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Abstract

A random partition of the positive integers is called partially ex-
changeable if for each finite sequence of positive integers n,, ... , nk, the
probability that the partition breaks the first n1 + - - + nk integers into
k particular classes, of sizes nl,.. . ., nk in order of their first elements,
has the same value p(nl,...,nk) for every possible choice of classes
subject to the sizes constraint. A random partition is exchangeable iff
it is partially exchangeable for a symmetric function p(nl, . . ., nk). A
representation is given for partially exchangeable random partitions
that is similar to Kingman's representation in the exchangeable case.
These representations are viewed as variations of de Finetti's represen-
tation of exchangeable sequences, and as identifications of the Martin
boundary of associated Markov chains. In the exchangeable case, in-
formation is provided about the joint distribution of the proportions
of classes in order of their appearance. This gives a constraint on
the finite dimensional distributions of a random discrete probability
distribution on the positive integers that is equivalent to invariance
under size-biased random permutation. The results are illustrated by
the two-parameter generalization of Ewens' partition structure.

*Research supported by N.S.F. Grant MCS91-07531
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1 Introduction
Kingman[28] introduced the concept of a partition structure, that is to say
a seqence qPn, n = 1,2,...) of distributions for random partitions 7rn of n,
which is consistent in the following sense: if n objects are partitioned into
subsets with sizes given by irn, and an object is deleted uniformly at ran-
dom, independently of 7n, the partition of the n - 1 remaining objects has
component sizes distributed according toIPn_-. Kingman[30] and Aldous[1]
interpreted this concept in terms of exchangeable partitions Iln of the sets
An -={1, . .. , n}. Given irn, the partition of n, the partition IHI of the set IATn
is defined by assuming all partitions with component sizes dictated by irn are
equally likely. The distributions JP, for 7rn are consistent iff the restriction
of IIn to NVn-l has the same distribution as Hn-1. By Kolmogorov's exten-
sion theorem, there is then a one to one correspondence between partition
structures (JPn) and distributions for an exchangeable random partition of
NV:= {1,12,.. .}, that is a random partition II = (IL) of IV whose restriction
ll, to IVn is exchangeable for every n. The distribution of H then refers to
the collection of distributions of the H.n In other terms, this is Kingman's
idea of an exchangeable random equivalence relation on IV.

Given a sequence of random variables (X1,X2,.. .), let ll(Xl,X2,...), a
random partition of N, be induced by the random equivalence relation

ij '4X =X.
Clearly, if (XI, X2,.. .) is exchangeable then Hl(X1, X2,.. .) is an exchangeable
partition of NV. Conversely, starting from 11, an exchangeable partition of N,
Aldous [1] constructs exchangeable random variables X1, X2,. . . with values
in [0,1] so that II = II(X1,X2,...) almost surely, by letting Xi = Uj if i
belongs to the jth component of HI, where the Uj are uniform [0,1] random
variables, independent of each other and of H. As Aldous points out, de
Finetti's theorem then implies the Xi have limiting empirical distribution
POO) a random probability measure on [0,1], and the conditional distribution
of H given POO is the distribution of H(X1, X2,...) where X1, X2,... are
i.i.d. according to POV. This is Kingman's representation theorem: the most
general partition structure QPn) is obtained by lettingIPn be the distribution
of the partition of n induced by the partition ll(Xi,... , Xn) of NV, where
given POO the X1,X2,... are i.i.d. with distribution POO, and POO is allowed
to be random.
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In principle, the distributionJPn of the partition of n is determined by
the distribution of the random probability measure POO. The only feature
of the distribution of PO, that is relevant to computation ofIPn is the joint
distribution of the sizes of the ranked atoms of POO, say

P(1) > - (1)

Thus Kingman's representation sets up a one to one correspondence between
partition structures (1Pn) and joint distributions for a sequence of random
variables (P(l), P(2p...) satisfying the order constraint (1) and EZ-s P(s) < 1.
If II = (II,) is an exchangeable random partition ofIV such that the partition
of n induced by IIn has distribution JP, then corresponding P(i) can be
expressed as

P(i)= lim (i)n a.s.

where N(i,) is the size of the ith largest component in HIn. See .Kingman[28,
30], Aldous[1] for further discussion.

Two difficulties arise in working with ranked sizes of components in a
partition structure. Firstly, the joint distribution of the limiting ranked pro-
portions P(i) turn out to be rather complicated, even for the simplest partition
structures, such as those corresponding to Ewens' sampling formula. See for
instance Shepp and Lloyd [43], Vershik & Schmidt [45], Watterson [47]. Sec-
ondly, formulae for the distribution1Pn of 7rn in terms of the joint distribution
of the P(i) involve infinite sums of expectations of products of the P(i), which
are not easy to evaluate. For instance the probability that 1rn consists of two
components of different sizes n1 and n2 is

(n1 + n2 ) EE[Pni p(nj,

In the case corresponding to Ewens' sampling formula it is well known
that these difficulties are avoided if the size-biased permutation of the atoms
of POO is considered instead of the rank ordering (Hoppe [22, 23, 24], Donelly[8],
Ewens[16]). See Donnelly and Joyce [10] for a general discussion of relations
between the ranked and size-biased presentations of a random discrete dis-
tribution. But while size-biasing the atoms simplifies many distributional
computations, it complicates the formulation of Kingman's representation.
In the proper case, when POO is discrete almost surely, the problem is to
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describe which random discrete probability distributions (Pn) are invariant
under size-biased permutation, a condition that appears at first to be es-
sentially infinite dimensional. Still, it turns out that this condition can be
presented as a conjunction of simple constraints on the finite dimensional
distributions of (Pn). See Corollary 16.

The present paper offers a broad view of these matters by a variation
of Kingman's representation for a larger class of random partitions of NV,
called partially exchangeable. The terminology is consistent with the general
concept of partial exchangeability due to de Finetti [6]. See Diaconis and
Freedman [7] for a recent survey. The representation provided by Theorem 15
of this paper fits perfectly into the Diaconis-Freedman framework of extreme
point descriptions for models defined by a sequence of sufficient statistics. See
also Martin-L6f [36], Lauritzen [32, 33, 34] and Dynkin [13] for development
of similar frameworks. However the proof of the representation is based on
direct application of de Finetti's theorem rather than any general extreme
point theory.

