TREATING A FUZZY SUBSET AS A PROJECTABLE RANDOM SUBSET

by

Wang Pei-Zhuang and Elie Sanchez

Memorandum No. UCB/ERL M82/35

13 April 1982

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley
94720
TREATING A FUZZY SUBSET AS A PROJECTABLE RANDOM SUBSET

Wang Pei-Zhuang
Department of Mathematics
Beijing Normal University
Beijing, China

Elie Sanchez
Department of Electrical Engineering and Computer Sciences
Computer Science Division
University of California, Berkeley, California 94720

The treatment of a fuzzy subset as a random subset has been studied by some authors. This paper contributes a unified framework to this approach. We call those random subsets of a space 'projectable' if they yield well-defined one point coverage functions and, hence, fuzzy subset membership functions. It is shown that this definition and related ones lend to the property that all projectable random subsets of a given space form a σ-algebra, called the random σ-algebra. A generalization, using measure theoretic results of Goodman's original construction is presented whereby any fuzzy subset of a given space is shown to correspond to some projectable random subset. Some characterizations are obtained for simple, i.e., finite-valued, projectable random sets and simple fuzzy sets. In addition, it is shown that a bijection exists between all projectable random intervals and all bivariate ordered (increasing) random vectors. This implies that the membership functions of the corresponding fuzzy subsets are computable via simple integration involving bivariate distributions.

Finally, some specialization of these results to fuzzy numbers and corresponding projectable random intervals is presented.

Key Words: Random sets, measurability, random vectors, random intervals, fuzzy numbers

1. INTRODUCTION

Zhang Nan-lun presents a set of statistical data in [11] showing that there exists a stability in the observation of the frequency of a movable interval (expressing a fuzzy concept) that covers a fixed point in the real line IR. His paper supports L. A. Zadeh's theory in some respects, and his paper also supports treating a fuzzy subset as a random subset. Many authors, especially I. R. Goodman, have either already studied this or have been embroiled in some other way in the controversy between fuzzy set and probabilistic approaches to modeling uncertainties [1,9]. A lot of difficult problems is still awaiting our solutions.

2. PROJECTABLE RANDOM SUBSETS

Let U be a given base space and B a σ-algebra of subsets of U.

\[\forall u \in U, C(u) = \text{filter of } B \text{ on } U \]

Also, let \(\mathbb{B} = \sigma(\{C(u)\mid u \in U\}) \),

\[(2.1) \]

\[(2.2) \]

Definition 1. Let \((\Omega, A, P)\) be a given probability space. We call \((\mathbb{B}, \mathbb{B})\) a projectable measurable space on U, where \(B \) is defined in(2.2), and we call a mapping

\[S : \Omega \rightarrow B, \quad (2.3) \]

e a projectable random subset of U, if it is \(\mathbb{B} \)-measurable, thus inducing the probability space \((\mathbb{B}, \mathbb{B}, \nu)\), where \(\nu = P \circ S^{-1} \). See [4] for related notions (strong measurability, for example).

The collection of all projectable random subsets of U is denoted by \(S(\Omega, A, P; U, \mathbb{B}, \mathbb{B}) \), or simply S.

Sometimes, the range of the mapping S is not the whole σ-algebra B, but a subset of it. We can rewrite

\[S : \Omega \rightarrow L, \quad (2.4) \]

\[\mathbb{B} = \sigma((C(u)\mid u \in U)), \]

where \(\sigma(C) \) denotes the smallest σ-algebra containing the class C.

Definition 2. Suppose that S is a projectable random subset of U from a given probability space \((\Omega, A, P; U, \mathbb{B}, \mathbb{B})\), let \(\mathbb{F} \) be the fuzzy subset of U with membership function given by, for all \(u \in U, \)

\[\mathbb{F} \subseteq \sigma(\{C(u)\mid u \in U\}), \]

where \(\sigma(C) \) denotes the smallest σ-algebra containing the class C.
We call \(S \) the fuzzy subset projected from \(S \), see [1] for related notions. We write \(S^T = S^u \) iff \(S^T = S^u \). "\(\sim \)" is an equivalence relation on \(S \), so that \(S \) can be partitioned into different classes.

