
Hardest One-Dimensional Subproblems

David L. Donoho
Richard C. Liu

Department of Statistics
University of California, Berkeley

Berkeley, California 94720

Technical Report No. 178
August 1989

Department of Statistics
University of California
Berkeley, California



Hardest One-Dimensional Subproblems

David L. Donoho
Richard C. Liu

Department of Statistics
University of California, Berkeley

Berkeley, California 94720

ABSTRACT

For a long time, lower bounds on the difficulty of estimation have been con-
structed by showing that estimation was difficult even in certain 1-dimensional sub-
problems. The logical extension of this is to identify hardest one dimensional sub-
problems and to ask whether these are, either exactly or approximately, as difficult as
the full problem.

We do this in three settings: estimating linear functionals from observations with
Gaussian noise, recovering linear functionals from observations with deterministic
noise, and making confidence statements for linear functionals from observations with
Gaussian noise. We show that the minimax value of the hardest subproblem is, in
each case, equal to, or within a few percent of, the minimax value of the full problem.

Sharpest known bounds on the asymptotic minimax risk and on the minimax
confidence interval size follow from this approach. Also, new connections between
statistical estimation and the theory of optimal recovery are established. For example,
95% confidence intervals based on estimators developed in the theory of optimal
recovery are optimal among linear confidence procedures and within 19% of minimax
among all procedures.
Abbreviated Title: Hardest l-d subproblems
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1. Introduction
Let X1,, . ,KX be a random sample from a distribution F which is unknown but assumed to lie

in the infinite-dimensional class F. One is interested in the real-valued functional T(F). How accu-
rately can one estimate T from the data at hand?

If F were 1-dimensional (a one-parameter family of distributions), the difficulty of estimation of
T is rather well understood. Stein (1956) proposed a heuristic for the case where F is infinite-
dimensional: the difficulty of the full problem should be equal to that of the hardest 1-dimensional sub-
problem in F. Stein's heuristic is the source of much current research in statistics, mostly under the
guise of "semiparametrics". Two successes are the Beran (1974)-Stone(1974) demonstration that it
currectly evaluates the difficulty of estimating the center of symmetry of an unknown symmetric den-
sity; and Levit (1974)'s demonstration that the empirical distribution function, empirical median, etc.
are efficient nonparametric estimates of the distribution, median, etc. Many other applications exist see
Bickel (1982), Bickel et al (forthcoming), Gill (1987).

These applications have so far focused on "regular" problems -- those where there exist esti-
mates converging at the rate n-112 to the true value T(F). However, recently, the authors (Donoho and
Liu, 1988) have shown that a suitably reinterpreted version of Stein's Heuristic works in nonregular
problems, where the optimal rate is only n"'2, for some q < 1. They show that in several problems of
density estimation, the difficulty, for linear estimates, of the hardest 1-dimensional subproblem is
asymptotic to the difficulty of the full problem. Among other things, this allows the (essentially) pre-
cise evaluation of the difficulty of certain nonparametric problems where at best the rate was known
before.

In view of the historical significance of Stein's heuristic and the work it has spawned, and also of
the current interest in semiparametric problems and in nonparametric problems with rate of convergence
slower than n-1/2, it becomes of interest to examine the heuristic more closely. What setting is the
most general setting under which the heuristic works precisely? In this paper we present our answer.

The setting we study is the following. One is interested in the value of the linear functional
L (bx), where x is unknown, but belongs a priori to the class bX, a convex subset of 12. One observes
data y=Kx + z, where y, and z are sequences, z is a Gaussian noise, and K is a bounded linear opera-
tor. It is important here that L may be an unbounded linear functional and that K may be compact or
even of finite-dimensional range. This allows the model to cover "non-regular", or, in another termi-
nology, "ill-posed" problems.

This model is general enough to cover many problems of direct practical interest. With K a com-
pact operator and L chosen appropriately, one gets estimation problems that arise in tomography, spec-
troscopy, and remote sensing (see Section 10). With K =I, the identity, and the covariance of z chosen
appropriately, it is equivalent to a Gaussian shift experiment arising in density estimation (see section
8.4 below). Also with K =I, and z white noise, the model is equivalent to the white noise model of
Ibragimov and Hasminskii (1984); see section 8.1 below.

In this model, the heuristic works. That is, using any of several different loss functions (squared
error, absolute error, 0-1, length of confidence statements),

The difficulty, for linear estimates, of the hardest 1-dimensional subproblem,
is equal to

the difficulty, for linear estimates, of the full infinite-dimensional problem.

This fact has a number of interesting implications for the model (1.1).
[II] Evaluation of the Difficulty of the full problem. It turns out that the difficulty of the hardest 1-d

subproblem is always conveniently expressed in terms of the modulus of continuity of the func-
tional L over the class X, appropriately defined. Thus, under (1.2), the difficulty of the full prob-
lem is conveniently expressed in terns of the modulus of continuity. For example, suppose we are
interested in squared-error loss; then the minimax risk among linear and nonlinear procedures
R(a) and RN*(a) satisfy b2(a)/5 < R *(a) < R(C(a) < b2(a), where b (e) is the modulus of con-
tinuity. If instead we are interested in minimax length of 95% confidence statements, then, letting
CL(C) and CN(C) denote minimax length based on linear or on arbitrary measurable procedures,
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b(2-1.645-a) < C;(a) . CL(a) . b(2l1.96-a).

This fact can be useful in several ways. In theoretical studies, for example, one might be
interested in the rate of convergence of minimax risk to zero as the noise level goes to zero. This
is answered by determining the rate at which the modulus -- a purely geometric quantity -- goes
to zero. In an applied study, one might want to know how well an experiment of the forn (1.1)
determines the value of L, in the sense of length of confidence interval. Then numerical calcula-
tion of b (2 1.645 a) and b (2 1.96 a) would give tight bounds on this length (within 19% of each
other).

[I2] Near Minimaxity of Linear Estinmators. As the bounds just mentioned alrady show, the minimax
linear estimator is nearly minimax among all procedures. Suppose the a priori class X is sym-
metric. Then for squared error loss, the linear minimax risk cannot differ from the minimax risk
by more than ;S%. For length of 95% confidence intervals, the two quantities cannot differ by
more than 19%. Asymptotically, as a--O, the comparison is even sharper than this. If X is
asymmetric, a similar but less sharp comparison holds.

[I3] Characterization of Since linear estimators can be close to minimax, it becomes interesting to cal-
culate the minimax linear estimator. The proof of (1.2) shows an easy way to do this -- find the
hardest subproblem, and find an appropriate minimax linear estimator for that subproblem.
This recipe also explains an interesting fact. The minimax linear estimators for this problem -- in
any of a variety of loss functions -- are identical with estimators designed in the theory of
optimal recovery. This theory, concerned with optimal numerical integration and differentiation in
the presence of deterministic noise, thus has a close connection with the problem of estimaton in
Gaussian noise. This connection is new, and of practical interest; it explains why certain statisti-
cal estimators (splines, optimal kernels) again and again turn out to have been studied by Applied
Mathematicians who are not concerned with random noise.

While the results here have interesting applications, we consider our main aim to investigate the princi-
ple (1.2) and its implications. We sketch applications to density estimation in Section 8, and to signal
processing in Section 9. Perhaps we will have an opportunity to indicate other applications in future
work.
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2. Risk of the Hardest 1-dimensional Subproblem.

First, we relax an assumption on L. In the following, unless we explicitly state otherwise, we

assume only that L is affine, i.e. that L (y) = a + L'(y) where L' is homogeneous linear.

Let us evaluate the minimax risk of the hardest 1-dimensional subproblem in X. Consider the pro-

totypical 1-dimensional problem. We observe the random variable Y distributed N(0, a2) and we wish

to estimate 0. We know that 10 l < r, and we consider estimates 8(Y) of 0 which may be nonlinear. For

example, we might let 6(Y) be Bayes for a prior supported on [- T, X]. Define the minimax nonlinear

risk

PN(t,a) = inf sup EeO(S(Y) - 0)2 (2.1)

This quantity has been studied by a number of authors. When a= 1, it is known for all X < 1.05

(Casella and Strawderman, 1981), and its asymptotic behavior is known for Xr -o oo (Bickel, 1982),

(Levit, 1980). Other cases can be reduced to the case a = 1 by the relation

PN (t,CS) = &2 PN (11). (2.2)

More information about PN will be given in Donoho, McGibbon, and Liu (1988).

Consider now the risk for estimation over 1-dimensional subfamilies of X. Let {x, t E [-1,1])

be a line segment contained entirely in X. Let y be as in (1.1) and put Y = <u,y-x0> where

u Xi - 1I and xo= (xl + x_)/2. If the unknown x lies in {x,) then, by construction,11x1-X-,111

Y -N(0,a2), 101 < IIx1-xoI1. As Y is sufficient for 0, the minimax risk for estimating 0 from

observations y, when x is known to lie in (xt), is just the minimax risk for estimating 0 from Y --

PN( I IX1 - xO 11 a). Now consider estimating L when x is known to lie in (x, ). The restriction of L to

this segment is an affine function of 0; estimates of L and estimates of 0 are in one-one correspondence

by this same affine function. Consequently the minimax risk in estimating L over {x,) is just the

squared slope of this affine function times the minimax risk for estimating 0. Hence

inf su(p E(L(y)-L(x)) - [ (Ixl)x(..1 ))] PN(IIX -XOII, a) (2.4)
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This display gives the minimax risk for estimating L in a particular 1-dimensional subproblem.

To find the hardest subproblem, we now employ b (e). Among all line segments with endpoints x-1, xl

satisfying IIx1- x.1I =£, we can make IL(xi)-L(x.1)l as close as we like to b(e), by proper

choice of xl and x-I in X. Thus we can get subfamilies with minimax risk arbitrarily close to

(b (£)/£)2 pN(£2,aS) (2.5)
but no larger. By optimizing over e, and noticing that the risk of the full problem is at least as big as

the risk of any subproblem, we get

Theorem 2.1. Let X be convex.

RNC(a) 2 Risk of hardest affine subproblem (2.6)
b2(e')= sup 2 PN(e/2,a)

e>0 E

Now in the particular case where b (e) is Holderian, something more can be said: the risk of the hardest

subfamily behaves, for small a, like a constant times b2(a).

Theorem 2.2. Let b (e) = A eq + o (eq). Then, as a -+ 0, we have

SUP b2(e) PN (E/2,a2) = b 2(a) ,N (q ) + o (b2(a)) (2.7)

where

4N(q) = SUp V2q -2 PN( 1)
v

0 2

The proof is given in the appendix. A table of lower bounds on 4N is given in section 5 below. Since

PN( 1 ) is known (Casella and Strawdernan) to be .199, tN(q) . .199 for all q E (0,1). Also,
2

(Theorem 4.1 below) 4N(q) < 1 for all q E (0,1).

We now restrict ourselves to the use of affine estimates, and evaluate the risk of the hardest 1-d

subproblem for such estimates. Let Y be again N(0,a2) and suppose it is known that 10 1 < t. If we

restrict ourselves to affine estimates 6(Y) = a Y + b, we can define the affine minimax risk

pA(Ta) = min max Eo((a Y + b) - 0)2. (2.8)
a,b IOI<'c

Simple calculus gives the explicit formula

PA(t,a) = , a2 (2.9)
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Define

RA (a)= inf sup E (L (y) - L (X))2.
~Iafu L I

Following exactly the same arguments as in the case of nonlinear estimates, we get

Theorem 2.3. Let X be convex.

RA (a) > Risk, for affine estimates, of hardest affine subproblem (2.10)

sup b2(e) pA((/2,)

This is an exact parallel to (2.6). Our next result is an analog to Theorem 2.2. It gives not only the

asymptotic behavior of the risk of the subproblem, but the asymptotic behavior of the length of the

hardest subproblem. The length is proportional to c.

Theorem 2.4. Suppose b (e) = A £q + O (eq ). Then as a -o 0,

su b2(e) PA(e/2,a) = b2(a) 4(q) + o(b2(a)) (2.11)

where

A(q ) = 22q-2 sup v2q [1 + v21-1 = 22q-2qq (I_q)-q
v > 0

Moreover, the supremum in (2.11) is attained at

,O = 2I\q CT(l+o(1)) (2.12)

The proof is given in the appendix. A table of 4A (q) is given in section 5 below.



- 7 -

3. Risk of the full problem.

We say L is estimable if b (e) -- 0 as e -+ 0. (In view of (2.6), L is certainly not estimable if

b (e) 4/ 0.) We say that X is symmetric if, for some v, X- v = v- X.

Theorem 3.1. Let X be compact, convex, and symmetric. If L is estimable, then the lower bound of

Theorem 23 is attained:

RA(a) = SUP b( pA)(e2,cy) (3.1)

Thus, under symmetry, the risk, for affine estimates, of the hardest 1-dimensional affine subproblem is

equal to the risk of the full infinite-dimensional problem.

Theorem 3.2. Let X be compact, convex, but not necessarily symmetric. If L is estimable, then

R; (a)
.

sup b2(e)
>oS 2) PA(e,)* (3.2)

The difference between the right-hand sides of (3.1) and (3.2) lies in the replacement of £/2 by e. From

(2.9), we have pA (e,a) < 4 pA (e/2,a), Thus Theorems 3 and 6 together say that even without sym-

metry, the risk of the hardest subproblem is within a factor 4 of the risk of the full problem. Asymptot-

ically, we get even tighter bounds. If b is H6lderian with exponent q, the right hand side of (3.2) is

asymptotic to qq (1-q )q b2(Cy). Therefore,

&, q)2(cs)(1 + o (l )) 2 A(SA( b(a)(l + o (1))

so. the risk of the hardest subproblem is asymptotically within a factor 22-2q of the risk of the full prob-

lem, without any symmetry hypothesis.

These two theorems will be given simple and natural proofs in sections 6 and 7, respectively. First, we

discuss some of their consequences.
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4. Comparison Between Risk and Modulus

The formulas given so far suggest a close relationship between the minimax risk -- a statistical quantity

-- and the modulus of continuity -- a geometric quantity. A definitive statement is

Theorem 4.1. Let X be convex and compact.

PN( 2 ,1)b2(a) < RN (C5) < RA(a) < b2(Ca). (4.1)

The lower bound follows directly from (2.6). To prove the upper bound, we need the following techni-

cal fact about the modulus of continuity.

Lemma 4.2 (Starshapedness Lemma) Let X be convex and let L be estimable. The ratio b (£) / £

is a decreasing function of £.

We use this as follows. The starshapedness of b(s) implies that

£ La [ j PA(e. &)= SU L 2
2~~~ a5f 2 +ESUP PA (E,(yF= sup a2

+
2

=b2(a)

But monotonicity of b (e) implies that

p 'q 22a)su - 2sup b(e) E+c2+< bb2(() SUp a2 b2(Cy)

so we conclude, by (3.2), that RA(CS) < b2(a). ]

Put another way, if one knows how rapidly the functional can change in an s-neighborhood of a

point, as represented by b (e), one also knows how hard the functional is to estimate in the presence of

noise. Of course the relations (2.7) and (2.11) say this in a more refined way, but they are asymptotic

statements, valid as ca - 0.
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5. Comparing Nonlinear and Linear Minimax Risks

An implication of (4.1) is that the linear minimax estimator is nearly minimax. Indeed we have

RNIRA < l/PN( I ,) = 1/.199. Actually this conclusion can be sharpened considerably.

5.1. Comparing 1-dimensional minimax risks.

Let * be the maximal ratio between the linear minimax risk and the nonlinear risk in the prob-

lem Y -N(O,c&), 101 <X:

V PA (V,1) (5.1)
PNV (v,)

The finiteness of this constant means that, for any bound 1 < r, the best nonlinear estimate is never

drastically better than the best (biased) linear estimate in a worst-case sense. Ibragimov and Hasminskii

(1984) studied this quantity and proved that it is finite. However, they did not speculate on its value.

As we have seen, Theorem 4.1 proves that W < 1/.199. Donoho, Liu, and MacGibbon (1988) actually

prove that g* < PN(1,1A1 2.2 and they show that if certain integrals have been calculated numerically

to within 3 digits accuracy, then i <. 5/4.

Ibragimov and Hasminskii (1984) proved that, if L homogeneous linear and X is symmetric about

0, RLC(a) < j R * (aY), where RL(Ca) denotes the minimax risk among homogeneous linear estimates.

More generally,

Theorem 5.1. Let X be convex and compact, and let L be estimable. Then

R;(a) <4j . (5.2)

If, in addition, X is symnetric,

RN(c) (5.3)
Rk(a

The proof of (5.2)-(5.3) is easy with the machinery we have erected. Consider (5.2). Since

PA (e,A) < 4PA (e/2,a) and PA (£/2,a) < 1 PN (e/2,a), we have PA (e,a) < 4 g PN (e / 2,a), so that

from (3.2) and (2.6)

R* (a) < sup b2(E) pA (£C)
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< 4RAsupb 2( PN (e/2,a)

<4g*RR(a) ,

as claimed. The proof of (5.3) is the same, using (3.1) and PA(e/2,a) < g* PN(e/2,a). ]

If X is asymmetric (5.2) may not be an improvement on (4.1): 4jj* 2 1/.199 unless j .1.25.

5.2. Asymptotic comparisons

Theorem 5.1 gives non-asymptotic results. We can get more precise results in the asymptotic case

a -+ . Suppose that b (e) is Holderian with exponent q. Put

e(q) = 4A(q)/4N(q)
e (q) furnishes bounds on the asymptotic inefficiency of minimax affine estimates. Using Theorems 3.1

and 3.2, and (2.7) and (2.11), we get

Theorem 5.2. Let L be estimable and X be convex and compact. Then

lim sup . ) < 22 2 e (q) (5.4)a-0 RN(a)

If, in addition, X is symmetric,

R* (a)
lim sup ee(q). (5.5)
0-+O R*(a)-

Table I below gives 4A(q ), bounds on 4N(q ), and on e (q).

Table I, Values of 4A(q), ,N(q) (>), e (q) (<)

q 4A(q) 4N(q) (>) e(q) = 4A(q) / 4N(q) (<)

0.9 0.629 0.500 1.258

0.8(=4/5) 0.459 0.370 1.241

0.7 0.358 0.297 1.205

0.666(=2O3) 0.333 0.283 1.177

.6 0.293 0.261 1.123

0.5(=1/2) 0.250 0.234 1.068

0.4(=2/5) 0.222 0.214 1.037
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To construct this table we have used the formula 4A (q) = 22-22q(1q)l . Also,

tN(q) = sU v22PN(v/2,1)
> max v2q2 PN(V/2,1)

vI2e ('re)

Here (ti) refers to 31 values for which numerical integrals lowerbounding PN(tL ,1) were computed in

Donoho, MacGibbon, and Liu (1988). The final quantity is what we have computed and listed in Table

I. These are only upper bounds on e(q); the bounds are most slack at q = .8 and q = .9. In any

event, they show that the asymptotic savings, as cs - 0, by using a nonlinear procedure in a Holderian

case, are modest.

Obviously e (q) < *; asymptotic comparisons are sharper than nonasymptotic ones. For example

at slow rates such as q = 2 at most a 7% improvement over linear estimators is possible.

One implication of (5.4) is worth noting. If q = 1, the right side of (5.4) is equal to 1. Thus, if X

is convex and compact, but not necessarily symmetric, and if L is Lipschitz over X, the minimax linear

risk is asymptotic to the minimax nonlinear risk.

Incidentally, the quantity e (q) has a certain generality. Precisely the same quantity appears in

Donoho and Liu (1988c) as a bound on the asymptotic inefficiency of kernel estimates of a density.
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6. Symmetry and the Minimax Identity

In this section we prove Theorem 3.1; in the next we prove Theorem 3.2. Let xl and x-1 be

given points, and let (xJ) be the 1-dimensional affine family connecting them: x, It = -1= X-1.

x, I, = I = xI. Let L be any estimator; its worse-case risk in the 1-dimensional subfamily (x, I is

R 1(L; (x,))= slup Ex, (L (y) - L(x))2 . (6.1)

Theorem 3.1 is completely equivalent to

Theorem 6.1. (Minimax Identity) Let L be estimable and let X be compact, convex, and sym-

metric. Then

inf sup RI(L, (x,I= sup inf R1(L, (xt}. (6.2)
4si C qfia(x,}cX ( s ,}K)cx affine t

In words, (6.2) just says that the minimax risk of the hardest 1-dimensional subfamily is the same as the

risk of the full problem.

To prove this theorem, we first make a reduction, in three steps. First, it is enough to prove the

theorem in the case where X is symmetric about zero and that L is homogeneous linear. This follows

from

Lemma 6.2 (Translation Lemma) For any v E X and any c E R

R;(a; L, X) = RA(a; L( - v) + c, X - v). (6.3)

Second, we note that symmetry of X about zero implies that the hardest 1-dimensional subproblem for

affine estimates must be symmetric about zero. Indeed,

inf R )(L, (xJ) ( XI)-L(X1-))2 PL(II XI- x 11l/ 2, (6.4)

Invoking

Lemma 6.3 (Symmetry Lemma) Let X be convex and symmetric about zero. Given a pair

(xl, x-1) in X x X, the symmetric pair (vo, - vo) with vo = (xl - x.1) / 2 has

L (xi) - L (x_L) = L (vo) - L (- vo) (6.5)
l1x1-xX-1 11 = 1vo - (- Vo)II

we have that
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inf R1(L, {x,))= inf R1(L, (v,)) (6.6)
WmL qeL

where (v, ) is the symmetric family spanned by vo and - vo. As a result, we restrict attention to sym-

metric subfamilies, and use R 1(L, x) as short for R 1(L, (xt )) where xl = x, x.l = - x.

As a final step we note that for a symmetric subproblem, the minimax affine estimator must be

homogeneous linear. Indeed if L is affine,

R1(L, x) = max (L (t x)-LQ x))2-+2L1xll2

=max(IL(x)-L(x)l, IL(-x)-L(-x)1)2+a21x112.

As L (x) = - L (- x), (L is assumed homogeneous linear), it is elementary that the estimator

Lo(y) = L (y) - L (O) has

R 1(LO, x) < R1(L,x) for all x. (6.7)

Combining (6.3), (6.6), and (6.7), Theorem 6.1 is seen to follow just from the statement that, ifL

is estimable and homogeneous linear, if X is compact, convex, and symmetric about zero, then

inf suj& R.(L,x)= sui& inf R1(L,x). (6.8)
limar L xe x e nelinar L

6.1. Proof of (6.8).

The proof goes in three steps. First, identify the xo satisfying inf R l(L ,x) = max. Because of the
L

definition of R1, this is equivalent to finding the subfamily {x,}I on which L is hardest to estimate.

Second, identify L0, the linear functional satisfying R I(Lo,xo) = inf R ,(L ,xo). This L0 is the minimax
L

linear estimator for x in the family (t xo: I t I < 1). Finally, show that xo poses the hardest estimation

problem for Lo R I(Loxo) 2 R I(Lo,x). From these three steps it follows that we have a saddlepoint

R1(L ,xO) > R I(Loxo) > R I(Lox)
and so the minimax identity follows:

inf sup R 1(L ,x) = R (Lo,xo) = sup inf R 1(L ,X)

To begin, we wish to find xo solving

inf R1(L xo) = sup inf R 1(L x)
L ~ x L
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Now by (6.4)

inf RI(L,x) = IIXI12 PL(IIXII CT)

= L :&+L2xIXI2 J(x)

Now note that J is a continuous functional on X. Indeed, a2+ 11 2 is continuous because the norm

I I x I I is. And for L (x) we have

IL(x2)-L(x1)l <b(IIx2-x1II), XI, X2 E X

We have assumed that L is estimable, so that b(e) -+ 0 as £ -+ 0; this implies L2(x) is continuous on

X. Now as X is compact, J must have a maximum; let xo be any x at which the maximum is attained.

As X is symmetric we may assume L (xo) > 0.

The family ft xo) generated by xo is a hardest subfamily for affine estimates. We now wish to

find an Lo minimax for this family. We claim that this has the form

Lo(y) = c0 <uLx y>, (6.9)

where uo=xoiI xo I I is the direction of the hardest subfamily, and c0 = II xo112/(a2+ 11 Xo0 12).

This can be proved as follows. Let Y = <uo,y>. In the model Y -N(0,a2) with I 0 i< II Xo II, the

minimax linear estimate of 0 based on Y is just coY. By sufficiency, this is also the minimax linear

estimate of 0=EY from obervations y. The restriction of L to [-xo,xo] is proportional to 0; the

mininax linear estimate of L is therefore proportional to the minimax linear estimate of 0. The con-

stant of proportionality is L (xo)/<uo,xo> = L (xo)/ II xo I I. Hence (6.9).

The relation (6.9) could also be proved by calculus. For later use in the proof, we write (6.9) as

Lo(y) = yxo,y> with y - L (xo)/(ar2 + I I xo 1 12). It may be checked that this definition, L0 = y xo, gives

R (LO, xo) = J(xo) = inf R (L, xo)

as it must, by definition of xo and Lo.

To complete the proof we must show that

R1(LOxo)>RI(Lox) ((6.10)
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Again,

R1(LOx)=CT2 IILOI12+<L -LO,X>2
so that (6.10) reduces to

<L - Lo, xo 2><L -Lo, x92 (6.11)

i.e. L0 attains its maximal bias at x0. Now as we have supposed that L (xo) > 0, and LO(xo) > 0, we have

<L - Lo, x0o > 0. Also, for every x attaining <L - Lo x> = a, -x E X attains <L - Lo, -x> = -a.

Thus to establish (6.11) it suffices to check that

L - Lo, xo> > <L - Lo, x>

for all x e X, or

<L -Lo,x-xo><O . (6.12)

Recall now the definition of xo as the maximizer of J. As the restriction of L to any fixed 1-

dimensional subfamily is linear with finite bound, J is Gateaux differentiable. Taking its differential

DIOJ at x0, we have, by the maximum condition

<D,O J, x -x0> < 0 (6.13)

for all x E X. If we can now show that

L -Lo=a D ,,OJ (6.14)

then (6.13) implies (6.12) and we are done. Let's compute the differential.

__ __2 L2(x) .0<D J,h>=<2L(x)L,h> 2 11X112 <(2 ( x112)2 c2x,h>

=<, ho- 2 L(x) - 1l 2- L2(X)a2 )x, h>Ca2+ 11x112 (a2+ 1lX112)2
Thus

<D,K0J, h>= <L, h>2 a2 y 2y- 2a <x, h> (6.15)

where y is as above. On the other hand, by definition of Lo,

<L - Lo h> =<L, h> - y<x0,ho . (6.16)

Comparing (6.15) and (6.16) we see that at x = x0 the desired relation (6.14) holds, with

a = 2 iy. This completes the proof. O
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Remark 1. Restricted to (txo), L(x) = ( uo,x>; as O.c0 1, (6.9) represents projection

on the span of the hardest subfamily, followed by "shrinkage" by a factor c0, followed by

evaluation of L.

Remark 2. Suppose b is Holderian. Then by (2.12) and the definition of co, we have co -+ q

as a -e 0. Thus the fractional amount of shrinkage is equal to the rate of convergence. If b is

an exact power law, b (e)=AA , then co = q for all c>0.

Remark 3. The shrinkage coefficient co has the following alternate characterization, which is

important in section 10. Suppose that b (e) is differentiable at 21 1 xo I I. We prove in the appendix

that

211xoll b'(211xo11) (6.17)
°0 = b (211 xoI(.)

6.2. Ibragimov and Hasminskii's Result

The proof of Theorem 6.1 actually establishes the following.

Theorem 6.5. Let X be compact, convex, and symmetric about 0. Let L be homogeneous linear.

There is a maximizer of J (x) = L2(x) a2 / (a2 + I 11x l 2) satisfying L (x) > 0. Call this minimizer xo, and

put y = L (xo) / (a2 + II xo 1 2). Then a minimax linear estimator, i.e. an estimator Lo satisfying

infsupR (L,x)=supR (Lo,x)
L x x

is just

Lo=yxo * (6.18)

Its minimax risk is J(xo).

Speckman (1979) gives a formula for the minimax linear estimator Lo in the case where X is an ellip-

soid. The present formula reduces to Speckman's formula in case X is an ellipsoid. It shows that xo is

computable by a quadratic program with convex constraints.

This theorem is an instance of Theorems 1 and 2 of Ibragimov and Hasminskii (1984). Their

theorems establish the same formulas without the assumption of compactness; only closedness is

assumed.
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The proof used by Ibragimov and Hasminskii is different and a comparison may be instructive.

They also establish a minimax theorem. Let Ro(L ,x) = E (L (y) -L(x))2 denote mean squared error;

they show that if X is symnetric, finite dimensional, and strictly convex,

min max R0(L,x) = max min Ro(L,x). (6.19)
L inexe X x e X L ine

They then argue by approximation to handle the case where X is infinite dimensional.

This minimax theorem is somewhat different from ours, and is proved differently. The proof is

centered around estimators rather than estimation problems, and goes as follows. Let I denote the fam-

ily of all estimators that are proportional to a given estimator L: I = {tL :t E R). Using the decomposi-

tion Ro = Bias2 + Variance, one can see that for every estimator in I the bias functional is just a multi-

ple of the bias functional of L; hence if x is a maximal risk point in X for L it is also a maximal risk

point in X for every one of the estimators in the family 1. In other words, we speak of the maximal risk

points of the family 1. As X is strictly convex, the maximal risk points for I are uniquely a single pair

(x, -x). Thus the "direction" they span, m = (tx: t E R) is a well-defined function m = m(l). View-

ing I as a point in the set D of directions of RM, the mapping m(l) is a continuous mapping of D into

itself. Now D is a compact manifold in RR and this mapping has a fixed point l0= m(l0). In short,

there is a one-dimensional family of estimators l0 whose maximal risk points all lie "in" t0. The maxi-

mal risk points are then obviously the points x0 and -x0 at which 10 intersects the boundary of X (as

these points maximize squared bias in the 1-dimensional subspace 10). One then selects from the family

10 the particular scalar multiple Lo that optimizes the risk at x0. By the construction x0 is least favor-

able for Lo, the pair (Lo, x0) make a saddlepoint of the problem, and (6.19) follows.

Because this proof is centered around families of estimators rather than families of estimands, it

is in some sense "dual" to our proof. We believe that our proof is the more statistically intuitive.

And, for example, one can interpret certain quantities more naturally; thus, for example the functional

J(x) appearing in the statement of Theorem 6.5, is just the minimax linear risk of the 1-dimensional

subproblem generated by x and -x; its optimum is the risk of the hardest 1-dimensional subproblem.

Other advantages of our approach will be apparent in section 9 and 10.
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63. Generalizations

To a careful reader, it may not be evident that Theorem 3.1 and Theorem 6.5 agree, i.e. that

sup b (e)PA (E / 2, a) = J(xO) = sup L2(x) l2 when X is symmetric about zero. This, however,

follows from

Lemma 6.6 Let X be convex and symmetric and L be homogeneous linear.

b(e) = 2sup {L(x): lxii < e / 2, X E X) . (6.20)

Proof.

b(e)= sup (IL(x) -L(x-j):I Ix,- x-I < e, xi c- X)
= sup {IL(v) -L(-v)l:Ilv-(v) I < E, v= (xl-x1) /2, Xi E X)
= 2 sup {L(v) : llvll < e / 2, v =(xl - x-1) / 2, xi E X)
= 2 sup (L(x) : lixil < £ / 2, x E X)

The second step uses the symmetry Lemma 6.3; the last step uses the fact that X is symmetric. 0

As mentioned above, (6.2) sometimes holds even when no compactness is present. To see why,

note that we have really used compactness in the proofs only to show existence of a hardest subfamily.

If we know that one exists a priori, the compactness is not necessary. In several examples below, one

can find the vector attaining the modulus by inspection. When this is the case, the following result

applies.

Theorem 6.7. Suppose that X is convex and symmetric about 0, that

SUP; b2e) PA (£/2, ca)

is attained at eo > 0, and that X£ exists attaining the modulus at eo: I IxII = eW2, L(x*) > 0,

b (eo) = L(9-L (-xU)

Then the minimax identity (6.2) holds.

The proof is obtained by ignoring the first step of the proof of (6.8), setting xo= xS directly, and

proceeding as before.
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7. Asymmetry

We now consider the case where X is convex and compact but not necessarily symmetric.

7.1. Proof of Theorem 3.2

By the translation lemma, we may suppose that 0 E X and that L is homogeneous linear.

There are two symmetric sets naturally related to X. The first is Hull (X u -X). This is the smal-

lest symmetric convex set containing X and -X. The second is X - X, the set of differences of pairs of

elements of X. As 0 E X, X c X - X.

Lemma 7.1. Let X be convex, and suppose 0 E X. Then

(X - X) / 2 cHull(X U-X) c X - X (7.1)

All three sets are symmetric. IfX is compact, all these sets are compact.

Lemma 7.2. Let L be homogeneous linear and let X be a convex set containing 0. Then L has a

unique estimable linear extension to X - X. Let L be estimable on a set S. Then L has a unique estim-

able extension to the closure of S.

This shows that it makes sense to discuss minimax risk over various subsets of X - X.

Theorem 7.3. Let 0 E X, X convex, and let L be homogeneous linear.

RA(C5; (X-X) I 2) < RA*(0; X)
< RA (a; Hull (X u -X))

R<R(cS; X - X) .(7.2)

Proof. By the monotonicity R, (a;X U Y) > R (Ca;X), (7.1) and X c Hull (X u - X) immediately

establish all the inequalities except

R, (a; X) > R;(a; (X - X) / 2).

For this last, note that for any affine estimator L, Bias is an affine functional, and so

I Bias (L, (x1- x2) / 2)1 < max IBias (L,xi) l
i = 1,2

The inequality then follows from Risk = Bias2 + Variance. O

Lemma 7.4. The modulus of L over (X - X) / 2 is the same as the modulus of L over X. The
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modulus ofL over X - X is 2 b (£/2), where b (e) is the modulus ofL over X.

Proof. By (6.20),

b(e; (X - X) / 2) = 2 sup {L(v): lvil < r/2, v E (X - X) / 2)
= 2 sup {L((xl - xo) / 2) : II(xl - xo) / 2 11 < £/2, Xi E X}

=sup(L(xl -xo): llxl -xoll <e,xi e X)

= b(£; X)

b(e; (X - X)) = 2 sup (L(v) : livil < /2, V E (X - X))
= 2 sup {L(xl - xo) : lix, - xoll < £-/2, Xi E X) (7.3)
=2b( /2;X) . O

Now Lemma 7.1 shows that the sets (X - X) and (X - X)/2 are symmetric about zero. By Theorem 3.1

we may evaluate their minimax linear risk using their modulus. By the previous lemma, the modulus of

L over these sets is given in terms of the modulus over X. We get

Corollary 7.5. Let L be estimable, let X be convex and compact, and let 0 E X.

R;(a; (X - X) / 2) = sup b 2(e) PA (e/2, a) (7.4)

R; (a; (X b) u b2(e) a).(7.5)Rs,(f5as X)) = SUPO 2 PA (E, ()(75

Thus for every compact convex set X, the modulus b gives the exact minimax linear risk for the

two closely associated sets X - X and (X - X) / 2. Combining (7.5) with (7.2) proves Theorem 3.2.

7.2. Hardest 1-dimensional subproblem heuristic in the asymmetric case

Suppose we identify the hardest 1-dimensional subfamily in an asymmetric case. Can it be used

to design a reasonable estimator? Suppose (xl,x.1) generates a hardest subproblem. Put

uO = (xl - x1)/ llxl - x1II, xo = (xl + x-1) / 2, and define the affine estimator

LA (y) = L (xo) + Lo(y - xo) (7.6a)

where Lo denotes the homogeneous linear part

L0(y)
LL(xi) -L(x1)Lo(y)= CO L - x.i <uO,y>, (7.6b)

x x 1/4llxl - X-, /
andco I2+ IX1 -X_ 112 /4



- 21 -

By arguing as in the proof of (6.9), LA is the minimax affine estimator for the family (x, ). If X is

symmetric about xo then LA is also the minimax affine estimator for X. However, if X is not symmetric,

LA is still useful.

Theorem 7.6. Let L be estimable, and X be convex and compact. An affine estimator which is

minimax for a hardest 1-dimensional subproblem in X is within a factor 4 of minimax for the full prob-

lem.

Proof. Let xl, xI generate a hardest 1-dimensional subproblem. By an argument based on the trans-

lation lemma, we may assume that 0 is the midpoint of the family spanned by xl and x1, and that L is

homogeneous linear. As xo=O it follows that the affine minimax estimator for [x.1,xl] is the Lo given

by (7.6b). Now we invoke

Lemma 7.7. Let [x.., xl] be a hardest subfamily for X, and let vo= (xl - x-1) / 2. Then [-vo, vo]

is a hardest subfamily for (X - X) / 2.

To use this, suppose that [x.., xl] is a hardest subfamily for X, so [-vo, vol represents a hardest

subfamily for (X - X) / 2, with vo = (xl - x.1) / 2. As at (6.9), the minimax affine estimator for the

L(v0) I1IV 1 12
family [-v, v0] is c0 11VQ) <u0,y>, with c0 =

+ 1°l l12 But as IIvo0I = I xI-x 111/2, com-

parison with (7.6) shows that this is just Lo! As (X - X) / 2 is compact and symmetric, it follows from

Theorem 6.1 that Lo is affine minimax over (X - X) / 2, i.e.

SUEn RO(LO, x) = R,;(a;(X-X)/2) (7.7)

Now as Bias (L ,x) is homogeneous linear the maximal bias of L0 over X- X is exactly twice the

maximal bias over (X - X)/2. Thus the maximal risk of L0 over X - X is at worst four times the maxi-

mal risk over (X - X)/2. hence

4 SUB Ro(LO ,x) 2 su% Ro(L0, x) 2sup Ro(L0, x) (7.8)

Combining this with (7.7),

4R (a;(X- X)/2) 2 sup Ro(L0, x).

But from (7.2) the minimax affine risk over X is at least that over (X - X)/2. O
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Thus, the hardest 1-dimensional subproblem heuristic always furnishes a useful estimator, which

is within a factor of 4 of minimax among affine estimators.

7.3. Minimax Identity under Asymmetry

The minimax identity (6.2) can hold even when X is asymmetric.

Corollary 7.8. Let X be convex, compact, and contain 0. Suppose the modulus of continuity of L

over Hull (X u -X) is the same as the modulus of continuity of L over X. Then (6.2) holds, and the

estimator which is affine minimax for the hardest subproblem is affine minimax for the full problem.

Proof. Formula (3.1) gives the exact affine minimax risk for the compact, convex, symmetric set

Hull (Xu -X). Formula (2.10) gives the risk of the hardest subfamily in X. As the modulus is in both

cases the same, the two formulas evaluate to the same thing. Hence the hardest subfamily of X is as

hard as the full problem of Hull (X u - X), and so it is also as hard as the full problem of X. 0

Section 8.3 applies this result.
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8. Applications

The theory developed so far has applications to the white noise observations problem of Ibragi-

mov and Hasminskii (1984). We first describe this model, and then give examples showing how calcu-

lation of the modulus and the hardest 1-dimensional subfamily lead to minimax linear estimates. We

then briefly discuss implications in density estimation.

8.1. Functions observed in white noise

Ibragimov and Hasminskii (1984) pose the following estimation problem. We observe

Y(t) = J f (u) du + a W(t) t E [-a,a], (8.1)
--a

where W(t) is a (two-sided) Wiener process (W(-a)=O). (This is a rigorous way of writing

dY(t) = f (t) + adW(t), hence the term "observations in white noise".) We wish to estimate the linear

functional T(f ), and we know a priori that f E F, a convex subset of L2[-a ,a].

An isometry reduces this problem to the one considered in sections 1-7. Let (, ).j be an ortho-

normal basis for L2[-a ,a I and let xi = x, (f) denote the i-th Fourier-Bessel coefficient off with respect

to this basis, so that f - , xi Xi. Let X be the set of coefficient sequences x = (xi) of members of F,
i=l

and let L(x) = xiXi be defined so that L(x) = T(f) whenever x = x(f).
i=l

Then, if we observe y = (yi), the Fourier-Bessel coefficient sequence of Y,

Yi f Xi dY ,

we have the observation equation yi = xi + zi, i = 1 ........ where (zi) is i.i.d. N(O,c&2). Thus the map-

ping from functions to their coefficient sequences maps the Ibragimov-Hasminskii model (8.1) onto the

present one. In fact, the problem (T, Y, F) is identical, in the sense of comparison of experiments (Le

Cam, 1985), to the problem (L, y, X) of sections 1-7. Any estimator L = yIy, of L corresponds to

an estimator T = K(t) dY(t) where K(t) = ; 4i (t); the risk of L for estimating L at x is the

same as the risk of T for estimating T at f .



- 24 -

Among other things, this isometry implies that the modulus of T over F, defined by

a

b(e)= sup (IT(f)-T(g)I J (f _g)2<c2, f,g E F) is equal to the modulus of L over X, that
--a

formulas (2.6), (2.10), (3.1), (3.2) hold for model (8.1) when b is defined in this way, and that any 1-

dimensional subproblem for T over F is the image, under the isometry, of an equally difficult subprob-

lem for L over X. We use these facts below without further comment.

Ibragimov and Hasminskii (1984) give several applications of the white noise model (8.1), calcu-

lating minimax linear risk and minimax linear estimator in a number of cases using the analogs, for the

white noise model (8.1), of (6.18). The new examples we give below illustrate how our approach

works in this setting.

8.2. Example: Parallelipipeds

Suppose we are in the white noise model (8.1), with interval of observation [-1,1], a priori class

F = (f: f (t) = f (0) + t f '(0) + r(t), Ir(t)I < t2/2),
and that we wish to estimate T(f) = f (0). Sacks and Ylvisaker (1981) introduced the study of such

classes in density estimation problems. Geometrically, F is the union of translates of a hyperrectangle.

We compute the modulus of T over F. As F is symmetric, Lemma 6.3 implies that b (e) is the

inverse function of

e(b) = 2 inf (\Jg2 T(g) = b g E F. (8.2)

A solution to this problem is obviously the fo which is equal to b at zero and which descends to 0 as
2

rapidly as possible away from 0, subject to membership in F. Thus

fo[(t)[ t2/2] (8.3)

Now

J2 L t2/2j
=b2 A i-1( 21 = b 1 = Ib54 .
2~LbJ 2 15
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2/5

Thus b (£ =t 1! I e415 for e small enough.
16J

From Theorems 2.2 and 3.1, we see that the optimal rate of convergence of the mean squared

error to zero is (f)45; the minimax linear risk is asymptotic to tA [5] [1] (&f5, and the

minimax nonlinear risk is not smaller asymptotically than 4N[-] 1j (2)455 16~(2)1

From Theorem 2.4, the hardest 1-dimensional subfamily for affine estimates is (fo, - fo) where

fo solves the optimization problem (8.2) with eo = 2 q
a = 4 . Then

fo=-22[]+ , where b = (15)25a t5

The minimax linear estimator is of the form

T2(Y) = K(t) dY(t)

where

K(t) = co 2 ffo(t) (8.4)
(eW2)2~~~~~~~~~~

withc0= 2 ( 2)2 q Thus
aT + (e(0/2)2 q.Tu

4 (15)21K(t)=4*(5 .a6 . fo(t)5 8

(15)2/5 1 *&5 b t
5 22L IJ+

(15)4'5 1 2/

=k(tlh)/ h,

where

k(t)= [1-t +

is (a version of) Epanechnikov's kernel, and

h = = (15)/5 a5
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is the optimal bandwidth. The reader may wish to verify that this formula actually makes k integrate to

1!

Thus Epanechnikov's kernel is optimal for this problem, from a minimax point of view. This is in

close analogy with Sacks and Ylvisaker's results for density estimation, where Epanechnikov's kernel

was shown to be asymptotically minimax among linear estimates for estimating a density at a point

under a class similar to F. Here, however, we have shown via (8.4) that the kernel arises naturally from

the corresponding hardest 1-dimensional subproblem.

83. Example: Hyperwedge

Again consider the white noise observation model (8.1), with interval of observation [-1,1]. Let

the a priori class F consist of monotone decreasing functions with Lipschitz bound C:

F=(f : 1 f(-1)2f(x)2f(1)O0 for x E [-1,1],

and 0 <f (x) -f (x + h) < C h for h > 0)

F is not symmetric, but it does contain 0. Geometrically it is a form of hyperwedge. For a finite-

dimensional analog, think of the set in RX with 12X1 X2x ...* x,, 2 0.

Again let T(f) = f (0). We compute the modulus of T over F. Suppose that b < min( c)

Then, by inspection, the optimization problem

e(b) = inf(4f(fI_f_1)2: T(f1)-T(f.1) > b, fi E F)
is solved by any pair f 1,f -1 satisfying f 1(°) = f -I(O) + b and

f i(x) =f i(O). x E [ C'°]-b

=f1(O) - C x, x E ( ]

and

f -I(x) ff_I(O) + b - C (x - C)X E [ C X ]b b

=f-I(O), X E (0, b

where f _I(O) < 1 - b, and f 1, f -1 are equal outside the indicated intervals. We have

blC

e2=JffI-f _,1)2=2 (b_Ch)2dh
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2 b3
3 C

so that b(e) = [CC] e213 for small e.

We now compute the modulus for T over Hull (F u - F). We do this by solving for the inverse

function; using (6.20) this is

e(b) = 2 inf ([X g2: g e Hull (F u - F), T(g) = b (8.5)
2

It is obvious that, given g (0) = b, the minimal L2-norm of g is attuained when g descends as rapidly as2'2

possible away from t = 0, subject to membership of g in Hull (F u - F). Now this hull is the union

over a of Fa = (1-a)F- aF. For g E Fa, then the smallest value of fg2 subject to T(g)=bl2 is

attained by the triangular function ga which has slope a C to the left of 0, and slope -(1o-a) C to the

right of 0. A quick calculation reveals that minjg 2 = Jg 2. It follows that (8.5) is attained by
a

1/2(t)= -_ It]

Now at this point we are done: g 1/2 E (F - F) / 2. Thus the modulus of T over Hull (F U - F) is the

same as over (F - F) / 2. But by Lemma 7.4, the modulus over (F - F) / 2 is the same as over F.

Corollary 7.8 shows that the minimax identity (6.2) holds for F, even though F is asymmetric!

It follows that the minimax linear estimator derives from the hardest 1-dimensional subfamily.

That subfamily is, for small a, the span of f 1, fI above, with so = 2 1 q a= 2,2 a. The

minimax linear estimator for this family is

L(Y) = K(t) dY(t)

where

K(t) = Co
b ( (f -f-1) (t)

with co = + (e)2)2 2q= . One easily verifies that

K(t) = k(tlh) / h
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where

k(t)= (I - It l)+

is the triangular kernel, and

h = k = (3)1/3 [ %] a13

is the optimal bandwidth.

Thus the triangular kernel is minimax affine in this case, even though F is asymmetric. It arises in

a natural way from the hardest 1-dimensional subfamily. Finally, as a -+0 it is within 17% of asymp-

totically minimax, by Table I. This is in close analogy with results of Donoho and Liu (1988c) for

density estimation, where the triangular kemel was found to be asymptotically minimax among linear

estimators over a class related to F.

8.4. Example: Sobolev Classes

The last two examples involve calculations "by hand". In this section we use known results in

another part of mathematics to do our work for us. Suppose we observe

Y(t)=Jf(x)+ aW(t)
0

for all t E R (and not just [-1,1]), where W(O)=0. We wish to estimate T(f) f(k)(0); we know a

priori that f E F = (IIf ()IIp < C, llf 112 < 1. Here 0 < k < n. (In this subsection only, Lp norms

will be mentioned, and the subscript will indicate the particular norm. In the rest of the paper, only 2-

norms are used, and no subscript is employed).

Now F is symmetric; the modulus of continuity is

b (e) = 2 sup (If (k)(0)I : I If (n) I Ip < C, Ilf 112 < e / 2) (8.6)

= 2 sup ( IIf(k)II..: IIf(^)Ilp < C, Ilf 112 < e / 2)

where the second equality foliows from translation invariance of the norms involved. To calculate this,

we refer to the theory of "inequalities between intermediate derivatives of a function": in particular,

inequalities of the form

(8.7)lif (k)II. < A (k,n p) I If I I I I If (") I I (1--q)
.p
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where q = q (k ,n p). Such inequalities (with variations on the choice of norm) have a long history. If

the three norms in question are all L..-norms (rather than the mixture of (oo,21p) norms in (8.7)), their

study goes back to Landau in the particular case k = 1, n = 2, and to Kolmogorov in the general case.

If the three norms in question are all L2-norms, their study goes back to Sobolev. The best possible

exponent for the mixed-norm inequality (8.7) has been shown by Gabushin (1967) to be

n-k-p
n + 1/2-1/p

The best possible constants in inequalities of the form (8.7) have been characterized by Magaril-Il'yaev

(1983), who proved that extremal functions exist attaining the equality in (8.7) when these constants are

used.

Now (6.20), (8.6) and (8.7) imply

b (e) < 2 A (k,n,p) (e / 2)q C(l-q) (8.8)
= A (k ,n,p ) (2C )l-q eq

On the other hand, existence of extremal functions for the best constants implies that equality holds.

Thus (8.8) furnishes the modulus of continuity.

Because (8.8) is exactly, rather than approximately, of power law form, we have

RA (a) = k (q ) b2(a)
exactly. Thus, the optimal rate q for the minimax risk is the exponent on llf 112 in the mixed-norm

inequality (8.7).

Again, because (8.8) is exactly a power law, the hardest one-dimensional subproblem is of length

,0= 2 1 q a exactly. Hence the minimax linear estimator is of the form
q

To(Y) = f K(t) dY(t)
with

b (e-0)
K(t)=2q 2 f0(t)

0

where f 0 is an extremal function for (8.7) with I Ifo112= o0/ 2, 1 If ) lip = C.

In short, the optimal kernels for estimating f (k) over Sobolev classes are proportional to the

extremal functions for the mixed norm Kolmogorov-Landau-Sobolev inequalities. This connection
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between minimax statistical estimation and an important topic in analysis and applied mathematics

seems to be new.

8.5. Implications for density estimation

We now briefly indicate the connection between density estimation and the white noise model. In

the density estimation problem, we observe Xi, i = 1.,n, i.i.d. F, where the distribution F is unk-

nown but assumed have a density in a class F, and we wish to estimate T(f ). Equivalently, we observe

the empirical distribution function F, (t) = I xi s. t . Now n112 (F,, - F) is asymptotically near in
i=l

distribution to a Brownian Bridge WO(F(t)). Therefore, supposing that supp (F) c [0,1], we have that

t I

FX (t) f f (u) du + n 112 d (WO(F (t))) . (8.9)
0

Comparing with the white noise observation equation (8.1), we see that the differences are

(i) a has been replaced by n-112

(ii) W has been replaced by WO, which is tied down at 0 and 1.

(iii) There is a time-change F(t) in the argument to Wo.

Ignoring (ii) and (iii) for the moment, we see that estimating a linear functional T over F with the

white noise model is much the same as estimating T over F in the density estimation model, provided

we set a =n=1/2.

This is not just an analogy; we can derive theorems in density estimation from results on the

white noise model. Suppose that T(F,,) is linear, i.e. of the form T(F,,) = K(t) dF,,(t) (for example,

a kernel density estimate). Then, putting MSE for Mean Squared Error,

MSE(TJ) = Bias2(TJ) + Var (Tf)

< Bias2(T) + K2(t) f (t)dt
n

where we used the definition Var (Tf)= (fK2f -(JKf )2)/n. Now suppose that F is a class of func-

tions all bounded uniformly by M. Let D denote the subclass of F consisting of densities. For f E D,

MSE (Tf ) < Bias2(Tf ) + - f K2() dt (8.10)
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The right hand side of this display is precisely the risk of T as an estimator of T in the white noise

model (8.1) at noise level a = iM.. Theorem 4.1 proves
n

Theorem 8.1 Let T be linear, and kt F be a convex and compact subset of L2[0,1]. Let

surp If I I.. = M <o0. For estimating Tfrom observations X1 ,X,, i.i.d. F, F E F, we have

minf sup MSE(TJ )f < b2[I..{
taffineD i n J

where b is the L2-modulus of T over F.

Thus the white noise model furnishes an upper bound on the minimax risk for density estimation. In

many interesting cases, this upper bound is near sharp. Indeed, while inequality (8.10) may, in general,

have a great deal of slack, it is often sharp "where it counts".

To see this, suppose that there is a hardest subfamily for F in the white noise model which

satisfies two conditions:

[DI] it consists of densities; and

[D2] these densities are near M, in the sense that near-equality holds in (8.10), for every f in the sub-

family, when T is near-optimal for that family.

If so, the density model, at sample size n, is essentially as hard, in this subfamily, as the white noise

model at ca=-/n., which, by (8.10), is harder than the density model. It will then follow that the

minimax risk for affine estimates in the density model is essentially the same as the minimax risk of the

white noise model, when the calibration a = is employed.

Let us be more precise about condition [D2]. We require that a hardest subfamily fi-f II exists

for the white noise model; call its length eo(a). We suppose that f.lf 1 are near M in the sense that the

optimal kernel

K,a=2c0b (co)
K<s= 2co 2 (f I-f -l)

has
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inf JKAf _ (fKJ)2 = MJfKft (l+o(1))

Thus, where K. is large, the densities should be close to M.

Reviewing the examples of sections 8.2 and 8.3, it is clear that we can pick subfamilies of the

classes introduced there with properties [Dl]-[D2]. For example, in section 8.2, within the subclass of

functions bounded by M, we can, provided M is not too large, pick a pair f If -1, both densities, which

satisfy f 1(O)=M, f-1=M - b, and which span a hardest subfamily of length eo. More work is required

in section 8.4; we can only pick "asymptotically hardest" subfamilies.

Assumptions [D1]-[D2] permit more than just the upper bounds of Theorem 8.1; they allow a pre-

cise evaluation of the asymptotic minimax risk among kemel-type density estimates.

Theorem 8.2. Let T be linear and F be a convex, symmetric subset of L2[0,1]. Suppose that for all

sufficiently small ca there is a hardest subfamily if -If1] satisfying conditions [Dl] and [D2] above.

Then for estimating T in the density model we have

inf sup MSE(Tf) = (q)b2(\I)(1+o(1)) (8.11)
taffuui) n

We do not prove this result, which follows from Theorems 2.3, 2.4, 3.1, and some epsilontics.

This result shows, by a new approach, that

* Epanechnikov's Kernel is asymptotically minimax for density estimation over the Sacks-

Ylvisaker class;

* The triangular kernel is asymptotically minimax for density estimation of monotone decreasing

densities; and

* The extremal functions in the mixed norm inequalities of section 8.4 furnish asymptotically

optimal kernels for estimating densities and their derivatives over Sobolev classes.

We do not claim to provide the details here. See also Donoho and Liu (1988a,c).

For other papers studying the relation of the white noise model to density estimation, see

Efroimovich and Pinsker (1982) and Johnstone and Silverman (1988).
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9. Extensions

While the model studied so far may seem quite special, the method we have used works in a far

more general setting. Suppose that instead of observations y = x + z we get

y=K x+z (9.1)

where K is a bounded linear operator and z is a Gaussian noise. With appropriate choices of K and L,

and perhaps an initial isometry, this observation model can cover problems in many fields.

Numerical Differentiation: We wish to estimate f '(t) based on noisy data

f (tl) + zl...... f(t,)+ z,. Just pick T(f)=f'(t), K f = (f (t)..fQ),0 ........

Integral Equations: Recover T(f) = f (to) from

t I

Y(t) = JJ K(t,u) f (u) du +a W(t) t E [0,1] ,
0 0

a problem arising in spectroscopy, microfluorimetry, optics, .....

Deconvolution: Recover L (x) = x0 from y, where

yj=,k;-i xi + z* (9.2)

a problem arising in deblurring of images.

One could also mention problems in astronomy, tomography, geophysics, and medicine. See also

the sections 9.2 and 9.3 below.

9.1. Results for bounded K, white z

Suppose that in (9.1) K is a bounded linear operator and z is a white Gaussian noise. Define

bK(e) = sup ( IL(xl) - L(x..)1 : IKxl - Kx 1I1 < e, xi E X} . (9.3)

This is the modulus of continuity of L with respect to the seminorm IIvIIK IIK viI. It plays the

same role in model (9.1) as b (c) played in sections 1-8. Let RN and R .,K denote minimax risks for

estimation of L from data of the form (9.1).

Corresponding to the theorems of sections 1-7, there are "K" Theorems (2.1K, 2.2K, etc.), in

which all references to I I II, b, RN, RA are replaced by references to II * II, bK, RNK, Rj,K
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All these theorems are true. (9.4)

Thus, in model (9.1), the optimal rate of convergence for estimating L is just the exponent in bK;

the minimax linear estimator is nearly minimax; and the hardest 1-dimensional subproblem is as hard as

the full problem (X symmetric) or within a factor 4 (X asymmetric).

We will not prove (9.4) in exhaustive detail; Instead we just highlight three results which indicate

how the hardest subfamilies method may be used.

Theorem 2.1K. Let X be convex.

N,K 2 SUp K2 pN(e / 2, c) (9.5)

Proof. Consider estimation of L (x) for K x known to be in the line segment from K x-I to K xl. Put

u0=K xl - K x_1/ I IK xl - K x-I I I. The random variable Y = <uo, y> is a sufficient statistic for

o _ EY = <uox>. This Y is distributed N (0,a2) and so the minimax risk for estimating 9 over (x,) is

PN( I IK xl - K x- 11 /2, a). Over this subfamily, L(x) is an affine function of 0, and so the minimax

risk for estimating L (x) is just the squared slope of this function times the minimax risk for estimating

9:

CL(Xl)-L(X-1) ]JN (IIK X1 - Kx(- 11 /2, a).

Optimizing over (xl, x-1) gives (9.5). O

Theorem 3.1K. Let b (e) -+ 0 as -* 0, and let X be convex, compact, and symmetric. Then equality

holds in (9.5).

Note the condition on the modulus b rather than bK. In many interesting cases, bK(e) -,b0, so this

difference is important.

The proof is entirely parallel to the proof of Theorem 3.1. As in section 6, there is the reduction to

min max R ,K(L, x) = max min R 1.K(L, x),
uar L x x iiea L

where R1,K (L ,x) denotes the worst risk of L in the family [-x,x]. One proves this identity by exhibit-

ing a saddlepoint, in three steps. First, find a hardest subfamily. Define JK(x) L2(x) ;2 By theho2+ IIXI1 By the

hypothesis on b and the boundedness of K, JK is continuous. Therefore a maximizer xo exists on the



- 35 -

compact X. The hardest 1-dimensional subfamily for linear estimates is [-x0, x0].

L (xn)
Second, find an estimator minimax for this family. The estimator Lo(y) = cO <K xo, y>

is easily verified, as before, to be the minimax linear estimator over [-xo, xo].

Third, show that the hardest subfamily is least favorable for Lo, i.e. that

sup R 1,K(Lo, x) = R 1,K(Lo, xo)
X

by a calculus argument. One again needs to show that

<Dy1J, x -xo> <O

implies

Bias (Lo,x) <Bias (Lo,xo)

or, equivalently

<L,x-xo>-<Lo,K (x-x0)><0

Computations give

<D, J, h>-=2 2 i<L, h> - 2 29 <K Xo, K h>

while

<L, h> - <Lo,K h> = <L, h> -y<K x0, K h>

so the last two displays differ by a factor of 2 &2y and the desired implication holds. O

This proof also establishes

"Theorem 6.5K. Let L be homogeneous linear, let b (e) 0 as e -*0, and let X be convex, com-

pact, and symmetric about zero. Then JK(x) has a maximizer xo at which L (xo) > 0. The minimax

affine estimator is

Lo= c0 L, (x K xo (9.6)

where co = IIxo112 / (a2+ IIXO1I1).

This generalization of (6.18) to the indirectly observed case appears to be new. In the case where

X is an ellipsoid, it reduces to a formula of Speckman (1979). See also section 9.3.
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9.2. Example --- Signal recovery

Hall (1988) introduced the following interesting problem. We observe a signal (yi) at an infinite

array of lattice sites i E Zd. The original is a noisy, blurred version of an ideal signal (xi), where the

noise is white Gaussian noise N (0, () and the blurring is a convolution operator. Thus

y=K x+z

where (K x)i _ ki - j xj and (ks ) is the impulse response. Hall considers two particular forms of
j

(kM), appropriate for modeling the effects of out-of-focus imaging and of motion blur respectively.

The objective is to estimate, from these data, L (x) = xo. For the operators K of interest, one can-

not do this without some sort of prior information. Hall considers the prior information x E X, where X

is defined by frequency-domain constraints. Define the Fourier transformation f (X), o E [- X, Xt]d via

f(a))= xi e-i<'J
j

and let

X= (x: If (CO) I <.(Cw), C oE [_ x, 7]d)
where t(w) is a fixed function. For example, let (wo) = cl (1 + c2 1o 112)IIP as in Hall (1988); then X

consists of signals with little energy at high frequencies, or, equivalently, "smooth" signals.

