
2588
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.9 SEPTEMBER 2008

PAPER

Attacking 44 Rounds of the SHACAL-2 Block Cipher Using
Related-Key Rectangle Cryptanalysis

Jiqiang LU†a), Student Member and Jongsung KIM††b), Nonmember

SUMMARY SHACAL-2 is a 64-round block cipher with a 256-bit
block size and a variable length key of up to 512 bits. It is a NESSIE se-
lected block cipher algorithm. In this paper, we observe that, when check-
ing whether a candidate quartet is useful in a (related-key) rectangle attack,
we can check the two pairs from the quartet one after the other, instead of
checking them simultaneously; if the first pair does not meet the expected
conditions, we can discard the quartet immediately. We next exploit a 35-
round related-key rectangle distinguisher with probability 2−460 for the first
35 rounds of SHACAL-2, which is built on an existing 24-round related-
key differential and a new 10-round differential. Finally, taking advantage
of the above observation, we use the distinguisher to mount a related-key
rectangle attack on the first 44 rounds of SHACAL-2. The attack requires
2233 related-key chosen plaintexts, and has a time complexity of 2497.2 com-
putations. This is better than any previously published cryptanalytic results
on SHACAL-2 in terms of the numbers of attacked rounds.
key words: block cipher, SHACAL-2, differential cryptanalysis, related-key
rectangle attack

1. Introduction

SHACAL-2 is a 64-round block cipher with a 256-bit block
size and a variable length key of up to 512 bits, which was
proposed in 2001 by Handschuh and Naccache [6] as a sub-
mission to the NESSIE (New European Schemes for Sig-
natures, Integrity and Encryption) project [16]; it is based
on the compression function of SHA-256 [17], an ISO hash
function international standard, where the plaintext enters
the compression function as the chaining value, and the key
enters the compression function as the message block. In
2003, SHACAL-2 became a NESSIE selected block cipher
algorithm, after a thorough analysis of its security and per-
formance.

The published cryptanalytic results on SHACAL-2 are
as follows. In 2003, Hong et al. [7] presented an impos-
sible differential attack [2], [14] on 30-round SHACAL-2.

Manuscript received January 28, 2008.
Manuscript revised March 21, 2008.
†The author is with the Information Security Group, Royal

Holloway, University of London, Egham, Surrey TW20 OEX, UK.
He as well as his work was supported by a British Chevening/Royal
Holloway Scholarship and the European Commission under con-
tract IST-2002-507932 (ECRYPT).
††The author is with the Center for Information Security Tech-

nologies (CIST), Korea University, Anam Dong, Sungbuk Gu,
Seoul, Korea. He was supported by the MKE (Ministry of Knowl-
edge Economy), Korea, under the ITRC (Information Technol-
ogy Research Center) support program supervised by the IITA
(Institute of Information Technology Advancement) (IITA-2008-
(C1090-0801-0025)).

a) E-mail: lvjiqiang@hotmail.com
b) E-mail: joshep@cist.korea.ac.kr

DOI: 10.1093/ietfec/e91–a.9.2588

In 2004, Shin et al. [18] presented a square-nonlinear attack
on 28-round SHACAL-2 and a differential-nonlinear attack
on 32-round SHACAL-2. Also in 2004, Kim et al. [12]
presented a related-key differential-nonlinear attack on 35-
round SHACAL-2 and a related-key rectangle attack [11]
on 37-round SHACAL-2, where the latter is based on a 33-
round related-key rectangle distinguisher. In 2006, Lu et
al. [15] presented a related-key rectangle attack on 42-round
SHACAL-2, after exploiting a 34-round related-key rectan-
gle distinguisher with probability 2−456.76 and then adopt-
ing the proposed early abort technique. In 2007, Wang
[20] presented a related-key rectangle attack on 43-round
SHACAL-2, by extending Lu et al.’s 34-round related-
key rectangle distinguisher to a 35-round distinguisher with
probability 2−474.76.

In this paper, we find that there is a flaw in Wang’s at-
tack algorithm on 43-round SHACAL-2, which makes the
attack infeasible. We exploit a more powerful 35-round
related-key rectangle distinguisher which has a probability
of 2−460, following the previous work described in [15], [20].
More importantly, we observe that, when checking whether
a candidate quartet is useful in a (related-key) rectangle at-
tack, we can check the two pairs from the quartet one after
the other, instead of checking them simultaneously; if the
first pair does not meet the expected conditions, we can dis-
card the quartet immediately. This can reduce the computa-
tion complexity of an attack, and, even more significantly,
may allow us to break more rounds of a cipher. Taking
advantage of this observation, we finally use the 35-round
related-key rectangle distinguisher to conduct a related-key
rectangle attack on the first 44 rounds of SHACAL-2. This
is better than any previously published cryptanalytic results
on SHACAL-2 in terms of the numbers of attacked rounds.
Table 1 summarises both previous and our new cryptanalytic
results on SHACAL-2 that uses 512 key bits.

The rest of this paper is organised as follows. In the
next section, we describe some notation and the SHACAL-2
block cipher. In Sect. 3, we introduce our observation on
related-key rectangle attacks. In Sect. 4, we give the 35-
round related-key rectangle distinguisher with probability
2−460, as well as the flaw in Wang’s attack. In Sect. 5,
we present our related-key rectangle attack on 44-round
SHACAL-2. Section 6 concludes this paper.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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Table 1 Summary of previous and our new cryptanalytic results on
SHACAL-2.

