
Humanoid Android Robot Subsystems

Wenbo Wang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-128

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-128.html

May 22, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Don Wroblewski
Ariel Bentolila

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2014

Electrical Engineering and Computer Sciences

Humanoid Android Robot Subsystems

Wenbo Wang

This Masters Project Paper fulfills the Master of Engineering degree requirement

Approved by:

1. Capstone Project Advisor:

Signature: Date

Print Name: Donald Wroblewski

Department: Fung Institute

2. Faculty Committee Member #2:

Signature: Date

Print Name: Ruzena Bajcsy

Department: Electrical Engineering and Computer Sciences

Abstract

There is a growing need for robots in many different sectors of industry. As demand increases

and technology improves there will be a great demand for robots that can better integrate

into the workplace and the home. Humanoid robotics are a potential technology that can

bridge this gap. Our sponsor, Bay Area IP LLC, is exploring new Intellectual Property

potential in this exciting field. We have designed and prototyped many humanoid robot

components that can be used as a platform for exploring potential technologies as wells as

serve as sources of new IP. This report describes the prototype robot leg and embedded

software system for the robot platform, as well as summarizing the other subsystems worked

on by the team.

Contents

1 Introduction 2

2 Literature Review 4

2.1 Robot Software Frameworks . 4

2.2 Computer Vision . 5

2.3 Robotic Hand . 5

2.4 Shape Memory Alloy . 6

2.5 Robot Leg . 6

2.6 Robot Arm . 6

3 Materials and Methods 7

3.1 Materials . 7

3.2 Methods . 10

3.2.1 Microcontroller Setup . 10

3.2.2 MPU-6050 Setup . 10

3.2.3 Servo Setup . 11

3.2.4 Servo Control . 11

3.2.5 Walking Algorithm Implementation 11

3.2.6 Testing . 12

4 Discussion 13

4.1 Overall System . 13

4.2 Robot Leg . 14

4.3 Firmware . 14

4.4 Locomotion Controller . 17

4.5 System Analysis . 18

5 Conclusion 21

1

1 Introduction

Robots are being widely adopted by in many industries, and there is a growing need

for humanoid robotics. Humanoid robotic components can have many applications such as

manufacturing and prosthetics. A key component of our project, the mechanical design of

a humanoid robotic hand can be applied to both manufacturing and prosthetics. Currently

humanoid robots and robot subsystems are not in wide use, so it is a good target for our

sponsor, Bay Area IP, which is looking do develop intellectual property that they could

license to others.

There are many technical challenges that come with trying to reproduce the human form.

The human body is very complex and there are many different components that need to

interact and function correctly. The human hand has 27 degrees of freedom, and it is

very difficult to reproduce that complexity [1]. However, modern manufacturing techniques

such as 3D printing can get us closer to reproducing that complexity. Reproducing human

capabilities through software is also a great challenges. It is difficult to design and implement

complex control systems capable of mimicking the human body. New computer hardware is

allowing us to create more complex robots capable of performing human like tasks.

Our sponsor, Bay Area IP, envisions three main components to the robot: a computer

vision system, a complex humanoid robotic hand, and a high performance bipedal locomotion

system. The hand would be a light weight and have a high degree of freedom. The computer

vision system will recognize objects in real time and guide the robotic arm towards the object

and guide the hand for grasping. The robotic legs will be able to perform complex gaits and

high speed motions such as running. The role of our team is to lay the foundations for these

three systems, and try to do as much as we can do complete these three subsystems.

The subsystems we designed were the arms, hands, legs, feet, and vision systems. We

designed the mechanical structure of these components and the software for controlling the

different parts. For the hands we did CAD design of the hand structure. We also performed

tests on using shape memory alloy(SMA) to actuate components of in the fingers. Simple

prototypes of the arms and legs were constructed using off-the-shelf components to provide

testing platforms for the software. The control software was simulated in MATLAB and then

implemented in C++ on a microcontroller. The computer vision system was implemented on

an AMD APU, and utilized a novel laser system to augment the computer vision algorithms.

2

To control our robot, we utilized a powerful 32 bit microprocessor, the PIC32MX795F512L

which allows us to perform complex calculations in real time [2]. This allows the robot

to perform complex computer vision tasks and control algorithms. With the PIC32 as

the foundation I built the firmware for the robot, implementing the fundamental sensory

and motor controls of the humanoid robot. The first step was to implement the necessary

communication protocols to connect the PIC32 with the other software components: I2C

to integrate other integrated circuit chips, USB to communicate with the PC, and UART

to communicate with other controllers. These systems cover nearly the full spectrum of

communication protocols used by common ICs and components used for embedded software

and robotics applications, and they allow us to easily integrate new components and features

into the robot hardware.

The motor functions of the robot are mainly governed by a collection of servos on the arms

and legs. To control the servos, I utilized the SSC-32 servo controller, a powerful controller

capable of synchronizing the motions of 32 servos at the same time [3]. A single SSC-32,

controlled through a serial UART connection, would be able to control the motions of the

arm and legs and synchronize them with millisecond precision. The sensory information

consists of accelerometer and gyro readings from the MPU6050. The MPU6050 is connected

through an I2C connection, and it consists of a 3-axis gyro and a 3-axis accelerometer, as

well as temperature sensors. The MPU6050 can also be connected to other sensors such as

magnetometers [4]. The MPU6050 can be placed on the arms and legs to generate sensory

feedback for controlling the motions of the legs and arms.