Let \((B_t, \mathcal{B}_t) \in T \) be a family of projectable measurable spaces, where \(T \) is an arbitrary index set. When \(T \) is finite, supposing that \(T = \{1, 2, \ldots, n\} \), we set

\[
\mathcal{B} \Delta = \bigtimes_{t \in T} \mathcal{B}_t = \{(B_1, \ldots, B_n) | B_i \in \mathcal{B}_i (i = 1, \ldots, n)\}.
\]

(2.8)

When the index set \(T \) is infinite, set

\[
\mathcal{B} \Delta = \bigtimes_{t \in T} \mathcal{B}_t = \{(B_t)_{t \in T} | \forall t \in T, B_t \in \mathcal{B}_t\}.
\]

(2.9)

Definition 3. We call \((B_t, \mathcal{B}_t) \in T \) the product projectable measurable space of \((B_t, \mathcal{B}_t) \in T \). If \(B_t \equiv \mathcal{B} (t \in T) \), and \(T = \{1, 2, \ldots, n\} \), we can write

\[
\mathcal{B} = B^n; \quad \mathcal{B}_T = B^n
\]

(2.12)

Lemma 2. Consider \((S_t)_{t \in T} \) where \(\forall t \in T \), \(S_t \subseteq S(\mathcal{A}, \mathcal{P}; U, \mathcal{B}_t, \mathcal{A}) \) and set \(S_T : \mathcal{B} \rightarrow \mathcal{B} \), defined by

\[
\omega \mapsto S_T(\omega) \triangleq (S_t)_{t \in T},
\]

(2.13)

then \(S_T \) is \(\mathcal{B} \)-measurable.

Proof. If \(T = \{1, 2, \ldots, n\} \), for any \(P_i \in \mathcal{B}_i \) \((i = 1, \ldots, n)\), we have

\[
S_T^{-1}(P_1 \times P_2 \times \cdots \times P_n) = S_1^{-1}(P_1) \cap \cdots \cap S_n^{-1}(P_n) \subseteq \mathcal{A}
\]

(2.14)

so that

\[
S_T^{-1}(B_T) \subseteq \mathcal{A}.
\]

(2.15)

When \(T \) is infinite, we have

\[
S_T^{-1}(P_J \times \bigtimes_{i \in T-J} \mathcal{B}_i) = S_J^{-1}(P_J) \subseteq \mathcal{A},
\]

(2.16)

where \(P_J \in \mathcal{B}_J \), and

\[
S_J : \Omega \rightarrow \mathcal{B}_J,
\]

\[
\omega \mapsto S_J(\omega) = (S_t(\omega))_{t \in J}
\]

(2.17)

Then we can get

\[
S_T^{-1}(\mathcal{B}_T) \subseteq \mathcal{A}
\]

(2.18)

Let \((\mathcal{B}_t, \mathcal{B}_t)_{t \in T} \) be a family of projectable measurable spaces on \(U \), where \(T \) is finite or denumerable, with

\[
\mathcal{B}_t \equiv \mathcal{B}; \quad \mathcal{B}_t \equiv \mathcal{B} (t \in T).
\]

We can define two mappings as follows.

\[
\bigcup_{t \in T} : \mathcal{B} \rightarrow \mathcal{B}
\]

(2.19)

\[
\bigcap_{t \in T} : \mathcal{B} \rightarrow \mathcal{B}
\]

(2.20)

Lemma 3. The mappings \(\bigcup_{t} \) and \(\bigcap_{t} \) are \(\mathcal{B} \)-measurable.

