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PATH TRANSFORMATIONS CONNECTING
BROWNIAN BRIDGE, EXCURSION AND MEANDER

JEAN BERTOIN (1) AND JIM PITMAN (2)

ABSTRACT. We present a unified approach to numerous path transformations connecting the
Brownian bridge, excursion and meander. Simple proofs of known results are given and new
results in the same vein are proposed.

1. INTRODUCTION

Let B = (Bt : t > 0) be a standard Brownian motion started at Bo = 0, Bbr - (Bbr
0 K t < 1) a Brownian bridge, Be = (BX : K< t < 1) a (normalized) Brownian excursion,
and Bm = (Br e 0 < t < 1) a Brownian meander. That is

B _ (Bt: < t < i1 B1 °=0),
Be:x (Bt: 0 < t < 11 Bt > 0 for 0 < t < 1 and B1 = 0)
Bme d (Bt: 0 < t < 11 Bt > 0 for 0 < t < 1)

The symbol d denotes equality in distribution, referring here to distribution on the space
C[O, 1]. It is well known that the above formal conditioning on events of probability zero
can be justified by natural limit schemes, leading to well defined processes with continuous
paths. See Durrett et al. [D-I], [D-I-M], Iglehart [Ig] and the references therein, where these
processes also appear as weak limits of correspondingly conditioned simple random walks.
The scaling property of Brownian motion yields the following elementary construction, see
e.g. Biane and Yor [B-Y.1] or Revuz and Yor [R-Y]. Introduce g = sup{t < 1 : Bt = 0}
and d = inf{t > 1 : Bt = 0}, respectively the last zero of B before time 1, and the first
zero of B after time 1. Then

(1-br) ( zBgt : 0 < t < 1) is a bridge independent of g,

(1-ex) ( =IB9+(d-9)tl 0 < t < 1) is an excursion independent of g and d,
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(1-me) (.,3Bg+(l-g)tI : O < t < 1) is a meander independent of g.

A recurring feature in the study of these processes is that some functional f of one of
them, say B', has the same law as some other functional h of one of the others, say B":

(2) f(B')_ h(B").

Probabilists like to find a 'pathwise explanation' of such identity, meaning a transformation
T : C[O, 1] -+ C[0, 1] such that

(3) T(B') d B", and f= h o T.

Most often, the discovery of some identity of the form (2) precedes that of the transfor-
mation T satisfying (3). But once T is found, (2) is suddenly extended to hold jointly for
the infinite collection of all f and h such that f = h o T.

The purpose of this paper is to present a unified approach to such path transformations
connecting the bridge, the excursion and the meander. Known results are reviewed and
several new transformations are proposed. Composition of the various mappings described
here gives a bewildering variety of transformations which it would be vain to try to exhaust.
We have chosen to present only the most significant, usually mapping the bridge into
another process. All these transformations can be inverted, though we do not always make
the inverse explicit. The main mappings are depicted graphically in figures which should
help the reader both in statements and proofs.
We describe essentially four sets of transformations. The first relies on the decomposi-

tion of the bridge at its minimum on [0,1] (section 2). The associated mapping from the
bridge to the excursion was discovered by Vervaat [Ve]. The mapping from the bridge to
the meander was found independently by Bertoin [Be] and Pitman (unpublished). These
two results form the starting point of this work and are not re-proved. They will be ap-
plied to deduce the other mappings. The second set of transformations is based on the
absolute value of the bridge and its local time at 0 (section 3), the third on various types
of reflections for the bridge (section 4), and the ultimate on the signed excursions of the
bridge away from 0 (section 5).

2. SPLITTING THE BRIDGE AT ITS MINIMUM

Chung [Ch] and Kennedy [Ke] noted that the maximum of the excursion, maxo<t<l Btx,
has the same distribution as the amplitude of the bridge, maxo<t<l Br - mino<t<l Bt.
This identity is explained by the path transformation found by Vervaat [Ve]. Take a
bridge, split the path at the (a.s. unique) instant when it attains its minimum on [0, 1],
and paste the pre-minimum part to the end of the post-minimum part (see figure 1). The
resulting path is an excursion. This transformation is not one-to-one, and the inverse
result, attributed to Vervaat by Imhof [Im.2], and discovered also by Biane [Bi], involves
additional randomization.
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Theorem 2.1. Bridge * Excursion. (Vervaat)
(i) Let U be the instant when Bbr attains its minimum value on [0, 1]. Then U has a

uniform [0, 1] distribution, and the process

(Bbr d) Bbr O < t < 1)

is an excursion independent of U.

(ii) Conversely, if U is a uniform [0, 1] variable independent of B", then

(Bu+tx B)-Bt O < t < 1)

is a bridge which attains its minimum at time U 1 -U.

Bbr |ext

1-U

FIgure 1: Bridge ++ Excursion in Theorem 2.1

A transformation in the same vein, from the bridge to the meander, is described in [Be],
Corollary 6: split the bridge at its minimum, time-reverse the pre-minimum part, and then
tack on the post-minimum part (see figure 2). This transformation is one-to-one. Here is
the formal statement:
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Theorem 2.2. Bridge - Meander. Notations are as in Theorem 2.1. Put

{br - br
Xt =

U-t BUt - ~Bbr - 2Bbr

for 0 < t < U,

for U <t < 1.

Then Bme :=X is a meander. Moreover U = sup{t < 1 : =B }. In particular,
Bbr can be recovered from Bme.

Bme

Bbr

Bme

u~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4IAIl 2Bs W_ / / I

Figure 2: Bridge +-+ Meander in Theorem 2.2

An immediate combination of Theorems 2.1 and 2.2 yields
Theorem 2.3. Excursion 4-+ Meander. Let U be a uniform [0, 1]
of BgI. Put

f BeZ for 0< t <U,
Xt | ~BUx + Bp$(-U) fiolrU <t< 1.

Then Bm" := X is a meander and U = sup{t < 1 : Bt = Be}. In particular, B" and
U can be recovered from Bme.

Just as in Vervaat [Ve], Theorem 2.3 also follows by a weak convergence argument from
its random walk analog, a simple transformation underlying the classical fluctuation theory
of Feller [Fe], vol.l. The details are even easier because there is no difficulty involving ties
in the discrete set up.

Proof of the discrete analog of Theorem 2.8. Let Sk =6 + + Gk, k > 1, and So = 0,

where the ('s are independent with P(cj = ±1) = 2. Fix a positive integer n, and let

variable independent
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A {Sk > 0 for all 1 < k < 2n}, and A+' = {Sk > 0 for all 1 < k < 2n and S2, = 0}.
So, the law of (Sk 0 < k < 2n) conditionally on A+ is the the law of the discrete meander
with 2n-steps, and the law of (Sk : 0 < k < 2n) conditionally on A+' is the the law of the
discrete excursion with 2n-steps. On the event A+, define U max{k: 1 < k < 2n, Sk =
S2n/2}, and set Xk = Sk for 0 < k < U, Xk = SU + S2n-(k-U)-S2n for U < k < 2n.
Identify the events A+ and A+' in the usual way with sets of paths of length 2n. It is
easily verified that

(Sk: 0 < k < 2n) -* (Xk : 0 < k < 2n)
induces a mapping from A+ to A+' which is 2n - 1 to one: each path in A+O comes
from exactly 2n - 1 paths in A+, one for each possible value of the cut point U. It
follows immediately that, conditionally on A+, the process (Xk : 0 < k < 2n) is a discrete
excursion independent of U, and that U is uniformly distributed on {1, 2,.. , 2n - 1}. O

Remark. The transformation in the discrete analog of Theorem 2.3 is a close relative of the
one which Feller [Fe.1], ex III.10.7, attributes to E. Nelson. Let T = min{k > 0 : Sk = 0}.
Since obviously P(T = 2n) = 2P(A+°) and P(T > 2n) = 2P(A+), the transformation
implies P(T = 2n) = (2n - 1)P(T > 2n). This yields the distribution of T and hence the
fundamental formulas of discrete fluctuation theory, see [Fe.1] III.(3-7) and Lemma II.3.2.