The team completed the bipedal legs of the robot, and I was able to test the controller on

the bipedal system. The control of walking was based on a linear combination of different

sine waves which governed the periodic motion of the legs. Through system testing, we

discovered that the robot has very high power requirements, and the power supplies we had

could not power the entire system. Much more powerful power supplies will be needed to

complete full system tests. The report describes the detailed design of the firmware and the

robotic legs on which the firmware was tested, as well as the challenges we faced and our

recommendations to the sponsor for moving forward with the project.

3

2 Literature Review

2.1 Robot Software Frameworks

The software for the robotics industry is mostly made of code custom tailored to specific

hardware and specific industries, unlike traditional PC software which tend to be multi-

platform and independent of the underlying hardware. Some reasons for this are the relative

youth of this industry and the very specific niches that robots manufacturers fill. Many

robots are designed for specific manufacturing and assembly purposes, where the customers

are large corporations willing to pay high prices for these robots. Corporations are usually

seeking reliability in their manufacturing robots, so custom tailoring the code for specific

hardware has much greater benefits than sacrificing performance for portability. Compara-

tively, hobbyists and researchers seeking multi-platform and easy to use software is a much

smaller segment [5].

As robots are becoming more complex and difficult to program, many individuals have

tried to create software frameworks to ease the process [6]. Easy to use software can be a

main selling point for some robots; the Baxter robot from Rethink Robotics lists ease of

programming as one of it’s key features [7]. One framework is the ROS which is a Robotic

Operating System, which implements some of the features you would find in a traditional

operating system in order to facilitate development of robot software. The ROS is open

source, free, and language independent, meaning that it can be used with many different

programming languages. The ROS is structured around libraries and drivers like a normal

OS, so the programmer and write their code to be portable to many different hardware

systems, like a software for a PC [6].

Another framework is the Miro developed by Utz et al., which uses a object oriented

paradigm. The Miro, like the ROS, is open source. Miro implements all the basic fundamen-

tals of object oriented software, such as information hiding, abstractions, polymorphism, and

inheritance. The Miro provides a familiar framework that hides the details of the underlying

hardware from the programmer [8].

The framework we will be using is the Multi-Platform Integrated Development Environ-

ment (MPIDE). This framework is a microprocessor programming framework designed to

work for many different microprocessors. The MPIDE is based on the Arduino framework,

4

which is based on C++. This is a very popular framework for programming microcontrollers

since it offers a simple API abstraction for the complex microprocessor hardware. Being

based on C++, the MPIDE offers a object oriented programming pattern like the Miro.

The Arduino framework, on which MPIDE is based, has a large community of enthusiasts

offering a strong base of support and software libraries. The MPIDE has the ease of use of

the Arduino while also supporting a larger variety of much faster microprocessors [9].

2.2 Computer Vision

Object detection has been well studied in a variety of applications. Many machine learning

algorithms are utilized for object detection such as Support Vector Machines or Convolu-

tional Neural Networks[10],[11]. Many of the object detection algorithms utilize Histogram

of Oriented Gradient(HOG) features, which are based on taking a gradient over the image

and generating histograms of gradient angles and magnitudes using overlapping sections of

the image[12].

Complex object detection algorithms can be very resource intensive, as they often need

to scan the image multiple times at different resolutions to find all the objects[13]. This

can be a very expensive process on an embedded system such as the robot. In a cluttered

space it can be very difficult to detect objects correctly in real time. On a robotic system

there usually exist other sensors that can supplement the visual information to help ease this

process. Utilization of depth sensors can help process the visual information more easily[14].

Computer vision techniques could have many applications for manufacturing robots. As

manufacturing robotics advance, they will need more accuracy and intelligence to accomplish

their tasks, and vision is a good tool for accomplishing this. Already there are manufacturing

robots utilizing vision for tasks such as part recognition and sorting[15].

2.3 Robotic Hand

There are many different companies and research groups constructing robotic hands for

many different applications. There are hands designed to be prosthetics, as well as hands

designed to be integrated into robotic systems. One of the most complex is the UB Hand IV,

this hand is nearly the same as a human hand in terms of capabilities. However, the hand

is very heavy and very power hungry, so it is not very suitable for most applications[16].

5

However, most light weight hands are lacking in complexity and function. The this recently

developed lightweight hand only has five degrees of freedom[17]. To develop a hand that is

both light weight, small, and fully functional will require new design techniques.

2.4 Shape Memory Alloy

We want to leverage some modern technology to make a robotic hand that is smaller and

light weight. One potential tool is Shape Memory Alloy (SMA), a type of material that

can expand or contract when heated[18]. Many metallic alloys exhibit the shape memory

effect[19]. These alloys can be deformed at a lower temperature, when heated, they will

return to their original shape. We can use this do accomplish actuation using a small form

device heated through electrical current[20]. This actuation can be used in the fingers of the

hand , where space is very limited.

2.5 Robot Leg

A popular control method for robot locomotion is Central Pattern Generators (CPG).

Central pattern generators are neural networks that generate periodic control signals in the

body. This control can be generated in the absence of feedback signals. The human body

utilizes this system for many different rhythmic motor functions that the body needs to

perform[21].

Central pattern generator can also be adapted to the locomotion of robots. CPG can

be used to control locomotion of bipedal robots, as well as hexapods and octopods. Using

coupled oscillators one can design a control system for bipedal robots. CPG are well suited

for feedback control of bipedal locomotion. Properly implemented CPG also allow for higher

level control of the walking without needing to worry about exact servo outputs. However

CPGs are not well understood and difficult to design properly[22].

