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How Many Variables Should Be Entered in a

Regression Equation?
L. BREIMAN and D. FREEDMAN*

The optimal number of regressors is determined to min-
imize mean squared prediction error and is shown to be
a small fraction of the number of data points. As the num-
ber of regressors grows large, the S, criterion provides
an asymptotically optimal rule for the number of variables
to enter.
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1. INTRODUCTION

Consider the model

(1. 1)Y = E 1jXj + E,
j=l

where the X's and e are jointly Gaussian: e is independent
of the X's; the X's may be correlated among themselves,
but only imperfectly; all variables have mean zero; and
the sum converges in L2. The {IB} are unknown, as is the
covariance structure of the X's and the variance of e.
A statistician is given n independent replicates of Y's

and X's satisfying (l. 1). More specifically, suppose

{Y1;X1j,j = 1,2, . . . ; Ei}
are independent for i = 1, . . . , n; for each i, these var-
iables are distributed like { Y; X,, j = 1, 2, . . .; e} of
(l.1); in particular,

* 3~~~~~~~~~00

Yi= Y, ,Xij + E .
j= 1

The statistician chooses a positive integer p, enters the
first p variables in the order preassigned above; that is,
enters Xi, X2, . . ., Xp, regresses Y on these p variables,
and gets ordinary least squares estimates PI , . . . ,p.
Abbreviate Y = Y(n) for the column n-vector whose ith
entry is Y1; and X = X(n, p) for the n x p matrix whose
ijth entry is X,j; and 3 = (n, p) for the column p-vector
whose ith entry is PBi. Then ,B-(XTX)- XTY. To show
the dependence on n and p, we write

13(n, p) = [X(n, p)TX(n, p)]-1X(n, p)T Y(n).

Now an (n + 1)st copy of Y and {Xj} is made, inde-
pendent of the first n, to be denoted by Yn+ I, Xn+ I, j
= 1.. . .The statistician predicts Yn +I by

p

Yn+l = 2 fjXn + IX .
j=l

(The dependence onp is suppressed in the notation.) Loss
is measured by the squared prediction error (Yn+, -
YA )2.Yn + I
The following two notions are relevant. The conditional

mean squared prediction error is defined as

M = Mnp = E{(Y,,+I _ Yn+1)2 1 Yi and Xij,
for allj and i = 1, . . . , n}. (1.2)

The unconditional mean squared prediction error is

U = Unp = E{Mnp-} (1.3)

Thus, U is M averaged over the data. Asymptotically, as
will be seen, M U for nearly all configurations of the
data: means nearly equal and is used only informally.
The basic question of this article is how to choose p

so as to minimize M or U. It is to be noted that the models
are nested in p. Section 2 solves this problem from the
point of View of an omniscient statistician who knows the
parameters. To state the result, let

(2 = vare

UP2= var{ 131X1 XI I

j=p+ 1

Since the X's are Gaussian, crp2 is not random.

Theorem 1.1. Under the foregoing conditions, if p ' n
- 2,

Unp = (au2 + (TP2) (1 + - - (1.4)

There is a p * = p *(n) minimizing this expression; for any
such minimizer, p*(n)ln -O 0 as n - co. (If p nn - 1,
then U,,p = oo.)

If p is much smaller than n, then pl(n - 1 - p)-
pln, so
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The first term in (1.5) measures the effect of en+ l on the
prediction error and gives a fixed minimum for Unp. The
second term measures the effect of the omitted variables
Xj forj > p. This term decreases as p increases. The third
term measures the effect of random error on the coeffi-
cient estimates Ij. This term increases as p increases. It
reflects the often ignored fact that putting additional var-
iables into the equation introduces additional random
error into the coefficient estimates. Since cup2 decreases
with p and cr2p/n increases, there is an optimal p; this
was denoted by p * in the theorem.

Example. Take the X's independent with common var-
iance v2, and Pi3 = ji- where a > 4. Then p*(n) = (nv2/
o2)l/(2a). For a = 1 and r = v = 1, the optimal U is
nearly 1 + 2I/Vi. If p is taken as n/2, a not uncommon
choice in applied work, then U is nearly 2. With too many
variables in the equation, the mean squared prediction
error is unnecessarily large.

Since statisticians are seldom omniscient, the question
arises how to estimate p* without knowing the parame-
ters of the equation. An answer is given in Sections 3 and
4, as is now outlined. The regression mean squared error,
with the first p variables entered, is

1 n
Rnp= (Y - yi

n -P=
where as before Yi = Y,=I ,1Xij depends on n and p.
Notice that Rnp estimates c2 + Cr2 in (1.4).

The Sp Criterion. Let p(n) be the smallest p _ n/2

that minimizes Unp = Rnp (I + n - ) * (1.6)

Enter the first pj(n) variables.
Notice that p(n) depends only on n and the data. Then

the Sp criterion works almost as well as the optimal rule.
To state this clearly, recall the conditional mean squared
prediction error Mnp from (1.2). Let p3(n) minimize Mnp.

Theorem 1.2. Assume cp2 > 0 for all p. As n --> , in
probability,

(a) [Mnf(n) - r2]/[Unp*(n ) -( ]Up1
(b) [MnO(n) - C2]/[Unp*(n) - u2] I.

Informally, for most large Gaussian data sets, a stat-
istician who uses the Sp criterion, estimating p from the
data, gets just about the same conditional mean squared
prediction error as an omniscient statistician who uses
the optimal p5; and the optimal conditional mean squared
prediction error is about the same as the unconditional
obtained using p .

Although the Sp criterion is asymptotically efficient,
Un,5(n) - C2 need not be a good estimate of the optimal
Mn,P(n)- 2, Unp*(n) - C2, orMnO(n) _ u2. Indeed, in
Theorem 1.4 the term

I n 4

- E (Ei22 - 2)
n i=

creates a random error of order 1/V'i; fortunately, this
error does not depend on p.
To prove Theorem 1.2, it is necessary to estimate Mn,

and Rnp,
Theorem 1.3. Suppose p ' n. Then Mn,, is distributec

as

(au2 + ur 2)(1 + Xp2/Xn-p+ 12),
the two chi-squared variables, being independent.

Theorem 1.4. Assume cp > 0 for all p. Then
n

Rnp = r2 +up2 + ! (Ei2 C2) +Onp(Up2 + cr2p/n)
n i=1

where the maximum of 0, over 1 - p IAn tends tc
zero in probability as n tends to infinity.

The present results are restricted to the Gaussian case.
although at least one of us believes that extension to non-
Gaussian variables is possible. The restriction that Up2 >
0 for all p is irksome, because it rules out the importani
special case in which p,p = 0 for p ' po. We have some
hopes that this latter case can be treated by a backwarc
sequence ofF tests. Bootstrap and cross-validation tech
niques may also help. However, counterexamples shom
that Theorems 1.2 and 1.4 fail if up = 0 for some p: ther
the Sp criterion does not pick off a nearly optimal p.
Our work is closely related to that ofThompson (1978)

who derives Theorems 1.1 and 1.3 in slightly differen
form. Our proofs have been included since they are shor
and make the article self-contained. The criterion (1.6) is
the S, criterion, which is first given explicitly by Hockinh
(1976) and further explored by Thompson (1978). Botl
authors come upon S, by the heuristic replacement of cr
+ Cp2 in Theorem 1.1 by Rnp. As we pointed out, it i
almost accidental that this works. It does work, not be
cause Rnp is a good approximation to u2 + up2, but in
stead because the dominant error term does not depen(
on p.
There is some similarity in spirit between Sp and thi

Cp of Mallows (1973), but the two criteria are different
Krieger and Pickands (1981) suggest still another criterioi
equivalent to Sp but again without a direct proof of op
timality. The criterion can be applied to models used ii
clinical trials; see Freedman and Moses (1981), where los:
is measured by the variance of the estimator for the mail
effect.
The Sp criterion is related to work that has been don4

on selecting the order of an autoregressive model. The
final prediction error of Akaike (1970) is asymptoticall.
equivalent, as is the information criterion in Akaike
(1974). The recent work of Shibata (1980) uses the pre
diction error criterion in a way similar to ours in thi
article and establishes asymptotic optimality for anothe
expression asymptotically equivalent to Sp. Another re
lated paper is Shibata (1981), where the design matrix i
nonrandom, so the model changes as p increases. Hi
criterion is equivalent to ours. Having a nonrandom de
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sign matrix eliminates some distributional problems.
Present techniques allow the consideration of a design
matrix with some columns nonrandom and some columns
random.
Our results connect to James-Stein (1961) shrinking, as

follows. Consider estimating the infinite vector ,B by P,I
with squared-error loss, but computing norms relative to
the variance-covariance matrix of the X's. The estimators

A

considered here take Pj = 0 for j > p, and this shrinks
the vector towards 0. The shrinking is rather abrupt, but
our results indicate that for the optimal p, even when
estimated from the data, the shrinking will reduce the
mean squared error. With our loss function, the ordinary
least squares estimates wilf not in general be admissible,
even if there is an a priori upper bound on p; for example,
it is given that 3,j = 0 for j > po. For moderate n, the
optimal p may be substantially less than po.

2. PROOFS

We begin by arguing that the Xj in (1.1) may be assumed
independent and identically distributed, with mean 0 and
variance 1. To this end, letXj1+i* be the part of Xi+,
orthogonal to {Xl, . .. , Xj}, rescaled to have variance
1: by assumption, Xj,+ is not a linear combination of Xi,

., Xj. It is automatic that Xj+ 1* has mean 0. Of course,
k+ I

Xk+1* = ECj,k+>lXj
j= l

(2.1)

Define Xi.k + l* the same way:

k+ I

Xi,k+ I* = I Cj,k+ IXij. (2.2)
j= l

Of course, (2.1) is invertible: Xi, . . . , Xk+I can be ex-

pressed as fixed linear combinations ofXl*, . . . , Xk±I*
Now there are V such that

(2.3)Yi = i: 3j*Xij* + Ei.
j=l

Of course, ,j* is a fixed linear combination of 1, .

A>. We can define coefficient estimates 3*(n, p), pre-
dicted values Y, +j*, conditional and unconditional mean

squared prediction errors M,,* and U,p*, as well as the
regression mean squared error Rnp* in terms of the
starred model (2.3). All these quantities, except for the
coefficient estimates themselves, depend only on the col-
umn space of the design matrix. This can be stated for-
mally as follows.

Lemma 2.1.

(a) The column space ofX(n, p) coincides with the col-
umn space of X*(n, p).

(b) The a field generated by { Yi and Xij for all j and i
= 1, . . ., n} coincides with the a field generated by { Y
and Xij* for all j and i = 1, ... , n}.

(c) M,,p* = Mnp and Unp* = Unp and R,p* =Rnp
The routine proof is omitted. But now, we can drop

the stars, and assume

The Xj in (1. I-) are independent and identically
distributed, with mean 0 and variance 1. (2.4)

Under this circumstance,

2 =2

j=p+ I

Let

bpi= [(Xij + Ei (u2 + yp2)1/2

so the Bpi have mean 0 and variance 1. Let bp be the n
vector whose ith component is bpi. Recall that X = X(n,
p) is the n x p matrix whose ij entry is X1j.

Proof of Theorem 1.3. Clearly
p

Yn + - Yn-4-1 j Pj)Xn + l,j
j= 1

oo

+ PjXn+1l + En+ Ie
j=p+ I

Abbreviate B = 3(n, p). Then

Mnp =11 - 1 112+ .2u + Of

As usual,

13 - 13 = -2 Cp2(XTX) XT p.

Thus, under condition (2.4),

Mnp = [o.2 + up2][l + || (XTX)-IXTBP 112]. (2.5)
Let S be the unique positive definite square root of

XTX, and qp = XS'-, an n x p matrix. Then t, is or-
thonormal; +pT+ = IpxP. And X = 4S, so

11 (XTX) IXTTP 112 = 8pTX(XTX)-2XTP
= 8T51,SS-4STPT

= qT(XTx)-I.q,

where I = T8p is a p vector of independent N(0, 1)
variables, even conditionally on X, because + is orthon-
ormal. Thus, q is independent ofX; and nqT(XTX) - I -9 can
be recognized as Hotelling's T2 statistic, which has the
claimed distribution. See Hotelling (1931).

ProofofTheorem 1.1. The evaluation of Unp = E{Mnpl
is immediate from Theorem 1.3, because E{Xp2} = p and
E{l/Xn _p,+ 12} = 1/(n - p - 1). Also see Wijsman (1957).
It is only left to show that p*(n)ln -O 0. Note that u,p2
oas p-- o, so

uT2 + oS *(n)2 + u2p* (n)/n - >Unp*(,)' C2
We turn now to Theorem 1.4. The following lemma will

be helpful; its proof is standard.
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Lemma 2.2. Let (,, t2, . . . be independent and iden-
tically distributed, with mean and variance 1. Suppose
the moment generating functioinE{exp(ht,)} exists for all
h in a proper neighborhood of S. Then there is a positive
constant c not dependent on k such that for all x > 0 and
all k,

(a) P{t I + + (k > X} <exp{-x21(4k)} if x < ck
(b) P{,I + + $k > X} < exp{-ckl4} if x > ck

Proof. Let +(h) = E{exp(ht1)}, finite for 0 - h < ho,
where ho is positive. By Cheby3chev's inequality,

I{Pi ±+ . + ik > 4< e-)hx(h)k.
Since the mean is 0 and the variance is 1, ¢(h) = 1 +
2 h2 + o(h2) If 0 - h- ho where ho is small enough,

+(h) _ exp{h2}

so the probability in question is bounded above by

exp{-hx +kh2}.

Choose c = 2ho. To prove part (a), set h = x12k. To prove
part (b), set h = ho.

Corollary 2.1. Let ~i be independent N(O, 1) variables.
For any positive A there is a finite kA such that k > kA
entails

p > 3v(k1) >3A og k < l/kA.

Let H = H(n, p) be the usual projection onto the col-
umn space ofX = X(n, p):

H = X(XTX)-XT. (2.6)

Let Y = Y(n) be the n vector whose ith entry is Yi, and
let S = S(n, p) be the sum of squares for error:

S = S(n, p) = 11(I - H)Y 112 (2.7)

Thus, Rnp = S(n, p)l(n - p). Abbreviate E for the n vector
whose ith entry is Ei, and 8 for the n vector whose ith
entry is

E , (2.8)
j=p+

(This represents a change of notation.) Plainly,

S = 11(I - H)(E + 8) 112 = S, + S2 + 253, (2.9)

where

5 = 11 (I - H)E 112= E 12 -IH_ 112

S2 = 11 (I - H)8 112 = 11 8 112 - IlHS 112,

S3=((I-H)E, (I-H8)=(, 8)-(HE,HB), (2.10)

with ) for inner product. The dependence of SI, S2, S3

on n and p is suppressed. Cleady,
112/(n p)

+ 2+ (En2 - cr 2)]

In outline, the balance of the argument is as follows:

He 112/(n -p) p2(n -p)
S21(n -p)-crp
S31(n -p) 0,

where terms of smaller order than urp2 or pln can b(
dropped.

Lemma 2.3. Fix small positive numbers ao and P. Then
there is a large number na, such that for n > n,

_IHe 112-p(T2 < (p 2 + 2P)

for all p with 1 'p '-n
2

except on a set of probability ot.
Proof. Recall that H projects onto the column space

of the n x p matrix of {Xij}'s; since E is independent of
X, a routine argument shows that 11 HE 112 is distributed
for each n and p as &2 EPi= I Ci2, the (i being independent
N(O, 1) variables. Now use Corollary 2.1 with A = 2:

pi 11 He 112 - pCr2 I> 3or2 2 } < i/p2

so

1I HE 112 -po2
<

6 2pogp2
n -p n

for all p with po - p ' in

except on a set of probability Ilpo. Choose po so large
that I/po < /2, and 6(2p log p)"/2 < 3p for po < p c in.
We must now deal with p < po. In this range, up2la2

> -y > 0, so for all large n,

pi il HE 112 - pC2 > pC0 2(n - p)}

< pt | ,(2 >1) i^n}

< 2 exp{-col3yn},
where co is an absolute constant, by Lemma 2.2(b). Then

P{ I IIHE 112 _ pU2 > fpc2(n - p) for some p < po}

< 2poexp{-c op3yn}-- 0.

Lemma 2.4. Fix small positive numbers et and ,B. Then
there is a large number na3 such that n > n.,

S2 - (n - p)p2 < f(n -p)Crp2
for all p with 1 - p ' in

except on a set of probability ax.
Proof. As before, for each n and p, S2 is distributed

like I =P 2, SO

Pi I S2 -(n - p)up2

> 3crp22(n -p)og(n -p)} < 1I(n - p)2
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S2 - (n - p)u,2

< 6N/~g-)(n - p)Up2 for all p with I S p-' In

xcept on a set of probability 21n.

