Materials Science and Device Physics of 2-Dimensional Semiconductors

By

Hui Fang

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

In
Engineering - Materials Science and Engineering

in the
Graduate Division

of the
University of California, Berkeley

Committee in charge:

Professor Ali Javey, Co-chair
Professor Ramamoorthy Ramesh, Co-chair
Professor Junqiao Wu
Professor Eli Yablonovitch

Spring 2014
Abstract

Materials Science and Device Physics of 2-Dimensional Semiconductors

by

Hui Fang

Doctor of Philosophy in Engineering - Materials Science and Engineering

University of California, Berkeley

Professor Ali Javey, Co-chair
Professor Ramamoorthy Ramesh, Co-chair

Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies.

In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III-V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters.

Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS$_2$ exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe$_2$/MoS$_2$ hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this van der Waals heterostructure. This result enables new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers and highlights the ability to build van der Waals semiconductor heterostructure lasers/LEDs.
To my parents, my sister, Fang, and my wife, Sophia
Table of Contents

Chapter 1 Introduction .. 1
 1.1 The need for materials and device innovation for future scaling 1
 1.2 New science and opportunities from material dimension miniaturization........ 3
 1.3 Summary.. 3

Chapter 2 Ultra-Thin III-Vs on Si for Next Generation Electronics 4
 2.1 Introduction ... 4
 2.2 Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator.. 5
 2.3 Ultrathin-body, high-mobility InAsSb-on-insulator field-effect transistors...... 14

Chapter 3 Light Absorption Quantum in 2-D Materials ... 23
 3.1 Introduction .. 23
 3.2 The quantum of optical absorption in two-dimensional semiconductors 24

Chapter 4 Contact Engineering in Single Layered Chalcogenides .. 32
 4.1 Introduction .. 32
 4.2 High performance single layered WSe₂ p-FETs with chemically doped contacts ... 33
 4.3 Degenerate n-doping of few-layer transition metal dichalcogenides by potassium ... 43

Chapter 5 Van der Waals Heterostructures Built from Single Layered Chalcogenides ... 54
 5.1 Introduction .. 54
 5.2 Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides ... 55
 5.3 Experimental and theoretical details ... 65
Acknowledgement

First and foremost, I would like to thank my Ph.D. advisor Prof. Ali Javey. Nothing in this thesis can be achieved without his guidance and spurring over the past five years. I have learned not only a great deal of knowledge from him, but also how to become a better researcher, a team-player, and a leader. For that I am eternally indebted. His broad vision, constant enthusiasm, and extremely hard working have set a very high bar for me to always look up to. It has been truly an honor and luck for me to have the chance being with him for five years of my life.

I have been also extremely lucky to have an eminent group of other mentors. I would like to first thank Prof. Eli Yablonovitch for all his advice, inspiration and support. Furthermore, I would like to thank Prof. Chenming Hu, Prof. Roya Maboudian and Dr. Carlo Carraro for their support and education during my Ph.D. study as well. I would also express my great appreciation to Prof. Ramamoorthy Ramesh for serving as my advisor in the MSE department, and Prof. Junqiao Wu, Prof. Daryl Chrzan, Prof. Tsu-Jae King Liu and Prof. Eli Yablonovitch for serving on my qualifying exam committee and helping me refining my research. And I would like to acknowledge the fruitful collaborations between us and Prof. Andrew Minor’s group and Prof. Charles Fadley’s group on further understanding the lattice and electronic structure for the chalcogenide heterostructures, Prof. Jing Guo’s group of UFL on the theoretical modeling for the surface charge transfer for contact engineering.

Next, I would like to thank all the senior researchers in the Javey lab, with whom I have the opportunity to work, most of who are now professors. I would like to particularly thank Prof. Johnny Ho, Prof. Zhiyong Fan, Prof. Yulun Cheuh, Prof. Kuniharu Takei, Prof. Hyunhyub Ko, Prof. Morten Madsen, Prof. Junghyo Nah, Prof. Chuan Wang, Prof. Rehan Kapdia, Dr. Corsin Battaglia, Dr. Zhibin Yu, Dr. Yuping Zeng, and Dr. Toshitake Takahashi. Moreover I would like to thank my fellow graduate researcher in the Javey lab, especially to Steven Chuang, Maxwell Zheng, Mahmut Tosun, Sujay Desai and Mark Hettick. Finally, I want to thank the undergraduates who I had the honor to mentor and work with, Ting-Chia (Jerry) Chang, Peida (Peter) Zhao, Jeongseuk (Louis) Kang and David Huang. They are all talented students and I wish them big success in their graduate schools.

Finally, I would like to thank my parents, my sister and my wife. To them I dedicate this thesis.
Chapter 1 Introduction

1.1 The need for materials and device innovation for future scaling

Silicon integrated circuit (IC) technology has been benefiting for over 5 decades from a so called “smaller is better” motto. As the MOSFETs scale down in their dimensions, more and more transistors can be packed into a single chip, yielding the exponential increase in the device density and therefore the same trend in chip functionality. At the same time, the performance of transistors also boost with device miniaturization, by lowering the supply voltage needed to deliver certain ON current, with an essential decrease in the gate delay and an increase in the clock frequency of the circuits. This scaling trend, which has been driven by apparent economic reasons, is usually generalized as the Moore’s Law, where Gordon Moore observed and predicted in 1965 that the chip functionality doubles approximately every 18 months. The evolution of many aspects of the digital integrated circuits have been tied with Moore’s law, such as the clock frequency, the capacity of memory devices and even the number of pixels in digital cameras. This phenomenological law is still used in today’s semiconductor industry to guide the product research and development.

As the channel length entered into nanometer regime, conventional bulk MOSFETs would suffer from various short channel effects due to inefficient gate control over the regions far away from the gate. The competing drain electrostatic control would consequently roll off the threshold voltage (V_T), increase the OFF current, worsen the Subthreshold Swing (SS), and eventually, turn the transistor into a not functional switch. This electrostatic control challenge is more severe when the channel length is ultra-scaled for bulk MOSFETs.

On the other hand, the power density of the chip has increased drastically with continued scaling. This was not an issue at the constant field scaling stage, when transistor dimensions (width, W,
and length, L), gate dielectric thickness (t_{ox}) and the supply voltage (V_{DD}) as well as the threshold voltage (V_T) are scaled by the same scaling factor 1/k (k > 1, W’ = W/k). As a result, the device density is scaled by the factor k^2, the gate capacitance is scaled by 1/k, the drive current of the transistor is scaled by 1/k, and power dissipation per device is scaled by 1/k^2. The increase in the device density while decrease in power per device cancels out, resulting in non-scaling for the power density. And this has a huge technological implication since packaging of the scaled device does not require more rigorous heat-sinking. But due to the tolerance for the OFF current, a high enough V_T is needed therefore V_T cannot be scaled down with the same scaling factor. Consequently the supply voltage V_{DD} stops scaling as aggressively as the device dimensions. As shown in Fig. 1.1, the V_{DD} scaling has slowed down quite drastically since year 2001, and this lagging has caused continuous increase for the power density and increasing burden for heat dissipation.

![Graph showing V_{DD} scaling as a function of year from 1995 to 2010.](image)

Figure 1.1. Supply voltage scaling as a function of year for the past two decades (1992-2012). The technology nodes are also labeled for each year. The data is acquired from the International Technology Roadmap for Semiconductors (ITRS).

To overcome the electrostatic and power challenges during scaling, global research efforts have been devoted by engineers and scientists, with emphasis on innovations in new materials from semiconductors, metals to dielectrics, and novel device structures. To solve the electrostatic problem at very short channel length, two novel device architectures have been proposed and later on implemented in chips, ultrathin body (UTB) silicon-on-insulator (SOI) technology and FinFET technology. The ideas behind these two innovations are the same, to eliminate the part of the channel farther away from the gate then the drain, with UTB SOI technology being a planar gate structure, while FinFET a 3D tri-gate configuration. Alternatively, new channel materials are also intensively explored to potentially replace Si for high performance/low power MOSFETs. They range from organic molecules, carbon nanotube, III-V nanowires, to graphene etc. Key transport metrics such as carrier mobilities and saturation velocities are investigated and integrating these materials with Si platform are studied in parallel.
1.2 New science and opportunities from material dimension miniaturization

As the material dimensions scale, especially when the material enters nanometer regime, the electrons often “feel” structural quantum confinement and the electronic states are therefore quantized. These new discontinuous electronic states can be solved from the Schrodinger’s equation with applicable boundary conditions, and they form electronic subbands along the none-quantized reciprocal direction. Figure 1.2 illustrates the conduction and valence (including both heavy hole, hh, and light hole, lh) subbands dispersion in the not confined direction.

![Figure 1.2. Illustration of electronic subbands at reduced dimensions.](image)

The quantization effects have been observed in a lot of reduced dimensional materials, including 0-D quantum dots, 1-D quantum wires, and few-layer graphite previously, and they have remarkable influence upon nearly all of the material’s properties, from physical to chemical. Using quantum dots as an example, it has been found that the fluorescence of quantum dots can be tuned from infrared to ultraviolet just by changing the diameter of the dots only. This influence in the material properties provides new opportunities for new technologies, and has been manipulated and utilized in different kinds of applications such as LED technology, biodetection, memory devices, and thermoelectric devices and so on.

1.3 Summary

In this thesis, multiple novel 2-D material systems are explored. First, free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering, followed by the light absorption study revealing the interband optical transition in the 2-D III-V quantum membranes. Next, single and few layered chalcogenides are explored, with focuses in engineering the contacts for high performance MOSFETs. Finally, 2-D van der Waals heterostructures built from different single layer chalcogenides are presented. These material systems are all in ultrathin body form, ensuring good electrostatic control of using them as channel materials. Meanwhile, strong quantum confinement effects are affecting their material properties, among which the optoelectronic property is mainly investigated here.
Chapter 2 Ultra-Thin III-Vs on Si for Next Generation Electronics

2.1 Introduction

Global research efforts have been devoted by engineers and scientists to overcome various challenges during transistor scaling, with emphasis on innovations in new materials and novel device structures. To solve the electrostatic problem at very short channel length, FinFET and UTB FET device architectures have been proposed and later on implemented in chips. The ideas behind these two innovations are the same, to eliminate the part of the channel father away from the gate, with UTB SOI technology being a planar gate structure, while FinFET a 3D tri-gate configuration. Material-wise, III-Vs are the major group of semiconductors explored to potentially replace Si for high performance/low power MOSFETs. Key transport metrics such as carrier mobilities and saturation velocities are investigated and integrating these materials with Si platform are studied in parallel.

Recently, the epitaxial layer transfer (ELT) of ultrathin (thickness, $h_{\text{InAs}}=8-48$ nm) InAs layers on Si/SiO$_2$ substrates was demonstrated by our group, which realized heterogeneous integration of ultra-thin III-V semiconductors on Si substrates bypassing complex heteroepitaxial growth processes. This essentially combines the materials and device innovation and presents a promising route for future scaling. In this chapter, strain engineering within the III-V on insulator (XOI) platform will be first presented, then the XOI concept is extended InAs$_x$Sb$_{1-x}$ as a demonstration of even higher mobility III-V FETs, especially for ultrathin body thicknesses of <10 nm which are required for scaled transistors.
2.2 Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator*

III-V compound semiconductors have been extensively explored in the recent years for energy-efficient and high-speed electronics due to their high electron mobility and saturation drift velocity. In this aspect, ultrathin, fully-depleted layers are desired to reduce device leakage (i.e., OFF-state) currents, especially since many high mobility III-V semiconductors exhibit small bandgaps. Recently, the epitaxial transfer of ultrathin (thickness, \(h_{\text{InAs}}\) = 8-48 nm) InAs layers on Si/SiO\(_2\) substrates was demonstrated by our group with the subsequently fabricated field-effect transistors (FETs) exhibiting excellent electrical properties. This compound semiconductor on insulator (termed XOI) technology presents a viable route towards the heterogeneous integration of III-V semiconductors on Si substrates without the use of complex heteroepitaxial growth processes which often result in high defect densities due to the large lattice mismatch of the associated materials. Of particular importance for device optimization is to explore the strain state of the XOI layers, and more crucially, to control it since strain plays a critical role in the electronic properties of materials. Specifically, strain directly tailors the band offsets and carrier mobility by lifting the degeneracy in the bands which have been thoroughly investigated for heteroepitaxially grown multilayers. In this paper, we investigate the strain state of ultrathin InAs XOI layers and demonstrate strain engineering by the use of a ZrO\(_x\) capping layer during the epitaxial transfer process.

The fabrication process for the InAs XOI substrates is shown schematically in Fig. 2.1(a) as previously reported in ref. 6. Briefly, InAs thin films (\(h_{\text{InAs}}\) = 10-20 nm) were grown epitaxially on a 60 nm thick Al\(_x\)Ga\(_{1-x}\)Sb (x=0.2-1) sacrificial layer on GaSb (001) substrates. The ultrathin InAs layers were lithographically patterned (width of 350 nm to 5 \(\mu\)m) and wet etched using a mixture of citric acid (1 g/ml in DI H\(_2\)O) and hydrogen peroxide (30%) at 1:20 volume ratio. Subsequently, the AlGaSb sacrificial layer was selectively etched in ammonium hydroxide (1.5%, in deionized H\(_2\)O) solution with a measured etch rate of 40-60 nm/min depending on the Al composition of the sacrificial layer. The partially released InAs micro- or nano-ribbons (Fig. 2.1(b)) were transferred onto Si/SiO\(_2\) receiver substrates using an elastomeric polydimethylsiloxane (PDMS) substrate (~2 mm thick). In order to engineer the strain of transferred InAs layers, a ZrO\(_x\) (or SiO\(_x\)) capping layer was deposited by electron-beam evaporation on top of the source wafer prior to the epitaxial transfer process (Fig. 2.1(a)). ZrO\(_x\) was chosen as the cap material because 1) ZrO\(_x\) is known to have a good interface with InAs (ref. 6) which is beneficial for the eventual device fabrication and 2) ZrO\(_x\) has a large Young’s modulus (130-250 GPa). The cap prevents the relaxation of strain in InAs during the XOI fabrication process as shown later in detail in this paper. Figures 2.1 (c) and (d) show the transmission electron microscopy (TEM) images of a fabricated InAs XOI substrate, clearly depicting the single-crystalline structure of the InAs layer (~17 nm thick) on an amorphous SiO\(_2\) layer. No clear voids are evident at the InAs interfaces, although it should be warned that TEM analyzes only a small cross-sectional area.