Type o f Attack Rounds Data Time Memory S ource

Impossible diff. 30 744 CP 2495.1 214.5 [7]

Square 28 240.9 CP 2494.1 245.9 [18]

Differential 32 243.4 CP 2504.2 248.4 [18]

Related-key diff. 35 242.4 RK-CP 2452.1 247.4 [12]

Related-key 37 2235.2 RK-CP 2487 2240.2 [12]

rectangle 42 2243.4 RK-CP 2488.4 2247.4 [15]

43† 2240.4 RK-CP 2480.4 2245.4 [20]

44 2233 RK-CP 2497.2 2238 This

diff.: differential, CP: Chosen Plaintexts, RK: Related-Key,
Time unit: Encryptions, Memory unit: Bytes,
†: The attack has a flaw; see Sect. 4.2 of this paper.

2. Preliminaries

2.1 Notation

• ⊕ : bitwise logical exclusive OR (XOR)
• & : bitwise logical AND
• � : addition modulo 232

• ¬ : bitwise logical complement
• ◦ : functional composition
• e j : a 32-bit word with zeros in all positions but bit j,

(0 ≤ j ≤ 31)
• ei1,···,i j : ei1 ⊕ · · · ⊕ ei j , (0 ≤ i1, · · · , i j ≤ 31)
• e j,∼ : a 32-bit word that has 0’s in bits 0 to j − 1, a one

in bit j and indeterminate values in bits ( j + 1) to 31

The notion of difference used throughout this paper is
with respect to the ⊕ operation, unless otherwise stated ex-
plicitly.

2.2 The SHACAL-2 Block Cipher

SHACAL-2 [6] takes as input a 256-bit plaintext, and has a
total of 64 rounds. Its encryption procedure can be described
as follows.

1. The 256-bit plaintext P is represented as eight 32-bit
words A0, B0, C0, D0, E0, F0, G0 and H0.

2. For i = 0 to 63:

T i+1
1 = Ki � Σ1(Ei) � Ch(Ei, Fi,Gi) � Hi �Wi,

T i+1
2 = Σ0(Ai) � Ma j(Ai, Bi,Ci),

Hi+1 = Gi,
Gi+1 = Fi,
Fi+1 = Ei,
Ei+1 = Di � T i+1

1 ,
Di+1 = Ci,
Ci+1 = Bi,
Bi+1 = Ai,
Ai+1 = T i+1

1 � T i+1
2 .

3. The ciphertext C is (A64, B64, C64, D64, E64, F64, G64,
H64).

In the above description, Ki is the i-th round key, Wi is
the i-th round constant, and the four functions Σ0(X), Σ1(X),
Ch(X, Y, Z) and Ma j(X, Y, Z) are defined as follows.

Σ0(X) = S 2(X) ⊕ S 13(X) ⊕ S 22(X),

Σ1(X) = S 6(X) ⊕ S 11(X) ⊕ S 25(X),

Ch(X, Y, Z) = (X&Y) ⊕ (¬X&Z),

Ma j(X, Y, Z) = (X&Y) ⊕ (X&Z) ⊕ (Y&Z),

where S j(X) represents right rotation of X by j bits.
The key schedule of SHACAL-2 accepts a variable

length key of up to 512 bits. Shorter keys can be used by
padding them with zeros to produce a 512-bit key string.
The 512-bit user key K is divided into sixteen 32-bit words
(K0,K1, · · · ,K15), which are the round keys for the first 16
rounds. Finally, the i-th round key (16 ≤ i ≤ 63) is gener-
ated as follows,

Ki = σ1(Ki−2) � Ki−7 � σ0(Ki−15) � Ki−16,

with σ0(X) = S 7(X) ⊕ S 18(X) ⊕ R3(X),

σ1(X) = S 17(X) ⊕ S 19(X) ⊕ R10(X),

where Rj(X) represents right shift of X by j bits.

3. An Observation on Related-Key Rectangle Attacks

In this section, we introduce our observation on related-key
rectangle attacks.

3.1 Description of Related-Key Rectangle Attacks

A related-key rectangle attack [4], [8], [11] is a combination
of a related-key attack [1], [13] and a rectangle attack [3]. A
related-key attack requires an assumption that the attacker
knows the specific differences between one or more pairs of
unknown keys; this assumption makes it difficult or even in-
feasible to conduct in many cryptographic applications, but
some of the current real-world applications allow for practi-
cal related-key attacks [10], for example, key-exchange pro-
tocols and hash functions. A rectangle attack is a variant
of the boomerang attack [19] and an improvement of the
amplified boomerang attack [9]. As a result, they share the
same basic idea of using two (or more) short differentials
with larger probabilities instead of a long differential with a
smaller probability.

A related-key rectangle attack is based on a related-
key rectangle distinguisher, which treats a block cipher
E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of two sub-
ciphers E = E1 ◦ E0 and requires that there exists a
related-key differential Δα → Δβ with probability p for E0:
PrX∈{0,1}n [E0

KA
(X) ⊕ E0

KB
(X ⊕ α) = β] = PrX∈{0,1}n [E0

KC
(X) ⊕

E0
KD

(X⊕α) = β] = p, and a related-key differential Δγ→ Δδ
with probability q for E1: PrX∈{0,1}n [E1

KA
(X) ⊕ E1

KC
(X ⊕ γ) =

δ] = PrX∈{0,1}n [E1
KB

(X) ⊕ E1
KD

(X ⊕ γ) = δ] = q, where
the four unknown user keys KA, KB, KC and KD satisfy
KB = KA ⊕ ΔK0, KC = KA ⊕ ΔK1 and KD = KC ⊕ ΔK0,
with ΔK0 and ΔK1 being two known differences.
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Fig. 1 A related-key rectangle distinguisher.

