APPENDIX I OXYGEN ISOTOPE ANALYSIS OF CALIFORNIA MUSSEL (Mytilus californianus) SHELLS from CA-MNT-521, -569B, -1223, -1227, -1233, and CA-SLO-267 DOUGLAS J. KENNETT Oxygen isotope analyses were completed on 42 mussel (Mytilus californianus) shells from archaeological sites CA-MNT-521 (N=8), CA-MNT- 569B (N=6), CA-MNT-1223 (N=2), CA-MNT-1227 (N=1), CA-MNT-1233 (N=3), and CA-SLO-267 (N=22), and on one modern shell in order to evaluate paleo sea surface temperature changes through time and the seasonality of mussel collection. Studies of modem marine molluscs from known environments indicate that oxygen isotopic analysis is an effective method for reconstructing sea surface temperature (Epstein et al. 1951, 1953; Glassow et al. 1994; Kennett and Voorhies 1995, 1996; Killingley 1981; Killingley and Berger 1979; Shackleton 1969, 1973). This is because the temperature dependent ratio of 180 to 160 in sea water preserves in calcareous fossils, such as molluscs (Epstein et al. 1951, 1953; Wefer and Berger, 1991). Incremental samples taken along a shell's growth axis enable reconstruction of oxygen isotopic ratios, and hence, seasonal temperature changes through the life of a mollusc. Readings from the final growth increment of a mussel's shell indicate sea temperature at the time the mollusc was collected. Comparing such values with contemporary seasonal sea temperatures indicates the season of the shell's collection. OXYGEN ISOTOPE ANALYSIS Oxygen isotopic analysis of molluscan shell carbonate is a well established technique for determining sea-surface temperature and the season of prehistoric shellfish harvesting. The method was initially recognized as a powerful tool for paleo- environmental reconstruction because oxygen isotopic ratios in calcareous fossils contain information about the physical and chemical environment of their growth (Wefer and Berger 1991). Two environmental factors contribute to the isotopic composition of shell carbonate: the isotopic composition of seawater and water temperature. Urey (1947) showed that the stable oxygen isotopic composition of calcium carbonate deposited by marine molluscs was temperature dependent and thus of great value as a paleothermometer. The isotopic exchange during precipitation of calcium carbonate from water can be expressed as: -CaCO36 + H2 08 - 1 CaCO8 + H2O16 3 3 23 32 Isotopic fractionation between carbonate and water during precipitation has a value of 1.0286 %o at 25?C (O'Neil et al. 1975). Because this fractionation factor is temperature dependent, the oxygen isotopic composition of carbonate is a function of temperature. A paleotemperature equation was developed by Epstein et al. (1951, 1953) based on oxygen isotopic measurements of mollusc shell carbonate precipitated at known water temperatures. In the equation: T=A - B(6c-6w) + C(6c-6w)2 T is equal to temperature in 'C, and A, B, and C are constants respectively equaling 16.4, 4.2, and 0.13. The symbol 6c is the oxygen isotopic ratio of the carbonate, expressed as a deviation in %o (parts per 258 Appendix I mil) from a standard carbonate (Peedee Belemite through the growth of mollusc shells paralleled [PDB]). The symbol 6w represents the oxygen seasonal fluctuations in temperature and that the shell isotopic composition of the water expressed in a margin samples accurately reflected the season of similar fashion, as a deviation from standard mean molluscan death. Shells from prehistoric midden ocean water (smow). In order to solve the equation deposits, dating between 9000 and 5000 years ago for temperature (T), the value of the water must be indicated that molluscs were harvested primarily known. When the delta value for the water (6w) is during winter (cold water) months. constant, the oxygen isotopic ratio increases/ Based on this study, Shackleton (1973) outlined decreases by approximately 0.2%o for every 1?C a number of criteria that should be met to make increase/decrease in water temperature. seasonal temperature determinations using oxygen Thus, in the open ocean where the composition isotopic analysis. First, shell growth must take place of sea-water has been relatively stable since the under conditions of isotopic equilibrium with the middle Holocene (-6000 years to the present day surrounding water. Second, the isotopic composition [Fairbanksl989]), oxygen isotopic measurements of of the water in which the shellfish lives must remain calcium carbonate extracted from the sequential constant throughout the year. Third, the shell must growth increments of molluscs reflect seasonal precipitate carbonate throughout the year at a fluctuations in water temperature. The season of relatively fast rate. Finally, the seasonal temperature molluscan death can also be estimated from the final range must be greater than week-to-week variations growth increment. Shackleton (1969) was the first to in water temperature. point out the applicability of this technique for More recent literature has focused on archaeologists interested in determining the season of establishing the precision of the oxygen isotopic mollusc collection from shells in archaeological method for determining seasonality. Based on a deposits. study of modem and archaeological Mytilus Paleotemperature equations for