2.6 Robot Arm

For the controls of our robot arm we will be implementing Fuzzy Logic control systems.

These control systems can handle nonlinearities well, and they are well studied for control of

robotic systems such as arms[23]. Fuzzy logic controllers can also be used to control balance

of the robotic legs, treating the legs as an inverted pendulum[24].

6

Figure 1: UBW32 board from SparkFun electronics[26]

Rather than using complex models, a fuzzy logic controller relies on empirical rules, this

makes the controller computationally cheap and well suited for embedded applications. A

fuzzy logic controller has three main components: a fuzzifier, a rule base, and an defuzzifier.

In the fuzzifier, analog inputs are fuzzified into fuzzy logic values between 0 and 1. The fuzzy

values are put into the rule base to determine a set of fuzzy outputs, and then the defuzzifier

combines the outputs into an analog output[25].

3 Materials and Methods

3.1 Materials

PIC32MX795F512L A 32 bit micro-controller for performing the control algorithms of

the robot. The PIC32MX795F512L comes from SparkFun electronics as part of the UBW32

board, which comes preloaded with a bootloader for programming the board. See figure 1

for an image of the UBW32 board. The PIC32MX795F512L is programmed in C/C++.

To make the device easier to use, we loaded an avrdude bootloader onto the device to use

the MPIDE software. The MPIDE framework allows us to use Arduino libraries on the

PIC32MX795F512L which helps to accelerate development of basic I/O software for the

board[2].

PICKIT3 A hardware programmer for the PIC32MX795F512L microprocessor. See figure

2. The pickit3 and program and debug the PIC32 micro-controller. Used to download code

onto the UBW32. Useful for installing new bootloaders onto the UBW32 and for restoring

broken firmware[27].

MPU6050 A gyro and accelerometer for obtaining information about the kinematics of

the arm and the leg. See figure 3. Uses I2C connection to the PIC32MX795F512L for

7

Figure 2: PICkit 3 In-Circuit Debugger from Microchip[28]

Figure 3: MPU-6050 Triple axis accelerometer and gyro[29]

communication[4].

HSR-5498SG Servos from Hitec. Utilized to control arm and leg joints. See figure 4. The

servos require 6-7 Volts. Each servo requires at least 200mA when running without load,

and over 1A when stalled. The actuation of the arm is accomplished by mini-motors rather

than servos[3].

Figure 4: HSR-5498SG servo from Hitech[hsrfigcite]

8

Figure 5: SSC-32 servo controller from Lynxmotion[31]

Figure 6: VLT100-4002 power supply[33]

SSC-32 Servo controller from Lynx motion. The on-board controller is an Atmega168-

20PU. See figure 5. The SSC-32 is controlled using serial signals from another microprocessor

or the PC. The control signal is a string containing a series of commands. The controller

can specify pin number, servo position, rotation speed, and rotation time. It can power 32

servos simultaneously[30].

VLT100-4002 Power supply for powering the servos. See figure 6. 5V output capable of

supplying 3A to 12A of current[32].

Yihua 1502DD Adjustable power supply for servos. See figure 7. 0-15V output and 0-2A

output[34].

9

Figure 7: Yihua 1502DD DC power supply[35]

3.2 Methods

3.2.1 Microcontroller Setup

To program the PIC32MX795F512L, we used the Multi-Platform Integrated Development

Environment(MPIDE) from chipKIT. To use MPIDE with the program, we had to pro-

gram the PIC32 with the avrdude bootloader found here: https://github.com/chipKIT32/

PIC32-avrdude-bootloader. Using the PICkit3, we loaded the new bootloader onto the

UBW32 and was able to use MPIDE to program the board. MPIDE utilizes the Arduino

libraries and Arduino style C++ code for programming the board. Through MPIDE, there

are a wide variety of libraries available for performing basic I/O tasks using the PIC32.

3.2.2 MPU-6050 Setup

The MPU-6050 utilizes an I2C connection to the read and write data. The device readings

are stored on a 1024 byte FIFO buffer on the MPU[4]. The MPU can be used to acquire

sensory information for controlling the motions of the legs and the arms. We set up the

MPU6050 using the PIC32 I2C libraries in MPIDE. We utilized the Wire.h library to read

and write to the I2C bus of the PIC32[29]. There are a total of five SDA pins on the

PIC32MX795F512L, so we can have a minimum of five of these devices connected to our

microcontroller.

10

https://github.com/chipKIT32/PIC32-avrdude-bootloader
https://github.com/chipKIT32/PIC32-avrdude-bootloader

3.2.3 Servo Setup

The servos each had a range of 180 degrees. The SSC-32 represents this as a value between

500 and 2500. Due to the mechanical construction most joints had a limited range of motion.

Most joints had a range of 100 degrees. The exact ranges were tested and calibrated after

the completion other robot leg. Each servo requires approximately 6V and 200mA to 1A of

current depending on the load[30]. For our tests, we used the Yihua DC power supply which

is adjustable up to 15V and supplied up to 2A[34].

3.2.4 Servo Control

To control the servos we utilized a SSC-32 servo controller. The controller has 32 channels

for servo control. Each channel can be given a position, rotation speed, and rotation time.

Multiple servo channels can be controlled simultaneously through a single command The

SSC-32 is powered through a 9V battery. The controls are given in the form of strings, the

following is an example of the commands used for SSC-32.