Figure 2.1. (a) The process schematics for epitaxial layer transfer of InAs thin films to Si/SiO\textsubscript{2} substrates. (b) Cross-sectional SEM image of InAs ribbons on the source wafer after the partial etch of the AlGaSb sacrificial layer and prior to the transfer. (c) and (d) Cross-sectional TEM images of a fabricated InAs XOI substrate. In this case, the InAs layer transfer was performed without the ZrO\textsubscript{x} cap.
The structure of the source wafer is shown schematically in Figure 2.2(a), with both InAs and AlGaSb layers coherently strained to the GaSb (001) substrate as confirmed by high resolution X-ray diffraction (HRXRD). Specifically, we used Ω-2θ coupled scan, where Ω is the incident angle between the X-ray source and the sample and 2θ is the diffraction angle between the incident beam and detector, to resolve the (004) peaks from InAs, AlGaSb and GaSb and extract the out-of-plane (i.e., perpendicular) lattice parameters, a⊥. Figure 2.2(b) shows the diffraction spectra taken from GaSb/Al0.2Ga0.8Sb/InAs source wafers with hInAs=10, 15, and 20 nm, referenced to the peak of GaSb substrate, which has a (004) Bragg angle at 30.3±0.1°. Using Bragg’s law 2dsinθ=nλ, where d is the distance between the (004) crystal plane (d=a⊥/4), n=1 and λ is the X-ray wavelength (Cu’s Kα), one obtains a⊥ ~6.02 and 6.11 Å for InAs and Al0.2Ga0.8Sb, respectively (Note that a⊥,GaSb ~6.10 Å, which is the bulk GaSb lattice parameter). From the equation a‖=C11(a0-a⊥)/2C12+a0, where C11 and C12 are the elastic compliance constants16 and a0 is the bulk lattice parameter (a0,AlxGa1-xSb=(6.0959+0.0396x) Å, a0,InAs=6.0584 Å)17, the in-plane lattice parameter a‖ for both InAs and Al0.2Ga0.8Sb layers is found to be ~6.10 Å, which is the same as that of GaSb (001). The experimental spectra also precisely match the simulation data (Fig. 2.2(b)), which assumes that both Al0.2Ga0.8Sb and InAs layers are biaxially strained such that their in-plane lattice parameters are the same as that of the GaSb substrate (i.e. coherently). The result is consistent with the fact that the thicknesses of the AlGaSb sacrificial layer and the InAs layer are within their theoretical critical thicknesses for heteroepitaxy of hc ~10.2 µm and 240 nm for Al0.2Ga0.8Sb and InAs, respectively, which can be calculated from the empirical equation hc=(A/(Δa/a0))n, where A=16 and n=2.4 for III-Vs18, and Δa is the difference between a0,AlxGa1-xSb or a0,InAs and a0,GaSb. The results are found to be generally true, regardless of the thickness of InAs and the Al content of the sacrificial layer used in this work. The amount of tensile strain inside the ultrathin InAs layer on the source wafers can be calculated by ε0=(a0,GaSb-a0,InAs)/a0,InAs ~0.62 %.

To visualize the strain state of the InAs layer in the XOI system (i.e., after transfer on Si/SiO2 substrate), micro-Raman spectroscopy was employed. Note that the Raman spectroscopy could not be used for the analysis of the source wafer since InAs, AlGaSb, and GaSb have overlapping peaks. Figure 2.3(a) shows the Raman spectra of InAs XOI (hInAs=20 nm) obtained from source wafers with different composition of AlxGa1-xSb sacrificial layers (x=0.2, 0.4 and 0.6) along with the [001] bulk InAs data from literature19. Here, no capping layer was used during the epitaxial transfer process. The spectra distinctly depict the first order transverse optic (TO) mode (~217 cm⁻¹), longitudinal optic (LO) mode (~239 cm⁻¹), and the low frequency branch of coupled LO-phonon-plasmon mode (L-) (~230-235 cm⁻¹) phonon peaks19-21 of InAs XOI. Clearly, InAs XOI layers obtained from sacrificial layers with different compositions exhibit near identical Raman spectra, with the LO peak position at ~239 cm⁻¹ which is the same as that for the InAs bulk substrate (Fig. 2.3(a)). Furthermore, the position of the LO peak is identical for InAs with thicknesses hInAs=10-20 nm (Fig. 3(b)). The results suggest that in the absence of a ZrOx capping layer, the strain is fully released during the epitaxial transfer process of InAs ultrathin layers for
Figure 2.2. Analysis of the source wafers. (a) The structure of GaSb/AlGaSb/InAs source wafer with an assumed strain state for each layer. (b) HRXRD spectra and simulation spectrum of GaSb/Al$_{0.2}$Ga$_{0.8}$Sb/InAs source wafer with different InAs thicknesses.
Figure 2.3. Analysis of epitaxial transferred InAs XOI substrates. (a) Raman spectra of XOI samples (h_{InAs}=20 nm) obtained from GaSb/Al\textsubscript{x}Ga\textsubscript{1-x}Sb/InAs source wafers with different sacrificial layer Al content (x=0.2, 0.4 and 0.6). The Raman spectrum of a bulk InAs sample is replotted from reference 19. (b) Raman spectra of XOI samples with different InAs thicknesses. (c) Raman spectra of relaxed and strained InAs XOI samples when transferred with and without the use of a ZrO\textsubscript{x} capping layer. Lorentzian fitting was performed to extract the exact peak locations of TO, L- and LO. (d) Schematic illustrations showing the lattices of relaxed and strained InAs XOI (not drawn to scale).
the explored thickness range and sacrificial layer composition. We hypothesize that the strain is released upon the partial etch of the AlGaSb layer, which results in nearly free-standing InAs layers (Fig. 2.1(b)). The L- peak, which is due to the surface plasmon-LO phonon coupling, however, exhibits a h_{InAs} dependence (Fig. 2.3(b)). One possible reason for the increasing L-/LO intensity ratio with reducing InAs thickness is due to the enhancement of the surface area to volume ratio. Note that the L- peak locations show some uncertainty because of different surface properties and scattering within the skin depth. For all measurements, the intensity of the Raman laser power was decreased until the peak positions did not show any dependence on the laser intensity. This insured a more accurate estimation of the phonon peak locations, without laser-induced heating.

Strain engineering of InAs XOI layers was achieved by the use of a 70 nm thick ZrO_x cap layer during the transfer process (Fig. 2.1(b)). A red shift of 2.9±1.1 cm^{-1} in the LO peak position is clearly evident for InAs XOI layers transferred with a cap as compared to those without a cap (Fig. 2.3(c)). The amount of tensile strain inside the InAs XOI layer transferred with a cap was extracted from \(\Delta \omega/\omega = (K_{11}/2)\varepsilon_{zz} + (K_{12}/2)(\varepsilon_{xx}+\varepsilon_{yy}) \), where \(\omega \) is the LO peak location (238.6 cm^{-1}), \(\Delta \omega \) is the LO peak shift, \(K_{11} = -1.753 \times 10^{11} \text{ dyn/cm}^2 \) and \(K_{12} = -2.323 \times 10^{11} \text{ dyn/cm}^2 \) are the anharmonic spring constants for InAs LO phonon, and \(\varepsilon_{xx} = \varepsilon_{yy}, \varepsilon_{zz} = -2C_{12}/C_{11}\varepsilon_{xx} \) are components of strain tensor inside InAs, with \(C_{11} = 8.329 \times 10^{11} \text{ dyn/cm}^2 \) and \(C_{12} = 4.526 \times 10^{11} \text{ dyn/cm}^2 \) as the elastic compliance constants of InAs. From this analysis, we obtain an in-plane strain \(\varepsilon_{xx} = \varepsilon_{yy} = 0.8\pm0.3 \% \), which is within the expected range of the ~0.62 \% initial strain of the as-grown InAs layer. We note that besides preserving the initial strain of the transferred InAs layer, the ZrO_x cap may also induce additional strain depending on its initial stress level upon evaporation. Clearly, the presented approach shows, for the first time, a versatile route towards strain engineering of epitaxial transferred ultrathin layers of semiconductors.

To relate the amount of strain remaining in the InAs XOI layer to the ZrO_x cap thickness, analytical modeling was performed as shown in Fig. 2.4. For simplicity, it was assumed that the InAs and ZrO_x layers deform equally after release from the sacrificial layer and that the relationship between strain and stress is linear, given by Young’s modulus E. Figure 2.4 (a) schematically illustrates the stress distribution across a cross-section of the ZrO_x cap and InAs layer. The stress in each layer can be found by setting a common absolute deformation value, and the relationship between these two stresses can be set by zeroing the net moment caused by them. The remaining strain inside InAs is then determined by the following equation: \(\varepsilon = mn(n+2)\varepsilon_0/[1+mn(n+2)] \), where \(m = E_{ZrO_x}/E_{InAs} \approx 2.63 \) is the ratio of Young’s moduli of ZrO_x and InAs, \(n = h_{ZrO_x}/h_{InAs} \) is the ratio of the thicknesses of ZrO_x and InAs, \(\varepsilon_0 = 0.62 \% \) is the as-grown InAs strain. The dependence of the strain (\(\varepsilon \)) in a 20 nm InAs layer on the cap thickness (h_{ZrO_x}) is plotted in Fig. 2.4 (b). The modeling indicates that the initial InAs strain is nearly fully maintained (by up to ~98 \%) by a 70 nm ZrO_x cap, which is consistent with the experimental observations.
Figure 2.4. (a) Schematic of the stress distribution (σ_{ZrO_x}, σ_{InAs} are the normal stresses in ZrO$_x$ and InAs, respectively, f is the force applied to the InAs layer from the substrate to neutralize the total force) across a cross-section of ZrO$_x$ cap and InAs layer. (b) The dependence of the strain (ε) in the transferred InAs layer (XOI configuration, $h_{InAs}=20$ nm) on the ZrO$_x$ cap thickness (h_{ZrO_x}).
In conclusion, the strain state of InAs layers within the XOI platform was studied. The strain is shown to fully relax during the epitaxial transfer process. However, if desired, a simple ZrO_x cap layer can be used to successfully preserve the strain of the epilayer transferred InAs. The results highlight that the strain of the X layer in XOI can be tuned by choosing different cap layers (with different Young’s moduli), cap thicknesses and the initial stress inside the cap, to obtain the optimal strain level for the desired device application. The presented approach adds yet another degree of versatility to the use of epitaxial layer transfer technique of ultrathin semiconductors for practical applications.
References:

2.3 Ultrathin-body, high-mobility InAsSb-on-insulator field-effect transistors

High mobility semiconductors show great promise as the channel material of ultra-fast, low-power field-effect transistors (FETs) and have been actively explored in the past few decades. Among them, mixed anion InAs$_x$Sb$_{1-x}$ has one of the highest electron mobilities and saturation velocities of all known semiconductors. However, it also has one of the smallest bandgaps. For such devices, ultrathin body (UTB) architectures are essential to enable acceptable leakage currents. Conventionally, InAs$_x$Sb$_{1-x}$ devices have been fabricated as complex quantum well structures on III-V or Si substrates. While the devices exhibited promising initial results, due to leakage from gate and/or not fully depleted body, they suffered from high I_{OFF}. In consideration of supporting substrates, Si is a well-established material and is highly preferred over III-V semiconductors. However, using direct MBE growth to integrate both n and p channel materials onto Si for CMOS will be very challenging due to the large lattice mismatch between different desired materials and Si/SiO$_2$. Previously, we demonstrated the transfer of InAs ultrathin membranes onto Si/SiO$_2$ substrates to form high performance n-FETs, termed "XOI" in analogy to the well-established Silicon-on-Insulator (SOI) field. The mobility of InAs XOI devices was found to be as high as ~5000 cm2/Vs for body thicknesses of ~>20 nm and decreases to ~1600 cm2/V-s when scaled down to 8 nm in thickness. Here, we extend the XOI concept to InAs$_x$Sb$_{1-x}$ as a demonstration of even higher mobility III-V FETs, especially for ultrathin body thicknesses of <10 nm which are required for scaled transistors based on small bandgap semiconductors.

Firstly, ultrathin InAs$_{0.7}$Sb$_{0.3}$ layers of different thicknesses (T_{InAsSb}=7 and 17 nm) were transferred onto Si/SiO$_2$ substrates following the epitaxial layer transfer (ELT) technique described previously. InAs$_{0.7}$Sb$_{0.3}$ was grown on a 60 nm Al$_{0.4}$Ga$_{0.6}$Sb sacrificial layer on GaSb substrate by molecular beam epitaxy. The InAsSb layer was then pattern etched by using a mixture of citric acid (1 g/ml of water) and hydrogen peroxide (30%) at 1:20 volume ratio (etch rate, ~0.7 nm/sec), and the AlGaSb layer was selectively etched by ammonium hydroxide (1.5%, in water). Ni (T_{Ni} = 40 nm) source (S) and drain (D) electrodes were fabricated using lithography and metallization. For top gated FETs, a 10 nm-thick ZrO$_2$ gate dielectric was deposited by atomic layer deposition (ALD) at 115 $^\circ$C, followed by a forming gas anneal at 150 $^\circ$C for 10 min. Subsequently, Ni top-gate (G) electrodes, overlapping the S/D, were fabricated. Fig. 2.5(a) shows a TEM image of the 7 nm InAsSb layer on Si/SiO$_2$ with a Ni/ZrO$_2$ high-κ stack, while the HRTEM image in Fig. 2.5(b) illustrates the single-crystallinity of the InAsSb channel, exhibiting highly abrupt interfaces between InAsSb and Si/SiO$_2$ without any visible voids.

In order to probe the electrical properties of InAsSb XOI FETs, back- and top-gated devices with varied gate lengths (L_G) were fabricated and characterized. For back-gated FETs, a 50 nm thick thermally grown SiO$_2$ was used as the gate dielectric. Fig. 2.6(a) shows the transfer characteristics of 7 nm and 17 nm thick InAsSb XOI FETs at $V_{DS}=0.5$ V, for $L_G=2.7$ μm and 3.4 μm, respectively. The back-gated 7 nm thick device exhibits an I_{ON}/I_{OFF} ratio of ~10^4, more than 2 orders of magnitude greater than the 17 nm device. This significant improvement in OFF current can be attributed to better electrostatic control from gating a thinner body. The raising

Figure 2.5. (a) TEM image of a ~7 nm thick $\text{InAs}_{0.7}\text{Sb}_{0.3}$ XOI (body oxide thickness, 50 nm) substrate. The nanoribbon is coated with a ZrO$_2$/Ni bilayer (~25 and ~50 nm, respectively). (b) HRTEM image showing the single-crystal structure of an $\text{InAs}_{0.7}\text{Sb}_{0.3}$ nanoribbon with atomically abrupt interfaces with ZrO$_2$ and SiO$_2$ layers on the top and bottom surfaces, respectively.
Figure 2.6. (a) Typical back gate I_{DS}-V_{GS} for 7 nm and 17 nm thick In$_{0.7}$Sb$_{0.3}$ XOI n-FET on 50 nm SiO$_2$ at $V_{DS}=0.5$ V. The inset shows the schematic of the back gated devices. (b) Effective mobility extracted from I_{DS}-V_{GS} characteristics at $V_{DS}=0.1$ V.
of bandgap by confinement will also contribute to a lower OFF current, since the barrier for thermionic emission of carriers would be higher. Specifically, since InAsSb has a large Bohr radius (between 34 nm and 65 nm, which are for bulk InAs and InSb, respectively13), heavy quantum confinement is expected in ultra-thin body membranes. An approximate expression for the ground state energy of electrons and holes can be derived by solving the 1-D Schrodinger Equation for a finite potential well. The effective bandgap would be 0.6 eV and 0.32 eV for 7 nm and 17 nm InAs\textsubscript{0.7}Sb\textsubscript{0.3}, respectively. Fig. 2.6(b) shows the extracted effective mobilities (μ_{eff}) as a function of the 2D carrier density at $V_{\text{DS}}=0.1$ V for the long-channel, back-gated FETs (with $T_{\text{ox}}=50$ nm) shown in Fig. 2.6(a). The mobility was obtained from the expression,

$$\mu_{\text{eff}} = \frac{\partial I_{\text{DS}}}{\partial V_{\text{DS}}} \frac{L_{\text{G}}}{C_{\text{ox}}(V_{\text{G}} - V_{\text{T}} - 0.5V_{\text{DS}})}$$

where V_{T} is the threshold voltage extracted from the linear $I_{\text{DS}}-V_{\text{GS}}$ curve, $C_{\text{ox}} = \varepsilon_{\text{ox}}\varepsilon_0 / T_{\text{ox}}$ is the gate oxide capacitance per unit area ($\varepsilon_{\text{ox}} \approx 3.9$ is the dielectric constant of SiO\textsubscript{2}, ε_0 is the vacuum permittivity, and $T_{\text{ox}} = 50$ nm is the SiO\textsubscript{2} thickness). Here, we utilized the simple parallel plate model and the effects of quantum capacitance and fringe field are ignored, which is a valid assumption given the thick gate oxide (i.e., small oxide capacitance) of the back-gated devices and the channel width>>thickess.