A quartet consists of two pairs of plaintexts (P, P∗ =
P⊕α) and (P′, P′∗ = P′ ⊕α). It is useful only if the two pairs
(P, P∗) and (P′, P′∗) satisfy the following three conditions;
see Fig. 1.

C1: E0
KA

(P) ⊕ E0
KB

(P∗) = E0
KC

(P′) ⊕ E0
KD

(P′∗)
= β, (1)

C2: E0
KA

(P) ⊕ E0
KC

(P′) = E0
KB

(P∗) ⊕ E0
KD

(P′∗)
= γ, (2)

C3: E1
KA

(E0
KA

(P)) ⊕ E1
KC

(E0
KC

(P′))=E1
KB

(E0
KB

(P∗)) ⊕ E1
KD

(E0
KD

(P′∗)) = δ. (3)

By assuming that the intermediate values after E0

distribute uniformly over all possible values, we can get
E0

KA
(P) ⊕ E0

KC
(P′) = γ with probability 2−n. Once this oc-

curs, by C1 we know that E0
KB

(P∗)⊕E0
KD

(P′∗) = γ holds with
probability 1, for E0

KB
(P∗)⊕E0

KD
(P′∗) = (E0

KA
(P)⊕E0

KB
(P∗))⊕

(E0
KC

(P′)⊕E0
KD

(P′∗))⊕ (E0
KA

(P) ⊕E0
KC

(P′)) = β⊕ β⊕ γ = γ.
As a result, by summarising all the possible β and γ,

we get that the probability that the quartet satisfies C3 is
expected to be about

∑
β,γ(Pr(Δα → Δβ))2 · 2−n · (Pr(Δγ →

Δδ))2 = 2−n · (p̂ · q̂)2, where p̂ = (
∑
β Pr2(Δα → Δβ)) 1

2

and q̂ = (
∑
γ Pr2(Δγ → Δδ)) 1

2 . For a random function, this
probability is about 2−n×2 = 2−2n.

Therefore, if p̂ · q̂ > 2−n/2, the related-key rectangle
distinguisher can distinguish between E and a random func-
tion, given sufficient chosen plaintext pairs.

Note that there exist three kinds of related-key rectan-
gle attacks, which correspond to the following three cases.

• Type 1: ΔK0 � 0,ΔK1 � 0, (four keys);
• Type 2: ΔK0 = 0,ΔK1 � 0, (two keys);
• Type 3: ΔK0 � 0,ΔK1 = 0, (two keys).

3.2 The Observation

A typical related-key rectangle attack treats a block cipher
E : {0, 1}n×{0, 1}k → {0, 1}n as a cascade of four sub-ciphers
E = Eb ◦ E1 ◦ E0 ◦ Ea, where E1 ◦ E0 denotes the rounds
for the rectangle distinguisher, Ea denotes the rounds before
E0, and Eb denotes the rounds after E1. Suppose Ka

A, Ka
B,

Ka
C and Ka

D are the subkeys used in Ea, which correspond to
KA, KB, KC and KD, respectively; and Kb

A, Kb
B, Kb

C and Kb
D

are the subkeys used in Eb, which correspond to KA, KB, KC

and KD, respectively.
Given a guess for the subkeys used in Ea and Eb,

the attacker tries to check whether a candidate quartet
((P̃, P̃∗), (P̃′, P̃′∗)) meets the difference conditions required
by the related-key rectangle distinguisher, that is, the fol-
lowing two conditions.

Ea
Ka

A
(P̃) ⊕ Ea

Ka
B
(P̃∗) = Ea

Ka
C
(P̃′) ⊕ Ea

Ka
D
(P̃′∗) = α, (4)

Eb,−1
Kb

A

(C̃) ⊕ Eb,−1
Kb

C

(C̃′) = Eb,−1
Kb

B

(C̃∗) ⊕ Eb,−1
Kb

D

(C̃′∗) = δ, (5)

where C̃ = EKA(P̃), C̃∗ = EKB(P̃∗), C̃′ = EKC (P̃′), C̃′∗ =
EKD (P̃′∗), and Eb,−1 denotes the inverse of Eb.

In a chosen-plaintext attack scenario, the general ap-
proach to meet the conditions described in Eq. (4) is to
choose the pairs (P̃, P̃∗) and (P̃′, P̃′∗) in the following way.

1. Choose a plaintext, P̃ say, and encrypt it with Ea under
the guess for Ka

A; we denote the encrypted value by
Ea

Ka
A
(P̃).

2. Compute Ea
Ka

A
(P̃) ⊕ α, and decrypt it with Ea under the

guess for Ka
B; the decrypted value is what we look for

P̃∗.
3. Choose the pair (P̃′, P̃′∗) in the same way as described

above.

Obviously, the quartet ((P̃, P̃∗), (P̃′, P̃′∗)), selected in
the above way, meets the conditions described in Eq. (4).
The remaining problem is to check whether it also meets
the conditions described in Eq. (5).