#5 P1600 T1000 <cr>

The #5 defines the channel number which ranges from 0 to 31. The P1600 sets the position

of the servo from 500 to 2500. The T1000 sets the time of rotation in milliseconds. The

carriage return(<cr>) signifies the completion of a command. The following is an example

command for simultaneous movement of servos:

#5 P1600 #10 P750 T2500 <cr>

In this case all the servos adjust their speed so they arrive at the specified position in the

specified time.

3.2.5 Walking Algorithm Implementation

The walking algorithms were designed by Zhu Ziqi, a fellow team member. He designed and

simulated the algorithms in MATALB and SIMULINK and I implemented the algorithms

in C++ on the PIC32MX795F512L. The servo positions were determined from a linear

combination of sine waves. For our preliminary walking algorithms we only considered the

knee and hip joints. The SSC-32 position control signal requires a integer ranged from 500

to 2500, corresponding to 180◦ of motion[3]. Due to the mechanical construction of the arm

and leg joints, which mimicked human structure, most joint servos were limited to a range

11

between 1250 and 2500. The output from the sine waves would be converted to a range in

the SSC-32’s output and then sent to the servos. Equations 3 and 4 show the equations for

calculating the position of each servo as a function of time. The angle of the hip is a degree

relative to the vertical axis of the 3D space, while the angle of the knee is relative to the axis

along the thigh of the robot.

φ3(t) = a13Lsin(b13Lt+ c13L) + a23Lsin(b23Lt+ c23L) + a33Lsin(b33Lt+ c33L)

+ a43Lsin(b43Lt+ c43L) + a53Lsin(b53Lt+ c53L) + a63Lsin(b63Lt+ c63L)

+ a73Lsin(b73Lt+ c73L) + a83Lsin(b83Lt+ c83L) (1)

φ4(t) = a14Lsin(b14Lt+ c14L) + a24Lsin(b24Lt+ c24L) + a34Lsin(b34Lt+ c34L)

+ a44Lsin(b44Lt+ c44L) + a54Lsin(b54Lt+ c54L) + a64Lsin(b64Lt+ c64L)

+ a74Lsin(b74Lt+ c74L) (2)

θhip(t) =
φ3(t)

180π
(3)

θknee(t) =
θhip(t) − φ4(t)

180π
(4)

(5)

The conversion from angle in degrees to servo position is given by the following equation.

P =
θ

90
∗ 1000 + 1500 (6)

The positions of the legs are calculated by the PIC32 and sent to the SSC-32 through the

Universal Asynchronous Receiver Transmitter(UART) module of the PIC32. The UART is

a serial connection between the PIC32 and the SSC-32. The calculated results are composed

into a string in the form of an SSC-32 command and sent to the servo controller.

3.2.6 Testing

Tests were done on the control system and servos to make sure every system function

correctly. Software performance was tested using the hardware timers on the PIC32. The

performance of individual processes were timed to identify performance bottlenecks and

possibilities for optimization. The main processes we timed were the calculation of the

sine waves for robot walking and serial transmission between devices. We also measured

overall runtime for each controller iteration to make sure physical motion of the robot was

12

synchronized with the controller update time.

Servos were also tested for performance. While testing the basic servo functionality of the

controller, I used a small battery to power the servo, as their was little load to lift. Initially

I tested to check that the P500, P1500, and P2500 settings of the SSC32 matched the 0,

90, and 180 degrees of the physical servo. Initial servo testing was done by sending manual

commands to the SSC32 controller through a serial terminal.

After the legs were assembled, I tested the servos on the legs joints. These tests were

performed using the Yihua 1502 power supply which could support the load of lifting the

legs. For these tests I also sent direct commands through a serial terminal to control the

positions of the individual joints. I tested the maximum and minimum angles of each joint

servo. This was done by iteratively trying the different possible joint angles until we found

the all positions that would not be constrained by the mechanics of the joint assembly. Once

I found a position value that the servo could not move to due to mechanical constraints, we

tested narrowed the search to find the maximum allowable position. We also tested to find all

the neutral positions of the servo, where neutral meant standing upright. These maximum

and minimum position values, would be coded into the controller as software limits, as trying

to push the servo against these limits wold likely overload and damage the servo.

Overall system testing was done by attaching all joint servos to the SSC32 and driving

them with the VLT100 which could supply up to 20A of current. Initial testing was done

using serial terminal was manual control. First we test the ability to synchronize the motions

of multiple servos at once using the serial terminal to send synchronized commands. Then

we switched to the autonomous mode and tested the controller’s ability to correctly generate

periodic motions in the legs. To make sure the PIC32 was outputting the correct commands

to the SSC32, we had the PIC32 mirror those commands to the PC, where we can check the

output position and command syntax through a serial terminal.

4 Discussion

4.1 Overall System

We have components of a robotic platform prototyped and designed. The Robotic legs

and arm are prototyped and constructed. The hand and feet have been designed in CAD,

13

and The basic software and control framework has been established. The basic I/O and

control tasks have been implemented in C++ on the microcontroller with easy to use APIs

that others can use to control the completed robot legs. Overall we are at a good position

for the sponsor to take the foundations we have built and try to implement different control

algorithms and machine learning algorithms.

4.2 Robot Leg

The leg was constructed using with six servos on each leg. Three servos on the hip

mimicked the ball and socket configuration of the human hip joint, which has three degrees

of freedom[36]. The three modes of motion are along the sagittal, frontal, and transverse

planes[37]. The knee has one degree of freedom, and the ankle has two degrees of freedom in

the sagittal and frontal planes. Each leg has six degrees of freedom in total, this is fine for

most gaits on uneven ground, but more complex terrain may be difficult to manage; More

degrees of freedom may be needed to obtain more human like gait on difficult to traverse

terrains[36].