inferring sea- californianus specimens from the California coast, surface temperature have also been refined for calcite Killingley (1980, 1981; also see Killingley and and aragonite, two different mineral phases of Berger 1979), Glassow et al. (1994) proposed that the calcium carbonate (Horibe and Oba 1972). Epstein et month of prehistoric shellfish collection can be al. (1953) based their equation on organically determined by statistical treatment of oxygen isotopic precipitated calcium carbonate in the molluscs of the data. Bailey et al. (1983; also see Deith 1985; genus Haliotis, a large gastropod with a complex Kennett 1998) argued, in contrast, that determining mineral structure consisting of both aragonite and the season of molluscan death to the month was calcite. Horibe and Oba (1972) determined that the unrealistic because of known oxygen isotopic relationship between sea-surface temperature and differences between species and regional climatic 6180 is different for aragonite and calcite, based on variation through time. two pelecypods from Mutsu Bay, Japan. Based on experiments with Anadara broughtoni, the tem- METHODS perature dependence of 6180 in aragonite is expressed as: All shells were cleaned and rinsed with deionized water to remove adhering midden soil and t = 8 45 c042 visible organic material. The outer surfaces of the t?C=13.85 - 4.54(5c-6w) + O.04(6c-6w)2 shells were etched using a dilute solution of HCL (0.5 molar) to remove any diagenically altered Based on experiments with Patinopecten yessoensis, carbonate (Bailey et al. 1983). Calcite samples were the equivalent equation for calcite is: extracted from the exterior prismatic layer of the shell in 2 mm increments along the shell's growth t?C=17.04 - 4.34(6c-6w) + 0.16(6C-6W)2 axis (0.5 mm drill) (see Glassow et al. 1994). Powdered calcite samples (-0.3 mg) were heated at The methods for extracting seasonal information 400?C under vacuum for one hour to remove organic from mollusc shells were initially worked out by compounds. After cooling to room temperature, Shackleton (1973) and have changed little since. samples were reacted with orthophosphoric acid at Calcium carbonate samples are extracted along a 90'C (Fairbanks auto-sample device). The oxygen shell's growth axis from the growth margin towards isotopic ratio of the evolved C02 was measured the hinge. Using specimens of fatella tabularis using mass spectrometry (Finnegan/MAT251-Mass collected alive from Nelsons Bay Cove, South Africa, Spectrometer) (Killingley and Berger 1979; Glassow Shackleton determined that oxygen isotopic changes et al. 1994). Prehistoric Human Ecology of the Big Sur Coast 259 Water temperatures were calculated using the temperatures occur between July and October, with paleotemperature equation developed by Horibe and the peak usually occurring in September (mean = Aba (1972) for calcite. All measurements are 14.36 0C). The highest monthly temperature expressed in 6 (delta) notation, as a deviation from recorded was 17.39?C in September 1983. While the an internationally accepted standard, PeeDee record from Pacific Grove is the longest available for belemite, a carbonate fossil from South Carolina California, it is only partially applicable to the (Herz 1990). More negative 6 talues indicate higher findings from Big Sur because of the distance proportions of the lighter 160 isotope compared with between the sites and Monterey Bay, where the the heavier 180 isotope and vice versa. The precision historic temperatures were collected. The temperature of the oxygen isotopic ratios is +/-0.1. record available from Big Sur (Table AII-3) is shorter, but more directly applicable. Temperatures A total of 239 oxygen isotopic measurements spanning from 1972 to 1994 show a lower mean sea was made on 43 whole or nearly whole mussel shells temperature of 11.480 C which reflects the more (Table Al-1). Multiple samples from the complete exposed situation of Big Sur relative to the shelter growth axis were taken from ten archaeological afforded within Monterey Bay. There is also less specimens and one modern specimen. Samples from variability in the sample. The coldest months are these shells reflect sea temperatures during the course April though June and the warmest month is October of at least one full seasonal cycle, and oxygen (mean of 13.140C). The coldest monthly temperature isotopic variation in the growth increments records was 9.410C in May 1991; the highest was 15.350C. successive seasonal changes in sea-surface The sea temperature profile is best divided into three temperature. Two-four samples were taken from each temperature/seasonal zones. Peak temperatures occur of the other 33 shells; one from the terminal growth in the fall between September and November. margin, and the others from successive 2 mm Coolest temperatures occur in the spring between increments in from the edge of the shell. These were March and June. Moderate temperatures occur in used only for evaluating the season of the shell's both the winter (December-February) and summer collection. Values obtained from all samples are (July, August). During periods of inter-mediate listed in Table Al-I along with temperature conditions, winter distinguishes itself by descending