Copyright © 1977, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
SECURATE: A Security Evaluation and Analysis System Using Fuzzy Metrics

by

Eric H. Michelman and Lance J. Hoffman

Memorandum No. UCB/ERL M77/36

21 July 1977
SECURATE: A Security Evaluation
and Analysis System Using Fuzzy Metrics

Eric H. Michelman and Lance J. Hoffman
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

ABSTRACT

An interactive security evaluation and analysis system which uses fuzzy metrics is described. The system models the installation to be analyzed as a set of object-threat-feature triples. The associated measures—object values, threat likelihoods, and feature resistances—are then used as input to security evaluation functions. The user specifies these measures in terms of "fuzzy" linguistic variables. The system, implemented in APL, is currently operational on an IBM 370/145.

After initial design goals are presented, the actual design implemented is discussed, including the alternatives considered and why certain ones were chosen or discarded.

CR Categories: 2.4, 4.6, 8.1

Keywords: security evaluation, fuzzy-set applications

Research sponsored by National Science Foundation Grant MCS76-09214.
1. INTRODUCTION

This paper describes SECURATE, an interactive computer installation security evaluation and analysis system, based upon Clements’ work in modelling a computer installation as a set of triples composed of objects, threats, and security features and upon his “fuzzy” security rating functions (CLEMENTS 1977).

The purpose of SECURATE is to provide data processing managers and security system analysts with a means of analyzing their installation’s security. Specifically, this may include security ratings for the installation as a whole as well as subsections, determining weak and strong points, and comparing the effectiveness of alternative security designs. The main purpose, however, is more general than providing the capability for specific analyses. The system is meant to be an aid to help the user increase his or her understanding of, and control over, security design and evaluation issues at a given installation. As such, the tone of the system is to provide a meaningful basis for thoughtful consideration of security problems and to enable the user to try out different ideas easily and effectively. However, the system is not meant to be a substitute for a human decision maker.

Section 2 reviews relevant aspects of Clements’ underlying framework. Section 3 discusses the design goals and the design chosen for SECURATE. Section 4 discusses implementation issues, including system structure and the use of APL. Section 5 discusses issues involved in designing the user interface. After the system was implemented, it was used on seven installations by students who were doing risk analyses of the installations. Feedback from this initial group of users is discussed in Section 6.
1. INTRODUCTION

This paper describes SECURATE, an interactive computer installation security evaluation and analysis system, based upon Clements' work in modelling a computer installation as a set of triples composed of objects, threats, and security features and upon his "fuzzy" security rating functions (CLEMENTS 1977).

The purpose of SECURATE is to provide data processing managers and security system analysts with a means of analyzing their installation's security. Specifically, this may include security ratings for the installation as a whole as well as subsections, determining weak and strong points, and comparing the effectiveness of alternative security designs. The main purpose, however, is more general than providing the capability for specific analyses. The system is meant to be an aid to help the user increase his or her understanding of, and control over, security design and evaluation issues at a given installation. As such, the tone of the system is to provide a meaningful basis for thoughtful consideration of security problems and to enable the user to try out different ideas easily and effectively. However, the system is not meant to be a substitute for a human decision maker.

Section 2 reviews relevant aspects of Clements' underlying framework. Section 3 discusses the design goals and the design chosen for SECURATE. Section 4 discusses implementation issues, including system structure and the use of APL. Section 5 discusses issues involved in designing the user interface. After the system was implemented, it was used on seven installations by students who were doing risk analyses of the installations. Feedback from this initial group of users is discussed in Section 6.
2. TECHNICAL BASIS

As noted, the technical basis for the security evaluation system is the work done by Clements. He has defined an abstraction of a computer security system based upon a view of a security system as a set of security objects, each with a loss value, a set of security threats, each with a likelihood, and a set of security features, each with a resistance.

To address the problem of imprecision in the approximation of values, likelihoods, and resistances, Clements proposes the use of linguistic variables in the specification of these measures and, correspondingly, the use of fuzzy set theory for the combination of the measures into security ratings.

2.1 The Basic System Model

Clements' model focused on those resources within computing systems which are vulnerable to some security threat. These resources are grouped as the set of security objects--O. Each object in the set possesses a loss value to its owner.

Associated with each security object is a number of activities which a potential intruder may employ to compromise the security of that object. These potential intrusion activities form the set of security threats--T. Each threat has associated with it a likelihood of occurrence.

The object-threat relations form a bipartite directed graph (fig. 2.1) in which edge T_iO_j exists only if threat T_i is a viable means of compromising object O_j. The relations of threats to objects is not one to one; a threat may compromise any number of objects and an object may be vulnerable to more than one threat.

The model is completed with the introduction of a third set, that of security features--F. A security feature performs a firewall function by presenting some degree of resistance to a penetration attempt. This resistance measure is referred to as the feature resistance.

The set of security features transforms the bipartite graph of fig. 2.1 into the tripartite graph of fig. 2.2. In a "protected" system all edges are of the form T_iF_k and F_kO_j. Any edge of the form T_iO_j identifies an unprotected object.
Figure 2.1 The threat-object relation

Figure 2.2 The basic security system
2.2 The Use of Linguistic Variables

In attempting to specify the object values, threat likelihoods, and feature resistances one is confronted with the problem of imprecision. In evaluating a computer system's security we must rely on human judgement to provide approximations of these measures. Further, the problem is aggravated when we attempt to produce security ratings from these measures. The assignment of a numerical security rating would be inconsistent with the complexity of the data processing installation when viewed as a system. For example, stating that an installation is "65 secure" would have limited appeal for imparting a sense of how secure the installation is. In addition, the precision implied by such a rating is likely to cause skepticism.

Clements suggests that it is possible to make meaningful measurements of the security of a computer system through the use of linguistic variables—variables which assumes values which are words rather than numbers (ZADEH 1973).

Using this approach the specification of the object values, threat likelihoods, and feature resistances, as well as the resultant security rating would be in terms of measures such as high, low, and medium. Appropriate modifiers provide finer resolution by allowing terms such as very high, somewhat low, etc.

Each linguistic variable is a fuzzy set whose members are real numbers in the interval [0,1]. These values comprise the compatibility function, μ_f, for the specific linguistic variable. For example, if $\mu_{\text{high}}(0.8) = 0.9$, the 0.9 represents the degree to which a non-fuzzy rating of 0.8 agrees with a fuzzy rating of high. Fig. 2.3 illustrates what the complete compatibility functions for high and very high might be. More detail on base scales and compatibility functions can be found in (ZADEH 1973).
2.3 The Security System Model

The basic model may be specified in terms of a barrier set B in which each element is a composite linguistic variable B_i with three components, corresponding to a object-threat-feature triple. Each component consists of a name and a linguistic value. The structure of B_i is illustrated in fig. 2.4.

Note that objects, threats, and measures appearing in more than one triple may have different values, likelihoods, or resistances, respectively.
2.4 The Evaluation Process

The user assigns linguistic values (high, medium, very high, etc.) to the component variables P_l, L_l, R_l at each barrier in the system. These measures determine the contribution of the barrier to total system security. How this is done is shown in detail in Section 3.3.1.
3. TECHNICAL DESIGN

3.1 Design Goals

As noted in the Introduction, the objective of the system is to help a security system analyst deal with a rather unstructured and poorly defined problem, that of analyzing an installation’s security. Implied in this is that instead of indicating a certain decision to be made or a particular course of action to be taken, the system is to supply appropriate functions to assist the user in an effective analysis.

3.2 The Object Hierarchy and Threats Listing

The evaluation system incorporates a hierarchical structure of objects commonly found in computer installations (MICHELMAN 1977). Associated with the object hierarchy is a listing of corresponding threats and features.

The object hierarchy is used extensively throughout the evaluation system to structure both the analysis and the input. We feel that structuring an installation provides more interesting and informative results as well as making it simpler to analyze intelligently. The alternatives were to forego any structuring of the model or allowing the user to specify his own grouping with no default. Having no facility for structuring the installation--analyzing a straight list of triples--would make it virtually impossible to perform a systematic analysis. The user could only rate the entire installation with no facility for analyzing the components. However, since allowing the user to specify his own grouping may be useful, the system does provide a facility to do that. Using the default is considerably more convenient and less time-consuming, though.

The system allows the user to specify threat and feature numbers as part of the input. This is only a user convenience for identification purposes, though, as the numbers are not used in the analyses.

Another category, flaws, is also presented. Flaws are defined as characteristics of a computing system which enhance the likelihood of a threat succeeding in compromising an object. The purpose of the flaws category is to map what a user may perceive as threats into the threats as viewed by Clements’ security model. Flaws are not considered by the evaluation system; they are provided only for user reference.

The object hierarchy and threats, features, and flaws listings are presented in Appendix A.
3.3 System Structure

The basic design of the system is taken directly from Clements’ proposals. This includes modeling the installation as a set of triples and using fuzzy set theory to produce security ratings.

There are two phases involved in using the system: (1) inputing a description of the installation and (2) using the security analysis functions.

The installation to be analyzed is described by a set of triples. Each triple consists of an object value, a threat likelihood, and a feature resistance. Each triple is considered to be a "security point of interest". There is one triple for each object-threat pair the user wishes to consider. The number of triples for a given installation is up to the user, more triples implying a more specific representation.

The object value, threat likelihood, and feature resistance are specified by the user in terms of linguistic variables. The terms which may be used are listed, along with their syntax, in an internal system table. While it would not be difficult to incorporate a facility to enable a user to add his own terms, this has not been done due to the difficulties involved in accurately translating a user’s English terms into fuzzy set operators and base variables. The vocabulary and syntax of the language, along with examples, is shown in figure 3.1.