The shins and pelvis were constructed from aluminum U channels. The thighs where

made from aluminum cylinders, and the feet were aluminum plates (Figure 8). The SSC-32

servo controller was attached to the hip. A tether connects the servo controller to the power

supply and the PIC32 controller. Figure 9 shows the configuration of the servos on the leg,

as well as their direction and range of motion in terms of SSC-32 position values. The full

range of valid position values was determined through testing each individual joint. I found

that exceeding these values generally breaks the logic of the SSC32, and the controller must

be reset as a result.

4.3 Firmware

The completed firmware components are the serial communications to different devices,

servo control, and accelerometer/gyro control. The communications channels implemented

are the USB communications between the PIC32 and the PC, the UART connection between

the PIC32 and the SSC-32 servo controller, and the I2C connection to the MPU6050 sensors.

The I2C connection can be adapted to more sensors that may be added in the future for

other devices.

14

Figure 8: Prototype leg constructed of aluminum. Total of 6 degrees of freedom on each leg. The
servo controller is attached to the hip

15

Figure 9: Location of the servos on the leg, and the directions and ranges of motion for each servo
in terms of the SSC-32 position outputs

16

The servo controls are accessed through SSCServo.h which contains functions and settings

for controlling servo position through the SSC-32 controller. The MPU6050 is accessed

through MPU6050.h which defines memory addresses of the MPU6050 registers and functions

for reading the output of the sensors and configuring the sensor settings. Users of the robot

can adapt these settings to program and prototype their own control algorithms.

4.4 Locomotion Controller

Ziqi performed the simulations of the robot leg locomotion algorithms, and obtained the

optimal parameters for equations 1 and 2. The following are the parameters we used. Refer

to Ziqi’s report for a detailed analysis of the control system.

phi_3: phi_4:

a13L = 73.11; a14L = 14.91;

b13L = 19.69; b14L = 0.8727;

c13L = -0.6449; c14L = 4.016;

a23L = 52.58; a24L = 1.559;

b23L = 0.6307; b24L = 19.4;

c23L = 2.671; c24L = -1.197;

a33L = 12.35; a34L = 27.52;

b33L = 12.05; b34L = 15.42;

c33L = -2.836; c34L = 0.9818;

a43L = 3.357; a44L = 28.88;

b43L = 29.81; b44L = 45.43;

c43L = -0.797; c44L = -5.819;

a53L = 62.63; a54L = 15.08;

b53L = 20.15; b54L = 31.49;

c53L = 2.236; c54L = 1.844;

a63L = 12.04; a64L = 1.769;

b63L = 5.405; b64L = 9.852;

c63L = 3.598; c64L = -5.219;

a73L = 1.786; a74L = 31.1;

b73L = 34.76; b74L = 45.58;

c73L = 1.995; c74L = -2.751;

a83L = 1.418;

17

b83L = 47.2;

c83L = -0.402;

The robot is controlled through a serial connection to the computer. The PIC32MX795F512L

is connected to the PC through the USB connection on UART channel 0. Commands can be

passed into the robot from a serial terminal on the PC. There are three modes of operation:

Standing, Walking, and Direct Control. Activated by sending the strings stand, walk, and

direct through a serial terminal to the PIC32. While in stand mode, the robot holds a

rigid upright position. While in walk mode, the robot attempts to walk according to the sine

waves laid out by equations 1 to 4. In direct mode, each servo can be commanded directly

using the SSC-32 commands; in this mode all the commands passed to the PIC32 are redi-

rected to the SSC-32. Servos on the right leg are attached to channels 0-5 on the SSC-32 and

the servos on the left leg are on channels 16-21. Figure 9 shows the corresponding channels

for each servo. Figure 10 shows an overview of how the circuit components are connected in

the legs.

4.5 System Analysis

The controller performs simple round robin scheduling when calculating servo outputs.

It looks at each servo in order and calculates the correct output. The final command is

composed from the servo outputs and sent as a single synchronized motion command to the

SSC-32. The execution speed of the round robin loop is determined in the code. To get

smooth motions in the joints, we needed to calibrate the timing of the commands sent to

the SSC-32. We are utilizing a 100ms time step for the position calculations, and we found

that approximately 94ms update time is sufficient for smooth motions. To smooth out the

motions, the update time needs to be shorter than the motion time programmed into the

SSC-32. We calculate the necessary position of the servos and construct the command and

send the command to the SSC-32 in 94ms. We have 12 servos, and each servo requires

around 8 bytes of data to be sent. The PIC32 runs at 80MHz, so it is sufficient for our

current configuration, the calculation time negligible, we measured times in the range of

a few milliseconds for the calculation of the sine functions of all the servos [2]. The serial

transfer rate can be limiting since the SSC-32 requires a long string encoding the positions

of all the servos that need to be moved, and each servo needs a string of approximately

8 characters, with 12 servos on the legs and 12 servos on the arms that is 1536 bits of

information that needs to sent every time step. The SSC32 can be configured for different

18

Figure 10: Overview of the circuit components and the connection

19

Figure 11: Timing of the processor steps with the motions of the servo

Baud rates of 9600, 38400, and 115200. Table 1 shows the measured transfer times at each

of the available Baud rates. These values were measured using commands for simultaneous

control of 12 servos.

Baud Rate (bps) Transfer Time (ms)
9600 115

38400 28
115200 10

Table 1: The number of milliseconds to transmit a command for 12 servos to the SSC32 for
different Baud rates

Figure 11 shows the final configuration of the firmware timing. We used 38.4kbps for the

Baud rate in our prototype. The majority of the time is spent waiting, this time may be

filled up with other tasks as the other components of the robot are completed.