The key schedules of some block ciphers make it pos-
sible for us to know the subkey differences involved in Eb

from the user key differences ΔK0 and ΔK1, especifically
those with linearity. Thus, to check whether the candidate
quartet ((P̃, P̃∗), (P̃′, P̃′∗)) meets the conditions in Eq. (5), we
do not need to guess all the four unknown subkeys; we just
guess one or more of them, and then XOR them with the
subkey differences to get the remaining unknown subkeys.
Whereas the key schedules of some block ciphers make it
impossible for us to determine the subkey differences in-
volved in Eb from the user key differences ΔK0 and ΔK1;
thus it is necessary to guess the four† unknown subkeys
Kb

A, Kb
B, Kb

C and Kb
D to check whether the candidate quar-

tet ((P̃, P̃∗), (P̃′, P̃′∗)) meets the conditions in Eq. (5).
†We consider the general related-key rectangle attack with four

keys here; similar for the case with two keys.
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Previously, this is usually done by guessing the four
subkeys at once, and then simultaneously decrypting both
the pairs (C̃, C̃′) and (C̃∗, C̃′∗) to check whether they meet
the conditions in Eq. (5). However, in 2006, Lu et al. [15]
found that it may be possible to partially determine whether
or not a candidate quartet in a related-key rectangle attack
is useful one or more rounds earlier than usual. Specifically,
from Eq. (5) we know the expected output difference δ after
E1. Thus, if we know the expected output differences of one
or more rounds after E1, we can guess part of the subkeys
Kb

A, Kb
B, Kb

C and Kb
D such that we can check whether a can-

didate quartet meets one of the expected output differences
of the one or more rounds after E1. If not, we can discard it
immediately; otherwise, we guess part (or all) of the remain-
ing of the subkeys Kb

A, Kb
B, Kb

C and Kb
D, and check the quar-

tet similarly. Since some candidate quartets are discarded
before the next subkey guess, this results in less computa-
tions in the following steps, and may allow us to break more
rounds, depending on how many candidate quartets are re-
maining and how many subkeys are required to guess. This
is called the early abort technique [15].

We further observe that the early abort technique can
be conducted in a more efficient way. Our observation fo-
cuses on a single application of the early abort technique.
To make things clearer, we assume that the round imme-
diately following E1 is the target round for an application
of the early abort technique, and, to simplify our explana-
tion we assume that Eb has only this round (by this we can
continue to use the above notation for the ciphertexts and
subkeys without defining more). The observation is as fol-
lows. We can first guess the two subkeys Kb

A and Kb
C con-

nected with the pair (C̃, C̃′), and then check whether the pair
meets the condition Eb,−1

Kb
A

(C̃) ⊕ Eb,−1
Kb

C

(C̃′) = δ. If the pair

does not meet this condition, then we can discard the candi-
date quartet; if it does meet the condition, then we guess the
other two subkeys Kb

B and Kb
D connected with the other pair

(C̃∗, C̃′∗), and check whether this pair meets the condition
Eb,−1

Kb
B

(C̃∗) ⊕ Eb,−1
Kb

D

(C̃′∗) = δ. The candidate quartet is useful

if, and only if, every pair meets the respective conditions.
This can reduce the computational workload of a

related-key rectangle attack, and, even more significantly,
may allow us to break more rounds of a cipher, depending on
the distinguisher used and the round structure of the cipher.
Note that this observation can be also used to improve a
rectangle attack, although this improvement is usually small
(generally, a factor of 1

2 on the computational workload).

4. A 35-Round Related-Key Rectangle Distinguisher
with Probability 2−460 of SHACAL-2

In this section, we exploit a 35-round related-key rectan-
gle distinguisher with probability 2−460 for Rounds 0 to 34,
following the previous work described in [15], [20]; the dis-
tinguisher belongs to Type 3. Besides, we give the flaw in
Wang’s attack on 43-round SHACAL-2.

4.1 The 34-Round Related-Key Rectangle Distinguisher
Due to Lu et al.

In 2006, Lu et al. [15] gave a 24-round related-
key differential (0, 0, e6,9,18,20, 25,29, e31, 0, e9,13,19, e18,29, e31)
→ (e13,24,28, 0, 0, 0, e13,24,28, 0, 0, 0) with probability 2−38

for Rounds 1 to 24† and a 10-round differential
(e31, e31, e6,9,18,20,25,29,31, 0, 0, e9,13,19, e18,29,31, 0) → (e6,9,18,
20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0) with probability 2−65 for
Rounds 25 to 34.

They computed a square sum of at least 2−74(= 2−37×2)
for the probabilities of all the 24-round related-key differen-
tials for Rounds 1 to 24 that have only the output differences
different from the above 24-round differential, and a square
sum of at least 2−126.76(= 2−63.38×2) for the probabilities of
all the 10-round differentials for Rounds 25 to 34 that have
only the input differences different from the above 10-round
differential.

As a result, they exploited a 34-round related-key rect-
angle distinguisher with probability 2−456.76(= 2−74 ·2−126.76 ·
2−256) for Rounds 1 to 34, which was finally used to break
the first 42 rounds of SHACAL-2 along with the proposed
early abort technique.

4.2 The 35-Round Related-Key Rectangle Distinguisher
Due to Wang

In 2007, Wang [20] found that Lu et al.’s 34-round
related-key rectangle distinguisher can be extended to a
35-round distinguisher by appending one-round related-
key differential with probability 1 at the beginning:
given a plaintext pair P = (A0, B0,C0,D0, E0, F0,G0,H0)

and P̃ = (A
0
, B

0
,C

0
,D

0
, E

0
, F

0
,G

0
,H

0
) with some

fixed bits as described in Eq. (6), (where x0
i denotes

the i-th bit of X0), the 25-round related-key differ-
ential with probability 2−47 for Rounds 0 to 24 is
(0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,29, e31,Δ

′) → (e13,24,28, 0,
0, 0, e13,24,28, 0, 0, 0), where Δ′ = Σ1(E0) − Σ1(E0 ⊕ e9,13,19)
and the key difference is K ⊕ K̃ = (ΔK0,ΔK1, · · · ,ΔK15) =
(e31, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0). See Table 2 for
more details.

a0
31 = b0

31, a0
i = c0

i , for i = 6, 9, 18, 20, 25, 29;

b0
9 = ¬e0

9, a0
i = ¬ f 0

i , for i = 19, 30;

e0
i = 0, for i = 18, 29, 30;

f 0
i = g

0
i , for i = 9, 13, 19.