As an application of the three preceding theorems, we notice the identity

( ) (-Bu~~~brUbr) d eBxe I Uex:) d (me/ Ume),
where Ubr is the instant when Bbr attains its minimum on [0,1], uex is a uniform [0,1]
variable independent of Bex, and Ure = sup{t < 1 : Bte = -Bmfe}. The law of the first
component in (4) is the same as R/2, where R has the Rayleigh distribution

P(R E dr)/dr = rexp{-r2}, r > 0.

W"Te refer to [K-S] for an explicit description of the joint law in (4). Futher pairs of random
variables associated with the Brownian bridge that have the same distribution as in (4)
appear in subsequent identities (9) and (11).

3. ABSOLUTE BRIDGE AND ITS LOCAL TIME

Recall Levy's [Le] identity

(5) (MI,M-B) d (LI JBJ))
where Mt = maxo ,<t B, is the maximum process of B, and L the local time process of
B at 0. According to Pitman [Pi]:

(6) (MI2M-B) d ( J, BES3 ),
where BES3 is the 3-dimensional Bessel process, and Jt = mint<. BES3 its future mini-
mum process. One deduces from (5) and (6) that

(L, IBI + L) d (J,BES3).(7)
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Informally, the meander can be viewed as the Bessel(3) process on [0,1] conditioned by
BES3 = Ji. More precisely, Imhof [Im.1] showed that the law of the meander is abso-
lutely continuous with respect to the law of the Bessel(3) process on [0, 1], with density
f.J/BES . Biane and Yor [B-Y.2] used this relation to obtain a conditional form of (7),

which provides a transformation from the absolute bridge to the meander. See Theorem
3.1 below and figure 3. The local time process at 0 of the bridge Bbr, denoted Lbr, is
defined by

1 t
Lbr =lim 2 1Ibr1<,}ds,

where the limit exists a.s. for all t E [0, 1]. We denote by Blbrl the absolute bridge, that is
Blbrl d IBbrj. Its local time process at 0 is

Lb =lim J l{Brl ds.

In particular, if Blbrl = IBbrl, then Llbri - Lbr. Warning: this definition makes Librl equal
half the occupation density of Blbri at 0.
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Theorem 3.1. lBridgel - Meander. (Biane and Yor) The process

Bme _ Bibrl + Llbrl
is a meander and

Llbrl min B".t<8<1

In particular, Blbrl can be recovered from Bme.

Blbrl

A A 1 ~~~~~~~~~~~~~~~~

Figure 3: IBridge I e Meander in Theorem 3.l

Theorem 3.1 can also be deduced from elementary time-reversal arguments as follows.

Proof of Theorem 8.1. It follows from Levy's identity (5) and (1-me) that

Bme!(d (Mp - B+(I-P)t): 0 < t < 1

where p is the instant when B attains its maximum on [0,1]. Since the reversed Brownian
motion (B1-B t : 0 < t < 1) is again a Brownian motion, we deduce that

(Jme Bmre -_ Jme) d - MI(j _t)IMp(l.t) - Bp(1it)): 0 < t <.

where Jtm = mint<,<, By Levy's identity (5), the right-hand side has the same law
as

(±(L -9 (j_t), Bg(j_t)j):O<t< I
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where g is the last zero of B before 1. According to (1-br), and to the invariance in law
under time-reversal for the bridge, the above pair has the same distribution as (Lbr, IBbrI).
This establishes the Theorem. 0

The next result transforms an absolute bridge into an excursion (see figure 4).

Theorem 3.2. lBridgel * Excursion. Notations are as in Theorem 3.1. Let U
sup{t < 1: Llbri Llbrl Then U is uniformly distributed on [0, 1]. Put

LlbrI for0<t< U,
Kt =

LL~brlI-JLbrI for U<t<1.

Then
Bex K +Blbrl

is an excursion independent of U. Moreover,

f mi BCex for
Kt = <U

min Be for
U<s<t a

In particular, BlbrI can be recovered from Bex and U.

glbrl|

-

U 1

r 0 < t <U,

r U< t < 1.