The effective mobility histograms extracted for long-channel InAs\textsubscript{0.7}Sb\textsubscript{0.3} (thickness, 7 nm and 17 nm) and InAs (thickness, 8 nm, and 18 nm) XOI FETs are shown in Fig. 2.7. Note that the dimensions (including channel width, W, typically ~320-380 nm) of each device was directly measured by SEM and used to normalize the current and extract mobilities. InAsSb devices exhibit average effective mobilities of ~3400 cm2/V-s and ~4100 cm2/V-s at $n_s = 2 \times 10^{12}$ cm-2 for 7 nm and 17 nm thicknesses, respectively. Note that the mobility degradation with thickness is mainly due to enhancement of surface roughness and surface polar phonon scattering14. These mobility values present ~2× enhancement over InAs XOI FETs with similar thicknesses (Fig. 2.7). The variation of the mobility may be caused by the different amount of interface trap states (D_{it}) introduced during processing. This mobility improvement coincides with the previously reported Hall mobility difference between InAs\textsubscript{0.7}Sb\textsubscript{0.3} ($\mu_{\text{Hall}} \approx 42,000$ cm2/V-s) and InAs ($\mu_{\text{Hall}} \approx 22,000$ cm2/V-s)15 at a doping concentration of 5×10^{16}-3×10^{17} cm-3, which is around the electron density in our unintentionally doped samples. Hence it is promising to further enhance the mobility by increasing the Sb content of the channel, although this comes at the cost of a lower band-gap.

Next, the electrical properties of top-gated InAsSb XOI FETs are explored. As shown in Fig. 2.8(a) and (b), a 7 nm thick InAsSb FET ($L_{\text{G}}=500$ nm) exhibits $I_{\text{ON}}/I_{\text{OFF}} \sim 2 \times 10^{2}$ when defining I_{OFF} at $V_{\text{T}}-1/3V_{\text{DD}}$ and I_{ON} at $V_{\text{T}}+2/3V_{\text{DD}}$ at room temperature (V_{T} is taken at $I = 10^{-6}$ A/\textmu m), and exhibits an I_{ON} of ~0.38 mA/\textmu m at $V_{\text{DS}} = V_{\text{GS}} = 0.6$ V. A subthreshold swing of SS ~178 mV/dec is obtained, which is larger than that of InAs FETs (SS ~125 mV/dec)16. This suggests that the InAsSb interfaces exhibit a higher density of trap states than InAs. The source contact resistance, R_{S}, of the 7 nm thick InAsSb was extracted using the Transmission Line Method. The extracted R_{S} is ~200 \Omega.\textmu m, which is close to that of 8 nm InAs FETs’ (~230 \Omega.\textmu m)16.
Figure 2.7. Histogram plots of effective mobility (at $n_s = 2 \times 10^{12} \text{ cm}^{-2}$) in InAs and InAsSb XOI n-FETs of (a) $T_{\text{InAs}}=8$ nm, (b) $T_{\text{InAs}_{0.7}\text{Sb}_{0.3}}=7$ nm (c) $T_{\text{InAs}}=18$ nm, and (d) $T_{\text{InAs}_{0.7}\text{Sb}_{0.3}}=17$ nm.
Figure 2.8. (a) Top gate $I_{DS}-V_{GS}$ for a 7 nm thick InAs$_{0.7}$Sb$_{0.3}$ XOI n-FET at $V_{DS}=0.05$ and 0.5 V. The gate length is ~500 nm. Inset is schematic of top gated InAs$_{0.7}$Sb$_{0.3}$ XOI FETs. (b) $I_{DS}-V_{DS}$ curve of the same device in (a). Inset shows the top view SEM image (false-color) of a representative device. (c) g_{m} and g_{mi} as a function of the gate length. (d) Top gate $I_{DS}-V_{GS}$ as a function of temperature at $V_{DS}=0.05$ V. Inset shows SS as a function of T, with linear fitting.
The extrinsic transconductance g_m of the top-gated FET ($L_G\approx500$ nm) at $V_{DS}=0.5$ V, peaked at ~0.51 mS/µm. The intrinsic transconductance,

$$g_{mi} = g_m/(1-g_m R_S - g_d R_{SD})$$

was extracted to exclude the contact resistance effects ($R_{SD}=R_S+R_D=2R_S$). The peak intrinsic transconductance of the device is ~0.56 mS/µm. Fig. 2.8(c) shows g_m and g_{mi} as a function of inverse gate length, which exhibits non-linearity for shorter channel lengths, possibly arising from quasi-ballistic transport. Further study need to be done to improve the I_{OFF} and SS of sub-500nm channel length devices. Compared to previously reported InAs$_{0.8}$Sb$_{0.2}$ QWFETs ($L_G=1$ µm, $g_{mi}=0.50$ mS/µm) on GaAs substrates and InSb QWFETs ($L_G=85$ nm, $g_{mi}=0.71$ mS/µm) on Si, our InAsSb XOI FETs show a peak g_{mi} of ~0.56 mS/µm for $L_G\approx500$ nm (Fig. 2.8(c)) while eliminating the complexity from growing thick buffer and δ doping layers$^{9-10}$. And it has higher I_{ON}/I_{OFF} at room temperature.

Fig. 2.8(d) shows the temperature dependent transfer characteristics. The interface trap density (D_{it}) was extracted from $D_{it} = C_{it}/q^2$, with C_{it} from,

$$\frac{dSS}{dT} = \frac{2.3k}{q} \left(1 + \frac{C_{a1} + C_{b,c=0,0} - \frac{C_{b,c=0,0}^2}{C_{a1}C_{a2}}}{1 + \frac{C_{a1} + C_{b,c=0,0}}{C_{a2}}} \right)$$

With $e_{ox1}=16$, $t_{ox1}=10$ nm, $e_{ox2}=3.9$, $t_{ox2}=1200$ nm, $e_{InAsSb}=15.7$, and $t_{InAsSb}=7$ nm, D_{it} is determined to be $\sim1\times10^{13}$ cm$^{-2}$ eV$^{-1}$, which is slightly higher than that of InAs XOI FETs’ ($\sim3\times10^{12}$ cm$^{-2}$ eV$^{-1}$)16. Note that this D_{it} value presents only a rough estimate of the order of magnitude for the average trap density within the bandgap. The traps close or beyond the conduction band edge are not extracted using this analysis technique, but they can also alter the charge carrier density and transport properties. Detailed capacitance-voltage characterization in the future is needed to better understand and optimize the surface/interface properties.

In conclusion, high electron mobility InAs$_{0.7}$Sb$_{0.3}$ transistors have been fabricated on Si substrates using the XOI configuration. The devices exhibit excellent electrical properties, while future work on improving the InAsSb/high K interface need to be done. In the future, even higher Sb content and thinner body InAsSb XOI n-FETs, together with InGaSb XOI p-FETs are promising to be integrated for high speed and low power complementary MOSFET circuits.
References:

3.1 Introduction

As the material dimensions scale, especially when the material enters nanometer regime, there is often strong quantum confinement for electrons. The electronic states are therefore quantized, and these new discontinuous electronic states can be solved from the Schrodinger’s equation with applicable boundary conditions. Electronic subbands therefore form along the non-quantized reciprocal direction.

The quantization effects have been observed in a lot of reduced dimensional materials, including 0-D quantum dots, 1-D quantum wires, and few-layer graphite previously, and they have remarkable influence upon nearly all of the material’s properties, from physical to chemical. For example, it has been found that the fluorescence of 0D quantum dots can be tuned from infrared to ultraviolet just by changing the diameter of the dots only.

Previous work has shown that graphene, a 2-D semimetal, has a universal value of light absorption, namely $\pi \alpha$, where α is the fine structure constant. Here, we use free-standing InAs membranes with exceptionally small thickness as a model material system in order to accurately probe the absorption properties of 2-D semiconductors as a function of thickness. We demonstrate that the magnitude of the light absorption for all 2-D materials is an integer product of a quantum of absorptance, irrelevant of most material dependent parameters.
3.2 The quantum of optical absorption in two-dimensional semiconductors*

The optical properties of heterostructure quantum wells (QWs) have been extensively studied since the 1970’s, in GaAs/AlGaAs (ref. 1), GaInAs/AlInAs (ref. 2, 3), InGaAs/InP (ref. 4) and HgCdTe/CdTe (ref. 5). Here we do a careful quantitative examination of the intrinsic absorption properties of free-standing 2-D semiconductor thin-films, which has previously been done only for layered structures, such as MoS$_2$ (ref. 6). (The criterion of real two dimensionality is that the material thickness be smaller than the electron Bohr radius.)

Previous work has shown that graphene, a 2-D semimetal, has a universal value of light absorption, namely $\pi \alpha$, where α is the fine structure constant. Here, we use free-standing InAs membranes with exceptionally small thickness as a model material system in order to accurately probe the absorption properties of 2-D semiconductors as a function of thickness. We demonstrate that the magnitude of the light absorption is an integer product of a quantum of absorptance. Specifically, each set of interband transitions between the 2-D sub-bands results in a quantum unit of absorptance of $A_Q \approx \pi \alpha / n_c$, where n_c is the optical local field correction factor. The total absorptance for the first several sets of interband transitions is simply given as $A = MA_Q$, where M is the integer number of allowed transitions for a given photon energy. The result here appears to be universal, except for small correction factors associated with higher bands.

Recently, there has been a high level of interest in exploring the fundamental science and associated devices of free-standing (i.e., attached to a substrate by van der Waals or other weak forces) 2-D semiconductors. 2-D layered semiconductors, (e.g., MoS$_2$ (ref. 11), WSe$_2$ (ref. 15), GaSe (ref. 16), Bi$_2$Sr$_2$CaCu$_2$O$_x$ (ref. 17), Bi$_2$Se$_3$ (ref. 18) and Bi$_2$Te$_3$ (ref. 19); or diamond/zinc-blende structures InAs (ref. 12), and InGaSb (ref. 20)) can be readily mounted on virtually any support substrate, thereby enabling a wide range of novel device concepts and practical applications. In one example system, InAs quantum membranes (QMs) with adjustable thicknesses down to a few atomic layers have been realized by a layer transfer process onto a user-defined substrate. The approach enables the direct optical absorption studies of fully-relaxed (i.e., unstrained) 2-D III-V semiconductors by using transparent substrates, without the constraints of the original growth substrate. Here, we utilize InAs membranes of thickness $L_z \sim 3$nm-19nm on CaF$_2$ support substrates as a model material system for examining the absorption properties of 2-D semiconductors. Given the large Bohr radius of ~ 34nm in bulk InAs, strong quantum confinement of carriers is readily obtained for sub-20 nm Quantum Membrane thicknesses. Note that there are only ~ 5 unit cells in a 3nm thick InAs QM, given its lattice constant of ~ 0.6nm (ref. 23). In such a quantum mechanically confined 2-D system, there is electronic band dispersion in the 2 unconfined directions, with discrete energy sub-band edges at values determined by quantum confinement in the 3rd direction. In our case, the InAs QMs can be effectively treated as infinitely deep potential wells, since they are confined by air on one side and by a wide bandgap CaF$_2$ substrate on the other side. Figure 3.1A shows the optical microscope image of a periodic array of ~ 5µm wide InAs strips (of ~ 3nm thickness), on a CaF$_2$.
Figure 3.1. (A) Optical microscope image of InAs 2-D strips (~3nm thick) on a CaF$_2$ substrate. Inset shows the atomic force microscope image of a single InAs strip. (B) CaF$_2$/InAs (9nm)/Air quantum well band diagram with energy referring to $E(z=0^+)$). E_F shows the quasi Fermi level, while e_1, e_2, hh$_1$, hh$_2$, lh$_1$ and lh$_2$ are the indices for the conduction and valence subbands. Note that only the first two conduction/valence subband edges are shown. (C) Qualitative band structure schematic of a 2-D InAs QM, with arrows indicating the allowed optical interband transitions between valence and conduction sub-bands.

Figure 3.2. Schematic illustration of the FTIR micro-spectroscopy set-up used for the absorption measurements. The absorption spectrum is obtained from the measured transmission and reflection spectra. The incident light angle was actually perpendicular to the membrane.
Figure 3.3. Absorptance for (A) 3nm, (B) 6nm, (C) 9nm, (D) 14nm, and (E) 19nm InAs quantum membranes. The absorptance spectra are corrected by dividing by the surface area fill factor of InAs.

Figure 3.4. Absorptance spectra of InAs QMs with thickness of \(L_z \sim 3\)nm, 6nm, 9nm, 14nm, and 19nm at room temperature, showing universal absorptance steps of \(A_0 \sim 1.6\% \) in magnitude. Dash lines indicate each 1.6\% of absorptance. The \(A_{en-hh_n} \) represent the absorptance from the corresponding interband transitions, \(e_n-hh_n \) and \(e_n-lh_n \).
crystal substrate produced by the layer transfer process26. CaF\textsubscript{2} was chosen as the support substrate as it is optically transparent for the wavelength range of interest. From visual appearance (Fig. 3.1A), it is evident that ultrathin InAs QMs exhibit strong optical contrast; thereby allowing for the detailed optical characterization even for the films consisting of a few atomic layers in thickness.

Fig. 3.1B shows the calculated energy levels of a 3nm InAs quantum membrane (QM) with CaF\textsubscript{2} and air boundaries. The MBE-grown InAs samples are not intentionally doped, eliminating band-filling27. Here, the effect of surface accumulation layers due to surface defects are ignored (see supplementary Fig. S1 for surface accumulation layer effects). Figure 3.1C depicts the qualitative band structure of a 2-D InAs QM, with vertical arrows indicating the interband transitions from the nth heavy hole (hh)/light hole (lh) sub-band to the nth electron (e) sub-band. Here we define e\textsubscript{hh}-hh\textsubscript{n} and e\textsubscript{lh}-lh\textsubscript{n} as the nth set of interband transitions. Due to spatial matching of electron/hole wave-functions in different energy sub-bands, interband transitions in quantum wells are favored when Δn=n′-n=0, where n′ and n are the sub-band indices for electrons and holes, respectively28. Consequently, there are two allowed transitions to each electron sub-band; one from the corresponding hh sub-band, and the other from lh sub-band.

We utilize Fourier Transform Infrared (FTIR) micro-spectroscopy (Fig. 3.2) to probe optical interband transitions (in the range 0.3eV< h\nu <1.2eV) in InAs QMs at room temperature26. Transmittance and reflectance spectra were collected in the range of 2414-9656 cm-1 (0.30eV-1.20eV) over an aperture size of ~50×50μm2, with 8cm-1 (1meV) resolution and 512 averages for all samples with different thicknesses. Atmospheric H\textsubscript{2}O and CO\textsubscript{2} effects were removed using OMNIC 8.2 software (Thermo Scientific). The absorption spectra of InAs QMs for each thickness was obtained by subtracting the transmittance and reflectance from a normalized 100% spectrum yielding Fig. 3.3. The final spectra were generated by dividing the measured spectra by the fractional area fill factor of the InAs strips. Fig. 3.4 shows the overlayed absorptance (A) spectra of InAs QMs with L\textsubscript{z} ~ 3nm, 6nm, 9nm, 14nm and 19nm. Clear step-like features are observed in the absorptance spectra arising from the quantized interband transitions between the 2-D sub-bands10. The spacing between the measured absorptance steps are in quantitative agreement with the calculated interband energy spacings (see supplementary Fig. S2 for the detailed analysis). Note that intersubband transitions are negligible due to our TE polarization. The experimental finding here is that the individual absorptance steps plateau at ~1.6±0.2% (standard deviation) for all samples, regardless of the QM thickness. The result was reproducible for multiple samples and measurements.