calibrations. temperatures while summer is marked by ascending After oxygen isotope samples were extracted, temperatures. specimens sampled along their entire growth axis The historic records also establish the range and were subjected to radiocarbon analysis. Dates were means of sea temperatures associated with ENSO corrected on a sample-specific basis for isotope events. The range in sea temperatures during the fractionation, and the resulting ages were converted 1983 El Nino was 12.06 - 15.35 ?C at Big Sur. into calendric dates using the Stuiver and Reimer (1993) program with a reservoir value (DR) of RESULTS 290+35 (Ingram and Southon 1996). Dates obtained from these specimens were used to help define the Comparison of oxygen isotopic profiles from span of occupation at sites (see Chapters 5 and 6). the archaeological shells with the historic temperatures provides insights into the seasonality of HISTORIC SEA TEMPERATURES FOR THE mussel collection as well as some insights into paleo CENTRAL CALIFORNIA COAST sea temperature trends. The latter were reported previously by Jones and Kennett (1999) and are also Evaluation ofthe sea temperatures inferred from discussed in Chapter 2. Based on the calibration the shells requires some comparison with present curve developed by Horibe and Aba (1972), day/historic sea temperatures. Annual sea-surface sea-surface temperatures recorded in the carbonate of temperature records are available from two sources. the archaeological samples were between 7.54 and Records from the Hopkins Marine Station in Pacific 18.870C, indicating a wider range than is present Grove extend back to 1919, which is the longest today off the Big Sur coast. This range of variation historic record available from California. These data also shows patterning through time: between A.D. 1 show a mean ocean temperature of 13.08 C (Table and 1300 sea temperatures were about 1 0C cooler Al-2). Due to annual changes in upwelling intensity, than present and fairly stable; between A.D. 1300 and January has the coldest mean sea temperature of 1500 there was greater seasonal variation with 11.920?C, and the three coldest months are January extremes above and below historic levels, and through March. The lowest monthly temperature in between A.D. 1500 and 1700, seas were 2-3?0C the record was 9.86 C in January 1925. The warmest cooler than today (Jones and Kennett 1999). 260 Appendix I Evaluations of seasonality were made on the facilitates a distinction between early summer and basis of results from samples taken from the terminal winter. edges of shells in comparison with those obtained 2 Seasonality determinations were made for 42 mm in from the edges, although these interpretations specimens with 22 determinations from CA-SLO- were complicated by changes through time in sea 267, eight from CA-MNT-521, six from CA-MNT- temperatures off the coast. The modem sea 569B, three from CA-MNT-1233, two from CA- temperature profile off Big Sur can be broken into MNT-1223, and one from CA-MNT-1227 (Table A-I four temperature zones: 5). The samples suggested shell collection during all seasons, with the greatest number of readings Spring (March-June): Coldest seas- <11.100 C representing early summer (N= 15). Early summer (June-July): Mid-range- 11.11-12.30? The seasonality profile from CA-SLO-267 C, temperatures ascending showed 10 samples representing early summer Late summer/Early fall (August-October): Warmest followed in frequency by nine specimens seas- > 12.300 C, representing fall, two representing winter and only Winter (November-February): Mid-range- 11.11- one represents spring. There seems to have been little 12.300 C, temperatures descending if any use of CA-SLO-267 during the spring, or subsistence activities were focused on something If there was no evidence for change through time in other than shellfish. sea temperatures, interpretations of seasonality could Samples from other sites were considerably be rendered according to the historic temperature smaller, but CA-MNT-521 showed evidence for ranges and determinations of ascending versus shellfish collection in the spring and early summer. descending trends based on comparison between CA-MNT-1233 was used during the spring; CA- edge samples and samples 2 mm in from the edges. MNT-569B was used during spring, early summer, In recognition of the variation through time, however, and fall; CA-MNT-1223 was used during late different frameworks were developed for each of the summer through winter, and CA-MNT-1227 showed three time periods represented in the archaeological evidence for shellfish collection in the winter. Inland sample: Middle (600 B.C.