(6)

The second differential for the 35-round distinguisher is
the same 10-round differential as that used in the 34-round
related-key rectangle distinguisher due to Lu et al.

As a result, Wang exploited a 35-round related-key
rectangle distinguisher with probability (2−46)2 · 2−126.76 ·
2−256 = 2−474.76, which was used to break the first 43 rounds
of SHACAL-2.

†Certain input bits are fixed to meet several conditions.
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Table 2 The 25-round related-key differential for Rounds 0 to 24, where M = {6, 9, 18, 20, 25, 29}.
Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔFi ΔGi ΔHi ΔKi Prob.

0 0 eM e31 0 e9,13,19 e18,29 e31 Δ′ e31 1

1 0 0 eM e31 0 e9,13,19 e18,29 e31 0 2−11

2 e31 0 0 eM 0 0 e9,13,19 e18,29 0 2−10

3 0 e31 0 0 e6,20,25 0 0 e9,13,19 0 2−7

4 0 0 e31 0 0 e6,20,25 0 0 0 2−4

5 0 0 0 e31 0 0 e6,20,25 0 0 2−3

6 0 0 0 0 e31 0 0 e6,20,25 0 2−4

7 0 0 0 0 0 e31 0 0 0 2−1

8 0 0 0 0 0 0 e31 0 0 2−1

9 0 0 0 0 0 0 0 e31 e31 1

10 0 0 0 0 0 0 0 0 0 1
.
.
.

.

.

.
.
.
.

.

.

.

23 0 0 0 0 0 0 0 0 0 1

24 0 0 0 0 0 0 0 0 · 2−6

output e13,24,28 0 0 0 e13,24,28 0 0 0 / /

Table 3 The 10-round differential for Rounds 25 to 34, where M = {6, 9, 18, 20, 25, 29}.
Round (i) ΔAi ΔBi ΔCi ΔDi ΔEi ΔFi ΔGi ΔHi Prob.

25 0 0 eM e31 0 e9,13,19 e13,18,29 e13,31 2−11

26 e31 0 0 eM 0 0 e9,13,19 e13,18,29 2−14

27 0 e31 0 0 e6,20,25 0 0 e9,13,19 2−7

28 0 0 e31 0 0 e6,20,25 0 0 2−4

29 0 0 0 e31 0 0 e6,20,25 0 2−3

30 0 0 0 0 e31 0 0 e6,20,25 2−4

31 0 0 0 0 0 e31 0 0 2−1

32 0 0 0 0 0 0 e31 0 2−1

33 0 0 0 0 0 0 0 e31 1

34 e31 0 0 0 e31 0 0 0 2−11

output eM e31 0 0 e6,20,25 e31 0 0 /

However, we find a flaw in Wang’s attack algorithm,
which makes the attack infeasible.

4.2.1 A Flaw in Wang’s Attack

In Wang’s attack [20], the probability that 6 or more
quartets pass the filtering condition in Step 6 is about∑231.76

i=6 [
(

231.76

i

)
· (2−32×2)i · (1 − 2−32×2)231.76−i] ≈ 2−202.93, so

it is expected that about 2448 · 2−202.93 = 2245.07 guesses
of ((K36, · · · ,K42), (K∗36, · · · ,K∗42)) are suggested in Step 6.
Thus, to find the 512-bit user key by exhaustively search-
ing for the remaining 288 bits, Step 7 is expected to have a
time complexity much larger than 2512. Therefore, unlike
what the author claimed, the attack cannot break 43-round
SHACAL-2 (faster than an exhaustive key search).

4.3 A 35-Round Related-Key Rectangle Distinguisher
with Probability 2−460

We exploit a more powerful 10-round differential for
Rounds 25 to 34: (0, 0, e6,9,18,20,25,29, e31, 0, e9,13,19, e18,

19, e31)→ (e6,9,18,20,25,29, e31, 0, 0, e6,20,25, e31, 0, 0), which has

a probability of 2−56. See Table 3 for more details.
Using this 10-round differential with probability 2−56

and the 25-round related-key differential with probability
2−47 due to Wang, we get a new 35-round related-key rectan-
gle distinguisher, which has a probability of at least 2−460(=
(2−46 ·2−56)2 ·2−256) for the correct key, and has a probability
of (2−256)2 = 2−512 for a wrong key.

5. Related-Key Rectangle Attack on 44-Round
SHACAL-2

Assume that the two related user keys are K and K̃. First, we
review the following differential property of SHACAL-2,
which allows us to break more rounds by using the early
abort technique proposed in [15].

Property 1 (from [15], [20]): If the values of (Ai, Bi,

· · · ,Hi) and (A
i
, B

i
, · · · , Hi

), and the additive difference be-
tween Ki−1 and K̃i−1 are known, then we can get the val-

ues of (Ai−1, Bi−1, · · · ,Gi−1) and (A
i−1
, B

i−1
, · · · ,Gi−1

), the

additive difference between Hi−1 and H
i−1

, the values of
(Ai−5, Bi−5,Ci−5) and (A

i−5
, B

i−5
,C

i−5
), and the additive dif-
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ference between Di−5 and D
i−5

.

From the key schedule of SHACAL-2, we know that
it is impossible to determine the subkey differences of the
last few rounds (to be attacked) from the user key differ-
ence K ⊕ K̃; thus, to conduct an early abort on a candidate
quartet it is necessary to guess the two unknown subkeys in
every such a round, corresponding to K and K̃. In previous
related-key rectangle attacks on reduced-round SHACAL-2
presented in [15], [20], this is done by first guessing both the
round subkeys at a time, then partially decrypting a candi-
date quartet to get its corresponding quartet just before this
round, and finally checking whether it meets difference con-
ditions. However, as described in Sect. 3, we can check the
two pairs from a candidate quartet one after the other; more
specifically, when we conduct an early abort on a candidate
quartet, we first check whether one pair from the quartet is
useful, by guessing only the single subkey involved. If not,
then this quartet is not useful, thus we can discard it imme-
diately; otherwise, we check the other pair by guessing the
other subkey. The candidate quartet is useful if, and only if,
both the pairs are useful.

We can use the 35-round distinguisher given in Sect. 4
to mount the following related-key rectangle attack on the
first 44 rounds of SHACAL-2. The observation described
in Sect. 3.2 plays a crucial role on the efficiency of our at-
tack; otherwise, the distinguisher would enable us to break
just the first 43 rounds of SHACAL-1 in a similar way as
described in [15].

1. Choose a set S of 2232 plaintexts Pi = (A0
i , B

0
i ,C

0
i ,D

0
i ,

E0
i , F

0
i ,G

0
i ,H

0
i ), under the condition of Eq. (6), (i =

1, 2, · · · , 2232). In a chosen-plaintext attack scenario,
obtain all their corresponding ciphertexts under the key
K; we denote them by Ci, respectively.

2. Compute another set S̃ of 2232 plaintexts P̃i = (A
0
, B

0
,

C
0
, D

0
, E

0
, F

0
, G

0
, H

0
) = (A0

i , B0
i ⊕ e6,9,18,20,25,29,

C0
i ⊕e31, D0

i , E0
i ⊕ e9,13,19, F0

i ⊕ e18,29, G0
i ⊕e31,

H0
i + Σ1(E0

i ) − Σ1(E0
i ⊕ e9,13,19) mod 232). In a chosen-

plaintext attack scenario, obtain all their correspond-
ing ciphertexts under the related key K̃ = K ⊕
(e31, 0, 0, 0, 0, 0, 0, 0, 0, e31, 0, 0, 0, 0, 0, 0); we denote
them by C̃i, respectively.

3. Guess a 128-bit subkey pair ((K40,K41,K42,K43),
(K̃40, K̃41, K̃42, K̃43)) in Rounds 40, 41, 42 and 43.
Then, partially decrypt all the ciphertexts Ci through
Rounds 43–40 with (K43,K42,K41,K40) to get their
intermediate values just before Round 40; we de-
note them by C40

i , respectively. Partially decrypt
all the ciphertexts C̃i through Rounds 43–40 with
(K̃43, K̃42, K̃41, K̃40) to get their intermediate values just
before Round 40; we denote them by C̃40

i , respec-
tively. Keep (C40

i , C̃
40
i ) in a hash table. This pro-

cess proposes about 2232×2/2 = 2463 candidate quar-
tets (C40

i0
, C̃40

i0
,C40

i1
, C̃40

i1
), where 1 ≤ i0 ≤ i1 ≤ 2232.

By Property 1, we know (A35
i0
, B35

i0
,C35

i0
), (A35

i1
, B35

i1
,C35

i1
),

(A
35
i0 , B

35
i0 ,C

35
i0 ), (A

35
i1 , B

35
i1 ,C

35
i1 ), the additive difference

between D35
i0

and D35
i1

, and the additive difference be-

tween D
35
i0 and D

35
i1 . Finally, we choose only the

quartets (C40
i0
, C̃40

i0
,C40

i1
, C̃40

i1
) such that (A35

i0
, B35

i0
,C35

i0
) ⊕

(A35
i1
, B35

i1
,C35

i1
) = (e6,9,18,20,25,29, e31, 0), (A

35
i0 , B

35
i0 ,C

35
i0 )⊕

(A
35
i1 , B

35
i1 ,C

35
i1 ) = (e6,9,18,20, 25,29, e31, 0), and D35

i0
−D35

i1
=

D
35
i0 − D

35
i1 = 0. If 6 or more quartets pass this test,

record all the qualified quartets, and go to Step 4; oth-
erwise, repeat this step with another guess.

4. For every remaining quartet (C40
i0
,C40

i1
, C̃40

i0
, C̃40

i1
), do the

following.

a. Guess a 32-bit subkey K39 in Round 39. Par-
tially decrypt C40

i0
and C40

i1
through Round 39 with

K39 to get their intermediate values just before
Round 39; we denote them by C39

i0
and C39

i1
, re-

spectively. Thus, we can compute the the ad-
ditive difference between H38

i0
and H38

i1
by Prop-

erty 1; since H38
i = E35

i , we choose only the
quartets (C40

i0
,C40

i1
, C̃40

i0
, C̃40

i1
) such that H38

i0
−H38

i1
∈

{±26±220±225}. If 6 or more quartets pass this test,
record all the qualified (C40

i0
,C40

i1
, C̃40

i0
, C̃40

i1
), and go

to Step 4-(b); otherwise, repeat this step with an-
other guess of K39.

b. Guess a 32-bit subkey K̃39 in Round 39. Par-
tially decrypt C̃40

i0
and C̃40

i1
through Round 39 with

K̃39 to get their intermediate values just before
Round 39; we denote them by C̃39

i0
and C̃39

i1
, re-

spectively. Similarly, we choose only the quar-

tets (C40
i0
,C40

i1
, C̃40

i0
, C̃40

i1
) such that H

38
i0 − H

38
i1 ∈

{±26±220±225}. If 6 or more quartets pass this test,
record all the qualified (C39

i0
,C39

i1
, C̃39

i0
, C̃39

i1
), and go

to Step 5; otherwise, repeat this step with another
guess of K̃39.

5. For every remaining quartet (C39
i0
,C39

i1
, C̃39

i0
, C̃39

i1
), do the

following.

a. Guess a 32-bit subkey K38 in Round 38. Par-
tially decrypt C39

i0
and C39

i1
through Round 38 with

K38 to get their intermediate values just before
Round 38; we denote them by C38

i0
and C38

i1
, re-

spectively. Thus, we can compute E35
i0

, E35
i1

, and
the additive difference between H37

i0
and H37

i1
. We

choose only the quartets (C39
i0
,C39

i1
, C̃39

i0
, C̃39

i1
) such

that E35
i0
⊕ E35

i1
= e6,20,25 and H37

i0
− H37

i1
∈ {±231}.

If 6 or more quartets pass this test, record all the
qualified (C39

i0
,C39

i1
, C̃39

i0
, C̃39

i1
), and go to Step 5-(b);

otherwise, repeat this step with another guess of
K38.

b. Guess a 32-bit subkey K̃38 in Round 38. Par-
tially decrypt C̃39

i0
and C̃40

i1
through Round 38 with

K̃38 to get their intermediate values just before
Round 38; we denote them by C̃38

i0
and C̃38

i1
, re-
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spectively. Thus, we can compute E
35
i0 , E

35
i1 , and

the additive difference between H
37
i0 and H

37
i1 . We

choose only the quartets (C40
i0
,C40

i1
, C̃40

i0
, C̃40

i1
) such

that E
35
i0 ⊕ E

35
i1 = e6,20,25 and H

37
i0 − H

37
i1 ∈ {±231}.

If 6 or more quartets pass this test, record all the
qualified (C38

i0
,C38

i1
, C̃38

i0
, C̃38

i1
), and go to Step 6;

otherwise, repeat this step with another guess of
K̃38.

6. For every remaining quartet (C38
i0
,C38

i1
, C̃38

i0
, C̃38

i1
), do the

following.

a. Guess a 32-bit subkey K37 in Round 37. Par-
tially decrypt C38

i0
and C38

i1
through Round 37 with

K37 to get their intermediate values just before
Round 37; we denote them by C37

i0
and C37

i1
, re-

spectively. Thus, we can compute F35
i0

, F35
i1

, and
the additive difference between H36

i0
and H36

i1
. We

choose only the quartets (C38
i0
,C38

i1
, C̃38

i0
, C̃38

i1
) such

that F35
i0
⊕ F35

i1
= e31 and H36

i0
− H36

i1
= 0. If 6 or

more quartets pass this test, record all the quali-
fied (C38

i0
,C38

i1
, C̃38

i0
, C̃38

i1
), and go to Step 6-(b); oth-

erwise, repeat this step with another guess of K37.
b. Guess a 32-bit subkey K̃37 in Round 37. Par-

tially decrypt C̃38
i0

and C̃38
i1

through Round 37 with

K̃37 to get their intermediate values just before
Round 37; we denote them by C̃37

i0
and C̃37

i1
, re-

spectively. Thus, we can compute F
35
i0 , F

35
i1 , and

the additive difference between H
36
i0 and H

36
i1 . We

choose only the quartets (C38
i0
,C38

i1
, C̃38

i0
, C̃38

i1
) such

that F
35
i0 ⊕ F

35
i1 = e31 and H

36
i0 − H

36
i1 = 0. If 6 or

more quartets pass this test, record all the qualified
(C37

i0
,C37

i1
, C̃37

i0
, C̃37

i1
), and go to Step 7; otherwise,

repeat this step with another guess of K̃37.

7. For every remaining quartet (C37
i0
,C37

i1
, C̃37

i0
, C̃37

i1
), do the

following.

a. Guess a 32-bit subkey K36 in Round 36. Partially
decrypt C37

i0
and C37

i1
through Round 36 with K36

to get their intermediate values just before Round
36; we denote them by C36

i0
and C36

i1
, respectively.

Thus, we can compute the additive difference be-
tween H35

i0
and H35

i1
. We choose only the quartets

(C37
i0
,C37

i1
, C̃37

i0
, C̃37

i1
) such that H35

i0
− H35

i1
= 0. If 6

or more quartets pass this test, record all the quali-
fied (C37

i0
,C37

i1
, C̃37

i0
, C̃37

i1
), and go to Step 7-(b); oth-

erwise, repeat this step with another guess of K36.
b. Guess a 32-bit subkey K̃36 in Round 36. Partially

decrypt C̃37
i0

and C̃37
i1

through Round 36 with K̃36

to get their intermediate values just before Round
36; we denote them by C̃36

i0
and C̃36

i1
, respectively.

Thus, we can compute the additive difference be-

tween H
35
i0 and H

35
i1 . We choose only the quar-

tets (C37
i0
,C37

i1
, C̃37

i0
, C̃37

i1
) such that H

35
i0 − H

35
i1 =

0. If 6 or more quartets pass this test, record
(K36,K37, · · · ,K42), and go to Step 8; otherwise,
repeat this step with another guess of K̃36.

8. For a recorded (K36,K37, · · · ,K43), exhaustively search
for the remaining 256 bits with one known pair of
plaintext and ciphertext. If a 512-bit key is suggested,
output it as the user key of the 44-round SHACAL-2;
otherwise, repeat Step 3 with another guess.

This attack requires 2233 related-key chosen plaintexts.
The required memory for this attack is dominated by the
ciphertexts, which is approximately 2233 ·32 ≈ 2238 memory
bytes.