When specialized to the exchangeable case, the main representation the-
orem provides information not readily availiable from Kingman's representa-
tion. The main theme of the paper is that there are several results involving
size-biased sampling of components from an exchangeable random partition
which seem best understood as the restriction to the exchangeable case of
corresponding results for partially exchangeable partitions.,

Section 2 records formulae relating various standard codings of a ran-
dom partition of n to a single basic function derived from the associated
exchangeable partition ofNI, the exchangeable partition probability function
(EPF). Partially exchangeable partions of IVn are introduced in Section 3,
along with their probability functions (PEPF's). (One letter P is omitted
in the acronyms to avoid excessive alliteration). The representation theorem
for partially exchangeable partitions ofN is established in Section 4. There
is a close parallel between the results of Sections 3 and 4 and certain formula-
tions of de Finetti's theorem for exchangeable sequences of random variables
with a countable number of values, considered in Section 5. Section 6 makes
the connection with the Doob-Hunt theory of Martin boundaries for Markov
chains. Section 7 considers the family of partially exchangeable partitions of
NV derived from residual allocation models with independent factors. In par-
ticular, a two-parameter family of such models with beta distributed factors
corresponds to the two-parameter generalization of Ewens' partition struc-
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ture studied in Pitman[41]. It is shown in Pitman [40] that apart from some
trivial examples, all residual allocation models that are invariant under size
biased sampling belong to this two-parameter family.

2 Preliminaries
Let n E IV = {1, 2, . . .}. A partition of n is an unordered collection of n
positive integers with sum n. There are two common ways to code a partition
of n:
(i) by the finite sequence of ranked integer component sizes, say

n(l) > n(2)> ... > n(k) with Ei=ln(i) = n.

(ii) by the collection of counts of component sizes

'Mi =#{i :n(i) =j}, j l.,n.

The number of components in the partition is E mj,= k, while E jmj = n.
A random partition of n, is a random variable 7rn with values in the set of
all partitions of n. Let I.n denote the random number of parts of 7r,. The
distribution of 7rs, call itANP, is a probability distribution on the set of all
unordered partitions of n. Such a distributionJPn is typically presented either
(i) via the joint distribution of the counts of components of different sizes; or
(ii) via the joint distribution of Ifn and the Kn component sizes presented in
some order.

In case (ii) the order could be ranked order, purely random order, size-
biased random order, or an order with some more complex dependence on
the partition of n.

It is clear in principle that any one these presentations ofIPn determines
each of the others. In the literature of models for random partitions, formulae
for different presentations of particular random partitions have been derived
from each other in many special cases. See for example Watterson[47], Don-
nelly and Tavare[12]. The general form of these connections is made obvious
by relating each presentation to yet another coding of the distribution of 7rn.
This involves IIn, the random partition of the set IVn = {1, 2,. . ., n}, induced
as follows by the random partition irn of the integer n: given 7rn with I[n k,
[In is equally likely to be any of the unordered partitions of JVn into disjoint
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subsets {Ai}' with sizes dictated by rrn This random partition II, of the set
IV. is an exchangeable random partition (EP) ofV,N as defined by Aldous[1].
It is clear that for any particular partition of Nn, into non-empty subsets
{Ai}k of sizes ni,

P(Hn=-{Ai}k) = p(ni), where (ni) - 4 p(ni) = p(n',.. ,nk) (2)
is some symmetric function of sequences of positive integers

(ni)=(nl,...,nk) with Elni n (3)

A random partition H,, ofAn is exchangeable iff (2) holds for some symmetric
function p(ni). Then call p(ni) an exchangeable partition probability function
(EPF).

The following proposition expresses various presentations of the distri-
bution of a random partition of n in terms of the corresponding EPF. The
point is that any of the basic presentations can be expressed in terms of the
EPF and simple combinatorial factors. This suggests that the EPF should
be regarded as the fundamental descriptor both for an EP of lV, and for
the corresponding random partition of n. This point of view is maintained
throughout the paper.

Proposition 1 Let ir, be a random partition of n with- Kn components.
Let H, be the exchangeable random partition PVn associated with 7rn, and
let p(n, .... , nk) as in (2) be the EPF that gives the probability that ll1 is any
particular partition of1V,, into k subsets Ai of sizes ni, i = 1, . . . , k.
Component size counts: The joint distribution of Ml,..., Mn, where Mj is
the number of parts of 7rn of size j, is given by

P(Mj =mi,1 < j < n) N(mj3(m3) (4)

where
n!

N(mi) =:-JJl (j)m !(5)

is the number of partitions ofNn, into mi classes of size j, 1 < j n, and
P(mj) is the common value of the symmetric function p(ni) for every (ni)
with

#(i:ni=j}= mi, 1 <j <n. (6)
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Ranked order: The joint distribution N(1), ... , N(Kn, the ranked component
sizes, is given by

P(Kn = k, N(,) = ni, 1 < i < k) = N(mi)p(ni) (7)

where the mj are defined by (6)
Exchangeable order: Ifgiven Kn k and N(l),... , N(k), the sequence N1X, ...,
presents the component sizes in exchangeable random order (all k! permuta-
tions equally likely),

P(Kn = k,N X ni, 1 < i < k) n ! ni) (8)i ~~~~k!rjTJ Uni!P(i (8

Size-biased order: Ifgiven I,, =k and N(l),.. . , N(k), the sequence NSB, ... )NkSB
is a size-biased random permutation of N(1),... ,N(k), (in particular if the
NiSB are the component sizes of Hn ordered by their first elements )

P(Kn = k,NSB=ni, 1 < i < k) #(ni)p(ni) (9)

where

= nk(nk + nk.1) ... (nk + + ni) HjX=l(ni-1)! (10)

is the number of ways to arrange n1 values of one type, n2 of a second, and
so on, subject to the constraint that the first value is of the first type, the next
distinct value of the second type, and so on.
Arbitrary order: If N1,... , NKn is a presentation of the components of 7rn in
some order with arbitrary dependence on 7r, and

P(Kn= k, N1= nl,. . ., Nk= nk)= po(n1,,**, nk)
then

11k n!
p(ni,%. . . nAk) 1=1' E po(no,(,) I .. no(k) ) ll

where the sum is over all k! permutations a of {1,... , k}.

Proof. These formulae all follow from the definition and symmetry of
p(nl,. . . , nk) by elementary counting arguments. To derive (11), random-
ize the order of components and use (8). 0
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Corollary 2 The most general possible distribution for 7rn, a .random par-
tition of n, corresponds via the formulae of Proposition 1 to an arbitrary
non-negative symmetric function p(n1,... ,nk) with

Z ktHk
n

p(ni)=l, (12)
(ni) ig=1

where the sum is over all finite sequences ofpositive integers (ni) with Ei ni =
n.