Hall has studied the problem set here using techniques derived from density estimation, and has

proved results by the standard technique of exhibiting a specific estimator, analyzing its behavior, and

proving that its rate of convergence cannot be improved on. The approach is heavily epsilontic.

However, as the problem is precisely one of estimating a linear functional from indirect observa-

tions in white Gaussian noise, the theory of this paper admits of exact results with considerable ease.

Hall's problem is isometric, in the sense of section 8.1, to the problem of estimating

T(f)= f (o)dw
,c]d

from data

Y(w) = k(o) f (w) +adW(o), E x, ]d

where k (w) is the Fourier transform of K
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k (w) = kj, eWC

Y(o) is the Fourier Transform of y,

yj = (2 )-d f e' >odY(co)

and W (c) is a Brownian sheet on [_XJC,.n]d, i.e. the stochastic process with Fouier series

zj = (2 )-d fei i'dW<().

Once posed in this form, we can easily apply the theory of section 9.1. Here F is symmetric and

convex. It is not compact, but an f0 attaining the modulus can be found by inspection; it is of the

form

f 0((o) = min (X(co), (2 X k2(cO))) (9.7)

with an appropriate Lagrange multiplier X, as may readily be verified by applying the Kuhn-Tucker

condition. Theorems 6.7K and 3.1K give

Theorem 9.1. In Hall's model, the minimax linear risk for recovery of L (x) = xo is

R*~a) = sup a2 J min2 ((co), (2 X k2(O))-l }d o
R,K (a) = SUPA xp

2 " 2"a +mmin fk r0(), -)dco

There is X0 > 0 attaining the supremum in this expression. Let xo be the element whose Fourier

transform f 0(Xo) is of the form (9.7) with X = X0. Then [- xo, xo] is a hardest 1 -dimensional subproblem

for L, and the minimax affine estimator is linear, with frequency domain representation

To= cO min k(co) ((o.), (2 X0 k(o))-) dY(w) (9.8)

with co = IIxoII / (2 + IIX0II2).

In contrast to Hall's approach, which only gives bounds (and asymptotic ones at that), we get in

this way information about the exact minimax risk and the minimax linear estimator. Also, we know

(from Theorem 5.1K) that this estimator is within 25% of the minimax risk for all a and not just

asymptotically. There is no need to introduce the Farrell-Stone lower bounds technology to prove that

the performance of (9.8) is nearly optimal; it comes as part of the general theory.
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93. Finite noisy data

A special case of model (9.1) is the following. We observe afirute number of noisy data about x:

Yi = kl(x) + zi

yn = k.(x) + z.

with, say, (zi) i.i.d. N(O, cs2), and the ki linear functionals. Putting K(x) (k1(x)........,k,(x), 0, O ......

this is of the form (9.1).The reader can imagine many cases where this setup can occur; see for example

O'Sullivan (1986).

Thus particular interest focuses on the case where X is infinite dimensional but K has finite

dimensional range. We mention that the Theorems of section 9.1 apply equally well in this case, and

thus furnish evaluations of the minimax linear estimator and the minimax linear risk. We have seen

that the hardest subfamilies approach makes the proof of these results easy.

In contrast, it appears that the Ibragimov-Hasminskii approach does not easily extend to proving

results in this case. As we saw in section 6.2, the Ibragimov-Hasminskii argument is based on the fact

that estimators L and unknowns x live in a space of the same dimension, so that fixed point arguments

can be used. However, to prove Theorem 6.5K assuming only that K is bounded, requires an argument

that works even if the range of K is finite dimensional, while X is infinite dimensional. As estimators

live on the range of K, they would in that case be finite dimensional, while unknowns X would be

infinite dimensional. Thus it seems difficult to use reasoning based on fixed point theorems.

9.4. Nonwhite Noise

After the last two examples, it will be clear that one will also want to study the case where the

noise z in (9.1) is nonwhite. Supposing that the noise has a covariance operator £ with a bounded

inverse, the adaptation is straightforward. The change of variables

y.- =-1/2 y

t F-1/2
It =-1/2 zzpr t

puts one in the white noise model (9.1). Therefore, the approach of section 9.1 applies, provided one
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works with the seminorm lVI 1X£= IZ11X2Kv 1 , and proceeds exactly as in section 9.1. The

modulus bxx and the minimax risks RNX £ and RLSx£ are defined in the obvious way. Then the ana-

logs of the earlier theorems all hold. Thus, the exponent in the modulus of continuity gives the optimal

rate of convergence, and the minimax linear and nonlinear risks are never very far apart

Ibragimov and Hasminskii (1987) have considered the model (9.1) with z nonwhite and with

K =I, the identity transformation. They have given formulas for the minimax linear estimator and the

minimax linear risk in that case. To complete the picture in that special case, we mention that our

results show that if X is symmetric, the minimax linear estimator is within 25 percent of the minimax

risk, and that if X is asymmetric, the minimax linear risk is within a factor 1/.199 of the minimax risk.
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10. Optimal Recovery

The inequality (4.1) relating the modulus to the minimax risk has a deeper explanation. The prob-

lem we have been discussing is closely connected with problems of recovery of functionals in the pres-

ence of deterministic noise. Suppose we have data y = x + z where, as before, x is known only to lie in

X, and we wish to estimate L (x) from the data y. However, z is now nonstochastic noise about which

we know only that lIz II < e. We assume that the noise may be chosen by a malicious opponent, and

therefore our criterion, rather than expected loss, is the worst-case loss

E(L,x) sup IL(x + z) - L(x)I (10.1)

This model is considered in the literature of numerical analysis, where it is used to develop

"optimal quadrature" and "optimal differentiation" formulas. See the survey article by Micchelli and

Rivlin (1977). This model is also considered in the computational complexity literature; see Traub et al.

(1983). To date there has been little contact between this literature and the literature on estimation of

linear functionals in Gaussian noise. Speckman (1979) is the only reference we know of in the statisti-

cal literature that mentions optimal recovery; he comments that despite the apparent similarity of some

of the solutions, the problems are different.

Define the minimax error

E*(e) = inf sup E(L,x)

where the infimum is over all estimators. A precise expression for E* is known:

E (e)= 2 sup (IL(xi)-L(x_1)I: IIxI-yII<e, IIxl-yII<e, xi E X) (10.2)

see Michelli and Rivlin (1977); the formula goes back to Golomb and Weinberger (1959). A procedure

attaining E is

L"(y) = j ( sup (L(x): IIx- yll < e, x E X) + inf (L(x) : llx - ylll e, x EXX) . (10.3)

We note that (10.2) and (10.3) are valid for any L, not just linear ones; and that (10.3) defines a pro-

cedure which is often nonlinear even if L is linear.

The proof of (10.2)-(10.3): Now y=x+z and we know only that lizil <e. Given y, the set of x

that could be true is precisely (x: lIx - yll < E, x E X); the set of functional values that could be
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true is precisely L = {L(x): lIX - y I I < £, X E X); in the worst case, L(x) might be as small as inf

L or as large as sup L. The best one can do, therefore, is adopt (10.3) i.e. estimate ( inf L + sup L )/2,

with worst case error sup E (L, x) given by formula (10.2).
I

Suppose X is convex. In the optimization problem (10.2) it is then sufficient to take

y = (xl + x-1) / 2; then llxl - yll = lx-I - yII = llxl - x-I 11 / 2 and we have

E'(e) = 4 SUp (IL(xl)-L(x_.)I: IIx1-x-II <2E, XE X). (10.4)

= b (2e)/2

Thus if X is convex, the modulus of continuity of the functional L provides an exact evaluation of the

minimax error for estimating L. This evaluation is valid for all functionals L -- even nonlinear ones.

10.1. Hardest subproblems and Optimal Recovery

In the case of interest to us, where L is linear, the rule (10.3) attaining the minimax error is usu-

ally nonlinear. However, linear estimators often can attain the lower bound (10.4). This was proved by

Micchelli (1975).

It is also possible to prove this fact by the hardest 1-dimensional subproblem heuristic; we believe

that this approach exposes different features of the situation, and an underlying similarity to the prob-

lem of statistical estimation from earlier sections. Our idea is to show that the analog of Theorem 6.1

holds for the minimax error. We skip all preliminaries and jump directly to the analog of (6.8). Let

EI(L, x) = sup E(L, t x) (10.5)

denote the worst case error of L in the 1-dimensional subfamily ft x).

Theorem 10.1. Let X be symunetric about zero, convex, and compact. Suppose L is homogeneous

linear and estimable.

inf suXp E1(L,X) = su pinf E1(L, x) . (10.6)

In fact, there is a saddlepoint (L0, xo) for E1; where L0 is a linear estimator. Note that the infimum in

(10.6) is over all estimators, not just linear ones.
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Proof. Consider estimating 0 in the model y = 0 + z, I z I < £. Then as is easy to see the minimax

error is min(t,). Thus the minimax error for estimating L over (tx: I t I < 1 ) is just

IL(xl) - L (x-l) I min ( 1x1- x. 11 /2, )
11x1 - x..i 1

For the minimax squared error we have

(infE(L x)]2= ( Pr(IIxII e)J(X)x (10.7)

say, where PT(t, c) = min(x2, £2). Now, as in the proof of Theorem 6.1, estimability of L implies that J

is a continuous functional on X. By compactness and symmetry there is an optimizer xo of J(x) at

which L (xn) > 0. By a calculation, xo is a solution to

L(xo = sup {L(x): llxill < , x E X) . (10.8)

Let uo= xo / II xo II; this is the direction of the hardest one-dimensional subfamily

(t xo: It I < 1). This family admits of many minimax estimators; every estimator of the form

^C = CL(x) (10.9)

with 0 < c < 1 is minimax for the 1-dimensional subproblem, i.e. has

El(LC, xo) =J (xo) * (10.10)

We claim there is a particular choice of c --- --- giving an estimator Lo = L° which has

ft xo0 as its hardest 1-dimensional subproblem:

El(Lo, xo) El(Lo, x) x E X. (10.11)

From the definition of J we have

El(L, xo) > J(xO) = El(Lo, xo) . (10.12)

which establishes that (LO, xo) is a saddlepoint and proves the Theorem.

Let us see how to choose co. We claim that

L(x)= sup (L(x): <0,x>. <uo,x) . (10.13)

This is a strengthening of (10.8) and will be proved below. To see its implications, consider the linear

map A :X - R2 defined by A (x) = (<uo, x>, L (x)). The image of X under A is a convex symmetric

subset of R2. Then (10.13) implies that A (xo) is a boundary point of A (x). As A (x) is convex, there is a
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supporting line I = ((x,y) y = a + b x) in R2 with A (xo) = IrA and with A "below" 1 in the sense

that y < a + b x for (x,y) E A (X). The optimal co we seek is determined by this supporting line. We

note that as a consequence of (10.13), for every (x,y) E A(X) with x < <uo, xo>, y < L(xo). It follows

there is always a supporting line with b > 0. As (0,0) E A (X), we must have 0 < a < L (xo) and so

b . . Put cO = b xIIxoI. By the above comments, we have 0 < co < 1. Let

L (Xo)
o(.) = co11 xo11 °

This definition makes xo least favorable for Lo, i.e. (10.11). Note that

E(Lo,x)= ILo(x)-L(x)l +e IILoII . (10.14)
which may be verified in (10.1) by taking z so that it is aligned with L0: ILo(z)I = eIIL0II and

sgn (Lo(z)) sgn (Bias (LOx)) > 0. Thus (10.11) follows if we can show that L0 attains its maximal bias

at xo, i.e. if

suxp ILo(x) - L (x) I = ILo(xo) - L (xo) I

By symmetry of X, it is enough to show

L (x) - Lo(x) < L (xo) - Lo(xo)-

Rewriting this as

L(x) < CO L(xo) <uo,x>+ (1 -co) L(xo)

this is the same as

y .b x +a

for all (x,y) E A (X). But b and a have been expressly chosen to satisfy this inequality, and so (10.11)

follows.

It remains only to show that (10.13) holds.

Suppose that xI E X with <uo, x> < uo, xo>. Put xt = (1 - t) xo + txl. Then x, E X and for

all sufficiently small t 2 0, II xt I I < I I xo I 1. By definition of xo, (10.8) holds. Therefore as x, meets

both conditions in the system of (10.8) for small enough t, L (xo) 2 L (x,). Now
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L(xt) = L(xo) + t (L(xl) - L(xo))

and so L(xo) > L(xl).

Suppose instead that <u0, xl> = <u0, xo>. By centrosymmetry, if we pick a E (0,1), a xl E X.