Proof.

\[
\bigcup_{t \in T}^{-1}(C(\omega)) = \bigcup_{t \in T} C(t) \times \mathcal{B}_t \in \mathcal{B}_T
\]

(2.21)

\[
\bigcap_{t \in T}^{-1}(C(\omega)) = \bigcap_{t \in T} C(t) \in \mathcal{B}_T
\]

(2.22)

Definition 4. The following operations are defined on \(S \).

\[
\bigcup_{t \in T} S_t = \bigcup_{t \in T} S_t(\omega), \quad \bigcap_{t \in T} S_t = \bigcap_{t \in T} S_t(\omega)
\]

(2.23)

\[
(\bigcup_{t \in T} S_t)(\omega) = \bigcup_{t \in T} S_t(\omega), \quad (\bigcap_{t \in T} S_t)(\omega) = \bigcap_{t \in T} S_t(\omega)
\]

(2.24)

where \(T \) is finite or denumerable.

From Lemma 2 and Lemma 3, we can see that class \(S \) is closed under the operations \(\bigcup \) and \(\bigcap \).

Complementation is now defined by

\[
(S^C)(\omega) \triangleq (S(\omega))^C.
\]

(2.25)

Obviously, for any fixed element \(\omega \in \mathcal{A} \), the class

\[
S(\omega) \triangleq (S(\omega)|S \in S)
\]

is a \(\sigma \)-algebra with respect to the operations (2.23)-(2.25). The operations discussed are special cases of compositional set operators [12].

Definition 5. We call \(S \) the random \(\sigma \)-algebra related to operations (2.23)-(2.25).
3. A MEASURABILITY THEOREM.

If a mapping \(f : X \rightarrow Y \) is a bijection, then every \(\sigma \)-algebra \(A \) on \(X \) can be carried by \(f \) to become a \(\sigma \)-algebra on \(Y \):

\[
f(A) = \{ f(x) | x \in A \} | A \in A \}.
\]

Theorem 1. Let \((\Omega, A, P) \) be a probability space and, let \((B, \mathcal{B}) \) be a projectable measurable space on \(U \) and \((E, \mathcal{E}) \) any measurable space. Assume that the mapping

\[
T : E \rightarrow L
\]

where \(L \subseteq B \), is a bijection. If,

\[
T(E) = \{ (T(e) | e \in \alpha) | \alpha \in E \} \supseteq \{ C_L(u) | u \in U \},
\]

then, for an \(E \)-measurable mapping

\[
\xi : \Omega \rightarrow E,
\]

we have

\[
S \supseteq T \circ \xi \subseteq S
\]

Proof. \(T \circ \xi \) is \(T(\xi) \)-measurable if/\(f \xi \) is \(E \)-measurable. From (3.2) we have \(B, \subseteq T(E) \), so that \(S \) is \(B \)-measurable and hence \(B \)-measurable too. Thus, (3.3) is true.

Theorem 1 is of many uses. For example, Goodman's theorem 1 in [1] can be easily proved using this theorem. We shall rewrite it with a few changes.

We say that a probability space \((\Omega, A, P) \) is sufficient for a given measurable space \((X, \mathcal{B}) \) if for any probability measure \(m \) defined on \(B \), there is a \(B \)-measurable mapping \(\xi : \Omega \rightarrow X \) such that \(m \) is the induced probability measured by \(\xi \), i.e.

\[
m(B) = P(\xi^{-1}(B)) \ \forall B \in B \
\]

Theorem 2. Let \((\Omega, A, P) \) be a probability space which is sufficient for \((\mathbb{R}, \mathcal{B}_0) \), where \(\mathcal{B}_0 \) is the Borel field on \(\mathbb{R} \). Let \((8, \mathcal{B}) \) be a projectable measurable space on \(U \). Given a fuzzy subset \(A \) of \(U \), it is always projected from some \(S \in S(\Omega, A, P; U, B, \mathcal{B}) \) provided that \(u_A \) is \((B, B_0) \)-measurable.