The maximum update speed for the SSC-32 is 20ms, so that is the main performance

limiter [38]. The 20ms limit should be fine for most motions, since 20ms is faster than

most human knee motions, which requires nearly one second to move from full extension

to full contraction [39]. However, having a faster update rate will increase the resolution

of the motion and achieve a more human like gait. The SSC-32 is controlled by a Atmel

ATMEGA168-20PU, which is a 8-bit 20Mhz microcontroller [40]. To increase performance,

we may be able to shift the servo control to the PIC32, which is a much faster microcontroller,

and we would not need the serial communications between the PIC32 and the SSC-32, but

that would require more complicated task scheduling to synchronize the servo movements.

20

The robot’s mobility is limited due to lack of proper power supply to the robot. We only

have two power supplies, the Yihua 1502DD and the VLT100, neither of which is suitable

for the task of powering the entire bipedal system. The Yihua can support full control of a

single joint with great reliability. The datasheet of the servos list the stall current as 1.2A

and the no load current as 200mA. Through testing we see that actuating a single knee servo

to lift the leg requires over 1A of current. The Yihua has a maximum load of 2A, which

cannot support motion of the robot. Testing with the VLT100 which is a 5V 3-12A power

supply also proved useless. The power supply could not reliably lift the legs of the robot and

hold their positions. This is likely due to the servos requiring 6V to 7.2V of supply voltage.

The VLT100 needs 3A minimum load to sustain a stable voltage output, and even with 12

servos they do not draw 3A when the majority are unloaded. The leg has 12 servos in total,

most of large motions will be in the four hip and knee joints, while the other joints will be

responsible for smaller motions to balance the robot. The arms are of similar construction,

but the elbow and shoulder joints would be responsible for a even larger load of lifting the

arms in air.

Ideally we want to be able to supply 28.8A of current to satisfy the maximum requirement

of the servos. We can opt for a high current power supply such as a BK Precision Model

1796, which can supply 0-16V and 0-50A which will be enough for our applications [41].

However such supplies are probably too bulky to be put on to the robot chassis, so the

robot will need to be tethered to the table supply. We can also boost the voltage out put of

the VLT100, the 12A output is probably sufficient for the controlling the legs or the arms,

so we may need two supplies for the whole robot. The VLT100 is small enough to attach

to the robot, but it needs to be attached to tethered to the wall supply. We can also use

batteries to power the robot. The BP13-6 S from BB Battery Co. has 6V output and a 30A

maximum discharge, and the battery is rechargeable [42]. The battery has the advantage

of being mobile and can remove the necessity of tethering the robot, though the battery is

fairly heavy at 5.5lb [42]. To fully free the robot from the tether, we will also need to replace

the wired USB connection with wireless communication.

5 Conclusion

The robot has legs and arms that can be used as testing platforms for various algorithms.

Future groups can utilize this robotic platform as a foundation for developing more complex

21

control systems and artificial intelligence software. The overall vision laid out by the our

industry adviser at the beginning of the project was of a humanoid robot that has advanced

locomotion capabilities such as running and jumping and advanced vision and hand manip-

ulation capabilities. The goal for our group was to build the foundations of this robot. We

have successfully prototyped the simpler components like the leg and arm, and we have laid

the software foundations for the control system and computer vision system. It would be

easy for future teams to build on the software and hardware we have to complete the vision

of our sponsor.

More testing and simulations need to be done to finish the control systems of the robot.

More degrees of freedom can also be added to implement more human like motions. Once that

is completed more work can be done to push it beyond the state of the art, by implementing

complex motions such as bipedal running. The vision system needs to be completed and

interfaced to the robot arm, so the vision can be used to guide the arm’s motions. We faced

difficulties in the mechanical design of the hand with the constraints of size and weight,

especially in implementing SMA into the design, so more work and testing need to be done

in this area.

The areas of advanced robotic locomotion, computer vision, and advanced humanoid hand

and feet design are all great areas for the sponsor Bay Area IP to explore IP opportunities.

These technologies can bring many benefits to areas such as manufacturing and prosthetics.

22

References

[1] George ElKoura and Karan Singh. “Handrix: animating the human hand”. In: Eu-

rographics symposium on Computer animation (2003). url: http://dl.acm.org/

citation.cfm?id=846291.

[2] PIC32MX5XX/6XX/7XX Datasheet. Microchip. 2012. url: http://ww1.microchip.

com/downloads/en/DeviceDoc/61156H.pdf.

[3] User Manual SSC-32 Ver 2.0. Lynxmotion, Inc. 2005. url: http://www.swarthmore.

edu/NatSci/ceverba1/Class/e5/E5Lab2/ssc-32lynxmotionmanual.pdf.

[4] MPU6050 Datasheet. InvenSense Inc. 2013. url: http://invensense.com/mems/

gyro/documents/PS-MPU-6000A-00v3.4.pdf.

[5] Choulsoo Jang et al. “OPRoS: A New Component-Based Robot Software Platform.”

In: ETRI journal 32.5 (2010).

[6] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA

workshop on open source software. Vol. 3. 3.2. 2009.

[7] Baxter. Rethink Robotics, Inc. url: http://rr-web.s3.amazonaws.com/assets/

Baxter_datasheet_5.131.pdf.