To shed light on this observed absorption behavior, the electron-photon interaction in a semiconductor material is theoretically evaluated from Fermi’s golden rule. If a light wave with electric field \mathbf{E}, polarization vector $\hat{\mathbf{e}}$ and frequency ω is incident perpendicular to a direct band-gap semiconductor membrane with a thickness L_z, in an infinitely deep potential well model29, the optical absorption coefficient is:

$$\alpha'(\omega) = \frac{e^2}{n_r c \varepsilon_0 m_e^* \omega L_z \hbar^2} \frac{1}{1/m_{e0}^* + 1/m_{m0}^*} |\hat{\mathbf{e}} \cdot \mathbf{E}_0|^2$$

\text{Chapter 27}
the free electron mass, \(\hbar \) is Planck’s constant, \(m_{en}^* \) and \(m_{hn}^* \) are the effective mass for electrons and holes of the \(n \)th conduction and valence sub-bands present from the 2-D density-of-states, and \(|\hat{e} \cdot \vec{p}_{cv}|^2 \) is the momentum matrix element describing the electron-photon interaction. Equation (1) arises from Fermi’s Golden Rule, with optical perturbation \(|\vec{A} \cdot \hat{p}_{cv}/m_e| \), where \(\vec{A} \) is the vector potential related to the optical electric field as \(E=\tilde{j}\omega A \).

The reciprocal effective masses \(1/m_e \), and \(1/m_h \), arise in \(k \cdot p \) perturbation theory\(^{30} \) from a similar perturbation \(|\hbar \vec{k} \cdot \hat{p}_{cv}/m_e| \). The reduced effective mass produced by this repulsion of conduction and valence bands in \(2^{nd} \) order \(k \cdot p \) perturbation theory is:

\[
1/m_{en}^* + 1/m_{hn}^* = 4|p_{cv}/m_o|^2/E_{cv}, \text{ where } E_{cv} = \hbar \omega \text{ is the interband transition energy.}
\]

Thus \(k \cdot p \) perturbation theory puts \(|p_{cv}|^2 \) in the denominator of eq’n. (1), while the optical perturbation puts \(|p_{cv}|^2 \) in the numerator of Eq’n. (1). Thus the momentum matrix element \(|p_{cv}|^2 \) cancels. Many of the other terms in Eq’n. (1) cancel as well, leaving behind the dimensionless absorptance \(\alpha'L_z = \pi(e^2/4\pi\epsilon_o \hbar c)/n_r \). Aside from \(\pi \), and a correction for the surrounding refractive index \(n_r \), the absorptance per 2-D sublevel is \((e^2/4\pi\epsilon_o \hbar c) \), a group of fundamental constants known as the Fine Structure Constant \((e^2/4\pi\epsilon_o \hbar c) = \alpha = 1/137 \).

The prime on the absorption co-efficient \(\alpha' \) is meant to distinguish it from the Fine Structure Constant \(\alpha \). Since \(\alpha'L_z \) is dimensionless, it is somewhat inevitable that it would be related to \(\alpha \), the dimensionless parameter in opto-electronics and quantum physics. Indeed optical absorption depends on electric charge, and \(\alpha \) is actually electric charge squared, (in fundamental units where \(\hbar =1, c=1, 4\pi\epsilon_o =1 \)).

The simplified calculation above, is vindicated by Szkopek’s detailed calculations\(^{31-32} \), which multiply the step-function by a Sommerfeld Coulomb correction factor:

\[
S(\omega) = \frac{2}{1+\exp\{-2\pi\sqrt{Ry}/(\hbar \omega - E_{cv})\}}
\]

where Ry is the electron-hole Rydberg binding energy. This puts a sharp, narrow, double-height spike, right at the step function, whose width is related to the typical millivolt Hydrogenic binding energy. In the experiment, Fig. 3.4, the double-height spikes are washed out, and hardly seen, leaving only small vestigial peaks at each step.

There is an additional correction. The dimensionless absorption steps that we observe \(\sim 1.6\% \) are actually smaller than \(\pi \alpha = 2.3\% \). This is due to a local optical electric field correction factor, which we call \(n_c \). In a surrounding refractive index \(n_r \), \(n_c = n_r \), as clear from Eq’n. (1). When the quantum membrane film is mounted on a substrate of refractive index \(n \), it experiences both the incident electric field, \(E_o \), and the Fresnel reflected electric field \(\{(1-n)/(1+n)\}E_o \). Superposing the incident and reflected fields, that local optical electric field at the quantum membrane is weaker by \(\{2/(1+n)\}E_o \) which reduces the optical absorption by \(\{2/(1+n)\}^2 \) and the local field correction factor becomes \(n_c = \{(n+1)/2\}^2 \) yielding the corrected step absorption \(A_Q \):
In our case the refractive index of CaF$_2$ is $n=1.43$, changing the optical local field correction factor n_c to $\{(1+n)/2\}^2=1.48$ reducing the absorption step height to $\sim1.58\%$, in close agreement with our observed step height in Fig. 3.4.

Thus we have shown experimentally and theoretically that light absorption in 2-D semiconductors is independent of specific material parameters, such as bandgap, effective mass and thickness. The simplification of $A=M\cdot A_Q$ holds true over a broad range of photon energy, given that the considerable confinement energy shifts with M.

The measured absorptance values for previously reported III-V and II-VI heterostructure QWs are in the range of 0.6-1.1\% per QW for the first step$^{1-5}$, slightly smaller than the A_Q value presented in this work. This is expected due to an optical local field correction factor $n_c\sim3.5$ appropriate to a quantum well grown and embedded in high-index material, rather than our case of free-standing quantum membrane on a low index substrate. On the other hand, the result here is also consistent with the reported absorptance for graphene7, $A\sim\pi\alpha$ which is for a totally suspended membrane with vacuum on either side.

In summary, light absorption in near-ideal 2-D semiconductors is experimentally examined by using free-standing InAs QMs as a model material system. The absorptance of 2-D InAs is found to be an integer multiple of the quantum absorptance, A_Q, governed only by the fundamental physical constant α. Besides its significance in the basic understanding of electron-photon interactions in quantum confined semiconductors, this result provides a new insight toward the use of 2-D semiconductors for novel photonic and optoelectronic devices. Future work should focus on the experimental studies of the absorptance magnitude of other 2-D material systems.

$$A_Q=\alpha'_n(\omega)L_z = \frac{\pi\alpha}{n_c} = \pi\alpha \left(\frac{2}{1+n}\right)^2$$
References:
26. See supporting information.
27. The Fermi level was calculated from an estimated bulk electron density of $2 \times 10^{16}/\text{cm}^3$.
Chapter 4 Contact Engineering in Single Layered Chalcogenides

4.1 Introduction

Two dimensional systems from layered structure semiconductors are greatly promising for future electronics for their extremely thin body and exceptional electronic properties. Especially when transistors are scaled below 5 nm gate length, single layered semiconductors would be excellent candidates for the channel material due to their minimum surface roughness, absence of surface dangling bonds and/or defect states, if a channel thickness of at most 1/3 of gate length is present for effective gate control. Among various layered materials, graphene, a single sheet of carbon, has gained world-wide interests and explorations, and achieved numerous successful applications. The unique band dispersion of graphene gives rise to its extremely high carrier mobility, however in the other way, its zero bandgap, limits its potential in serving as MOSFETs channels, where bandgap of at least a few kT is needed. Recent advances in atomically single layered MoS$_2$, a semiconductor with bandgap of 1.8 eV, shows very encouraging results of using it as a channel material in MOSFETs, in particular for n-type conduction, and opens up a new research trend of studying MoS$_2$’s materials properties and improving its device performances.

In this chapter, the first high mobility monolayer chalcogenide p-FETs with high I_{ON}/I_{OFF} is reported. Then by controllable doping of chalcogenide layered semiconductors at the source/drain (S/D) contacts, low contact resistance can be achieved for both n- and p- FETs with monolayer chalcogenides such as WSe$_2$, and MoS$_2$.
4.2 High performance single layered WSe$_2$ p-FETs with chemically doped contacts*

Exploratory research is needed to develop materials, structures, and device technologies for future sub-5 nm gate length field-effect transistors (FETs). At such small scales, severe short channel effects limit the performance and operation of electronic devices1. Theoretical studies have shown that the use of large band gap semiconductors with ultrathin bodies and/or gate-all around structures are essential to minimize the short channel effects at extreme scaling limits1. Specifically, for ultrathin body devices, a general guideline dictates a body thickness of $<1/3$ of the gate length for effective electrostatic control of the channel by the gate electrode3. For sub-5 nm gate lengths, this corresponds to channel materials with only 1-2 atomic layers in thickness. In this regard, single layered semiconductors are excellent candidates for the channel material of future monolayer-FETs (ML-FETs). As compared to materials with diamond/zinc-blende structure, layered semiconductors exhibit advantageous surfaces with minimal roughness, dangling bonds, defect states and native oxides. Among various layered materials, graphene has achieved worldwide interest and numerous interesting applications have been proposed4,5,6,7. However, graphene does not have an intrinsic band gap, which severely limits its digital logic applications. Meanwhile, the band gap of graphene nanoribbons shown to date is still too small for ultrashort channel FETs8. Recent advances in monolayer and few layered MoS$_2$, a chalcogenide semiconductor with a large band gap of E_g~1.8 eV, has shown the potential use of layered semiconductors for high performance n-type FETs (n-FETs)9. To date, however, high mobility monolayer p-FETs with high I_{on}/I_{off} have not been reported, and more importantly routes for controllable doping of chalcogenide layered semiconductors at the source/drain (S/D) contacts for low parasitic resistances have not been explored. In this report, by developing a surface dopant-profiling technique, we demonstrate the first high hole mobility WSe$_2$ ML-FETs (body thickness of ~0.7 nm) with degenerately doped contacts. The use of heavily p-doped contacts is essential in lowering the metal contact resistances to WSe$_2$ by orders of magnitude, and enabling the demonstration of p-FETs with peak effective mobility of ~250 cm2/Vs, near ideal subthreshold swing (SS) of ~60 mV/decade, and high I_{on}/I_{off} of $>10^6$.

WSe$_2$ is a layered semiconductor with a bulk indirect bandgap of ~1.2 eV (ref. 10-11). A recent study of bulk WSe$_2$ FETs revealed an intrinsic hole mobility of up to 500 cm2/Vs (ref. 12). However, the bulk devices exhibited poor I_{on}/I_{off} ratio of less than 10 at room temperature, along with ambipolar behavior, both of which are highly undesirable for digital logic applications. This is presumably due to the use of a bulk (i.e., thick) body which results in large OFF state leakage currents. Here we applied the well-known mechanical exfoliation method to obtain a single layer of WSe$_2$ from a bulk crystal (Nanoscience Instruments, Inc) on Si/SiO$_2$ substrates for ML-FET fabrication and characterization. Fig. 4.1a shows an optical microscope image of a single layer WSe$_2$ flake (light orange) transferred on top of a Si/SiO$_2$ (thickness, 270 nm) substrate. This thickness of SiO$_2$ is optimized to optically visualize the contrast of single layer and few layer WSe$_2$, similar to the cases of graphene and MoS$_2$ (ref. 9). Fig. 4.1b depicts the atomic force microscope (AFM) image of a single layered WSe$_2$ flake, with Fig. 4.1c

Figure 4.1. Single layered WSe$_2$ on a Si/SiO$_2$ substrate. a, Optical microscope image of a single layered WSe$_2$ (light orange flake) on a Si substrate with 270 nm SiO$_2$. b, AFM image of a single layered WSe$_2$ on Si/SiO$_2$. c, Height profile of a line scan (as indicated by the dashed line in Fig. 4.1b) across the single layered WSe$_2$-SiO$_2$ boundary.
showing the lateral height profile at the edge of the flake. From AFM measurements, the thickness of the single layer is determined to be \(\sim 0.7 \text{ nm} \), which agrees with the crystallography data of WSe\(_2\) in literature\(^{13}\). Note that the surface roughness of WSe\(_2\) is similar to the Si/SiO\(_2\) background, indicating that the layer is uniform and the surface roughness is minimal, which is essential for obtaining high carrier mobilities with low surface roughness scattering rates.

Large \(E_g \) semiconductors such as WSe\(_2\) are notoriously known for their difficulty in forming ohmic metal contacts. Therefore, it is important to shed light on the metal-WSe\(_2\) Schottky barriers (SBs), and explore routes towards minimizing the contact resistances to enable exploration of intrinsic material and device properties. In this regard, we have explored different metal source/drain (S/D) contacts, including Pd, Ag, Ni, Au, Ti and Gd for back-gated WSe\(_2\) FETs. The fabrication process involves the transfer of WSe\(_2\) layers onto a Si/SiO\(_2\) substrate, followed by a 1hr acetone bath to remove the tape residues, S/D metal contact patterning by lithography, evaporation and lift off processes. Here the S/D length is fixed at \(L \sim 8 \text{ \mu m} \). Based on the various metal contacts explored, high work function Pd was found to form the lowest resistance contact to the valence band of WSe\(_2\) for hole transport, with devices exhibiting the highest unit-width normalized ON currents. As depicted in the back-gated transfer characteristics (Fig. 4.2a), Pd contacted FETs exhibit clear p-type conduction, without ambipolar transport. In contrast, lower work function metal contacts resulted in FETs that conduct in both n and p regimes with low current levels, reflecting high SB heights to both conduction and valence bands of WSe\(_2\). Specifically, Ti forms near mid-gap SBs to WSe\(_2\) with low-current ambipolar characteristics (Fig. 4.2a-b). The results here highlight the importance of selecting high work function metals with good interfaces to WSe\(_2\) in order to lower the SB height at the contacts for hole transport. Clearly, Fermi level pinning is weak or non-existent at metal-WSe\(_2\) interfaces. Further investigation of the exact effect of the metal work function and interface chemistry on the barrier height is needed in the future.

