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Abstract

Aspects of Holography And Quantum Error Correction

by

Pratik Rath

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Yasunori Nomura, Chair

The holographic principle has been a central theme in most of the progress in the field
of quantum gravity in recent years. Our understanding of the AdS/CFT duality, the best
known embodiment of the holographic principle, has taken a quantum leap in the last decade.
A key role in the elucidation of how the holographic duality functions has been played by
ideas from quantum information theory. In particular, the modern understanding of the
holographic dictionary is that it works as a quantum error correcting code.

In this dissertation, we focus on a two-pronged approach to developing a deeper insight
into the framework of quantum gravity. Firstly, despite the fact that we have learnt a lot
about quantum gravity from AdS/CFT, it is not directly applicable to our universe which
is an accelerating cosmological spacetime. Taking inspiration from the holographic principle
and formulating ideas from AdS/CFT in the abstract language of quantum error correction,
we take some preliminary steps in freeing ourselves from the crutches of AdS spacetimes
and understanding features of holography in a wider class of spacetimes. We develop a
framework for holography in general spacetimes using the Ryu-Takayanagi formula as a
postulate and discuss conditions for bulk reconstruction, the existence of a bulk dual and
qualitative features of putative holographic theories in arbitrary spacetimes.

Secondly, the holographic dictionary is not completely understood even within the realm of
AdS/CFT. We clarify some aspects and propose novel entries to the AdS/CFT dictionary
which shed light on how a gravitational description of a quantum mechanical system emerges
holographically. In particular, this includes an understanding of how the holographic com-
putation of Renyi entropy arises from a general feature of quantum error correction, supple-
mented by the special property that gravitational states have maximally mixed edge modes.
Further, we resolve a long standing conjecture about the nature of tripartite entanglement
of holographic states. Finally, we propose novel holographic duals to the reflected entropy
in the presence of entanglement islands, and the Connes cocycle flow.
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Chapter 1

Introduction

1.1 The Holographic Principle

Last century brought about deep insights into the way nature works, with the establishment
of two of the founding pillars of modern physics - quantum mechanics and general relativity.
Each of them have led to remarkable predictions that have been tested to a great accuracy
and have helped unravel many mysteries of our universe. However, e�orts to combine them
into a uni�ed theory of quantum gravity have faced various technical and fundamental issues.
In a nutshell, we do not as yet have a concrete conceptual framework for quantum gravity,
which we require to answer deep questions about, for instance, cosmology.

Since quantum gravity e�ects are often hard to test experimentally, we need theoretical
principles to guide us in a bottom-up pursuit of a complete theory of everything. A theoretical
window into a deeper understanding of quantum gravity comes from black holes, which arise
as classical solutions to general relativity and nevertheless, also exhibit important quantum
e�ects such as Hawking radiation [1, 2]. Some of the most important conceptual puzzles,
the black hole information paradox and its modern variants like the �rewall paradox, arise
from requiring the consistency of the equivalence principle, a feature at the heart of general
relativity, and unitarity, an equally important property of quantum mechanics [3, 4, 5].
Despite the fact that many of these problems haven't been resolved to a requisite degree of
satisfaction, the physics of black holes from a low energy perspective often teaches us a great
deal about the high energy physics of quantum gravity.

In particular, it is well understood that black holes behave like thermal objects, satisfying
the well known laws of thermodynamics [6]. The crucial peculiarity that they demonstrate,
however, is that the entropy of a black hole is given by the Bekenstein-Hawking formula [7]

SBH =
A

4GN
; (1.1)

whereA is the area of the black hole horizon. Most thermal systems, such as a box of gas,
have an entropy that scales with the volume of the system. Thus, it is highly unusual that
the entropy of the black hole in fact scales with its area.
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Having associated an entropy to black holes, consistency with the second law of thermo-
dynamics led Bekenstein to conjecture a bound on the amount of matter entropy content in
a given region [8]. Namely, he proposed that the amount of entropy in a regionR can never
exceed the entropy of a black hole �tting inside the regionR, i.e., A (@R)=4GN . Although
violations to the Bekenstein bound were found, a di�erent version, the covariant entropy
bound, has been consistent with all known examples and in fact, proved in certain regimes
[9, 10, 11]. The covariant entropy bound states that

SLS �
A (@R)
4GN

; (1.2)

where SLS is the matter entropy on a light-sheet, a null hypersurface shot out from@Rin
any one of the directions of negative expansion.

This holographic bound on the amount of entropy in a given gravitating region begs for
an explanation. It was proposed that a satisfying explanation for this property would be that
the quantum gravity degrees of a freedom in a given regionR in fact live on its boundary @R
as a hologram describing all the physics inside it [12, 13]. This idea, termed the holographic
principle will be a driving force in much of the work described in this dissertation.

The holographic principle is in fact backed by evidence from some of the best understood
top-down approaches to quantum gravity. String theory has been a leading candidate for a
theory of quantum gravity which resolves many of the technical issues faced in quantizing
gravity. Despite the fact that a complete understanding of non-perturbative string theory
eludes us at the moment, it has given rise to the most concrete realization of the holographic
principle, the AdS/CFT correspondence. The AdS/CFT correspondence is a duality between
quantum gravity in anti-de Sitter (AdS) spacetime, a solution to Einstein's equations with a
negative cosmological constant, and a conformal �eld theory (CFT) living on the boundary of
the spacetime [14, 15, 16]. This duality is a perfect embodiment of the holographic principle,
an ordinary non-gravitational theory living on the holographic boundary of spacetime, in
one lesser dimension, that describes the gravitational physics in the spacetime [17]. Inspired
by this, we will take seriously the possibility that quantum gravity is described by such a
holographic theory more generally, beyond just the example of the AdS/CFT correspondence.

1.2 AdS/CFT and Quantum Error Correction

A big step in understanding holography came in 2006, when Ryu and Takayanagi realized
that the Bekenstein-Hawking entropy formula, Eq. (1.1), was in fact a special case of a much
more general formula for the entanglement entropy of subregions in the CFT [18, 19],

S(R) =
A( R)
4GN

; (1.3)

where R is a subregion of the CFT and R is the Ryu-Takayanagi (RT) surface, a bulk
surface of minimal area anchored to the entangling surface@R. This entry to the AdS/CFT
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dictionary was soon updated to include time dependence and quantum corrections [20, 21,
22], and currently reads

S(R) =
A( R)
4GN

+ Sbulk (EW( R)); (1.4)

where R is the quantum extremal surface (QES) found by extremizing the quantity on the
right hand side. EW(R), termed the entanglement wedge, is the domain of dependence of a
partial Cauchy slice � R in the bulk such that @� R = R [  R .

The QES formula in turn implied that the AdS/CFT dictionary has the feature of subre-
gion duality, i.e., the boundary subregionR has access to all the information about the bulk
in its associated entanglement wedge EW(R) [23, 24, 25]. Although subregion duality initiall
led to some naive paradoxes, it was beautifully explained by thinking of semiclassical states
of the bulk gravitational theory as being encoded in the boundary theory via the mechanism
of quantum error correction [26]. More precisely, the Hilbert space of semiclassical bulk
states H bulk is unitarily mapped to a subspaceH code of the boundary Hilbert spaceH CFT .
This mapping is such that the action of bulk operators in the region EW(R) can be faithfully
represented by boundary operators in the subregionR.

Moreover, it was shown that a version of the RT formula holds in any quantum error
correcting code [27]. Thus, the existence of an RT formula goes hand in hand with the
property of subregion duality. Remarkable examples of quantum error correcting codes
where subregion duality and a geometric RT formula hold are tensor networks (TNs), which
serve as toy models for holography [28, 29]. Interestingly, TNs, whose graph structure can
be thought of as a discretized version of the bulk geometry it represents, are not bound to be
hyperbolic as they would in cases relevant to AdS/CFT. This makes it seem plausible that
Eq. (1.4) and the feature of subregion duality could hold quite broadly in quantum gravity.
In this dissertation, we will take the RT formula as a guiding principle for the framework of
quantum gravity and utilize it in general non-AdS spacetimes.

1.3 Holography in General Spacetimes

Part I of this dissertation focuses on applying ideas inspired from AdS/CFT to more general
spacetimes. In order to do so, we �rst need to understand where the holographic description
of the spacetime lives, i.e., what is the analogue of the boundary of AdS in an arbitrary
spacetime. Using the covariant entropy bound, it was proposed that \holographic screens"
provide the natural location for a holographic theory describing a general spacetime [30].
Holographic screens are hypersurfaces foliated by marginally trapped/anti-trapped surfaces
which provide the most optimal bound on the entropy in a spacetime. In AdS, the holo-
graphic screen approaches the boundary as expected. More generally, holographic screens
are highly non-unique, perhaps suggesting di�erent holographic descriptions for di�erent
patches of spacetime.
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A framework for understanding holography in general spacetimes based on the above
principles was laid out in [31]. Given a choice of holographic screenH in a spacetimeM , we
postulate that states living on constant time surfaces ofH describe the gravitational physics
of the interior of H . Importantly, as described before, we postulate that such states satisfy
the RT formula, Eq. 1.4. We then derive various consequences of these postulates to probe
whether this is a reasonable hypothesis. We now briey summarize the contents of this part
of the dissertation.

In Chapter 2, we argue that classical spacetimes represent information that is ampli-
�ed by a redundant encoding in the holographic theory of quantum gravity. In general,
classicalization of a quantum system involves making this information robust at the cost
of exponentially reducing the number of observables. In quantum gravity, the geometry
of spacetime must be the analogously ampli�ed information. Bulk local semiclassical op-
erators probe this information without disturbing it; these correspond to logical operators
acting on code subspaces of the holographic theory. From this viewpoint, we study how
local bulk operators may be realized in a holographic theory of general spacetimes, which
includes AdS/CFT as a special case, and deduce its consequences. In the �rst half of this
chapter, we ask what description of the bulk physics is provided by a holographic state dual
to a semiclassical spacetime. In particular, we analyze what portion of the bulk can be
reconstructed as spacetime in the holographic theory. We characterize the set of points re-
constructable by dressing local operators to the intersection of entanglement wedges, which
allows us to go beyond entanglement shadows. The analysis also indicates that when a
spacetime contains a quasi-static black hole inside a holographic screen, the theory provides
a description of physics as viewed from the exterior. In the second half, we study how and
when a semiclassical description emerges in the holographic theory. We �nd that states
representing semiclassical spacetimes are non-generic in the holographic Hilbert space. If
there are a maximal number of independent microstates, semiclassical operators must be
given state-dependently; we elucidate this point using the stabilizer formalism and tensor
network models. We also discuss possible implications of the present picture for the black
hole interior. This chapter is based on Ref. [32].

In Chapter 3, we attempt to unravel the fascinating relationship between entanglement
and emergent spacetime. It was broadly understood that entanglement between holographic
degrees of freedom is crucial for the existence of bulk spacetime [33]. We examine this
connection from the other end of the entanglement spectrum and clarify the assertion that
maximally entangled states in fact have no reconstructable spacetime. To do so, we �rst
de�ne the conditions for bulk reconstructability. Under these terms, we scrutinize two cases
of maximally entangled holographic states. One is the familiar example of AdS black holes,
which are dual to thermal states of the boundary CFT. Sending the temperature to the
cuto� scale makes the state maximally entangled and the respective black hole consumes the
spacetime. We then examine the de Sitter limit of FRW spacetimes. This limit is maximally
entangled if one formulates the boundary theory on the holographic screen. Paralleling the
AdS black hole, we �nd the resulting reconstructable region of spacetime vanishes. Motivated
by these results, we prove a theorem showing that maximally entangled states have no
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reconstructable spacetime. Evidently, the emergence of spacetime requires intermediate
entanglement. By studying the manner in which intermediate entanglement is achieved, we
uncover important properties about the boundary theory of FRW spacetimes. With this
clari�ed understanding, our �nal discussion elucidates the natural way in which holographic
Hilbert spaces may house states dual to di�erent geometries. This paper provides a coherent
picture clarifying the link between spacetime and entanglement and develops many promising
avenues of further work. This chapter is based on Ref. [34].

In Chapter 4, we introduce a novel, covariant bulk object|the holographic slice. This
construction is motivated by the ability to consistently apply the RT prescription for gen-
eral convex surfaces and is inspired by the relationship between entanglement and geometry
in tensor networks. The holographic slice is found by considering the continual removal
of short range information in a boundary state. It thus provides a natural interpretation
as the bulk dual of a series of coarse-grained holographic states. The slice possesses many
desirable properties that provide consistency checks for its boundary interpretation. These
include monotonicity of both area and entanglement entropy, uniqueness, and the inability
to probe beyond late-time black hole horizons. Additionally, the holographic slice illumi-
nates physics behind entanglement shadows, as minimal area extremal surfaces anchored
to a coarse-grained boundary may probe entanglement shadows. This lets the slice ow
through shadows. To aid in developing intuition for these slices, many explicit examples of
holographic slices are investigated. Finally, the relationship to tensor networks and renor-
malization (particularly in AdS/CFT) is discussed. This chapter is based on Ref. [35].

1.4 Holographic Dictionary

Part II of this dissertation focuses on a better understanding of the holographic dictionary
within the realm of AdS/CFT. A particular emphasis is laid on the abstract understanding of
holography as quantum error correction, so that most of the ideas discussed could also apply
in general spacetimes. This includes a detailed understanding of the entanglement structure
of holographic states and proposals for the holographic duals of various information theoretic
quantities. We now briey summarize the contents of this part of the dissertation.

