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INTRODUCTION REMARKS
The translation which follows was taken from a paper constituting part of

Neyman's doctoral thesis, submitted to the University of Warsaw in 1924. It is based
on research he carried out at the Agricultural Institute of Bydgoszcz (formerly Brom-
berg) during the period 1921/22, see Reid (1982) for further details. Its primary
interest lies in the clear formulation of Neyman's model for comparing the yields of a
number of varieties, each sown on a number of plots in a field. A short summary of
the contents of this paper can be found in Scheffe (1956, p.269), where the model is
said to refer to "the completely randomized experiment with zero technical errors".
Although sampling notions play a key role in the paper, the notion of randomization is
not mentioned.

Part I of the paper reviews the basic notions of mathematical statistics: the Gaus-
sian law, expected values, variances, independence, Tchebychev's inequality, the weak
law of large numbers, the central limit theorem for averages of independent and ident-
ically distributed observations with finite variance, estimation of means and variances
when sampling with and without replacement, and posterior probability intervals
obtained via Bayes' theorem (using a uniform prior).

Perhaps the most interesting section of Part I is §5, entitled Definition 2f true
value. Here Neyman is concerned with the relationship between scientific (including
mathematical) concepts and empirical notions. The former he viewed as fictions which
have value when properly defined, and he regarded it as important to distinguish
between scientific and everyday uses of the same word or phrase. He says that he
would like to define the true value of a crop yield, for example, to be the common
expectation of a sequence of independent and identically distributed random variables
corresponding to different measurements of that yield. However, he points out, this
definition does not help much, as it then depends on the definition of expectation.
Neyman's solution was to define true yield to be a number which possesses one pro-
perty also possessed by expectation, namely that it serves as a location parameter for
the normal approximation to the distribution of the mean of the abovementioned
sequence of random variables. This permits approximate probability statements to be
made about the true yield- by Bayes' theorem!- and he then moves on to a discus-
sion of these notions in the context of agricultural experiments. See p.15 below for an
illustration ofNeyman's use of this definition.

Part II begins with a brief discussion of covariance, correlation and regression, in
the context of a finite population. All of this was material familiar to statisticians at
that time. Neyman referred to Czuber's Wahrscheinlichkeitsrechnung (1914) and
Theorie der Beobachtungsfehler (1891), Markov's 1913 Calculus pf Probability and a
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paper by Bernstein published in the Kharkov Mathematical Society Journal. Karl
Pearson's The Grammar gf Science (1900) was also cited.

Neyman's original ideas on the application of statistics (or probability theory) to
agricultural experimentation are contained in the portion of the paper translated.
Their most well-known exposition is, of course, in the paper Neyman (1935, with the
cooperation of K. Iwaskiewicz and St. Kolodzieczyk), on the occasion of the bitter
clash with RA. Fisher. However the presentation in the later paper contrasts dramati-
cally with that translated below. In 1923 Fisher's theory of designed experimentation,
including his z-test and randomization, lay in the future, as did the Neyman-Pearson
theory of testing hypotheses; the notion of technical error is also absent from the ear-
lier discussion. By contrast, the 1935 paper discusses only randomized block and
Latin square designs, includes technical errors, explicitly evaluates means and mean
squares with respect to randomization (permutation) distributions, and pays attention
to the Type I and Type II errors of the associated tests. Thus the emphasis shifts
attention away from what was perhaps Neyman's greatest contribution to designed
experimentation: his explicit use of hypothetical responses corresponding to what
would have been observed, had the treatment allocation been different. For an insight
into Neyman's own view of this work, see Reid (1982, pp.4549). It seems possible
that those present at Neyman's 1935 oral presentation of his ideas missed this basic
point at first hearing or reading, hidden as it was in a broad critique of the then popu-
lar methods of Fisher, and that this explains, at least in part, the strong reaction to
Neyman's criticisms. Later writers on the design and analysis of experiments
Kempthorne (1952), Cox (1958), and others, e.g. Hodges and Lehmann (1970, section
9.4) have clearly found the model ofpedagogical value.

In view of the fact that Scheffe (ibid) described the model in this paper as
corresponding to the "completely randomized experiment", the reader may wonder if
there is in this paper any explicit reference to randomization. We could find none. In
our view, there is an implicit assumption of randomization, in that the plots which are
assigned to particular treatments are supposed - for the purposes of calculating
means and variances - to be simple random samples satisfying the prescribed con-
straints. But implicit is not explicit: randomization as a physical act, and later as a
basis for analysis, was yet to be introduced by RA. Fisher. Fisher's priority is expli-
citly recognized in the 1935 paper, where (p.131) Neyman, discussing the conditions
under which an observed diference between two treatment means can be regarded as
an unbiased estimate of their true difference, writes

"The difficulty has been overcome by the device proposed by RA. Fisher,
which consists in making the 'r's random variables with mean equal to zero.
For this purpose the plots within each block are randomly distributed among
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the different objects [treatments]".

Why publish a translation of Neyman's introduction of this model just now? In our
view, it is the model for designed experiments and observational studies which permits
most (all?) of the important issues associated with their analysis and interpretation to
be clearly defined, discussed, and elucidated. Apart from the earlier writers cited, we
feel that this has been convincingly demonstrated most recently in a series of papers
by D. Rubin, beginning with Rubin (1974, 1977, 1978), see especially Holland and
Rubin (1983, 1988) and papers by Rosenbaum, alone or jointly with Rubin, cited in
Holland (1986). The desirability of drawing attention to this fine body of work, and
placing it more clearly in the tradition from which it arose, would seem to justify car-
rying out the translation. We hope that the paper will also have some appeal to those
interested in the evolution of the statistical notions associated with experiments and
other studies.
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Translation from the Polish original of §9 pp.29-42 of
Proba uzasadnienia zastosowafi rachunku

prawdopodobiefistwa do doswiadczefi polowych
(On the application of probability theory to agricultural experiments.

Essay on principles.)
by Jerzy Splawa-Neyman

Numbers in brackets correspond to page numbers in the original text.

[29]
9. I will now discuss the design of a field experiment involving plots. I should
emphasize that this is a task for an agricultural person however, because mathematics
operates only with general designs. In designing this experiment, let us consider a
field divided into m equal plots and let

U1,U2, * Um

be the true yields of a particular variety on each of these plots. If all the numbers Ui
are equal, each of them may be called the average yield of the field. Otherwise the
average yield may be thought of as the arithmetic mean

m

iElUi
a=-

m

The yield from the i-th plot measured with high accuracy will be considered an
estimate of the number Ui.

If we could repeat the measurement of the yield on the same fixed plot under the
same conditions, we could use the above definition1) of the true yield. However, since
we can only repeat the measurement of a particular observed yield, and this measure-
ment can be made with high accuracy, we have to suppose that the observed yield is
essentially equal to Ui, whereas differences that occur among yields from various plots
should be attributed to differences in soil conditions, especially considering that loW
and high yields are often clustered in a systematic manner across the field.

To compare v varieties, we will consider that many sequences of numbers, each of
them having two indices, (one corresponding to the variety and one corresponding to
the plot):

Uill Ui2 ***,uim (i= 1,2,...v).

1) See the introduction for a few comments on Neyman's notion of true
yield.
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Let us take v urns, as many as the number of varieties to be compared, so that each
variety is associated with exactly one urn.

In the i-th urn, let us put m balls (as many balls as plots of the field), with labels
indicating the unknown potential yield of the i-th variety on the respective plot, along
with the label of the plot. Thus on each ball we have one of the expressions

UiD, Ui2 , . . ., Uik , ...** Uim (13)

[30]
where i denotes the number of the urn (variety), and k denotes the plot number, whilst
Uik is the yield of the i-th variety on the k-th plot.

The number
m
I Uik

ai =
m

is the average of the numbers (13) and is the best estimate of the yield from the i-th
variety on the field.

Further suppose that our urns have the property that if one ball is taken from one
of them, then balls having the same (plot) label disappear from all the other urns.

We will use this scheme many times below and will call it the scheme with v urns.

If we dealt with an experiment with one variety, we would have a scheme with one
urn. In this case expressions denoting yields will not have a variety index.

The goal of a field experiment which consists of the comparison of v varieties will
be regarded as equivalent to the problem of comparing the numbers

a,a2,. I av

- or their estimates - by way of drawing several balls from urn.

The simplest way of obtaining an estimate to the number ai would be by drawing x
balls from the i-th urn in such a way that after noting the expressions on the balis
drawn, they would be returned to the urn. In this way we would obtain K independent
outcomes of an experiment, and their average Xi would, based on the law of large
numbers, be an estimate of the mathematical expectation of the result of our trial. Let
x denote a possible outcome2) of the experiment consisting of drawing one ball from
the i-th urn. We shall calculate E x. Since the probability of drawing a ball from the

i-th urn is the same for all balls, and equal to -, and since all possible results of the
m

2) In modern terminology, lower case x, with or without subscripts, denotes a
random variable, and upper case X the corresponding realized values.
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trial are

[31]

contained in the sequence (13), so of course
, m

Ex = m
1

Uik = ai

and the average of the results of the x trials would be an estimate of a;.
Unfortunately in practice, returing the balls to the urns cannot be carried out. We

are obliged to sample without replacement.
Let Xl, .. ., x; Xi,X2, . . . , X,K be the possible and the true outcomes, respec-

tively, of K trials carried out in this way. Let us assume, as is often the case in prac-
tice, that the sequence (13) contains numbers that do not differ greatly from one
another, and so may be considered equal. We can group the sequence in such a way
that in the first group, we put all the smallest numbers Vil, there being mp, such
numbers, in the second class the next smallest of the remaining numbers, whose com-
mon value is Va2 and whose number is mp2, etc.

In this way we replace sequence (13) by

Vil9 Vi2) ...** Vin (14)
representing possible outcomes of the trial where the probability that the outcome of
the first trial is Vik is pk.

Let us assume that on the first ball drawn we have the number Vik. What is the
probability of the outcome of the next trial?

First of all, the urn contain one fewer balls. Further, the number of elements in the
k-th class of (14) is reduced by one. Therefore the probability p11 that the outcome of
the second trial is equal to Vir, where r * k turns out to be

1 mPr Pr
Pr - -i = Pr +

whereas the probability of the result Vik in the same trial

[32]
is

mpk-l 1Pk
Pr = -m Pk m- 1

In the end, after K- 1 trials being carried out in the same way, we will find the
probability p,' that the outcome of the K-th trial is Vik, where Vik has not been
drawn so far, is equal to
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K-1 mpk (K-l)pkm-IC + 1 Pk m- IC+1
and the probability p 11 that a number ViS which has been drawn I times previously,
is equal to

K-i = mps- = (K- 1)pS- l

m -K+ 1 m--K+ 1

We see that knowledge of the outcomes of preceding trials has an effect on the proba-
bility of outcomes of subsequent trials, so that trials conducted in this way are not
independent. If we assume that the number m is very large in relation to K, so that

is negligible in comparison with the probabilities PS, then it follows from the

above formulae that information about previous trials will not affect probabilities of
subsequent trials, and so the trials will tur out to be independent, whence we will be
able to apply the law of large numbers, and our definition of a true yield, and along
with it known formulae from probability theory. If each of the v varieties are sown on
K plots, then m = v K and the condition for the independence of experiments will be

that the ratio
v

l is small, in other words, the number of varieties v to be compared

is large.

Should we draw from this the conclusion that in the case where the number of
varieties is small, probability theory cannot be applied?

[33]
Of course not. It follows from previous considerations, however, that for small v

or m the application of the common formulae should be justified in a manner different
from that which we have just described, or that these formulae should be modified.

I will derive new formulae below. I will mention here a certain misunderstanding
which is frequently repeated in the agricultural literature, whose explanation is con-
nected to the above argument.

This misunderstanding consists in the unjustified assertion that probability theory
can be applied to solve problems similar to the one discussed only if the yields from
the different plots follow the Gaussian law.

This assertion arose because, consciously or unconsciously, a different framework
was used from the one mentioned above when applying probability theory.