Lemma 2.5. Fix small positive numbers ot and ,B. Then
here is a large number na, such that, for n > nap,

S3 | < (3(n - p)( + n)
for all p with 1-' p Ijn

xcept on a set of probability oa.
Proof. As before, for each n and p, S3 is distributed
ke orcpj?,=p+1-+Ijtj', where the ij, ti' are independent
i(0, 1) variables. We must now estimate

.pn = P
n

I titi'
i=p+4 1

> P (n - P) [(crp/u) + (alSP)n ] (2.12)

,et 0 < po < o0, to be chosen later. Now upla > w > 0
)r 1 _ p ' po; in that range, for small , and y, for all
trge n,

1TSpn < P

n

i+ rI sI

i=p+ I

> 0-y(n -p)

<2 exp [ _ 2 2(n p) } (2.13)

ccording to Lemma 2.2(a). Next, take p > po. Abbre-
iate y = crp/u. Then

Y + P > 2Vp-1
n y

nd

2(n p)Vp-n ii- V'( '-p

)r p Ini, so for ,B small and pO < p . 1n, by Lemma
.2(a),

T,pn < P

n

y; titiI
i=p+ 1

< 2 exp{-4(2p}.

low
Po

= 2 lTpn +
p= I

n/2

pp 1pn
P=po+ I
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Proof of Theorem 1.4. This is immediate from (2.11)
and Lemmas 2.3-2.5.

Prdof of Theorem 1.2.

Claim (a). Since ur,2 > 0 for all p and Cp2 -_ 0 as p
00, it follows that p3(n) -* oo. Clearly, Mn,5(,) u2 SOn -
j3(n) -> oo too. For k fixed, max{XX2, X22, ... , Xk2} has
some finite distribution, and min{Xn2, Xn-I
Xn-k*12}.I co. Only convergence in probability is
needed, for present purposes. Fix 0 positive but small,
po and pI large but finite, n > Po + p1. Then

(1 0) -p + < Xp2Xn-p2 2 < (I +0-P
n-p+1 n-p +

simultaneously for all p with po ' Pp 'n - Pi, (2.14)

except on a set of small probability. This follows from
Lemma 2.1. In particular, although this is not needed,
/3(n)ln -O 0. When (2.14) holds, some easy algebra gives
(1 - 0)f(p) < g(p) < (1 + 0)f(p)

forpo' p'n -p', (2.15)

where

f(p) = U., - u2, g(p) = M,p - u2
Now p * minimizes f and /3 minimizes g; both fall in the
range po to n - pi, at least for n large, and with high
probability. So

g(/) > (1 - 0)f(/3) _ (1 - O)f(P
g(/3) . g(p*) < (1 + 0)f(p*)

This completes the argument for Claim (a).
Claim (b). Again, p/(n) -> . Fix 0 > 0 and po large and

n ' 2po. Let S, = (1/n) in= ( - 2). Then

R,n - cr - crp S, < ILo U2 + U2!j

for allp with po p In, (2.16)

except on a set of small probability. When (2.16) holds,
and :S, < 0IU2, a tedious calculation shows that

(1 - 0)f(p) <f(p) < (1 + O)f(p)
forpo p'5in (2.17)

where

f(p) = Un, - C2,fp) = U, - 2 - .

Now A minimizesfand p *, minimizes f; both fall between
po an0d in, at least for n large and with high probability.
Thus, except on a set of small probability,
(1 + 0)f( A) > f(t )

> (1 - 0)f(Q) _ (I - O)f(p*), (2.18)
< 2poexp{-k(32y2n} + 2 E

P=po+ 1

exp{ - I,B2p}p.

'he first sum goes to 0 as n -- oo, and the second is small
)r po large.

(1 - 0)f(p) f(p) 'f(p*) < (1 + O)f(P*).
In particular, (2.19) implies

(2.19)

f(j5) < [(1 + 0)/(l - O)]f(p*). (2.20)

> PV(.n-.p.)p
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Again, p* minimizes f,, so by (2.15) and (2.20),

(1 - 0)f(p*) ' (1 - 0)f( A)

< g(j)
< (1 + O)f(3)

< I 0)2 f(p )
1 -0

Thus

- O)f(p*) < g(A) <
(1 + 0)2 f(p*)

1- 0

[Received March 1982. Revised August 1982.]
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