BeT

1

Figum 4: IBrdge I +4 Excursion in heorem 3.2

This result comes from the combination of Lemma 3.3 below and Theorems 3.1 and 2.3.
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Lemma 3.3. lBridgel - Bridgel. Notations are as in Theorem 3.2. Put

bBt for O< t < U,

=t~ t Blbrl for U < t < 1.
141-(t-u)

Then X is an absolute bridge. Moreover, ifLx stands for its local time process at 0, then
U = sup{t < 1: Lx=-Lx}, and

Tx J' LlbI for O< t <U,

Ll + ll i-L(ebrl-U) for U < t < 1.

Proof. The lemma holds in general for any diffusion bridge, and is intuitively obvious. We
just sketch the proof and leave details to the reader. First, one observes (by excursion
theory) that

(8-a) (Blbrl: 0< t < U) and (Btlbri: 0 < t < 1-U) have the same law

(where U is as in Theorem 3.2), and that

(8-b) the processes in (8-a) are independent conditionally on (U, LirI).

Since the time-reversed bridge is again a bridge, we deduce from (8-a) that

(BulbIt ° < t < 1-U) d (Blbrl: O < t < 1-U).

Observe that the two processe above have the same lifetime, 1- U, and the same local time
at 0, -LIbrl. Therefore, the preceding identity in law also holds conditionally on (U, Lbrl).
Going back to (8-a,b), this establishes the first part of the Lemma. The second follows
from the additive property of the local time. O

We conclude this section with the observation that the pair

LIbrl,Ulbrl) where Ubrl inf{t LbrI brl}

can be added to the list of identically distributed pairs in (4).

4. REFLECTING THE BRIDGE

In this section, we present three transformations of the bridge by reflection. The first
can be viewed as a bridge analogue of Levy's identity (5) (see figure 5).

9
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Theorem 4.1. Bridge - jBridgel. Let abr be the (a.s. unique) instant when Bbf
attains its maximum on [0, 1], and

{ max Bb
O<a<t a

max B br
t<s<1

brfor O< t < abI
fo br < t < 1.

Then the process
Bibri Nbr - Bbr

is an absolute bridge, and its local time process at 0, Llbr,j is specified by the relations

Librl
=L{brlI-L

for 0 < t < abrI
lbrl forbr < t < 1.

In particular, abr = inf{t < 1 :LbrI = 1 Lbr } and Bbr can be recovered from Bibri2 1

Nbr
I

abr

g br

BIbri

1

Figure 5: Bridge +- I Bridge I inTheorem 4.1

Proof. First, we observe an identity for the absolute bridge, similar
U:-UIbrI inf{t < 1 : Lt I- -Ll }. Then

to Lemma 3.3. Put

(BU+ (mod 1): 0 < t < 1) is an absolute bridge, and its local time at 0 equals

(10)
Libri -LlI for O< t < 1 U and LIbrI +LIbr 1U<t<1
U+t U U+L fr1-U<t<.

Nbr

1

10
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The first assertion comes from (8), and the second from the additive property of the local
time.
We now deduce the Theorem by composition of the successive transformations

Bridge +-. Bridge +-+ Excursion +-4 jBridgel +-+ jBridgel,
where the first consists of taking the opposite, the second is given in Theorem 2.1.i, the
third is the inverse transformation described in Theorem 3.2, and the last is given by
(10). 0

Combining Theorems 4.1 and 3.2 (respectively 4.1 and 3.1), we deduce the following
bridge analogs of Pitman's identity (6). The first transformation is depicted in figure 6.