Proof. Since \(u_A \) is \((B, B_0) \)-measurable,

\[
L \supseteq \{ A_\lambda \}_{\lambda \in [0,1]} \subseteq B,
\]

where

\[
A_\lambda = \{ u \in U | u_A(u) > \lambda \} \text{ is the } \lambda \text{-cut of } A.
\]

Clearly, if \(\lambda_1 > \lambda_2 \), then \(A_{\lambda_1} \subseteq A_{\lambda_2} \). For any \(\lambda, \mu \in [0,1], \lambda - \mu \text{ iff } A_{\lambda} = A_{\mu} \)

\[
\equiv \text{ is an equivalence relation on } [0,1].
\]

Defining \(E = [0,1]/\equiv \), the elements of \(E \) are either singleton sets or intervals in \([0,1]\).

Thus, \(E \) has a linear order \(\leq \):

\[
e_1 \leq e_2 \Rightarrow \lambda_1 \leq \lambda_2 \text{ such that } \lambda_1 \leq \lambda_2.
\]

Hence, we can define the interval in \(E \):

\[
[e_1, e_2] \supseteq \{ e \in E | e_1 \leq e \leq e_2 \}.
\]

Set

\[
E \supseteq \{ ([e_1, e_2]| e_1, e_2 \in E) \}.
\]

Set

\[
T : E \rightarrow L,
\]

\[
e \mapsto A_\lambda \supseteq A_\lambda \ (\forall \lambda \in e),
\]

Then \(T \) is a bijection.

Moreover, we have

\[
T^{-1}(C_\lambda(u)) = [0, \mu_A(u)] \subseteq E,
\]

where \(\lambda \) is the class containing \(\lambda \) in \(E \). Therefore (3.2) is satisfied.

Because \((\Omega, A, P) \) is sufficient for \((\mathbb{R}, \mathcal{B}_0) \), there is a \((B, B_0) \)-measurable mapping \(\xi_0 : \Omega \rightarrow [0,1] \) such that its distribution is uniform in \([0,1] \), i.e. \(m_0 = P \circ \xi_0^{-1} \), \(m_0 \) Lebesgue measure over \([0,1] \). Set, for each \(\omega \in \Omega \), \(\xi(\omega) \supseteq (\xi_0(\omega)) \). Clearly, \(\xi \) is \(E \)-measurable. According to theorem 1, we have

\[
S \supseteq T \circ \xi \subseteq S(\Omega, A, P; U, B, \mathcal{B}).
\]

But

\[
P(\omega) | S(\omega) \subseteq C(u)) = P(\omega) | S(\omega) \subseteq C_\lambda(u))
\]

\[
= P(\xi \in [0, \mu_A(u)])
\]

\[
= P(\xi_0 \in [0, \mu_A(u)])
\]

\[
= \mu_A(u).
\]

Does the converse proposition of Theorem 2 hold? We cannot answer this yet. But we could obtain a partial result here.

Definition 6. A projectable random subset is called a simple projectable random subset if its range only contains a finite subclass of \(B \). The collection of all simple projectable random subsets is denoted by \(S^* \).

Lemma 4. Suppose that \((\Omega, A, P) \) is sufficient for \((\mathbb{R}, \mathcal{B}_0) \), then each simple projectable random subset of \(\mathbb{R} \) can be projected into a simple fuzzy set membership function on \((U, B) \). Conversely, each simple fuzzy set membership function on \((U, B) \) is projected from some \(S^* \subseteq S^* \).

Proof. For any \(S^* \subseteq S^* \), there is a partition of \(\Omega : A_i \in A \ (i = 1, \ldots, n) \).
and $S^*(\omega) = B_i (\omega \in A_i)$ ($B_i \in B$) ($i = 1, \ldots, n$).
Then, the membership function of S^* is a simple function on (U, B):

$$\mu_{S^*}(u) = \prod_{i=1}^{n} P(A_i)\chi_{B_i}(u).$$

(3.12)

the converse conclusion is clear from theorem 2.