Now <u0, a xj> < <uo, xo>. But by the previous paragraph L (a xl) < L (x&). On the other hand L is

estimable, and so from IL(xl)-L(axl)I <b ((1-a) IIx111) we get L(xl)= lim L(axl). As
a -e1-

L (a xl) < L (xo), we have L (xl) < L (xo), whenever <u0, x0> < <u0, x0>. This completes the proof of

(10.13), and the theorem. 0

Remark 1. This proof closely parallels the proof of Theorem 6.1 which was presented in section 6.

In overall outline --- find x0, find Lo, show x0 is least favorable for Lo --- the structure is the same. It

may appear that the details of showing that x0 is least favorable for Lo are different; but actually, the

argument proving (10.13) is essentially that, as J is optimized by x0, <D,,OJ,h> < 0 for admissible h,

and that DXO J proportional to the bias of Lo. Thus abstractly the proofs are quite close; however, here

J is not differentiable at x0 --- it is only subdifferentiable --- so an honest proof involves more details.

Remark 2. The minimax linear estimators in the two problems both have the form

Lo(-) = co
L1x) <u0, >, where x0 generates the hardest subfamily for that problem. However, determi-

nation of the optimal c0 in the optimal recovery problem is genuinely more complicated than in the

minimax estimation problem. This is also responsible for some of the extra complexity of the proof.

When b (£) is differentiable at 2e, we have the formula

2 e, b '(2 e,) 1.5b (2 ) (10.15)

This is proved in the appendix, by refining the argument in the paragraph following (10.13).

Remark 3. As the proof shows, the minimax error of the hardest subproblem is

maxlJ(x) = max (L (x): l1X I I < £, X E X)

Invoking Lemma 6.6 this proves that the minimax error (10.4) is attained by the linear estimator Lo.

Thus, the minimax identity (10.6) implies the Golomb-Weinberger formula for the nonlinear minimax

error, and it implies Micchelli's result that there exist linear methods attaining the nonlinear minimax
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error.

Remark 4. The existence of linear optimal recovery has been proved in two ways: see Micchelli

(1975); and Micchelli and Rivlin (1977). The proof in the first reference uses the standard minimax

theorem; the proof in the second uses a separation of convex sets argument. Our approach based on the

hardest 1-dimensional heuristic appears new. The heuristic provides the only proof idea which has been

shown to work both in optimal recovery and in statistical estimation. Ibragimov and Hasminskii (1984)

comment that they are unable to derive their results on statistical estimation from a standard minimax

theorem.

10.2. Extensions

Just as in section 9, suppose our observations are of the form

y=K x+z , (10.16)

with K a bounded linear operator; only now the noise is deterministic and is only known to satisfy

I I z I I <e. The minimax identity can again be established, just under the assumption that L would be

estimable based on y = x + z, and that X is symmetric, convex, and compact. As a consequence we

have the formula

inf su E(L,x) = inf sup E(L,x) bK(2e)/2 , (10.17)
fyfine

and the existence of a linear estimator

Lo() = Co
L 1x, <Uo,> (10.18)

which attains the minimax error; here Uo= Kxol I IxoI IK, and xo is again generator of the hardest sub-

family. This result holds even if K has a nontrivial null space, and it is proved by modifying the proof

of Theorem 10.1 along the lines suggested in section 9.1.

This form of the result is the one used in the numerical analysis and complexity literature. Sup-

pose that we wish to numerically approximate f (t) dt from noisy data on f(tl).........f(tQ,). This can

be represented as a problem of the form (10.16). Let K = [k1 ...k..,0...... ] with ki being point evalua-

tors ki f -f (ti). Suppose also that we know f E F = (If 'I < C), and that our data (yi) satisfy
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(f (xi) _ y,)2 . e2. Then formula (10.17) gives the exact minimax error. The hardest subfamily in
i=l

this case has f0 given by the "sawtooth" fo(x) = min (-g + C Ix - (- 1). A calculation gives

14[(E) =
n

+ (n - 1) .An optimal recovery rule is of the form (10.18); calculations reveal that Lo(y)

is just, in this case, -
n Y

One can also handle asymmetry of X, by arguments as in section 7. Thus, the following analog

of (7.2) holds when 0 E X.

E (£; (-X)l2) < E (;X) < E *(e; Hull(X U -X))
< E*(e; X - X)

From this, a worst case error b (e) is attainable by affine estimates even when X is not symmetric. This

is within a factor 2 of the minimax error (10.4) b (2e)/2 among all estimates. In fact the estimator

which is minimax for the hardest 1-dimensional subfamily of X will do at least this well. So even if X

is not symmetric, the modulus of continuity measures the difficulty of linear estimation rather precisely.

10.3. Comparison of the two theories

We have exhibited a close formal similarity between the theories of statistical estimation of linear

functionals in Gaussian noise and of optimal recovery in deterministic noise. There are proofs of the

basic theorems which follow the same lines. The minimax estimators have similar formulas. The

modulus of continuity b (e) gives in each case the rate of convergence: In the statistical case we have

shown that 4.199b(a) . 4R-(a) < b(a) while in the optimal recovery case E*(e) = b(2e)/2. We

emphasize that here b is the same function in the two cases; it provides a natural scale for measuring

the difficulty of the problem under either approach. The connection between the two problems is even

closer than this, however.

Theorem 10.2. Let X be symmetric, convex and compact. Then

(E (a))2 > R*(a) > 4 (E (a))2 (10.19)

If Lo is a minimax linear estimatorfor the statistical estimation problem at noise level ca = e, then
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sup E(LJ, x) < X E*(e) . (10.20)
s

IfLW is the minimax linear estimator for the optimal recovery problem at noise level £ = a then

sup R (L , x) < 2 Ra(a) . (10.21)
I

In words, if we know the solution to the optimal recovery problem, then without any work (i) we know

the value of the statistical problem within a factor of 2, and (ii) the optimal recovery method is within

a factor of 2 of being optimal for the statistical problem. Thus, if the deterministic analog of a statisti-

cal problem has been treated in the optimal recovery literature, the methods developed there can,

without any modification, be used to get a nearly optimal answer for the statistical problem.

For an example, consider the following noisy extrapolation problem: Example 3.2.1 of Micchelli

and Rivlin (1977). They suppose thatf is a function on R with lif IIL2+ h1f'112.< 1. They observe

0

f, with noise, on the interval (-oo, 0) i.e. they have y (t) =f (t) + h (t ) where f h2 < e2, and they wish

to recover the functional L (f) =f (X), X > 0. Micchelli and Rivlin show that the optimal recovery

scheme is to take

L O(y)0 if e.e1/2

Lo(Y){e1)Tepe'y(t)dt otherwise

where j is the solution to

(+ 1)2[- )(e2,9 1)+e2,r]£2

The error of this method is

E*(e) = min (1, ese)

By the above theorem, if we have instead the observations of

dY(t)=f(t)+edM(t), t <0

where W(t) is a standard Wiener process, if we again want to estimate L (f) =f (), r > 0, and if we

again know a priori that Ilf 1122 + I1If'I12 < 1, then application of the optimal recovery estimator to

the problem via

0
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is within a factor of 2 of minimax for the statistical problem.

We can go in the other direction as well. Suppose we observe y(t) =f (t) + h (t), t E R with

deterministic noise f h2(t) . E2, and we know f E F = (I If (")I Ip < C ). Suppose we are interested

in recovering L (f ) = f (k)(0). We have already studied this in the statistical estimation model in section

8.4. The modulus was computed there. The minimax linear estimator for the statistical estimation

problem furnishes a good estimator for the optimal recovery problem. The same sort of adaptation of

the examples in sections 8.2, 8.3, and 9.2 is also possible.

The correspondence between the two problems set up by Theorem 10.2 is only approximate.

However, it is possible to choose £ and ca so the correspondence between hardest subproblems is pre-

cise. Indeed, suppose that a hardest subproblem for statistical estimation exists at noise level a and has

length eo(a). This hardest subproblem is also a hardest subproblem for the optimal recovery problem at

noise level e=eo/2. To be hardest for the statistical problem, the subfamily must solve

sup ( IL(xl)-L(x_.)I: llxl-x.l11 =co);
to be hardest for the optimal recovery problem, it must solve

sup ( IL(xl)-L(x_.)I: lIxl-xl 11 <Io).

In one case the constraint is IIx1-xx11 =co and in the other IIx1-xx 11 <F0. Convexity of X and

linearity of L imply that a solution of the first problem is also a solution to the second.

This correspondence suggests a different way of calibrating the optimal recovery and the statisti-

cal estimation problems. Instead of setting £=a as in Theorem 10.2, we choose e so that the two prob-

lems share a common hardest subproblem. Relation (2.12) shows that in the Holderian case, this cali-

bration has e= 2 i-q a (I + O (1)) asymptotically as a-

When we calibrate the two noise levels in this way, the two problems can share the same optimal

estimator. Suppose that L is homogeneous linear and that X is symmetric about 0. Let [-xO,x01 be a

hardest 1-d subproblem for both problems. We know from the proofs of Theorems 6.1 and 10.1 that a

minimax linear estimator can in each case be written in the form co L xo) <O, >. Now in each case

xo is the same, so the problems share an estimator in common if c0 may be chosen the same. On
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comparing formulas (6.17) and (10.15) it is apparent that they specify the same co. These formulas are

valid if the modulus b is differentiable at eo=211xoll, and if ec is smaller than the diameter of X.

Thus, under regularity, the two problems share the same optimal estimator. More is true: regularity is

not required.

Theorem 10.3. (Equivalence) Let X be convex, compact, and symmetric. Let eo be the length of a

hardest subproblem in the statistical problem. There exists an affine estimator which is optimal for

both the statistical problem at noise level a and the optimal recovery problem at noise level 2

The proof is in the appendix. It argues carefully using the moment space A (X) intoduced in proof of

Theorem 10.1.

A final remark: the combination of Theorems 10.1 and 10.2 provides an alternate proof of (4.1),

and gives a deeper explanation why the modulus --- a geometric quantity --- should be closely con-

nected to the minimax risk --- a statistical quantity.



- 50 -

11. Confidence Intervals

The connection between optimal recovery and statistical inference about linear functionals is more

than just an inspirational one. It can be used to construct optimal confidence interval procedures.

Suppose once more that y = x+z where z is a Gaussian white noise. Let L be an estimator of L, and

consider fixed-width intervals L (y) i c where c is a constant independent of y. The confidence level of

such an interval is inf P, (L{(x) E L (y) ± c).
I

11.1. Optimal Recovery Intervals

Let L be an affine estimator of L. Then the distribution of L is Gaussian with mean L(x) and

variance ca2IIL 112 (here IIL II is an abuse of notation -- it really means the 12 norm of the homogene-

ous linear part of L). Let Z1, denote the (1-a) quantile of the standard Gaussian distribution. Then,

of course, L(y) ± Z1-2alqIIL 11 is a (1-a) confidence interval for L(x). But L(x)-L(x) = Bias(L,x),

so that L(y) IBias(L ,x)I ± ZI 1i2aIIL I I ) gives a (1 -a) interval for L(X). This interval is not rea-

sonable since Bias (L x) is in principle unknown. But sup IBias (L,x) I is in principle known, so if we

define

ca(L) sup IBias(Lx) l + Z.-.2 a I IL , (11.1)

then L ± ca(LL) is a reasonable (1o-a) interval for L.

How short can we make a 1 - a confidence interval of this form? Any c > inf ca(L) is an
L aj)ine

attainable length --- there exist estimators L such that L ± c provides 1 - a confidence, uniformly in

X. But

inf ca(L)= inf sup IBias(Lx)I+ZlZI 2c IIL II
£LOm Laffina x

= inf sup E(L,x), e=ZaI2Ca (11.2)
L af x

where E (L ,x) is the worst case error function introduced in the section on optimal recovery! Here we

are using (10.14). The optimal recovery theorem of section 10.1 allows us to evaluate (11.2); applying

this we get immediately
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Theorem 11.1. Let L be estimable and X be compact, convex and symmetric. Then there is a

fixed width afine confidence interval for L of width

b (2 Z1- W2 C)

which has confidence level at least 1- a. This interval is of the form

Lo ± b(2 Z1 -a2 Ca) / 2 (11.3)

where Lo is an optimal recovery estimator for £ = 2 Z1 - a/2 a.

