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Introduction

Let A. be a probability on [ 0, 1 ]. If I is a subinterval of [ 0, 1 ], let g,u be the probabil-
ity on [0, 1 ] obtained from R± as follows: restrict 1L to I; renormalize so the mass is 1;
map I affinely onto [0, 1], preserving the order. The image of the restricted and
renormalized measure is RI . To illustrate the notation, if I = [a, b ] then

~LA Y I =IL[a, a +y(b] ,a)] fory e [0,1].

Say that A is locally uniform at x when x E I and I I I -- 0 imply that g, converges
to Lebesgue measure, in the weak star topology. Here I I I is the length of I. In case

the convergence of g, to Lebesgue measure as 11I - 0 holds uniformly over all
subintervals I, we call ± uniformly locally uniform. Using Kolmogorov's distance
between probability distributions, this property can be expressed as follows:

(1.1) s >0Irl<Plimsup sup I Iq[0y] -y I = 0.
8-*O III1.8 O.<y .

A uniformly locally uniform measure is obviously continuous.

If ,u is absolutely continuous with density f, then f (x) > 0 and x is a Lebesgue point
of f for ,u-almost all x; and g is locally uniform at such x. See, for example, Dun-
ford & Schwartz (1958, pp217-8) or Saks (1937, Chap IV). It is natural to conjecture
the converse: if ,u is locally uniform at t-almost all x, it must be absolutely continu-
ous. This is true, and easily proved, for local uniformity defined by convergence in
variation norm. But for weak star convergence, this converse is false.

(1.2) Theorem. Thlere exists a singular measure which is uniformly locally uniform.

Consider using a measure ,u as a prior to estimate the unknown probability p that a
coin lands heads in a sequence of tosses. Let p be the fraction of heads among the
first n tosses. As shown by Laplace (1809), Bernstein (1917) and von Mises (1931),
if the prior has a smooth density, the posterior is asymptotically normal. It may be
conjectured that the converse holds: asymptotic normality of the posterior entails
smoothness of the prior. But this too is false.

(1.3) Theorem. Suppose the prior g is uniformly locally uniform. For every e > 0,

the posterior distribution of p n(1 (p - p) converges weak star to stan-

dard normal as n - oo, uniformly in A E [E, 1-E].
If 0 < p < 1, and the data are generated by tossing a po-coin, then A

o almost
surely, so the posterior is asymptoticlly normal almost surely. And the theorem
applies to priors which may be singular, absolutely continuous, or mixed, provided
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they are uniformly locally uniform. The argument also extends to give a condition on
,t both necessary and sufficient for the conclusion of the theorem: for every e > 0, A. is
uniformly locally uniform within [£, 1- e]. But we omit the details. There is an
extensive literature on convergence of posterior distributions to normality in the
stronger sense of total variation distance. See Le Cam (1986a and 1986b) for a sur-
vey.

The balance of this paper is organized as follows: Section 2 gives some reformulations
of uniform local uniformity; Section 3 presents the construction for Theorem (1.2);
Section 4 proves Theorem (1.3); Section 5 provides some background on Riesz pro-
ducts; finally, history and acknowledgements in Section 6.
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2. A criterion for uniform local uniformity.

We start this section with an elementary estimate. This just shows that if At puts
approximately equal masses on equally spaced intervals, then A will be close to uni-
form in Kolmogorov distance. The elementary proof is omitted.

(2.1) Lemma. Let Wt be a probability on [0, 1]. Let 0 < a < 1, 0 < b < 1. Let N be
a positive integer, with a + Nb < 1 < a + (N + l)b, so the N + 1 points

a, a+b, a+2b , , a+Nb

partition [0, 1 ] into N subintervals of equal length b, and two shorter (and possibly
degenerate) end intervals [0, a ) and [a +Nb , 1 ]. Suppose that for every one of these
N + 2 intervals I', and every one of the N intervals I of length b,

I ) < 1 +e.

Then

sup Ig[0,y]-yI . -(1+E) + e.

We now give a criterion for ,u to be uniformly locally uniform, in terms of the -
measure of adjacent binary intervals of order k, where k is a positive integer, mean-
ing intervals of the form

I= [jI2k, (j + 1)/2k) I= [j+1112k (j +2)/2k)

for j = 0, , , 2k - 2 (except that I' should include 1 if that is its right end
point).

(2.2) Proposition. A measure g on [ 0, 1 ] is uniformly locally uniform if and only if

(2.3) g(I ) -- 1 as k -* oo

uniformly over all pairs I and I' of adjacent binary intervals of order k.

Proof. "Only if" is clear. For the converse, suppose (2.3) holds. Then (2.3) must

also hold uniformly over all pairs I and I' of binary intervals of order k that are

within distance A 2-k of each other, for each fixed A > 0. If J is any interval with
with 2-' < IJ I < 2-'+1, then J contains at least 2i - 2 consecutive binary intervals of
order k = i + j, and is contained in a union of at most 21+1 + 2 such intervals. Now
a routine argument using Lemma (2.1) shows tj is close to uniform in Kolmogorov
distance if I J I is sufficiently small. E
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We conclude this section by stating two further conditions on a probability measure A
on [0, 1 ], each implied by uniform local uniformity. These will be used in Section 4.
Their proofs are elementary and omitted.

(2.4) Condition. Let J and J' be two subintervals of an interval I c [0, 1]. For
each 8 > O,

If I i( 1
-4 l as III-40,

uniformly in J, J', I, provided

8 ' IJ'I'IJI ' 1/8.

(2.5) Condition. Let C be a collection of uniformly bounded and uniformly equicon-
tinuous functions on [0, 1]. For a subinterval I of [0, 1], let Al be the order preserv-
ing affine mapping of I onto [ 0, 1 ]. Then

|f o A, dt* f (x) dx
0

as I 1 -4 0, uniformly in I and f E C.

Condition (2.4) is in fact equivalent to uniform local uniformity of g. So is (2.5) for
sufficiently rich C.
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3. Proof of Theorem (1.2).

Let
N

(3.1) fN(x) = r [1 +a,cos(2cXnx)],
1

where 0 < an < 1, and the Xn are positive integers with integer ratios Xn+1/n > 3.
Then fN is a probability density function. A probability measure , on [0, 1], called a
Riesz product, can be defined as the weak star limit as N - oo of the probability with
density fN. Informally,

00

(3.2) = [ 1 + ancos(27cXnx)]

The existence of such Riesz product measures is shown by Fourier analysis. Accord-
ing to a result of Zygmund (1932; or 1959, p. 209), the Riesz product ,u is either abso-
lutely continuous or singular with respect to Lebesgue measure, according to the con-
vergence or divergence of Z a,2. In either case, 1± is continuous. For the sake of com-
pleteness, in Section 5 we sketch arguments for the facts we use.

Because the assumptions imply that X, divides Xn for every n,

(3.3) g has period 1 ikl.
That is, translating ,t by 1 / X1 ( mod 1 ) leaves ,t invariant. In particular,

(3.4) j4 i /1., (j+1)1 ) = 1/ X1.

(3.5) Lemma. Fix N. Suppose I and 1' are intervals of the form

[i lkn X (J+1) /kn ) [ j" /kn ) (i" + )/kn)

with n < N + 1 and 1 < j < j <knX If

(3.6) b <
f

v < c for all x in ! and x' in ',
fN (X)

then

(3.7) b < < C.

Proof. Let

00

NV = rl [ + ancos(27Xnx)].
N+1

Then ,u has density fN with respect to ,N' SO
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(j = fN d 11N for J = I or I'.
I

Applying (3.4) to -1N with XN+l in place of X, shows that gN (I) = gN(I'), because Xn
divides XN+1. So (3.6) implies (3.7). OJ

Fix now a sequence an with 1/5 > a_ 0 and I a 2 = co, say an = 1/(5\-). This
makes the Riesz product g continuous and singular. If the Xn increase rapidly enough,
we can make AL uniformly locally uniform. The 2n will be of the form

(3.8) x = 2k(n)

where k (1) < k (2) < will be defined inductively. Let At be the resulting Riesz
product. The inductive definition of k(n) will secure that (3.9) implies (3.10):

(3.9) I and I' are two adjacent binary intervals of order k with k (n) < k < k(n+1),

(3.10) 1 -4an < ( < 1+ 4an.

This makes AL uniformly locally uniform by Proposition (2.2).

Inductive construction. Assume that 1 = k (1) < ... < k (n) have been defined,
hence also XI, , X,n via (3.8), and the partial Riesz product fn via (3.1). Use the
strict positivity and uniform continuity of fn to choose k (n + 1) . k (n) + 2 so large
that

(3.11) 1 - an+1 < < 1 + an+1 provided Ix - < 2-k(n+)+1.fn~(X)
This completes the induction. Let A± be the Riesz product defined by (3.2). Take
n > 2 , so

fn(X) = fn_l(X) I 1 + ancos(2n;knX)]
Thus

(3.12) (1-an )fn-l(x) < fn (x) < (1+ an )fnl(x).
Assume I and I' are as in (3.9). If x E I and x e I', then

Ix -X' < 2-k+1 < 2-k(n)+

We can use (3.11) with n-1 instead of n. This and (3.12) give the bounds

(1 - an)2 fn(X') (1 + an)2
(1 + an) fn(X) (1 - an)

The same bounds for i(I')1i(I) follow from Lemma (3.5). This yields (3.10), since
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an < 1/5 by assumption. Conclusion: the measure g is uniformly locally uniform.

Remarks.

(i) Elementary estimates show that fn is bounded between exp(±3'JT), and its loga-
rithmic derivative is is bounded in absolute value by a constant times knexp(64).
Thus, (3.11) will be achieved provided

2k(n)-k(n+1)e6fn / a 0+ie 0 as n - oo.

In particular, k (n ) of order na for ( > 3/2 will do the job.

(ii) Given any sequence Sk decreasing to zero as k -+oo, replacing 2-k(n+1)+1 by
2-k(n+1)+1 + 8k(n+l) in (3.11) gives a singular p. such that g(F')/,u(I) -* 1 as
k -> oo, uniformly over all pairs I and I' of binary intervals of order k within dis-
tance 6,k of each other. In other words, ,u is nearly uniform over intervals which
shrink to zero arbitrarily slowly.
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4. Proof of Theorem (1.3).
In n tosses of a p-coin, let p be the proportion of heads. The probability of getting
any particular string of j heads and n-j tails is

(4.1) Ln(P 1k) = pJ(l-p)flp - [pP(-p)lp]n.

Let At be a prior distribution for p. For a Borel set A c [ 0, 1 ], let

(4.2) #n(A I = JLn(p k).(dp).
A

The posterior distribution of p is the probability gU ( * p) on [0, 1] defined by

(4.3) ALn (A I 0(A 1 A)

Write

A52 A A(1-p)/n

As is well known, the likelihood function p -* logL (p k) is strictly concave; its
maximum occurs at p = p; and the function can be closely approximated by a Gaus-
sian density with mean p and variance 62, times a suitable scale factor. To be precise,
we control the error in this approximation by the following lemma. Sharper estimates
are given in Diaconis and Freedman (1988).

(4.4) Lemma.

Ln(p I p) = L A( A )exp{-' (p -A)2 F(p,p)}n(P P n P P2 62

where the factor F (p ,p) does not depend on n. For cE (0,1/2),

(4.5) F(p,k) - 1 as p -kI -_ 0,

uniformly over all p,p E [e, 1-]. Finally

(4.6) Ln(p Ak) < L(A nexp-n(p A)21.

Proof. Let

(4.7) H(p Ap) = - logLn(p I p) = plogp + (l-p)log(l-p).
n

This does not depend on n. Now

I( I +) Q(p, A), say.
dp 2 p (1 p)2

The function p -* H (p I p) attains its maximum at p. By Taylor's theorem, there is
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an r between p and p such that

H(ptp) H(
A A (= _

A )2 Q(r
A

Then

Ln(p p) = exp{nH(p p

L (AIi)exp{-2 (P 62 (1-p)Q(r,p)}.

Set F (p,) = p (1 p) Q ( r, p). Relation (4.5) follows:

Ir -_AI 0 as Ip _I - 0 and Q(k,)= 1/p(1- A).
Finally, Q(r, p) . 1; and this implies (4.6). E

(4.8) Lemma. Assume that the prior .t is uniformly locally uniform. Fix e E (0, 1/2)
and 0 < 6 <K < oo. Then

n ([p - aa,p + b] | p ) Ln(P| P PX p)( ,+ 2)4 [qD(b)- (-a)].

Here 1' is the standard normal distribution function. And the notation = means that
the ratio of the two sides tends to 1 as n -* oo, uniformly over pe [e, 1 -e] and
O<a,b <Kwitha+b 25>0.
Proof. Let Iab = [P - a c5,p + b d5 ]. Define a function f ab on [ 0, 1 ] by

- 1 [(a + b )x - a ]
fab(x) = e 2

If A is the affine mapping of Iab onto [0, 1], then

(4.9) exp{-! ( 2 I = f ab (A (P )) for p E Iab'2 62

Clearly,
(4.10) the f ab are bounded and uniformly equicontinuous as a, b range over [0, K].

We compute as follows:

g(nVabI P) = |Ln(P p)0J}dp) bydefinitionofp!
'ab

Ln(1A I) exp{+ (p P) I}t(dp) by (4.5)
Iab 6

nn p )p.(Ja,)Jfab(X)dx by (4.9), (4.10) and (2.5)
0
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= Ln (P P ) b F2i [ D (b )-D (-a)] by change of scale.

Use uniform local uniformity once more, as expressed in (2.4). 0

To complete the proof that the posterior distribution of (p -p)/ is asymptotically
standard normal as n -* oo, uniformly over p [F, 1-e], it only remains to estab-
lish the following lemma.

(4.11) Lemma. Suppose 4i is uniformly locally uniform. Fix £, 6 > O. There exists a

K = K (e, 6) such that

,un[p-Kc,p Kc] I ) 1- 5 forallpE[,1£

for all n greater than some n (K, £, 6).

From (4.3), recall that Ai( p) iS the posterior distribution of p given the first n
tosses.

Proof. We will argue that the posterior probability of (A + K^, 1 ] is negligible. The
argument for [0,p - Ka). is symmetric. For j = 0, 1, , let

I= (A + ,p + (j + 1)6].
Since g is uniformly locally uniform, condition (2.4) implies that for all sufficiently
large n,

gL (Ij+.)< 2g (Ij) for all j andp.

Thus

(4.12) p.(Ij) < 2i (Io), for j . 1.

Now forp E [, 1-_],

n(lj I AP) < p(Ij)L (A Ak)e 2 by (4.6)

< gIO)n(A A 2£(-s. g(I0)L,^(p I p)2J e by (4.12).
Summing this estimate over all j . K gives

[i,(P + K,1] P) < g(IO)Ln(p p)(K )

where t (K, e) is the tail of a convergent series, so t (K, £) -+ 0 as K -e oo for every e.
On the other hand, using (4.8),

in ([O,1] 1p) nj,u(10I p) g(IO)Ln(k pk) jfi() _ (D (0)]
Finally, use (4.3). C
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5. Existence and singularity of the Riesz product.

This section provides quick proofs from the literature of the two features of the Riesz
product which are essential for the construction in Section 3.

Proof of existence of the Riesz product (3.1). (Adapted from Katznelson, 1976, p.
107). The condition Xi+, 2 3Xj makes each integer m have at most one representation
of the form X4jXi where j = -1, 0, 1. If m admits such a representation, and

Im I < XN, then 4j = 0 for all j > N. Now fix m and N with Im I < XN, and consider
n > N. The m th Fourier coefficient of the density fn in (3.1) is

1

(5.1) J e-2zi"Xfn(x)dx = I - a1, if m = I ,j j with 4j = -1, 0, 1,
0 4j *o 2

= 0, if m does not admit this representation.

Thus, as n -e oo, every Fourier coefficient of fn is eventually constant. By a stan-
dard theorem, the probabilities with densities fn must therefore converge weak star to
a probability .t, whose nonzero Fourier coefficients are defined by the right side of
(5.1). E

Proof of singularity of the Riesz product (3.1) in case la 2 - oo. (Adapted from
Peyriere, 1973). We find from (5.1) that

(5.2) Je± Xxg(dt) =1dx

and

(5.3) jeMiX.x± i,,xt(dx)le+2rti^xi2nixp(dl
2

=
"n 2 -n'.

0

In particular, the functions

2ni X x I
x -4 e2~iXnX _ 1yan

are bounded and orthogonal in L2(t). Because Xa 2 = c0, there must exist a sequence
cn with

Xc,2 < oo, ca_ > 0, Ec an =o.

(In our application, with an = 1/(54V), cn = 1/(Vl-logn) will do.) But (5.2), (5.3) and

Icn < oo imply the series of functions

£cn (e2zxx_a
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is an orthogonal convergent series in L24t). On the other hand, the series

Zc e2niX, x

is orthogonal and convergent in L2(Lebesgue). By passing to subsequences, we can
make the first series converge for ,t-almost all x, and the second for Lebesgue-almost
all x. If g were not singular, there would be an x and a subsequence along which
both series converged, hence also their difference would converge. But this is a con-

tradiction, since their difference is 2; c a = O.
2

n n

The idea behind this and similar arguments of Brown and Moran (1974,1975) is
extended by Brown (1977), to give a general criterion for mutual singularity of proba-
bility measures based on comparison of sequences of square integrable random vari-
ables with low correlation.
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6. History and Acknowledgements.

F. Riesz (1918) introduced the product (3.2) to exhibit various possible behaviours of
Fourier coefficients at infinity. In particular, by taking aj = 1 for all j and kj = 4', he
gave the first example of a continuous singular measure with Fourier coefficients not
vanishing at infinity. See Graham and McGehee (1979, Chapter 7) for an extensive
treatment of Riesz products in a more general setting.

In Freedman and Pitman (1988), we presented a continuous, singular probability meas-

ure ,u on [0, 1] which is locally uniform at j.-almost every point x in [0, 1]. This g
was defined as the probability which makes the binary digits of x independent, the nth
digit being a one with probability 1/2 + cn and a zero with probability 1/2 - En, for a
particular sequence £n with £n -+ 0 as n -> oo but X e2 = oo. Singularity follows
from the criterion of Kakutani (1948). By working with such coin-tossing measures At
defined by various sequences e,n, and introducing an element of smoothing into the
construction, we subsequently became convinced that the exceptional set could be
eliminated entirely, to yield a measure that was singular but uniformly locally uniform
(SULU). But the construction was rather intricate. We are therefore very grateful to
Russell Lyons, who suggested that such a measure might be created more easily as a
Riesz product, and pointed us to the literature of these measures.

There is a close parallel between Riesz products and ordinary product measures of the
coin-tossing kind mentioned above. For instance, it is easy to see that the coin-tossing
measure for probabilities 1/2 ± En is the weak star limit as N -* oo of the probability
with density

N
(6.1) fN(x) rI [ 1 + 2=nrn(x

1

where rn (x) is the Rademacher function whose value is ±1 according to the nth binary
digit of x. Compare with the definition of the Riesz product via (3.1): cosines instead
of Rademacher functions, and an instead of 2n. Zygmund's dichotomy for Riesz pro-
ducts used in Section 3 thus corresponds to Kakutani's dichotomy for coin-tossing: the
measures are either singular or absolutely continuous. The Rademacher functions are
easier to deal with in some respects, since they are independent under Lebesgue meas-
ure, whereas the cosines are only orthogonal. But the smoothness of the cosines make
the Riesz product easier to manipulate for present purposes.
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