-A.D. 1000; CA-MNT-521 sites showed a high incidence of spring and early and CA-SLO-267), Middle-Late Transition (A.D. summer readings (12 of 14), while the coastal sites 1000-1400; CA-MNT-1233), and Late-Protohistoric showed an emphasis on spring through late (A.D. 1400-1700; CA-MNT-569B, CA-MNT-1223, summer/early fall (Table AI-6). and CA-MNT-1227) (Table AI-4). Due to variation When segregated by time and setting, Middle between the environmental and cultural records, and Period coastal sites showed an emphasis on early imprecision associated with the Middle-Late summer and late summer/early fall, while interior Transition, these temporal divisions differ slightly sites for the same period showed an emphasis on from those applied elsewhere in the monograph. spring and early summer (Table AI-8). The available Findings from edge readings were compared Late Period sample is very small, but the coastal sites with these ranges to determine season of collection, seem to have been occupied during the fall and with additional comparison between edges and winter while the interior sites show evidence for samples taken 2 mm in from the edges to determine shellfish collection from spring through fall. ascending versus descending temperatures. The latter Prehistoric Human Ecology of the Big Sur Coast 261 Table AI-i Results of Oxygen Isotope Analyses of Mussel (Mytilus californianus) Shells from CA-MNT- 521, -569B, -1223, -1227, -1233, and CA-SLO-267 Site Specimen Unit Depth Lab. Distance 180 Inferred Inferred (cm) No. from temperature season of edge ( C) collection (mm) CA-MNT-521 521-228 2 90-100 - 0 1.164 11.03 Spring CA-MNT-521 521-228 2 90-100 - 2 1.353 10.30 CA-MNT-521 521-248 2 110-120 - 0 1.236 10.75 Spring CA-MNT-521 521-248 2 110-120 - 2 1.388 10.17 CA-MNT-521 521-258 2 120-130 - 0 1.267 10.63 Spring CA-MNT-521 521-258 2 120-130 2 1.092 11.31 CA-MNT-521 521-263 2 130-140 - 0 1.021 11.59 Early summer CA-MNT-521 521-263 2 130-140 - 2 0.882 12.13 CA-MNT-521 521-263 2 130-140 - 4 1.186 10.94 CA-MNT-521 521-263 2 130-140 - 6 0.967 11.79 CA-MNT-521 521-270 2 140-150 - 0 1.264 10.64 Spring CA-MINT-521 521-270 2 140-150 - 2 1.557 9.53 CA-MNT-521 521-614 2 80-90 - 0 0.857 12.23 Early summer CA-MNT-521 521-614 2 80-90 - 2 1.196 10.91 CA-MNT-521 521-753 8 80-90 - 0 0.911 12.02 Early summer CA-MNT-521 521-753 8 80-90 - 2 1.113 11.23 CA-MNT-521 521-770 8 100-110 - 0 1.055 11.45 Winter CA-MNT-521 521-770 8 100-110 - 2 0.718 12.79 CA-MNT-569B 569-31 1 40-50 - 0 1.651 9.18 Spring CA-MNT-569B 569-31 1 40-50 - 2 1.783 8.69 CA-MNT-569B 569-100 4 0-10 - 0 1.295 10.52 Early Summer CA-MNT-569B 569-100 4 0-10 - 2 1.975 7.99 CA-MNT-569B 569-120 4 20-30 - 0 1.246 10.71 Early Summer CA-MNT-569B 569-120 4 20-30 - 2 1.819 8.56 CA-MNT-569B 569-126 4 30-40 - 0 1.705 8.98 Spring CA-MNT-569B 569-126 4 30-40 - 2 1.173 10.99 CA-MNT-569B 569-140 4 50-60 - 0 1.760 8.78 Spring CA-MNT-569B 569-140 4 50-60 - 2 1.667 9.12 CA-MNT-569B 569-155 4 70-80 - 0 1.154 11.07 Late Summer/Early Fall CA-MNT-569B 569-155 4 70-80 - 2 0.546 13.48 CA-MNT-1223 - 11 40-50 TJ2a 0 0.990 11.71 Late Summer/ Early Fall CA-MNT-1223 - 11 40-50 TJ2b 2 1.485 9.80 CA-MNT-1223 - 11 40-50 TJ2c 4 1.686 9.05 262 Appendix I Table AI-1 Results of Oxygen Isotope Analyses of Mussel (Mytilus californianus) Shells from CA-MNT- 521, -569B, -1223, -1227, -1233, and CA-SLO-267 (continued) Site Specimen Unit Depth Lab. Distance 180 Inferred Inferred (cm) No. from temperature season of edge (0 C) collection (mm) CA-MNT-1223 - 11 40-50 TJ2d 6 1.855 8.43 CA-MNT-1223 - 11 40-50 TJ2e 8 2.101 7.54 CA-MNT-1223 - 11 40-50 TJ2f 10 1.142 11.11 CA-MNT-1223 - 11 40-50 TJ2g 12 1.293 10.53 CA-MNT-1223 - 11 40-50 TJ2h 14 1.159 11.05 CA-MNT-1223 - 11 40-50 TJ2i 16 1.072 11.39 CA-MNT-1223 - 11 40-50 TJ2j 18 1.375 10.22 CA-MNT-1223 - 11 40-50 TJ2k 20 1.135 11.14 CA-MNT-1223 - 11 40-50 TJ21 22 1.442 9.97 CA-MNT-1223 - 11 40-50 TJ2m 24 1.628 9.27 CA-MNT-1223 - 11 40-50 TJ2n 26 1.456 9.91 CA-MNT-1223 - 11 40-50 TJ2o 28 1.235 10.76 CA-MNT-1223 - 5 20-30 A5a 0 1.312 10.46 Winter CA-MNT-1223 - 5 20-30 ASb 2 1.333 10.38 CA-MNT-1223 - 5 20-30 A5c 4 1.055 11.45 CA-MNT-1223 - 5 20-30 A5d 6 0.887 12.11 CA-MNT-1223 - 5 20-30 A5e 8 1.006 11.64 CA-MNT-1223 - 5 20-30 A5f 10 1.623 9.29 CA-MINT-1223 - 5 20-30 ASg 12 1.669 9.11 CA-MNT-1223 - 5 20-30 A5h 14 1.653 9.17 CA-MNT-1223 - 5 20-30 A5i 16 1.614 9.32 CA-MNT-1223 - 5 20-30 ASj 18 1.169 11.01 CA-MNT-1223 - 5 20-30 ASk 20 1.085 11.34 CA-MNT-1223 - 5 20-30 A51 22 1.059 11.44 CA-MNT-1227 - 6 20-30 TJla 0 1.593 9.40 Early summer CA-MNT-1227 - 6 20-30 TJlb 2 1.474 9.84 CA-MNT-1227 - 6 20-30 TJlc 4 1.791 8.66 CA-MNT-1227 - 6 20-30 TJld 6 2.165 7.31 CA-MNT-1227 - 6 20-30 TJle 8 1.746 8.83 CA-MNT-1227 - 6 20-30 TJlf 10 1.337 10.36 CA-MNT-1227 - 6 20-30 TJlg 12 1.694 9.02 CA-MNT-1227 - 6 20-30 TJlh 14 1.690 9.04 CA-MNT-1227 - 6 20-30 TJli 16 1.930 8.16 CA-MNT-1227 - 6 20-30 TJlj 18 2.058 7.70 CA-MNT-1227 - 6 20-30 TJlk 20 1.387 10.17 CA-MNT-1227 - 6 20-30 TJll 22 1.115 11.22 CA-MNT-1227 - 6 20-30 TJ1m 24 1.419 10.S5 CA-M/NT-1227 - 6 20-30 TJ1n 26 1.600 9.37 Prehistoric Human Ecology of the Big Sur Coast 263 Table Al-1 Results of Oxygen Isotope Analyses of Mussel (Mytilus californianus) Shells from CA-MNT- 521,-569B, -1223, -1227, -1233, and CA-SLO-267 (continued) Site Specimen Unit Depth Lab. Distance 180 Inferred Inferred (cm) No. from temperature season of edge (0C) collection (mm) CA-MNT-1227 - 6 20-30 TJlo 28 1.941 8.12 CA-MNT-1233 - 2 70-80 TJ3a 0 1.563 9.51 Spring CA-MNT-1233 - 2 70-80 TJ3b 2 1.485 9.80 CA-MNT-1233 - 2 70-80 TJ3c 4 1.582 9.44 CA-MNT-1233 - 2 70-80 TJ3d 6 1.713 8.95 CA-MNT-1233 - 2 70-80 TJ3e 8 0.525 13.57 CA-MNT-1233 - 2 70-80 TJ3f 10 0.720 12.78 CA-MNT-1233 - 2 70-80 TJ3g 12 0.721 12.78 CA-MNT-1233 - 2 70-80 TJ3h 14 0.412 14.03 CA-MNT-1233 - 2 70-80 TJ3i 16 0.530 13.55 CA-MNT-1233 - 2 70-80 TJ3j 18 0.320 14.41 