Step 3 has about 2 · 2232 · 232×8 · 8
44 ≈ 2486.54 44-round

SHACAL-2 encryptions, and it also requires about 232×8 ·
2232 · 232

32 = 2490.86 memory accesses if conducted on a 32-
bit computer, which is negligible compared with the 2486.54

encryptions. Due to the 128-bit filtering condition in Step 3,
it is expected that only about 2463 · (2−128)2 = 2207 candidate
quartets remain after Step 3 for every key guess.

The time complexity of Step 4-(a) is about 2·2207 ·232×9 ·
1
44 ≈ 2490.54 encryptions. There is a filtering condition of
23

232 = 2−29 in either of Steps 4-(a) and (b). In Step 4-(a), by
Poisson distribution, we can know that the probability that
6 or more quartets pass the test for a wrong guess is about
1, thus it follows that all the 2288 key guesses pass this step;
and about 2207 · 2−29 = 2178 candidate quartets remain after
this step for every key guess. The time complexity of Step
4-(b) is about 2·2178 ·232×10 · 1

44 ≈ 2493.54 encryptions. In Step
4-(b), the probability that 6 or more quartets pass the test for
a wrong guess is also about 1, thus it follows that all the
2320 key guesses pass this step; and about 2178 · 2−29 = 2149

candidate quartets remain after this step for every key guess.
The time complexity of Step 5-(a) is about 2 · 2149 ·

232×11· 1
44 ≈ 2496.54 encryptions. There is a filtering condition

of 2
232 · 1

23 = 2−34 in either of Steps 5-(a) and (b). In Step 5-
(a), the probability that 6 or more quartets pass the test for
a wrong guess is about 1, so it follows that all the 2352 key
guesses pass this step; and about 2149 · 2−34 = 2115 candidate
quartets remain after this step for every key guess. The time
complexity of Step 5-(b) is about 2 ·2115 ·232×12 · 1

44 ≈ 2494.54

encryptions. In Step 5-(b), since the probability that 6 or
more quartets pass the test for a wrong guess is also about
1, it follows that all the 2384 key guesses pass this step; and
about 2115 · 2−34 = 281 candidate quartets remain after this
step for every key guess.

The time complexity of Step 6-(a) is about 2·281 ·232×13 ·
1
44 ≈ 2492.54 encryptions. There is a filtering condition of
1

232 · 1
2 = 2−33 in either of Steps 6-(a) and (b). In Step 6-

(a), the probability that 6 or more quartets pass the test for
a wrong guess is about 1 as well, thus it follows that all the
2416 key guesses pass this step; and about 281 · 2−33 = 248

candidate quartets remain after this step for every key guess.
The time complexity of Step 6-(b) is about 2·248 ·232×14 · 1

44 ≈
2491.54 encryptions. In Step 6-(b), the probability that 6 or
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Table 4 The time complexity of (each step of) the attack.

Step (i) Time Complexity

1 2232 Encryptions

2 2232 Encryptions

3 2486.54 Encryptions

4 2490.54 + 2493.54 ≈ 2493.71 Encryptions

5 2496.54 + 2494.54 ≈ 2496.87 Encryptions

6 2492.54 + 2491.54 ≈ 2493.13 Encryptions

7 2490.54 + 2398.63 ≈ 2490.54 Encryptions

8 2464.51 Encryptions

total 2497.2 Encryptions

more quartets pass the test for a wrong guess is about 1,
thus it follows that all the 2448 key guesses pass this step;
and about 248 · 2−33 = 215 candidate quartets remain after
this step for every key guess.

The time complexity of Step 7-(a) is about 2 · 215 ·
232×15 · 1

44 ≈ 2490.54 encryptions. There is a filtering condi-
tion of 2−32 in either of Steps 7-(a) and (b). In Step 7-(a), the
probability that 6 or more quartets pass the test for a wrong
guess is about

∑215

i=6[
(

215

i

)
· (2−32)i · (1 − 2−32)215−i] ≈ 2−111.49,

thus it follows that about the 2480 · 2−111.49 = 2368.51 key
guesses pass this step. The time complexity of Step 7-(b)
is about 2 · 2368.51+32 · 6 · 1

44 ≈ 2398.63 encryptions. In Step
7-(b), the probability that 6 or more quartets pass the test
for a wrong guess is about (2−32)6 = 2−192, so it is ex-
pected that only about 2368.51+32 · 2−192 = 2208.51 guesses of
(K36,K37, · · · ,K43) pass Step 7-(b), which result in 2464.51

trials in Step 8.
Table 4 summarises the time complexity of each step of

the attack. Therefore, the attack has a total time complexity
of approximately 2497.2 44-round SHACAL-2 computations,
faster than an exhaustive search.

As about 2463 quartets are tested in this attack and the
35-round related-key rectangle distinguisher has a probabil-
ity of 2−460, we can learn that the expected number of the
qualified quartets for the correct key guess in Step 7-(b) is
about 2463 ·2−460 = 8. The probability that 6 or more quartets
pass Step 7-(b) is

∑2463

i=6 [
(

2463

i

)
·(2−460)i ·(1−2−460)2463−i] ≈ 0.8,

therefore, the related-key rectangle attack works with a suc-
cess probability of 80%.

6. Conclusions

SHACAL-2 is a NESSIE selected block cipher algorithm.
In this paper, we observe that, when checking whether a
candidate quartet is useful in a (related-key) rectangle at-
tack, we can check the two pairs from the quartet one after
the other, instead of checking them simultaneously; if the
first pair does not meet expected conditions, we can dis-
card the quartet immediately. Using this observation, we
present a related-key rectangle attack on the first 44 rounds
of SHACAL-2, after exploiting a 35-round related-key rect-
angle distinguisher with probability 2−460. This is the best
currently published cryptanalytic result on SHACAL-2.
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