The basic system structure is illustrated in figure 3.2.

Once the installation to be analyzed is described in terms of these triples, the functions described in section 3.3.1 can be invoked by the user to evaluate and analyze its security. As Clements had already implemented the scoring functions which produce a security rating for a given set of triples, our implementation effort involved mainly establishing (1) a facility to create the set of triples, (2) analysis functions which make use of the scoring functions, and (3) a user interface.

3.3.1 The Evaluation Functions

There are presently four security evaluation functions implemented:

A) Overall System Rating—This function returns a security rating for the entire installation. That is, it rates the entire set of triples.

B) Individual Subsection Rating—a security rating is returned for a specified subsection of the installation. Only triples for that subsection (including offspring) are considered. For example, for an individual subsection rating of the central machine, the evaluation system would consider triples specified for the central machine and each of its offspring—the CPU, main memory, I/O devices, and the operator’s console. Refer to Appendix A for the actual hierarchy listing.
Some of the rating phrases which may be generated with this grammar are:

high
low
medium
not high
moreorless medium
indeed low
low to medium
(about 4) to about 6
slightly lower than pretty high
not higher than medium
(much higher than low) and slightly lower than sortof high
A) Weakest Link--this will look for the weakest feature resistance and return that as the security rating. The theory here is that the system is only as secure as its weakest link.

C) Sectional Ratings--with either the top level of the installation hierarchy or one of the subsections having been specified, this function returns an individual rating for each subsection at the next lower level. For example, if the top level of the hierarchy was specified for a sectional analysis, security ratings would be printed out for each of the following subsections: hardware, software, the computer center, personnel, documentation, and the backup system.

D) Worst Subsection Ratings--this performs the same functions as the sectional ratings function with the additional feature that it highlights which subsection received the lowest rating.

In addition to choosing which of the above evaluation functions to use, the user must also choose among four methods of producing a security rating for a given set of triples. The four scoring functions, as implemented by Clements, are:

A) Weakest Link--this will look for the weakest feature resistance and return that as the security rating. The theory here is that the system is only as secure as its weakest link.
B) Selected Weakest Link--this produces a weakest link rating based on those triples which satisfy the condition that either the object value or the threat likelihood is greater than a user specified minimum. The theory here is that one would only want to consider triples where the object is of at least a certain value or the threat is of at least a certain likelihood.

C) Fuzzy Mean--this performs a fuzzy mean on the feature resistances and returns the result as the rating. The theory here is that a system's security is the mean of the security of its components.

D) Weighted Fuzzy Mean--this performs a fuzzy mean on the feature resistance weighted by the greater of the object value and threat likelihood for each triple. The theory is that of (C), with the additional assumption that the more valuable objects and those with more likely threats should receive greater weight in the security rating.

E) Fuzzy Mean With Each Major Subsection Weighted By Maximum Object Value--for each major subsection of the object specified, this finds the fuzzy mean of the resistances. It then weights these fuzzy means by the maximum object value found in the triples for each major subsection and averages these weighted means. In other words, it finds the fuzzy means for each major subsection and weighs them by their respective maximum object value. The theory is similar to (D), but with the assumption that the major subsections should be weighted by their relative values, irrespective of the number of triples they each have.

In choosing a scoring function, the user in effect describes how he views security. Once a scoring function is chosen, it stays in effect for all of the analysis functions until it is respecified.

3.3.2 Establishing the Representation of the Installation

Before the analysis functions can be used on an installation, the user must input the information necessary to create the set of triples and the related hierarchical information.

The system starts with the assumption that the installation will be basically similar to that modelled by the hierarchy in Appendix A. As such, the evaluation system has the hierarchy programmed in, although the user can modify it appropriately as he supplies the triples information.
Given the initial hierarchical structure and the user's modifications to it, the system leads the user through the hierarchy, giving him the opportunity at each node to add offspring or specify triples. If a triple is specified for an object with offspring, it is assumed to refer to that object and each of its offspring. Refer to Appendix B for an example of the system in use.

The user has the option of associating threat and feature numbers with each triple. These numbers are solely for identification purposes; no analysis functions consider them. They may refer to the lists of threats and features associated with the object hierarchy, or may be numbers chosen by the user according to his own numbering scheme. If a number used is one of those in the threat or feature listings supplied in Appendix A (nos. 1-129 for threats and nos. 1-274 for features), the corresponding will be printed out by the display function.

Once the triples are entered, they may be printed out using the display function. For each triple this prints out: the triple number, the object name, number, and value, the threat name, number, and value, and the feature resistance. See Appendix B, an example of the system in use, for an example of the display output.

Once the information describing the installation is entered it is automatically saved and may be used later with repeated applications of the system.
4. IMPLEMENTATION

The implementation effort was started in January, 1977. The functions which return a security rating when given a set of triples had already been implemented by Clements in APL on the UCLA 360/91. The system was initially working by the middle of March, although considerable debugging and refinement took place later. In April we moved the system to the UCSF VM/370 system because of space limitations on the UCLA system. The system described here is that running as of June, 1977.

4.1 Design Goals

As we couldn't be sure which functions would be most useful (something which is different for different users), a primary implementation goal was that the system be easy to modify. This implies that it be modular and have easily understandable code, something not to be taken for granted with APL. It also accounts for our lack of concern for optimization, which would have been counter-productive during implementation.

4.2 System Structure

The modular structure required for the necessary flexibility in development was fairly easy to achieve. At the center of the system is the scoring facility implemented by Clements. Given a set of triples, it returns a rating using one of four scoring functions. Additional scoring functions may be added by users familiar with APL. Each of the security evaluation functions is interfaced to this common kernel, passing it an appropriate set of triples to be rated and then processing the result (fig. 3.2).

The triples are kept in a user's file along with a variable containing the object numbers corresponding to each triple, a variable containing the threat number for each triple, and four variables containing the hierarchical information.

When a user wants to start doing an analysis, the variables containing the information for his installation are loaded into the APL workspace along with the analysis functions. He can then call any of the analysis functions simply by entering its name. An example of the system in use is shown in Appendix B.

The program flow is simple and straightforward when a user calls a security rating function. The function called determines which triples are to be rated (depending on which section(s) of the installation is to be rated) and passes an appropriate index vector to the scoring routine. Following are descriptions of the system tables involved. Figure 4.1 illustrates the algorithm involved in selecting triples to be rated.
ΔMAP--this contains a linear list of the object numbers found in the hierarchy. The indices of the object numbers in ΔMAP are the OBJECTID's used by the system internally.

ΔOFFSPRING--each row contains the OBJECTID's of the offspring of the object whose OBJECTID is equal to the row number.

ΔPARENT--contains the parent OBJECTID of each object, again, indexed by OBJECTID.

ΔTRIPLES--this contains the triples as input by the user. There are three lines per entry corresponding to an object value, a threat likelihood, and a feature resistance.

ΔOBJECTS--this contains one entry for each triple, indicating the object number of the object associated with each triple.

To set up the triples and the hierarchy information, the user calls a program which leads him through the standard object hierarchy, giving him the opportunity to add offspring and specify triples at each node in the hierarchy. Much of the programming in this section is devoted to making sure that the hierarchical structure stays consistent, both internally and with regard to the set of triples. This is important as the analysis functions use the hierarchy information to select the triples to be rated.
Algorithm for selecting triples to be rated:

1) Search ΔMAP for OBJECT NO., the index becomes the new OBJECT ID.
2) Look up the "OBJECT ID"th row in ΔOFFSPRING for the OBJECT ID's of the offspring objects. This process is recursive.
3) Look up the "OBJECT ID"th element in ΔPARENT for the OBJECT ID of the parent object. This process is recursive.
4) Search ΔOBJECTS for entries matching the original OBJECT ID, or the OBJECT ID's of parents and offspring. These indices are the triple numbers of the triples to be rated.

Note that each of these steps, with the exception of recursion, is easily performed by one APL statement.

Figure 4.1 Triple selection for evaluation
4.3 The Use of APL

APL is extremely well suited to applications involving linguistic variables and fuzzy set operations. Using appropriately named functions and variables, the linguistic variables can be easily converted into the corresponding base variables (ZADEH 1973) using the APL "execute" function. For example, HIGH might be a vector consisting of \((0 0 0 0 .1 .5 .9 1)\), representing the linguistic variable \(\text{high}\). VERY might be a function which sharpens the curve given to it as its argument, perhaps squaring the argument. Then, as shown in figure 4.2, if VALUE were a variable containing the character string "VERY HIGH", executing it would return the vector \(<0 0 0 0 .01 .25 .81 1>\), representing the base variable for the linguistic variable \(\text{very high}\) (Figure 2.3 gives the curves representing \(\text{high}\) and \(\text{very high}\)). The important point here is that APL eliminates the need to do any parsing of the input values; the linguistic variables input just get executed and thusly transformed into the base variables. Additionally, the built-in APL matrix operations are well suited to the fuzzy set operators, which use vectors and matrices extensively. These operators are described in detail in (CLEMENTS 1977).

\[
\begin{align*}
\text{VERY[]} \downarrow \\
\text{OUT} \ast \text{VERY IN} \\
[1] \quad \text{OUT} \ast \text{IN} \times \text{IN} \downarrow \\
\text{HIGH} \\
0 \ 0 \ 0 \ 0 \ 0 \ 0.1 \ 0.5 \ 0.9 \ 1 \\
\text{VALUE} \\
\text{VERY HIGH} \\
\text{VALUE} \\
0 \ 0 \ 0 \ 0 \ 0.01 \ 0.25 \ 0.81 \ 1
\end{align*}
\]

Figure 4.2 APL execution of linguistic variables

Software development is comparatively easy in APL due to its interpretive nature. Contributing to this are the system facilities for debugging, such as the trace capability.