CA-MNT-1233 - 2 70-80 TJ3k 20 0.610 13.22 CA-MNT-1233 - 2 70-80 TJ31 22 0.579 13.35 CA-MNT-1233 - 2 70-80 TJ3m 24 0.888 12.11 CA-MNT-1233 - 2 70-80 TJ3n 26 0.339 14.33 CA-MNT-1233 - 2 70-80 TJ3o 28 0.040 15.58 CA-MNT-1233 - 2 70-80 TJ3p 30 1.019 11.59 CA-MNT-1233 - 2 70-80 TJ3q 32 0.617 13.19 CA-MNT-1233 - 2 70-80 TJ3r 34 0.630 13.14 CA-MNT-1233 - 2 70-80 TJ3s 36 0.939 11.91 CA-MNT-1233 - 2 70-80 TJ3t 38 0.228 14.79 CA-MNT-1233 - 2 70-80 TJ3u 40 0.714 12.80 CA-MNT-1233 - 2 70-80 TJ3v 42 1.440 9.97 CA-MNT-1233 - 2 70-80 TJ3w 44 0.420 14.00 CA-MNT-1233 - 2 70-80 TJ3x 46 1.177 10.98 CA-MNT-1233 - 2 70-80 TJ3y 48 1.112 11.23 CA-MNT-1233 - 2 70-80 TJ3z 50 0.666 13.00 CA-MNT-1233 - 2 70-80 TJ3aa 52 0.629 13.15 CA-MNT-1233 - 2 70-80 TJ3bb 54 0.962 11.82 CA-MNT-1233 - 2 70-80 TJ3cc 56 0.931 11.94 CA-MNT-1233 - 2 70-80 TJ3dd 58 0.878 12.15 CA-MNT-1233 - 2 70-80 TJ3ee 60 0.811 12.42 CA-MNT-1233 - 3 40-50 TJ6a 0 -0.233 16.75 Late summer/ Early fall CA-MNT-1233 - 3 40-50 TJ6b 2 -0.324 17.14 CA-MNT-1233 - 3 40-50 TJ6c 4 -0.112 16.23 CA-MINT-1233 - 3 40-50 TJ6d 6 -0.198 16.60 CA-MINT- 1233 - 3 40-50 TJ6e 8 0.092 15.36 264 Appendix I Table Al-1 Results of Oxygen Isotope Analyses of Mussel (Mytilus californianus) Shells from CA-MNT- 521, -569B, -1223, -1227, -1233, and CA-SLO-267 (continued) Site Specimen Unit Depth Lab. Distance 180 Inferred Inferred (cm) No. from temperature season of edge (0 C) collection (mm) CA-MNT-1233 - 3 40-50 TJ6f 10 0.133 15.19 CA-MNT-1233 - 3 40-50 TJ6g 12 0.895 12.08 CA-MNT-1233 - 3 40-50 TJ6h 14 1.388 10.17 CA-MNT-1233 - 3 40-50 TJ6i 16 1.513 9.70 CA-MNT-1233 - 3 40-50 TJ6j 18 0.244 14.73 CA-MNT-1233 - 3 40-50 TJ6k 20 -0.716 18.87 CA-MNT-1233 - 3 40-50 TJ61 22 -0.423 17.58 Winter CA-MNT-1233 - 3 40-50 TJ6m 24 -0.215 16.67 CA-MNT-1233 - 3 40-50 TJ6n 26 -0.649 18.57 Summer CA-MNT-1233 - 3 40-50 TJ6o 28 -0.211 16.66 CA-MNT-1233 - 3 40-50 TJ6p 30 0.688 12.91 Fall CA-MNT-1233 - 3 40-50 TJ6q 32 1.021 11.59 CA-MNT-1233 - 3 40-50 TJ6r 34 1.607 9.35 Summer CA-MNT-1233 - 3 40-50 TJ6s 36 1.292 10.54 CA-MNT-1233 - 3 40-50 TJ6t 38 0.893 12.09 Early summer CA-MNT-1233 - 3 50-60 TJ7a 0 0.913 12.01 CA-MNT-1233 - 3 50-60 TJ7b 2 0.611 13.22 CA-MNT-1233 - 3 50-60 TJ7c 4 1.448 9.94 CA-MNT-1233 - 3 50-60 TJ7d 6 1.363 10.27 CA-MNT-1233 - 3 50-60 TJ7e 8 0.714 12.80 CA-MNT-1233 - 3 50-60 TJ7f 10 0.446 13.89 CA-MNT-1233 - 3 50-60 TJ7g 12 0.622 13.17 CA-MNT-1233 - 3 50-60 TJ7h 14 0.423 13.99 CA-MNT-1233 - 3 50-60 TJ7i 16 0.825 12.36 CA-MNT-1233 - 3 50-60 TJ7k 20 1.503 9.74 CA-MNT-1233 - 3 50-60 TJ71 22 1.441 9.97 CA-MNT-1233 - 3 50-60 TJ7m 24 1.196 10.91 CA-SLO-267 - 12 30-40 Ala 0 0.988 11.72 Early fall CA-SLO-267 - 12 30-40 Alb 2 1.257 10.67 CA-SLO-267 - 12 30-40 Alc 4 1.426 10.03 CA-SLO-267 - 12 30-40 Ald 6 1.445 9.95 CA-SLO-267 - 12 30-40 Ale 8 1.667 9.12 CA-SLO-267 - 12 30-40 Alf 10 1.400 10.12 CA-SLO-267 - 12 30-40 Alg 12 1.550 9.56 CA-SLO-267 - 12 30-40 Alh 14 1.531 9.63 CA-SLO-267 - 12 30-40 Ali 16 1.752 8.81 CA-SLO-267 - 12 30-40 Alj 18 1.232 10.77 Prehistoric Human Ecology of the Big Sur Coast 265 Table Al-1 Results of Oxygen Isotope Analyses of Mussel (Mydlus californianus) Shells from CA-MNT- 521, -569B, -1223, -1227,-1233, and CA-SLO-267 (continued) Site Specimen Unit Depth Lab. Distance 180 Inferred Inferred (cm) No. from temperature season of edge (OC) collection (mm) CA-SLO-267 - 12 30-40 Alk 20 0.975 11.77 CA-SLO-267 - 12 30-40 All 22 0.959 11.83 CA-SLO-267 - 12 30-40 Alm 24 1.146 11.10 CA-SLO-267 - 12 30-40 Aln 26 1.100 11.28 CA-SLO-267 - 12 30-40 Alo 28 1.207 10.86 CA-SLO-267 - 12 30-40 Alp 30 1.205 10.87 CA-SLO-267 - 12 30-40 Alq 32 1.183 10.96 CA-SLO-267 - 12 30-40 Alr 34 1.278 10.59 CA-SLO-267 - 12 30-40 Als 36 1.373 10.23 CA-SLO-267 - 12 30-40 Alt 38 1.296 10.52 CA-SLO-267 582-7-88 7 70-80 A2a 0 0.921 11.98 Winter CA-SLO-267 582-7-88 7 70-80 A2b 2 0.877 12.15 CA-SLO-267 582-2-80 2 40-50 A3a 0 0.767 12.59 Summer CA-SLO-267 582-2-80 2 40-50 A3b 2 1.447 9.95 CA-SLO-267 582-12-96 12 30-40 AlOOa 0 0.581 13.34 Fall CA-SLO-267 582-12-96 12 30-40 AlOOb 2 0.987 11.72 CA-SLO-267 582-28-114 28 70-80 A4a 0 1.143 11.11 Summer CA-SLO-267 582-8-63 8 20-30 A4b 2 1.194 10.91 CA-SLO-267 582-8-63 8 20-30 A4c 4 1.383 10.19 CA-SLO-267 582-8-63 8 20-30 A4d 6 1.341 10.35 CA-SLO-267 582-8-63 8 20-30 A4e 8 1.150 11.08 CA-SLO-267 582-8-63 8 20-30 A4f 10 0.935 11.92 CA-SLO-267 582-8-63 8 20-30 A4g 12 0.745 12.68 CA-SLO-267 582-8-63 8 20-30 A4h 14 0.770 12.58 CA-SLO-267 582-8-63 8 20-30 A4i 16 0.951 11.86 CA-SLO-267 582-8-63 8 20-30 A4j 18 1.008 11.64 CA-SLO-267 582-17-56 17 20-30 A7a 0 0.714 12.80 Fall CA-SLO-267 582-17-56 17 20-30 A7b 2 0.395 14.10 CA-SLO-267 - 8 10-20 A8a 0 1.048 11.48 Early summer CA-SLO-267 - 8 10-20 A8b 2 1.212 10.84 CA-SLO-267 - 8 10-20 A8c 4 0.995 11.69 CA-SLO-267 - 8 10-20 A8d 6 0.716 12.80 CA-SLO-267 - 8 10-20 A8e 8 0.857 12.23 CA-SLO-267 582-8-30 8 10-20 A8a 0 0.840 12.30 CA-SLO-267 582-8-30 8 10-20 A8b 2 1.203 10.88 CA-SLO-267 582-8-63 8 20-30 A900a 0 0.839 12.30 Summer CA-SLO-267 582-8-63 8 20-30 A900b 2 1.107 11.25 CA-SLO-267 582-2-56 28 70-80 A9a 0 0.956 11.84 Early summer CA-SLO-267 582-2-56 28 70-80 A9b 2 1.197 10.90 266 Appendix I Table Al-I Results of Oxygen Isotope Analyses of Mussel (Mytilus californianus) Shells from CA-MNT- 521, -569B, -1223, -1227, -1233, and CA-SLO-267 (continued) Site Specimen Unit Depth Lab. Distance 180 Inferred Infefred (cm) No. from temperature season of edge (0 C) collection (mm) CA-SLO-267 582-2-56 28 70-80 A9c 4 1.019 11.59 CA-SLO-267 582-2-56 28 70-80 A9d 6 1.222 10.81 CA-SLO-267 582-2-56 28 70-80 A9e 8 1.065 11.41 CA-SLO-267 582-2-56 28 70-80 A9f 10 1.305 10.49 CA-SLO-267 582-2-56 28 70-80 A9g 12 1.068 11.40 CA-SLO-267 582-2-56 28 70-80 A9h 14 0.701 12.86 CA-SLO-267 582-2-67 2 30-40 AlOa 0 0.492 13.70 Fall CA-SLO-267 582-2-67 2 30-40 AlOb 2 0.506 13.65 CA-SLO-267 582-21-72 21 50-60 Al la 0 0.671 12.98 Fall CA-SLO-267 582-21-72 21 50-60 Al lb 2 0.815 12.40 CA-SLO-267 582-3-60 3 40-50 A12a 0 0.544 13.49 Fall CA-SLO-267 582-3-60 3 40-50 A12b 2 0.538 13.52 CA-SLO-267 582-14-35 14 50-60 A13a 0 0.939 11.91 Summer CA-SLO-267 582-14-35 14 50-60 A13b 2 1.268 10.63 CA-SLO-267 582-11-81 11 40-50 A15a 0 1.000 11.67 Summer CA-SLO-267 582-11-81 11 40-50 A15b 2 1.256 10.67 CA-SLO-267 582-4-93 4 60-70 A16a 0 0.631 13.14 Fall CA-SLO-267 582-4-93 4 60-70 A16b 2 0.760 12.62 CA-SLO-267 582-7-76 7 50-60 A18a 0 0.605 13.24 Fall CA-SLO-267 582-7-76 7 50-60 A18b 2 0.926 11.96 CA-SLO-267 582-10-86 10 40-50 A20a 0 1.357 10.29 Spring CA-SLO-267 582-10-86 10 40-50 A20b 2 1.138 11.13 CA-SLO-267 582-10-122 10 60-70 A24a 0 1.048 11.48 Summer CA-SLO-267 582-10-122 10 60-70 A24b 2 1.278 10.59 CA-SLO-267 582-14-74 14 40-50 A25a 0 0.782 12.53 Winter CA-SLO-267 582-14-74 14 40-50 A25b 2 0.593 13.29 CA-SLO-267 582-7-81 7 60-70 A26a 0 0.869 12.19 Summer CA-SLO-267 582-7-81 7 60-70 A26b 2 0.915 12.00 CA-SLO-267 582-2-120 2 70-80 A30a 0 0.627 13.15 Fall CA-SLO-267 582-2-120 2 70-80 A30b 2 1.340 10.35 Modem (July - - - - 0 1.009 11.63 1994) Modem (July - - - - 2 0.822 12.37 1994) Modem (July - - - - 4 0.413 14.03 1994) Modem (July - - - - 6 0.000 0.00 1994) Modemn (July - - - - 8 0.411 14.04 1994) Prehistoric Human Ecology of the Big Sur Coast 267 Table Al-1 Results of Oxygen Isotope Analyses of Mussel (Mytilus californianus) Shells from CA-MNT- 521, -569B, -1223, -1227,,-1233, and CA-SLO-267 (continued) Site Specimen Unit Depth Lab. Distance 180 Inferred Inferred (cm) No. from temperature season of edge (0C) collection (mm) Modem (July - - - - 10 0.608 13.23 1994) Modem (July - - - - 12 1.333 10.38 1994) Modem (July - - - - 14 0.853 12.25 1994) Modem (July - - - - 16 1.504 9.73 1994) Modem (July - - - - 18 1.036 11.53 1994) Modem (July - - - - 20 0.630 13.14 1994) Modem (July - - - - 22 1.114 11.22 1994) Modem (July - - - - 24 0.847 12.27 1994) Modem (July - - - - 26 1.016 11.61 1994) Modem (July - - - - 28 1.273 10.61 1994) Modem (July - - - - 30 1.615 9.32 1994) Modem (July - - - - 32 1.100 11.28 1994) Modem (July - - - - 34 1.033 11.54 1994) Modem (July - - - - 36 0.726 12.76 1994) Modem (July - - - - 38 0.997 11.68 1994) Modem (July - - - - 40 0.762 12.61 1994) Modem (July - - - - 42 0.725 12.76 1994) Modem (July - - - - 44 0.943 11.89 1994) Modem (July - - - - 46 1.119 11.20 1994) Modem (July - - - - 48 0.668 12.99 1994) 268 Appendix I r- 0 cn m cD ur 0 en oo 0 t- - oo t- C7 m 0 to- C tl- r c Io - ON oo t-- 10 > ti w-> -- >n n n oo l 0 ct - N tl l N "- c^ N --- - cl 4 _ei _{ _1i _*i C-_ _- _4i cl f 4 _en _i f n f c 4 c r r c;C N O Cs O 0o 0 0% N O C in m t F Ch t r- - - t--- - I-4 Nt2 Csm.? N r-4 mq o\ -4 ?- ?: ? "t It lqt IC Or- en t a _; 14C cl- ?~ cl "-4' cr "i C4J 14 M' C- Cf ct dx l- Cf c ci cli C4 _ > o o o>\0o>O tn o 5 t cr a r- O o m \ h oN w 6~~~~~~~~~ C\ _ N \0 C7 N 0 >o n cn 0\ 00C4r N Z _' _- _5 _~ 4 _ 4 _f; _ f _1i _n _I _e _ _ en cl_ _siCi l z r-ir--4 -4 - -4"- ---- T--4 -4"-f-4 - - --4 T-"-4 -~ -q-4 W- W-1 -4-4 . ---..V-- o -00- in c 00 in tn O \ \ N Mt a c tn 00 oo V -4 rl in cn t- o d-t O) W Pu~~~~~~~~~~mC o. Ict o qe m " t % t- C\ -- cr _- \0 C1 W t- oN 0 0o I t cr m v~~~~~~~~~~f C14 cq, cl "i C eti C-4 C-i ei C6 C6 WI st N' Cft 4 dw" dw CCt Cf cr Cf clr c ~~~~~~~~~00a 0 \\ 00 4 q oc \a "r n 0 .O _) _ n " O~~~~~~0 Q .5 0 --~~~~~CDC4 0-q- -- 0 ------ - -c -n in -- in - ---\ -\ --! "~~~~~~~~~I o \- -- \0 en c7s C 4 m C\ o\ t- cn C \ tl 0 N ON C? N 0 t- 'Iq 00 d0- aS oo ~~~~~~~O ~o ?Oo 00 ?? ??- t N 00 N tco cO O cO "lo- CD 0 \ t-0 m C\f 0 r- i~~~~~~~~~~ 10 qt n WI m 0> N -- ; m It d tl 0 Q\ m s dn N w \D -4 en \d - Ch W) d @~~~~~~~~~~l cvi _f _4 _l C4 _l _1 _-r _l 4 r f f 4 f - 44 Ci 1 44w " ~~~~~~~~~~~~~~O Nr en tr in coO Cs 8oO\ m Ilin o- Cu"r o0C vo t F o t- IT cr on F \--- -----------0-4 qCne n C o 0--4 -- qv--- --\ iin t - - --4 "- --i -- "-4". 4"-I -4 "- W-4 ---- V-4 -"-v--4 -4 "-4 --fro r--4 "-I .--4 "--f - --- - - --t -O N0t N--.4C 0 --- % \ --- coco-- --- C - - 0\---lc ---44-4 -0 V-i - -4 W-4-4 -4-4 V- "- "- "-4 -4 ---4 7-4-4 -4 -4 - -4-- _ - . \ in . \ . N . 0 . . 1 . n t.- I. t- . . q en . 1 . .\ .- .q .0 .. . . o o- - o - --o eO '- Co - v v--4 04 - o o-- --4 a - o- q -T- -4-4 - o.o X . A cn 0 ) cn r- 00 r- CS en le ON O cn 00 W) m t-^ tn t 0 N \0 " t ct \0 N CF 1 t- m m C\ N 0 oo tn cn - \0 -- o o\ r- cn en ?h m 0\ -- rl 0 z~~~~~~~~~~- C:i1 -. N. C5 m- o.-0.-> "i V-4 e6 Ct 1. a, _f 1.1 ci C C4 W . m . r1.4f d.