Proof. This is immediate from formula (8). 0
Alternative expressions for the sum on the left side of (12) can be derived

from (7) and (9). See also Corollary 7 for a simple recursive way to check
(12).

3 Partitions of the first n integers
Let V* = Uk= Ik, the set of finite sequences of positive integers. Denote a
generic element of IV* by (ni) = (nl,.. . , nk). Write Eni for j=j ni. Let
p(ni) be a non-negative function of (ni).

Definition 3 A random partition nll ofNn is a partially exchangeable par-
tition (PEP) if for some p(ni) defined for

(ni) with Eni= n, (13)

for every partition {Aj} of lVn, into non-empty subsets of sizes ni that satisfy
the order constraint: 1 E A1, the first element not in A1 is in A2, and so on,

P(HIn={Aj}) = p(ni)- (14)

Formula (14) sets up a one to one correspondence between distributions of a
PEP of fIn, and non-negative functions p(ni) with domain (13) such that

()#(nj)p(nt)=1. (15)
(ni)

where the sum is over the domain (13), and #(ni) as in (10) is the number
of partitions ofIVn satisfying the order constraint with the given component
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sizes. Less intimidating conditions equivalent to (15) are provided below.
Call p(ni) the partially exchangeable partition probability function (PEPF)
corresponding to Hn. Note that HIn is exchangeable iff HII is a PEP with
PEPF that is a symmetric function of (ni). The PEPF is then an EPF as in
Section 2.

The meaning of the partial exchangeability condition is clarified by refor-
mulating the definition in various ways. First some notation. Let I1.,,, be the
number of components of HII, and let Ni be the size of the ith component of
Li,n) when components are ordered by their first elements. Let

N*n:= (N1.., * * * NKn ) i ((16)

a random element of NV*. Then N*n is a sufficient statistic for distributions
of PEP's Hln. More formally:

Proposition 4 A random partition Hn of Vn is a PEP iff given N*n= (ni)
the partition lIn is uniformly distributed over the #(ni) distinct partitions of
JVn that meet the order constraint for the given sizes (ni). Then the distribu-
tion of N*n is related to the PEPF p of Hn by

P(N*n-= (ni)) = #(ni)p(ni). (17)

Proof. This is immediate from the definitions. 0
The most general partially exchangeable distribution of Hn is thus ob-

tained by prescribing an arbitrary distribution for N*n over (ni) with E ni
n, then declaring that the distribution of IHn is uniform given *n. The rest
of this section develops various other descriptions of PEP's ofJVn. The reader
primarily interested in the representation theorem for PEP's of IV can skip
to the next section and refer to this one only as necessary for proofs.

The following construction, easily seen to yield the most general PEP of
-[V,, is the finite "sampling without replacement" version of the construction
used in the next section to create the most general PEP of IV.

Construction 5 Let A1,....,AKn denote the random subsets of IVn defined
by the components of Hn ordered by the first elements. Let N1, the size of
A,1, have distribution

P(N1 = ni) = P(ni), 1 < ni < n,
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where P(.) is some arbitrary probability distribution on {1,...,n}. Given
N1 = nl, let A1 consist of 1 and a uniformly distributed random subset of
n-nl 1 elements of{2,..., n}.

Inductively: Given that l1,... ,A have been defined, with Nj = nj,
1 < j < i, such that = ni < n, let Ni+l have distribution

P(Ni+l nilAlI,... ,A) = P(ni+ln,.In, ,ni) (18)
where P(- Ini,... , ni) is some arbitrary distribution on {1,.. . , n - > n;}.
And given A, . .. , A, and Nj+l = ni+l, let Ai+1 comprise the first element of
IV,, - U' Aj together with a uniformly distributed random subset of ni+l- 1
elements of the remaining n - n - 1 elements of IV,.

The random partition IIn so constructed is partially exchangeable, with
PEPF

n ) P(ni) P(n2 In,) P(flk Ini, , nk-1)
P (~~n-1 nn-n -n-r ni- nk_-1-

Vn, - n2-1 nAk

In the preceding descriptions of a PEP of PVn, the size n of the set parti-
tioned was thought of as fixed. A more dynamic view develops in terms of
growing the sequence of partitions H, where H1m is the restriction of Hn to
IVNm for m =1,... , n. It is easily seen that if H, is a PEP, then so is Elm for
m= 1,... , n. This leads to the characterization of PEPF's provided by the
next proposition.

Notation For (ni) = (ni,..., nk) e 1V, define (n j+) E IV* by incrementing
n3 by 1:

(nj+):=(ni+ 1(i=j)) EJV* (19)
for j = 1, .. ., k + 1 , where it is understood that (n$k+1)+) is obtained by
appending a 1 to (ni) at place k + 1.

In the exchangeable case, the consistency condition of the following propo-
sition is the expression in terms of EPF's of Kingman's notion of consistency
between the distributions of a partition of m and a partition of m + 1. This
is a simpler expression of consistency than Kingman's [27] formula in terms
of counts of component sizes. But the two conditions are the same due to
formula (4).
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Proposition 6 Fix n E IV. Let p(ni) be a non-negative function defined for
(ni) e IN* with E ni = n. Define the consistent extension of p to (ni) E 1V*
with Z ni < n by inductive application of the consistency condition:

k+1

p(ni) = > p(nj+) (20)
j='

to (ni) =(nl,...,nk) with Ei ni=m, for m nn-1, n-2,...., 1. Then the
following are equivalent:
(i) p(ni) for (ni) ENV* with ni= n is the PEPF for some PEP of]KA,
say H,.
(ii) The consistent extension of p(ni) to (ne) with E ni < n is such that
p(l) = 1.
(iii) For each m = 1,..., n, the consistent extension of p(ni) restricted to
(ni) with E ni = m is the PEPF of lm, the PEP ofJVrn that is the restriction
of Hl[ to Irm.