On the negative side, APL is interpretive; this makes it significantly slower than compiled programs for repeated runs. In addition, it is poorly suited to applications not involving vectors or arrays. The latter point is important for the security evaluation system since most of the code deals with the user interface and the analysis functions. Not only were these awkward to program, but they run rather slowly (these two points not being unrelated). The rating functions, however, which make heavy use of the matrix capabilities while performing fuzzy set operations, are well suited to APL.
5. THE USER INTERFACE

From the start of the project, an important objective was to design and implement the system so that it would be as hospitable to the users as possible.

Our goals concerning user oriented features were primarily to keep the system simple, easy to use, and non-tedious. More specifically, we were concerned with the following points:

A) User Understanding--for obvious reasons, achieving adequate user understanding is very important. Not only won't the system be useful if the user doesn't understand it, but it won't be used.

B) Simple, Non-tedious Interface--a similar, much simpler system was developed by a student at Berkeley as a term project. A unanimous criticism of that system was that it took too long to use and the data entry was too tedious. As our system was to require considerably more information, it seemed important to keep the interaction as short, concise, and painless as possible.

C) Useful Analysis Functions--while it may seem that this is the most important point, it may actually be the least. A system which a user understands and is comfortable using is more likely to be used and be helpful than a system that doesn't possess these qualities, even if the functions provided by the first aren't quite as useful as those provided by the second.

The design question in this area which we spent the most time considering was the form of the user interface for inputing the installation data. The process was simplified somewhat by the use of the hierarchical model of objects and threats. Since the users used this as a guide for collecting their data, it provided a convenient basis for structuring the input. We initially prompted the user for all the information. This turned out to be overly tiresome, however, as the same questions would be asked over and over, covering all the possibilities for each object. Two modifications made the process more manageable. The first was to have the user specify keywords (or abbreviations thereof) followed by the relevant information, instead of prompting him for the information. This greatly reduced the number of lines appearing on the screen. The second modification was to draw up forms which correspond in format exactly with what would appear on the screen. The combined effect of these two modifications was to allow the user to write down on the forms only the necessary information and then transfer it easily to the system. Figures 5.1 A and B, excerpts from Appendix B, show an example of the input form and the corresponding data entry.

Refer to the users' manual (HOFFMAN 1977) for further information concerning the user interface.
<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>A METERING EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD, A name or number</td>
<td></td>
</tr>
<tr>
<td>VALUE, V object value</td>
<td></td>
</tr>
<tr>
<td>THREAT NO</td>
<td>THREAT LIKELIHOOD</td>
</tr>
<tr>
<td>1</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>10</td>
<td>PRETTY LOW</td>
</tr>
</tbody>
</table>

Figure 5.1a Data input form

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD, A name or number</td>
<td></td>
</tr>
<tr>
<td>VALUE, V object value</td>
<td>V VERY HIGH</td>
</tr>
<tr>
<td>THREAT NO</td>
<td>THREAT LIKELIHOOD</td>
</tr>
<tr>
<td>8</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>10</td>
<td>PRETTY LOW</td>
</tr>
</tbody>
</table>

Figure 5.1b Data entry
6. USER REACTIONS

Shortly after development started on the evaluation system, we arranged to have it tested by students who were doing risk analyses of computer installations as term projects. Some of these people were full time students while others were part-time students who worked full time at their installation. In all, the evaluation system was used to analyze seven installations, including one at the Bank of America and one at the Pacific Gas & Electric Co.

In addition to receiving reactions to the system when it was tested, we received useful feedback from these people during the design phase. This was especially true for the user interface. Through a series of group meetings we were able to present different design questions and options to our group of users. Their reactions were very useful in determining what features would be well accepted and how they should be presented.

6.1 Use of the System

Prior to our users actually sitting down at a terminal to use the system, we had to familiarize them with the workings of the system and they had to collect the necessary triples information for their respective installations.

As the familiarization process had been going on from the start via the series of meetings, when the time came to use the system we had only to instruct the users in the details of its operation. The input format forms which we distributed were very useful for both collecting the data and, by integrating the system commands with the input data in a coherent way, familiarizing the users with the system’s operation prior to using it. Usually, a user would input the installation data and do some initial analysis during the first terminal session; he would then come back once or twice to do additional analysis.

6.2 User Reactions

Each of the users wrote up their impressions of the system as part of their coursework. This included the evaluation of its usefulness as well as suggestions for improvement. From their papers, as well as conversations with them, it seems clear that the system achieved its goal of increasing understanding of installation security. In fact, a couple of users remarked that just filling out the forms made the strengths and weaknesses of the installation’s security a lot clearer. Apparently just focusing their thoughts into a logical, well defined framework enabled them to view the situation more clearly and--before even using the system--to gain some of the insights we had hoped the system would provide.
The most interesting observations were those concerning the use of fuzzy variables. There appears to be a definite tradeoff between user acceptance and ease of use. The concept of fuzzy variables was new to all of the users and it was greeted with a certain amount of skepticism. While their acceptance of the idea grew as they continued to be exposed to it and had experience in using it, some of them remained skeptical. On the other hand, some of them commented, and we strongly feel to be true, that the use of these words instead of numbers was a definite help in minimizing the tedium involved in collecting the input data. The largest installation turned out to be represented by 136 triples, which came to over 300 different measurements the user had to make. Pinpointing each one on a scale of 1 to 10 appears to us to be a lot more taxing than rating each one as a linguistic variable. Although we didn’t do any comparative studies (which in retrospect would have been a good idea), many users seemed to agree with this in informal discussions.

The most common criticism was the lack of comprehensive input checking. When the system was first used it didn’t check for bad data and would consequently blow up when it tried to process such data. While this only took about a minute to fix, it was very annoying and irritating to the users to have to ask for assistance every time they made a mistake or typo. Since then we have implemented facilities for complete checking of input form and vocabulary.
7. SUMMARY

We have described an interactive security evaluation and analysis system which uses fuzzy metrics. The system models the installation to be analyzed as a set of object-threat-feature triples. The associated measures--object values, threat likelihoods, and feature resistances--are then used as input to security evaluation functions. The user specifies these features in terms of "fuzzy" linguistic variables. The system, implemented in APL, is currently operational on an IBM 370/145.
REFERENCES

Appendix A

The Object Hierarchy and

Threats, Features, and Flaws Listings
The Object Hierarchy

1. Hardware
2. Software
3. The Computer Center
4. Personnel
5. Documentation
6. Backup system
1. Hardware

1.1 Central machine
 1.1.1 CPU
 1.1.2 Main memory
 1.1.3 I/O channels
 1.1.4 Operator's console

1.2 Storage medium
 1.2.1 Magnetic media
 1.2.1.1 Disk packs
 1.2.1.2 Magnetic tapes
 1.2.1.3 Diskettes (floppies)
 1.2.1.4 Cassettes
 1.2.1.5 Other
 1.2.2 Non-magnetic media
 1.2.2.1 Punched cards
 1.2.2.2 Paper tape
 1.2.2.3 Paper printout
 1.2.2.4 Other

1.3 Communications equipment
 1.3.1 Communications lines
 1.3.2 Communications processor
 1.3.3 Multiplexor

1.4 I/O devices
 1.4.1 User directed I/O devices
 1.4.1.1 Printer
 1.4.1.2 Card reader
 1.4.1.3 Card punch
 1.4.1.4 Paper tape reader
 1.4.1.5 Paper tape punch
 1.4.1.6 Terminals
 1.4.1.6.1 Local terminals
 1.4.1.6.2 Remote terminals
 1.4.1.7 Modems
 1.4.2 Storage I/O devices
 1.4.2.1 Disk drives
 1.4.2.2 Tape drives
2. Software
 2.1 Operating system
 2.2 Programs
 2.2.1 Applications
 2.2.1.1 Source
 2.2.1.2 Non-source
 2.2.2 Contract programs and packages
 2.2.3 System utilities
 2.2.4 Test programs
 2.3 Data
 2.3.1 Personal data
 2.3.1.1 Payroll
 2.3.1.2 Personnel
 2.3.1.3 Other personal data (Privacy Act of 1974, §3(a)(4))
 2.3.2 Institution data
 2.3.2.1 Marketing
 2.3.2.2 Financial
 2.3.2.3 Operations
 2.3.2.4 Planning
 2.3.2.5 Other
3. The Computer Center
 3.1 Resource supply systems
 3.1.1 Air conditioning
 3.1.2 Power
 3.1.3 Water
 3.1.4 Lighting
 3.2 Building
 3.2.1 Structure
 3.2.2 Computer operations
 3.2.2.1 Computer room
 3.2.2.2 Data reception
 3.2.2.3 Tape and disc library
 3.2.2.4 CE room
 3.2.2.5 Data preparation area
 3.2.2.6 Physical plant room
 3.2.2.7 Stationery storage
 3.3 Waste materials
 3.3.1 Paper
 3.3.2 Ribbons
 3.3.3 Magnetic materials
4. Personnel

4.1 Computer personnel

4.1.1 Supervisory personnel

4.1.2 Systems analysts

4.1.3 Programmers

4.1.3.1 Applications programmers

4.1.3.2 Systems programmers

4.1.4 Operators

4.1.4.1 First shift

4.1.4.2 Second and third shifts

4.1.5 Librarians

4.1.6 Temporary employees and consultants

4.1.7 Maintenance personnel

4.1.8 System evaluators and auditors

4.1.9 Clerical personnel

4.2 Building personnel

4.2.1 Janitors

4.2.2 Watchmen

4.3 Institution executives

4.4 Other personnel
5. Documentation

5.1 Software documentation
 5.1.1 File
 5.1.2 Program
 5.1.3 JCL
 5.1.4 System

5.2 Hardware documentation

5.3 Operations
 5.3.1 Schedules
 5.3.2 Operations guidelines and manuals
 5.3.3 Audit documents
6. Backup system

6.1 Hardware
 6.1.1 Replacement for equipment detailed in section 1
 6.1.2 Replacement time

6.2 Backup for software detailed in section 2

6.3 The Computer Center
 6.3.1 Electric power generation
 6.3.2 Generator fuel supply
 6.3.3 Water supply

6.4 Auxiliary personnel

6.5 Documentation, operational procedures
 6.5.1 Vital records
 6.5.2 Priority run schedules
 6.5.3 Backup for documentation in section 5
Threats and Flaws

The structure of the threats is based on the object hierarchy, which is used as an outline. Threats are listed after the objects they refer to, the objects being specified by name and number from the object hierarchy. A threat listed after a non-terminal node of the object hierarchy refers to all objects descending from that node.