Although Pd was found to form the best contact for hole transport among the various metals explored, a small SB may still exist at the Pd-WSe\(_2\) interface given the large \(E_g \) of WSe\(_2\). To shed light on the contact properties of Pd, surface hole doping of WSe\(_2\) was explored. By heavily p-doping WSe\(_2\), the width of any barriers at the metal interfaces can be drastically reduced, resulting in more efficient tunneling of the carriers and lower resistance contacts. Inspired by the surface doping approach in carbon nanotubes and graphene\(^{14,15,16}\), here we utilized NO\(_2\) molecules as a p-type surface dopant. NO\(_2\) molecules are expected to be absorbed both physically and chemically on top of the WSe\(_2\) surface as illustrated in Fig. 4.3a. Due to the strong oxidizing property of NO\(_2\), the molecules act as “electron pumps” when chemisorbed to WSe\(_2\). Fig. 4.3b shows the transfer characteristics of a back-gated WSe\(_2\) ML-FET before and after NO\(_2\) exposure. The device was exposed to 0.05% NO\(_2\) in N\(_2\) gas for 10 min, beyond which the doping effect was found to saturate presumably due to the NO\(_2\) saturation coverage on the surface\(^{14}\). Here, the entire channel is exposed to NO\(_2\), resulting in blanked (i.e., unpatterned) doping of WSe\(_2\). The weak gate-voltage dependence of current after NO\(_2\) exposure clearly reflects that WSe\(_2\) is heavily doped (Fig. 4.3b). Moreover, the current at high negative \(V_{GS} \) (ON state) is enhanced by >1000x after NO\(_2\) doping, which can be attributed to the lowering of contact resistance by thinning the Pd-WSe\(_2\) SB width for hole injection. In addition, NO\(_2\) may increase the work function of Pd, thereby lowering the SB height at the interface. This work function
Figure 4.2. Back-gated WSe₂ FETs with different metal contacts. a, I_{DS}-V_{GS} characteristics of Pd (red curve) and Ti (black curve) contacted WSe₂ FETs on a Si substrate with 50 nm SiO₂ as the back-gate dielectric. Here WSe₂ is few layered (thickness, ~5 nm). b, Qualitative energy band diagrams for Pd (top) and Ti (bottom) contacted WSe₂ FETs in the ON-state, depicting the height of the SBs for hole injection (Φ_{Bp}) at the metal-WSe₂ interfaces.
Figure 4.3. Chemical p-doping of single layered WSe\(_2\) by NO\(_2\). a, Cross-sectional schematic of a back-gated WSe\(_2\) ML-FET on Si/SiO\(_2\), with NO\(_2\) molecules being absorbed on both the channel and contacts. b, I\(_{DS}\)-V\(_{GS}\) characteristics of Pd contacted WSe\(_2\) ML-FET before (black curve) and after (red curve) exposure to NO\(_2\).
increase is possibly due to the formation of surface/subsurface metastable palladium oxides when NO$_2$ is absorbed on Pd as previously reported in literature17,18.

To estimate the 2-D sheet carrier density (n_{2D}) of WSe$_2$ after NO$_2$ doping, the source/drain current (I_{DS}) at zero gate voltage was modeled as $I_{DS} = q \cdot n_{2D} \cdot W \cdot \mu \cdot V_{DS} / L$, where q is the electron charge, W and L are the width and length of channel, respectively, μ is the field-effect mobility (~ 140 cm2/Vs as extracted from the I_{DS}-V$_{GS}$ transfer characteristic), and V_{DS} is the source/drain voltage. Since the channel shape is often irregular, the width is defined as the total channel area divided by the length. We note that the field-effect mobility from back-gated WSe$_2$ ML-FETs doped with NO$_2$ is 1-2 orders of magnitude higher than MoS$_2$ ML-FETs without the high-κ dielectric mobility booster9. This could be either due to the different surface characteristics of WSe$_2$ as compared to MoS$_2$ and/or due to the lower contact resistance observed here by doping the contacts. n_{2D} is extracted to be $\sim 2.2 \times 10^{12}$ cm$^{-2}$, which corresponds to a doping concentration of $\sim 3.1 \times 10^{19}$ cm$^{-3}$. At this doping concentration, Fermi level lies at ~ 16 meV below the valence band edge (E$_V$), as calculated from the Joyce-Dixon Approximation19 and an effective hole density of state of $N_{V}=2.54 \times 10^{19}$ cm$^{-3}$ (ref. 20). Therefore, NO$_2$ exposed WSe$_2$ layers are degenerately doped. This doping level, however, is lower than the NO$_2$ surface monolayer density of $\sim 1.4 \times 10^{15}$ cm$^{-2}$ (assuming a perfect monolayer coverage)17, suggesting that on average ~ 0.001 electron is transferred per NO$_2$ molecule. It should be noted that NO$_2$ doping is reversible due to the gradual desorption of NO$_2$ molecules from the WSe$_2$ surface once exposed to ambient air (Fig. S1). In the future, other dopant species and/or process schemes should be explored for permanent doping.

Next, we explored patterned p-doping of WSe$_2$ for the fabrication of top-gated ML-FETs with self-aligned, chemically doped S/D contacts. Pd/Au (30/20 nm) metal contacts were first defined by lithography and metallization. Gate electrodes, underlapping the S/D by a distance of 300 - 500 nm were then patterned by e-beam lithography and using PMMA as resist, followed by atomic layer deposition (ALD, at 120ºC) of 17.5 nm ZrO$_2$ as the gate dielectric, the deposition of Pd metal gate, and finally lift-off of the entire gate stack in acetone. While it has been reported that direct ALD on pristine graphene is not possible due to the lack of dangling bonds, uniform ALD of Al$_2$O$_3$ and HfO$_2$ on MoS$_2$ at the optimized temperature window has been previously demonstrated and attributed to the physical absorption of precursors on the basal plane21,22, which we assume also applies to WSe$_2$. The devices are then exposed to a NO$_2$ environment and measured. Fig. 4a shows the schematic illustration of a top-gated ML-FET after NO$_2$ S/D doping. The exposed (underlapped) regions are p-doped heavily, while the gated region remains near intrinsic due to the protection of the active channel by the gate stack. This p+/i/p+ device structure is similar to conventional ultra-thin body Si MOSFETs. Fig. 4b shows the transfer characteristics of a ~ 9.4 µm channel length WSe$_2$ ML-FET (see Fig. S2 for the device optical images) before and after NO$_2$ contact doping. Here the back-gate voltage is fixed at -40 V to electrostatically dope the underlapped regions for both before and after NO$_2$ exposure. As a result, the difference in the current-voltage characteristics for the two measurements purely arises from the change of the metal-WSe$_2$ contact resistance, rather than the resistance of the underlapped regions. As depicted in Fig. 4b, a drastic enhancement of ~ 1000x improvement in the ON current is observed in the device after surface doping of the contacts by NO$_2$, without a change in I$_{OFF}$. A small shift in the threshold voltage to the positive direction is observed after NO$_2$ contact doping, which could be due to the increase of the Pd metal gate work function by
The ML-FET with doped contacts exhibits an impressive I_{ON}/I_{OFF} of $>10^6$ arising from the large band-gap of WSe$_2$ combined with the monolayer-thick body which minimizes OFF state leakage currents.

Importantly, the transfer characteristics at room temperature shows a perfect subthreshold swing (SS), reaching the theoretical limit of $\ln(10) \times kT/q = 60 \text{ mV/dec}$ for a MOSFET, which originates from the thermionic emission of the source holes with density of states (DOS) tailed by the Fermi-Dirac distribution. For an experimental (i.e., non-ideal) MOSFET, SS is given as $\eta \times 60 \text{ mV/dec}$, where $\eta \approx 1 + \frac{C_{it}}{C_{ox}}$ is the body factor, and C_{it} is the capacitance caused by the interface traps ($C_{it} = D_{it} \cdot q^2$, with D_{it} being the interface trap density) and $C_{ox} = \varepsilon_{ox} \varepsilon_0 / T_{ox}$ is the top gate oxide capacitance per unit area ($\varepsilon_{ox} \approx 12.5$ is the dielectric constant of ZrO$_2$, ε_0 is the vacuum permittivity, and $T_{ox} = 17.5 \text{ nm}$ is the ZrO$_2$ thickness). The experimental SS~60 mV/decade for WSe$_2$ ML-FETs suggests the near unity η caused by $C_{it} \ll C_{ox}$. The low C_{it} is attributed to the lack of surface dangling bonds for layered semiconductors. Notably our measured SS outperforms all Ge and III-V MOSFETs, firmly indicating that WSe$_2$ has optimal switching characteristics for low power and high speed electronics.

Next the effective hole mobility, μ_{eff}, of top-gated WSe$_2$ ML-FETs with doped contacts was extracted from the I-V characteristics by using the relation,

$$\mu_{eff} = \frac{L_G}{\partial I_{DS} / \partial V_{DS}} \frac{L_G}{C_{ox} (V_{GS} - V_T - 0.5V_{DS})},$$

where V_T is the threshold voltage and L_G is the gate length. The long-channel device exhibits a peak hole effective mobility of ~250 cm2/Vs (Fig. 4.4c). The mobility does not degrade severely at high fields (Fig. 4.4a), which should be attributed to the fact that the carriers are already close to the gate in a single layered channel, and that surface roughness is minimal. Therefore, the gate oxide thickness can be further scaled without severe mobility degradation, again indicating that WSe$_2$ is a promising candidate for future scaled electronics. It must be noted that the channel is one monolayer thick (~ 0.7 nm), significantly thinner than the previously reported high hole mobility III-V or Ge MOSFETs, even in ultrathin body (UTB) configuration. For conventional diamond/zinc-blende structured material channels, severe mobility degradation occurs when reducing the channel thickness due to the enhanced scattering from both surface roughness and dangling bonds. For example, the peak effective hole mobility of strained-InGaSb based UTB-FETs drops from ~820 to 480 cm2/Vs when the body thickness is reduced from 15 nm to 7 nm23. Therefore, the measured mobility of 250 cm2/Vs for our monolayer-thick WSe$_2$ FETs is impressive.

The output characteristic of the same top gated WSe$_2$ ML-FET with doped contacts is shown in Fig. 4.4d. The long-channel device exhibits clear current saturation at high V_{DS} due to pinch-off, similar to the conventional MOSFETs. In the low V_{DS} regime, the I-V curves are linear, depicting the ohmic metal contacts. Overall, the results here demonstrate the potential of WSe$_2$ monolayers along with the essential patterned doping of the contacts for high performance p-FETs.
Figure 4.4. Top-gated WSe₂ ML-FETs with chemically doped contacts. a, Schematic of a top-gated WSe₂ ML-FET, with chemically p-doped S/D contacts by NO₂ exposure. Here the top-gate acts as the mask for protecting the active channel from NO₂ doping. b, Transfer characteristics of a device with L~9.4 μm, before and after NO₂ patterned doping of the S/D contacts. c, Extracted effective hole mobility as a function of gate overdrive of the device shown in b at V_DS= -0.05 V. d, Output characteristics of the same device shown in b.
In conclusion, the layered semiconductor WSe$_2$, has been thinned down to a single layer through mechanical exfoliation and fabricated into p-FETs with promising hole mobility and perfect subthreshold characteristics. A NO$_2$ surface doping strategy is introduced to degenerately dope the S/D regions of the FETs and drastically reduce the metal contact resistance, meanwhile revealing intrinsic transport properties of the channel. Along with the previously demonstrated MoS$_2$ single layer transistor, the results encourage further investigation of layered semiconductors, especially the transition metal dichalcogenide family, for future high performance electronics. As emphasized in this work, surface doping is a necessity for obtaining high performance ML-FETs, and in this regard exploration of other dopant species for both n- and p-doping in needed in the future.
References:

4.3 Degenerate n-doping of few-layer transition metal dichalcogenides by potassium*

The desire for enhanced computation power has been the driving force for the aggressive scaling of electronic devices over the past several decades. However, at the extreme channel length miniaturization, poor gate control impairs the scaling benefits of conventional transistors. In this regard, various new classes of materials and device structures have been proposed to continue the scaling trend. Recently two dimensional (2-D) Layered Transition Metal Dichalcogenides (TMDCs), e.g., MoS$_2$ and WSe$_2$, have gained tremendous interest due to their body thickness scalability down to a monolayer (ML), without surface dangling bonds or native oxides, and with promising carrier transport properties. Field-effect transistors (FETs) fabricated from exfoliated TMDC crystals exhibit outstanding device performances such as an ideal subthreshold swing of \sim60 mV/dec, I_{ON}/I_{OFF} ratio of 10^8, and high field effect mobility for both electrons and holes. Transistors fabricated on 5-nm-thick MoS$_2$ flakes show no short channel effects down to a channel length of \sim100 nm, without aggressive gate oxide scaling. Shortly after the first successful demonstration of MoS$_2$ monolayer FETs, building blocks of digital circuits such as logic gates, static random access memory devices and ring oscillators have been realized.

Controlled doping of few-layer TMDCs, which is of fundamental material and device importance, has not yet been well explored in the community. This is particularly important given that TMDC FETs reported so far are often limited by Schottky barriers (SBs) at the metal/semiconductor interfaces. Therefore electrical properties are hindered by the contact resistances rather than intrinsic material properties. To be able to push TMDC FETs to their performance limits and also reveal their intrinsic electronic transport properties, recently we reported the use of NO$_2$ molecules as effective p-dopants for monolayer and few-layer WSe$_2$. In this doping scheme, NO$_2$ molecules are absorbed on the surface of WSe$_2$, resulting in surface electron transfer from WSe$_2$ to NO$_2$ given the strong oxidizing nature of NO$_2$ molecules. Building on this concept, here we report the first degenerate n-doping of MoS$_2$ and WSe$_2$. Specifically, we use potassium as an efficient surface n-dopant and achieve a high electron sheet density of \sim1.0×10^{13} cm$^{-2}$ in MoS$_2$ and 2.5×10^{12} cm$^{-2}$ for WSe$_2$. We also for the first time demonstrate few-layer WSe$_2$ n-FETs with electron mobility of \sim110 cm2/V.s by selectively n-doping the metal contact regions with K.

Electron doping by K vapor has been previously applied to carbon nanotubes and graphene. Due to the small electron affinity of K, it is a strong electron donor to most surfaces. Here, to study the doping effects of K on the transport properties of TMDCs, back gated devices made of few-layer MoS$_2$ and WSe$_2$ with channel lengths of 0.5-10 µm were first fabricated and systematically studied as a function of doping. The fabrication process starts with the transfer of MoS$_2$ or WSe$_2$ layers on a Si/SiO$_2$ substrate (oxide thickness, t$_{ox}$=270 nm) using an adhesive tape, followed by a acetone wash for 1hr to remove the tape residues. Subsequently source/drain (S/D) metal contacts were formed by lithography, metal evaporation and lift off processes. The contacts were annealed at 200 °C for 5 min in Ar. The K doping of few-layer

chalcogenides was carried out in a sealed chamber, where the samples/devices were placed ~2-3 cm in distance under the K dispenser (SAES Getters, USA). The chamber was then pumped and maintained at \(\sim 3.5 \times 10^{-5} \) torr by a turbo pump and a current of 5 amperes was applied to the K dispenser to initiate the doping process. The dose was controlled by monitoring the device performance in-situ as a function of exposure time to the K vapor. For MoS\(_2\), Ni and Au metal contacts were found to give good n-type conduction, which is consistent with literature. Here we choose Ni for simplicity. Figure 4.5(a) and (c) show the device schematics of few-layer MoS\(_2\) and WSe\(_2\) back gated FETs blank-doped with K. Figure 4.5(b) shows the transfer characteristics of a 3-monolayer MoS\(_2\) back gated device before and after K doping, measured in vacuum. The as-made device exhibits a typical switching behavior with large \(I_{ON}/I_{OFF} \) (> 10\(^5\)). After doping by exposing the entire channel to K vapor, the current \(I_{DS} \) becomes weakly dependent on the gate voltage, which clearly indicates that MoS\(_2\) is heavily n-doped (current at positive bias side still slight higher than negative side). The current level also increases with doping mainly due to two effects: 1) higher tunneling probability through SBs due to barrier thinning by strong doping and, 2) higher channel conductance arising from the higher electron concentration. The first effect results in a lower contact resistance and is a more prominent factor given that for as-made devices, the current nearly saturates at very high gate fields (Fig. 4.5b), suggesting that the current is limited by the injection of carriers from the source contact. For few-layer WSe\(_2\), here we use Au as the contact metal since it results in higher electron conductance (i.e., lower SB height to the conduction band) as compared to the other metal contacts that we explored, including Pd and Ni. Specifically ambipolar device characteristics with both electron (positive \(V_{GS} \)) and hole (negative \(V_{GS} \)) conduction (Fig. 4.5d) due to the mid-gap SBs are observed for Au contacted WSe\(_2\) FETs. This is in contrast to Pd contacted FETs which exhibit only p-channel conduction due to lower SBs for holes as compared to electrons. After K doping, WSe\(_2\) FETs also exhibit weak gate dependence in \(I_{DS} \), which coincides with the result from MoS\(_2\), indicating a high electron doping level.