-t 5 c o- --- \ i - N \ - > t N Cs M en ON WI 0 t-- - -- - -t --- ;~~~~~~~~~~~V- ... | owt oo-owe oe io 'eo -x o X m o c- - ---- en ''O t \ as ' N - - - - t --c - - - \- - 2; - "4 -4 _ - V-- _---- _ -4 -- - - -I N -4 Uq cs O O e ~~~~~~~~~~~~r)\0oo OO O oo O - 0 4) oFooo>c ome sFWC vc h~ ^ s>-ooob - ^c-s>> -- Prehistoric Human Ecology of the Big Sur Coast 269 I > >C ci ci 'iCi - - C6 c C6 c6 e ci m cs c i ci C'i - C C'i _I~~~~~~~~~~~~~~~~~- _4 w4 v-_ _I ..4 v-4 -I _,4 - "4 -4 -4 r - - - T* W ". C\ tn CD in oo oo llr t- C1 0 00 Oen en v- cq t O\v I. a o r_ qd o tx WI _4 ol ; 0 as \ fin O\0 C4 s-4 O\ a en \t t- cr v O PC \0 r- t- O\ C. cn 0 N iin t 0 Mf NO 00 e ne > ON V- NoI C 00 WO O\ Oi tn \' [- c 00 ?O 'd 00 \ as as 00 N 00 0 in 00 \? 0 "-4 --4 - V- - "- ---- " - v ----4r r-- r-( --q -- _ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~O In "g O* rl \ ov m^oo>t In e n .~~~~~~~~0 o On On s N N 00 e in \oO M r- "- -- \o M Cq W) x N r- 0cn t;W~~~~~~~~Cqe cli C6 Cf; Ci s \6 :> llO) Cf et vi 4e lO) C6 4 C6} C cri (fi wi vi 4 clt .~~~~~~~~~~ 00 ?? l t ini t? - c?- c ?o? -? r? crt 0 0 ?0 ?O O\ cn Y~~~~~~~~- en WIen in 0 -0 \0 v) \0 0 o r- tl qq en 0t o o~ C1 o > v--i -* --4 I-- -- v-- v- -4 --4 - --4 4v*v4"I"4v- - -- 4 - ---4 v-4 v-4 -- v-4 O q W) t- t n \ O -4Cn In Cc O a 00 ( \0 0 0n Y~~~~~~~~~- qd N v- o\ cn ON O\ cn tn t en co o- oo C\ 19 W) lo c lr m \X 4 14 4 Cf cf.; Cen ct " cti tr vi C6 4 4 C6 ci vi "i 4 4 Cf c tr 4 wi m - --v--- ----- - --- -- "-I I-- O~~~~~~~~~~~~~~~~~~~- 11 o o N W-\ C?? O t O\ Q en t- t- tD 00 '% r- C eW 4 in00 c nt d tr 00 O-- 0i - - nC4C.\i.. "-4v4 r-4 --4 --4"4v---i -4- -4 v--4 -4-- -4 -4 -I-4 -( -4 . -4.-* W-- - 00 0 00 C00O\ a nO nO \ 0t rt 0ciC) 0\cONq~ v--4 -4 ---4 --4r P -~ W-i -4-4-4W4 -V-1-" W-- r-4V-IT- W- "- V-- -4 " - >~~~~~~~0 6n ll O - N \0 \0 O tl as -0 0 00 O\e - en 4 w R~~~~~~~~~~- W N csr oo \o Wo to Ws m o cr o e V- M N u co t- \In ooO co c Ci cl 1-4 C43 1; cf 11- I; cl 14 cl C C-i C C6 ; r c>l i CS C C- C414 0 'C4 1 ^~~~~~~~~~v- "- Z ( "4 v- -i _-- _-4 v- -4 v- w_4 _- _ - _- _- _- _- _- w-4 v- -_v w_4 V.I ".4 hi t~~~~~~~~~~~~~~~~~M\ - r-4 ON a NO --4 le 't --4 C - c- o o N \ C o --o C -o\ --oo In C \ 00 n W W o oo O ~ c d 6 c-i - o 4 - 'i Ci C i c -4 c '.4 N ci en co- ci - -4 ci - v--4 -4 -~ -~ - - --4 --4 -4 -,-- ". P-4 -4 -~ -~ -4"-4 - - -- -4 '-4 '-4 - - - -W- cn \ n o en W e -O 4 o - \ WI t 0 > W) - -cD o~~~~~~~~~~~~ -- _ cn V_ tn O 0\ "4eCn 11 WI 1* _0 0 ON C) N cn I' on \ g~~~~~~~~~~~W o W) W) t a W) in tn oo CO ~O \ O \0 \- o. O \0 SN tl c- O- t-t U) \ -- \ \N o \ \ o- \ ON O O-N \ O\ ON -s N Y .o o F Y m v-4 - 4 4 4 41s14 - - -414141- - - I- 4 - -4 b e O N 4 270 Appendix I Q t t >~~~~N t- 00 oo 0 WI 00 oo 00 X o cn ? o ;- _14 _- -4 _ 4 _-4 "_4 _-s _4 _1I _- _- "- - - - -4 r- 0 tc " m ^^n>o m -4 m N w N en llq cllq Il t, n > _ N _-- llq "C -4 N o 1_ - - l C r 4" _e t C4 _4 C_q4 _I _4 v C X~~~~~~~~~IN Inm In Cn V- --t o s ce 0\ c% m N O O 00 WI > so en m tn It CAm Ct ON m in 0 m tn tn af R NeNtthent>NNNtt 60 . z u r- "- r-- v- w-4 m- v- r-- r- "4 r> " v-4 "- v-- "- r- v 4 o. N 00 cno r- 'M 8 w N o - -I - n ' - - 4 t 0 w m ^ O N w e~~~~~~~~~~~~~~~el fi~~~~~~~~~c tn >w xo e un om o Cf r - f t iC6ciCi f i. M N I'l m w 0 m m r- W m in 0 t ^ m ur ct cn o v --4r- v--4 "- "4-- " -4 --4 ---l r4 --4 - "-4 V- ~~~ ~~~~~fl00O ef~~~~~~~~~P4 --400 ~~~~~~~~~Cfi Cf 4 f r r f f f f 6 1'Ci CiC Y~~~~~~~~~G N -n r- C1 0t o\ o^ r- so lq 0 c cr o\ r- .q 0 "--i v- W-4P--lV--4- -4 wq~~~~~~~~~~~ .- -4tt tn tn \- -- 10 r- N 0 c\ N N 0 en ooenO ( tM oo0 - r-~ - -4 -4 -4- -4 -4 -v- v4 v-- 4 -4--4--4 v- P-I 0 m~~~~~~~~~~~- en M ONM m 0\ -4 M r- -4 cn oo 0 WI qo @ X . <, <, w ^~~~ t- qt \n M C1 I ^^ t t ^ --q 0 4 00 O\cn - c \c I' - o s~~~~~~~~~~f 14 ooi Cf im cli oo c4i cli ci 6 ei e en 08, clC v--4Y- -4r- ---- "-4-4-4 r- --- --4 -- V--4 -4 -- 04~~~~~~~~~~~I --4 - a -O>xoa- \-rc \\ -0 "- P-4 ---4 --4 -4 "I4 -W--4 - V-4 "-4--4 v4v-- 4) Or4 0m m 0 ^ u t N W~~-- - --- - -- -- - StC ^^>ts Prehistoric Human Ecology of the Big Sur Coast 271 0 oo 10 -4 en N 0o oo 0 oo. Ch t n C_ "u4 t No 0 enC) 00 - - 00 --- - -- - - O- - - --- 00 - -N I'll hi -- - - _ -_ - 4 _ V~~~~~~~~~~~~~ i n cr W Wo oot 1* m i m a Ch m O o Ps Q t W ~~~~~~~~~~~O m C14 cne 00 t- ~ O t0 N 00 r- r- Id, m I'?t o oo~~r e O I0 %Cr Cs rt> ^ o~~~~~~~~~~0 . o t n N Id, in 1* Id NO N oN m oo In t s> t ;> ~~~~~~~~~n llq 00 o0 VCh tn On w 100 t- rl w 00 t- I > 0 in 0 0 S- '0 _ O i _ WI N 1t - e1 N - ini ---w - 0 V~~~~~~~~~~r _ % en Id O oot oo on 'I I'd cn C4 N N lo q cn lq 00 t- in S~~~~~~~~~~~~~~0 00t nNV qe 0c hI O _0 in _ 4 _O _ ^~~~~~~~~~~~~~~~~q WI N 00 CD 0t C> so cn m ^o>> t oo ts C i r~~~~~~~~~~~~~~~~~~e 6> n eN e t N I'll N p 0 v---v---- v- - - - - T---T-- - V ~~~~~~~~~~in 0l 00 00x in} c>l ( > -4 WI s >>s N s IC lq N 0 ---- --- t- -in- - 0 - - - --- - u 0 (S -:-O 6 I -46 -Cl n 66 C '4vi wq Q~~~~~~~~~ 00 m O N W 1- - - O D 0 (0 t- \0 O W W v- OC a cW 16 tn Mt 00 f4- o oo - 0 o _o W), -- T--4 In -4 n( - 1 -4 114 W)-4 -4 - -It i- - f hi : Vs oCr Nt O t r4 0 0 ot o 0 -- n - j en 0 - Y 00th0-00 .00 -N- -00c'-e % 0 ox . o N c ----------- ------ ---- - X X Y~~~~~~~4 14 O <6 C-- O-; C- cl fi 14 Oi ri 14 6f C6 - l D~~~~~~~~~~~ v- w;-4 v-4 "-4 "4 v- v-- 1- _- _14 _- "-4 _ _4 _4 v_ "-f ",4 _- v4 _ _ rg~~~~~~~~~~W w2 V- In 0E Co N t WO o 0 oo C4 O In o\ C \0 en C1 AD -- N _ C 0 r- m 0 0 0 0 O 0 M 00 8 V- 1- W-4 -40%0%0%-4 " % T- .4 1-4 r- r- -4 0%4 0%4 0%4 7- 0%-4 - %1 -4 - 6 C 6 6 4 i tov c i Ci t-4CoCf1-i C-'n0 C6cl cli