The interval (11.3) is easy to describe, but we have no right to expect it to be optimal. In gen-

eral, the confidence level of this interval is strictly greater than 1-a. The optimal recovery interval

L0± b(F)/2, where L0 is optimal for e<2Z1-,U2a, is shorter thean (11.3), and, if e is not much smaller

than 2Z1 a, it will still have coverage probability at least 1-a. Surprisingly, the minimax affme

interval must be of this form.

To be more precise, let C;,,a (a) be the length of the shortest fixed-width (1 - a) confidence interval

for L based on affine estimates. This is the smallest c for which

inf sup P. { IL (y) - L(x) I > c) < a.
L offine x

Theorem 11.2. Let X be convex, compact, and symmetric. Let a > .5. The smallest fixed width

affine interval is of the form Lo ± C;,a, where Lo is an optimal recovery procedure for some

Ea Ei [2 Zi -aaC, 2 Zl-c2 (S]*

The proof is given in the appendix. Unfortunately, we have no nice characterization of Ca; the theoreti-

cal determination of this quantity appears difficult. Luckily, though, the optimal interval offered by this

theorem does not offer a significant improvement on the simpler interval (11.3).

11.2. Lower bounds via Hardest 1-d Subfamilies

By the hardest subfamilies technique we can show that (11.3) is near optimal even among non-

linear procedures. In analogy to C;',a, let C,,a (a) be the length of the shortest 1 - a confidence inter-

val for L: the smallest c satisfying

inf su P.P IL(y) - L(x)I> c ) < a
L i

where all measurable L are allowed in the infimum. To get lower bounds on C;,, we use the hardest
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subfamily approach. We need to know the minimax lengths of confidence intervals for the 1-

dimensional problem Y - N (0,a), where I 1 < r. These are

X^,v,jr,) = the smallest c for which (11.4)
there exists 8(y ) attaining

Pe(I8(y) -01 >c) a

for all 0 E[-E', i

here nonlinear estimates 6(Y) are allowed. The invariance Xy('r,a) = a Xv( IT 1) is easily verified.

By the same reasoning as in section 2, we arrive at the lower bound

C,(a() SUP
(S) (11.5)2

The appendix proves the following.

Lemma 11.3

XN,a(t.1)=T if 'r<Zi-a (11.6)

XN,a (X,1) 2 Zi -ca if XT 2 Z,-
lim XN,a (X,1) = Zl -al2

Using (11.5) with (11.6) gives

Ci.a (a) > sup b(e) AxNa ( 2 )
2 1

= sup b(e) / 2 = b(2Z -aa)/2, (11.7)
0os 2 szl aas

where the last step uses monotonicity of b. Combining (11.7) with the upper bound of Theorem 11.1

gives the following analog of (4.1).

Theorem 11A. Let X be convex, compact, and symnetric. Then

b(2 Zl-aC) / 2 < CN*a(a) < CA*,a((T) < b(2ZI-2aY)2 (11.8)

The two bounds in (11.8) are not far apart. As b is starshaped,

b(2 Z, -cv2d) <Zi -Ga.
b(2Zj-aT) Zi-a

Suppose that a = .05. Then Z.95/Z.90 = 1.96/1.645 = 1.19. In short, the length of the optimal recovery

interval (11.3) is within 19% of the minimax length among all procedures. Asymptotically, its
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performance is even better. If b is HIilderian with exponent q e (0,1), the ratio is bounded by (1*19)q

for small a.

To smmaie, we have shown that the theory of optimal recovery provides a simple way to

make confidence statements for linear functionals. We have shown that these confidence statements are

near optimal. This application of optimal recovery to statistical inference appears new.

A final remark: (11.8) shows that, if our criterion is minimax length of 95% confidence intervals,

the difficulty of the hardest 1-d subproblem is within 19% of the difficulty of the full problem. Thus we

have a third example of the basic principle we have studied in this paper.
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12. Proofs.

We do not prove every result stated in the paper; many of the results are quite straightforward.

Proof of Theorem 2.2

Put f (v) = v2 -2 pN( 2 ,l). By Lemma A.2 below, f is a continuous function of v at any

V E (O,oo). By O< PN < 1 and PN < PA, we can see that f (v)->O at 0 and oo. As

f (1) = pN(2,1J) > O, f attains its maximum at v' E (0,°o); by definition, f(v*) =N(q), and so N(q

is well defined.

We now show that for K sufficiently large,

PI

2
s pNb(P) = ,N(q)b(a)(1+o()) (A.1)

Putting v = PN( 2 52 = c2 PN( 2 1), and (A.1) becomes

sup [b(v ) 1 2 PN(VJ1) (A.2)

On the other hand, if K > v , g(q) b2(a) is

b2(Ca) sup V2q 2 PN( J1) (A.3)v!5K 2' A3

The difference between (A.2) and (A.3) is not bigger than

[____ 2
A= sup b(v a) 2_v2 b2(a) I PN(2,l)

Now as b2(c) - A2 e2q + r(£), with r(£) = o (e2q), the ratio of this to b2(a) is

A Su_A2 V2 cr + r(v a) _2q-2 I _PN( V1 (AA)

Now define

sup Ir(v a)I = s(a)
v K

we claim that s (a) = o (a2q ). Indeed, if this were not true, then there would exist sequences (v. ), (a))

with v. < K, and r(v,, a,,) not o(ac2q); defining e,, = v,,, a we would then have r(c.) not o(e£") con-

tradicting our hypothesis on r. Thus
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A 11+ IS(a) /(A2&'14)1 V-
b2(a) 1 - Ir(a) / (A2 a2q) I 1 V 2'

And by hypothesis on s and r, the term in bars is o (1). This establishes (A.1). The lemma below com-

pletes the proof. 0

Lemma A.1. Suppose b(s) is starshaped and H1olderian with exponent q < 1. There exists

K = K (q b) so that for all a <ao,

SUP LJ3 b2(a) PN(v <, I2N(q)
Proof. We have

bv~v CY) 1 b(v a) a__
V>SK kV J b2(cy) 2 v, L Va J b2(aY)

< b(K aY) aY2
K a J 12(ca)

where the first inequality follows from PN(X,l) < 1 and the second from starshapedness of b. Using the

Holderian property b (s) = A eq + r (£), r (e) = (£q

r 2 r 2
b(Ka) aC2 .Kq.1 A + r(K a)/(K )Cy (A.5)

L Ka J b2(a) [ A+r(a)/aq J

Since both r(K a) / (K ay) and r((a) / a"q tend to zero as ca 0, by picking K so large that

K2q-2< I tN(q) (say), we can find a0 so small that the right hand side of (A.6) is less than I N(q)4 2

for any a <a0. )

Lemma A.2. PN(V,1) is a continuous, monotone increasing function of v.

Proof. Let HIv denote the set of (prior) distributions concentrated to [-v ,v ]. Then

PN(V,1)= su, p(i) where p(iC) denotes the Bayes risk of i. As IT,, c HIv. PN(V,1) is monotone.

To see that PN(v,l) is continuous, note first that it is continuous at 0. Indeed, PN(V,l) -o 0 = PN(O,1)

as v -* 0 (use pA 2 PN and the explicit formula for pA). We now check that PN(v ,1) is continuous at

v >0.

By weak compactness of rIv, a measure 7L, attaining PN(V,1) exists. Let Xv be a random variable

with distribution iv and, for small T > 0, X'l = min (v - i, max (-v + 1T, Xv )). X" has distribution
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IC" E rlvl. The Bayes rule for Xn satisfies

8n(Y) = E (XvI I Y = Xn + Z)

Now IXn - Xv I 5'q. Thus

1l7v(Y) -E Xv I Y =Xn +Z) I <,q
Now X'l = Xv + W where IW I <.i. Thus by

E(U I U+V)+EssSup IWI .E(U I U+V+W)

2E(U I U+V)-Ess Sup IWI

we have 18v(y) -E(X, I Y=Xv +Z II < and so 181(y) - 8,(y) I < 211 . Hence

p(iQ) 2E71 v60)_X)2 (2 )2

Now as 71 -o 0,

E v(yv&) _ X)2 * EC (8v y) _ X)2 = p(s )

Thus

lim inf PN(V - 8,1) 2 lim inf p(iv) > p(7rv) = PN(V,l)
n --+ 0 'n1-40

and so by monotonicity of PN. we have continuity at v. O

Proof of Theorem 2.4.

Put f (V) = v2"-2 pA(2V ,1) = V2' [1 + V2]-. This function is continuous on [O,oo) vanishes at 0

and oo, and attains a maximum at v = 2+1-q E (0,oo). Thus ,A (q) =f (V) is well defined. By cal-

culus,

4A(q) = 22q-2 qq(I - q)(1~q

As in the proof of Theorem 2.2, we need to show two things. First, that for any K > v

bb(v )J PA((P C2) / b2(a)-V[1_ +v2q1V - o(1), as c- 0o

This follows precisely as in Theorem 2.2. Secondly, we need to show that for all K > K(q ,b) and all

a<2c jo(b)

suF[ £ PA ( 023 UP( _ PA ( 2E
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This foilows by an argument like that of Lemma A.1. Putting these pieces together,

(e) 22)2(
IO[ke ] PA(E2,a) = ;A(q) b2(a) (1 + o(b

asa-O. 0

Proof of Lemma 4.1.

We prove this as follows. Let X2(e) c X x X denote the set of pairs (x_., xl) with x-1, xI E X

and IIx, -xA II =e. Let : X2 -* R be defined by (L(xi) - L(x_L)) / IIx1 -x1 11; this is a continu-

ous functional. Now by definition.

b(e) = sutp (x_I, xi) (A.7)

Note that if x, and x, lie on the segment from x-1 to xl, then f(x,, x,) = (x., xl). Fix 8 > 0,

and suppose that (x._, xl) is a pair nearly attaining the supremum in (A.7) for e = £0> 0:

b-c)< N(X_1, Xi) +b(o)

Now for e <£0, let x, and xs be points on the segment from x to xl with b1x, - xs 11 = e. Then

b(>) 5(x',XS) = R(X1, xi) -E

AsB >O was arbitrary, this shows that b(E) 2 for E <Eo as claimed. 0

Proof of Lemma 6.2.

One simply shows that for any estimator in the first problem, there is an estimator for the second

problem with the same risk. The manner of constructing these is obvious.

Proof of Lemma 63.

Since X is convex and symmetric about 0, so Vo = (xl - x-1) / 2 E X and so is - vo. Hence,

L (vo) - L (- vo) = L ((xl - x-1) / 2) - L(- (xi - x-1) / 2)
= L(xi) - L(x.1) (by linearity ofL).

As vo - (- vo) = xl - x- ,

we have IIx1-x-11I = IIvo- (- vo)II .
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Proof of Lemma 7.1.

Left to the reader.

Proof of Lemma 7.2.

Left to the reader.

Proof of Lemma 7.4.

For e > 0, since [x_1, xl] is a hardest 1-dimensional subfamily in X, so we will have

b (£; X) = L (xl) - L (x1)I (A.11)

Now, from (7.3), (A.11) and the linearity of L, we have

b (e; (X - X) / 2) = IL(xl) -L (x.1)I (A.12)

= IL(vo)-L(-vo)I

Hence, this implies that (vo, - vo) generates the hardest 1-dimensional subfamily in (X - X) / 2. ]

Proof of Theorem 10.2.

From the identities

R O(L, x) = Bias (L,x)2+a2 IlL 112

E(L, x)= IBias(L, x)I + IIL II

and a2+ b2 <(a + b)2 < 2 (a2+ b2), for a, b > 0, one gets

R x) < (E(,x))2 <-2 R&(,x
whenever £ = a.

Now

RI(q) < Ro(Lor, X) < sup E2(Lor, x) = E2(a)

which establishes (10.19). On the other hand,

E (a) < sup E (L!o, x) < (2
sup

R (LsO, x))l2 = (2 RL(a))"2
I I~~~~~

which establishes (10.20). Together, the last two displays establish (10.21). 0

Proof of Lemma 11.3

If there exists a confidence interval of length 2C with level > (1 - a), then this interval allows to
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construct, for any pair (x1, xl) with L(xl) - L(x_1) > 2 C, a test between H-1: xAI and H1: xi with

sum of wrrors 2 a.

On the other hand, given x-1, xl, the sum of errors of the best test between H.1 and H1 is

2 4(- 11xl - x-111I/ a). It follows that

2C >sup (L(xl) -L(x_l) : 2 0(- II -I- x, I / a)>2a, xi e X)
or

2C >sup (L(xi)-L(x.1) : IIxI-x1II<aZ IaXi E X)
=b(dZ1a). 0
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