In Chapter 5, we discuss the applicability of the RT formula in a limited regime be-
yond the realm of AdS/CFT. A concrete step towards understanding holography in general
spacetimes is to �rst understand the emergence of sub-AdS locality in AdS/CFT. TheT �T
deformation, proposed to be dual to �nite cuto� holography, serves as a rare, solvable irrel-
evant deformation and thus, gives tractable QFT tools to approach the problem of sub-AdS
locality. In this chapter, we explain the success of the RT formula inTT deformed theories
based on an argument similar to the proof of the RT formula in AdS/CFT [36]. We empha-
size general arguments that justify the use of the RT formula in general holographic theories
that obey a GKPW-like dictionary [15, 16]. In doing so, we clarify subtleties related to
holographic counterterms and discuss the implications for holography in general spacetimes.
This chapter is based on Ref. [37].
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In Chapter 6, we study Renyi entropiesSn in quantum error correcting codes and compare
the answer to the cosmic brane prescription for computingeSn � n2@n ( n� 1

n Sn ). We �nd that
general operator algebra codes have a similar, more general prescription. Notably, for the
AdS/CFT code to match the speci�c cosmic brane prescription, the code must have maximal
entanglement within eigenspaces of the area operator. This gives us an improved de�nition
of the area operator, and establishes a stronger connection between the Ryu-Takayanagi area
term and the edge modes in lattice gauge theory. We also propose a new interpretation of
existing holographic tensor networks as �xed area eigenstates instead of smooth geometries.
This interpretation would explain why tensor networks have historically had trouble modeling
the Renyi entropy spectrum of holographic CFTs, and it suggests a method to construct
holographic networks with the correct spectrum. This chapter is based on Ref. [38].

In Chapter 7, we argue that holographic CFT states require a large amount of tripartite
entanglement, in contrast to the conjecture that their entanglement is mostly bipartite [39].
Our evidence is that this mostly-bipartite conjecture is in sharp conict with two well-
supported conjectures about the entanglement wedge cross section surfaceEW [40, 41, 42].
If EW is related to either the CFT's reected entropy or its entanglement of puri�cation,
then those quantities can di�er from the mutual information at O( 1

GN
). We prove that

this implies holographic CFT states must haveO( 1
GN

) amounts of tripartite entanglement.
This proof involves a new Fannes-type inequality for the reected entropy, which itself has
many interesting applications. In doing so, we also show that random stabilizer tensor
networks, although a promising, analytically tractable model for various purposes, in fact
are inconsistent with holography. This chapter is based on Ref. [43].

In Chapter 8, we propose a new formula for the reected entropy that includes contri-
butions from entanglement islands. Contributions from entanglement islands have recently
been understood to be crucial when computing the entanglement entropy in QFT states cou-
pled to regions of semiclassical gravity [44, 45, 46, 47, 48, 49, 50]. Inspired by this, we derive
this new formula for the reected entropy from the gravitational path integral by �nding
additional saddles that include generalized replica wormholes. We also demonstrate that
our covariant formula satis�es all the inequalities required of the reected entropy. We use
this formula in various examples that demonstrate its relevance in illustrating the structure
of multipartite entanglement that are invisible to the entropies. This chapter is based on
Ref. [51].

In Chapter 9, we de�ne the \kink transform" as a one-sided boost of bulk initial data
about the Ryu-Takayanagi surface of a boundary cut. For a at cut, we then conjecture
that the resulting Wheeler-DeWitt patch is the bulk dual to the boundary state obtained by
Connes cocycle (CC) ow across the cut. The bulk patch is glued to a precursor slice related
to the original boundary slice by a one-sided boost. This evades ultraviolet divergences
and distinguishes our construction from one-sided modular ow. We verify that the kink
transform is consistent with known properties of operator expectation values and subregion
entropies under CC ow. CC ow generates a stress tensor shock at the cut, controlled by
a shape derivative of the entropy; the kink transform reproduces this shock holographically
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by creating a bulk Weyl tensor shock. We also go beyond known properties of CC ow by
deriving novel shock components from the kink transform. This chapter is based on Ref. [52].
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Part I

Holography in General Spacetimes



9

Chapter 2

Classical Spacetimes as Ampli�ed
Information in Holographic Quantum
Theories

2.1 Introduction

Emergence of classical spacetimes from the fundamental theory of quantum gravity is an im-
portant problem. In general, classicalization of a quantum system involves a large reduction
of possible observables. Suppose the �nal state of a scattering experiment iscA jAi + cB jB i ,
where jAi and jB i are two possible particle states. In principle, one can measure this state
in any basis in the space spanned byjAi and jB i . Classicalization caused by the dynamics,
however, makes this state evolve into a superposition of two classical worlds of the form
cA jAAA � � �i + cB jBBB � � �i , in which the information about the �nal particles is ampli�ed
in each branch [53, 54, 55]. In these classicalized worlds, the appropriate observable is only
a binary question,A or B , instead of continuous numbers associated withcA and cB . At the
cost of this reduction of observables, however, the informationA and B is now robust|it
can be probed by many physical entities of the system, and hence is classical. We note that
the information ampli�ed may depend on the state, e.g. the con�guration of a detector. (You
can imaginejAi and jB i being the spin up and down states of a spin-1=2 particle.) Given
a state, however, the amount of information ampli�ed is only an exponentially small subset
of the whole microscopic information.

In quantum gravity, the information of the semiclassical spacetimes must be analogously
ampli�ed. At the level of a semiclassical description, this information appears in the two-
point functions of quantum �eld operators (a class of operators de�ned in code subspaces
of the holographic theory [26, 28, 27]). At the fundamental level, this arises mainly from
entanglement entropies between the holographic degrees of freedom [18, 20, 36]. Note that
entanglement entropies are numbers, so they comprise only an exponentially small fraction
of the whole quantum information that the fundamental degrees of freedom may have, and
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hence the corresponding information may appear multiple times, e.g., in the propagators
of di�erent low energy �elds. This implies, in particular, that spacetime exists only to the
extent that we can erect the corresponding code subspace in which the notion of local bulk
operators can be de�ned.

In this paper, we pursue this picture in the context of a holographic theory for gen-
eral spacetimes developed in Ref. [31] (which includes AdS/CFT as a special case). Key
assumptions in our analyses are

(i) The holographic theory has degrees of freedom that appear local at lengthscales larger
than a cuto� lc. When a semiclassical description is available, the e�ective density of
these degrees of freedom is 1=4 in units of the bulk Planck length.

(ii) If a holographic state represents a semiclassical spacetime, the area of the minimal area
extremal surface (the HRT surface [20]) anchored to the boundary of a region � on a
leaf � of a holographic screen gives the entanglement entropy of � in the holographic
theory [56].

(iii) A quantum mechanical version of the statement (ii) above, analogous to those ob-
tained/conjectured in the AdS/CFT case [21, 22], is valid.

In Ref. [31], a few possible structures for the holographic Hilbert space have been discussed,
consistent with these assumptions. Our analyses in this paper, however, do not depend
on the details of these structures, so we will be mostly agnostic about the structure of the
holographic Hilbert space beyond (i){(iii) above.

We emphasize that the items listed above, especially (ii) and (iii), are assumptions.
They are motivated by bulk reconstruction in AdS/CFT, but for general spacetimes their
basis is weaker. However, the structures in (ii) and (iii) do not seem to be particularly
tied to the asymptotic AdS nature [27, 29], and there are analyses suggesting that they
may indeed apply to more general spacetimes [56, 57]. Our philosophy here is to adopt
them as guiding principles in exploring the structure of the (putative) holographic theory
of general spacetimes. In particular, we investigate what bulk spacetime picture the general
holographic theory provides and how it may arise from the fundamental microscopic structure
of the theory.

Our analyses of these issues are divided into two parts. In the �rst part, we study the
question: given a holographic state that represents a semiclassical spacetime,1 what descrip-
tion of the bulk physics does it provide? For this purpose, we employ the tool developed by
Sanches and Weinberg in AdS/CFT [58], which allows us to identify the region in the bulk
described by a local semiclassical �eld theory. To apply it in our context, however, we need
an important modi�cation. To describe a general spacetime, it is essential to �x a reference
frame, which corresponds to choosing a gauge for the holographic redundancy [55]. In the

1By a semiclassical spacetime, we mean a curved manifold on which a low energy e�ective �eld theory
can be erected. A holographic state representing a semiclassical spacetime, however, does not necessarily
describe the whole spacetime region in the interior of the holographic screen.
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bulk picture, this amounts to erecting a speci�c holographic screen with de�nite time slic-
ing. In fact, this time slicing has a special signi�cance [59]: it is the preferred time foliation
in the sense that other foliations of the same holographic screen do not lead to equal-time
hypersurfaces that satisfy the de�ning characteristic of leaves (i.e. marginal surfaces).

This leads us to propose that the holographic description of a general spacetime in a
given reference frame provides a local �eld theoretic description in the region consisting of a
point p that can be written as

p =
\

�

EW(�) ; (2.1)

where EW(�) is the entanglement wedge [60, 61] of �, and � must be chosen from spatial
regions on leaves of the holographic screen in the given reference frame. We �nd that this
criterion allows us to reconstruct most of the region inside the holographic screen for regular
spacetimes, including some entanglement shadows: regions which the HRT surfaces do not
probe. In AdS/CFT, the region reconstructable in this way seems to agree with the region
obtained in Ref. [58] using the analogous criterion, in which � is chosen from the set of all
the codimension-one achronal submanifolds of the AdS boundary.2

We show that for a pointp to be reconstructable, it is su�cient that all the future-directed
and past-directed light rays emanating fromp reach outside the entanglement shadow early
enough. We also argue that forp to be reconstructable, at least one future-directedand past-
directed light ray from p must escape the shadow region. This latter condition implies that
the interior of a black hole cannot be reconstructed as local spacetime (except in transient
periods, e.g., just after the formation), since the horizon of a quasi-static black hole serves
as an extremal surface barrier [62]. On the other hand, the analyses of Refs. [23, 24] suggest
that the information about the interior is somehow contained in the holographic state, since
the entanglement wedges of leaf regions cover the interior. We interpret these to mean
that the description of a black hole provided by the holographic theory is that of a distant
picture: the information about the interior is contained in the stretched horizon degrees of
freedom [63] whose dynamics is not described by local �eld theory in the bulk.

This does not exclude the possibility that there is an e�ective description that makes a
portion of the interior spacetime manifest by appropriately rearranging degrees of freedom.
We expect that such a description, if any, would be possible only at the cost of the local
description in some other region, and it would be available only for a �nite time measured
with respect to the degrees of freedom made local in this manner. We will discuss possible
implications of our picture for the issue of the black hole interior [4, 5, 64] at the end of this
paper.

In the second part of our analyses, we study how and when a semiclassical description
emerges in the holographic theory. We �rst argue that when the holographic space of volume

2This statement applies if the topology of the boundary space is simply connected as we focus on in this
paper. If it is not, in particular if the boundary space consists of disconnected components as in the case of
a two-sided black hole, then the two procedures lead to di�erent physical pictures. This will be discussed in
Ref. [34]
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A is regarded as consisting ofNA cuto�-size cells, the number of degrees of freedom, lnk,
in each cell should be large. This is because entanglement between di�erent subregions is
robust only when many degrees of freedom are involved. When a semiclassical description
is available, lnk is related to the strength of gravity in the bulk:

ln k =
A

4ld� 1
Pl NA

(� 1); (2.2)

wherelPl is the Planck length in the (d + 1)-dimensional bulk. The large number of degrees
of freedom in each cell implies that the holographic theory can encode information about the
bulk in the con�guration of these degrees of freedom, as well as in entanglement entropies
between subregions. Given that local semiclassical operators in the reconstructable region
carry the entanglement entropy information, we might expect that the information about
the other regions of spacetime is encoded mostly in the degrees of freedom within the cells.

Including the degrees of freedom in each cell, the holographic space can accommodate up
to eA =4 independent microstates for the same semiclassical spacetime. Our analysis indicates
that a generic state in the holographic Hilbert space does not admit a semiclassical spacetime
interpretation within the holographic screen. In other words, bulk gravitational spacetime
emerges only as a result of non-genericity of states in the holographic Hilbert space. Suppose
there is a spacetimeM that has eA =4 independent microstates. Assumption (ii) above then
tells us that the microstates for such a spacetimeM cannot form a Hilbert space|if it did,
a generic superposition of these states would still representM and yet have an entanglement
structure that is di�erent from what is implied by (ii).

At the leading order in 1=A, the space of microstates isat most the group space of
U(k)N A , which preserves the entanglement structure between local degrees of freedom in the
holographic theory. This space is tiny compared withH A , i.e. the group space ofU(kN A ):
kU(k)N A k n kU(kN A )k. The actual space for the microstates, however, can be even smaller.

If the microstates comprise the elements ofU(k)N A , then it has eA =4 independent mi-
crostates. In this case, the semiclassical operators associated with these microstates must
be state-dependent as argued by Papadodimas and Raju for the interior of a large AdS
black hole [65, 66]. This is because the code subspaces relevant for these microstates have
nontrivial overlaps in the holographic Hilbert space.

What happens if microstates comprise (essentially) only a discreteeA =4 \axis" states? In
this case, di�erent code subspaces can be orthogonal, so that one might think that semiclas-
sical operators can be de�ned state-independently without any subtlety. However, we argue
that semiclassical operators still cannot be state-independent in this case. This is because a
semiclassical operator is represented redundantly on subregions of the holographic space as
a result of amplifying the information about spacetime. The necessity of state-dependence,
therefore, is robust if any given spacetimeM haseA =4 independent microstates.

The organization of this paper is as follows. In Section 2.2, we review our framework
of the holographic theory of general spacetimes. In Section 2.3, we discuss the role of
information ampli�cation in classicalization. In Section 2.4, we present the �rst part of our
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analyses. We study what portion of the bulk is directly reconstructable from a holographic
state, for spacetimes without an entanglement shadow, with reconstructable shadows, and
with non-reconstructable shadows. In Section 2.5, we present the second part, in which we
study how and when a semiclassical description emerges. We discuss general features of the
holographic encoding of spacetimes and non-genericity of semiclassical states. In Section 2.6,
we conclude with remarks on possible implications of our picture for the black hole interior.

Throughout the paper, we adopt the unit in which the lengthlPl |which corresponds to
the bulk Planck length when the semiclassical picture is available|is set to unity.

2.2 Framework

The holographic degrees of freedom live in a holographic space, which can be identi�ed as
a leaf of the holographic screen [67] when the state admits a semiclassical interpretation.
For de�niteness, we assume that the holographic redundancy is �xed in the observer centric
manner [68, 55]|the future-directed ingoing light rays emanating orthogonally from the leaf
meet at a spacetime point (associated with the origin of a freely falling reference frame),
unless these light rays hit a singularity before this happens.

The size (volume) of the holographic space changes as a function of time. The Hilbert
space relevant for the holographic degrees of freedom can thus be regarded as3

H =
M

A

H A ; (2.3)

whereH A is the Hilbert space for the states of the degrees of freedom living in the holographic
space of volume betweenA and A + � A ; namely, we have grouped classically continuous
values ofA into a discrete set by regarding the values betweenA and A + � A as the same
and labeling them byA. As in standard statistical mechanics, the precise way this grouping
is done is not important (unless� A is taken exponentially small inA , which is equivalent to
resolving microstates and hence is not a meaningful choice).

The dimension ofH A is given by

ln dim H A =
A
4

�
1 + O

�
1

A q> 0

��
: (2.4)

This gives the upper bound ofeA =4 on the number of independent semiclassical states having
the leaf areaA . (The original covariant entropy bound of Ref. [9] only says that the number
of independent semiclassical states is bounded byeA =2, since the number in each side of the
leaf is separately bounded byeA =4. In Ref. [31], it was argued that the actual bound might
be stronger:eA =4 for states representing both sides of the leaf. Our discussions in this paper
do not depend on this issue.)

3It is possible that the direct sum structure arises only e�ectively at the fundamental level. It is also
possible that the Hilbert space of quantum gravity contains states that cannot be written as elements ofH A .
These issues, however, do not a�ect our arguments.
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For the purposes of this paper, we focus on holographic spaces which have the topology of
Sd� 1 with a �xed d, although we do not see a di�culty in extending this to other cases.4 This
implies that the holographic theory lives ind-dimensional (non-gravitational) spacetime, and
we are considering the emergence of (d + 1)-dimensional gravitational spacetime. Following
assumption (i) in the introduction, we divide the holographic space of volumeA into NA =
A=ld� 1

c cuto�-size cells and consider that each cell can takek = eld� 1
c =4 di�erent states:

H A = H 
 NA
c ; (2.5)

whereH c is a k-dimensional Hilbert space associated with each cuto� cell. Below, we focus
on the regime

A � ld� 1
c ;

ld� 1
c

4
� ln 2; (2.6)

so that the setup is meaningful.
In the AdS/CFT case, k � ec, wherec is the central charge of the CFT, which is taken

to be large. This implies that lc is large in units of the bulk Planck length. Indeed, the
whole physics in a single AdS volume near the cuto� surface corresponds to physics of the
c degrees of freedom in a single cell of volumeld� 1

c . This, however, does not mean that
physics in a single AdS volume in the central region is con�ned to a description within a
single boundary cell. It is, in fact, delocalized over the holographic space, (mostly) encoded
in the entanglement between the degrees of freedom in di�erent cells.

2.3 Classicalization and Spacetime

In this section, we present a heuristic discussion on ampli�cation of information and its
relation to the emergence of spacetime.

As discussed in the introduction, classicalization of a quantum system involves ampli�ca-
tion of information at the cost of reducing the amount of accessible information. To illustrate
this, consider that a detector interacts with a quantum system

j	 si = cA jAi + cB jB i : (2.7)

The con�guration of the detector can be such that it responds di�erently depending on
whether the system is injAi or jB i . The state of the system and detector after the interaction
is then

j	 s+d i = cA jAij dA i + cB jB ij dB i ; (2.8)

where jdA i and jdB i represent the states of the detector. Now suppose that an observer
reads the detector. The observer's mental state will then be correlated with the state of the
detector:

j	 s+d+o i = cA jAij dA ij oA i + cB jB ij dB ij oB i ; (2.9)
4An interesting case is that the holographic space consists of twoSd� 1 with a CFT living on each of

them [69].
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wherejoA i and joB i are the observer's mental states. The observer may then write the result
of the experiment on a note:

j	 s+d+o+n i = cA jAij dA ij oA ij nA i + cB jB ij dB ij oB ij nB i ; (2.10)

wherejnA i and jnB i are the states of the note after this is done. We �nd that the information
about the result is ampli�ed in each term, i.e. it is redundantly encoded. This implies that
a physical entity can learn the result of the experiment by accessing any factor, e.g.joX i
or jnX i (X = A; B ), without fully destroying the information about it in the world. This
signi�es that the relevant information, i.e. A or B , is classicalized|it can be shared by
multiple entities in the system or accessed multiple times by a single physical object.

The above process of classicalization is accompanied by a reduction of the number of
observables. The original state of the system contains a qubit of information, given by two
parameters (�; � ) spanning the Bloch sphere. This manifests in the fact that depending
on the con�guration of the detector, one could have ampli�ed the information in a basis
other than fj Ai ; jB ig . Once a state is chosen, however, the ampli�cation occurs only for a
limited amount of information; in the above case, the only observable about the system in a
classicalized world is a binary question,A or B :

qubit: ( �; � ) �! bit: A or B: (2.11)

This exponential reduction of the number of observables is the cost of making the information
robust and is a consequence of the no-cloning theorem [70]. We note that there is no issue
of ambiguity of measurement basis in Eq. (2.10): the basis is determined by ampli�cation.

Another example of classicalized states, analogous to each term in Eq. (2.10), is given by
coherent states in a harmonic oscillator of frequency!

j� i = e� 1
2 j � j2

1X

n=0

� n

p
n!

jni ; (2.12)

where � = j� jei' is a complex number withj� j � 1, and jni are the energy eigenstates:
H jni = ( n + 1=2)! jni . The information in � is ampli�ed in the sense that it is robust under
measurements, i.e. actions of creation and annihilation operators, up to corrections of order
1=j� j2. For example, the action of a creation operator toj� i , j ~� i / ayj� i , does not a�ect
the phase space trajectory of the oscillator at the leading order in 1=j� j2:

h~� (t)jO � j ~� (t)i = h� (t)jO � j� (t)i
�

1 + O
�

1
j� j2

��
: (2.13)

Here, j� (t)i = e� iHt j� i and similarly for j ~� (t)i , while O+ = ( a+ ay)=2 andO� = ( a� ay)=2i ,
giving

h� (t)jO+ j� (t)i = j� j cos(!t � ' ); (2.14)

h� (t)jO � j� (t)i = �j � j sin(!t � ' ): (2.15)
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Thus, the information in j� j and ' can be said to be classicalized. It is an exponentially
small subset of the information that a generic microstate in the Hilbert space of the harmonic
oscillator may carry.

The above example illustrates that the information ampli�cation need not occur in real
space. It also suggests that the resulting classical states are generally overcomplete (for more
complete discussion, see, e.g., Ref. [71]). Speci�cally, the space formed|not spanned|by
j� i is larger than that of jni . Nevertheless, forj� j � 1, the coherent states can be viewed
as forming (approximate) basis states: they are nearly orthogonal

jh� j� 0ij 2 = e�j � � � 0j2 n 1; (2.16)

and complete
1
�

Z
d2� j� ih� j = Î; (2.17)

so that an arbitrary state j i may be expanded as

j i =
Z

d2� c � j� i ; (2.18)

where c� = h� j i =� . We note, again, that there is no basis ambiguity here because of the
ampli�cation. Interpreted in terms of operators whose matrix elements betweenj� i and j� 0i
(� 6= � 0) are suppressed, such asO� giving h� jO � j� 0i = j� 0 � � � j2e�j � � � 0j2 =4, the state in
Eq. (2.18) appears as a superposition of di�erent classical worlds.

In quantum gravity, we deal with the issue of classicalization in two steps. We �rst
deal with classicalization of the major degrees of freedom in the fundamental theory while
leaving the rest as quantum degrees of freedom. This can be done in each basis state, e.g. a
single term in Eq. (2.10) and Eq. (2.18). The classicalized degrees of freedom correspond to
background spacetime while the remaining ones are excitations on it (which we call matter,
but also includes gravitons). The resulting theory|the theory of quantum degrees of freedom
on classical spacetime|is what we call semiclassical theory. Since the way ampli�cation
occurs depends on the dynamics, what spacetime picture emerges may depend on the time
evolution operator. In this language, the reference frame dependence of formulating the
holographic theory arises because there are multiple equivalent ways of describing the system
using di�erent time evolution operators.

Since classicalization leading to semiclassical theory is only partial, observables in the
semiclassical theory are still quantum operators. The information classicalized in this pro-
cess, i.e. background spacetime, appears in the two-point functions of these operators. From
the microscopic point of view, the semiclassical operators are de�ned by their actions in
the code subspace [26, 28, 27], and their two-point functions encode entanglement entropies
between the fundamental holographic degrees of freedom [18, 20, 36]. (This structure is
visible clearly, e.g., in tensor network models [72, 28, 29].) The information in entanglement
entropies, and in more general entanglement structures, may be viewed as ampli�ed; for
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instance, a maximally entangled state between two systemsA and B is given by

j	 i /
� Y

i

eay
i by

i

�
j0i ; (2.19)

where ai j0i = bi j0i = 0, and gross features of entanglement between the two systems,
including the entanglement entropy, are robust with respect to (a class of) measurements,
i.e. operations of a limited number of creation and annihilation operators. It is this robustness
that allows us to take the probe approximation, and hence consider models adopting this
approximation (e.g. tensor network models).

While classicalized information is ampli�ed, it cannot be probed an in�nite number of
times (unless the system is in�nitely large). For example, if quantum measurements are
performed to all the entities in Eq. (2.10), the information about the experimental result
would be lost from the state. In gravity, information about background spacetime can
be probed by excitations in the semiclassical theory. Their existence, however, necessarily
a�ects the spacetime, so that having too many of them alters it completely. It is interesting
that two seemingly unrelated statements that probing geometry necessarily backreacts on
spacetime and that quantum information is fragile under measurements are in fact related.
(A similar consideration also applies to the measurement of electric/magnetic �elds.)

The precise way in which a semiclassical state and the code subspace associated with it
emerge in the holographic theory is not yet understood. Various aspects of this issue have
been studied, e.g., in Refs. [65, 66, 73, 31, 74, 75], including the dependence of the code
subspace on a semiclassical state and the possible overcomplete nature of the semiclassical
states. This issue will be the subject of our study in Section 2.5.

We stress that since the ampli�ed information appears only in correlators of semiclassical
operators, microscopic information about the holographic degrees of freedom is said to be
measured only if it is probed by semiclassical operators, i.e. transferred to excitations rep-
resented by these operators. This implies that any \gravitational thermal radiation," e.g.
the thermal atmosphere within the zone of a black hole, is not \physical" (does not have a
semiclassical meaning) unless it is probed by matter degrees of freedom, e.g. detected by a
physical apparatus or converted into Hawking radiation in the asymptotic region (outside the
zone). This is, in fact, a key element of a proposed solution to (the entanglement argument
of) the �rewall paradox [76, 77, 78] and the Boltzmann brain problem [79] (see also [80]).

2.4 Reconstructing Spacetime

In a holographic theory for general spacetimes, it is important to choose a reference frame
to obtain a description in which the redundancy associated with holography (and comple-
mentarity) is �xed. As we will see below, reconstructing spacetime through our method
generally requires knowledge about the holographic state at di�erent times. (For an analysis
of spacetime regions reconstructed from a single leaf, see the appendix.) Suppose that the
state represents a semiclassical spacetime, at least for a su�ciently long time period. We



CHAPTER 2. CLASSICAL SPACETIMES AS AMPLIFIED INFORMATION IN
HOLOGRAPHIC QUANTUM THEORIES 18

are interested in knowing what portion of the spacetime is directly reconstructable from
such a state. In other words, we want to know what kind of bulk spacetime description the
holographic theory provides.

For this purpose, we �rst de�ne the entanglement wedge [60, 61, 56] in the form applicable
to general spacetimes. Let � be a (not necessarily connected) region on a leaf, and letE(�)
be the HRT surface (appropriately generalized to include higher order e�ects): the bulk
codimension-two surface anchored to the boundary of �,@E(�) = @�, extremizing the
generalized entropy [22].5 The entanglement wedge of � is de�ned as the bulk domain of
dependence of any achronal bulk surface � whose boundary is the union of � andE(�):

EW(�) = D � ; @� = � [ E(�) : (2.20)

In the AdS/CFT case, the entanglement wedge can be de�ned either associated with a
spatial region � or its boundary domain of dependence, which are equivalent if we know the
conditions imposed at the boundary. In general spacetimes, it is important to de�ne the
entanglement wedge associated with a spatial region on a leaf (a preferred time slice in the
holographic theory), since the theory on the holographic screen is in general not Lorentz
invariant. In the AdS/CFT case, this implies that we only consider spatial regions � on
equal-time hypersurfaces in a �xed time foliation (although di�erent �'s can be regions at
di�erent times).

We note that if we change a reference frame, the set of � we consider changes from
the bulk point of view. In general spacetimes, changing the reference frame corresponds to
choosing a di�erent time evolution operator|in the bulk language, this ends up choosing a
di�erent holographic screen, and hence di�erent leaves, from which �'s are selected. In the
AdS/CFT case, changing the reference frame does not a�ect the time evolution operator,
i.e. CFT Hamiltonian, because of the high symmetry of the system|it only changes the
time foliation to another one related by a conformal transformation. This, however, does
not mean that we can choose � to be an arbitrary spacelike region. In any �xed reference
frame, � should be restricted to spatial regions on equal-time hypersurfaces of the given time
foliation.

Going back to the issue of reconstructing spacetime, the analyses of Refs. [23, 24], together
with our assumption (iii) in the introduction, suggest that the information in EW(�) is in
general contained in the density matrix of � in the holographic theory. This, however, does
not mean that all of this information can be arranged directly in the form represented by
local operators in the bulk e�ective theory. Indeed, we will argue below that the portion
of spacetime reconstructed in this way is generally smaller than the union of EW(�) for all
�. This is, in fact, consonant with the picture of Ref. [63]. Suppose a black hole is formed
dynamically. The region[ � EW(�) then contains the region inside the black hole, as can be
seen by considering � comprising the entire holographic screen at a late time. This implies
that the information about the interior is contained in the holographic theory in some form,

5We do not expect that a homology constraint [81, 61] plays an important role in our discussion, since
we consider the microscopic description of pure states.
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but|as we will argue|not as local excitations in semiclassical spacetime (while keeping
locality in the entire exterior region). We claim that this information corresponds to what
we call excitations on the stretched horizon in the bulk picture.

We now assert that semiclassical spacetime as viewed from a �xed reference frame is
composed of the set of pointsp that can be written as

p =
\

� 2 ~G

EW(�) ; (2.21)

where ~G is a subset of the collection of all the spatial regions on all leaves,~G � G = f � g.
There are two recent papers that used similar constructions [82, 58]. In Ref. [82], a local

bulk operator in AdS was constructed in CFT using bulk HRT surfaces intersecting at that
point. This, however, does not allow us to construct operators in an entanglement shadow:
the spacetime region which the HRT surfaces do not probe (see below). Our criterion is more
along the lines of the construction in Ref. [58], in which entanglement wedges associated with
all the (d � 1)-dimensional achronal submanifolds of the AdS boundary were considered to
construct local operators in the AdS bulk (including those in an entanglement shadow).
In fact, the criterion of Eq. (2.21) can be obtained by the logic analogous to that given in
Ref. [58]. We claim, however, that to obtain a physical description in a �xed reference frame,
the regions to which entanglement wedges are associated must be restricted to those on equal-
time hypersurfacesin the given time foliation. In the case of AdS/CFT with simply connected
boundary space, we have not found an example in which the region given by Eq. (2.21) and
the localizable region of Ref. [58] di�er. In general spacetimes, however, one must choose the
set of regions � as described here (spatial regions on leaves). This issue is also important in
AdS/CFT if the boundary consists of multiple disconnected components [34].

Below, we demonstrate that the criterion given in Eq. (2.21), with � restricted to spatial
regions on leaves, allows us to reconstruct almost the entire spacetime, except for certain
special regions determined by the causal structure, e.g. the interior of a black hole. We
focus our analysis to the interior of the holographic screen,M � [ � F� , whose information is
encoded (mostly) in entanglement between subregions in the holographic theory [31]. Here,
F� is the union of all interior achronal hypersurfaces whose only boundary is� and which
does not intersect with the holographic screen except at� . The exterior of the holographic
screen will be commented on in Section 2.5. Throughout, we assume that holographic states
are pure.

Spacetime without a Shadow

We �rst note that if a bulk point is at the intersection of d HRT surfacesE(� i ) ( i = 1; � � � ; d),
then it satis�es the condition of Eq. (2.21). This is because for each HRT surface, we can
include � i and its complement on the leaf,�� i , in ~G, so that EW(� i ) \ EW( �� i ) = E(� i ).

This implies that we can reconstruct the whole spacetime inM if the HRT surfaceE(�)
behaves continuously under a change of � (i.e. if there is no entanglement shadow). To show
this explicitly, let us choose a leaf� (0) on the holographic screen. We can introduce the
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angular coordinates� 1;��� ;d� 1 on it. Let us now introduce the coordinatesx j (j = 1; � � � ; d)
with

P d
j =1 x2

j = 1:

x1 = cos(� 1); (2.22)

x2 = sin( � 1) cos(� 2); (2.23)
... (2.24)

xd� 1 = sin( � 1) � � � sin(� d� 2) cos(� d� 1); (2.25)

xd = sin( � 1) � � � sin(� d� 2) sin(� d� 1): (2.26)

This allows us to consider spatial regions on the leaf

� (s)
i (0) = f � (0) j x i � sg; (2.27)

speci�ed by a discrete indexi = 1; � � � ; d and a continuous number� 1 � s � 1. Because
of the continuity assumption, for eachi the corresponding HRT surfacesE (s)

i (0) sweep an
interior achronal hypersurface bounded by� (0):

� i (0) �
[

s

E (s)
i (0): (2.28)

In general, the resultingd hypersurfaces �i (0) (i = 1; � � � ; d) are di�erent, and the HRT
surfaces contained in them do not intersect; see Fig. 2.1.

We can, however, repeat the same procedure for all di�erent leaves� (� ). Here, � is
the time parameter on the holographic screen. The coordinatesx j on di�erent leaves can be
de�ned from those on� (0) by following the integral curves of a vector �eld on the holographic
screen which is orthogonal to every leaf. (Such a vector �eld was used [83] to prove that the
area theorem of Refs. [59, 84] is local.)

The continuity assumption then implies that for eachi the hypersurfaces �i (� ) sweep
the entire spacetime region inside the holographic screen,M , as � varies:6

M =
[

�

� i (� ): (2.29)

This in turn implies that for any bulk point p inside the holographic screen, we can �nd the
values ofs and � for eachi , (si , � i ), such that the corresponding HRT surfaceE (si )

i (� i ) goes
through p (see Fig. 2.1). Therefore, by choosing

~G =
n

� (si )
i (� i ); �� (si )

i (� i )
�
�
� i = 1; � � � ; d

o
; (2.30)

the point p can be written as in Eq. (2.21).
We note that in general, � i for di�erent i need not be the same. And yet, the region

giving each entanglement wedge is on a single leaf.
6In the case that the holographic screen is spacelike, it seems logically possible that �i (� ) for some i

does not sweep the entire spacetime. We do not consider such a possibility.
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Figure 2.1: If the HRT surfaceE(�) behaves continuously under a change of �, we can
reconstruct the entire spacetime region inside the holographic screen,M , despite the fact
that d families of HRT surfaces all anchored on a single leaf� (0) do not in general span the
same hypersurface.

Reconstructable Shadow

The construction described above does not apply if there is an entanglement shadowS: a
spacetime region which the HRT surfaces do not probe. This phenomenon occurs rather
generally, for example in spacetimes with a conical de�cit [85] or a dense star [86]. Here
we show that a point p 2 S may still be written as in Eq. (2.21) if certain conditions are
met. An important point is that while an HRT surface E(�) is always outside the shadow,
the other part of the boundary of the entanglement wedge EW(�) can go into the shadow
region.

Consider the future light cone ofp, which we de�ne as the subset ofM covered by the
set of future-directed light rays, L+ (
), emanating from p in all directions parameterized
by angles 
 = ( ' 1; � � � ; ' d� 1). Similarly, we can consider the set of past-directed light rays
L � (
), emanating from p in all directions. Suppose all future (past) directed light rays
escape the shadow region by the time the �rst future (past) directed light ray intersects the
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Figure 2.2: A point p in an entanglement shadowS can be reconstructed as an intersection
of entanglement wedges associated with spatial regions on leaves if all the future-directed
and past-directed light rays emanating fromp reach outside the entanglement shadow early
enough. Here we see that all past-directed light rays escape the shadow before the �rst of
them intersects the holographic screen.

holographic screen (if at all), i.e. they all enterM n S early enough.7 We now show that
point p 2 S can then be reconstructed as in Eq. (2.21). A sketch of the procedure is given
in Fig. 2.2.

Let us take a point q+ (
) on the portion of L+ (
) in M n S . We can then �nd an HRT
surface, E + (
), that goes through q+ (
), tangent to the light cone there, and anchored
on some leaf of the holographic screen. An argument is the following. As in the previous
subsection, we consider families of HRT surfaces anchored on� (0); see Eq. (2.28). In the
previous subsection, we consideredd such setsE (s)

i (0), but now we consider an in�nite
number of sets parameterized by the angular coordinates � = (� 1; � � � ; � d� 1) on � (0): E (s)

� (0).
(The corresponding spatial region �(s)

� (0) can be taken to enlarge from the point speci�ed
by � toward its antipodal point as s increases from� 1 to 1.) Because of the entanglement
shadow, these surfaces,E (s)

� (0) (� 1 � s � 1), do not cover the entire interior achronal
7We assume that these light rays enterMnS while their congruences are still expanding. This is generally

true for small shadow regions.
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surface bounded by� (0); there will be some hole(s). However, by extending this to all
possible leaves� (� ), E (s)

� (� ) for each � will sweep the entire region outside the shadow:

M n S =
[

s;�

E (s)
� (� ): (2.31)

This implies that we have a set of HRT surfaces parameterized by � that all go through
q+ (
):

E (s(�))
� (� (�))

�
3 q+ (
)

�
: (2.32)

From these, we can choose one that is tangent to the light cone atq+ (
) because this imposes
d � 1 conditions on thed � 1 parameters� 1; � � � ; � d� 1.

We therefore have the appropriate HRT surfaceE + (
) for q+ (
), which is anchored on
leaf � (� (�)). There are two regions on this leaf that can be associated withE + (
), which
are complement with each other on the leaf. We take the one such that the boundary of its
entanglement wedge containsL+ (
), and we call it � + (
). We then �nd that the intersection
of the entanglement wedges of �+ (
) for all 
 gives a region that is a subset of the causal
future of p and containsp:

p 2
\




EW
�
� + (
)

�
� J + (p): (2.33)

Repeating the same construction for the past light cone, we obtain the analogous region with
+ ! � . Since the intersection ofJ + (p) and J � (p) is just p, we �nd that by taking

~G =
�

� + (
) ; � � (
)
�
� 8


	
; (2.34)

we can writep in the form of Eq. (2.21). Note that each region �+ (
) or � � (
) is on a single
leaf.

We conclude that to reconstructp through Eq. (2.21), it is su�cient that all the future-
directed and past-directed light rays emanating fromp reach outside the entanglement
shadow early enough. This condition, however, appears too strong as a necessary condi-
tion for the reconstruction.

In general, the bulk portion of the boundary of an entanglement wedge consists of three
elements: (i) the HRT surface, (ii) null surfaces generated by light rays emanating orthog-
onally from the HRT surface, and (iii) caustics developed by the congruence of these light
rays. To reconstruct a pointp through Eq. (2.21), one of these elements must go throughp.
For a point in an entanglement shadow, (i) is not available. In the construction above, we
have used (ii). We can, however, also use (iii).

Consider a spatial region � on a leaf. Suppose that � is chosen such that a caustic
developed by a congruence ofpast-directed light rays emanating fromE(�) passes through
p. Suppose also that we can �ndd such regions, �i (i = 1; � � � ; d), which seems possible
generically based on parameter counting. Then, the intersection of EW(�i ),

K + (p) =
\

i

EW(� i ); (2.35)
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Figure 2.3: A point p in an entanglement shadow may be reconstructed as the intersection
of a �nite number of entanglement wedges if it is on caustics of these entanglement wedges
(denoted by the dotted lines).

forms a region which has a \tip" at p. It therefore seems possible to �nd a region �0 such
that a caustic developed by a congruence offuture-directed light rays emanating fromE(� 0)
passes throughp, and that

~G = f � i ; � 0g; (2.36)

gives p through Eq. (2.21); see Fig. 2.3. This would allow us to reconstructp without
requiring that all the light rays emanating from p reach outside the entanglement shadow.

In all the reconstruction procedures we could consider, however, it seems necessary that
at least one future-directedand past-directed light ray from p escapes the entanglement
shadow region. We thus require this as a necessary condition forp to be reconstructable.
(This is, in fact, a very weak requirement. In every case we considered, we actually needed
a stronger condition.)

Non-reconstructable Shadow

The necessary condition described above has important implications. Suppose a black hole
is formed in M . After a su�ciently long time, the black hole becomes quasi-static. For any
such black hole, HRT surfaces anchored on leaves cannot penetrate the horizon [87, 62]. The
condition described above then implies that the interior of a quasi-static black hole cannot
be reconstructed directly in the holographic theory.
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Two comments are in order. First, the entanglement shadow around a black hole in
general extends beyond the horizon (except for a large black hole in AdS) [86]. This region,
however, is reconstructable as described in the previous subsection. Second, HRT surfaces
may probe the interior of the event horizon shortly after a black hole is formed [88], which
allows us to reconstruct the region as described in Section 2.4. After the black hole is
stabilized, however, no HRT surface can penetrate the horizon (at least by any macroscopic
distance). The interior of a stabilized black hole, therefore, still cannot be reconstructed.

We interpret this non-reconstructability to mean that in the given reference frame the
black hole interior is not described in terms of local operators in semiclassical spacetime (at
least a priori; see below). Suppose we (try to) represent a bulk pointp as in Eq. (2.21)
with some ~G. Let us call the element of ~G on the latest (earliest) leaf �+ (� � ) and the
corresponding time parameter on the holographic screen� + (� � ). Let us de�ne �� as the
smallest value of� + � � � over the possible choices of~G:

�� = min
~G

f � + � � � g: (2.37)

The analyses in the previous subsections imply that for a reconstructable bulk point,�� is
�nite. On the other hand, for a non-reconstructable point, we may view that�� is in�nite
(as the relevant light ray fails to escape the shadow region in a �nite time). This implies
that using operators that probe (only) entanglement entropies between subregions, it takes
an in�nite time to resolve a point in the non-reconstructable region. In other words, the
e�ective theory for the degrees of freedom represented by these operators describe physics in
this region as a \vacuum degeneracy," condensed in the energy interval of�E � 1=�� ! 0.

This strongly suggests that the description obtained in the holographic theory is that of
a distant picture for the black hole. (Recall that it is the entanglement entropy structure
between subregions that local bulk operators under consideration are mainly sensitive to.)
This, however, does not necessarily mean that there can be noe�ective description that
makes (a portion of) the interior spacetime manifest by appropriately rearranging degrees of
freedom. Based on intuition from Ref. [63], and more recent analysis in Ref. [89], we expect
that such a description|if any|cannot keep locality in all the original spacetime region (in
particular, outside the causal patch of a single infalling geodesic). In fact, we expect that
any such e�ective description is applicable only for a �nite time, measured with respect to
the degrees of freedom made local in this way, reecting the fact that the corresponding
spacetime has a singularity. The issue of the black hole interior will be discussed further in
Section 2.6.

We �nally present another example of spacetime with a non-reconstructable region: an
isotropic AdS cosmology. Through a coordinate transformation, the interior of a future light
coneL in global AdS space can be written as an open FRW universe with the metric

ds2 = � dt2 + a2(t)
�
d� 2 + sinh2� d 


�
: (2.38)

Any small perturbation makes this universe end with a big-crunch collapse at some timet �

(> 0), so that
a(0) = a(t � ) = 0 ; (2.39)
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where the t = 0 hypersurface is taken to be onL. In Ref. [62], it was shown that HRT
surfaces anchored to the AdS boundary cannot probe the region

t > t turn ; (2.40)

where t turn is the time at which a(t) becomes maximum. Since any future-directed light
ray emanating from a point in this region hits the singularity, our criterion says that this
region is not reconstructable. (The regiont < t turn is reconstructable as it is probed by HRT
surfaces.)

In fact, it seems that any non-reconstructable region in realistic spacetimes is associated
with a collapsing region (region in which time runs backwards in the language of Ref. [59])
whose future ends in a singularity. (We have excluded the region inside a past light cone in
the isotropic AdS cosmology, which we consider \unrealistic," analogous to the white hole
region.) This may be viewed as a quantum gravity version of cosmic censorship, although
the surface \hiding" a singularity, i.e. that dividing reconstructable and non-reconstructable
regions, is not necessarily null here.

2.5 Spacetime Is Non-Generic

We have discussed what description the holographic theory provides when a holographic
state represents semiclassical spacetime. Here we discuss how such states are embedded in
the holographic Hilbert space.

Holographic Encoding of Spacetime

Consider the holographic space �A of volume A, which consists ofNA cuto�-size cells con-
taining ln k degrees of freedom. If a state on this space (an element ofH A ) represents a
semiclassical spacetime (or more precisely a snapshot of it in the holographic theory), then
the von Neumann entropyS(�) of a subregion � � � A is related to the area of the HRT
surfaceE(�) as [56]

S(�) =
1
4

kE(�) k; (2.41)

ignoring the bulk matter contribution, which does not play a role in the discussion below.
Here,kxk represents the volume of the objectx (often called the area for a codimension-two
surface in spacetime).

Suppose we take an entanglement structureSA � f S(�) j 8� � � A g on � A implied by
some semiclassical spacetime. Since any unitary transformation acting within a single cell
does not change entanglement entropies between subregions, this allows us to have a set of
states labeled by the group elements ofU(k)N A

j SA
z i ; z 2 U(k)N A ; (2.42)
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all having the same entanglement structureSA . We expect that some (but not necessarily
all) of these states are microstates of the corresponding spacetime.

In general, we expect thatk is large because entanglement between di�erent subregions
is robust (only) when many degrees of freedom are involved; see, e.g., Eq. (2.19).8 In the
case of AdS/CFT, i.e.Ld� 1

AdS � A whereLAdS is the AdS length,k is related to the ratio of
LAdS to the bulk Planck length lPl (which we restore here):

ln k �
�

LAdS

lPl

� d� 1

� 1: (2.43)

For more general spacetimes, which one may view as the caseLd� 1
AdS � A , the meaning ofk

is not clear, but one possibility is

ln k �
�

ls
lPl

� d� 1

� N; (2.44)

where ls and N are the string length and the number of species in the low energy bulk
e�ective theory, respectively. We then expect thatk is also large in this case.

The degrees of freedom inz 2 U(k)N A corresponding to the microstates of the spacetime
may contain a large amount of information, especially fork � 1. Such information cannot
be captured by entanglement between di�erent subregions on �A . In Section 2.4, we have
seen that semiclassical physics in a non-reconstructable region cannot be captured by entan-
glement entropies between subregions, so it is natural to conjecture that this physics (e.g.
physics of the excitations of the stretched horizon) is encoded in these degrees of freedom.
We might suspect that physics outside the holographic screen may also be encoded in these
degrees of freedom. If this is true, the logarithmic dimension of the Hilbert space describing
both the interior and exterior regions of the holographic screen isA=4 [31]. An alternative
possibility is that the degrees of freedom describing the exterior region is not captured by
those discussed here. (They may not even be arranged locally in any space.) In this case, the
system we discuss here should be regarded as that responsible only for the interior region.

Semiclassical States Are Special

The number of independent states within the space ofU(k)N A is kN A = eA =4. This implies
that there can be up toeA =4 independent microstates for the same semiclassical spacetime,
within the uncertainties associated with the coarse-graining� A , although this does not mean
that all, or even any, semiclassical spacetimes must have that many independent microstates.

8Later, we consider perfect tensor network models, which do not a priori require large bond dimensions
(which one might think are analogous to k here). For small bond dimensions, however, perfect tensors are
�nely tuned: small perturbations would destroy their absolutely maximally entangled nature. Models with
these tensors can be used (only) to simulate coarse-grained structures of the fundamental theory. For large
bond dimensions, this issue of stability does not arise.
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If a semiclassical spacetime haseA =4 independent microstates, however, it leads to the
following puzzling situation.9 Suppose there areeA =4 independent microstatesj i i (i =
1; � � � ; eA =4) which all correspond to (a holographic snapshot of) a single semiclassical space-
time M and hence have the same entanglement structureSM = f SM (�) j 8� � � A g.10

Suppose we take a superposition ofen such states

j	 i =
enX

i =1

ci j i i ; (2.45)

with comparable coe�cients. Here,
P

i jci j2 = 1. If we compute the holographic entangle-
ment entropy of this state in a subregion �, we generally obtain

S(�) 6= SM (�) : (2.46)

For small n � V� , where
V� � min

�
k� k; k�� k

	
; (2.47)

we �nd

S(�) = SM (�) �
enX

i =1

jci j2 ln jci j2; (2.48)

so that the second term (classical Shannon entropy) is of ordern, which is negligible compared
with the �rst term (typically of order V� ). If we superpose a su�ciently large number of
microstates withn � A , however, the entanglement structure ofj	 i , S	 � f S(�) j 8� � � A g,
can take a form unrelated withSM , sincej i i form (approximately) a basis ofH A . Indeed, for
a generic superposition withn � A =4, we expect from Page's argument [91] thatS(�) = V� =4
to a high degree.

On the other hand, one might expect that the statej	 i still describes semiclassical
spacetimeM , since it is simply a superposition of microstates that all describe the same
semiclassical spacetimeM . If this were true, then we would �nd that a generic state describ-
ing spacetimeM , i.e. a generic state of the form of Eq. (2.45), has an entanglement structure
that has nothing to do with SM . This would violate assumption (ii) in the introduction.

We are, therefore, led to the conclusion that if a semiclassical spacetime haseA =4 inde-
pendent microstates, then these states do not form a Hilbert space. In fact, the space of
microstates for a �xed semiclassical spacetime isat most the z space (see Eq. (2.42)), whose
volume is tiny compared with that of H A :

kU(k)N A k n kU(kN A )k: (2.49)
9One might expect that given standard de Sitter entropy [90], the de Sitter FRW universe provides

an example of such spacetime, witheA =4 independent microstates. This is, however, not the case, since
spacetime \disappears" in the de Sitter limit of the holographic FRW theory [34].

10We expect this basis of microstates to be uncorrelated with the position space basis states in holographic
space and take this to be the case.



CHAPTER 2. CLASSICAL SPACETIMES AS AMPLIFIED INFORMATION IN
HOLOGRAPHIC QUANTUM THEORIES 29

In fact, the actual space of microstates can be smaller. Note that taken at face value, the
space of microstates given by Eq. (2.49) is measure zero inH A . Our expressions, however,
apply only at the leading order in 1=A, so we expect that the space has a nonzero \width"
at subleading order in 1=A. This, however, does not a�ect our conclusion that an arbi-
trary superposition of the form of Eq. (2.45) cannot be interpreted as a semiclassical state
representingM .

If the microstates of a spacetime comprise the entirekU(k)N A k space, then what happens?
We can use tensor network models to simulate this situation.11 For example, consider a tensor
network obtained by contracting perfect tensors with some bulk legs left dangling. By varying
the perfect tensor chosen at each node, while keeping the network structure unaltered, we
can generate a class of quantum error correcting codes represented in the holographic space.
This generates the code subspaces for all the geometry microstates satisfying the condition
that S(�) = SM (�) for all �. The semiclassical (logical) operators obtained in this way
are state-dependent, because di�erent semiclassical states in di�erent code subspaces have
nontrivial overlaps in the holographic Hilbert space. The same conclusion is obtained using
random tensor networks, rather than perfect tensor networks.

A similar observation about state-dependence has been made recently in Ref. [75] which
considered overlaps of code subspaces corresponding to di�erent geometries realized in the
same holographic space. On the other hand, our discussion here concerns microstates cor-
responding to the same semiclassical geometry, which does not require di�erent matter con-
�gurations at the semiclassical level. The basic outcome for the purpose of the present
discussion, however, is that the two situations can be treated similarly.12

The fact that the space of microstates for a �xed semiclassical spacetime is bounded from
above bykU(k)N A k (n kU(kN A )k) has an important implication. Consider a generic state
in H A . In such a state, the entanglement entropy of a region � is given by

S(�) =
1
4

V� ; (2.50)

where V� is de�ned by Eq. (2.47). This is because for a typical state, the reduced density
matrix of a subsystem smaller than a half of the whole system is maximally mixed to a high
degree [91]. If this state is interpreted through Eq. (2.41), we have

8� kE(�) k = V� : (2.51)

An essentially unique way in which this happens is that the HRT surface anchored to@� is
� itself (or ��, whichever is smaller). The corresponding geometry inM then must have a

11Strictly speaking, the models discussed in this and next subsections apply only to the situation in which
the holographic space is approximately time independent, but we expect that the conclusions are more
general, since the time independence does not play a particularly important role.

12This is consonant with the picture of Refs. [76, 77, 92] that di�erent microstates for the \same" spacetime
(e.g. a single classical black hole) can/should actually be viewed as states with slightly di�erent spacetimes
(black holes with slightly di�erent masses).
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horizon just inside the leaf, which serves as an extremal surface barrier. Since the descrip-
tion of the holographic theory is that of the exterior picture, this state does not have any
semiclassical spacetime insideM .13

We conclude that a generic state in the holographic Hilbert space does not represent a
semiclassical spacetime inside the holographic screen. Speci�cally, if the initial state of a
system is generic inH A 0 and if the dynamics of the holographic theory is such that the state
keeps being generic inH A throughout the evolution, whereA > A 0, then the system does not
admit a semiclassical spacetime interpretation within the holographic screen. In this sense,
we can say that bulk gravitational spacetime emerges only as a result of non-genericity of
the state in the holographic Hilbert space.

We emphasize, though, that non-genericity here refers to that in the holographic Hilbert
space without a constraint. In particular, our argument does not exclude the possibility that
with a speci�cation of an energy range which is su�ciently lower than the cuto�, semiclassical
states are generic among the states in that energy range. This is indeed the case in standard
AdS/CFT. Similarly, it is possible that imposing a constraint on some other quantity makes
semiclassical states typical within the speci�ed class. Further discussion on this issue is given
in Ref. [34].

State-dependence and Many Microstates

We have learned that a semiclassical spacetime inside the holographic screen appears only
as a result of non-genericity of the holographic state. We have also argued that if a semi-
classical spacetime haseA =4 independent microstates, then the semiclassical operators are
state-dependent. This latter argument has been made by considering that the semiclassical
microstates occupy theU(k)N A space. Here we show that the necessity of state-dependence
for a spacetime havingeA =4 independent microstates is even more robust.

The smallest possible space containingeA =4 independent microstates consists of discrete
eA =4 \axis" states (with some small \width" around them). In this case, all the di�erent
code subspaces can be exactly orthogonal:

8a; b h (i )
a j (j )

b i = 0 for i 6= j; (2.52)

where j (i )
a i (a = 1; � � � ; eScode ) represents the elements of the code subspaceH code;i associ-

ated with microstate i . One might then think that any semiclassical operatorOX can be
represented state-independently as

~OX =
M

i

O(i )
X ; (2.53)

13The relation in Eq. (2.51) can be obtained in a di�erent way (only) if a leaf and the HRT surfaces can
be mapped on an extremal surface using a (in�nitely) large boost transformation; then the HRT surfaces
lie on a null hypersurface associated with the leaf. Spacetime also disappears in this case [34]. (This indeed
occurs in the de Sitter limit of at FRW universes.)
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without any subtlety. Here, O(i )
X act \correctly" on elements ofH code;i but annihilate all the

other states:
8X; a O(i )

X j (j )
a i = 0 for i 6= j: (2.54)

Indeed, if these operators are represented in the whole holographic space �A , then there is
no obstacle in de�ning them as in Eq. (2.54), so that we can build any semiclassical operator
state-independently through Eq. (2.53).

However, an important feature|or rather a de�ning property|of semiclassical operators
is that they are represented in multiple di�erent regions in the holographic space �A . Unlike
the case of measuring a standard physical object, in quantum gravity there is no large ex-
ternal environment in which information can be ampli�ed, and hence the ampli�cation must
occur \internally" within the holographic degrees of freedom given by the system. The holo-
graphic theory achieves this by utilizing quantum error correction, amplifying information
of entanglement entropies between the holographic degrees of freedom (which makes this
information|the geometry|robust under operations in code subspaces). A consequence
of this is that operators in code subspaces, i.e. semiclassical operators, are represented in
multiple subregions on �A .

We now argue that the requirement of a semiclassical operator being represented redun-
dantly on subregions of �A in the present setup prevents us from de�ning the operator in the
form of Eq. (2.53) acting universally on all the microstates. To see this, we use models given
by the stabilizer formalism, which describes a broad class of quantum error correcting codes.
In this formalism, the logical states are those living in the simultaneous eigenspace of an
abelian subgroup of the Pauli group. Forn physical qubits, the Pauli groupGn is comprised
of Pauli operators which are a tensor product ofn Pauli matrices: Gn = �f I ; X ; Y ; Z g
 n .
For qudits of higher dimensions, this can be appropriately generalized.

We consider that the degrees of freedom of the holographic theory aren physical qudits.
Let H be the physical (holographic) Hilbert space andT be an abelian subgroup of the Pauli
group, which we consider to be�xed. Then the states in the code subspaceH code can be
de�ned as

j i 2 H code i� t j i = j i 8 t 2 T: (2.55)

The groupT is called the stabilizer of the code. We regard this code subspace as the Hilbert
space of the semiclassical theory built on one of the microstates. A class of operators that
have particular signi�cance are logical operators. These operators have nontrivial action on
the states in the code subspace and are given by elements of the Pauli group that commute
with T but are not elements ofT.

Now, instead of Eq. (2.55), we could have chosen any other of the simultaneous eigenspaces
(with eigenvalues not all +1) to be our code subspace. These eigenspaces are orthogonal
and completely cover the full physical Hilbert space; we say that they \tile"H . We identify
these eigenspaces to be code subspacesH code;i associated with microstatesi = 1; � � � ; eSmicro .
In this setup, each code subspace has elementsj (i )

a i (a = 1; � � � ; eScode ), so that

Smicro �
A
4

; Scode � A ; (2.56)
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and
Smicro + Scode = ln dim H: (2.57)

It is, in fact, simple to build tensor network models realizing this framework. For example,
we may consider perfect tensor networks discussed in the previous subsection; but instead of
choosing an arbitrary perfect tensor at each node, we now choose a tensor from simultaneous
eigenstates of some�xed stabilizer group. This leads to quantum error correcting codes that
have a particular entanglement structureSM and correspond toH code;i discussed above.

The quantum error correcting nature of the codes allows us to represent a semiclassical
operatorOX for each microstatei in various subregions � in � A , which we denote byO(i )

X (�).
Note that in general

O(i )
X (�) 6= O(j )

X (�) for i 6= j; (2.58)

although these operators act identically on states in their own code subspaces:

h (i )
a jO (i )

X (�) j (i )
b i = X ab; (2.59)

whereX ab do not depend oni or possible choices of �. We regard that the operators obtained
in this way are essentially the only semiclassical operators. This realizes the situation in
which the space of microstates consists ofeA =4 discrete basis states (with some possible
small \widths").

By construction, the operatorsO(i )
X (�) all commute with the stabilizer generators

�
t; O(i )

X (�)
�

= 0; t 2 T; (2.60)

whereO(i )
X (�) are interpreted to be de�ned on the whole holographic space �A , acting trivially

on ��. This implies that actions of these operators do not send a state out of the code subspace
it belongs to

O(i )
X (�) j (j )

a i 2 H code;j ; (2.61)

so that the matrix elements of these operators are nonzero only between states in the same
code subspace

h (j )
a jO (i 1 )

X 1
(�) � � � O (i m )

X m
(�) j (k)

b i / � jk : (2.62)

We also �nd that the matrix elements involving states and operators of di�erent code sub-
spaces haveO(1) entries but only with the probability of e� Scode :

h (j )
a jO (i 1 )

X 1
(�) � � � O (i m )

X m
(�) j (j )

b i � O(1)

with P � e� Scode ; (2.63)

where we have normalized operators such that nonvanishingX ab in Eq. (2.59) areO(1).
The property of Eq. (2.63) follows because the quantum error correcting code corre-

sponding to each microstatei can be viewed as a single large tensor having logical qudits
and physical qudits as its indices. The set of tensors corresponding to all the microstates can
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then be viewed as the simultaneous eigenstates of some �xed (stabilizer) generators acting
on all these indices. This structure guarantees that Eq. (2.63) is satis�ed.14

We now see how the properties in Eqs. (2.61 { 2.63) prevents us from having state-
independent semiclassical operators. In order for exactly state-independent semiclassical
operators to be de�ned,O(i )

X (�) must satisfy

h (j )
a jO (i 1 )

X 1
(�) � � � O (i m )

X m
(�) j (j )

b i 6= 0

only for i 1 = � � � = im = j; (2.64)

at least for small values ofm. In this case, the operators represented in subregion �

~OX (�) =
eSmicroX

i =1

O(i )
X (�) ; (2.65)

would become the direct sum form of Eq. (2.53) and act correctly on all possible states of
the form

j	 ai =
enX

i =1

ci j (i )
a i : (2.66)

However, for � 6= � A , the conditions in Eq. (2.64) are not satis�ed for all operators; see
Eq. (2.63).

In fact, nonzero entries in Eq. (2.63) do not allow for even approximately state-independent
operators. To see this, consider the matrix elements

h (j )
a j ~OX (�) j (j )

b i =
eSmicroX

i =1

h (j )
a jO (i )

X (�) j (j )
b i

= X ab +
eSmicroX

i =1; i 6= j

h (j )
a jO (i )

X (�) j (j )
b i ; (2.67)

where we have used Eq. (2.59) and
P

i jci j2 = 1. The �rst term is what we want, but the
second term gives a much larger contribution

p
eSmicro e� Scode � j X abj � O(1), where the

square root in the leftmost expression arises because of random phases. This implies that
we cannot de�ne state-independent semiclassical operators even approximately.

Note that the origin of the state-dependence is not the overlap between di�erent code
subspaces. In fact, di�erent code subspaces are orthogonal, Eq. (2.52), in the present (ex-
treme) setup of discrete microstates. Semiclassical operators, however, still must be de�ned

14Instead of adopting the exact stabilizer formalism as we did here, we could use random tensor network
models to simulate the setup in which the microstates compriseeA =4 axis states. To do so, we can choose
generic eA =4 codes from those obtained by randomly varying the tensor at each node of a �xed network;
these eA =4 codes then approximately tile H . In these models, essentially all the elements in the left-hand
side of Eq. (2.63) are nonzero, but they are uniformly suppressed ase� Scode =2. This does not change the
conclusion of our analysis here.
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state-dependently because of the requirement of being represented redundantly in the holo-
graphic space. We �nd that the necessity of state-dependence is robust in the holographic
theory if there areeA =4 independent microstates for a semiclassical spacetime.

We thus conclude either that semiclassical states are special or that bulk operators are
state-dependent, in which case semiclassical states can be generic.

2.6 Black Hole Interior

We �nally discuss the issue of the black hole interior within our framework. A simple
description of the interior would arise if a portion of the holographic screen enters inside the
black hole horizon. However, we �nd this is unlikely to occur in a realistic setup in which
the second law of thermodynamics,dA=d� > 0, is obeyed. First, the holographic screen
cannot approach close to the singularity, since then the area of the leaf would decrease in
time, contradicting the assumption ofdA=d� > 0. This leaves the possibility that a portion
of a leaf enters the black hole and then exits or terminates. Even in this case, however, we
would still encounter the strange situation where the portion of a leaf inside the black hole
has a larger area than the corresponding part of the black hole horizon. We therefore assume
that the holographic screen does not enter inside the black hole horizon (except possibly in
transient periods), though a general proof is lacking.

This only leaves the possibility that the black hole interior can be described e�ectively
by rearranging the degrees of freedom of the theory (which include the stretched horizon
degrees of freedom identi�ed in Section 2.4). Such a description would make approximate
locality in a portion of the interior manifest at the cost of the local description in some other
region (the complementarity picture [63]).15 We note that this rearrangement of the degrees
of freedom would have a di�erent nature than just changing the reference frame, e.g., by
boosting the origin of a freely falling reference frame with respect to which the holographic
screen is erected. In fact, we expect that any e�ective description of the black hole interior
is applicable only for a �nite time (measured with respect to the degrees of freedom made
local) reecting the existence of the singularity, while the reference frame change would give
another description of the system which does not have such a restriction.

What about the arguments of Refs. [4, 5, 64] then, which seem to exclude even the possi-
bility of this kind of (e�ective) description? These arguments can essentially be summarized
into two classes:

Entanglement argument.Consider an outgoing mode localized in the zone, correspond-
ing to a Hawking quanta just emitted from the stretched horizon. Unitarity requires
this mode to be entangled with a mode representing Hawking radiation emitted ear-
lier, while the smoothness of the horizon requires it to be entangled with the pair

15In AdS/CFT, this might be done along the lines of Refs. [65, 66]. We suspect that the requirement
of the same interior region being represented redundantly, associated with ampli�cation, might address the
question of why the speci�c set of operators considered in Refs. [65, 66] has a special physical signi�cance.
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mode inside the horizon. These two cannot both be true because of monogamy of
entanglement.

Typicality argument. Suppose we calculate the average of the number operator ^ayâ in
the dual �eld theory over states having energies in a chosen range, with ^a corresponding
to an infalling mode in the bulk. The resulting number is at least of order unity, because
one can choose a basis for these states such that they are all eigenstates of the number
operator b̂yb̂ with b̂ corresponding to a mode localized in the zone (and because the
expectation value ofâyâ in any eigenstate of̂byb̂ is at least of order unity). This implies
that the expectation value ofâyâ is of order unity or larger, giving �rewalls, in a typical
state in this energy range.

The former, entanglement argument was addressed in Refs. [76, 77]. At the level of a
semiclassical description, the Bekenstein-Hawking entropy,SBH = A=4, can be interpreted
as the logarithm of the number of independent black hole states of masses betweenM and
M + �M , where�M can be taken naturally as the inverse of the Hawking emission timescale.
Interpreted in terms of semiclassical operators, this information is distributed according to
the thermodynamic entropy associated with the blue-shifted Hawking temperature. This
implies that while most of the information is concentrated near the stretched horizon, it
has some spread over the zone. In particular, anO(1) amount of information|which is an
O(1=A) fraction of the full Bekenstein-Hawking entropy|is at the edge of the zone.

From the semiclassical viewpoint, Hawking emission is a process in which the black
hole information (and energy), stored in spacetime, is converted into that of semiclassical
excitations at the edge of the zone(more precisely, the region around the edge of the zone
with the radial width of order the wavelength of emitted Hawking quanta). Note that in
the semiclassical viewpoint it is natural that the process occurs in this particular region;
it is where the two static geometries|the near horizon, Rindler-like space and asymptotic,
Minkowski-like space|are \patched" to obtain the full geometry. This implies that it is
incorrect to view that Hawking emission (and the associated information transfer) occurs
through outgoing semiclassical excitations in the zone as envisioned in Refs. [4, 5, 64]. In
fact, the transfer of energy and information must be viewed as occurring through the ux
of negative energy and negative entropy, de�ned with respect to the static, Hartle-Hawking
vacuum.

The typicality argument does not apply when semiclassical operators are given state-
dependently [65, 66]. Moreover, if the black hole microstates comprise only a subset of
the space spanned by the independent microstates, as contemplated in Section 2.5, then
the argument may become irrelevant because the black hole microstates would indeed be
non-generic. If this is the case, then smooth black hole states would have to be selected
dynamically.

Finally, the fact that the holographic screen does not enter the black hole may allow us
to take the attitude that the black hole interior need not be described, since a measurement
performed in the interior cannot be communicated to an external observer described directly
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in the holographic theory. Of course, what \happened inside" is encoded indirectly in the
�nal Hawking radiation (and in the con�guration of the stretched horizon degrees of freedom
at intermediate stages), which can be described appropriately in the holographic theory.
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Chapter 3

Spacetime from Unentanglement

3.1 Introduction

It is believed that dynamical spacetime described by general relativity is an emergent phe-
nomenon in the fundamental theory of quantum gravity. Despite this pervasive idea, the
materialization of spacetime itself is not fully understood. Holography posits that a fun-
damental description of quantum gravity resides in a non-gravitational spacetime whose
dimension is less than that of the corresponding bulk spacetime [12, 13, 30]. In this pa-
per, we study the emergence of gravitational spacetime in the context of holography, using
the renowned anti-de Sitter (AdS)/conformal �eld theory (CFT) correspondence [14] and a
putative holographic theory of Friedmann-Robertson-Walker (FRW) spacetimes [31].

In this paper, we expound on the intimate relationship between the emergence of space-
time and the lack of maximal entanglement in the boundary state. Through this, we see that
the existence of spacetime is necessarily non-generic and that nature seizes the opportunity
to construct local spacetime when states deviate from maximal entanglement. A reason
why this viewpoint is not heavily emphasized (see, however, e.g. Refs. [32, 93]) in the stan-
dard context of AdS/CFT is that one almost always considers states with energy much lower
than the cuto� (often sent to in�nity). The restriction to these \low energy" states implicitly
narrows our perspective to those automatically having non-maximal entropy. However, in a
holographic theory with a �nite cuto� scale (or a fundamentally nonlocal theory), the regime
of maximal entropy is much more readily accessible. This happens to be the case in FRW
holography, and perhaps holography in general. Through this lens, we analyze the emergence
of spacetime both in the familiar setting of Schwarzschild-AdS spacetime with an infrared
cuto� and in at FRW universes. We explicitly see that the directly reconstructable region
of spacetime [32, 58] emerges only as we deviate from maximally entangled states. This
implies that a holographic theory of exact de Sitter space cannot be obtained as a natural
limit of theories dual to FRW spacetimes by sending the uid equation of state parameter,
w, to � 1. In addition to analyzing these two examples, we prove a theorem demonstrating
the lack of directly reconstructable spacetime in the case that a boundary state is maximally
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entangled.
After surveying the relationship between spacetime and (the lack of) entanglement, we

then analyze the deviation from maximal entropy itself. The size of the subregions for
which deviations occur reveals valuable information about the underlying holographic the-
ory, and observing the corresponding emergence of spacetime in the bulk provides a glimpse
into the mechanism by which nature creates bulk local degrees of freedom. In the case of
Schwarzschild-AdS, reconstructable spacetime (the region between the horizon and the cut-
o�) appears as the temperature in the local boundary theory (the CFT) is lowered, and the
resulting entanglement entropy structure (calculated holographically) is consistent with a
local theory at high temperature. However, this entanglement structure is not observed in
the case of FRW spacetimes as we adjustw away from � 1; additionally, the reconstructable
region grows from the deepest points in the bulk outward. This suggests that the manner
in which entanglement is sca�olded is unlike that of AdS/CFT. In fact, this aberrant be-
havior leads us to believe that the holographic theory dual to FRW spacetimes has nonlocal
interactions.

The relationship between spacetime and quantum entanglement between holographic de-
grees of freedom is no secret [18, 20, 72, 33, 21, 22, 56], but whatis spacetime? Undoubtedly,
entanglement is a necessity for the existence of spacetime. But, it is indeed possible to have
too much of a good thing. The analysis here exposes the inability to construct spacetime
from maximally entangled boundary states. Since typical states in a Hilbert space are max-
imally entangled [91], this implies that states with bulk dual are not typical. We see that
spacetime is an emergent property of non-generic states in the Hilbert space with both non-
vanishing and non-maximal entanglement for subregions. The existence of entanglement
allows for the construction of a code subspace of states [26] in which local, semi-classical
bulk degrees of freedom can be encoded redundantly. Simultaneously, the lack of maximal
entanglement allows for a code subspace with subsystem recovery|hence partitioning the
bulk into a collection of local Hilbert spaces. With this perspective, we see that holographic
theories are exceedingly enterprising|once deviating from maximal entanglement, nature
immediately seizes the opportunity to construct spacetime. In this sense, spacetime is the
byproduct of nature's e�cient use of intermediate entanglement to construct codes with
subsystem recovery.

For a given spacetime with a holographic boundary, one can calculate the von Neu-
mann entropies for all possible subregions of the boundary via the Hubeny-Rangamani-Ryu-
Takayanagi (HRRT) prescription [18, 20, 56]. The corresponding entanglement structure
heavily constrains the possible boundary states, but by no means uniquely speci�es it. In
fact, given an entanglement structure and a tensor product Hilbert space, one can always
�nd a basis for the Hilbert space in which all basis states have the desired entanglement
structure. If one considers each of these basis states to be dual to the spacetime reproduc-
ing the entanglement, then by superpositions one could entirely change the entanglement
structure, and hence the spacetime. This property naturally raises the question of how the
boundary Hilbert space can accommodate states dual to di�erent semiclassical geometries.
Fortunately, for generic dynamical systems, the Hilbert space can be binned into energy
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bands, and canonical typicality provides us with the result that generic stateswithin these
bandshave the same entanglement structure, regardless of the energy band's size. This
allows the holographic Hilbert space to contain states dual to many di�erent spacetimes,
each of which can have bulk excitations encoded state independently. Importantly, this is
contingent on the result that typical states have no spacetime.

Outline

Section 3.2 walks through the statement that maximally entangled (and hence typical) states
have no reconstructable spacetime. This is broken down into parts. First, we must de�ne
what we mean by reconstructable; this is detailed in Section 3.2, and is very important
toward understanding the framework of the rest of the paper. We then use this construction
in Section 3.2 to investigate the reconstructable region of AdS with a black hole. We see the
expected behavior that the reconstructable region of spacetime vanishes as the temperature
of the black hole reaches the cuto� scale, making the state typical. In Section 3.2, we show
that de Sitter states are maximally entangled by �nding their HRRT surfaces. In Section 3.2,
we combine numerical results for at FRW universes and use the additional property that
de Sitter's HRRT surfaces lie on a null cone to show that the reconstructable region vanishes
in the de Sitter limit of FRW spacetimes. Motivated by these results, in Section 3.2 we
prove a theorem showing that if a state is maximally entangled, then its HRRT surfaces
either wrap the holographic space or live on the null cone. This is then used to present the
general argument that maximally entangled states have no spacetime.

Section 3.3 compares the emergence of spacetime in the two theories we are considering.
Sections 3.3 and 3.3 present results comparing the entanglement structure of AdS black holes
and FRW spacetimes, respectively. Section 3.3 interprets these results and argues that the
appropriate holographic dual of FRW spacetimes is most likely nonlocal.

In Section 3.4, we put together all of the previous results and explain how one Hilbert
space can contain states dual to many di�erent semiclassical spacetimes. Here we discuss
the lack of a need for state dependence when describing the directly reconstructable region.

In Appendix A.2, we analyze two-sided black holes within our construction and discuss
how a version of complementarity works in this setup. Appendices A.3 and A.4 collect explicit
calculations for Schwarzschild-AdS and the de Sitter limit of FRW spacetimes, respectively.

3.2 Maximally Entropic States Have No Spacetime

In this section, we see that maximally entangled states in holographic theories do not have
directly reconstructable spacetime. First we lay out the conditions for reconstructability
in general theories of holographic spacetimes. Then we examine the familiar example of a
large static black hole in AdS and determine its reconstructable region. We then discuss
the de Sitter limit of at FRW spacetimes. Finally, we prove a theorem establishing that
maximally entropic holographic states have no reconstructable spacetime.
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Holographic reconstructability

In order to argue that typical states have no reconstructable region, we must �rst present
the conditions for a region of spacetime to be reconstructed from the boundary theory. We
adopt the formalism presented �rst in Ref. [58] but appropriately generalized in Ref. [32] to
theories living on holographic screens [67] (which naturally includes the boundary of AdS as
in the AdS/CFT correspondence).

The question to answer is: \given a boundary state and its time evolution with a known
gravitational bulk dual, what regions of the bulk can be reconstructed?" This may sound
tautological, but it is not. Settings in which this question is nontrivial include spacetimes
with black holes and other singularities. From entanglement wedge reconstruction [23, 24],
we know that the information of a pure black hole is contained in the boundary theory
but whether or not the interior is reconstructable is unknown. In holographic theories of
general spacetimes, we are interested in describing spacetimes with big bang singularities
and a natural question is whether or not the theory reconstructs spacetime arbitrarily close
to the initial singularity.

To answer this question, Ref. [58] proposed that reconstructable points in a spacetime
are precisely those that can be localized at the intersection of entanglement wedges. This
is similar to the proposal in Ref. [82] which advocates that reconstructable points are those
located at the intersection of HRRT surfaces anchored to arbitrary achronal subregions of
the AdS conformal boundary. However, this construction lacks the ability to localize points
in entanglement shadows, which can form in rather tame spacetimes (e.g. a neutron star in
AdS), while using the intersection of entanglement wedges allows us to probe these regions.

In order to generalize this to theories living on holographic screens, an essential change
is that one can only consider HRRT surfaces anchored to the leaves of a given holographic
screen (usually associated to a �xed reference frame) [32]. This is because holographic
screens have a unique foliation into leaves that corresponds to a particular time foliation of
the holographic theory. Thus the von Neumann entropy of subregions in the holographic
theory only makes sense for subregions of a single leaf. Note that despite the lack of a unique
time foliation of the conformal boundary, this subtlety is also present in AdS/CFT. Namely,
one should consider only a single time foliation of the boundary and the HRRT surfaces
anchored to the associated equal time slices even in asymptotically AdS spacetimes [32].1

This issue becomes manifest when the boundary contains multiple disconnected components,
as we discuss in Appendix A.2.

Thus we de�ne the reconstructable region of a spacetime as the union of all points that
can be localized at the boundary of entanglement wedges of all subregions of leaves of the
holographic screen. Henceforth, we will refer to the regions of spacetime constructed in this
way as the directly reconstructable regions (or simply the reconstructable regions when the
context is clear), and our analysis will primarily focus on these regions. For a more detailed
study of directly reconstructable regions in general spacetimes, see Ref. [32]. In particular,

1This is related to the work in Ref. [94], which studied the breakdown of the HRRT formula in certain
limits of boundary subregions. These breakdowns correspond to disallowed foliations of the boundary theory.
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this de�nition only allows for the reconstruction of points outside the horizon for a quasi-
static one-sided black hole, since such a horizon acts as an extremal surface barrier [62].2

This also prevents the direct reconstruction of points near singularities such as big bang
singularities and the black hole singularity of a two-sided black hole.

Now that we have detailed the conditions for regions of spacetime to be directly recon-
structable, we must determine a measure of \how much" spacetime is reconstructable. This
will allow us to see the loss of spacetime in the limit of states becoming typical. In the context
of quantum error correction [26], we are attempting to quantify the factorization of the code
subspace, e.g. how many dangling bulk legs exist in a tensor network representation of the
code [28, 29]. We expect the spacetime volume of the reconstructable region to be indicative
to this property, and we will use it in our subsequent analyses. The bulk spacetime directly
reconstructable from a single leaf depends on features of the bulk, for example, the existence
of shadows and time dependence. In the case of (d + 1)-dimensional at FRW spacetimes,
we �nd that a codimension-0 region can be reconstructed from a single leaf. On the other
hand, in any static spacetime, all HRRT surfaces anchored to one leaf live in the same time
slice in the bulk, and hence their intersections reconstruct a codimension-1 surface of the
bulk. This is the case in an AdS black hole.

The discrepancy of the dimensions of the directly reconstructable regions for di�erent
spacetimes of interest may seem to cause issues when trying to compare the loss of spacetime
in these systems. Namely, it seems di�cult to compare the loss of reconstructable spacetime
in Schwarzschild-AdS as we increase the black hole mass to the loss of spacetime in the
w ! � 1 limit of at FRW spacetimes. However, in all cases, the spacetime region directly
reconstructable from a small time interval in the boundary theory is codimension-0. We can
then examine the relative loss of spacetime in both cases (black hole horizon approaching the
boundary in AdS space andw ! � 1 in FRW spacetimes) by taking the ratio of the volume
of the reconstructable region to the reconstructable volume of some reference state (e.g. pure
AdS and at FRW with some �xed w 6= � 1). In static spacetimes, this will reduce to a ratio
of the spatial volumes reconstructed on a codimension-1 slice, allowing us to consider only
the volume of regions reconstructed from single leaves.

Large AdS black holes

Here we will see how spacetime disappears as we increase the mass of the black hole in
static Schwarzschild-AdS spacetime, making the corresponding holographic state maximally
entangled. We consider a holographic pure state living on the (single) conformal boundary
of AdS. We introduce an infrared cuto� r � R in AdS space and consider ad+1 dimensional
large black hole with horizon radiusr = r+ .

2This does not exclude the possibility that the holographic theory allows for some e�ective description
of regions other than the directly reconstructable one, e.g. the black hole interior (perhaps along the lines of
Ref. [66]). This may make the interior spacetime manifest, perhaps at the cost of losing the local description
elsewhere, and may be necessary to describe the fate of a physical object falling into a black hole. We focus
on spacetime regions that can be described by the boundary theory without resorting to such descriptions.
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Figure 3.1: The volumeV(r+ ; R) of the Schwarzschild-AdS spacetime that can be recon-
structed from the boundary theory, normalized by the corresponding volumeV(R) in empty
AdS space:f = V(r+ ; R)=V(R). Here, R is the infrared cuto� of ( d + 1)-dimensional AdS
space, andr+ is the horizon radius of the black hole.

As discussed in Section 3.2, the size of the spacetime region directly reconstructable from
the boundary theory is characterized byV(r+ ; R), the spatial volume between the black hole
horizon and the cuto�. We normalize it by the volume of the regionr � R in empty AdS
space,V(R), to get the ratio

f
� r+

R

�
�

V(r+ ; R)
V(R)

= ( d � 1)
r d� 1

+

Rd� 1

Z R
r +

1

xd� 2

q
1 � 1

xd

dx; (3.1)

which depends only onr+ =R (and d). As expected, it behaves as

f
� r+

R

� �
' 1 (r+ � R)
! 0 (r+ ! R);

(3.2)

in the two opposite limits. The details of this calculation can be found in Appendix A.3.
Here, we plotf (r+ =R) in Fig. 3.1 for various values ofd.

In the limit r+ ! R, the HRRT surface,  A , anchored to the boundary of subregionA
of a boundary space (a constantt slice of ther = R hypersurface) becomes the regionA
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itself or the complement, �A, of A on the boundary space, whichever has the smaller volume.3

This implies that the entanglement entropy ofA, given by the area of the HRRT surface as
SA = k A k=4ld� 1

P , becomes exactly proportional to the smaller of the volumes ofA and �A in
the boundary theory:

SA =
1

4ld� 1
P

minfk Ak; k �Akg: (3.3)

Here, kxk represents the volume of the objectx (often called the area for a codimension-2
surface in spacetime), andlP is the (d+ 1)-dimensional Planck length in the bulk. Via usual
thermodynamic arguments, we interpret this to mean that the state in the boundary theory
is generic, so that it obeys the Page law [91].4 This in turn implies that the temperature of
the system, which is identi�ed as the Hawking temperatureTH , is at the cuto� scale.5 TH is
related to r+ by

r+

R
=

4�l 2

dR
TH ; (3.4)

wherel is the AdS radius. Hence, the cuto� scale of the boundary theory is given by [17]

� =
dR
4�l 2

: (3.5)

This allows us to interpret the horizontal axis of Fig. 3.1 asTH=� from the viewpoint of the
boundary theory.

We �nally make a few comments. First, it is important to note that by the infrared
cuto�, we do not mean that the spacetime literally ends there as in the scenario of Ref. [95].
Such termination of spacetime would introduce dynamical gravity in the holographic theory,
making the maximum entropy of a subregion scale as the area, rather than the volume,
in the holographic theory. Rather, our infrared cuto� here means that we focus only on
the degrees of freedom in the bulk deeper thanr = R, corresponding to setting the sliding
renormalization scale to be� R=l2 in the boundary theory. In particular, the boundary
theory is still non-gravitational.

Second, to state that spacetime disappears in the limit where the holographic state
becomes typical, it is crucial to de�ne spacetime as the directly reconstructable region. This
becomes clear by considering a large subregionA on the boundary theory such thatA and
its HRRT surface  A enclose the black hole at the center. If we take the simple viewpoint of
entanglement wedge reconstruction, this would say that spacetime does not disappear even
if the black hole becomes large and its horizon approaches the cuto� surface, since the black
hole interior is within the entanglement wedge ofA so that it still exists in the sense of

3We do not impose a homology constraint, since we consider a pure state in the holographic theory.
Additionally, we only consider subregions larger than the cuto� size.

4Page's analysis tells us that for a generic state (a Haar random state) in a Hilbert space, the entanglement
entropy of a reduced state is nearly maximal. In fact, at the level of the approximation we employ in this
paper, kAk=ld� 1

P ! 1 , such a state has the maximal entanglement entropy for any subregion, Eq. (3.3).
5When we refer to a high temperature state, we do not mean that the whole holographic state is a mixed

thermal state. What we really mean is a high energy state, since we focus on pure states.
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entanglement wedge reconstruction. We, however, claim that such a region does not exist as
a localizable spacetime region, as explained in Section 3.2.

Third, the curves in Fig. 3.1 are not monotonically decreasing asr+ increases ford > 2,
despite the fact that

d
dr+

�
SA; max � SA; BH (r+ )

	
< 0: (3.6)

Here, SA; max and SA; BH (r+ ) are the maximal entropy and the entropy corresponding to the
black hole geometry of subregionA, given by

SA; max =
kAk
4ld� 1

P

; SA; BH (r+ ) =
kAk
4ld� 1

P

r d� 1
+

Rd� 1
: (3.7)

This increase in spacetime volume may be demonstrating that the additional entanglement
in the boundary state allows for more bulk nodes in the code subspace. Alternatively, this
may be a feature of using volume as our measure. Regardless, the decrease observed near the
cuto� temperature is the main focus of our attention, and we expect any other reasonable
measure to correspondingly vanish.

Finally, the statement that spacetime disappears as the holographic state approaches
typicality persists for two-sided black holes. In this setup, there is a new issue that does not
exist in the case of single-sided black holes: the choice of a reference frame associated with
a relative time shift between the two boundaries. The discussion of two-sided black holes is
given in Appendix A.2.

de Sitter states are maximally entropic

We have seen that a large black hole in AdS withr+ ! R corresponds to CFT states at
the cuto� temperature, and that the holographic states in this limit have the entanglement
entropy structure of Eq. (3.3). Below, we refer to states exhibiting Eq. (3.3) as themaximally
entropic states. Is there an analogous situation in the holographic theory of FRW spacetimes,
described in Ref. [31]? Here we argue that the de Sitter limit (w ! � 1) in at FRW universes
provides one.6

We �rst see that the holographic state becomes maximally entropic in the case that a
universe approaches de Sitter space at late times [56]. This situation arises when the universe
contains multiple uid components including one withw = � 1, so that it is dominated by
the w = � 1 component at late times. This analysis does not apply directly to the case of a
single component withw = � 1 + � (� ! 0+ ), which will be discussed later.

In the universe under consideration, the FRW metric approaches the de Sitter metric in
at slicing at late times

ds2 = � dt2 + e
2t
�

�
dr2 + r 2d
 2

d� 1

�
; (3.8)

where� is the Hubble radius, and we have taken the spacetime dimension of the bulk to be
d + 1. The Penrose diagram of this spacetime is depicted in Fig. 3.2, where constant time

6For a simple proof applicable to 2 + 1 dimensions, see Appendix A.4.
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Figure 3.2: The Penrose diagram of de Sitter space. The spacetime region covered by the
at-slicing coordinates is shaded, and constant time slices in this coordinate system are
drawn. The codimension-1 null hypersurface �0 is the cosmological horizon for an observer
at r = 0, to which the holographic screen of the FRW universe asymptotes in the future.

slices are drawn and the region covered by the coordinates is shaded; future timelike in�nity
I + corresponds tot = 1 , while the null hypersurfaceN corresponds tot = �1 . At late
times, the past holographic screen of the FRW universe asymptotes to the codimension-1
null hypersurface � 0 depicted in the �gure. This hypersurface is located at

r = � e � t
� ; (3.9)

which corresponds to the cosmological horizon for an observer moving along ther = 0
geodesic.

We can now transform the coordinates to static slicing

ds2 = �
�

1 �
� 2

� 2

�
d� 2 +

1

1 � � 2

� 2

d� 2 + � 2d
 2
d� 1: (3.10)

In Fig. 3.3, we depict constant� (red) and constant � (blue) slices, with the shaded region
being covered by the coordinates. This metric makes it manifest that the spacetime has a
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Figure 3.3: Constant time slices and the spacetime region covered by the coordinates in
static slicing of de Sitter space. Here, � is the� = 0 hypersurface, and � is the bifurcation
surface, given by� = � with �nite � .

Killing symmetry corresponding to � translation. Using this symmetry, we can map a leaf
of the original FRW universe to the � = 0 hypersurface, �. Since the leaf of the universe
under consideration approaches arbitrarily close to Eq. (3.9) at late times, the image of the
map, � 0, asymptotes to the bifurcation surface � at

� = �; (3.11)

for a leaf at later times.
Consider an arbitrary subregionA on � 0 and the minimal area surface A on � anchored

to the boundary of A, @A. Since the geometry of � is Sd with � being an equator, the
minimal area surface A becomes the regionA itself (or its complement on �0, whichever is
smaller) in the limit � 0 ! �. Strictly speaking, this statement does not apply for a small
subset of subregions, since �0 is not exactly � unless the leaf under consideration is at strictly
in�nite time. (For subregions in this subset, the minimal area surfaces probe� � � . For
spherical caps, these subregions are approximately hemispheres.) However, the fractional
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size of the subset goes to zero as we focus on later leaves. Continuity then tells us that our
conclusion persists for all subregions.

The surface A found above is in fact an extremal surface, since the bifurcation surface
� is an extremal surface, so any subregion of it is also extremal. It is easy to show that this
surface is indeed the HRRT surface, the minimal area extremal surface. Suppose there is
another extremal surface 0

A anchored to@A. We could then send a null congruence from 0
A

down to �, yielding another codimension-2 surface 00
A given by the intersection of the null

congruence and �. Because 0
A is extremal, the focusing of the null rays impliesk 0

A k > k 00
A k,

and by constructionk A k < k 00
A k. This implies that  A is the HRRT surface, and hence

SA =
1

4ld� 1
P

minfk Ak; k �Akg: (3.12)

Namely, the holographic state representing an FRW universe that asymptotically approaches
de Sitter space becomes a maximally entropic state in the late time limit.

The global spacetime structure in the case of a single uid component withw 6= � 1 is
qualitatively di�erent from the case discussed above. For example, the area of a leaf grows
inde�nitely. However, for any �nite time interval, the behavior of the system approaches
that of de Sitter space in the limit w ! � 1. In fact, the numerical analysis of Ref. [31] tells
us that the holographic entanglement entropy of a spherical cap region becomes maximal in
the w ! � 1 limit. We show in Appendix A.4 that this occurs for an arbitrary subregion on
a leaf.

Spacetime disappears as w ! � 1 in the holographic FRW theory

We have seen in our AdS/CFT example that as the holographic state approaches typicality,
and hence becomes maximally entropic, the directly reconstructable region disappears. On
the other hand, we have shown that the entanglement entropies for at FRW universes ap-
proaches the maximal form asw ! � 1. Does this limit have a corresponding disappearance
of reconstructable spacetime? Here we will show that the answer to this question is yes.

From the analysis of Section 3.2, we see that a leaf at late times in universes approaching
de Sitter space can be mapped to a surface on the� = 0 hypersurface �, which asymptotes
to the bifurcation surface � in the late time limit. From the Killing symmetry, the HRRT
surfaces anchored to this mapped leaf must all be restricted to living on �. Mapping the
HRRT surfaces back to the original location, we see that they asymptote to living on the
null hypersurface � 0. Thus, we �nd that the HRRT surface for any subregion of a leaf� �

asymptote to the future boundary of the causal regionD � � , which we denote by@D(+)
� � , as a

universe approaches de Sitter space. A similar argument holds for universes wherew ! � 1.
In Appendix A.4, we present some examples where we can see this behavior using analytic
expressions for HRRT surfaces.

What does this imply for the reconstructable region in de Sitter space? Using the pre-
scription outlined in Section 3.2, we �nd that spacetime points on the future causal boundary
of a leaf, @D(+)

� � , can be reconstructed. This is a codimension-1 region in spacetime. One
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might then think that we can reconstruct a codimension-0 region by considering multiple
leaves, as was the case in a Schwarzschild-AdS black hole. However, the holographic screen
of de Sitter space is itself a null hypersurface, with future leaves lying precisely on the future
causal boundary of past leaves. This means that even by using multiple leaves we cannot
reconstruct any nonzero measure spacetime region in the de Sitter (andw ! � 1) limit.

We will now compute the reconstructable region in (2 + 1)-dimensional at FRW space-
times. As discussed in Section 3.2, this region is comprised of points that can be localized as
the intersection of edges of entanglement wedges. We will be considering the reconstructable
region associated to a single leaf, and hence this prescription reduces to �nding points located
at the intersection of HRRT surfaces anchored to the leaf. This alone gives us a codimension-
0 reconstructable region. In (2+1)-dimensional FRW spacetimes, HRRT surfaces are simply
geodesics in the bulk spacetime, and this problem becomes tractable.

For a (2 + 1)-dimensional at FRW universe �lled with a single uid component w, the
leaf of the holographic screen at conformal time� � is located at coordinate radius

r � =
a
_a

�
�
�
�
� = � �

= w� � : (3.13)

Let us parameterize the points on the leaf by� 2 [0; 2� ). Consider an interval of the leaf
at time � � centered at � 0 with half opening angle . The HRRT surface of this subregion
is simply the geodesic connecting the endpoints of the interval: (�; � ) = ( � � ; � 0 �  ) and
(� � ; � 0 +  ). It is clear from the symmetry of the setup that if we consider a second geodesic
anchored to an interval with the same opening angle but with a center� 0

0 2 [� 0 � 2 ; � 0+2 ],
then the two geodesics will intersect at a point, speci�cally where� = ( � 0 + � 0

0)=2. Using
these pairs of geodesics, it is clear that we can reconstruct all points on all geodesics anchored
to the leaf. The union of these points gives us a codimension-0 region.

Can we get a larger region? In (2 + 1)-dimensional at FRW spacetimes, the answer
is no. In higher dimensions, knowing the HRRT surfaces for all spherical cap regions may
not be su�cient to �gure out reconstructable regions; for example, one may consider using
disjoint regions in hopes that the new HRRT surfaces would explore regions inaccessible
to the previous HRRT surfaces (although we do not know if this really leads to a larger
reconstructable region). However, in 2 + 1 dimensions, both connected and disconnected
phases of extremal surfaces are constructed from the geodesics already considered, so we gain
nothing from considering disconnected subregions. We thus �nd that the set of all points
on HRRT surfaces anchored to arbitrary subregions on a leaf is exactly the reconstructable
region from the state on the leaf.

In Fig. 3.4, we show a plot of the reconstructable spacetime volume as a function ofw. It
shows a qualitatively similar behavior to that of Fig. 3.1, where the reconstructable volume
increases and then sharply declines to zero as the holographic state becomes maximally
entropic.

We can also perform a similar analysis in higher dimensions. Due to the numerical
di�culty in �nding extremal surfaces, here we restrict ourselves to the region reconstructable
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Figure 3.4: The spacetime volume of the reconstructable region in (2 + 1)-dimensional at
FRW universes forw 2 (� 0:9; � 1), normalized by the reconstructable volume forw = � 0:9.

by spherical cap regions (which may indeed be the fully reconstructable region) and to only
a few representative values ofw. The results are plotted in Fig. 3.5 for (3 + 1)-dimensional
FRW universes. These demonstrate the behavior that the extremal surfaces, and hence the
reconstructable region, becomes more and more null asw ! � 1.

The discussion in this subsection says that the reconstructable spacetime region dis-
appears in the holographic theory of FRW spacetimes as the holographic state becomes
maximally entropic in the de Sitter limit. While a microstate becoming maximally entropic
does not directly mean that states representing the corresponding spacetime become typical
in the holographic Hilbert space (since the number of independent microstates could still
be small), we expect that the former indeed implies the latter as usual thermodynamic in-
tuition suggests; see Section 3.4 for further discussion. In any event, since typical states in
a holographic theory are maximally entropic, we expect that the reconstructable spacetime
region disappears as the holographic state becomes typical.

An important implication of the analysis here is that a holographic theory of de Sitter
space cannot be obtained by taking a limit in the holographic theory of FRW spacetimes. A
holographic theory of exact de Sitter space, if any, would have to be formulated in a di�erent
manner.7

7Another instance in which spacetime disappears is when the holographic description changes from that
based on a past holographic screen (foliated by marginally anti-trapped surfaces) to a future holographic
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