The numbers of relevant flaws are listed after each threat. The flaw numbers are preceded by an "F" and are ordered sequentially within each of the six main object/threat categories. The flaws themselves are listed along with their corresponding numbers after threat listings for each of the six main categories.
1. Hardware

 1.1 Central machine
 1) Malicious destruction - F1.1
 2) Hardware error - F1.4
 3) Hardware tampering - F1.1, F1.4, F1.5
 4) modified operation
 5) Loss of data
 6) modification of data
 7) Tampering with panel controls
 8) Unauthorized use - F1.2
 9) Unauthorized change in operating characteristics during operation - F1.2
 10) Human error - F1.6, F1.7

 1.2 Storage media
 11) Theft - F1.3
 12) Unauthorized modification - F1.3
 13) Unauthorized read - F1.3

 1.3 Communications equipment
 14) <same threats as 1.1 Central machine>

 1.4 I/O devices
 15) <same threats as 1.1 Central machine>

Hardware Flaws

 F1.1 Inadequate plant security
 F1.2 Lack of status indicators
 F1.3 Inadequate storage library security
 authorization
 guard
 labeling
 diligence in keeping materials stored properly
 F1.4 Lack of machine checks, hardware and software
 F1.5 Unsupervised or unauthenticated CE activity
 F1.6 Operator ignorance
 F1.7 Misleading documentation, incomplete or inadequate
2. Software

16) A. Unauthorized access: R/W/E - F2.1, F2.2
17) Modification of operating system and system routines
18) Inadequate controls on I/O facilities - F2.3, F2.4
19) Password compromise - F2.5, F2.6, F2.7, F2.8
20) Unsecured storage medium - F2.9, F2.10, F2.11, F2.12
21) Access outside of allocated memory - F2.13, F2.14, F2.15
22) Modification of stored state vector - F2.16
23) Unauthorized CE activity
24) Line tapping and spoofing
25) Erroneous or inadequate usage of protection facilities - F2.17, F2.18, F2.19

26) B. Unauthorized access: read
27) Extra copies of output printed
28) duplicates printed
29) printing restarted before end
30) Use of erroneous distribution labels
31) Use of erroneous distribution lists
32) Theft of mail
33) Exposed output - F2.20, F2.21
34) in user possession
35) within distribution system
36) at operator's console
37) work in progress
38) Unauthorized reading of terminal buffers
39) Indirect exposure of output - F2.22, F2.23

40) C. Unauthorized access: write
41) Modification or spoof of mail transactions
42) Unauthorized modification of data during preparation - F2.24
43) Data preparation errors - F2.24
44) Modification of original written data input - F2.25
2.1 Operating system

45) Defective implementation - F2.26, F2.27, F2.28, F2.29, F2.30, F2.31, F2.32

2.2 Programs

46) Inadequate debugging
47) Incomplete operation specifications
48) Inadequate or erroneous error handling
49) Exposure following abnormal end
50) Improper operation

2.2.2 Contract programs and packages

51) Dishonest programs

2.2.4 Test programs

52) Unexpected alteration of real data

Software Flaws

F2.1 Faulty access control mechanism
F2.2 Non-functional protected state mechanism
F2.3 Ability to use self-modifying I/O code
F2.4 Ability to write file into other user's catalog
F2.5 Printout of password at terminal
F2.6 Exposed input on spooling facility
F2.7 Use of user selected password
F2.8 Storage of password in unencrypted form
F2.9 Inadequate physical access controls
F2.10 Inadequate operator procedure
F2.11 Ability to spoof operator
F2.12 Improper labeling
F2.13 Inadequate base/bounds checking
F2.14 Unprotected storage after system crash
F2.15 Unprotected storage during system initialization
F2.16 State vector stored in user storage
F2.17 User interface of protection system too complex
F2.18 Inaccurate documentation
F2.19 Incomplete documentation
F2.20 Materials left exposed during emergency
F2.21 Output not checked for proper content
F2.22 Sensitive jobs printed with new ribbon
F2.23 Exposed waste materials
F2.24 Inadequate total and edit checks
F2.25 Inadequate control of hard copy input data
F2.26 Excessive complexity
F2.27 Non-detected bugs (inadequate testing)
F2.28 Improper design specifications
F2.29 Access control based on checking for lack of permission
F2.30 Effectiveness of protection system based on ignorance
F2.31 Overprivileged system modules
F2.32 Lack of violation recording and review
3. The Computer Center
 3.1 Resource supply systems
 53) Natural calamities
 54) Fire
 55) Flood
 56) Earthquake
 57) Manmade disasters
 58) Smoke
 59) Rioting
 60) Bombing
 61) Vandalism
 62) Fate (chance events)
 63) Equipment breakdown
 64) Shutdown of building facilities
 3.1.2 Power
 65) Blackout
 66) Fluctuations
 67) Grounding problems
 3.1.3 Water
 68) Disruption
 69) Contamination
 70) Temperature variations
 3.1.4 Lighting
 71) Blackout
 3.2 The Building
 72) Natural calamities
 73) Fire
 74) Flood
 75) Earthquake
 76) Manmade disasters
 77) Smoke
 78) Rioting
 79) Bombing
 80) Vandalism
3.2.2 Computer operations area

81) Shocks and vibrations
82) Communications breakdown
83) Illegal entry and burglary

3.2.2.1 Computer room

84) Magnets
85) Electromagnetic radiation, to and from

3.2.2.2 Data reception

86) Unauthorized intruders

3.2.2.3 Tape and disk library

87) Magnets

3.2.2.6 Physical plant room

88) Sabotage

3.3 Waste materials

89) Unauthorized reading

90) Theft
4. Personnel

91) Bribery - F4.1
92) Dissatisfaction or malice - F4.1, F4.2
93) Towards the institution
94) Towards management
95) Towards other workers
96) Towards others (possibly unknown)
97) Greed - F4.1, F4.2
98) Competitor encouraged
99) Entrepreneurial tendencies
100) Incompetence - F4.1
101) Coercion - F4.1, F4.2
102) Competitor plants (industrial espionage)
103) Carelessness - F4.1

Personnel Flaws

F4.1 Personal instability
F4.2 Job insecurity
5. Documentation

104) Loss - F5.1, F5.2
105) Thievery - F5.1, F5.2
106) Unauthorized viewing - F5.1, F5.2
107) Unauthorized modification - F5.1, F5.2

Documentation Flaws
F5.1 Inadequate signout procedures
F5.2 Documentation left unsecured
6. Backup system

6.1 Hardware

109) Incompatibility with other equipment in use
110) Ignorance of operation
111) <additionally, same considerations as section 1, Hardware threats>

6.2 Software

112) Not up to date
113) Incompatible system components
114) Ignorance of use
115) Lack of necessary data
116) <additionally, same considerations as section 2, Software threats>

6.3 The Computer Center

117) Malfunctioning power generation system
118) Shortage of generator fuel
119) Shortage of operation materials
120) <additionally, same considerations as section 3, Computer Center threats>

6.4 Personnel

121) Lack of transportation to backup site
122) Lack of communication

6.5 Documentation, operational procedures

123) Inadequate communications facilities
124) Incompatible run procedures
125) Inadequate office, other operational facilities
126) Unplanned emergency run schedules
127) Inadequate personnel direction
128) Confusion during disaster - F6.6
129) <additionally, same considerations as section 5, Documentation threats>

