0 0
Primitive Shapes - Cylinder 0 0 3
Number of Joints 0-1 0-1 0-2

Table 5.6: The ranges of the final parameters for each optimization method with the robot
crawling on a hilly surface and a straight path. Each trial starts at a randomly generated
configuration and runs for 50 generations. For the primitive shapes, the number in each row
represents how often the shape is chosen as the final shape.

CHAPTER 5. RESULTS 24

5.3 Flat surface, curved path

First trial

Figure 5.12: Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a flat surface, for the robot walking on a curved path over 50 generations.

Initial Shape | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)
Height (m) 0.094 0.0504 0.0301 0.0651
Width (m) 0.023 0.0504 0.0301 0.0651
Mass (kg) 0.016 0.0051 0.0048 0.0108
Spring Constant (N/m) 0.043 0.016 0.013 0.036
Primitive Shapes Cube Sphere Sphere Sphere
Number of Joints 2 1 1 1

Table 5.7: The final parameters after 50 generations on a flat surface with a curved path.

CHAPTER 5. RESULTS 25

Initial | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)

Table 5.8: The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a curved path on a flat surface with REINFORCE, actor-critic, and
hill-climbing (baseline), respectively, after 50 generations. The variables optimized are the
shapes of the tips, the sizes of the tips, the spring constants of the joints connecting the tips
and the legs, and the numbers of joints in the legs.

(a) Initial (b) REINFORCE

(¢) Actor-Critic (d) Hill-Climbing (Baseline)

Figure 5.13: The same shapes from Table 5.8 on the robot, for illustration purposes.

CHAPTER 5. RESULTS 26

Figure 5.14: The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a flat surface and a
curved path.

Figure 5.15: Metrics 3.1 (left) and 3.2 (right) for the last generation, on a flat surface and a
curved path.

CHAPTER 5. RESULTS

Trials with five random starting points

27

Figure 5.16: Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on
a flat surface, for the robot walking on a curved path over 50 generations. Initialized with
five randomly generated configurations for each optimization method.

REINFORCE

Actor-Critic

Hill-Climbing (Baseline)

Height (m)
Width (m)
Mass (kg)

Spring Constant (N/m)
Primitive Shapes - Sphere
Primitive Shapes - Cube
Primitive Shapes - Cylinder
Number of Joints

0.0302 - 0.0728
0.0201 - 0.0912
0.0032 - 0.0069
0.011 - 0.0223

o O

0.0241 - 0.0572
0.0287 - 0.0839
0.0035 - 0.0083
0.002 - 0.0209

9

0

1

0-1

0.0572 - 0.1361
0.0609 - 0.101
0.0095 - 0.0169
0.0203 - 0.0369

Table 5.9: The ranges of the final parameters for each optimization method with the robot
crawling on a flat surface and a curved path. Each trial starts at a randomly generated
configuration and runs for 50 generations. For the primitive shapes, the number in each row
represents how often the shape is chosen as the final shape.

CHAPTER 5. RESULTS

5.4 Hilly surface, curved path

First trial

28

Figure 5.17: Learning curves for the standard shape, hill-climbing (baseline), REINFORCE,
and actor-critic on a hilly surface, for the robot walking on a curved path over 50 generations.

Initial Shape | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)
Height (m) 0.254 0.184 0.143 0.204
Width (m) 0.43 0.184 0.143 0.339
Mass (kg) 0.13 0.063 0.054 0.172
Spring Constant (N/m) 0.273 0.076 0.068 0.096
Primitive Shapes Cylinder Sphere Sphere Cube
Number of Joints 3 1 1 1

Table 5.10: The final parameters after 50 generations on a hilly surface with a curved path.

CHAPTER 5. RESULTS 29

Initial | REINFORCE | Actor-Critic | Hill-Climbing (Baseline)

Table 5.11: The initial shape that serves as the starting point of the algorithm, and the shapes
learned with crawling on a curved path on a hilly surface with REINFORCE, actor-critic,
and hill-climbing (baseline), respectively, after 50 generations. The variables optimized are
the shapes of the tips, the sizes of the tips, the spring constants of the joints connecting the
tips and the legs, and the numbers of joints in the legs.

(a) Initial (b) REINFORCE

(c) Actor-Critic (d) Hill-Climbing (Baseline)

Figure 5.18: The same shapes from Table 5.11 on the robot, for illustration purposes.

CHAPTER 5. RESULTS 30

Figure 5.19: The ideal path (black) comparing to the initial path (blue) and the final path
optimized with actor-critic (red). The robot is attempting to crawl on a hilly surface and a
curved path.

Figure 5.20: Metrics 3.1 (left) and 3.2 (right) for the last generation, on a hilly surface and
a curved path.

CHAPTER 5. RESULTS

Trials with five random starting points

31

Figure 5.21: Learning curves for hill-climbing (baseline), REINFORCE, and actor-critic on
a hilly surface, for the robot walking on a curved path over 50 generations. Initialized with
five randomly generated configurations for each optimization method.

REINFORCE | Actor-Critic | Hill-Climbing (Baseline)

Height (m) 0.152 - 0.2729 | 0.141 - 0.1773 0.142 - 0.2861

Width (m) 0.132 - 0.298 | 0.1235 - 0.2391 0.2009 - 0.401

Mass (kg) 0.062 - 0.078 0.055 - 0.081 0.086 - 0.173

Spring Constant (N/m) 0.052 - 0.083 0.053 - 0.098 0.073 - 0.1386
Primitive Shapes - Sphere 7 8 4
Primitive Shapes - Cube 0 0 3
Primitive Shapes - Cylinder 3 2 3

Number of Joints 1 1 1-2

Table 5.12: The ranges of the final parameters for each optimization method with the robot
crawling on a hilly surface and a curved path. FEach trial starts at a randomly generated
configuration and runs for 50 generations. For the primitive shapes, the number in each row
represents how often the shape is chosen as the final shape.

32

Chapter 6

Analysis

The results exhibit that the proposed algorithm is in the correct direction. As shown by
the learning curves, REINFORCE makes some significant improvements from the original
leg shape design, and actor-critic enhances the performances further, especially in the later
generations. The actor-critic version has the best performance as expected given the noise

and high variance in vanilla REINFORCE.

It is also spellbinding to observe a somewhat linear relationship between the cost of transport
and the deviated distance. This information further strengthens the argument that the

algorithm is useful, given that it can enhance the performances in the two metrics together.

The final parameters in Figures 5.2, 5.8, 5.13, and 5.18 are reasonable. On a flat surface, the
robot does not need huge tips for crawling, so the algorithm favors the lighter and shorter
legs. The spring constants for the flat surface are lower as well, indicating that the springs
do not have to be as stiff to move around smoothly. On the uneven surface, the robot
needs to have bigger and heavier legs to get over the slope and travel farther along the
path. The spring constants demonstrate that the joints need to be stiffer and more durable
to move across the bumpy surface. Spheres are chosen as the primitive leg shapes in both
optimization methods. It is an encouraging sign because intuitively, circular shapes, such as

wheels on cars, have the smoothest movement.

An intriguing investigation is on the reason for spheres to be preferred over cylinders using

CHAPTER 6. ANALYSIS 33

the two deep reinforcement learning algorithms. Spheres are expected to outperform cubes.
However, cylinders, whose surfaces are also curvy, are expected to do just as well as spheres.
Through further exploration of the results, cylindrical legs tend to have higher deviated
distances and costs of transport than spheres. A justifiable explanation is that, since the
robots behave in a slight hopping motion, the edges of the cylinders occasionally touch the
surface and affect the robot’s locomotion. With the spherical legs, since there are no edges,
the robot can balance itself effortlessly even if it ends up hopping. It is also noteworthy that
cylindrical legs finish with denser masses than spheres’, which handicap the cost of transport

for cylindrical legs.

Another interesting observation is that the final number of joints per leg is one in both
algorithms. The number of joints is explored because some insects have more than one joint
in their legs [Cruse et al., 2009]. This outcome resembles the evolution of human legs; having
a single rotational joint, like a knee for each leg, is the most beneficial for walking across
surfaces. A plausible conviction is that for insects such as grasshoppers, they have more

joints in their legs because their fundamental movement is to jump.

Hill-climbing, acting as the baseline, has worse performances than those of the proposed al-
gorithm in all scenarios. Some possible causes include the facts that the number of iterations
is not enough for hill-climbing to find the optima, and that the algorithm is trapped in local
optima. Hill-climbing is also more unstable and converges slower. On the other hand, it
ends up with the 1-joint design too, even though the shapes of the tips are different from
REINFORCE and actor-critic in some experiments. This observation further suggests that

the 1-joint design is beneficial for the locomotion in this study.

The preliminary results for using Equation 3.3 in place of Equation 3.1 are promising, as they
produce similar results as the rest of the experiments in the project. However, due to the
time constraints, Equation 3.3 is only applied to the scene with a flat surface and a straight
path. It is still not entirely verified if the possibility of Equation 3.1 growing unboundedly

would not affect the objective function.

Moreover, the algorithm trained with straight paths is run with curved paths for validation

CHAPTER 6. ANALYSIS 34

reasons. With the curved paths, the proposed algorithm’s performances are slightly more
unstable than with the straight paths. The convergences are also slower. However, these
discrepancies are still within the expectations, given that the control for the curved paths
is not optimized. Furthermore, under the same control and environment, the proposed
algorithm still beat the standard shapes and the hill-climbing method in the two chosen
metrics. Another captivating remark is that the proposed algorithm can crawl on the paths
in a more fine-grained manner. For example, from the results in Figure 5.14, the robot’s
final path is more delicate than the initial path. This observation further suggests that the

proposed method is effective.

Finally, to test for the sensitivity to the starting points, five randomly generated starting
points are run with the proposed algorithm. The results suggest that for the flat scenes,
despite starting at different configurations, the algorithm can arrive at similar results, and
is more robust to starting configurations than hill-climbing. For the uneven surfaces, the
results are more unstable. The proposed algorithm has some divergence among the five
trials, but it is less significant than hill-climbing’s. This observation is possibly due to the

fact that the existing motor control is suboptimal for the bumpy surfaces, again.

35

Chapter 7

Conclusion

In this study, a novel evolutionary robotics algorithm is proposed for simulated robots to
adapt their body parts to crawl on specific terrains. The new method retains the evolutionary
favor as it is still run for a certain number of generations. It also blends in REINFORCE
and actor-critic methods from deep reinforcement learning, hoping to acquire a more precise
and faster convergence. Based on the experimental results, with the setup described in this

paper, the proposed algorithm outperforms hill-climbing, in both speed and accuracy.

36

Chapter 8

Future Work

A continuation of this project is to verify if Equation 3.1 growing unlimitedly affects the
objective function. Because of the shortage of time, Equation 3.3 is only analyzed in the flat
scene on a straight path with actor-critic. Applying Equation 3.3 to every experiment is the

next advancement.

A potential extension is the optimization of the weights between the two metrics. A common
practice is to tune for favorable weights for each objective function. The current weight pair
(0.025,1) is an acceptable starting point, but more sophisticated weights can further improve
the performances. It is also likely that each terrain requires its specific weight factors, given
that the ratios between deviated distance and cost of transport are not uniform across all

terrains.

Currently, there are only limited selections of shapes for the tips of the legs. They are all
the built-in primitive shapes from V-REP. If the algorithm can support customized shapes
without sacrificing too much of the efficiency (for example, using Bezier splines [Collins
et al., 2018]), the additional flexibility can further expand the search space and increase the

possibility of identifying more optimal shapes.

Another extension is the simultaneous adaption of designs and control. For this report, an
elementary vision-based controller is used. There is already research on learning the control

and body parts in an alternating fashion [Schaff et al., 2019]. Given that each leg shape and

CHAPTER 8. FUTURE WORK 37

terrain combination is likely to have its particular optimal control, it would be intriguing to

apply the same principle to this study.

Finally, the most significant extension is experimenting with actual robots. Due to the
circumstances of COVID-19, the original plan of validating the algorithm via live robotic
experiments has been disrupted. It would have been fascinating to observe the differences

between simulations and reality and to discover ways to mitigate the divergence.

38

Bibliography

[1] Arias-Montano, A., Coello, C. A. C., and Mezura-Montes, E. (2012). Multiobjective
evolutionary algorithms in aeronautical and aerospace engineering. I[FEE Transactions on

FEvolutionary Computation, 16(5):662—694.

[2] Collins, J., Geles, W., Howard, D., and Maire, F. (2018). Towards the targeted
environment-specific evolution of robot components. In Proceedings of the Genetic and

Fvolutionary Computation Conference, pages 61-68.

[3] Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., and Laschi, C. (2018). Evolving
soft locomotion in aquatic and terrestrial environments: effects of material properties and

environmental transitions. Soft robotics, 5(4):475-495.

[4] Cruse, H., Dirr, V., Schilling, M., and Schmitz, J. (2009). Principles of insect locomotion.
In Spatial temporal patterns for action-oriented perception in roving robots, pages 43-96.

Springer.

[5] Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmark-
ing deep reinforcement learning for continuous control. In International Conference on

Machine Learning, pages 1329-1338.

[6] Ha, D. (2019). Reinforcement learning for improving agent design. Artificial life,
25(4):352-365.

[7] Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in neural

information processing systems, pages 1008-1014.

BIBLIOGRAPHY 39

[8] Nolfi, S., Floreano, D., and Floreano, D. D. (2000). Ewvolutionary robotics: The biology,

intelligence, and technology of self-organizing machines. MIT press.

[9] Schaff, C., Yunis, D., Chakrabarti, A., and Walter, M. R. (2019). Jointly learning to
construct and control agents using deep reinforcement learning. In 2019 International

Conference on Robotics and Automation (ICRA), pages 9798-9805. IEEE.

[10] Sims, K. (1994a). Evolving 3d morphology and behavior by competition. Artificial life,
1(4):353-372.

[11] Sims, K. (1994b). Evolving virtual creatures. In Proceedings of the 21st annual confer-

ence on Computer graphics and interactive techniques, pages 15-22.

[12] Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S., and Van-
houcke, V. (2018). Sim-to-real: Learning agile locomotion for quadruped robots. arXiv

preprint arXiw:1804.10332.

[13] Tricoli, V., Lamas, L., Carnevale, R., and Ugrinowitsch, C. (2005). Short-term effects
on lower-body functional power development: weightlifting vs. vertical jump training pro-

grams. The Journal of Strength €& Conditioning Research, 19(2):433-437.

[14] Wang, L., Yang, Y., Correa, G., Karydis, K., and Fearing, R. S. (2019). Openroach:
A durable open-source hexapedal platform with onboard robot operating system (ros).
In 2019 International Conference on Robotics and Automation (ICRA), pages 9466-9472.
IEEE.

[15] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229-256.