Proof. The obvious probabilistic interpretation of the consistency condition
shows that (i) =* (iii) =* (ii). To see that (ii) =* (i), su'pose that p(ni) solves
(20) for E ni < n, with p(l) = 1. Let E be the sum on the left side of (15).
It must be shown that E = 1. Clearly E > 0, so q(ni) := p(ni)/E is a PEPF.
Application of (i) X* (ii), for q instead of p, shows that p(1)/E = q(1) = 1.
Thus =p(1) =1. 0l

Corollary 7 A PEP of IV,, is exchangeable iff its PEPF is a symmetric
function. Let Hn be the exchangeable random partition associated with 7r, a
random partition of n. Then the formula P(lIn = {Aj}) = p(ni) sets up a
one to one correspondence between distributionsIPn for 7rn, and non-negative
symmetric functions p(ni), defined for all sequences of positive integers (ni)
with E ni < n, that satisfy the consistency condition (20) and p(l) = 1.

Proof. This follows immediately from the definitions and the preceding
proposition. O

Recall from Section 2 that the symmetric PEPF corresponding to an ex-
changeable partition of Wn derived from a random partition of n, is called
the exchangeable partition probability function (EPF) for the random parti-
tion of n.
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Proposition 8 Let Hn be a PEP ofJVT with PEPF p(nl,... , nk). Then the
EPF p*(nl,.. ., nk) associated with the partition of n induced by ll, is

(21)

where the sum is over all k! permutations a of {1, . . . , k}.

Proof. This follows immediately from formulae (17) and (11). 0

Note. As the following example makes clear, p*(ni) is not the usual sym-
metrization of p(ni).

Example 9 Define the PEPF for a PEP 13 of {1, 2, 3} by p(ni) > 0 where
p(3) = p(l,1,1) = 0 and p(l,2) and p(2,1) are arbitrary subject to the
constraint (15) : p(l, 2) + 2p(2, 1) = 1. So

P(13 = {{1}, {2,13}}) =p(l, 2), (22)

P(I3 - {1, 2}, {=3}}) P(113 = {{1, 3}, {2}}) = p(2, 1) (23)
The corresponding exchangeable random partition of {1, 2, 3} places equal
probabilities on these three partitions:

p*(1, 2) =p*(2, 1) = 1/3, (24)

so50 ~~~~~~~~~1
p*(i,j) $ [p(I,j) +p(j,i)]

unless p(l, 2) = p(2, 1) = 1/3.

(25)

Corollary 10 For a PEP HI, with components of sizes (Nl,, Nin) in
order of their first elements, the following four statements are equivalent:

* Hn is exchangeable.
* p(ni) is a symmetric function of (ni) with E ni = n.
* p*(ni) = p(ni) for all (ni) with F, ni = n.
* The distribution of (Ni,... , NKn) is invariant under size-biased random

permutation.
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Proof. This follows immediately from the preceding proposition and Propo-
sition 1. 0

For m < n, with Hm the restriction to JNm of Ill, let

N*m: (N1,m, ... NKmim)v (26)
the element of IV* defined by the sizes of components of Elm in order of
their first elements. As m increases, N*m develops at each step either by
incrementing one of its components by 1, or by adding 1 as a new component
at the right end. Which component is incremented between m and m + 1
shows how element m + 1 is attached by I,m+, to the classes already defined
by fIm. Thus (N*1,... , N*n) is a bijective transformation of partitions fln
of IVn into sequences of length n of elements of 1V* subject to the obvious
constraints that N*1 = (1), and that if N*m = (ni) = (n1,...,nk), say, then
N*m+l = (n+) for some j- k + 1, for every m n 1. If rlI
is a random partition, then (N*,,. .., N*n) is an 1V* valued random process.
The distribution of Iln determines that of (N*1,... , N*n), and vice versa.

Proposition 11 Let (NN1,...,*n) be the IV' valued random process asso-
ciated as above with HI, a random partition of IV,.- The following three
conditions are equivalent:
(i) Hn is a PEP with PEPF p(ni).
(ii) (N*1... , N*n) is a Markov chain with co-transition probabilities

P(N*mil = Inq-) N*m = (ni)) = #(ni )...k (27)
for (ni) = (ni, . . . nk) with E ni m, m = 2,... n, where

(n37) (ni- 1(i =j)) (28)
for j=1,... , k , and #(ni) is defined by (10) for (ni) E 1V*, and defined to
be zero otherwise.
(iii) (N*1,... N*n) is a Markov chain with transition probabilities of the
special form

P(N*m+l =(nf+) I N*m = (ni)) p(n)- j=1,...k + 1, (29)p(fli)
for (ni) = (nl,...nk) with ,ni = m and p(ni) > 0, m = 1,...n -1, and
zero otherwise, for some non-negative function p(ni) defined for all (ni) E 1IV*
with ,ni < n, such that p(l) = 1.
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Proof.
That (i) =a (ii) follows from Proposition 4. For it is easily seen that

(N*1,... ,N*) is Markovian with the stated co-transition probabilities in
case IIn is exchangeable, and according to Proposition 4, the conditional
distribution of HI,, given N*nX hence also that of (N.1,,. . . , N.,) given N,,, is
the same for H,, partially exchangeable as for fIn exchangeable.

That (ii) =* (i) follows immediately from (i) =>. (ii) and the fact that lln
is determined by (N.1, . . . , N*n).

Next, (ii) =* (iii) by Bayes' rule and the definition of the PEPF. Finally,
(iii) =* (i) by the implication (ii) =X (i) of Proposition 6. The required
consistency of p(ni) is due to the implicit assumption in (iii) that formula
(29) defines a transition probability matrix. 0

An application of the above proposition is provided in Section 5 by Propo-
sition 24.

4 Partitions of the positive integers
Definition. A random partition nI ofIV is partially exichangeable iff for every
n the restriction Hln of H to IATI, is a PEP of AVn.

Proposition 12 (i) The formula P(IIn = {Aj}) = p(nt) sets up a one to one
correspondence between distributions of PEP's (H,,) oflV, and their PEPF's,
that is to say non-negative functions p(ni) defined for all (ni) E IV*, with the
consistency property (20) for all (ni), and p(l) = 1.
(ii) In particular, there is a one to one correspondence between Kingman's
partition structures (IPn, n = 1, 2,. . .), and EPF's, that is to say symmetric
PEPF's defined for all (ni) EJV*.

Proof. This is immediate from Proposition 6. 0
The variation of Kingman's "paintbox" construction required for the par-

tially exchangeable case is the following generalization of a construction due
to Hoppe [24] in the exchangeable case corresponding to Ewens' sampling
formula. Think of painting integers in Al a first color, then those in A2 a
second color, and so on.
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Construction 13 Given an arbitrary joint distribution for a sequence of
random variables (W1, W2,...) with values Wi E [0, 1], define a random parti-
tion II ofIV into random subsets Al, A2,... as follows. Let (XniI n = 1,2,...
i = 1,2,.. .) be indicator variables with

P(Xni l=1Wl1W2*...) = Wt.

Let A1 = {1} U {n : Xnl= 1}. Given that A1 + V (or, what is the same,
Wi < 1) let C1=N- A1, let A2 ={min{Cl}} U {n: zn E C1 and Xn2 =1},
and so on. Let Ci=N - (A1 U ... U As). Given C2 is non-empty (or, what is
the same, IHi=(1 - Wi) > 0), let

Ai+, ={min{C2} U {n: n e Ci and Xni+l 1}

Note that by construction the Ai are in order of their first elements. It is
easily seen that an alternative, sequential description of this random partition
of NV can be given as follows.

Proposition 14 Let
Pi Wi...Wi- Wi,

for Wi as in the previous construction, where w- = 1 -w. Then HII {1}, and
for each n E N, conditionally given HIn = {{Ai}k}, 11n+l is an extension of
Hn in which element n + 1 attaches to class Ai with probability Pi, 1 < i < k,
and forms a new. class with probability 1-,Z Pj.
It follows at once from this sequential description that H= (HIn) so created
is a PEP of IN with PEPF

Fk \ k-i
p(nl,.,nk) = E [ (IP,HI1(1- pi) (30)

k

EII Wni lWni+1+- +n1c (1
i=l ~ i==E [iWlWn++.+ll.(31)

The Pi appear in H as almost sure limits, due to the strong law of large
numbers:

lim #Sinn = Pi a.s. , = 1,2 . .. (2
n--+oo n

The analog of Kingman's representation theorem for PEP's ofN is the fol-
lowing:
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Theorem 15 Every PEP ofIV\ has the same distribution as one of the kind
described by Construction 13 and Proposition 14. Formula (30) sets up a
one to one correspondence between PEPF's for a PEP ofJV, as described in
Proposition 12 , and joint distributions for a sequence of random variables
(Pi,P2,...) with Pi > O and ZP.< 1. Ifl ={A1, A2,...} is a PEP ofIN,
where the Ai are ordered by their first elements, then there exist almost sure
limits (Pi) as in (32), and the joint distribution of these (Pi) is related to the
PEPF of n via (30).

Remark. In keeping with the general theory of partial exchangeability
induced by a sequence of sufficient statistics, the set of all distributions of
PEP's ofIV is an abstract simplex. The theorem identifies the set of extreme
points of this simplex as the set of distributions of PEP's constructed as in
Proposition 14 from deterministic Pi =pi, say. The corresponding PEPF's
are of the form

k k-1
p(nl,...nk) = p:'' J7(i-p3). (33)

for a deterministic sequence (pi) with pi > 0 and Zp2 < 1. This is the PEPF
for the unique PEP such that the asymptotic proportion in the ith class to
appear is pi.
Proof. Let II- {Al,A2,. } be a PEP corresponding to-the PEPF p(ni).
Define positive integer valued random variables T1, T2,... by Tm = i if m E
.Ai. Call Tm the type of m. Then for every sequence of positive integers
(im,1 . m . n) with im 1, im+l < im + 1, and #{m m = i} =n,
1 < i < k maxl<m<n im

P(Tm-im, 1 < m < n) p(ni) (34)

Let
Nin#{m < n: Tm i}=#(A, nlVn)

Now (34) implies the sequence of indicator random variables

(1(T = 1), n=2, 3,...) (35)

is exchangeable. By de Finetti's theorem,

Nlnlim = P1 a.s.n-boo n
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for some random variable P1 with 0 < P1 < 1. Moreover, conditionally
given P1, the l(Tn= 1), n = 2,3,... are independent Bernoulli (P1) random-
variables. Let

oi :- inf{n : Nin = 1} = inf{n TnT i}.

Given that V2 = m, it can be seen from (34) that the partial exchangeability
implies the random variables

Tnl(Tn < 2), n = m + 1,m + 2,... (36)

are exchangeable, hence
N2nlim = P2 a.s.

n---oo n

for some P2 with P2 > 0 and 0 < P1 + P2 < 1. Moreover given V2 =m, and
the values of P1 and P2, the random variables Tn1(Tn < 2) for n > m + 1 are
independent, with distribution according to the table

value 0 1 2
probability 1 - P1 - P2 P1 P2
From the previous analysis of the sequence (35)

P(V2 = mJP1) = Pl2(1 - P1), m = 2,3,... (37)

But for n > m

P(v2 = mINln) = P(v2 = mIN*n), = P(v2 = mIN*, r > n)

where the first equality is clear from Construction 5, and the second is due
to the Markov property of (N., r = 1,2,...) described in Proposition 11. It
follows that (37) can be sharpened by reversed martingale convergence to

P(V2 = mjPl,P2) - P 2(1-P1), m = 2,3,...

It is clear that this argument can be continued indefinitely by induction, to
establish the existence of a.s. limits Pi for NiM/n as n -- oo, such that Pi > 0
and >I' Pi < 1, and conditionally given all the (Pi), the joint law of the
(Tn) is as follows: Given T1,..., Tn with maxl<m<n Tm=k

= { i for 1 < i < k, with probability Pi,
k + 1 with probability 1 - P1 - ... - Pk.
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But by definition of the Tm, this is precisely the sequential description of lln
as in Proposition 14. 0

When specialized to exchangeable partitions, as in the following corollary,
the above representation is seen to be closely related but not identical to
Kingman's.

Corollary 16 Let (Pi) be a sequence of random variables such that Pi > 0
and . Pi < 1 a.s. for all n. The following statements are equivalent:

(i) There exists an exchangeable random partition H ofIN such that if Pi'
is the a.s. limiting proportion of the ith class ofH to appear, then (Pi')
has the same joint distribution as (Pi).

(ii) For each k = 2,3,... the function p of k-tuples of positive integers
defined by

p(n, . , nk) :=E [(n Pt) : (1 ZP)] , (38)

is a symmetric function of (nli,.. , nk).

(iii) for each k = 2,3,..., the measure Gk on IRk defined by

k-1 i

Gic(dpl ..dpk-) =P(PI e dpl .......Pk E dpk) H (.....EPi)-(39)
i=l 1

is symmetric with respect to permutation of the coordinates in Rk.