Backup System Flaws

F6.1 Excessive time involved in traveling to backup installation
F6.2 Excessive distance involved in traveling to backup installation
F6.3 Excessive cost involved in transportation to backup installation
F6.4 Ignorance about how to get at backup (real-time)
F6.5 Non-existence of all or part of backup
F6.6 Lack of simulated disaster tests
<table>
<thead>
<tr>
<th>Feature No</th>
<th>Threat Nos</th>
<th>Feature Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Physical Security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guard</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>ID Card Door</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Proper Location of Center</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Secure Door and Window Locks</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Personal Searches</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Two Operator System</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Entrance Log</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Outside Lighting</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Fence</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Alarm System</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Closed Circuit TV</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>ID Badges</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Secure Doors and Windows</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Adequate Maintenance</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Error Correcting Codes</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Internal Machine Checks</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Redundant Processors</td>
</tr>
<tr>
<td>19</td>
<td>3 4 5 6</td>
<td>The Same Features as Threat No. 1</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Supervision and Authentication of CB's</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Locks and Alarms on Machine Covers</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>The Same Features as Threat No. 1</td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td>Automatic Log</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Locks on Controls</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Additionally, the Same Features as Threat No. 1</td>
</tr>
<tr>
<td>26</td>
<td>9</td>
<td>Status Indicators</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Automatic Log</td>
</tr>
<tr>
<td>28</td>
<td>10</td>
<td>Proper Labelling</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Operator Training</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>Detailed, Accurate, Accessible Documentation</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td>Physical Access Controls</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>Package and Briefcase Inspection</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>Gate-Pass System</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>Secure Library Facility</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>Proper Labelling</td>
</tr>
<tr>
<td>36</td>
<td>12</td>
<td>Control Checks</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>Checksum on Data</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>Effective Storage Access Controls</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>Reader Checking</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>Preventive Measures</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>Write-Inhibit Switches</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>Ring Out for Tapes</td>
</tr>
<tr>
<td>43</td>
<td>13</td>
<td>Data Encryption</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>Effective Storage Access Controls</td>
</tr>
<tr>
<td>45</td>
<td>14 15</td>
<td>The Same Features as Threats 1-13</td>
</tr>
<tr>
<td>46</td>
<td>16</td>
<td>Effective Authorization and Access Control Mechanism</td>
</tr>
</tbody>
</table>
MINIMUM AUTHORIZATION POLICY

EFFECTIVE AUTHORIZATION AND ACCESS CONTROL MECHANISM

MINIMUM AUTHORIZATION POLICY

DUAL AUTHORIZATION REQUIRED FOR CHANGES

SUPER USER AUTHORIZATION REQUIRED FOR CHANGES

LOG OF ATTEMPTED VIOLATIONS

SELF-MODIFYING I/O ROUTINES NOT ALLOWED

DIRECTION IN PASSWORD CHOICE

STORE IN ENCRYPTED FORM

AUTOMATIC DELAY AFTER INVALID LOGIN ATTEMPT

ENCRYPTED TRANSMISSIONS TO TERMINALS

USE OF INTERACTIVE AUTHENTICATION PROCEDURE

ADEQUATE ACCESS CONTROLS

ADEQUATE AND ENFORCED LIBRARY FACILITY

USAGE LOG

PROPER LABELLING

PROPER SYSTEM DESIGN

EFFECTIVE AUTHORIZATION AND ACCESS CONTROL MECHANISM

ADEQUATE I/O CONTROLS

PROTECTION OF STATE VECTOR

STORAGE IN PROTECTED STORAGE

ADMINISTRATIVE CONTROLS

HUMAN VERIFICATION

SUPERVISION

LIMITED CR ACCESS

ENCRYPTION

EFFECTIVE HUMAN ENGINEERING

CLEAR, EASY TO USE PROTECTION FACILITIES

ADEQUATE DOCUMENTATION

USER EDUCATION

<SEE FEATURES FOR THREATS 27-39>

PRINT LOG

SECURITY CONSCIOUS I/O ROUTINES

PRINT LOG

SECURITY CONSCIOUS I/O ROUTINES

CAREFUL ADMINISTRATIVE PROCEDURES

IMPORTANT MAIL SENT REGISTERED OR BY COURIER DELIVERY CONFIRMATION

TRACE LOG OF SENSITIVE OUTPUT

LIBRARY FACILITY FOR SENSITIVE OUTPUT

<SEE ALSO FEATURES FOR THREATS 34-37>

CLEAR DESK POLICY

USER EDUCATION

GUARDING WORK IN TRANSIT
GUARDING WORK IN PROGRESS

BUFFER ERASE MECHANISM

PAPER SHREDDER

USE OF OLD RIBBONS FOR SENSITIVE JOBS

DESTRUCTION OF CARBON PAPER AND RIBBONS

<REFER TO FEATURES FOR THREATS 41-44>

CAREFUL ADMINISTRATIVE PROCEDURES

IMPORTANT MAIL SENT REGISTERED OR BY COURIER

DELIVERY CONFIRMATION

SECOND PERSON VERIFICATION

CHECKSUMS

SOFTWARE CHECKS

VERIFICATION CHECKS

ORIGINATOR VERIFICATION

TESTING

AUDIT PROGRAMS

TESTING AND VERIFICATION

PENETRATION ATTEMPTS

PROGRAM TESTING AND VALIDATION

ADEQUATE DOCUMENTATION AND DESIGN SPECS

PROGRAM TESTING AND VALIDATION

APPLICATION ATTEMPTS

TESTING AND VERIFICATION

AUDIT PROGRAMS

TESTING

ORIGINATION VERIFICATION

SOFTWARE CHECKS

CHECKS

VERIFICATION CHECKS

SOFTWARE CHECKS

SECOND PERSON VERIFICATION

DELIVERY CONFIRMATION

Important mail sent registered or by courier

Careful administrative procedures

<REFER TO FEATURES FOR THREATS 41-44>

DESTRUCTION OF CARBON PAPER AND RIBBONS

USE OF OLD RIBBONS FOR SENSITIVE JOBS

PAPER SHREDDER

BUFFER ERASE MECHANISM

GUARDING WORK IN PROGRESS
LOCATION NOT ON ACTIVE FAULT
Adequate structural re-enforcement

Coordinated plan with police
<Also refer to features for threat no. 1>

Smoke detectors
<Also refer to features for threat no. 57>

Favorable location choice
<Also refer to features for threat no. 57>

<Refer to features for threat no. 57>

Monitoring equipment and alarm system

Preventive maintenance
Hardware checks

Adequate administrative procedures
Backup facilities

Auxiliary power supply for machine and security devices
Machine feature for graceful shutdown on power failure

Power supply line filter
Voltage stabilizer for power supply
Monitoring system with alarm

Electrical inspection

Auxiliary water supply
Flow monitor with alarm

Water filters

Temperature controllers
Temperature monitor with alarm

Emergency lights
Auxiliary power supply

Alarm system
Contingency plans

<Refer to features for threat no. 54>

Water tight windows and doors in operations area
<Also refer to features for threat no. 55>

<Refer to features for threat no. 56>

<Refer to features for threat no. 57>

<Refer to features for threat no. 58>

<Refer to features for threat no. 59>

<Refer to features for threat no. 60>

<Refer to features for threat no. 61>

Proper physical area design and construction

Backup communications equipment
<REFER TO FEATURES FOR THREAT NO. 1>

ELECTRICAL SHIELDING
- ELECTRICAL SHIELDING OF OPERATIONS AREA
- STORAGE OF MAGNETIC MEDIA IN SHIELDING SAFES

<REFER TO FEATURES FOR THREAT NO. 1>

SECURE LIBRARY FACILITIES
- SECURE TAPE AND DISK LIBRARY
- ONLY AUTHORIZED PERSONNEL ALLOWED TO ENTER LIBRARY

<REFER TO FEATURES FOR THREAT NO. 1>

PAPER SHREDDER
- USE OF OLD RIBBONS WITH SENSITIVE JOBS
- INCINERATORS
- EMPLOYEE AWARENESS AND EDUCATION
- SECURE DISPOSAL BINS

<REFER TO FEATURES FOR THREAT NO. 1>

REASONABLE AND INDUSTRY COMPARABLE SALARIES
- REFERENCE CHECKING
- CAREFUL SUPERVISION

<REFER TO FEATURES FOR THREAT NO. 1>

IMMEDIATE NOTICE ON LAYOFF (WITH APPROPRIATE PAY)

<REFER ALSO TO FEATURES FOR THREAT NO. 92>

ADEQUATE EMPLOYEE TRAINING
- REFERENCE CHECKING
- LIMIT EMPLOYEE AUTHORITY
- NEED TO KNOW POLICY

<REFER ALSO TO FEATURES FOR THREAT NO. 92>

USE LOG
- LIBRARY STORAGE
- CLEAN DESK POLICY
LIBRARY STORAGE
CLEAR CLASSIFICATION LABELLING
PROPER DISPOSAL
CLEAN DESK POLICY

CLEARLY DEFINED AUTHORIZATION FOR MODIFICATION
CLEAR CLASSIFICATION LABELLING
CLEAN DESK POLICY
USE LOG
PROTECTED LIBRARY STORAGE

GOOD COMMUNICATION SYSTEM BETWEEN THE SITES
SIMULATED DISASTER TESTS
RECIPIROCAL AGREEMENTS BETWEEN COMPANIES (INCLUDES PERSONNEL)

USE OF SIMILAR EQUIPMENT FOR BACKUP (WITH PERIODIC RECHECKING)

ADEQUATE EMPLOYEE TRAINING
SIMULATED DISASTER TESTS

(ALSO REFER TO THE SECTION ON HARDWARE)

SIMULATED DISASTER TESTS
PROGRAM FOR BACKUP MAINTENANCE

ADEQUATE EMPLOYEE TRAINING
SIMULATED DISASTER TESTS

DUPLICATE DATA STORED SAFELY
SIMULATED DISASTER TESTS

(SEE ALSO SECTION ON SOFTWARE)

BACKUP GENERATOR AND FUEL
BACKUP STORE OF FUEL
BACKUP STORE OF OPERATIONS MATERIALS

(SEE ALSO SECTION ON THE COMPUTER CENTER)

PROPER PLANNING
SIMULATED DISASTER TESTS
CONTINGENCY PLANS FOR REACHING PERSONNEL AWAY FROM WORK
SIMULATED DISASTER TESTS

PROPER PLANNING
SIMULATED DISASTER TESTS

PROGRAM FOR BACKUP MAINTENANCE
SIMULATED DISASTER TESTS

PROPER PLANNING
SIMULATED DISASTER TESTS

PROGRAM FOR BACKUP MAINTENANCE
SIMULATED DISASTER TESTS

PROPER PLANNING

ADEQUATE EMPLOYEE TRAINING
SIMULATED DISASTER TESTS

(ALSO REFER TO THE SECTION ON DOCUMENTATION)
Appendix B

A Sample Run

We present here an example of the system in use. Included is:

(1) a list of the triples representing the sample installation
(2) input forms—one blank form and a set of completed forms
(3) a terminal session which illustrates the data entry process and use of the analysis functions
Following is a list of the triples representing the sample installation. The threat and feature numbers refer to the names as listed in Appendix A. The format of the triples below is:

- object info : object value
- threat info : threat likelihood (threat name) threat number
- feature info: feature resistance (feature name) feature numbers(s)

1. Hardware

1.1 Central Machine

- object info : very high
- threat info : medium (unauthorized use) #8
- feature info: pretty high (guard) #2

- object info : very high
- threat info : pretty low (human error) #10
- feature info: medium (operator training, documentation) #29 30

1.2 Storage Media

- object info : high
- threat info : high (unauthorized read) #13
- feature info: pretty low (encryption, system protection) #43 44

- object info : high
- threat info : low (theft) #11
- feature info: fairly high (physical access controls) #31
Metering Equipment (add to hierarchy under Hardware)

object info: low
threat info: low (hardware tampering--modified operation) #4
feature info: high (alarmed cabinets) #21

2. Software

object info: very high
threat info: medium (unauthorized access: read/write) #16
feature info: medium to pretty high (authorization and access control mechanism) #46

2.1 Operating System

object info: high
threat info: medium (defective implementation) #45
feature info: medium (testing and verification) #112

2.2 Programs

object info: medium
threat info: fairly high (inadequate debugging) #46
feature info: (fairly low) to medium (testing and validation) #114

2.3 Data

object info: high
threat info: high (reading of unsecured storage media) #20
feature info: pretty low (library facility and use log) #60 61
2.3.2 Institution Data

object info: (fairly high) to high
threat info: sortof low (competitor subterfuge) #0
feature info: low to medium (legal recourse, employee loyalty, guards) #0

2.3.2.2 Financial Data

object info: (fairly high) to high
threat info: high (employee theft) #0
feature info: low (audit checks) #0

3. The Computer Center

3.1 Resource Supply Systems

object info: very high
threat info: sortof low (earthquake) #56
feature info: low (adequate structural reinforcement) #144

object info: very high
threat info: fairly low (fire) #54
feature info: medium (alarms, extinguishers) #126 127
3.2 The Building

object info: medium
threat info: fairly low (fire) #73
feature info: medium (alarms, extinguishers) #126 127

3.2.2.1 Computer Room

object info: high
threat info: low (magnets) #84
feature info: (pretty low) to medium (guards) #2

object info: high
threat info: medium (unauthorized intruders) #86
feature info: pretty high (guards, alarmed doors) #2 11
<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREAT NO</td>
<td>THREAT LIKELIHOOD</td>
<td>FEATURE NOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEATURE RESISTANCE</td>
</tr>
<tr>
<td>OBJECT NO:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREAT NO</td>
<td>THREAT LIKELIHOOD</td>
<td>FEATURE NOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEATURE RESISTANCE</td>
</tr>
<tr>
<td>OBJECT NO:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREAT NO</td>
<td>THREAT LIKELIHOOD</td>
<td>FEATURE NOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEATURE RESISTANCE</td>
</tr>
<tr>
<td>OBJECT NO:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREAT NO</td>
<td>THREAT LIKELIHOOD</td>
<td>FEATURE NOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FEATURE RESISTANCE</td>
</tr>
<tr>
<td>OBJECT NO:</td>
<td>ADD, A name or number</td>
<td>VALUE, V object value</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>HIGH</td>
<td>43 44</td>
<td>PRETTY HIGH</td>
</tr>
<tr>
<td>11</td>
<td>LOW</td>
<td>31</td>
<td>FRILLER HIGH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>21</td>
<td>HIGH</td>
</tr>
<tr>
<td>OBJECT NO:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD, A</td>
<td>name or number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUE, V</td>
<td>object value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>MEDIUM</td>
<td>112</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>46</td>
<td>FAIRLY HIGH</td>
<td>114</td>
<td>(FAIRLY LOW) TO MEDIUM</td>
</tr>
<tr>
<td>2.0</td>
<td>HIGH</td>
<td>10, 61</td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>3.3</td>
<td>MEDIUM TO HIGH</td>
<td>19, 91</td>
<td>LOW</td>
</tr>
<tr>
<td>43</td>
<td>PRETTY HIGH</td>
<td>103, 104, 105</td>
<td>HIGH</td>
</tr>
<tr>
<td>OBJECT NO:</td>
<td>23.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD, A name or number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALUE, V object value</td>
<td>V (FAIRLY HIGH) TO HIGH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREAT NO</td>
<td>FEATURE NOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREAT LIKELIHOOD</td>
<td>FEATURE RESISTANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SORTEE LOW</td>
<td>LOW TO MEDIUM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>2322</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD, A name or number</td>
<td></td>
</tr>
<tr>
<td>VALUE, V object value</td>
<td>V (FAIRLY HIGH) TO HIGH</td>
</tr>
<tr>
<td>THREAT NO</td>
<td>FEATURE NOS</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>THREAT LIKELIHOOD</td>
<td>FEATURE RESISTANCE</td>
</tr>
<tr>
<td>HI</td>
<td>LOW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD, A name or number</td>
<td></td>
</tr>
<tr>
<td>VALUE, V object value</td>
<td>V VERY HIGH</td>
</tr>
<tr>
<td>THREAT NO</td>
<td>FEATURE NOS</td>
</tr>
<tr>
<td>58</td>
<td>114</td>
</tr>
<tr>
<td>SORTEE LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>54</td>
<td>126 127</td>
</tr>
<tr>
<td>FAIRLY LOW</td>
<td>MEDIUM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD, A name or number</td>
<td></td>
</tr>
<tr>
<td>VALUE, V object value</td>
<td>V MEDIUM</td>
</tr>
<tr>
<td>THREAT NO</td>
<td>FEATURE NOS</td>
</tr>
<tr>
<td>73</td>
<td>126 127</td>
</tr>
<tr>
<td>FAIRLY LOW</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>OBJECT NO:</td>
<td>ADD, A name or number</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>LOW</td>
<td>2</td>
<td>PRETTY LOW to MEDIUM</td>
</tr>
<tr>
<td>86</td>
<td>MEDIUM</td>
<td>2</td>
<td>PRETTY HIGH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NOS</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>OBJECT NO:</th>
<th>ADD, A name or number</th>
<th>VALUE, V object value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECURATE

HI THERE.

PLEASE WAIT A FEW MOMENTS WHILE WE SET THINGS UP.

HI AGAIN.

ENTER THE NAME OF YOUR WORKSPACE ('NONE' FOR THE FIRST TIME):

NONE

DO YOU WANT TO USE A SYSTEM MODEL OTHER THAN THE STANDARD COMPUTER INSTALLATION MODEL? Y

YOU ARE NOW ENTERING THE DATA ENTRY PHASE.

DO YOU WANT TO USE THREAT NUMBERS? Y
DO YOU WANT TO USE FEATURE NUMBERS? Y
ENTER A NAME FOR YOUR FILE: EXAMPLE
DO YOU WANT YOUR DATA TO BE ENCRYPTED WHEN IT IS FILED? Y
ENTER A PASSWORD TO BE ASSOCIATED WITH YOUR FILE:

YOU MUST REMEMBER THIS PASSWORD AS YOU WILL NEED TO SPECIFY IT TO ACCESS YOUR DATA AT A LATER DATE.

ENTER THE OBJECT NUMBER FOR THE NEXT OBJECT:

HARDWARE
: ADD METERING EQUIPMENT
METERING EQUIPMENT RECEIVED OBJECT NUMBER 71

OBJECT NO 11, CENTRAL MACHINE IS NEXT.
: V VERY HIGH

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NO.</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>MEDIUM</td>
<td>2</td>
<td>PRETTY HIGH</td>
</tr>
<tr>
<td>10</td>
<td>PRETTY LOW</td>
<td>29 30</td>
<td>MEDIUM</td>
</tr>
</tbody>
</table>

+: N

OBJECT NO 12, STORAGE MEDIA IS NEXT.
: V HIGH

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NO.</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>HIGH</td>
<td>11</td>
<td>LOW 31 FAIRLY HIGH</td>
</tr>
</tbody>
</table>

+: N

OBJECT NO 13, COMMUNICATIONS EQUIPMENT IS NEXT.
: N

OBJECT NO 14, I/O DEVICES IS NEXT.
: N

OBJECT NO 71, METERING EQUIPMENT IS NEXT.
: V LOW

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NO.</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>LOW</td>
<td>21</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

+: N

ENTER THE OBJECT NUMBER FOR THE NEXT OBJECT:

SOFTWARE
: V VERY HIGH

<table>
<thead>
<tr>
<th>THREAT NO</th>
<th>THREAT LIKELIHOOD</th>
<th>FEATURE NO.</th>
<th>FEATURE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>MEDIUM</td>
<td>46</td>
<td>MEDIUM TO PRETTY HIGH</td>
</tr>
</tbody>
</table>

+: 0

OBJECT NO 21, OPERATING SYSTEM IS NEXT.
: V HIGH
I'lliUl M

MEDIUM + 45

MEDIUM: MEDIUM

PROGRAMS IS NEXT.

OBJECT NO 22, DATA IS NEXT.

FAIRLY HIGH + 40

HIGH 50 60 70 PRETTY LOW
+ 33 MEDIUM TO HIGH 90-91 LOW
+ 43 PRETTY HIGH 100 101 102 HIGH

PERSONAL DATA IS NEXT.

OBJECT NO 231, PERSONAL DATA IS NEXT.

LOW TO MEDIUM + 0

LOW: 0

MARKETING DATA IS NEXT.

OBJECT NO 2321, MARKETING DATA IS NEXT.

MEDIUM TO HIGH 90-91 100 101

FINANCIAL DATA IS NEXT.

OBJECT NO 2322, FINANCIAL DATA IS NEXT.

FAIRLY HIGH TO HIGH

MARKETING DATA IS NEXT.

OBJECT NO 2321, MARKETING DATA IS NEXT.

FAIRLY HIGH TO HIGH

NO ACTION WAS TAKEN FOR THIS ENTRY. TRY AGAIN.

OPERATIONS DATA IS NEXT.

OBJECT NO 2323, OPERATIONS DATA IS NEXT.

RESOURCE SUPPLY SYSTEMS IS NEXT.

OBJECT NO 31, RESOURCE SUPPLY SYSTEMS IS NEXT.

VERY HIGH + 55

SORTOF LOW 0 LOW TO MEDIUM

CHECKPOINT: WORK TO THIS POINT HAS BEEN SAVED.

THE BUILDING IS NEXT.

OBJECT NO 32, THE BUILDING IS NEXT.

MEDIUM: MEDIUM

FINANCIAL DATA IS NEXT.

OBJECT NO 2322, FINANCIAL DATA IS NEXT.

SORTOF LOW 0 LOW TO MEDIUM

THE BUILDING STRUCTURE IS NEXT.

OBJECT NO 321, THE BUILDING STRUCTURE IS NEXT.

THE COMPUTER CENTER

OBJECT NO 31, RESOURCE SUPPLY SYSTEMS IS NEXT.

MEDIUM + 53

SORTOF LOW 114 LOW
+ 54 FAIRLY LOW 126 127 MEDIUM

OPERATIONS DATA IS NEXT.

OBJECT NO 2323, OPERATIONS DATA IS NEXT.

CHECKPOINT: WORK TO THIS POINT HAS BEEN SAVED.

THE BUILDING IS NEXT.

OBJECT NO 32, THE BUILDING IS NEXT.
OBJECT NO 322, COMPUTER OPERATIONS AREA IS NEXT.
 0

OBJECT NO 3221, COMPUTER ROOM IS NEXT.
 7 HIGH

THREAT NO THREAT LIKELIHOOD FEATURE NO5 FEATURE RESISTANCE
+ 84 LOW 2 (PRETTY LOW) TO MEDIUM
+ 86 MEDIUM 2 11 PRETTY HIGH

OBJECT NO 3222, DATA RECEPTION AREA IS NEXT.
 N

OBJECT NO 3223, TAPE AND DISK LIBRARY IS NEXT.
 N

OBJECT NO 3224, CE ROOM IS NEXT.
 N

OBJECT NO 3225, DATA PREPARATION AREA IS NEXT.
 N

OBJECT NO 3226, PHYSICAL PLANT ROOM IS NEXT.
 N

OBJECT NO 3227, STATIONERY STORAGE IS NEXT.
 N

OBJECT NO 33, WASTE MATERIALS IS NEXT.
 N

ENTER THE OBJECT NUMBER FOR THE NEXT OBJECT: 0

DO YOU WANT TO ADD ANY MORE OBJECTS WHICH ARE NOT IN THE HIERARCHY? N

YOUR WORK IS NOW BEING SAVED.

CHECKPOINT: WORK TO THIS POINT HAS BEEN SAVED.

TO RECEIVE INSTRUCTIONS IN USING THE ANALYSIS FUNCTIONS, ENTER 'INSTRUCTIONS'.
INSTRUCTIONS
THE FOLLOWING ANALYSIS FUNCTIONS ARE AVAILABLE. TO INVOKE SIMPLY TYPE IN THE NAME

OVERALLRATING -- THIS FUNCTION WILL RATE THE ENTIRE INSTALLATION. THE RATING WILL THEN
(ALSO ORATE) BE PRINTED OUT

SECTIONRATINGS -- THIS FUNCTION WILL RATE THE SUBSECTIONS OF A SPECIFIED OBJECT SECTION.
(ALSO SRATE) FOR EXAMPLE IF HARDWARE, OBJECT 1, IS SPECIFIED, THIS FUNCTION WILL RETURN
RATINGS FOR EACH OF THE MAIN SUBSECTIONS OF HARDWARE: THE CENTRAL MACHINE,
STORAGE MEDIA, COMMUNICATIONS EQUIPMENT, AND I/O DEVICES.

INDIVIDUALRATING -- THIS FUNCTION WILL RETURN THE RATING FOR A SPECIFIED SUBSECTION OF THE HIERARCHY.
(ALSO IRATE)

WORSTSUBSECTION -- THIS FUNCTION WILL EVALUATE THE SUBSECTIONS OF EITHER THE ENTIRE INSTALLATION OR
(ALSO WRATE) A SPECIFIED SUBSECTION OF THE INSTALLATION AND PRINT OUT THAT SUBSECTION WITH
THE LOWEST RATING.

DO YOU WANT TO SEE A DESCRIPTION OF THE RATING FUNCTIONS? Y

THE FOLLOWING RATING FUNCTIONS ARE AVAILABLE:
1) WEAKST LINK
2) SELECTED WEAKST LINK
3) FUZZY MEAN
4) FUZZY MEAN WEIGHTED BY VALUE
5) FUZZY MEAN WITH EACH MAJOR SUBSECTION WEIGHTED BY MAXIMUM OBJECT VALUE

ENTER THE NUMBER OF THE RATING FUNCTION YOU WISH TO USE: 3
FOLLOWING IS A LIST OF OBJECTS ADDED, THEIR ASSIGNED OBJECT NUMBERS, AND THEIR PARENT IN THE HIERARCHY:

```
OBJECT  OBJECT NO  PARENT
METERING EQUIPMENT 71 1
```

OBJECTS

<table>
<thead>
<tr>
<th>OBJECT</th>
<th>NUMBER</th>
<th>VALUE</th>
<th>THREATS</th>
<th>FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENTRAL MACHINE</td>
<td>11</td>
<td>VERY HIGH</td>
<td>UNAUTHORIZED USE</td>
<td>2 Guard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEDIUM</td>
<td>PRETTY HIGH</td>
</tr>
<tr>
<td>CENTRAL MACHINE</td>
<td>11</td>
<td></td>
<td>HUMAN ERROR</td>
<td>29 OPERATOR TRAINING</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRETTY LOW</td>
<td>30 DETAILED, ACCURATE, ACCESSIBLE</td>
</tr>
<tr>
<td>STORAGE MEDIA</td>
<td>12</td>
<td>HIGH</td>
<td>UNAUTHORIZED READ</td>
<td>43 DATA ENCRYPTION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HIGH</td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>STORAGE MEDIA</td>
<td>12</td>
<td></td>
<td>THEFT</td>
<td>44 EFFECTIVE STORAGE ACCESS CONTR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIGH</td>
<td>LOW</td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>METERING EQUIPMENT</td>
<td>71</td>
<td>LOW</td>
<td>HARDWARE TAMPERING--MODIFIED</td>
<td>21 LOCKS AND ALARMS ON MACHINE CO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEDIUM</td>
<td>HIGH</td>
</tr>
<tr>
<td>SOFTWARE</td>
<td>2</td>
<td>VERY HIGH</td>
<td>UNAUTHORIZED ACCESS--R/W/E</td>
<td>45 DEFECTIVE IMPLEMENTATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEDIUM</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>OPERATING SYSTEM</td>
<td>21</td>
<td>HIGH</td>
<td>INADEQUATE DEBUGGING</td>
<td>46 EFFECTIVE AUTHORIZATION AND AC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FAIRLY HIGH</td>
<td>MEDIUM TO PRETTY HIGH</td>
</tr>
<tr>
<td>PROGRAMS</td>
<td>22</td>
<td>MEDIUM</td>
<td>UNSECURED STORAGE MEDIA</td>
<td>112 TESTING AND VERIFICATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HIGH</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>DATA</td>
<td>23</td>
<td>HIGH</td>
<td>EXPOSED OUTPUT</td>
<td>114 PROGRAM TESTING AND VALIDATION</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MEDIUM TO HIGH</td>
<td>(FAIRLY LOW) TO MEDIUM</td>
</tr>
<tr>
<td>DATA</td>
<td>23</td>
<td></td>
<td>DATA PREPARATION ERRORS</td>
<td>60 ADEQUATE AND ENFORCED LIBRARY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIGH</td>
<td>PRETTY HIGH</td>
<td>61 USAGE LOG</td>
</tr>
<tr>
<td>DATA</td>
<td>23</td>
<td></td>
<td></td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>INSTITUTION DATA</td>
<td>232</td>
<td>FAIRLY HIGH</td>
<td></td>
<td>90 CLEAN DESK POLICY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TO HIGH</td>
<td></td>
<td>91 USER EDUCATION</td>
</tr>
<tr>
<td>FINANCIAL DATA</td>
<td>2322</td>
<td></td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FAIRLY HIGH</td>
<td></td>
<td>103 SECOND PERSON VERIFICATION</td>
</tr>
<tr>
<td>RESOURCE SUPPLY SYSTEMS</td>
<td>31</td>
<td></td>
<td></td>
<td>104 CHECKSUMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIGH</td>
<td></td>
<td>105 SOFTWARE CHECKS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PRETTY HIGH</td>
</tr>
<tr>
<td>INSTITUTION DATA</td>
<td>232</td>
<td></td>
<td></td>
<td>0 ADEQUATE STRUCTURAL RE-ENFORCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 TO MEDIUM</td>
</tr>
<tr>
<td>RESOURCE SUPPLY SYSTEMS</td>
<td>31</td>
<td></td>
<td></td>
<td>144 ADEQUATE STRUCTURAL RE-ENFORCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 TO MEDIUM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOW</td>
</tr>
</tbody>
</table>

Note: The table above lists objects, their assigned numbers, and their parent in the hierarchy. It also includes threats and features associated with these objects. The threats and features are categorized under columns such as NAME, VALUE, LIKELIHOOD, and RESISTANCE.
15 * 31 RESOURCE SUPPLY SYSTEMS
 * 54 FIRE
 * FAIRLY LOW

16 * 32 THE BUILDING
 * 73 FIRE
 * FAIRLY LOW

17 * 3221 COMPUTER ROOM
 * 84 MAGNETS
 * LOW

18 * 3221 COMPUTER ROOM
 * 86 UNAUTHORIZED INTRUDERS
 * MEDIUM
RATESET
DO YOU WANT TO SEE A DESCRIPTION OF THE RATING FUNCTIONS? Y

THE FOLLOWING RATING FUNCTIONS ARE AVAILABLE:
1) WEAKEST LINK
2) SELECTED WEAKEST LINK
3) FUZZY MEAN
4) FUZZY MEAN WEIGHTED BY VALUE
5) FUZZY MEAN WITH EACH MAJOR SUBSECTION WEIGHTED BY MAXIMUM OBJECT VALUE

ENTER THE NUMBER OF THE RATING FUNCTION YOU WISH TO USE: 1

OVERALLRATING

**
*
* NAME: RATING
* THE INSTALLATION: LOW
*
**

RATESET
DO YOU WANT TO SEE A DESCRIPTION OF THE RATING FUNCTIONS? N

ENTER THE NUMBER OF THE RATING FUNCTION YOU WISH TO USE: 2

SECTIONALRATING

ENTER THE PARENT OBJECT NUMBER (0 FOR THE TOP LEVEL IN THE HIERARCHY): 0

SPECIFY MINIMUM FOR HARDWARE: MEDIUM
4 ELEMENT(S) USED

SPECIFY MINIMUM FOR SOFTWARE: HIGH
1 ELEMENT(S) USED

SPECIFY MINIMUM FOR THE COMPUTER CENTER: PRETTY HIGH
4 ELEMENT(S) USED

**
*
* NAME: RATING
* HARDWARE: PRETTY LOW
* SOFTWARE: PRETTY HIGH
* THE COMPUTER CENTER: PRETTY HIGH
*
**

SECTIONALRATING

ENTER THE PARENT OBJECT NUMBER (0 FOR THE TOP LEVEL IN THE HIERARCHY): 0

**
*
* NAME: RATING
* HARDWARE: PRETTY LOW
* SOFTWARE: LOW
* THE COMPUTER CENTER: LOW
*
**
SETRATE 3

WORSTSUBSECTION

ENTER THE PARENT OBJECT NUMBER (0 FOR THE TOP LEVEL IN THE HIERARCHY): 0

WRATE

ENTER THE PARENT OBJECT NUMBER (0 FOR THE TOP LEVEL IN THE HIERARCHY): 2

WRATE

ENTER THE PARENT OBJECT NUMBER (0 FOR THE TOP LEVEL IN THE HIERARCHY): 2
<table>
<thead>
<tr>
<th>NAME</th>
<th>RATING (USING FUZZY MEAN WEIGHTED BY VALUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATING SYSTEM</td>
<td>MOREORLESS MEDIUM TO SORTOF HIGH</td>
</tr>
<tr>
<td>PROGRAMS</td>
<td>MOREORLESS MEDIUM</td>
</tr>
<tr>
<td>DATA</td>
<td>SORTOF MEDIUM</td>
</tr>
</tbody>
</table>

THE LOWEST RATING WAS GIVEN TO:
DATA.
MODIFICATION

ENTER THE TRIPLE NUMBER: 10
ENTER THE NUMBER OF THE CATEGORY TO BE MODIFIED:
1) OBJECT NUMBER
2) THREAT NUMBER
3) FEATURE NUMBER(S)
4) OBJECT VALUE
5) THREAT LIKELIHOOD
6) FEATURE RESISTANCE

ENTER THE NEW FEATURE RESISTANCE: MEDIUM

DISPLAY

FOLLOWING IS A LIST OF OBJECTS ADDED, THEIR ASSIGNED OBJECT NUMBERS, AND THEIR PARENT IN THE HIERARCHY:

OBJECT **OBJECT NO** **PARENT**
METERING EQUIPMENT 71 1

<p>| OBJECTS | | FEATURES |
|---------|---|</p>
<table>
<thead>
<tr>
<th>TABLE</th>
<th>NUMBER</th>
<th>NAME</th>
<th>VALUE</th>
<th>NUMBER</th>
<th>NAME</th>
<th>LIKELIHOOD</th>
<th>NUMBER</th>
<th>NAME</th>
<th>RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>* 11</td>
<td>CENTRAL MACHINE</td>
<td>* VERY HIGH</td>
<td>8</td>
<td>UNAUTHORIZED USE</td>
<td>* MEDIUM</td>
<td>2</td>
<td>GUARD</td>
<td>PRETTY HIGH</td>
</tr>
<tr>
<td>2</td>
<td>* 11</td>
<td>CENTRAL MACHINE</td>
<td>* VERY HIGH</td>
<td>10</td>
<td>HUMAN ERROR</td>
<td>* PRETTY LOW</td>
<td>29</td>
<td>OPERATOR TRAINING</td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>3</td>
<td>* 12</td>
<td>STORAGE MEDIA</td>
<td>* HIGH</td>
<td>13</td>
<td>UNAUTHORIZED READ</td>
<td>* HIGH</td>
<td>30</td>
<td>DETAILED, ACCURATE, ACCESSIBLE</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>4</td>
<td>* 12</td>
<td>STORAGE MEDIA</td>
<td>* HIGH</td>
<td>11</td>
<td>THEFT</td>
<td>* LOW</td>
<td>43</td>
<td>DATA ENCRYPTION</td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>5</td>
<td>* 71</td>
<td>METERING EQUIPMENT</td>
<td>* LOW</td>
<td>4</td>
<td>HARDWARE TAMPERING--MODIFIED</td>
<td>* LOW</td>
<td>44</td>
<td>EFFECTIVE STORAGE ACCESS CONTROL</td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>6</td>
<td>* 2</td>
<td>SOFTWARE</td>
<td>* VERY HIGH</td>
<td>16</td>
<td>UNAUTHORIZED ACCESS--R/W/E</td>
<td>* MEDIUM</td>
<td>45</td>
<td>DEFECTIVE IMPLEMENTATION</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>7</td>
<td>* 21</td>
<td>OPERATING SYSTEM</td>
<td>* HIGH</td>
<td>46</td>
<td>INADEQUATE DEBUGGING</td>
<td>* FAIRLY HIGH</td>
<td>112</td>
<td>TESTING AND VERIFICATION</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>8</td>
<td>* 22</td>
<td>PROGRAMS</td>
<td>* MEDIUM</td>
<td>20</td>
<td>UNSECURED STORAGE MEDIA</td>
<td>* HIGH</td>
<td>114</td>
<td>PROGRAM TESTING AND VALIDATION</td>
<td>FAIRLY LOW TO MEDIUM</td>
</tr>
<tr>
<td>9</td>
<td>* 23</td>
<td>DATA</td>
<td>* HIGH</td>
<td>33</td>
<td>EXPOSED OUTPUT</td>
<td>* MEDIUM TO HIGH</td>
<td>50</td>
<td>ADEQUATE AND ENFORCED LIBRARY</td>
<td>PRETTY LOW</td>
</tr>
<tr>
<td>10</td>
<td>* 23</td>
<td>DATA</td>
<td>* HIGH</td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>USAGE LOG</td>
<td>PRETTY LOW</td>
</tr>
</tbody>
</table>

FEATURES		**FEATURES**				
TABLE	**NUMBER**	**NAME**	**LIKELIHOOD**	**NUMBER**	**NAME**	**RESISTANCE**
FEATURES						
SETRATE 3

WRITE

ENTER THE PARENT OBJECT NUMBER (0 FOR THE TOP LEVEL IN THE HIERARCHY): 2

==

* NAME RATING (USING FUZZY MEAN)
* OPERATING SYSTEM MOREORLESS MEDIUM
* PROGRAMS MOREORLESS MEDIUM
* DATA SORTOF MEDIUM
* THE LOWEST RATING WAS GIVEN TO:
 DATA

==

MODTRIP

ENTER THE TRIPLE NUMBER: 9
ENTER THE NUMBER OF THE CATEGORY TO BE MODIFIED-
1) OBJECT NUMBER
2) THREAT NUMBER
3) FEATURE NUMBER(S)
4) OBJECT VALUE
5) THREAT LIKELIHOOD
6) FEATURE RESISTANCE

ENTER THE NEW FEATURE RESISTANCE: MEDIUM
WRITE
ENTER THE PARENT OBJECT NUMBER (0 FOR THE TOP LEVEL IN THE HIERARCHY): 2

* NAME RATING (USING FUZZY MEAN) *
* OPERATING SYSTEM MOREORLESS MEDIUM *
* PROGRAMS MOREORLESS MEDIUM *
* DATA MEDIUM *
*
* THE LOWEST RATING WAS GIVEN TO: *
* OPERATING SYSTEM *
* PROGRAMS *