More precisely, the yields from different plots were considered as independent
measurements of one and the same number- the true yield of the variety on the field
- and the measurement was assumed to be subject to errors in the sense of Laplace.
To justify this framework, experiments were carried out consisting in sowing a large
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number of identical plots with a single variety, and it was investigated whether the
yields followed the Gaussian law, as would be true if the framework above reflected
experimental practice. (I will not discuss in detail here the meaning of agreement with
the Gaussian law; the reader should refer to publications devoted to this topic.) Such
experiments had both positive and negative results, and in those cases where positive
results were questionable, the discrepancies were justified as being an unusual event.
Even among the greatest optimists,3) I found words suggesting doubts.

We have to say that in many cases the yields do not follow the Gaussian law.
This is highly likely

[34]
a priori. Further, the consistency with the law of random errors should not justify a
framework which is based on an assumption of independence of the measurements. In
discussing this matter we will quickly get to a discussion of the assumption and con-
straints on the number of plots on the field or on the number of varieties compared.

In this way we conclude that consistency with the Gaussian law is not sufficient to
justify the application of known fonnulae, and even this (consistency) is open to doubt.

The proposed framework even makes it superfluous, since it is enough to assume
that our measurements are independent, and for that we need a large number of plots
on the field.

I will now discuss the case where the ratio

K

mi-K

is not so small as to be negligible, and so the experiments cannot be considered
independent. Consider the design with one urn. First of all we have to say that the
arithmetic mean from K measurements may be considered an estimate of the mean4)

m~ui
a =

m

For that, as follows from Tchebychev's theorem, it is enough that5)

3) Here Neyman refers to Gorsldego and Stefaniowa in the 1917 volume of
the same journal.

4) The notation here is slightly confusing. There is no connection between
the subscript i on Ui and that on the random variable xi. Indeed the latter sub-
script is superfluous at this point, although the author undoubtedly has the i-th
urn in mind, cf. (16) and (17) below.

5) pI2 is a generic expression for variance (cf. the modem use of a2), here of
the random variable xi which is the average of K trials.
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=2 E (xi- a)2
tends to zero as K -+ oo.

We calculate i±2:

p2 = Ex?x - a2 = I[I 2x + 2 xjkxir] - a21 ~K21k--1XI k

where the sum £xikxir runs over all non-identical expressions6) of the type xikxfr with
k . r. Of course

m

k (Uk-a)

rn-K k=1 rn-K 2limg21) i (m =0.

1-51

m

Thus in this case the arithmetic mean of several outcomes of the trial may be
regarded as an estimate to the expected value a.

Let us make another comment. It is possible that, apart from the arithmetic mean
just discussed, there exists a different function F(x, ) of thie results of the K experi-
ments for which IEF(X, K) =a, which could also be regarded as an estimate of the
number a. It is also possible that the standard deviaton of the function F is smaller
than m. In this case, as it follows from the law of large numbers, F(x K) may be associ-
ated with a better estmate of a than the arithmetic mean. Therefore we can look for
the function F(x f) which will give the best estmate.

We shall consider a linear function7)

6) Here x cis the random variable corresponding to the k-th of the K trials

and xi = K l Xik-
7) In what follows the random variable corresponding to the i-th and k-th of

the K trials are now denoted by xi and xk respectively. Neyman refers to Mar-
kov (1913) at this point.
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F(X,) = X1X1 + X2X2 + * + KXK -

In order that a number F(x, x) could be considered as an estimate to a, it is sufficient
that

xk
EF(x,Kx) = E a XkkXk =

k--1

K

i=1

a

1.

In order for this estimate to be the best it is necessary that

M2 = E(F(x, ) - a)2

be a minimum.

[36]

Of course

K

M2 = IE[l£ k(x - a)]2
i=1

= £X2E(x,-a)2 + 21k£XkE(xi-a)(xk-a)
i=l

i=1 M-1 L,k

smce

E (xi - a)2 =

E(xi-a)(xk-a) =

m

I (Ui - a)2
k=- 1 2

m

m-l m

2 £ £ (Ui - a) (Uk - a)
i=l k=i+1

m(m- 1)
m

- I (Ui- a)2

m(m- 1)

From the identity

it follows that

I ki =
*-- 1

2 £ Xk = 1
i,k

m - 1

1

i =1

i.e.
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so

.2m _1 2u[M- I +Mlm£ ki k)2]
M2 =Lk__ =_ _ ik

mr- 1c(m-i)

is smallest when

Xi= 1, (i =2,3, . . ,ic)

[37]

i.e. X)= -, (i= 1,2,9.. ,K)

£xi
F i1 M - r- CYF(X,1C) = lC' k(nm- i)u

We see that for the case considered, the arithmetic mean of i experiments is the
best estimate of the number a.

An estimate of the standard deviation t will be found by calculating8)

E (Xik -xi)2 = E KXik - - xir)2

(IC-l)mM 32 (IC lm 12,
ic(m-i) 2 (-1) 2C

where

Xir= Xir - Xik

Therefore the estimate of the standard deviation of the arithmetic mean can be
denoted by g. whose square is equal to9)

K

`2 m - Ic k(X1 Xi) m-r i 2 (16)
m(ic-i1) IC r(ic-i1)

This formula should be used instead of formula (6), when ic is not negligible com-
pared with m, as is most common.10)

8) The text now reverts to the notation described in Footnote 4.

9) Here Xik is the k-th observed outcome, k = 1, , ic and Xi = I Xik-
10) Formula (6) is analogous to (16), but was derived under the assumption

of independence of the observations, and so is without the factor (m - ic) / m.
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On the other hand, if the experiments are conducted with replacement the formula
(8) remains unchanged in this case since1)12)

v-i 1 J, Xk2E (xi-xO)2 = E(-x - -X k)

-v-i Xi - E xi Xk).V

[38]
Since the numbers xi and Xk are independent, therefore

Ex,xk = (EXk)2 = a2.

Thus

E(X _ XO)2 =v - (Ex? - a2) = v- p.2

v-i m-'K 2
v K(m-i)

and as an estimate of g2 we may use

"2 v '2

In the case when the Xi follow the Gaussian law, multiplying p" or p by 0.67449,
we get E - an estimate of the probable average error.13)

It should be emphasized that the problem of determining the difference between the
yields of two varieties becomes more complicated in this case. Let us consider the
scheme with v urns. It is easy to see that14)

E (xi - xj) = ai - aj

so that the expected value of the difference of the partial averages of yields from two
different varieties is equal to the difference of their expectations. It can also be deter-
mined that this difference is an estimate of ai- a. but the expression for the standard
deviation becomes more complicated:

11) Formula (8) gives the usual unbiased estimate of the variance based upon
a sequence of independent random variables with common mean and variance.

123For the next few formulae, xi, xk etc. are members of a set of v indepen-
dent random variables with expectation a, variance , and xO = - Xk.

13) E is thus an estimate of the inter-quartile range. The expression a12 just
above was defined earlier in the paper, and is the usual biased estimate of a po-
pulation vanance, whereas p"2 is the corresponding unbiased estimate.

14) From now on, xi and xj are the averages of K trials corresponding to
varieties i and j, sampled as in the scheme with v urns.
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2_;= E[x,-xj- (al- aj)]2 = E(x-_aj)2 +

E (xj - aj)2 - 2E (xi - ai) (xj - aj)

= g, + 2 - 2[Exixj - ajaj].
The expression in the brackets will be calculated separately:

1 KC 1

Exjxj = *2E(,k1 Xik.£Xjl) = Exikx

m-l m
I X2 (UikU 'I + UilUjk)

k_=1 l=k+1
m(m- 1)

[39]
m m m
£ Uik I UJl - I UikUjk
k=l 1=1 k-1

m(m - 1)

Taking into account
m m
I Uik = maj,, kljk = maj,
k=1 k1j

we get

- m

ai aj UikUjk
E(xixj) - aiaj = rn-i

Thus if we denote by r the correlation coefficient between the yield of two varieties on

the same plot
m

I UikUjk - ajaj
r=

yui CyUj

we get

m1E xi x; - a1aj =- rn-i ra6u.<uj

and for the standard deviation of the difference of the two averages we get

2 = m++ 2
L aYUaUi = 2xi+ icr+ - xj (17)

It is easy to see that g,2i- tends to zero with x;, gxj. It is of interest to see the rela-

tion between the standard deviations of the differences of the partial averages com-

puted using formulae (6), (12)15) and the above ones. Let us denote

15) Formula (12) states that the variance of the difference of two independent
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RX2 = ,: 1Xi a? R2 R2 +R2Xi-Xj Xi Xji

[40]

Of coursel6)

d F = V
1

R2i R2j + V2rXXj2 V~~~i[R +R+ 2rRx,Rxx-Xi v Xi Xi1 v-iX1 XI

= RXi-Xj - V[ Rx+LRX4- 2xiRxj].

It is easy to see that

R2 + R2 - 2rRx Rxj > 0,

since

R + R2 ± 2RXRX = (Rxi ± RXJ)2 > 0, r < 1.Xi Xi i X

Therefore we conclude that

X2-j < R2i_j2~~~~~~~~

We can further determine that with given Rx,, RXi the variance gxi_ increases as v and

r increase.

We achieve the largest value of the ratio

q = =;i-- 1 -

RX-2X1 1x

v1 [RI + R - 2rR,.Rxj]

only if

Rxi = Rx, r= 1,

when

q= 1, ,-xj = Rxi-xj-
The smallest value of this ratio q is equal to zero, which can be achieved when

R34 = Rx,, r = -1, v = 2.

In this case

q=0, Jx2.-x = 0,
1 xJ R2 = 2R2Xi-xj X

random variables is the sum of their variances.
16) The right-hand side is really an estimate of the left-hand side.
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[41]

We see that the standard deviation of the difference of partial averages computed using
the standard formulae is usually too large. It can be conjectured that in many cases
this has led to the observed difference

Xi - Xi
being thought a random fluctuation, when in fact it exceeded many times the value of
the standard deviation computed using the correct formula, i.e., in cases when a real
difference between the yields of the two varieties being compared may be regarded as
existing.

When applying (17) there is a difficulty, since we do not have a direct way of cal-
culating r. In cases where it can be assumed that the two varieties being compared
react in the same way to the soil conditions, we should take r = 1.17) If we want to use
the value of r computed through experiment, we will face the problem of introducing
some assumptions about the nature of the variation of soil conditions over the field and
the distribution of plots which are sown with comparable varieties. I hope to return to
these questions in one of my future papers. They lead to a different design which
ensures greater precision.

For the time being, we will conclude that since it is impossible to calculate directly
an estimate of r, it is necessary to take r = 1; the method of comparing varieties or
fertilizers by way of comparing average yields from several parallel plots has to be
considered inaccurate.

Returning to the problem of determining the value of the true yield, we conclude
that we are interested primarily in the true value of the difference between the yields
of two varieties. Rejecting the assumption of independence of experiments, we cannot
use Theorem 2,18) which, although has been generalized19) to some cases of dependent
experiments, does not apply to the case we are considering here. From these explana-
tions it follows that it would be safe to adopt the following definitions: by the term
"true value" of the difference of the yields of two varieties, sown on K selected plots,
we mean a

[42]

17) This corresponds to what is frequently termed unit-treatment additivity,
see e.g. Kempthome (1952), Cox (1958) and Holland (1986).

18) A standard form of the central limit theorem.
19) Here Neyman refers to Markov (1913) for the exposition of an unpub-

lished result of S. Bemnstein.
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number A associated with the difference of the observed partial averages Xi - Xj in

such a way that the probability Pt of preserving the inequality

IX -Xj- Al < taXi-Xj

is greater than

1

for all t > 0.

We can determine empirically that the difference of partial averages of the plots
sampled shows a fair agreement with the Gaussian law distribution. This encourages
us to name the true difference in yields of two varieties a number 8 associated with the
difference of the corresponding partial averages, under the condition that the probabil-
ity of preserving the inequality

T1 < X- Xj - T2

equals

T2 t

11 2a2jj
2-, Je

"x-x

dt,

where20)
= in-ic 1+K J +

IXViXJ= m(ic1) [cs2 + j 2ic aa ]

and T1 < T2 are arbitrary numbers.

We should remember, however, that this definition is not properly justified.

Of course everything that has been said about the comparison of varieties applies
to the comparison of fertilizers.

20) A misprint (or inconsistency) in the following has been eliminated, cf.
formulae (16) and (17) above.