Theorem 4.2. Bridge +-+ Excursion. Notations are as in Theorem 4.1. The process

ex _= 2Nbr - Bbr

is an excursion independent of abr. Moreover,

= min Bex for 0 < t <cbr
Nbr _ | t<,q<abr

I min Be for abr < t < 1.
br <St<

Therefore, Bbr can be recovered from Be: and abr.

rbr

1

Bbr

Bet

abr 1

FIgure 6: BrIdge +- Excursion in Theorem 4.2
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Theorem 4.3. Bridge +-+ Meander. Let b = maxo<s<tb Then the process

Bme :. 2Mbr - Bbr

is a meander. Moreover, the instant when Bbr attains its maximum on [0,1] is

abr =sup{t < 1: Btme=-Bme},

and
M = min Bm' t < br.

t<s<1

Therefore, Bbr can be recovered from Bme.

Just as Theorem 3.1, Theorem 4.3 can be viewed as a conditional version of Pitman's
identity (6). More precisely, recall that B is a Brownian motion with maximum process
M and put BES3:-2M-B and J:= M. Then U:= Ji/BES3 =M /(2Mi-Bi) is a
uniform [0, 1] variable independent of the process (BES3: 0 < t < 1). Note that for every
e> 0,

{B1 e [-e, 6]} {2U - 1 e [-e/BES3, e/BES3]},
and that 2U - 1 has a uniform [-1, 1] distribution. Conditioning by the above event and
then letting e go to 0, we deduce that the law of (2Mt- Bt : 0 < t < 1) conditionally on
B1 = 0, that is the law of (2Mtbr - B br: 0 < t < 1), is absolutely continuous with respect
to the law of (BESt 0O t < 1), with density v/2I/sBES. According to Imhof [Im.1],
2Mbr - Bbr is a meander.

Remark. The above argument also shows that if the bridge Bbr is replaced by a Brownian
bridge ending at a :A 0, that is (Bt: 0 < t < 11B, = a), then the path transformation of
Theorem 4.3 yields a meander conditioned on Bm' > lal.

Here is an example of particular interest, due to Aldous [Al], equation (21), of a trans-
formation by reflection for the excursion.

Theorem 4.4. Excursion Excursion. (Aldous) Let U be a uniform [0, 1] variable,
independent of B", and

min Be for 0 < t <U
) t<s<U -

min Bex for U < t < 1.
U<s<t

Then the process

X = (Bux + Bust (mod 1)- (mod 1): 0 < t < 1),
is an excursion independent of U. Moreover, Bex can be recovered from X and U.

Aldous discovered this result as a projection of very natural symmetry of his compact
continuum random tree. In the present setting, this transformation is identified as follows

Excursion +-+ Bridge +-+ Bridge + Excursion,

12
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where the first transformation is described in Theorem 2.1.ii, the second consists of taking
the opposite, and the third is given in Theorem 4.2.

To conclude this section, we mention that Biane and Yor [B-Y.1], Theorem 7.1, describe
a transformation from the bridge to the meander by an infinite sequence of reflections. This
mapping explains the identity due to Kennedy [Ke], that the maximum of the meander,
maxo<t<1 Bme has the same distribution as twice the maximum of the absolute bridge,
2maxo<t<l BlbrI. But this transformation does not seem to be closely related to those of
the present paper.

5. SIGNED EXCURSIONS OF THE BRIDGE

Sparre-Andersen [S-A] discovered the following identity for finite chains with exchange-
able increments. The index of the maximum of the chain has the same distribution as
the number of steps in the positive half-line. Feller illuminated Sparre-Andersen's identity
with a simple chain transformation, see [Fe.2], Lemma 3 in Section XII-8. A continuous
time analogue of Feller's transformation for the Brownian bridge was obtained by Karatzas
and Shreve [K-S] (see figure 7). To describe their result, let I+ = (O, oo), I_ = (-oo, O),
and for ± E {+,-}, let

jt

AtlfB, EI4-}ds for 0 < t < 1

the time spent by Bbr in Ii before the instant t, and

a± =inf{t < 1 : A± = s} for 0 < s < A+,

the inverse of A+. The time-substitution by a+ consists of erasing the negative excursions
of Bbr and then closing up the gaps. Similarly, a- erases the positive excursions of Bbr
and closes up the gaps.