Definition 7. We write $S_1 \subseteq S_2$ iff $S_n(\omega) \subseteq S_2(\omega)$ ($\forall \omega \in \Omega$), and we write $S_n \mathcal{F}(\omega) S^*$ iff $S_n(\omega) \mathcal{F}(\omega) S(\omega) = \bigcup_{n=1}^{\infty} S_n(\omega) (\cap_{n=1}^{\infty} S_n(\omega)) (\forall \omega \in \Omega)$.

Lemma 5.

$$S_1 \subseteq S_2 \Rightarrow \mu_{S_1} \leq \mu_{S_2}$$

(3.13)

$$S_n \mathcal{F}(\omega) S = \mu_{S_n} \mathcal{F}(\omega) \mu_{S}$$

(3.14)

The proof is clear.

Theorem 3. Suppose that $S = S(\Omega, A, P; U, B, \mathcal{B})$ is the smallest closure, containing S^*, under the operations of denumerable union, denumerable intersection and complement, then for every $S \in S$, the projected fuzzy subset S is (B, \mathcal{B})-measurable.

Proof. Clearly, S^* is a random algebra, i.e., S^* is a closed class under the operations of finite union, finite intersection and complement. As an analogy to measure theory, because S is smallest σ-algebra containing S^*, so is the closure containing S^* under the monotonic limit operations defined in Definition 7.

Set $\phi : S \to [0,1]^U$

$$\phi : S \to \mu_S$$

and let $M \subseteq [0,1]^U$ be the collection of all (B, \mathcal{B})-measurable functions which are the membership functions of fuzzy subsets of U, i.e.,

$$M \triangleq \{u : U \to [0,1] \& u \text{ is } (B, \mathcal{B}) \text{-measurable}\}.$$

(3.15)

Let M^* be the simple functions subclass of M, i.e.,

$$M^* \triangleq \{u : U \to [0,1] \& u \text{ is a simple function}\}.

(3.16)

The mapping ϕ conserves the operations of monotonic limits so that $\phi(S)$ is the smallest closure containing M^* under monotonic convergence. But $M \supseteq M^*$ and M^* is a closed class under monotonic convergence, too, so that $\phi(S) \subseteq M$.

4. PROJECTABLE RANDOM INTERVALS

Let B_0 be the Borel field on \mathbb{R}, and let (B_0, B_0) be the projectable measurable space on \mathbb{R}, i.e.,

$$B_0 = \sigma(\{C(x) | x \in \mathbb{R} \& C(x) \supseteq \{B \in B_0 | x \in B\}) \supseteq \emptyset.$$

(4.1)

Let

$$\delta \triangleq \{[x_1, x_2] | x_1, x_2 \in \mathbb{R} \& x_1 \leq x_2\}.$$

(4.2)

Definition 8. A projectable random subset $S \in S(\Omega, A, P; U, B, \mathcal{B})$ is called a projectable random interval if it is interval-valued, i.e.,

$$\text{range}(S) \subseteq \delta.$$

(4.3)

the class of all of them being denoted by I.

What is most convenient in our definition of a projectable measurable space is that we can transform a projectable random interval into a bivariate random vector.

Set

$$R_2^2 \triangleq \{ (x, y) | x, y \in \mathbb{R} \& x \leq y \}.$$

(4.4)

Let B_0^2 be the Borel field on \mathbb{R}^2. Set

$$B_2^2 \triangleq \{D | D \in B_0^2 \& D \subseteq \mathbb{R}^2\}.$$

(4.5)

B_2^2 is the restriction of B_0^2 to \mathbb{R}^2, so it is a σ-algebra too. Let (Ω, A, P) be a given probability space.

Let

$$\mathcal{V} \triangleq \{\xi : \Omega \to \mathbb{R}^2 \& \xi \text{ is } (A, B_2^2) \text{-measurable}\},$$

(4.6)

i.e., \mathcal{V} is the set of all bivariate random vectors over the upper triangular real plane.

Set

$$\tau : \mathbb{R}^2 \to \delta,$$

where

ordered pair $(x, y) \mapsto \text{interval } [x, y].$$

(4.7)

Obviously, τ is a bijection.

Lemma 6.

$$\tau(B_2^2) \supseteq \{C(x) | x \in \mathbb{R}\}.$$

(4.8)

Proof. For any fixed $a \in \mathbb{R}$, we have

$$\tau^{-1}(C_\delta(a)) = \{(x, y) | (x, y) \in \mathbb{R}^2 \& x \leq a \leq y\} = \{(-\infty, a] \times [a, \infty) \}

= \mathcal{J}_a \in B_2^2,$$

(4.9)

where

$$\mathcal{J}_x \triangleq \{(-\infty, x] \times [x, \infty), \text{ for all } x \in \mathbb{R}\}.

(4.10)$$
Theorem 4. There is a bijection
\[\psi : V \to I \]
(4.11)

Proof. For any \(\xi \in V \), define the mapping
\[\psi(\xi) : \omega \to \delta, \]
(4.12)
where for all \(\omega \in \Omega \), \((\psi(\xi))(\omega) \triangleq \tau(\xi(\omega)) \).

Clearly, the mapping
\[\psi : V \to \delta^\Omega \]
(4.13)
is an injection.

From Theorem 1 (take \(L = \delta \), \(E = \mathbb{R}^2 \), \(E = \delta^\Omega \) and by Lemma 6), we can see that for any \(\xi \in V \),
\[\psi(\xi) \]
is \((A, \delta^\Omega) \)-measurable, i.e.,
\[\psi(\xi) \in I \]
(4.14)

Hence, mapping \(\psi \) is an injection from \(V \) to \(I \) and we can rewrite \(\psi \) in the form:
\[\psi : V \to I. \]
(4.15)

We want to prove that \(\psi \) is a bijection. This conclusion will be provided by Lemma 7.

Lemma 7.
\[\tau(B^2) \subseteq \delta_0 \]
(4.16)

Proof. It is not difficult to prove that
\[B^2 = \sigma((A_1 \times A_2) \cap \mathbb{R}^2 | A_1, A_2 \in \delta) \]
\[= \sigma((A_1 \times A_2 | A_1, A_2 \in \delta \land A_1 \times A_2 \subseteq \mathbb{R}^2)). \]
(4.17)

For \([a_1, b_1] \times [a_2, b_2] \subseteq \mathbb{R}^2 \), we have
\[[a_1, b_1] \times [a_2, b_2] = (-\infty, b_1] \times [a_2, +\infty) - (-\infty, a_1] \times [a_2, +\infty) \]
\[= ((-\infty, b_1] \times [b_1, +\infty) \cap (-\infty, a_2] \times [a_2, +\infty)) \]
\[- ((-\infty, a_1] \times [a_1, +\infty) \cap (-\infty, a_2] \times [a_2, +\infty)) \]
\[- ((-\infty, b_1] \times [b_1, +\infty) \cap (-\infty, b_2] \times [b_2, +\infty)) \]
\[= (J_{a_1} \cap J_{a_2}) - (J_{a_1} \cup J_{a_2}) - (J_{b_1} \cup J_{b_2}). \]
(4.18)

From (4.9) and (4.18) we have
\[[a_1, b_1] \times [a_2, b_2] = \tau^{-1}(C_0(a_1) \cap C_0(a_2) \]
\[- C_0(a_1) \cap C_0(a_2) - C_0(b_1) \cap C_0(b_2)) \]
\[\in \tau^{-1}(B_0), \]
so that \(\tau([a_1, b_1] \times [a_2, b_2]) \subseteq \delta_0. \)
(4.19)

From (4.17), the Lemma can be proved. \(\Box \)

The next theorem gives us a relationship between \(\eta \) and \(\tau^{-1}(\delta) \).

Theorem 5. Suppose that \(\xi = (\xi_1, \xi_2) \in V \) and
\[S = \psi(\xi), \]
then
\[\mu_S(x) = P(\omega | \xi(\omega) \in J_x). \]
(4.20)

Suppose that \(\xi \) has density \(p(x_1, x_2) \), then for any \(x \in \mathbb{R} \),
\[\mu_S(x) = \int_{x_1}^{\infty} p(x_1, x_2) dx_1 dx_2 \]
\[= \int_x^{\infty} (\int_{-\infty}^{x} p(x_1, x_2) dx_1) dx_2. \]
(4.21)

The proof is trivial.

Example 1. Suppose that \(n_1, n_2 \) are independent random variables which are both distributed uniformly in \([a, b]\), and set
\[\xi = (\xi_1, \xi_2) = (\min(n_1, n_2), \max(n_1, n_2)), \]
(4.22)

Clearly, \(\xi \in V \) and has the density function:
\[p_\xi(x_1, x_2) = \begin{cases} \frac{2}{(b-a)^2} & \text{if } a \leq x_1, x_2 \leq b \\ 0 & \text{otherwise} \end{cases} \]
(4.23)

According to Theorem 5, we have
\[\mu_S(x) = \begin{cases} \frac{2(x-a)(b-x)}{(b-a)^2} & \text{if } a \leq x \leq b \\ 0 & \text{otherwise} \end{cases} \]
(4.24)

(see figure 1)

Example 2. If we wish to describe the following concepts on \([a, b]\):
\(\{\text{SHORT, MEDIUM, TALL}\} \)
we can point two points \(\xi_1 \) and \(\xi_2 \) such that
\[\text{SHORT} = [\alpha, \xi_1], \]
\[\text{MEDIUM} = [\xi_1, \xi_2], \]
\[\text{TALL} = [\xi_2, \beta]. \]
Suppose that ξ_1, ξ_2 are independent random variables having density functions $p_{\xi_1}(x)$ and $p_{\xi_2}(x)$ that satisfy

$$p_{\xi_1}(x) = 0 \text{ if } x \notin (a_1, b_1)$$
$$p_{\xi_2}(x) = 0 \text{ if } x \notin (a_2, b_2),$$

here $a < a_1 < b_1 < a_2 < b_2 < b$. Then we have

$$u_{\text{SHORT}}(x) = \begin{cases} 0 & \text{if } a < x < a_1, \\
\int_{a_1}^{x} p_{\xi_1}(u) \, du & \text{if } a_1 < x < b_1, \\
1 & \text{if } b_1 < x < a_2, \\
\int_{x}^{b_2} p_{\xi_2}(u) \, du & \text{if } a_2 < x < b_2, \\
0 & \text{if } b_2 < x < b. \end{cases}$$

$$u_{\text{MEDIUM}}(x) = \begin{cases} 1 & \text{if } a_1 < x < a_2, \\
\int_{a_1}^{b_2} p_{\xi_1}(u) \, du & \text{if } a_1 < x < b_1, \\
0 & \text{if } b_1 < x < b. \end{cases}$$

$$u_{\text{TALL}}(x) = \begin{cases} 0 & \text{if } a < x < a_1, \\
\int_{a_1}^{x} p_{\xi_1}(u) \, du & \text{if } a_1 < x < b_1, \\
\int_{x}^{b_2} p_{\xi_2}(u) \, du & \text{if } a_2 < x < b_2, \\
1 & \text{if } b_2 < x < b. \end{cases}$$

(see figure 2)

The method for constructing a membership function like in this example is called the Three Phase Method. It is given by Qu Yin-Sheng [7].

Note that

$$u_{\text{SHORT}}(x) + u_{\text{MEDIUM}}(x) + u_{\text{TALL}}(x) \equiv 1 \quad (\alpha < x < \beta)$$

5. FUZZY NUMBERS AND THEIR CHARACTERISTIC CURVES

Let σ be a mapping

$$\sigma : [0,1] \mapsto \mathbb{R}^2$$

$$x \mapsto (\sigma_1(x), \sigma_2(x))$$

with $\sigma_1(x) \leq \sigma_2(x)$ (5.1)

Definition 9. We say that the mapping σ is a characteristic curve if σ_1 is monotonic increasing and σ_2 is monotonic decreasing. The collection of all such them is denoted by Σ. If $\sigma \in \Sigma$, then σ is $\mathcal{B}_\mathbb{R}$-measurable. Let m_0 be the Lebesgue measure on \mathbb{R}, set $P_\sigma = m_0 \circ \sigma^{-1}$, i.e.,

$$P_\sigma(B) = m_0(\{x | \sigma(x) \in B\}) \quad (\forall B \in \mathcal{B}_\mathbb{R}),$$

P_σ is a probability measure on $\mathcal{B}_\mathbb{R}$ which is induced by σ from m_0.

Definition 10. A mapping $\sigma \in \Sigma$ is called the characteristic curve of a given projectable random interval S (or of $\psi^{-1}(S)$ or of the projected fuzzy subset S) if

$$P_\sigma(\bigcup_{x} S) = P(S \subseteq C(x)) = P(\psi^{-1}(S) \subseteq \mathcal{J}_x) = u_\Sigma(x).$$

(5.3)

Obviously, if the characteristic curve exists, it is the characterization of a class of projectable random intervals having a same projected fuzzy subset.

When α is a fuzzy subset of \mathbb{R}, we call it a fuzzy number if for any $x \in [0,1]$, its x-cut is always a closed interval:

$$\alpha_x = \{x \in \mathbb{R} | \mu_\alpha(x) \geq x\} = [\alpha^1_x, \alpha^2_x].$$

(5.4)

We say that α is normal if there exists $x_0 \in \mathbb{R}$ such that $\mu_\alpha(x_0) = 1$.

Theorem 6. Suppose that $(\mathbb{R}, \mathcal{B}, \mu)$ is sufficient for $(\mathbb{R}, \mathcal{B}_0)$. For any normal fuzzy number α, there exists one and only one $\sigma \in \Sigma$ such that σ is the characteristic curve of α. Conversely, for any $\sigma \in \Sigma$, there exists one and only one normal fuzzy number α such that its characteristic curve is σ.

Proof. Given a normal fuzzy number α, set

$$\sigma : [0,1] \mapsto \mathbb{R}^2$$

$$x \mapsto (\alpha^1_x, \alpha^2_x),$$

(5.5)

where α^1_x and α^2_x are defined in (5.4). From

$$\lambda_1 \leq \lambda_2 \Rightarrow \alpha^1_\lambda \geq \alpha^2_\lambda,$$$$

(\lambda_1, \lambda_2)$$
we have α_1^λ and α_2^λ. Moreover,
\[
P_\sigma(J_x) = m_0(\{x | \alpha_1(\lambda) \in J_x\}) = m_0(\{\lambda | x \in \alpha_1(\lambda)\}) = \mu_\sigma(x)
\]
(5.6)
so that σ is the characteristic curve of α.

Conversely, given $\sigma \in \mathcal{I}$, set
\[
\mu_\alpha(x) \triangleq P_\sigma(J_x)
\]
(5.7)
so that $\mu_\alpha(x) \geq \lambda \Rightarrow P_\sigma(J_x) \geq \lambda
\Rightarrow \sigma(\lambda) \in J_x
\Rightarrow \sigma_1(\lambda) \leq x \leq \sigma_2(\lambda)
\]
(5.8)
hence,
\[
\alpha = [\sigma_1(\lambda), \sigma_2(\lambda)],
\]
(5.9)
α is a fuzzy number. Moreover, for
\[
x_0 = \max(\sigma_1(1), \sigma_2(1)),
\]
(5.10)
we have
\[
P_\sigma(J_{x_0}) = 1,
\]
(5.11)
so that α is a normal fuzzy number.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. I. R. Goodman for his valuable comments and criticisms that allowed to improve an earlier draft of this paper, and to Dr. H. T. Nguyen for his competent remarks.

Research sponsored in part by National Science Foundation Grants MCS79-06543 and IST-801896.

REFERENCES