In case these equivalent conditions hold, p(ni,... , nk) in (ii) is the consistent
EPF for the partition structure QP,1) associated with the random partition H
constructed from (Pi) as in Proposition 14. Assuming either P1 > 0 a.s.,
or Eji Pi = 1, (conditions that are equivalent in case (i)-(iii) hold) a fourth
statement equivalent to (i)-(iii) is

(iv) E Pi = I and (Pi) is invariant under size-biased random permutation.

Proof. (i) X (ii). According to Theorem 15, p(n1,.. . ,nk) defined by (38)
is the PEPF associated with the unique partially exchangeable random par-
tition of IV whose asymptotic class proportions are (P1, P2,...). Since a
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partially exchangeable random partition is exchangeable iff the PEPF is sym-
metric, the equivalence of (i) and (ii) is clear.

(ii) X., (iii): This is immediate from the definition of Gk, and the fact that
polynomials are dense in the space of continuous function on [0, 1]k.

(i) X (iv). This follows easily from Kingman's representation and Corol-
lary 10. See the proof of the next corollary, which is just a restatement of
Kingman's representation. 0

See Donnelly [9] for quite a different characterization of random discrete
distributions invariant under size-biased permutation.

Corollary 17 Kingman [28, 301 . Let II be a partially exchangeable random
partition of 1N, Pi the a.s. limiting relative frequency the ith class of II to
appear. Given the (Pi), let POO be a probability distribution on [0,1] with
atoms of weights Pi and continuous component of weight R := 1 - i Pi, for
example

Poo EPiu, + Ri

where Sui is a unit mass at Ui, and the Ui are i.i.d. tandom variables with
uniform distribution i on [0,1]. Given PO, let X1, X2,... be i.i.d with dis-
tribution POO. Then II has the same distribution as H(X1,X2,...) ifH is
exchangeable.

Proof. The argument will be indicated just in the proper case E Pi-1.
(Only in this case does Kingman's representation follow easily from the par-
tially exchangeable representation. See the remark below.) According to
Theorem 15, given (P1,P2,...) the partitions Hn obtained by restriction of
II to I,n admit the sequential description of Proposition 14. But by con-
struction, the partitions HI' generated by Xl,...,Xn as above admit the
same description with (P1, P2,.. .), a size-biased permutation of (P1, P2,..
instead of (P1, P2, . . .). Thus H = H' iff (P1, P2, . . .) is invariant under size-
biased permutation. In case H is exchangeable this invariance follows easily
from its discrete analog stated in Corollary 10 by passage to the limit as
n -+ oo. The converse is obvious.

Remark. For the most general possible joint distribution for the limiting
proportions (Pi) of the classes of an exchangeable random partition in order
of their first elements, allowing E :=-i Pi to be less than 1, the description
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analogous to condition (iv) in Theorem 15 is tricky to state, though easily
derived from Kingman's representation. The description is as follows, in
terms of an arbitrary distribution F on [0, 1] for 2, and a family of proper
joint distributions (Q,), indexed measurably by 0 < s < 1, where each Q5 is
a joint distribution for (Pi) with Pi > 0 and Ei Pi = 1 that is invariant under
size-biased permutation. Let E have distribution F. Given 2=s for 0 <
s < 1 ,let Q8 be the conditional distribution of (Pi*/ E,i = 1,2,...), where
(P*) is the subsequence of strictly positive terms extracted from (Pi), with
the convention Pi* = 0 if there are fewer than i strictly positive terms. Given
E and (Pi*) the distribution of (Pi) is described by the following process of
insertion of zeros into the sequence (Pi*): Let the number of zeros in (Pi)
preceding P1 have geometric (E) distribution on {0, 1,2,...}. Given this
number of zeros, the number of consecutive zeros following P1 has geometric
(2 -P*) distribution; given the numbers of zeros before and after Pl*, and
assuming the latter number is finite (i.e. P2 > 0), the number of consecutive
zeros following P2 has geometric (E -Pj* - P2f) distribution, and so on.

To conclude this section, here is another immediate corollary of Theorem
15. This corollary contains Theorem 4 of Hoppe[24] as the case when the
Wi are i.i.d. beta(1, 9), so the partition of n is governed by Ewens' sampling
formula (see Proposition 24 below)). In that case, and whenever H is ex-
changeable, (N1n,... X Nn) is a size-biased presentation of the partition of
n.

Corollary 18 Let II = {Ai} be a PEP of IV, Pi the almost sure limit as
n -+ oo of NinA/n, where Nin #(AnVsn). For eachi > 0, given (Pl,P2,...)
and (for i > 1) given also Nl,... ., Nin with E' Njn < n, the random variable

,n1 has binomial (n-,2 N3n-1, Wl+ ) distribution, where Wi+1 -

Pi+1/( - 2 pj).

5 Variations on a theorem of de Finetti
According to Theorem 15, formula (30) sets up a one to one correspondence
between consistent non-negative functions p(ni, . . , nk) with p(l) = 1 and
joint distributions for a sequence of random variables (Pi) with Pi > 0,
Et Pi < 1. This paralels the following variation of de Finetti's theorem:
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Proposition 19 The formula

p(ni) = E (IIP ) (40)

sets up a one to one correspondence between non-negative functions p of se-
quences of non-negative integers (ne) with >i ni < oo, that satisfy p(O, 0,...)
= and

00

p(ni)= p(ni+), where n+ = ni + 1(i =j) (41)
j=1

and joint distributions for a sequence of random variables (Pi) with Pi > 0,
EiPi=1.

Proof. For (xl,... ,xn) E IVN' define (ni) with Ej ni = n by the frequen-
cies ni = #{xj: = i}. It is then easily verified that (41) holds iff the
formula P(x,... , Xn) = p(ni) defines a consistent family of exchangeable
distributions on IV'. The proposition is now seen to be a reformulation
of de Finetti's theorem for IV valued exchangeable sequences (Hewitt and
Savage[21], Aldous[1]). 0

Proposition 19 generalizes Theorem III of Blackwell and Kendall [3],
which is the special case when for some k > 2 it is assumed that p(ni) = 0 for
all (ni) with ni > 0 for some i > k. Then Pt=0 for i> k, and kPi 1. In
particular, for k = 2, this result can be stated in simpler notation as follows:

Corollary 20 (Blackwell and Kendall) The formula

m(r, s) = j xr(1 - x)s4(dx) (42)

defines a one to one correspondence between non-negative bounded Borel mea-
sures [t on [0, 1], and non-negative solutions of the recurrence relation

m(r, s)=m(r + 1, s) + m(r, s + 1), r, s=0, 1, 2, ... (43)
This is a restatement of the classical result of Hausdorff[20] that a sequence
(m(r), r = 0, 1, . . .) is the moment sequence of some positive measure p on
[0, 1] iff

m(r,s) := (-1)8(A8m)(r) (44)
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is non-negative for all r = 0,1,2..., 0,1,2..., where A` is the s-fold
iterate of the finite difference operator A. The above proof of Proposition'
19 in the case for Corollary 20 just reverses the well known derivation of de
Finetti's theorem from Hausdorff's result (Feller[17], Section VII.3). Black-
well and Kendall proved Corollary 20 by application of Martin boundary
theory. See next section for references to further literature with this point of
view.

Another variation of de Finetti's theorem is the analog of Proposition
11 in the setting of Proposition 19. The one-dimensional analog of (i) X*
(iii) in Proposition 11 is stated as the next proposition. As explained in the
next section, this proposition is a paraphrase of the expression of de Finetti's
theorem by identifying the Martin boundary of an associated space-time
random walk. (The corresponding analog of (i) X* (ii) in Proposition 11
well known characterization of exchangeable sequences in terms of sampling
without replacement). The general formulation and proof of this result in
the setting of Proposition 11 are straightforward and left to the reader.

Proposition 21 Let X1 ....... Xn be random a sequence of zeros and ones,
Sn = X1 + * Xn. Then the following are equivalent
(i) X1 ....... Xn is exchangeable
(i) SI ... .... Sn is an inhomogeneous Markov chain, with transition proba-
bilities of the special form

=p(m + 1,t)P(Sm+i = tISm = s) = P(+45)
for 0 < m < n, p(m, s) > 0 and t = s or s + 1, and zero otherwise, for some
non-negative function p(m, s) defined for all (m, s) with 0 < s < m. In that
case, the unique such function with p(O, 0) = 1 is related to the distribution
of Sm for every 1 < m < n by

P(Sm = s) ()s P(in,s) 0 < s < m (46)
In particular, S,, derived from an infinite random sequence of zeros and ones
is Markovian with such transition probabilities for all m iff Sn/n converges
a.s. to a random variable Y with

E(Ys(l YY)m-) = p(m, s), 0 < s <i, (47)
and given Y = p the Xi are independent Bernoulli(p) random variables.
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The following corollary is a special case of the the above proposition, stated
here for ease of reference in Section 7. This is just a statement of well known
properties of Polya's urn scheme (see e.g. Freedman [18] Theorems 2.1 and
2.2).

Corollary 22 Let X1,X2 ....... be random a sequence of zeros and ones,
so = 0, Sn = Xl +-** Xn. Let a > 0, b > 0. Then the following are equivalent
(i) (Sn) is an inhomogeneous Markov chain, with

P(Sn+l = s + ljSn = s) a+ s (48)a+b+n'48
(ii) Sn/n converges a.s. to a random variable Y with beta(a, b) distribution on
[0, 1], and given Y = p the Xi are independent Bernoulli(p) random variables.

6 Martin Boundaries
As noted in the last section, it is well known that de Finetti's[5] representa-
tion theorem for exchangeable sequences of zeros and ones is equivalent to
Hausdorff's[20] characterization of moment sequences of a probability distri-
bution on [0, 1]. It is also well known that Hausdorff's result follows from
the identification with [0,1] of the Martin boundary of a space-time random
walk whose steps are defined by a suitable infinite exchangeable sequence
of zeros and ones (Xn,n = 1,2,...). See e.g. Watanabe[46], Spitzer[44],
Williams[48], who make the random walk steps by fair coin tossing, and
Blackwell and Kendall[3], who draw the steps from Polya's urn. Freedman
[19] considers both cases in consecutive examples. These authors all identify
the boundary of the space-time walk with [0, 11 using the Doob-Hunt bound-
ary theory, without reference to de Finetti's theorem. But as pointed out by
Martin L6f [36], this identificaton of the boundary, and the implied integral
representation of harmonic functions of the space-time walk, is essentially
just a reframing of de Finetti's theorem. See Lauritzen and Kiichler [31] for
recent extensions and developments of this idea.

The following elementary proposition is a restatement of Proposition 21
in terms of the Doob-Hunt theory.

Proposition 23 Let Q denote the transition matrix of the space-time walk
((Sn, n), n = 01,.. .), where Sn=X1 + . . . + Xn is derived from an infinite
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exchangeable sequence of zeros and ones (Xn, n = 1,2,...) such that P(S2
1) > 0. A random sequence of zeros and ones (X,') is exchangeable iff the
corresponding space-time process ((S, n)) is the Doob h-transform of (Sn)
for some non-negative Q-harmonic function h with h(O, 0) = 1, which is then
given by

h(s,n) = P(S ) (49)

In particular (X'n) that is a sequence of independent Bernoulli (p) random
variables is obtained from h = hp defined by

h ( ) (5)p5(1-p)flShp(s,n) = P(Sn =s)
Due to formula (49), convex combinations of harmonic functions h corre-

spond to mixtures of laws for exchangeable sequences (Xn). Thus de Finetti's
theorem, that

the law of every exchangeable sequence of zeros and ones is a
unique integral mixture of laws of independent Bernoulli (p) se-
quences,

amounts to:

every non-negative Q-harmonic h with h(O, 0) = 1 is a unique
integral mixture of the extreme Q-harmonic functions hp.

Easily then

p - hp is a homeomorphism between [0, 1] and the extreme Q-
harmonic functions that define the Martin boundary of the space-
time walk.

The above story can be retold to the last detail with the two valued
exchangeable reference process (Xn) replaced by any exchangeable reference
process with values in a finite or countable set I, such that the support of
the joint distribution of (X1, X2) is I x I, with the space-time walk replaced
by the empirical frequency process (Fn),

Fn=(Fni,i E I), where Fni =#{j: 1 <j < n,Xj =i}.
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Then (Fn) is a Markov chain, and the Doob h-processes derived from (Fn) for
harmonic functions h are the empirical frequency processes of exchangeable
I-valued sequences (X' ). Using analytic methods based on Choquet theory,
Blackwell and Kendall[3] identified the Martin boundary of the frequencies
process (Fn), derived from a generalization of P6lya's scheme to balls of k col-
ors, as [0, 1]k. The above observation regarding the h-processes of (Fn) shows
that their result amounts to de Finetti's theorem for k-valued exchangeable
processes. Similarly, for a countable value set I, and (Fn) derived from an
exchangeable (Xn) as above, Proposition 19 identifies the Martin boundary
of (Fn) with the infinite simplex {(P1,P2, . . *) : Pi > 0, 2ipi = 1}.