13
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Theorem 5.1. Bridge 4-+ Bridge. (Karatzas and Shreve) Let

xt =Lbbr Bbr
2 +b

-t= -L. +Bb~

Then tbr : X is a bridge that attains its;
derived from Br as in Theorem 4.1,

Nbr Lbr
2 t:

2 c(T

for 0< t <A+,

for0 <t <A .

maximum at time A+. Moreover, for Nbr

for 0 <t <A+

for 0< t < AI

Finally, Bbr can be recovered from Bbr.

~~~br ~ b

gbr I br

Fgure 7: Bridge - Bridge in Theorem 5.1

In connection with (4), one deduces the identity in distribution

( ) ( ~~~~Bubju )d(L l21 A+).
Karatzas and Shreve first noticed the identity (11), and then explained it through Theorem
5.1. In our setting, Theorem 5.1 comes from Lemma 5.2 below, Lemma 3.3 and Theorem
4.1.

14
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Lemma 5.2. Bridge + Bridgel. Let

Yt = Bbr.

Yt+A+ -ce

for 0 < t < A+,

for 0 < t < ATI.

Then Bibri :Y is an absolute bridge, and its local time at 0, LIbr, is given by

Libri - 2L%+ for
2 at

lIbr.I - Lbr + ILbrt+A2 ' 2 cr

O< t < A+,

for 0<t < A.1

In particular, A+, = inf{t < 1 : = lLIbrl} Finally, Bbr can be recovered from BIbrI.
Proof. The Lemma holds in general for any diffusion bridge which has the same law as
its opposite. Here is an elementary proof in the Brownian case that uses the scaling
property. Let e be an exponential variable, independent of the Brownian motion B, and
g(e) = inf{t < e : B, = 0} be the last zero of B on [O,e]. The excursion process of
(Bt: t < g(e)) (in the sense of Ito [It]) is a Poisson point process killed at the independent
time L,. Its characteristic measure is clearly invariant under the mapping w >-4 -w.

It follows now from the independence of the positive and negative excursions and ex-
cursion theory that the process Z given by

Zt-=Bc+ for 0 < t < A+

for 0 < t < A)

has the same law as (IBtI: 0 < t < g(e)). Morover, its local time at 0, LZ, is given by

Z 1L
+Ae 2 at

1
g( 2 ge

for 0 < t < A+
1
;-La- for0< t.<A-e

The first part of the lemma follows now from (1-ex). Finally, Bbr can be recovered from
the excursion process of Y in a similar way as described in Pitman and Yor [P-Y], p. 747.
U

We deduce now from Theorems 5.1 and 4.2 the following (see figure 8).
Theorem 5.3. Bridge +-+ Excursion. Let

Yt = IL br + Rbr
2 +at

Yi-t = Lbr- Bb
2 aet

for 0 < t < A+,

for 0 < t < AT

Z(t + A+ c)) = Bce-g( t
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Then BeZ:= Y is an excursion, U :-A+ is a uniform [0, 1] variable, and Bex and U are
independent. Moreover (with the same notation as in Theorem 4.4),

2 at

Iex=2Lbr

for 0 <t < A+,

for0 <t <AI.
Finally, Bbr can be recovered from U and Bez.

Bbr | B. x

FVgure 8: Bridge + Excursion in Theorem 5.3

Theorems 5.3 and 2.1.i yield a transformation from the bridge to itself which is given
in Corollary 5 of [Be]. The formulation of this mapping in the present setting is left to the
reader. Finally, here is the analogue of Theorem 5.3 for the meander.

Theorem 5.4. Bridge +-+ Meander. Let

Yt =Lbr+ Bbr
Y 2 c_it

+121 2 ~t

for 0< t < A+,

Bbr for0<t<A .

Then Bme := Y is a meander. Moreover, A+ = sup{t < 1 : Btm - B1Be},and

mmi B"rn =-Lbr fort<.S<i 2 ~t

min Bme _Lbr + 1Lbr
t+A+<s<l 2 2 t

0<t<At+,

for 0 < t < A+.

16
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Finally, Bbr can be recovered from Be.

Proof. The result follows by inspection of the successive transformations provided by The-
orems 5.3 and 3.2 (modulo time-reversal and change of sign). El
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