To approximate the sheet electron concentration after K doping, here we assume that K doping results in SB width thinning such that the tunneling probability is near unity. Therefore, the contact resistance after doping can be ignored. The 2-D sheet doping concentration \((n_{2-D}) \) is then extracted from

\[
n_{2D} = \frac{I_{DS} \cdot L}{q \cdot W \cdot V_{DS} \cdot \mu},
\]

where \(q \) is the electron charge, \(W \) and \(L \) are the width and length of channel, respectively, \(I_{DS} \) is the source/drain current at zero gate voltage, \(V_{DS} \) is the source/drain voltage, and \(\mu \) is the field-effect mobility. The mobility was extracted from the \(I_{DS}-V_{GS} \) transfer characteristic after doping using parallel plate capacitor model (\(C_{ox} = \varepsilon_{ox} \varepsilon_0 / T_{ox} \) is the gate oxide capacitance per unit area, where \(\varepsilon_{ox} \sim 3.9 \) is the dielectric constant of SiO\(_2\), \(\varepsilon_0 \) is the vacuum permittivity, and \(T_{ox} = 270 \) nm is the SiO\(_2\) thickness) to estimate the channel charge modulation. We extract an electron concentration \(n_{2-D} \sim 1.0 \times 10^{13} \) cm\(^{-2}\) for K doped MoS\(_2\) and \(2.5 \times 10^{12} \) cm\(^{-2}\) for WSe\(_2\). The difference in the extracted electron concentrations could arise from difference in the K surface coverage for the two samples.
Figure 4.5. “Blanked” (i.e., unpatterned) n-doping of few-layer MoS$_2$ and WSe$_2$ by K. (a, c) shows the schematic of K doping of the entire channel for MoS$_2$ and WSe$_2$ devices respectively, with (b, d) showing the corresponding transfer characteristics before (black symbols) and after (red symbols) doping.
Patterned n-doping of few-layer TMDCs was explored next by fabrication of top-gated few-ML TMDC FETs with self-aligned, K-doped S/D contacts. Specifically, a 3-ML WSe$_2$ top-gated FET with L~6.2 µm is shown here as a proof of concept. Au (40 nm) was used as the S/D contacts. ZrO$_2$/Ni (17.5/30 nm) gate stack (underlapping the S/D metal contacts by a distance of 300 - 500 nm) was formed by electron beam lithography, metal deposition and lift-off. To be able to lift off the gate stack, ZrO$_2$ was deposited by atomic layer deposition (ALD) at a low temperature of ~120 ºC. Figure 4.6(a) depicts the 3-ML WSe$_2$ top gated FET after K doping of the exposed S/D. The exposed (underlapped) regions are n-doped heavily, while the gated region remains near intrinsic due to the protection of the active channel by the gate stack. The resulting structure is n+/i/n+, similar to the conventional n-MOSFETs. Figure 4.6(b) shows the transfer characteristics of the device in vacuum with increasing doping time. Here the back-gate voltage is fixed at 40 V to electrostatically dope the underlapped regions. As a result, the difference in the I_{DS}-V_{GS} characteristics mainly arises from the change of the metal-WSe$_2$ contact resistance, rather than the resistance of the underlapped regions. The device before doping shows a low current of <10 pA/µm at $V_{DS} =$0.05 V. The electron conduction at the positive gate voltage increases drastically by orders of magnitude after K vapor exposure, which clearly depicts the lowering of the contact resistance. Specifically, the current value after 120 min of doping using the specified condition is $\sim 10^5 \times$ higher than the device with undoped contacts. Note that a small threshold voltage shift towards the more negative voltage is observed with K doping. This is attributed to the diffusion of a small fraction of the K atoms through the top-gate stack, especially given the small size of K ions.

Figure 4.6(c) shows the transfer characteristics of a top-gated WSe$_2$ FET after 120 min of K doping at both high ($V_{DS} = 1$ V) and low ($V_{DS} = 0.05$ V) fields. The device exhibits $> 10^4$ of I_{ON}/I_{OFF}, and over 110 cm2/V.s peak effective electron mobility, which was extracted from the I-V characteristics by using the relation $\mu_{eff} = \frac{\partial I_{DS}}{\partial V_{DS}} \frac{L}{C_{ac} (V_{GS} - V_T - 0.5V_{DS})}$. Here, $V_T = -0.46$ V is the threshold voltage, V_{GS} is the gate bias and $C_{ac} = \varepsilon_{ac} \varepsilon_0 / T_{ac}$ is the top gate oxide capacitance per unit area ($\varepsilon_{ac} \sim 12.5$ is the dielectric constant of ZrO$_2$, ε_0 is the vacuum permittivity, and $T_{ac} = 17.5$ nm is the ZrO$_2$ thickness). The I_{DS}-V_{DS} output characteristic of this device is shown in Figure 4.6(d). The I-V behavior at low V_{DS} region clearly depicts the ohmic contacts, while at high V_{DS} current saturates by pinch-off, similar to the conventional long-channel MOSFETs.
Figure 4.6. Top-gated few-layer WSe₂ n-FETs with chemically doped contacts. (a) Schematic of a top-gated few-layer WSe₂ n-FET, with chemically n-doped S/D contacts by K exposure. (b) Transfer characteristics of a 3-layer WSe₂ device (L~6.2 μm) as a function of K exposure time. The black curve is before doping, while the other curves from bottom to top are after 1, 20, 40, 70, and 120 min doping. (c) Transfer characteristics of the device in b after 120 min doping. Inset shows extracted effective electron mobility as a function of the gate overdrive of the device at V_DS=0.05 V. (d) Output characteristics of the same device shown in b.
A similar top-gate device structure was explored for few-layer MoS$_2$ (Fig. 4.7a). Figures 4.7(b) and (c) show the I_{DS}-V_{DS} output characteristics of a 3-ML MoS$_2$ top-gated FET with $L \sim 1 \mu m$ at two different back gate bias V_{BG}, 0 V and 40 V respectively. The I_{DS}-V_{DS} curves reflect a clear Schottky contact behavior at low V_{DS} regime, even with a back-gate voltage of V_{BG}=40 V where the underlapped regions are electrostatically doped by the back gate. After K surface charge transfer doping of the underlapped regions, the current goes up by more than one order of magnitude at the same V_{BG} (0 V) and top gate bias V_{TG}. Moreover, the Schottky behavior disappears and the low-field regime exhibits an ohmic behavior. The peak effective mobility of this device after K doping of the contacts was extracted to be $\sim 25 \text{ cm}^2/\text{V.s}$. Note that this mobility values is lower than the highest values previously reported in literature, which may be due to the fact that the top gate dielectric layer was deposited at a low temperature to enable the lift-off process with PMMA resist and the “dielectric boosting” effect was not seen for ZrO$_2$ deposited at this low temperature.

To shed light on the charge transfer between K and TMDCs, X-ray Photoelectron Spectroscopy (XPS) surface analysis was performed. Figure 4.8(a) and (b) show the Mo 3d and S 2p peaks, before and after sample exposure to K. After K exposure, the Mo 3d and S 2p peaks broaden while the positions of their maxima shift toward higher values. Specifically, Mo 3d$_{3/2}$ shifts from 232.0 eV to 232.7 eV, Mo 3d$_{5/2}$ shifts from 228.8 eV to 229.5 eV, S 2p$_{1/2}$ shifts from 162.7 eV to 163.7 eV, and S 2p$_{3/2}$ shifts from 161.6 eV to 162.2 eV. The upshift of the peaks is directly attributed to the n-doping process, since it causes a Fermi level shift towards the conduction band edge and the Fermi level is where the zero energy lies. This upshift is also consistent with previous studies of doped graphite and molecular films. Similarly, the peaks of W 4f$_{5/2}$ and 4f$_{7/2}$, as well as Se 3d$_{3/2}$ and Se 3d$_{5/2}$ upshift (by ~0.4 eV) after K exposure, as depicted in Figures 4.8(c) and (d). The blue shift of the elemental electron binding energy is a direct indication of the surface charge transfer doping.

Ab initio simulations were performed to further understand the charge transfer and doping mechanism. The simulation was conducted by density-functional theory (DFT) with Vienna ab initio simulation package (VASP) codes, and Bader analysis was used calculate the charge contribution from the potassium dopant. Figure 4.9(a) and (b) depict the top and side view schematics of K-doped MoS$_2$ and graphene monolayers, respectively, with one-side covered with K at a density of 1/4 K atom per unit cell (i.e., one K atom per 4 unit cells). Similar to graphene, the K dopant is located above the centers of the hexagons in MoS$_2$. Despite of S being a larger atom than C, the distance between the K dopant and the S plane in MoS$_2$ (2.60Å) is shorter than that of K and C plane in graphene (2.89Å). The bond length of K-S is 3.06Å in MoS$_2$, compared to the K-C bond length of 3.24 Å in graphene. The shorter bond length indicates a stronger binding of K to MoS$_2$, which is consistent with a larger binding energy in K-doped MoS$_2$ and more stable doping as shown in Fig. 4.9(c). The simulation results indicate that the bond length decreases and the binding energy increases as the doping density decreases, but the qualitative difference between K-doped MoS$_2$ and K-doped graphene remains unchanged (Fig. 4.9(c)). We also performed similar simulations of K-WSe$_2$. The distance between the K dopant and the Se plane is 2.76 Å and the K-Se bond length is 3.36 Å. Because WSe$_2$ have larger atoms than MoS$_2$, the bond length is larger and the binding energy is smaller, but the K-WSe$_2$ binding energy is still larger than that of K-graphene. To examine charge transfer between the K dopant and ML 2-D materials, we performed Bader analysis of charge transfer as shown in Fig. 4.9(d), with a K
Figure 4.7. Top-gated few-layer MoS$_2$ n-FETs with chemically doped contacts. (a) Schematic of a top-gated few-layer MoS$_2$ n-FET, with chemically n-doped S/D contacts by K exposure. (b, c) shows output characteristics of a device (thickness of 3-layers, L~1 µm) before K doping at a back gate voltage of 0 V and 40 V respectively. (d) Output characteristics of the same device shown in (b, c) after 120 min of K doping and with 40 V back gate bias.
Figure 4.8. XPS surface analysis of MoS$_2$ and WSe$_2$ before and after K doping, with binding energy peaks of (a) Mo 3d$_{3/2}$ and 3d$_{5/2}$, (b) S 2p$_{1/2}$ and 2p$_{3/2}$, (c) W 4f$_{5/2}$ and 4f$_{7/2}$ and (d) Se 3d$_{3/2}$ and 3d$_{5/2}$ electrons. The binding energies at each XPS peak maximum before doping are indicated by the yellow dash lines.
Figure 4.9. Ab initio simulation of MoS$_2$ and WSe$_2$ with binding of K atoms, compared to graphene. (a) the top view and (b) side view schematics of the K doped MoS$_2$ and graphene with a doping coverage of 1/4 K atom per unit cell. The distances between K atoms and S or C planes are denoted. The K-doped WSe$_2$ has a similar structure to that of MoS$_2$ but with different bond lengths as explained in the text. (c) Binding energy comparison of K- MoS$_2$, WSe$_2$ and graphene, with a dopant coverage of 1/4 and 1/9 K atom per unit cell. (d) The change of elemental valence electron distribution of ML MoS$_2$ (top) and WSe$_2$ (bottom) after K doping with a coverage of 1/4 K atom per unit cell comparing to before doping.
concentration of one atom per four MoS$_2$ unit cells (as one super cell). After placing one K atom in the center of the super cell, there is 0.52e of charge transferred from the K atom to MoS$_2$, with the top S atoms sharing the charge, while in ML WSe$_2$, 0.5 of the K charge is transferred, slightly lower than that of K-MoS$_2$’s. The extracted K doping concentration difference between MoS$_2$ and WSe$_2$ from the experimental results in Fig 4.5(b) and (d) is ~4 X, larger than the simulation result here. This may be attributed to a number of factors, including difference in the number of K atoms binding to the surfaces for the two materials. Also, it should be noted that the transferred electrons in bonds can be different from the mobile charge carriers due to doping, and the Bader analysis has an uncertainty in determining charge associated with each atom. We also estimated doping density from the simulated density-of-states (DOS) and Fermi energy level. The amount of transferred charge is determined to be 0.55e for K-MoS$_2$ with a density of 1/4 K per unit cell from the DOS approach, which is consistent with the Bader analysis.

In conclusion, we have studied the surface charge transfer n-doping of few-layer chalcogenides by K. Degenerate doping levels in few-layer MoS$_2$ and WSe$_2$ have been achieved and reflected by electrical measurements and surface XPS analysis, and further understood by ab initio calculations. The results here demonstrate the need of degenerate doping of few-layer chalcogenides to improve the contact resistances, and further realize high performance TMDC channel electronics. Specifically, the work shows that n-type WSe$_2$ FETs can be obtained with high mobilities that complement those obtained for previously reported p-type WSe$_2$ FETs by simply doping the contacts accordingly. This finding may enable the development of layered semiconductor CMOS devices in the future. While K is used as a model surface charge transfer dopant in this work, in the future, exploration of air-stable dopants is needed.
References:

8. Radisavljevic, B.; Radenovic, a; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6, 147–150.
26. For the simulation, the double-ζ polarized (DZP) basis set was used employing the generalized gradient approximation (GGA) method. The Perdew-Burke-Ernzerhof (PBE) was used for the exchange-correlation potential. The cutoff energy for the wave-function expansion was set to 500 eV.
Chapter 5 Van der Waals Heterostructures Built from Single Layered Chalcogenides

5.1 Introduction

Since their invention, semiconductor heterostructures have been the fundamental platform for many important applications such as lasers, light-emitting diodes, solar cells, and low-noise, high-electron-mobility transistors. Conventional heterostructures are mainly based on III-V semiconductors with zinc blende structure. Strong chemical bonding exists between atoms at the hetero-interface.

In transition metal dichalcogenides on the other hand, individual layers are held together by weak van der Waals forces. However the bonding between the transition metal and chalcogenide atoms within a layer is strong rendering individual layers mechanically robust and highly immune to the creation of dangling bonds or to surface oxidation. This suggests that, analogously to the traditional III-V semiconductor heterostructures, complex transition metal chalcogenide heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures.

In this chapter, the first experimental study is presented on the electronic interlayer interaction in a heterostructure built from two single-layer semiconductors, combining transmission electron microscopy, x-ray photoelectron microscopy, electron transport studies and optical spectroscopy.
5.2 Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides *

Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide (TMDC) heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe$_2$ and MoS$_2$ building blocks. We observe a large Stokes-like shift of ~ 100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment with spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of this interlayer coupling consequently provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.