[8] Hans Utz et al. “Miro-middleware for mobile robot applications”. In: Robotics and

Automation, IEEE Transactions on 18.4 (2002), pp. 493–497.

[9] Rick Anderson and Dan Cervo. “Using Arduino with PIC32 and ATtiny Atmel Chips”.

In: Pro Arduino. Springer, 2013, pp. 169–188.

[10] Tudor Barbu. “SVM-based human cell detection technique using histograms of oriented

gradients”. In: cell 4 (2012), p. 11.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks.” In: NIPS. Vol. 1. 2. 2012, p. 4.

[12] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detection”.

In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on. Vol. 1. IEEE. 2005, pp. 886–893. url: http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1467360.

[13] Pedro Felzenszwalb et al. “Visual object detection with deformable part models”. In:

Communications of the ACM 56.9 (2013), pp. 97–105. url: http://dl.acm.org/

citation.cfm?id=2494532.

23

http://dl.acm.org/citation.cfm?id=846291
http://dl.acm.org/citation.cfm?id=846291
http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf
http://www.swarthmore.edu/NatSci/ceverba1/Class/e5/E5Lab2/ssc-32 lynxmotion manual.pdf
http://www.swarthmore.edu/NatSci/ceverba1/Class/e5/E5Lab2/ssc-32 lynxmotion manual.pdf
http://invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf
http://invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf
http://rr-web.s3.amazonaws.com/assets/Baxter_datasheet_5.131.pdf
http://rr-web.s3.amazonaws.com/assets/Baxter_datasheet_5.131.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467360
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1467360
http://dl.acm.org/citation.cfm?id=2494532
http://dl.acm.org/citation.cfm?id=2494532

[14] Stephen Gould et al. “Integrating visual and range data for robotic object detec-

tion”. In: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and

Applications-M2SFA2 2008. 2008. url: http://hal.archives-ouvertes.fr/inria-

00326789/.

[15] Factiories of the Future: Beyond the Limits of Industrial Robotics. 2011. url: http:

//www.cometproject.eu/publications/sir-industrial-robotics.pdf.

[16] C Melchiorri et al. “Development of the UB Hand IV: Overview of Design Solutions

and Enabling Technologies”. In: IEEE Robot Autom Mag 20.3 (2013), pp. 72–81. doi:

10.1109/MRA.2012.2225471.

[17] Takeshi Takaki and Toru Omata. “High-performance anthropomorphic robot hand

with grasping-force-magnification mechanism”. In: Mechatronics, IEEE/ASME Trans-

actions on 16.3 (2011), pp. 583–591.

[18] L McDonald Schetky. “Shape-Memory Alloys”. In: Kirk-Othmer Encyclopedia of Chem-

ical Technology (1982). url: http://onlinelibrary.wiley.com/doi/10.1002/

0471238961.1908011619030805.a01/full.

[19] CM Wayman. “Shape memory alloys”. In: MRS bulletin 18.04 (1993), pp. 49–56. url:

http://journals.cambridge.org/abstract_S0883769400037350.

[20] Koji Ikuta. “Micro/miniature shape memory alloy actuator”. In: Robotics and Au-

tomation, 1990. Proceedings., 1990 IEEE International Conference on. IEEE. 1990,

pp. 2156–2161. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

126323.

[21] Scott L Hopper. Central Pattern Generator. 2000. url: http://crab-lab.zool.

ohiou.edu/hooper/cpg.pdf.

[22] Auke Jan Ijspeert. “Central pattern generators for locomotion control in animals and

robots: a review”. In: Neural Networks 21.4 (2008), pp. 642–653. url: http://www.

sciencedirect.com/science/article/pii/S0893608008000804.

[23] EM Scharf and NJ Mandic. “The application of a fuzzy controller to the control of a

multi-degree-of-freedom robot arm”. In: Industrial applications of fuzzy control (1985),

pp. 41–62.

[24] Guang-Chyan Hwang and Shih-Chang Lin. “A stability approach to fuzzy control

design for nonlinear systems”. In: Fuzzy sets and Systems 48.3 (1992), pp. 279–287.

24

http://hal.archives-ouvertes.fr/inria-00326789/
http://hal.archives-ouvertes.fr/inria-00326789/
http://www.cometproject.eu/publications/sir-industrial-robotics.pdf
http://www.cometproject.eu/publications/sir-industrial-robotics.pdf
http://dx.doi.org/10.1109/MRA.2012.2225471
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.1908011619030805.a01/full
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.1908011619030805.a01/full
http://journals.cambridge.org/abstract_S0883769400037350
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=126323
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=126323
http://crab-lab.zool.ohiou.edu/hooper/cpg.pdf
http://crab-lab.zool.ohiou.edu/hooper/cpg.pdf
http://www.sciencedirect.com/science/article/pii/S0893608008000804
http://www.sciencedirect.com/science/article/pii/S0893608008000804

[25] Musa Mailah and Numi Izzah Abdul Rahim. “Intelligent active force control of a robot

arm using fuzzy logic”. In: TENCON 2000. Proceedings. Vol. 2. IEEE. 2000, pp. 291–

296. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=888750.

[26] Brian Schmalz. UBW32 (32 bit PIC32 based USB Bit Whacker). Mar. 2013. url:

http://www.schmalzhaus.com/UBW32/.

[27] PICkit 3 Programmer/Debugger User’s Guide. Microchip. 2008. url: https://www.

sparkfun.com/datasheets/Programmers/PICkit_3_User_Guide_51795A.pdf.

[28] PICkit3 Product Information. url: http://www.modtronix.com/product_info.

php?products_id=407.

[29] Krodal. MPU-6050 Accelerometer + Gyro. July 2013. url: http://playground.

arduino.cc/Main/MPU-6050.

[30] Jun Hee Lee. General Specifications of HSR-5498SG Digital Robot Servo. Hitec. 2006.

url: http://www.robotshop.com/media/files/pdf/hitec-hsr-5498sg-digital-

servo-specsheet.pdf.

[31] Lynxmotion SSC-32 Servo Controller. Robotshop. url: http://www.robotshop.com/

en/lynxmotion-ssc-32-servo-controller.html.

[32] VLT100 Series: 100W single and quad output AC/DC Power Supplies. EOS. url:

http://www.eospower.com/All%20Pdf/39-DE60-43931-002A2_VLT100-datasheet.

pdf.

[33] EOS VLT100-4002. url: http://www.shopeio.com/inventory/details.asp?id=

1711&x=EOS%20VLT100-4002.

[34] YIHUA 1502DD LED dc power supply. Yihua. url: http://yihua-gz.com/Products_

detail.asp?id=247&sortid=264.

[35] Power Supply,YIHUA 1502DD+. url: http://gzyihuatools.en.ec21.com/Power_

Supply_YIHUA_1502DD--4211637_4216400.html.

[36] Fred R Sias Jr and Yuan F Zheng. “How many degrees-of-freedom does a biped need?”

In: Intelligent Robots and Systems’ 90.’Towards a New Frontier of Applications’, Pro-

ceedings. IROS’90. IEEE International Workshop on. IEEE. 1990, pp. 297–302. url:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=262401.

[37] Catherine Fiscella. “The Hip Joint”. In: IDEA Fitness Journal (Mar. 2005). url:

http://www.ideafit.com/fitness-library/hip-joint-anatomy.

25

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=888750
http://www.schmalzhaus.com/UBW32/
https://www.sparkfun.com/datasheets/Programmers/PICkit_3_User_Guide_51795A.pdf
https://www.sparkfun.com/datasheets/Programmers/PICkit_3_User_Guide_51795A.pdf
http://www.modtronix.com/product_info.php?products_id=407
http://www.modtronix.com/product_info.php?products_id=407
http://playground.arduino.cc/Main/MPU-6050
http://playground.arduino.cc/Main/MPU-6050
http://www.robotshop.com/media/files/pdf/hitec-hsr-5498sg-digital-servo-specsheet.pdf
http://www.robotshop.com/media/files/pdf/hitec-hsr-5498sg-digital-servo-specsheet.pdf
http://www.robotshop.com/en/lynxmotion-ssc-32-servo-controller.html
http://www.robotshop.com/en/lynxmotion-ssc-32-servo-controller.html
http://www.eospower.com/All%20Pdf/39-DE60-43931-002A2_VLT100-datasheet.pdf
http://www.eospower.com/All%20Pdf/39-DE60-43931-002A2_VLT100-datasheet.pdf
http://www.shopeio.com/inventory/details.asp?id=1711&x=EOS%20VLT100-4002
http://www.shopeio.com/inventory/details.asp?id=1711&x=EOS%20VLT100-4002
http://yihua-gz.com/Products_detail.asp?id=247&sortid=264
http://yihua-gz.com/Products_detail.asp?id=247&sortid=264
http://gzyihuatools.en.ec21.com/Power_Supply_YIHUA_1502DD--4211637_4216400.html
http://gzyihuatools.en.ec21.com/Power_Supply_YIHUA_1502DD--4211637_4216400.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=262401
http://www.ideafit.com/fitness-library/hip-joint-anatomy

[38] Robot Dude. ssc-32 and max msp. Lynxmotion Tech Support. Nov. 2010. url: http:

//www.lynxmotion.net/viewtopic.php?f=2&t=6867.

[39] R Williamson and BJ Andrews. “Detecting absolute human knee angle and angular

velocity using accelerometers and rate gyroscopes”. In: Medical and Biological Engi-

neering and Computing 39.3 (2001), pp. 294–302.

[40] 8-bit Atmel Microcontroller with 4/8/16K Bytes In-System Programmable Flash. At-

mel. url: http://www.atmel.com/images/doc2545.pdf.

[41] High Current DC Power Supplies. B&K Precision Corp. 2013. url: http://www.

bkprecision.com/downloads/datasheets/179x_datasheet.pdf.

[42] VRLA Rechargeable Battery BP13-6 S (BP13-6FR S). BB Battery Co., Ltd. Feb. 2011.

url: http://www.bb-battery.com/productpages/BP/BP13-6S.pdf.

26

http://www.lynxmotion.net/viewtopic.php?f=2&t=6867
http://www.lynxmotion.net/viewtopic.php?f=2&t=6867
http://www.atmel.com/images/doc2545.pdf
http://www.bkprecision.com/downloads/datasheets/179x_datasheet.pdf
http://www.bkprecision.com/downloads/datasheets/179x_datasheet.pdf
http://www.bb-battery.com/productpages/BP/BP13-6S.pdf

	Introduction
	Literature Review
	Robot Software Frameworks
	Computer Vision
	Robotic Hand
	Shape Memory Alloy
	Robot Leg
	Robot Arm

	Materials and Methods
	Materials
	Methods
	Microcontroller Setup
	MPU-6050 Setup
	Servo Setup
	Servo Control
	Walking Algorithm Implementation
	Testing

	Discussion
	Overall System
	Robot Leg
	Firmware
	Locomotion Controller
	System Analysis

	Conclusion