Theorem 15 can be viewed similarly as identifying the Martin boundary
of the chain of frequencies (N*m) derived as in (26) from any non-degenerate
partially exchangeable random partition H ofIV, where non-degenerate means
that the limiting proportions (Pi) are such that Pi > O for all i. The boundary
points are identified as in Remark 33 with {(pl,P2,..) :pi > 0, Yipi < 1}.

Kingman's representation identifies the Martin boundary of the Markov
chain (irn) derived from a non-degenerate exchangeable partition ofX, where
1rn is the partition of n induced by the restriction of I1 to IV,n. Yet another
variation on the theme is provided by the representation of consistent ordered
sampling distributions due to Donnelly and Joyce [11]. In all these exam-
ples, the boundary theory provides a common framework, but no recipe for
identifying the extreme points. The simplest way to identify the extreme
points in these examples is by application of some more elementary form of
de Finetti's theorem. See also Lauritzen [33, 34], Diaconis and Freedman [7]
for discussion of similar problems.

7 Residual Allocation Models
The product model Pi =-V . ... Ws_W2 for a random discrete distribution
(Pi), with independent Wi, is known as a residual allocation model. See Patil
and Taillie [37]. Let m,(r, s) = E[WTrW,-]. Then from (31), the formula

k

p(nl,..., nk) = mi(ni -1, nj+i + nk) (50)
i=l

defines the PEPF corresponding to a PEP of 1V such that the asymptotic
frequency P2 of the ith class to appear is P2 W= .... W-1Wi.
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Given a sequence of distributions Fi for Wi on [0, 1], it is inot obvious by
inspection of formula (50) whether p(n, .. . , nk) is symmetric in (n1, ..., nk),
that is to say whether the random partition of IV is exchangeable. Apart from
some rather trivial examples, it turns out that the only possible distributions
for the Wi are as described in the next proposition. See Pitman [40] for
details.

The entire circle of ideas presented in this paper is really a development
of the following proposition, which contains many known results as special
cases and corollaries. An attempt to provide due credits is made after the
proof.

Proposition 24 For each pair of real parameters a and 9, such that

either O< a < 1 and 0>-, (51)

or a <O and 0 =-ma for some m ElV (52)

an exchangeable random partition II = (lln) ofN can be constructed as fol-
lows: H1 = {1}; for each n E NV, conditionally given lln = {{Ai}k}, for
any particular partition ofJVn into k subsets Ai of sizes ni, i =1,..., k the
partition I,n+, ofJVn+j is an extension of Hll such that n+ 1 attaches to class
Ai with probability (ni - a)/(n + 0), 1 < i < k, and n + 1 forms a new class
with probability (ka + 9)/(n + 0). The corresponding EPF.is

p(nl,. . ., nk) = [9+ ]7J[l - a]ni-1 (53)

where for real numbers x and a and non-negative integer m

J 1 for m =0
[x]m;a& lx(x+ a)...(x+ (m-1)a) for m = 12),...

and [X]m = [xlm;i. Let (Ni, 1 < i < Kn) be the sizes of the classes of Hn
in order of their first elements. The almost sure limits Pi = i Ni/n
are such that P2 = W1 ...Wf_...W2, where the Wi are independent random
variables with beta(1- a, 9 + ia) distributions (with the convention in case
(52) that Wm = 1 and Wi is undefined for i > m). In all cases Fj Pi=1
a.s., and this random discrete distribution (Pi) is invariant under size-biased
permutation.
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Proof. It is easily checked that the transition probabilities are of the form
required by condition (iii) of Proposition 29 for the given p(nj), which is obvi'
ously symmetric. The form of the joint distribution of the Pi can be checked
either from (50) by computation of moments derived from the beta distribu-
tions, or by repeated application of Corollary 22, following the argument of
Hoppe [24] in the case ca < 0. That >i Pi= 1 a.s., and the invariance of (Pi)
under size-biased permutation, follow from condition (iv) of Corollary 16. 0

For a = 0, formula (53) for the EPF appears in Kingman [30], Theorem
4. As Kingman observes, the corresponding formula (4) for the joint distri-
bution of the counts of component sizes is Ewens' [15] sampling formula. See
Hoppe [24] and Ewens [16] for a variety of developments and applications of
the case a = 0 to population genetics. Antoniak [2] found Ewens' formula
using the sequential description of the random partition as above, which he
derived from the Blackwell-McQueen [4] urn scheme description of sampling
from a Dirichlet prior distribution. It was analysis of the consistency fea-
ture of Ewens' formula as n varies which led -Kingman [26, 27, 28, 29] to
the concept of a partition structure. The fact that the corresponding resid-
ual allocation model with beta(1, 9) factors is invariant under size-biased
permutation was known already to McCloskey [35], who showed this is the
only residual allocation model with i.i.d. factors invariant size-biased permu-
tation. See Pitman [40] for a similar characterization of the two parameter
scheme described above among residual allocoation models with independent
non-identically distributed factors.

The case a < 0 corresponds to the partition generated by random sam-
pling from a random discrete distribution on m points with symmetric Dirich-
let prior. The sampling formula (4) corresponding to the EPF (53) for a < 0
appears in Watterson [47], who used it to derive Ewens' formula by passage
to the limit as m -+ oo for fixed 9. The residual allocation model in this
case was noted by Patil and Taillie [371, and the sequential description of the
random partition appears in Hoppe [24]. See also Rothman and Templeton
[42], and Keener, Rothman and Starr [25] for further study of this case.

In the case 0 < a < 1, the residual allocation model was considered by
Engen [14], who showed that a single size-biased pick from (Pi) has the same
distribution as P1. The full invariance of (Pi) under size-biased permutation
in this case follows from the work of Perman, Pitman and Yor [38], who
showed how this random discrete distribution can be obtained by size-biased
sampling of the normalized jumps of a stable subordinator with index a. See
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Pitman [39] for further details of this connection. The above sequential de-
scription of the random partition and the formula (53) in this case seem to be,
new. See Pitman [41] for further study of this two-parameter generalization
of Ewens' formula.
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