Two-dimensional (2D) layered TMDC semiconductors such as MoS$_2$ and WSe$_2$ have established themselves as strong contenders for next generation electronics and optoelectronics$^{1-6}$ and are promising building blocks for novel semiconductor heterostructures$^{7-11}$. Conventional heterostructures are mainly based on group IV, III-V or II-VI semiconductors with covalent bonding between atoms at the hetero-interface. Due to atomic interdiffusion during growth, the resulting atomic-scale interface roughness and composition variation at the hetero-interface inevitably smear the density of states profile and consequently compromise the performance of these heterostructures especially as the film thicknesses are reduced towards a single atomic layer. In addition, the choice of material components for conventional heterostructures is strongly dictated by lattice mismatch.

In TMDCs on the other hand, individual layers are held together by vdW forces, without surface dangling bonds12. Semiconductor heterostructures built from customized individual single layer TMDCs would in principle offer atomically regulated interfaces and sharp band edges. While previous efforts have focused on graphene based heterostructures$^{8-11, 13-21}$, we present here the first experimental study on the electronic interlayer interaction in a heterostructure built from two single-layer semiconductors. The hetero-bilayers are characterized by transmission electron microscopy, x-ray photoelectron microscopy, electron transport studies and optical spectroscopy, to elucidate the band alignments, optoelectronic properties and the degree of the electronic layer coupling in this novel material system.

* Reproduced with permission from Hui Fang et al., Proceedings of the National Academy of Sciences (PNAS), in press, 2014. Copyright © 2014 NAS.
The fabrication of WSe$_2$/MoS$_2$ hetero-bilayers was realized by transferring individual single-layers on top of each other (see Methods in Supporting Information for details). Figure 5.1A shows an illustration of the hetero-bilayer, and Fig. 5.1B displays the corresponding optical microscope image of a WSe$_2$/MoS$_2$ hetero-bilayer on a Si substrate with 260 nm thermally grown SiO$_2$. Due to the 3.8% lattice mismatch, estimated from the bulk lattice constants12, as well as the unregulated, but in principle controllable angular alignment (ϕ) between the constituent layers, the heterostructure lattice forms a moiré pattern, clearly visible in the high resolution transmission electron microscopy (HRTEM) image in Fig. 5.1C. The HRTEM image displays the boundary region between single-layer MoS$_2$ and the WSe$_2$/MoS$_2$ hetero-bilayer. While MoS$_2$ exhibits a simple hexagonal lattice, the heterostructure shows moiré fringes with a spatial envelope periodicity on the order of 4-6× the lattice constants of WSe$_2$ (or MoS$_2$). Inspection of the diffraction pattern in Fig. 5.1D along the [001] zone axis reveals that in this particular sample the two hexagonal reciprocal lattices are rotated by $\phi=12.5^\circ$ with respect to each other and there is negligible strain in the two constituent layers (Supporting Information). The alignment of the two lattices can also be examined with a fast Fourier transform of the two zoomed-in TEM images in Fig. 5.1C (Supporting Fig. S3). The absence of strain in the constituent layers of the WSe$_2$/MoS$_2$ hetero-bilayer is also confirmed by Raman spectroscopy (Supporting Fig. S4), which show that the in plane vibration modes of both WSe$_2$ and MoS$_2$ maintain their corresponding positions before and after transfer.

To shed light on the electronic structure of the WSe$_2$/MoS$_2$ heterostack, we performed x-ray photoelectron spectroscopy (XPS). Specifically, we used a photoemission electron microscope (PEEM) with a high spatial resolution of 30 nm to discriminate between photoelectrons emitted from the WSe$_2$ single-layer, MoS$_2$ single-layer and the WSe$_2$/MoS$_2$ hetero-bilayer, as illustrated in Fig. 5.2A (see Supporting Fig. S5 for details). In addition, by looking at the core-level photoelectrons, we achieved elemental and electronic selectivity that allows us to probe photoelectrons originating from the top layer of the hetero-bilayer and to directly quantify the potential difference between the WSe$_2$ layer in the hetero-stack with respect to the WSe$_2$ single-layer reference on the substrate. As shown in Fig. 5.2B, a peak shift of about -220 mV in binding energy (or +220 mV in kinetic energy) is evident in the W 4f core levels of the hetero-bilayer as compared to WSe$_2$ single layer. The direction of the peak shift is consistent with a negative net charge on the WSe$_2$ layer in the hetero-stack with respect to the WSe$_2$ single-layer reference on the substrate. A shift of $+190$ mV is observed in the Mo 3d core levels of the WSe$_2$/MoS$_2$ in Fig. 5.2C. Our PEEM results therefore indicate that the WSe$_2$ layer has a negative net charge, while the MoS$_2$ layer has a positive net charge as a result of Contact Potential. The hetero-bilayer can essentially be interpreted as being a two-dimensional dipole, an atomically thin parallel plate capacitor with vdW gap with a built-in potential up to 400 mV, originating from the work function difference induced charge transfer between the two constituent single layers. The latter interpretation is also consistent with the p- and n-type character of WSe$_2$ and MoS$_2$, respectively (ref. 2, 3).
Figure 5.1. WSe$_2$/MoS$_2$ hetero-bilayer illustration, optical image, and TEM images. (A) Atomistic illustrations of the heterostructure of single-layer (SL) WSe$_2$ on single-layer MoS$_2$ with their respective lattice constants and a misalignment angle ϕ. (B) Optical microscope image of a WSe$_2$/MoS$_2$ hetero-bilayer on a Si/SiO$_2$ (260 nm) substrate. (C) High resolution TEM images of a boundary region of single-layer MoS$_2$ and the hetero-bilayer, showing the resulting Moiré pattern. (D) The electron diffraction pattern of the hetero-bilayer shown in (C), with the pattern of MoS$_2$ and WSe$_2$ indexed in green and blue colors, respectively.
Figure 5.2. XPS core level shift analyses of WSe$_2$/MoS$_2$ heterostructures. (A) Sketch of the spatially-resolved photoelectron emission microscopy experiment. (B) Comparison of W 4f core level doublet from WSe$_2$ and WSe$_2$/MoS$_2$ indicating a shift of 220 mV to lower binding energy, corresponding to a negative net charge on the WSe$_2$ top layer. (C) Comparison of Mo 3d core level doublet and S 2s singlet from MoS$_2$ and WSe$_2$/MoS$_2$ indicating a shift of 190 mV to higher binding energy, corresponding to a positive net charge on MoS$_2$. The single peak at 224.4-224.6 eV is identified as S 2s, which shows the same shift as Mo 3d, as expected.
To investigate the optoelectronic properties of the WSe$_2$/MoS$_2$ hetero-bilayer, we used photoluminescence (PL) and absorption spectroscopy. It is known that both single-layer WSe$_2$ and MoS$_2$ exhibit direct band gaps, while their bulk and homo-bilayer counterparts are indirect1,22. In agreement with previous work we observe strong excitonic PL peaks at 1.64 eV and 1.87 eV for single-layer WSe$_2$ and MoS$_2$ respectively (Fig. 5.3A). Note that single-layer WSe$_2$ shows a 10-20× higher PL intensity than single-layer MoS$_2$, a result consistent with ref. 23. For the WSe$_2$/MoS$_2$ hetero-bilayer, we observe a peak at 1.55 eV, lying interestingly at a lower energy than for the two constituent single layers, as shown in Fig. 5.3A, with intensity ~1.5× higher than for single-layer MoS$_2$. The appearance of a peak at such low energy was observed consistently for multiple (> 10) samples, with peak energies ranging from 1.50 to 1.56 eV (Supporting Fig. S6). This distribution is attributed to sample-to-sample variations in interface quality and/or alignment angle ϕ. Of value in optoelectronics, a tail inverse slope, corresponding to the band-edge sharpness of ~30 meV/dec is extracted from the PL spectra24,25 (Supporting Fig. S7). The steep tail slopes of our hetero-bilayer proves that high-quality heterostructures with sharp band edges can be built at the single-layer limit using TMDC building blocks which is a unique feature of this material system.

The nature of the photoluminescence of the WSe$_2$/MoS$_2$ hetero-bilayer is intriguing. To better understand the electronic structure of the hetero-bilayer, we performed absorption measurements in the near-infrared and visible part of the spectrum using synchrotron light shown as dashed lines in Fig. 5.3B. The WSe$_2$/MoS$_2$ hetero-bilayer shows a first absorption peak at 1.65 eV and a second peak at 1.91 eV. These peaks closely coincide with the absorption peaks of single-layer WSe$_2$ and MoS$_2$, respectively. Interestingly, comparing the absorption spectra with the normalized PL data shown in Fig. 5.3B, we note that the hetero-bilayer exhibits a striking ~100 meV shift between the PL and absorbance peaks. This large Stokes-like shift is indicative of a spatially indirect transition in a staggered gap (type II) heterostructure26. From this shift, a conduction band offset of ~100 meV between the two monolayer components is extracted (Fig. 5.3C). Our hetero-bilayers share certain similarities with organic semiconductor heterostructures in which donors and acceptors are also bound by weak intermolecular vdW forces27. Similar to the optical processes in organic heterostructures, photons are absorbed in single layer WSe$_2$ and single layer MoS$_2$, generating excitons in both layers. Photo-excited excitons then undergo dissociation and charge separation at the MoS$_2$/WSe$_2$ interface driven by the band-offset as shown in Fig. 5.3C. As a result, holes accumulate in the valence band of WSe$_2$ and electrons in the conduction band of MoS$_2$, which is also consistent with the measured built-in electric field from PEEM. Radiative recombination of the spatially separated carriers consequently leads to luminescence. Due to the energy lost by the photo-excited carriers by the band offset (Fig. 5.3C), the PL peak energy is lower than the excitonic band gaps of either material component, leading to the observed Stokes-like shift. Note that in the hetero-bilayer, we observe only a weak luminescence signal at the energies corresponding to the excitonic band gaps of single layer MoS$_2$ and WSe$_2$, suggesting that the large majority of the photo-excited carriers are spatially separated by the interface with the luminescence yield being the highest for the spatially indirect recombination process.
Figure 5.3. Photoluminescence and absorption from WSe₂/MoS₂ hetero-bilayers. (A) PL spectra of single-layer WSe₂, MoS₂, and the corresponding hetero-bilayer. (B) Normalized PL (solid lines) and absorbance (dashed lines) spectra of single-layer WSe₂, MoS₂, and the corresponding hetero-bilayer, where the spectra are normalized to the height of the strongest PL/absorbance peak. (C) Band diagram of WSe₂/MoS₂ hetero-bilayer under laser excitation, depicting (1) photon absorption and exciton generation in WSe₂ and MoS₂ single layers, (2) Dissociation of photon-excited excitons and charge separation at the MoS₂/WSe₂ interface driven by the band-offset, resulting in holes accumulating in the valence band of WSe₂ and electrons in the conduction band of MoS₂, (3) Radiative recombination of the spatially separated carriers. E_c and E_v represent the conduction and valence band edges, respectively. (D) An atomistic illustration of the heterostructure of single-layer WSe₂/single-layer MoS₂ with few-layer h-BN spacer in the vdW gap. (E) Normalized PL spectra from single-layer WSe₂/single-layer MoS₂ heterostructure with N layers of h-BN (N=0, 1 and 3).
Figure 5.4. Electrical transport across the WSe₂/MoS₂ hetero-interface. (A) Optical microscope image of a device with connected regions of single-layer WSe₂, WSe₂/MoS₂ hetero-bilayer, and single-layer MoS₂ on a Si/SiO₂ substrate. Electrodes are numbered 1-7 from bottom to top. A zoomed-in part of the device was shown along with the corresponding PL peak energy map. The scale bar is 2 µm. (B) A qualitative band diagram of the single-layer WSe₂/hetero-bilayer/single-layer MoS₂ device, corresponding to the device between electrodes 2 and 3 in (A). (C) I-V characteristic when measuring between electrodes 2 and 3, with 2 grounded, 3 biased. A back gate voltage of 50 V was applied to reduce the contact parasitic resistances to MoS₂ while patterned NO₂ doping was used near the WSe₂ contact for reducing the contact parasitic resistances of WSe₂ (see SI for details).
To fine tune the interlayer interaction in the WSe$_2$/MoS$_2$ hetero-bilayer, single- and few-layer sheets of h-BN were inserted into the vdW gap (Fig. 5.3D) using the same transfer technique. Figure 5.3E shows the normalized PL of hetero-stacks with single- and tri-layer h-BN spacers. Interlayer coupling (i.e., spatial charge separation of the photo-generated carriers and subsequent spatial indirect recombination) becomes negligible for the sample with a tri-layer h-BN spacer, as indicated by both the position and the intensity of the peak at 1.64 eV (Fig. 5.3E and Supporting Fig. S8), which are nearly the same as single-layer WSe$_2$. On the other hand, a single layer of h-BN does not fully suppress the interlayer interaction between WSe$_2$ and MoS$_2$. The results demonstrate that the interlayer coupling can be readily tuned by intercalation of layered dielectric media, and provides yet another degree of control in the vdW heterostructure properties.

Finally, we explored the carrier transport along the hetero-bilayer interface. A single flake consisting of different regions corresponding to single-layer WSe$_2$ and MoS$_2$, and hetero-bilayer was made via the transfer process. The flake was dry etched into a long ribbon (Fig. 5.4A). A corresponding PL peak energy map is shown in Fig. 5.4A, further depicting the lateral structure of the ribbon used in this study. Multiple source/drain (S/D) metal electrodes were then fabricated by electron beam lithography and lift-off on each region of the ribbon (see Supporting Information for details). The Si/SiO$_2$ (260 nm in thickness) substrate serves as the global back gate. As expected single-layer MoS$_2$ and WSe$_2$ devices exhibit n- and p-type characteristics, respectively (Supporting Fig. S9), which is consistent with previous reports.2,3 On the other hand, the device consisting of one contact on single-layer WSe$_2$ and the other on single-layer MoS$_2$, with the two layers overlapping in the central region (Fig. 5.4B) exhibits a distinct rectifying behavior, consistent with type II band-alignment of the heterobilayer (Fig. 5.4C). The transport data provides additional direct evidence on the electrical coupling and the Contact Potential between the two constituent layers. Furthermore, the work highlights the ability to engineer a novel class of electronic and optoelectronic devices by vdW stacking of the desired layered chalcogenide components with molecular-scale control in thickness.

In summary, we have fabricated and characterized an artificial vdW heterostructure by stacking single-layer transition metal dichalcogenide building blocks and achieved strong interlayer coupling between the two 2D semiconductor constituents. Strong PL with a large Stokes-like shift was observed from the WSe$_2$/MoS$_2$ hetero-bilayer, consistent with spatially indirect luminescence from a type II heterostructure. We anticipate that our result will trigger subsequent studies focused on the bottom-up creation of new heterostructures by varying chemical composition, interlayer spacing and angular alignment. In addition the focus will be on the fabrication of vdW semiconductor heterostructure devices with tuned optoelectronic properties from customized single layer components.
References:

5.3 Experimental and theoretical details*

5.3.1 Methods

Sample preparation:

Fabrication of the heterostructure started with the transfer of MoS$_2$, WSe$_2$ and h-BN single and few layers on separate Si/SiO$_2$ substrates (oxide thickness, t_{ox}=260 nm) using adhesive tapes by the mechanical exfoliation method (1). For h-BN, a 550 nm band pass filter (FWHM=40 nm) was used to further enhance the optical contrast for locating single- to few-layer flakes on Si/SiO$_2$. These mechanically exfoliated flakes were then annealed at 250 °C for 3 hr in a H$_2$ environment (3.3 torr, 200 sccm) to remove any surface organic residues. The heterostructures were realized by a dry transfer technique (2, 3) with a PMMA membrane as the transfer media. For the heterostructures with single- or few-layer h-BN, single-layer WSe$_2$ was first transferred onto h-BN, and then these two layers together were picked up by PMMA and transferred onto single-layer MoS$_2$.