J<;~~~~~~~~~~~~~~~~~r r- ar _- W \ O\>>^^t - O\_^^ B~ g \\ . - - t-- O\- \ o oo Ch O\- d -\ C- F~~~~~~~~~~~- V-- v-- _ 4 _- _-- _-e _ 4 _- _ - _- _- _- -4 _- v-4 _-4 "- v- v- -d;4 272 Appendix I Table AI-4 Seasonal Sea Surface Temperature Zones (0 C) for Archaeological Time Periods on the Big Sur Coast Based on Findings from Jones and Kennett (1999) Season Middle Period Middle-Late Late Period Modem Transition Spring < 10.75 < 12.25 <9.2 < 11.1 Early summer 10.75-12.75 12.25-15.55 9.2-11.0 11.1-12.3 Late summer/ >12.75 > 15.55 > 11.0 > 12.3 Early fall Winter 10.75-12.75 12.25-15.55 9.2-11.0 11.1-12.3 Table AI-5 Summary of Seasonality Determinations by Site Site Spring Early summer Late summer/ Winter Total Early fall CA-SLO-267 1 10 9 2 22 CA-MNT-521 4 3 0 1 8 CA-MNT-1233 2 0 1 0 3 CA-MNT-569B 3 2 1 0 6 CA-MNT-1223 0 0 1 1 2 CA-MNT-1227 0 0 0 1 1 10 15 12 5 42 Table AI-6 Summary of Seasonality Determinations: Inland Versus Coastal Sites Setting Spring Early summer Late summer/ Winter Total Early fall Inland sites 7 5 1 1 14 Coastal sites 3 10 11 4 28 Total 10 15 12 5 42 Prehistoric Human Ecology of the Big Sur Coast 273 Table AI-7 Summary of Seasonality Determinations by Time and Setting Period Spring Early summer Late summer/ Winter Total Early fall Middle Period coastal 1 10 9 2 22 Middle Period interior 4 3 0 1 8 Subtotal 5 13 9 3 30 Middle-Late Transition 2 0 1 0 3 Coastal Late Period coastal 0 0 1 2 3 Late Period interior 3 2 1 0 6 Subtotal 3 2 2 2 9 Grandtotal 10 15 12 5 42 274 Appendix I REFERENCES CITED Ingram, B. L., and J. R. Southon 1996 Reservoir Ages in Eastern Pacific Coastal Bailey, G. N., M. R. Deith, and N. J. Shackleton and Estuarine Waters. Radiocarbon 38:573- 1983 Oxygen Isotope Analysis and Seasonality 582. Determinations: Limits and Potential of a New Technique. American Antiquity 48:390-398. Jones, T. L., and D. J. Kennett 1999 Late Holocene Sea Temperatures Along Deith, M. R. the Central California Coast. Quaternary 1995 Seasonality from Shells: An Evaluation of Research 51:74-82. Two Techniques for Seasonal Dating of Marine Molluscs. In Palaeobiological Kennett, D. J., and B. Voorhies Investigations Research Design, Methods and 1995 Middle Holocene Periodicities in Rainfall Data Analysis, edited by N. R. J. Fieller, D. D. Inferred from Oxygen and Carbon Isotopic Gilbertson, and N. G. A. Ralph, pp. 119-130. Fluctuations in Prehistoric Tropical Estuarine BAR International Series 266, Oxford. Mollusc Shells. Archaeometry 37:157-170. Epstein, S., R. Buchsbaum, H. Lowenstam, and H. 1996 Oxygen Isotopic Analysis of Urey Archaeological Southern Pacific Coast of 1951 Carbonate-Water Isotopic Temperature Mexico. Journal ofArchaeological Science Scale. Bulletin of the Geological Society of 23:689-704. America 62:417-426. Killingley, J. S. Epstein, S., Buchsbaum, R., Lowenstam, H. and H. 1980 Seasonality of Mollusk Collecting at Urey Hubb's Midden 1959: VI: 28A. Pacific Coast 1953 Revised Carbonate-Water Isotopic Tem- Archaeological Society Quarterly 16(4):19-23. perature Scale. Bulletin of the Geological Society ofAmerica 64:1315-1326. 1981 Seasonality of Mollusk Collecting Determined from 180 Profiles of Midden Shells. Fairbanks, R. G. American Antiquity 48:152-158. 1989 A 17,000-Year Glacio-Eustatic Sea Level Record: Influence of Glacial Melting Rates on Killingley, J. S., and W. H. Berger the Younger Dryas Event and Deep-Ocean 1979 Stable Isotopes in a Mollusk Shell: Circulation. Nature 342:637-641. Detection of Upwelling Events. Science 205:186- 188. Glassow, M. A., D. J. Kennett, J. P. Kennett, and L. R. Wilcoxon Koerper, H. C., Killingley, J. S., and R. E. Taylor 1994 Confirmation of Middle Holocene Ocean 1985 The Little Ice Age and Coastal Southern Cooling Inferred from Stable Isotopic Analysis California Human Economy. Journal of of Prehistoric Shells from Santa Cruz Island, California and Great Basin Anthropology 7:99- California. The Fourth California Islands 103. Symposium: Update on the Status of Resources. Edited by W. L. Halvorson and G. J. Maender. O'Neil, J. R., L. H. Adami, and S. Epstein Santa Barbara Museum of Natural History. 1975 Revised Value for the d'80 Fractionation Between CO2 and H20 at 25?C. Journal of Herz, N. Research, U.S. Geological Survey 3:623. 1990 Stable Isotope Geochemistry Applied to Archaeology. In Archaeological Geology of Shackleton, N. J. North America, vol. 3, edited by N. P. Lasca and 1969 Marine Mollusca in Archaeology. In J. Donahue, pp. 585-595. Geology Society of Science in Archaeology, edited by D. Brothwell America, Boulder. and E. S. Higgs, pp. 407-414. Thames and Hudson, New York. Horibe, Y. and T. Oba 1972 Temperature Scales of Aragonite-Water 1973 Oxygen Isotope Analysis as a Means of and Calcite-Water Systems. Fossils 23/24:69- Determining Season of Occupation of 79. Prehistoric Human Ecology of the Big Sur Coast 275 Prehistoric Midden Sites. Archaeometry 15:133- 141. Stuiver, M., and P. J. Reimer 1993 A Complete Program for Radiocarbon Age Calibration. Radiocarbon 35:215-230. Urey, H. C. 1947 The Thermodynamic Properties of Isotopic Substances. Journal of the Chemical Society 1947:562-581. Wefer, G., and W. H. Berger 1991 Isotope Paleontology: Growth and Composition of Extant Calcareous Species. Marine Geology 100:207-248.