Samples for TEM were prepared on Au TEM grids with holey carbon nets of 1.2 μm diameter orthogonal hole arrays (Ted Pella, Inc.). To remove the PMMA after transfer, the grids with the heterostructure/PMMA were immersed into dichloromethane (DCM) for 6 sec, taken out to allow to air dry for 3 min in fume hoods, and then annealed in H$_2$ with the same condition noted previously. The short time of immersion is to prevent the samples escaping from the carbon net, while no blow dry was involved to keep the mechanical integrity of the relatively fragile carbon net. Samples for PEEM were prepared on natively oxidized p+ Si substrate. A similar cleaning process was used to remove PMMA and its residue as described above.

TEM condition:

The HRTEM image displayed in Figure 5.1c was acquired on a FEI Titan microscope equipped with a field emission gun operating at accelerating voltage of 300 kV. The images were recorded on a 2048x2048 Gatan Ultrascan CCD camera using DigitalMicrograph software. The microscope was operated in low-dose mode to minimize electron beam-induced degradation as well as contamination of the sample. A Wiener-type filter was applied to the images to reduce the signal arising from the amorphous background. The electron diffraction pattern shown in Figure 5.1d was acquired on a Zeiss Libra 200MC equipped with a monochromator and omega-type in-column energy filter using a 2048x2048 Gatan Ultrascan CCD camera. The microscope was operated at 200 kV accelerating voltage in parallel illumination mode with a semi-convergence angle of 40 μrad. The illuminated area was limited to 0.13 μm2 using a condenser aperture with a diameter of 37 μm. Energy-filtered diffraction patterns were acquired and analyzed quantitatively using the dedicated software DigitalMicrograph.

PEEM experiments:

The photoemission electron microscopy (PEEM) experiment was conducted at the soft x-ray undulator beamline UE49-PGM-a of the BESSY-II storage ring in Berlin, Germany using

* Reproduced with permission from Hui Fang et al., Proceedings of the National Academy of Sciences (PNAS), in press, 2014. Copyright © 2014 NAS.
elliptically polarized light at photon energies of 700 eV and 150 eV. The endstation was equipped with an Elmitec PEEM-II energy microscope/analyzer allowing energy and spatially resolved imaging. Depending on the measured sample area, fields of view between 10 and 70 µm were used resulting in a spatial resolution better than 30 and 120 nm, respectively. The total energy resolution of our measurements was 100 meV.

Optical measurements:

PL and Raman measurements were performed at room temperature under ambient conditions. The samples were excited with a continuous wave (cw), blue laser (473 nm) with a spot size of ~1 µm, unless mentioned otherwise. The original laser power was 5 mW and neutral density filters were used with optical densities of 3 and 4 (corresponding to 5 and 0.5 µW laser power on the sample). Near-IR/visible absorption measurements were performed at Beamline 1.4.3 at the Advanced Light Source using a Nicolet Magna 760 FTIR interferometer and a Nicolet Nic-Plan infrared microscope. In order to access the visible region, all measurements used a quartz beamsplitter and a silicon detector (Thorlabs, Inc.). The use of synchrotron radiation enabled a spot size of <2 µm.

Details of the hetero-bilayer device fabrication:

Following the fabrication of the WSe$_2$/MoS$_2$ hetero-bilayer, a single flake was dry etched into a long ribbon with different regions corresponding to single layer WSe$_2$, MoS$_2$, and hetero-bilayer. Pt/Au and Ni/Au metal contacts were then placed on single layer WSe$_2$ and single layer MoS$_2$ regions respectively. A ZrO$_2$ layer was deposited onto single layer MoS$_2$ region and partial hetero-bilayer region in the ribbon. The device was finally measured with NO$_2$ doping on the exposed WSe$_2$ region to minimize contact resistance at the Pt/WSe$_2$ contact, as shown in Fig. S1. Note that without NO$_2$ doping, the device still exhibits rectifying behavior with ~10x lower forward bias current density arising from the extra parasitic resistances (Fig. S2). The step-by-step fabrication process is as followed.

1. E-beam lithography was used to define etched regions in the hetero-bilayer flake. Briefly, samples were coated with PMMA (4% in chlorobenzene), baked at 180 °C for 5 min, and then exposed using an electron-beam lithography system.
2. The hetero-bilayer flakes were then patterned dry etched using XeF$_2$/N$_2$ gas (XeF$_2$ 3 torr, N$_2$ 1.5 torr). For 8 cycles of 30 seconds etching, the etch rate of chalcogenides is over 10 nm/min.
3. The PMMA mask was removed by a dichloromethane (DCM) wash for 10 min and the samples were then annealed in H$_2$ (3.3 torr, 200 sccm) for 3 hours to remove the PMMA residue.
4. Ni/Au (10 nm/30 nm) contacts were deposited on single layer MoS$_2$ region by an e-beam lithography, metal deposition and lift-off process. Ni/Au was chosen to contact MoS$_2$ as it is known to enable efficient injection of electrons (4, 5). A short Ni/Au “anchor” bar (~5 µm length) was also deposited at the end of WSe$_2$ side to prevent the flake detaching from the substrate during the lift-off process.
5. Pt/Au (10 nm/30 nm) contacts were deposited on single layer WSe$_2$ region by a similar e-beam lithography, metal deposition and lift-off process. Pt/Au was found to give better p-
type conduction in single layer WSe$_2$ than Pd, which was the best contact to the valence band of WSe$_2$ (ref. 6).

6. A ZrO$_2$ layer (20 nm) was then deposited onto single layer MoS$_2$ region and partial hetero-bilayer region in the ribbon as a NO$_2$ blocker by an e-beam lithography, atomic layer deposition and lift-off process.

7. The fully fabricated device was then exposed to 0.05% NO$_2$ in N$_2$ gas for 10 min and measured, as shown in Fig. S1. For the I-V characteristic shown in Fig. 5.4C in the main text, a back gate voltage of 50 V was applied to lower the parasitic resistance from MoS$_2$ while the parasitic WSe$_2$ was still degenerately p-doped (6).

Figure S1. Schematic of fully fabricated WSe$_2$/MoS$_2$ hetero-bilayer device. NO$_2$ doping of exposed WSe$_2$ region was utilized to reduce the contact/parasitic resistances of WSe$_2$.

Figure S2. I-V characteristic when measuring between electrodes 2 and 3 (with 2 grounded, 3 biased) before and after NO$_2$ doping of the exposed WSe$_2$ region in the WSe$_2$/MoS$_2$ hetero-bilayer device. A back gate voltage of 50 V was applied.
5.3.2 TEM analysis

The lattice constants of the real lattices can be calculated from

\[\frac{1}{d^2} = \frac{4}{3} \frac{h^2 + k^2 + hk}{a^2}, \]

where \(d \) is the length of the reciprocal lattice vector of the crystal lattice planes of (hk0) and \(a \) is the lattice constant of the chalcogenide crystal. This calculation yields a value of \((4.4\pm0.1)\%\) for the lattice mismatch between the WSe\(_2\) single-layer and the underneath MoS\(_2\) single-layer, which is nearly identical to their bulk value. The alignment of the two lattices can also be examined with a fast Fourier transform of the two zoomed-in TEM images in Fig. 5.1C in the main text, as shown in Fig. S3.

Figure S3. Fast Fourier transform of the HRTEM images shown in Fig. 5.1C in the main text for (A) WSe\(_2\)/MoS\(_2\) hetero-bilayer. (B) single-layer MoS\(_2\).
5.3.3 Raman characterization of the WSe₂/MoS₂ hetero-bilayer

There are four Raman-active modes for both WSe₂ and MoS₂, of which only A₁g, and E¹₂g modes were observed in our measurements due to the selection rule in the back-scattering configuration and the restricted rejection against Rayleigh scattering (7). As shown in Fig. S4, the in-plane E¹₂g mode peaks of WSe₂ and MoS₂ remained unchanged (within 0.5 cm⁻¹) comparing before and after transferring. This is a clear indication that there is no/negligible strain in either layer in the final hetero-bilayer, consistent with our TEM analysis. The out-of-plane A₁g mode peak red shifted by ~ 1 cm⁻¹ (from 405.1 cm⁻¹ to 404.1 cm⁻¹) for MoS₂, while for WSe₂ it’s hard to detect as the A₁g peak is overlapping with the E¹₂g peak. This small red shift should be attributed to the interlayer coupling, which is also seen in bulk/few-layer WSe₂ and MoS₂ (ref. 7, 8).

Figure S4. Raman spectra comparison for single-layer MoS₂ and WSe₂ and the WSe₂/MoS₂ hetero-bilayer. The excitation laser wavelength here is 532 nm.
5.3.4 PEEM experiment detail

As shown in Fig. S5A, a WSe$_2$/MoS$_2$ hetero-stack, which contained a single-layer WSe$_2$ on top of MoS$_2$ with thicknesses ranging from 1 single-layer (SL), 2 SLs and 4 SLs, was measured and analyzed by PEEM. Note that the thicknesses of the layers were determined by optical contrast, Atomic Force Microscope (AFM) in combination with PL. Figure S5B shows the W 4f$_{7/2}$ binding energy position contour, where distinct boundaries between regions can be visualized and are consistent with our sample geometry. The binding energy map was obtained by a batch fitting of all spectra collected at different detector location, single peaks of W4f7/2 and Mo3d5/2 were simulated by a Gaussian profile. For more precise analysis, signal from homogeneous parts of the image were spatially integrated and more sophisticated fitting procedure (a combination of Shirley background and Doniach-Sunjic lineshape) was used (see Figure 5.2). For the single-layer WSe$_2$ in contact with the substrate, the W 4f$_{7/2}$ binding energy is 33.78 eV, while for the single-layer WSe$_2$ on top of single-layer MoS$_2$, the W 4f$_{7/2}$ binding energy is 33.56 eV. The W 4f$_{7/2}$ core level binding energy decreased by ~ 220 meV when contacting to MoS$_2$, as noted in the text. The direction of the peak shift is consistent with a negative net charge on the WSe$_2$ in the WSe$_2$/MoS$_2$ hetero-bilayer as predicted by density functional theory (9). On the other hand, charge neutrality in the hetero-bilayer requires that a shift in the opposite direction is present on the MoS$_2$ component of WSe$_2$/MoS$_2$. As is shown in Fig. S5C, a shift of +190 meV with respect to stand-alone MoS$_2$ is observed indeed in the Mo 3d core levels of the WSe$_2$/MoS$_2$ (from 227.26 eV to 227.45 eV). The shifts in the W and Mo core levels are evidences that there exists charge transfer induced electric field between WSe$_2$ and MoS$_2$ layers. The hetero-bilayer can essentially be interpreted as being a two-dimensional dipole, an atomically thin parallel plate capacitor with van der Waals gap. One can also notice that the W 4f$_{7/2}$ binding energy position shifted less when contacting to thicker MoS$_2$ layers by ~ 30 meV/layer. It is not clear at this stage which one of the three parameters, namely the charge transfer amount, layer distance or the dielectric constant in the van der Waals gap is playing a more important role in this slight decrease. Detailed density functional theory calculations are needed to further shed light on this issue.

Figure S5. (A) The optical microscope image of the WSe$_2$/MoS$_2$ heterostructure for PEEM characterization. The PEEM sample was on a naturally (native) oxidized heavily p-doped Si substrate, while the image was taken when the sample was on Si/SiO$_2$ (260 nm) substrate. (B) W 4f$_{7/2}$ binding energy position contour plot of the sample in (A). (C) Mo 3d$_{5/2}$ binding energy position contour plot of the sample in (A). The scale bars are 2 µm.
5.3.5 Statistics of PL from different WSe$_2$-MoS$_2$ hetero-bilayer samples

Figure S6. PL statistics of multiple WSe$_2$/MoS$_2$ hetero-bilayer samples. (A) PL spectra of 10 WSe$_2$/MoS$_2$ hetero-bilayers. (B) Histogram of the PL peak energies for these 10 samples. (C) Histogram of the PL peak intensities for these 10 samples.
5.3.6 Luminescence tail analysis

The band edge tail \(D(\nu) \) as a function of frequency \(\nu \) (also called the Urbach tail (10)), is related to the photon emission rate per unit energy by the van Roosbroeck-Shockley equation (11, 12). \(D(\nu) \) can further be related to the photoluminescence spectrum \(I(\nu) \) by,

\[
D(\nu) \propto \frac{I(\nu)(e^{\nu/kT} - 1)}{n_r^2 \nu^2}
\]

where \(h \) is Planck’s constant, \(k \) is Boltzmann’s constant, \(T \) is temperature and \(n_r \) is the real part of the refractive index. Figure S7 shows the shapes of the Urbach tails of single-layer WSe\(_2\), single-layer MoS\(_2\) as well as the WSe\(_2\)/MoS\(_2\) hetero-bilayer. An optical semilog inverse slope of 30 meV/dec is extracted from all three tails, corresponding to the sharpness of the band edge. The nearly identical inverse slope of the hetero-bilayer proves that the band edge sharpness of the heterostructure can be as high as that of its constituent single layers.

Figure S7. Band edge tails derived from the PL using the van Roosbroeck-Shockley equation, depicting the sharpness of the band edges. The spectra were normalized to peak magnitude.
5.3.7 Absolute PL spectra of WSe$_2$/MoS$_2$ heterostructure with h-BN

Figure S8 shows the absolute PL of WSe$_2$/MoS$_2$ hetero-stacks with single- and tri-layer h-BN spacers, along with the PL of single layer WSe$_2$. Interlayer coupling becomes negligible for the sample with a tri-layer h-BN spacer, as indicated by both the position and the intensity of the peak at 1.64 eV, which are nearly the same as single-layer WSe$_2$. The slight difference (0.01 eV) in the peak position is likely due to the fact that the boundary on the bottom side of WSe$_2$ has changed from SiO$_2$ to h-BN. On the other hand, a single layer of h-BN does not fully suppress the interlayer interaction between WSe$_2$ and MoS$_2$. The PL spectrum of WSe$_2$/h-BN/MoS$_2$ shows a double peak feature centered at 1.6 eV with an intensity on the order of 1/3 of that of typical single-layer WSe$_2$. We interpret the lower energy peak component of the doublet as being the peak of the hetero-bilayer with reduced interlayer coupling due to the intercalation of the h-BN single layer. Indeed this peak falls in between the peak of the unperturbed single layer WSe$_2$ and strongly coupled WSe$_2$/MoS$_2$ bilayer. This demonstrates that the interlayer coupling can be readily tuned by intercalation of layered dielectric media into the van der Waals gap. The higher energy peak closely coincides with the peak of single layer WSe$_2$ and could be due to a competing spatially direct emission in single layer WSe$_2$ as the photo-generated electrons now see a BN barrier and would have certain probability of staying in the excitonic conduction band edge of WSe$_2$. This interpretation is also supported by the weak emission close to the position of single layer MoS$_2$.

![Figure S8. Absolute PL comparison of single-layer WSe$_2$, single-layer WSe$_2$/single-layer MoS$_2$ heterostructure with single- and tri-layer h-BN in between.](image)

73
5.3.8 Electrical behavior of WSe$_2$, MoS$_2$ single layers

Figure S9. (A) Transfer characteristic of the single layer WSe$_2$ device in Fig. 5.4A of the main text (measured between terminal 1 and 2). (B) Output characteristic of the device in (A). (C) Transfer characteristic of the single layer MoS$_2$ device in Fig. 5.4A of the main text (measured between terminal 3 and 4). (D) Output characteristic of the device in (C).
References: