Copyright © 1976, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
COMPLETE STABILITY OF AUTONOMOUS NONLINEAR NETWORKS

by

L. O. Chua and N. N. Wang

Memorandum No. ERL-M596

21 October 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720
COMPLETE STABILITY OF AUTONOMOUS NONLINEAR NETWORKS†

Leon O. Chua and Niantsu N. Wang††

ABSTRACT

Several sufficient conditions are presented which guarantee that an autonomous nonlinear reciprocal network is completely stable in the sense that all trajectories of the network tend to an equilibrium state and hence no oscillation or other exotic mode of spurious behavior is possible. Stability criteria are derived with the help of the concept of the generalized inverse of a matrix for both complete and non-complete networks. The results on non-complete networks depend crucially on the introduction of a pseudo-potential function called pseudo-hybrid content and on the imposition of a local solvability condition. Most of the hypotheses are algorithmic in the sense that either explicit bounds are provided for computation purposes, or equivalent topological tests are given for checking the non-quantitative conditions.

Most results presented are applicable to networks containing multi-port and multi-terminal elements which are represented by coupled two-terminal elements. Examples are given which demonstrate that some of our results on complete stability are the best possible that can be obtained for the class of networks under consideration.

†Research supported in part by the National Science Foundation under Grant No. ENG75-22282 and the Naval-Electronics System Command Contract N00039-75-C-D034.

††L.O. Chua is with the Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720.

Niantsu N. Wang is with the Department of Electrical and Computer Engineering, Clarkson Institute of Technology, Potsdam, N.Y. 13676.
I. INTRODUCTION

This paper is concerned with the problem of complete stability for autonomous nonlinear reciprocal networks. Given a dynamic network described by an autonomous system of differential equations $\dot{z} = f(z)$, where $f: \mathbb{R}^n \to \mathbb{R}^n$, a point $z^* \subseteq \mathbb{R}^n$ is called an equilibrium state of the network if $f(z^*) = 0$. Practical networks containing locally active elements often have more than one equilibrium states. By complete stability [1,2], we mean the property that any trajectory $z(t), t \in [0, \infty)$ of the network eventually settles down to one of the equilibrium states, i.e., $\lim_{t \to \infty} z(t) = z^*$ for some z^* which depends on the initial state z_0. Obviously a network will never oscillate or display other exotic modes of dynamic operations--such as almost periodic spurious oscillations--if it is completely stable.

Complete stability is one of the most important considerations in the design of dynamic nonlinear networks. It is well known that practical networks can suddenly burst into undesirable oscillations even though it is not expected to do so in the original design. A clear understanding of the mechanisms which "provoke" instability and oscillation is therefore essential in any serious analysis and design of nonlinear electronic circuits.

This paper is essentially an extension of the classic results due to Brayton and Moser [1]. In section II we shall make use of the concept of the generalized inverse of a matrix to derive a sufficient condition which guarantees complete stability for a class of networks more general than that discussed in [1]. The use of the generalized matrix inverse not only shows that a topological condition (B be of maximal rank) required by Brayton and Moser is unnecessary, but it also shows that the associated
stability bound is the best possible that can be obtained. In particular, while Brayton and Moser show that their complete stability bound for a complete iterated ladder network is the best possible as the number of ladder sections "n" tends to infinity, we are able to demonstrate the same result using a non-complete finite network containing only eight elements (Fig. 2). The entire section II is devoted to the so called complete n-ports. Given a network \(N \), an associated n-port \(N \) is created if we extract all energy-storage elements, i.e., inductors and capacitors, and consider them as loads connected across external ports. A capacitor gives rise to a voltage port and an inductor gives rise to a current port. The n-port \(N \) is said to be topologically complete if given any branch in \(N \), either the branch voltage or the branch current can be determined by the port variables (i.e., voltages across the voltage ports and currents through the current ports) directly from KCL and KVL without invoking any element constitutive relations. For complete n-ports, a mixed potential function called hybrid content can be defined explicitly in terms of the fundamental loop matrix and the element characteristics. We then apply Liapounov's direct method [2] to a modified form of the hybrid content to ensure the complete stability of the network. In section III, we extend the result to n-ports which are not necessarily complete. Our results in this section depend crucially on the introduction of the concepts of local solvability and pseudo-potential functions [3]. The local solvability condition is essentially an application of the local "implicit function theorem" which guarantees that all trajectories are uniquely defined for all time \(t > t_0 \). This condition is weaker than that usually invoked for guaranteeing the existence of a global state equations. Consequently, our state equations need not be defined globally. Nevertheless, our condition guarantees that
the state equation exists in an open neighborhood of each point in \(\mathbb{R}^n \) and that the trajectories can be continued indefinitely in forward time and can be interpreted therefore as a smooth "flow" on a "differentiable manifold" [4]. The concept of a pseudo-potential function allows a non-complete n-port to be expressed as the pseudo-gradient of a pseudo-hybrid content [3] to be defined explicitly in terms of topological matrices and the elements' constitutive relations. This pseudo-hybrid content allows us to formulate the state equation in a form analogous to that obtained for a complete network. Using several identities\(^1\) derived in [3], we were able to derive a complete stability criteria for non-complete networks.

Most of the results in this paper are stated first for networks containing uncoupled two-terminal elements for simplicity. After it is obvious that the method of proof remains applicable in the more general case, they are then extended to allow couplings among various elements.

In this paper, a two-terminal resistor is characterized by either
\[i = \hat{i}(v), \quad -\infty < v < \infty, \text{ or } v = \hat{v}(i), \quad -\infty < i < \infty, \]
where \(v \) and \(i \) are the branch voltage and current of the resistor, respectively, and \(\hat{v} \) and \(\hat{i} \) are continuous functions. In case the resistor is characterized by \(i = \hat{i}(v) \) (resp., \(v = \hat{v}(i) \)), it is said to be voltage controlled (v.c.) (resp.,

\(^1\) These identities depend on a rather remarkable topological property for resistive nonlinear networks which permit the differentiation operation to commute with the composition operation in the sense that
\[
\frac{\partial f(x, y)}{\partial x} \bigg|_{y=h(x)} = \frac{\partial f(x, h(x))}{\partial x}
\]

It is easily seen that this commutative property is not valid for arbitrary functions. Its validity here rests on the additional constraints imposed by KVL and KCL.
Let \(R \) be a c.c. resistor, define the quantity \(G(i) \triangleq \int_{0}^{i} \hat{v}(x)dx \) as the content \([5]\) of \(R \) and the quantity \(G^*(i^*) \triangleq \int_{0}^{i^*} \hat{v}(-x)dx \) as the conjugate content of \(R \), where \(i^* \triangleq -i \). Notice that \(dG/di = dG^*/di^* = \hat{v}(i) \).

Similarly, let \(R \) be a v.c. resistor, then the co-content \([5]\) and the conjugate co-content of \(R \) are defined by \(G(v) \triangleq \int_{0}^{v} \hat{i}(y)dy \) and \(G^*(v^*) \triangleq \int_{0}^{v^*} \hat{i}(-y)dy \), with \(v^* \triangleq -v \), respectively. Again, \(dG/dv = dG^*/dv^* = \hat{i}(v) \).

Without loss of generality, multi-terminal or multi-port resistors will be treated as coupled two-terminal resistors. This will allow our representing these elements in the form of a graph made up of two-terminal branches and hence standard results from network topology remain applicable. We assume that each multi-terminal or multi-port resistor is either voltage-controlled or current-controlled. Independent sources are considered as two-terminal resistors. In particular, a voltage source is considered as a c.c. resistor having a well-defined content function and a current source is considered as a v.c. resistor having a well-defined co-content function.

A \(m \)-port is said to be reciprocal if the line integral
\[
\int_{0}^{Z_R} h(z_R') \cdot dz_R' \quad \text{exists.}
\]
It is well known that such integral exists if, and only if, the Jacobian matrix \(\frac{\partial h(z_R)}{\partial z_R} \) is symmetric. In the special case where \(R \) is v.c., the above integral is called the co-content of the multi-terminal resistor or multi-port \(R \) and is denoted by \(\hat{G}(v_R) \). Similarly,
\[
G(i_R) \triangleq \int_{0}^{1} h(i_R') \cdot di_R'
\]
is called the content of \(R \) when the integral exists and \(R \) is c.c..
The conjugate content and co-content of \(R \) is defined in the same way as that for ordinary resistors.

For convenience, the symbols \(\mathcal{G}, \hat{\mathcal{G}}, \hat{\mathcal{G}}^*, \hat{\mathcal{G}}^*, \mathcal{H}, \hat{\mathcal{H}} \) and \(\hat{\mathcal{H}} \) are all reserved for scalar functions in this paper. Vectors are denoted by lower case bold-face letters while matrices are denoted by capital bold-face letters. We use \(\| \cdot \| \) to denote the norm of either a vector or a matrix while we use \(|S| \) to denote the cardinality of a set \(S \). In general, any convenient norm can be chosen. Finally we use \(\mathcal{R}(A) \) and \(\mathcal{N}(A) \) to denote, respectively, the range space and the null space of a matrix \(A \).

II. COMPLETE STABILITY OF COMPLETE NETWORKS

In this section we shall present a fairly general sufficient condition which ensures complete stability for complete networks \([1,3]\). The extension to the more general noncomplete networks will be given in the next section.

2.1 The n-port Formulation.

Let \(\mathcal{N} \) be a network containing capacitors, inductors, two-terminal resistors and independent sources. For simplicity, let us first assume that the resistors are uncoupled. Let \(\mathcal{T}_1 \) be a subtree made up of "composite" branches each of which consists of a capacitor and all v.c. resistors (possibly none) connected in parallel with it and let \(\mathcal{L}_2 \) be a subcotree made up of composite branches each of which consists of an inductor and all c.c. resistors (possibly none) connected in series with it. The composite branches are shown in Fig. 1. If we extract all elements in \(\mathcal{T}_1 \) and \(\mathcal{L}_2 \) and consider them as loads connected across an n-port \(\mathcal{N} \), then we say \(\mathcal{N} \) is complete if there is a subtree \(\mathcal{T}_2 \) made up of c.c. resistors such that \(\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2 \) form a tree of \(\mathcal{N} \), and if all remaining elements are v.c. re-
sistors forming closed loops exclusively with branches in J_1. If we denote these v.c. resistors by the subcotree L_1, then $L = L_1 \cup L_2$ is the cotree associated with J. It follows from the completeness of the n-port N that the fundamental loops associated with branches from J_1 only, i.e., $V_1 + B_1^1 V_1 = 0$, where V_1 and V_1 denote the branch voltage of the elements in L_1 and J_1, respectively, and B_1^1 denotes an appropriate submatrix of the following fundamental loop matrix B:

$$
B = \begin{bmatrix} L_1 & L_2 \\ L_1^T & L_2^T \end{bmatrix}
$$

where the upper right-hand corner submatrix is always a zero matrix. If we let i_{1j}, v_{1j}, i_{1j}, and v_{1j} denote the current and voltage vectors for elements in L_j and J_j, respectively, then we can write:

KCL:

$$
\frac{d}{dt} v_{1j} = -B_{1j}^1 v_{1j} + \sum_{j \in J_1} \left(-B_{1j}^1 v_{1j} \right) + \sum_{j \in J_1} \left(B_{1j}^1 v_{1j} \right)
$$

KVL:

$$
\frac{d}{dt} i_{2j} = v_{2j} \left(i_{2j} \right) + B_{2j}^1 v_{1j} + B_{2j}^1 v_{1j} + B_{2j}^1 v_{1j}
$$

where $C = C(v_{1j})$ and $L = L(1_{2j})$ denote the incremental capacitance and inductance matrix, respectively. Letting $i_{2j}^* = -i_{2j}$, we define the hybrid content $H(v_{1j}, i_{2j}^*)$ of the complete n-port by

$$
H(v_{1j}, i_{2j}^*) = \sum_{j \in J_1} \langle v_{1j}, i_{2j}^* \rangle + \sum_{j \in J_1} \langle v_{1j}, i_{2j}^* \rangle + \sum_{j \in J_1} \langle v_{1j}, i_{2j}^* \rangle
$$
where \(\hat{G}_i(v_i) \) (resp., \(\hat{G}_j(v_j) \)) denotes the sum of the co-contents of all v.c. resistors in \(\mathcal{L}_1 \) (resp., \(\mathcal{J}_1 \)), and
\[
\hat{G}_i^*(v_i) = \sum_{j \in \mathcal{L}_2} \hat{G}_j^*(v_j) \quad \text{(resp., \(\hat{G}_j^*(v_j) \))} \]
denotes the sum of the conjugate contents of all c.c. resistors in \(\mathcal{L}_2 \) (resp., \(\mathcal{J}_2 \)).

The symbol "\(\circ \)" denotes the composition operation; for example,
\[
\hat{G}_i(\mathcal{L}_1) = \hat{G}_i \circ (-B \mathcal{J}_1^T v_1)
\]
Observe that the first four terms in (3) are potential functions associated with the resistors, whereas the last term does not involve any constitutive relations.

Now consider the general case where the resistors are coupled to each other. The hybrid content \(H(v_j, i_{x_2}^*) \) is well-defined so long as the couplings are reciprocal; i.e., each internal resistive m-port is reciprocal.

For example, assume the resistors in \(\mathcal{L}_1 \cup \mathcal{J}_1 \) are coupled to each other.

Instead of summing separately the co-contents of the individual resistors in \(\mathcal{L}_1 \) and \(\mathcal{J}_1 \), respectively, the term \(\hat{G}_i \circ (-B \mathcal{J}_1^T v_1) + \hat{G}_j(v_j) \) in the definition of \(H(v_j, i_{x_2}^*) \) in (3) will be replaced by a single co-content function
\[
\hat{G}_{\mathcal{L}_1 \cup \mathcal{J}_1}(v_{\mathcal{L}_1}^T v_{\mathcal{J}_1}^T) = \sum_j \hat{G}_j(v_j v_j) |_{\mathcal{L}_1 \cup \mathcal{J}_1}
\]
where each \(\hat{G}_j \) is the co-content of an m-port whose branches are in \(\mathcal{L}_1 \cup \mathcal{J}_1 \). The grouping of the content and co-content functions depends on the actual coupling among the resistors.

In contrast to the content and co-content functions in \(H \), the term
\[
1^* \circ (-B \mathcal{J}_1^T v_1)
\]
is independent of the branch characteristics and is purely topological. This term has an important physical meaning: Partitioning the network \(\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_2 \) where \(\mathcal{N}_1 \) contains all branches in \(\mathcal{L}_1 \cup \mathcal{J}_1 \) and \(\mathcal{N}_2 \) contains all branches in \(\mathcal{L}_2 \cup \mathcal{J}_2 \), the term
\[
1^* \circ (-B \mathcal{J}_1^T v_1)
\]
is then...
equal to the instantaneous power delivered from \(I_1 \) to \(I_2 \) \cite{6,7}. See Appendix A-1 for a rigorous proof.

Using the preceding explicit definition for the hybrid content
\[
H\left(\frac{V_{\bar{J}_1}}{J_1} \right) \]
the state equations of any complete network can be expressed as follows \cite{3}:
\[
\frac{d}{dt} \begin{bmatrix} \frac{V_{\bar{J}_1}}{J_1} \\ \frac{i^*_2}{L_2} \end{bmatrix} = \begin{bmatrix} -C^{-1} & 0 \\ 0 & L^{-1} \end{bmatrix} \begin{bmatrix} \frac{d}{dV_{\bar{J}_1}} H\left(\frac{V_{\bar{J}_1}}{J_1} \right) \\ \frac{d}{di^*_2} H\left(\frac{V_{\bar{J}_1}}{J_1} \right) \end{bmatrix}
\]
\((4) \)

Observe that the "complete" resistive \(n \)-port \(N \) is described by the gradient of the hybrid content \(H \).\footnote{Comparing \((4) \) with the Brayton-Moser state equation, we see that our hybrid content is identical to the mixed potential of Brayton and Moser \cite{1}.} The matrices \(C\left(\frac{V_{\bar{J}_1}}{J_1} \right) \) and \(L\left(\frac{i^*_2}{J_2} \right) \) in \((4) \) are assumed throughout this paper to be symmetric and positive definite.

Ideal transformers located in \(L_1 \) or \(J_2 \) of a complete network may also be included in this formulation \cite{6,7}. Since the characteristic of an ideal transformer introduces an algebraic relation among the network variables \(\frac{V_{\bar{J}_1}}{J_1} \) or \(\frac{i^*_2}{J_2} \), each transformer reduces the number of network variables by one. Furthermore, since transformers are nonenergetic \cite{8}, no extra terms will be introduced into the definition of \(H \). A discussion on the inclusion of ideal transformers on a complete network is given in Appendix A-2.

Remark. Given a network, since the capacitive and the inductive branches are fixed, it is relatively easy to check when it is non-complete. For a complete \(n \)-port, KVL and KCL yield
\[v + B \dot{v} = 0 \] and \[\dot{i} - B^T \mathbf{J}_2 \dot{\mathbf{J}}_2 \mathbf{J}_2 \mathbf{i} = 0. \]

Therefore, any branch which forms a loop with branches in \(\mathcal{J}_1 \) (the capacitive branches) must be v.c. and must be assigned to \(\mathcal{L}_1 \). Hence, our first step is to check each branch which forms a loop with \(\mathcal{J}_1 \). If there is at least one such branch which is not v.c., the n-port is non-complete. Suppose now that all such branches are v.c., and have been assigned to \(\mathcal{L}_1 \). We then check the remaining branches other than those in \(\mathcal{L}_2 \). These are resistors which should be assigned to \(\mathcal{J}_2 \). Each of them must form a cut set with \(\mathcal{L}_2 \) and hence must be c.c. Again, the n-port is non-complete if there is at least one such branch which is not c.c.

2.2 Criteria for Completely Stable Networks

Let us now derive some complete stability criteria for the network described by (4) with the help of the following well-known theorem:

Consider the system

\[\dot{z} = f(z) \]

where \(f: \mathbb{R}^n \to \mathbb{R}^n \) is continuous. This system is completely stable if there exists a scalar function \(V(z): \mathbb{R}^n \to \mathbb{R}^1 \) having continuous first partial derivatives and satisfying the following properties:

(i) the trajectory derivative \(\dot{V}(t) \) \(< 0 \) for any initial state except at the equilibrium states.

(ii) all solutions are bounded.
Applying Theorem 1, we are now ready to derive the following sufficient condition for complete stability.

Theorem 2. Let \mathcal{N} be a complete network containing two-terminal uncoupled resistors described by (3) and (4). Then \mathcal{N} is completely stable if the following conditions are satisfied:

(i) All elements in \mathcal{J}_2 are linear and positive resistors, i.e.,

\[\mathcal{J}_2 = R_{\mathcal{J}_2} \mathcal{J}_2 \]

where $R_{\mathcal{J}_2}$ is a constant, diagonal and positive definite matrix.

(ii) All elements in series with the inductors in \mathcal{L}_2 are constant voltage sources, i.e., $v = E_2$ (see Fig. 1). Furthermore, $E_{\mathcal{L}_2} \in \mathcal{R}(B_{\mathcal{L}_2})$ where $\mathcal{R}(B_{\mathcal{L}_2})$ denotes the range space of $B_{\mathcal{L}_2}$.

(iii) $\mathcal{R}(B_{\mathcal{L}_2}) \subset \mathcal{R}(B_{\mathcal{L}_2})$.

(iv) Let $R = B_{\mathcal{L}_2}^T R_{\mathcal{L}_2} B_{\mathcal{L}_2}$ and R^I be the generalized inverse of R, as defined in Appendix A-3, then

\[\|K\|^2 \triangleq \left\| L \frac{1}{2} R^I B_{\mathcal{L}_2} \mathcal{J}_2 \mathcal{L}_2 - \frac{1}{2} \right\|^2 < 1 - \delta \]

for some $\delta > 0$.

where $\|K\|$ denotes any convenient norm of the matrix K.

(v) All solutions of (4) are bounded.

Proof. See Appendix A-3.

Condition (ii) requires that any element in series with an inductor must be either a short circuit or an independent voltage source. Moreover, there must exist a vector v such that $v_{\mathcal{L}_2} = v_{\mathcal{L}_2}$.

Observe that a short circuit or an independent voltage source is a legitimate element for \mathcal{L}_2 because each can be considered as a special case of a current-controlled resistor.
Remarks:

1. **Theorem 2** is an extension of the result in [1] in that instead of requiring the rows of $B_{L_2J_2}$ to be linearly independent, we only require that $\mathcal{R}(B_{L_2J_2}) \subseteq \mathcal{R}(B_{L_2J_2})$. In the special case where the rows of $B_{L_2J_2}$ are linearly independent, then condition (iii) and the condition $\mathcal{R}(B_{L_2J_2})$ are always satisfied. In this case $R^I = R^{-1}$ and we obtain the result in [1].

2. In **Theorem 2**, as well as in several subsequent theorems, we require that all solutions of the network be bounded. This hypothesis is satisfied by most networks of practical interest and can be ensured by rather mild conditions, see, for example [9-10].

3. The condition $\mathcal{R}(B_{L_2J_2}) \subseteq \mathcal{R}(B_{L_2J_2})$ is also rather weak. In fact, networks which do not obey this condition can usually be transformed into equivalent networks which do. For example, suppose "e_s" is a constant voltage source connected in series with a resistor R_k, and suppose our topological algorithm for partitioning $J = J_1 \cup J_2$ requires that R_k be assigned to J_2 and that the voltage source e_s be assigned to L_2. Applying the v-shift theorem, the voltage source e_s can be shifted in series with the remaining branches of the fundamental cut set associated with R_k, thereby creating a source vector e_{L_2}. Since the n-port is complete, $i_{L_2} = B_{L_2J_2} e_{L_2}$, the remaining branches in this cut set consists of branches in L_2 only4. Since $i_{R_k} = (B_{L_2J_2})_k$ where $(B_{L_2J_2})_k$ is the kth row of $B_{L_2J_2}$, it follows that $c_{L_2} = [(B_{L_2J_2})_k] e_s \in \mathcal{R}(B_{L_2J_2})$.

4A specific example illustrating this transformation property is given in Example 1 after Lemma 1.
We have demonstrated therefore that voltage sources in series with resistors in \mathbf{J}_2 are actually allowed in so far as conditions (i) and (ii) are concerned.

4. It is important to ensure that either the rows of $B_{\mathbf{J}_2}$ are linearly independent, or, if they are not, that $\mathcal{R}(B_{\mathbf{J}_2}) \subset \mathcal{R}(B)$. The following lemma provides a simple topological algorithm for checking either one of these two conditions.

Lemma 1. Let \mathbf{N} be a connected network which has been partitioned into \mathbf{L}_1, \mathbf{L}_2, \mathbf{J}_1, and \mathbf{J}_2 in accordance with the preceding rules.

(i) Let \mathbf{N}' be the sub-network obtained by shrinking (short-circuiting) all branches except those belonging to \mathbf{J}_2. Let b' and n' be the number of branches and nodes in \mathbf{N}', respectively, so that \mathbf{N}' has $b' - n' + 1$ independent loops. Then the rows of $B_{\mathbf{J}_2}$ are linearly independent if, and only if, $b' - n' + 1 = |\mathbf{L}_2|$, where $|\mathbf{L}_2|$ denotes the original number of branches in \mathbf{L}_2. Equivalently, let \mathbf{N}'' be the sub-network obtained by shrinking all branches in $\mathbf{J}_1 \cup \mathbf{L}_1$. Then the rows of $B_{\mathbf{J}_2}$ are linearly independent if, and only if, \mathbf{N}'' contains no loop formed exclusively of branches belonging to \mathbf{L}_2.

(ii) $\mathcal{R}(B_{\mathbf{J}_2}) \subset \mathcal{R}(B)$ if, and only if, upon open-circuiting the branches in \mathbf{L}_1 and \mathbf{J}_2, the current $i_{\mathbf{J}_1} = 0$ identically, i.e., branches in \mathbf{J}_1 are not contained in any loop in the reduced network.

Proof. (i) It can be shown by a straightforward though somewhat tedious procedure that the rows of the submatrix $B_{\mathbf{J}_2}$ span all loops of the reduced graph \mathbf{N}' in the sense that each loop in \mathbf{N}' is a linear combination of...
rows of $B_{\mathcal{L}_2\mathcal{J}_2}$. It follows from basic graph theory that $B_{\mathcal{L}_2\mathcal{J}_2}$ must contain at least $b' - n' + 1$ linearly independent rows. Now suppose all rows of $B_{\mathcal{L}_2\mathcal{J}_2}$ are linearly independent, then since each row of $B_{\mathcal{L}_2\mathcal{J}_2}$ designates one loop in \mathcal{N}', there are exactly $|\mathcal{L}_2|$ linearly independent loops in \mathcal{N}' and hence $|\mathcal{L}_2| = b' - n' + 1$. Conversely, suppose $b' - n' + 1 = |\mathcal{L}_2|$. Then all rows of $B_{\mathcal{L}_2\mathcal{J}_2}$ must be linearly independent.

Now, let us prove the equivalent statement. Let b'' and n'' be the number of branches and nodes in \mathcal{N}'', respectively, so that \mathcal{N}'' has $b'' - n'' + 1 = |\mathcal{L}_2|$ linearly independent loops. Suppose \mathcal{N}'' contains no loop formed exclusively of \mathcal{L}_2 branches. Then, shrinking each \mathcal{L}_2 branch will reduce b'' as well as n'' by 1, and hence $b' = b'' - |\mathcal{L}_2|$ and $n' = n'' - |\mathcal{L}_2|$. Consequently, $b' - n' + 1 = (b'' - |\mathcal{L}_2|) - (n'' - |\mathcal{L}_2|) + 1 = b'' - n'' + 1 = |\mathcal{L}_2|$. Since \mathcal{N}'' reduces to \mathcal{N}' upon shrinking all branches in \mathcal{L}_2, it follows from the first part of this lemma that the rows of $B_{\mathcal{L}_2\mathcal{J}_2}$ are linearly independent. Now, conversely, suppose the rows of $B_{\mathcal{L}_2\mathcal{J}_2}$ are linearly independent. We claim that \mathcal{N}'' contains no loop formed exclusively of \mathcal{L}_2 branches. Suppose not. Then, shrinking each \mathcal{L}_2 branch will reduce b'' but not necessarily n'' by 1. In particular, let b'_a, b'_b, ..., b'_p denote \mathcal{L}_2 branches which formed a loop exclusively by themselves. Let us first shrink all branches in this loop except b'_a and b'_b. In this step, b'' and n'' both decrease by 1 for each short-circuited branch. However, since the remaining two branches b'_a and b'_b now formed a loop and hence shared a common pair of nodes, it follows that if we shrink also these two branches, then b'' decreases by 2 but n'' decreases by only 1. Hence, we have $b' = b'' - |\mathcal{L}_2|$ and $n' > n'' - |\mathcal{L}_2|$. Consequently, $b' - n' + 1 < (b'' - |\mathcal{L}_2|) - (n'' - |\mathcal{L}_2|) + 1 = b'' - n'' + 1 = |\mathcal{L}_2|$. But then the first part of the Lemma would imply that the rows of $B_{\mathcal{L}_2\mathcal{J}_2}$ are linearly dependent; and we obtain again a contradiction.
(ii) Write KCL as follows:

\[
\begin{pmatrix}
-B^T_{21} & -B^T_{22} & \frac{1}{j_1} & 0 \\
0 & -B^T_{12} & 0 & \frac{1}{j_2}
\end{pmatrix}
\begin{pmatrix}
\frac{1}{l_1} \\
\frac{1}{l_2} \\
\frac{1}{j_1} \\
\frac{1}{j_2}
\end{pmatrix} = 0. \tag{5}
\]

Now to prove sufficiency, suppose \(\mathcal{R}(B_{21}L_1) \subset \mathcal{R}(B_{22}L_2) \). This implies that \(\mathcal{N}(B^T_{12}) = \mathcal{N}(B^T_{22}) \). We wish to prove that \(\frac{1}{j_1} = 0 \) whenever branches in \(L_1 \) and \(L_2 \) are open-circuited. Since \(\frac{1}{j_2} = 0 \), the second equation in (5) implies that \(-B^T_{22} \frac{1}{l_2} = 0 \). This means that

\[
-\frac{B^T_{22}}{l_2} \frac{1}{l_2} = 0. \]

Thus the first equation in (5) becomes

\[
-\frac{B^T_{12}}{l_1} \frac{1}{l_1} + \frac{1}{j_1} = 0.
\]

But \(\frac{1}{l_1} = 0 \) and hence \(\frac{1}{j_1} = 0 \) identically. It remains to prove necessity.

Suppose \(\frac{1}{j_1} = 0 \) identically after we have open-circuited all branches in \(L_1 \) and \(L_2 \) but \(\mathcal{N}(B^T_{21}) = \mathcal{N}(B^T_{22}) \). This implies that there exists \(\frac{1}{l_2} \neq 0 \) such that

\[
\frac{B^T_{21}}{l_2} \frac{1}{l_2} = 0 \text{ but } \frac{B^T_{22}}{l_2} \frac{1}{l_2} \neq 0.
\]

Substituting these relations into the first equation in (5), we obtain

\[
\frac{B^T_{21}}{l_2} = \frac{1}{j_1} \neq 0, \text{ a contradiction. Hence } \mathcal{N}(B^T_{21}) = \mathcal{N}(B^T_{22}) \text{ and hence } \mathcal{R}(B_{21}L_1) \subset \mathcal{R}(B_{22}L_2).
\]

5. It can be easily shown that if the matrix \(R \) is non-singular, then condition (v) can be replaced by the growth condition
given in [1]. This condition is sufficient to guarantee that

$$H^*(x) \to \infty \text{ as } \|x\| \Delta (V_{J_1}, 1) \to \infty.$$

In the case where R is singular, however, this property cannot be guaranteed by the preceding growth condition. Nevertheless, from a practical point of view, condition (v) is preferable because it is usually satisfied for most networks containing eventually-passive elements [10].

Example 1. Consider the circuit shown in Fig. 2(a). Assume that the capacitor and the three inductors are linear with $C > 0$ and $L_j > 0$, $j = 1, 2, 3$. Assume also that resistors R_5 and R_6 are linear and positive. Since the voltage source E is not in series with inductors, let us apply the v-shift theorem to the independent source E and obtain the equivalent circuit shown in Fig. 2(b). Pick $\mathcal{J}_1 = \{C, R_4\}$, $\mathcal{J}_2 = \{R_5, R_6\}$, $\mathcal{L}_1 = \emptyset$ (the empty set), and $\mathcal{L}_2 = \{L_1 - E, L_2, L_3 - E\}$. Labelling the branches in the order $\mathcal{L}_2, \mathcal{J}_1$ and \mathcal{J}_2, we obtain the following fundamental loop matrix:

$$B = \begin{bmatrix}
1 & 0 & 1 & 1 \\
1 & -1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{bmatrix}$$

Therefore,
\[
\begin{bmatrix}
1 & 1 \\
0 & 1 \\
1 & 0
\end{bmatrix}
\]
\text{and}

\[
\begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix}
\]

As an illustration of the application of Lemma 1(i), we observe that there is a loop made up exclusively of branches belonging to \(\mathcal{L}_2 \) in the reduced network \(\mathcal{N}' \) and hence we can conclude that the rows of \(B_{\mathcal{L}_2J_2} \) are not linearly independent. This conclusion is easily verified from the above matrix. Observe that even though the rows of \(B_{\mathcal{L}_2J_2} \) are not linearly independent, we have nonetheless \(\mathcal{R}(B_{\mathcal{L}_2J_2}) \subseteq \mathcal{R}(B_{\mathcal{L}_2J_2}) \). This conclusion follows immediately from Lemma 1(ii). By hypotheses, \(R_{J_2} = \text{diag}(R_5, R_6) \) is a positive-definite and diagonal matrix. Moreover,

\[
y'_{\mathcal{L}_2} = \left[E \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \right]^{T} \in \mathcal{R}(B_{\mathcal{L}_2J_2})
\]

where the "prime" denotes voltage across the voltage source. Hence conditions (i), (ii) and (iii) of Theorem 2 are satisfied.

Consider next

\[
R = B_{\mathcal{L}_2J_2} \left[R_5 + R_6 \right] R_6^{T} = \begin{bmatrix} R_5 + R_6 & R_6 & 0 \\
R_6 & R_6 & 0 \\
R_5 & 0 & R_5 \end{bmatrix}
\]

We can compute \(R_i \) once \(R_5 \) and \(R_6 \) are given. Then, for a fixed value of \(C \), an upper bound for the \(L_i \)'s can be found by requiring \(\|K\|^2 < 1 \) to ensure complete stability. As a numerical example, let \(R_5 = R_6 \Delta R = 1 \) M\(\Omega \); \(L_i = L, i = 1, 2, 3 \) and \(E = 0 \). Furthermore, let \(i_4(\cdot) \) be defined as in Fig. 2(c), i.e.,
\[i_4(v_4) = \begin{cases} -Gv_4 & |v_4| < 1 \\ Gv_4 - 2G & v_4 \geq 1 \\ Gv_4 + 2G & v_4 \leq -1 \end{cases} \]

where we assume that the value of G is such that \(RG = 1-\varepsilon, 0 < \varepsilon < 1. \)

Using the definition for \(R^T \) in Appendix A-3, we obtain

\[R^T = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 5 & -4 \\ 1 & -4 & 5 \end{bmatrix} \quad \text{and} \quad K = \frac{L}{10^6} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \]

Letting \(\|K\|^2 < 1 \), we obtain \(L < 10^{12}C. \)

To see how conservative this bound is, let us derive the condition which allows an oscillation within the range of the negative resistance. Hence, let us suppose the circuit oscillates with an amplitude of \(v_4 \) less than 1. In this case \(i_4 = -Gv_4 \) is linear. The characteristic polynomial of the linear circuit is given by

\[p(s) = Ls(L^2Cs^3 + (4RLC - L^2G)s^2 + (3R^2C + L - 4RGL)s + (3R - 3R^2G)) \]

The zero \(s = 0 \) corresponds to dc current flowing around the loop of inductors. We now find conditions on \(L \) such that \(p(s) \) has a pair of imaginary zeros. Applying the Routh Criterion and using our assumption \(RG = 1-\varepsilon, \)

we found that when \(L = RC/G \), \(p(s) = 0 \) has a pair of imaginary roots

\[s = \pm j\sqrt{\frac{3\varepsilon R}{4RLC - L^2G}}. \]

Hence, this network is not completely stable when

\(^{5}\) Here we define the norm of the vector \(K = [k_1, k_2, k_3]^T \) by \(\|K\| = \max |k_i| \). To obtain the sharpest estimate, it is desirable to choose this \(L^p \)-norm whenever \(K \) is a vector because it gives the smallest value of all \(L^p \)-norms.
$L \geq \frac{RC}{G} = 10^{12}(1-e)C$. Since $e > 0$ can be chosen arbitrarily small in magnitude, this bound can be made arbitrarily close to the upper bound $L = 10^{12}C$ for complete stability. Hence the bound derived earlier for this example is the best possible that can be obtained.\(^6\)

Interchanging the roles of capacitors and inductors, we can easily state the dual version of Theorem 2:

Theorem 2' Let \mathcal{N} be a complete network containing two-terminal uncoupled resistors described by (3) and (4). Then \mathcal{N} is completely stable if the following conditions are satisfied:

(i) All elements in \mathcal{L}_1 are linear and positive resistors, i.e.,

$$I_1 = G_1 V_1$$

where G_1 is constant, diagonal and positive definite matrix.

(ii) All elements in parallel with the capacitors in \mathcal{C}_1 are constant current sources, i.e., $I' = I_{1'}$ (see Fig. 1). Furthermore,

$$I_{1'} \in \mathcal{R}(B_{12}^T) \cap \mathcal{R}(B_{11}^T) \cap \mathcal{R}(B_{12}^T) \cap \mathcal{R}(B_{11}^T)

(iii) Let $G \triangleq B_{11}^T \alpha_1 \beta_1$ and $G^I \triangleq$ the generalized inverse of G, then

$$\|S\|^2 = \left\| \frac{1}{2} G^I B_{11}^T \beta_1 \right\|^2 < 1 - \delta$$

for some $\delta > 0$,

where $\|S\|$ denotes any convenient norm of the matrix S.

(v) All solutions of (4) are bounded.

\(^6\)Brayton and Moser have demonstrated that their bound approaches the best that can be obtained in the limiting case of an infinite network [1]. However, their results cannot be applied to this example because the matrix R is singular which in turn is due to the fact that the rows of the matrix $B_{12} \mathcal{C}_2$ are not linearly independent.
Let us now generalize Theorem 2 to allow coupling:

Theorem 3. Let \mathcal{N} be a complete network described by (3) and (4), where the resistors in \mathcal{J}_2, or the resistors in $\mathcal{J}_1 \cup \mathcal{J}_1$, may be coupled to each other within each set, so long as the coupling remain reciprocal. Then \mathcal{N} is completely stable under the same conditions as in Theorem 2 provided all resistors in \mathcal{J}_2 are linear and described by $v_{\mathcal{J}_2} = R_{\mathcal{J}_2} i_{\mathcal{J}_2}$, where $R_{\mathcal{J}_2}$ is symmetric and positive definite.

Proof. The proof follows similarly, *mutatis mutandis*, from that given for Theorem 2.

Remark: A dual *generalized* version of Theorem 2' can obviously be stated.

III. COMPLETE STABILITY OF NON-COMPLETE NETWORKS.

In general, the capacitor voltages and inductor currents do not form a complete set of variables for most networks, i.e., the n-port \mathcal{N} obtained by extracting all capacitors and inductors as external ports is not complete. The network equations will then take the following form:

\[
\frac{d}{dt} x = f_1 (x, y) \tag{6a}
\]

\[
f_2(x, y) = 0, \tag{6b}
\]

with $[x(t_0), y(t_0)] = [x_0, y_0]$, where $f_1: \mathbb{R}^{n_x+n_y} \to \mathbb{R}^{n_x}$ and $f_2: \mathbb{R}^{n_x+n_y} \to \mathbb{R}^{n_y}$, $n_x + n_y = n$. By a *trajectory* through (x_0, y_0) of the above system we mean a function $[x(t), y(t)], t \geq t_0$ which satisfies Eq. (6) and that $[x(t_0), y(t_0)] = [x_0, y_0]$. Similarly, by an *equilibrium state* we mean a point $[x, y] \in \mathbb{R}^n$ on the trajectory such that $f_1(x, y) = 0$.

-20-
Eq. (6) defines a differential-algebraic system. It is important to notice that the "initial state" \([x_0, y_0]\) \(\in \mathbb{R}^n\) is generally not arbitrary. A vector \([x_0, y_0]\) \(\in \mathbb{R}^n\) which satisfies KCL, KVL and all the branch characteristics is henceforth called a feasible state. Obviously, any valid initial state must be feasible. The following special case of Eq. (6) is of particular importance.

Definition 1. A system described by (6) is said to be locally solvable if, given any feasible state \([x, y]\) \(\in \mathbb{R}^n\), (6b) is solvable for \(y\) in terms of \(x\) in a neighborhood \(B = B_x \times B_y\) of \([x, y]\). That is, there exists a continuously differentiable function \(s: B_x \subset \mathbb{R}^n \to B_y \subset \mathbb{R}^n\) such that

\[
y = s(x)\quad \text{for all } [x, y] \in B.
\]

Locally solvable systems are defined by "implicit" differential equations with initial states restricted by a set of algebraic equations in (6b) \([4]\). For locally solvable networks, the state equation can be written in the form

\[
\frac{dx}{dt} = f_1(x, s(x))
\]

over a neighborhood \(B_x \subset \mathbb{R}^n\) about each point \(x \in \mathbb{R}^n\) where local solvability holds. Moreover, the locus of \(y(t)\) about the corresponding neighborhood \(B_y \subset \mathbb{R}^n\) is given by

\[
\frac{dy}{dt} = \frac{\partial s(x)}{\partial x} \cdot f_1(x, s(x))
\]

Hence for locally solvable systems, the trajectory \((x(t), y(t))\) in \(\mathbb{R}^{n_x + n_y}\) is uniquely defined through each point \((x, y) \in \mathbb{R}^{n_x + n_y}\). If we define a scalar function \(V(x, y): \mathbb{R}^{n_x + n_y} \to \mathbb{R}^1\), then the trajectory derivative defined by

-21-
\[
\dot{V}(t) = \frac{\partial V(x,y)}{\partial x} \dot{x} + \frac{\partial V(x,y)}{\partial y} \dot{y} = \left[\frac{\partial V(x,y)}{\partial x} + \frac{\partial V(x,y)}{\partial y} \cdot \frac{\partial s(x)}{\partial x} \right] f_1(x, s(x))
\]

is also well defined for all time \(t \geq t_0 \). Hence the same proof for the Complete Stability Criteria in Theorem 1 can be used to prove the following result:

Theorem 1'. Generalized Complete Stability Criteria

The locally solvable implicit differential-algebraic equation (6) is completely stable in the sense that all trajectories tend to an equilibrium state if there exists a scalar function \(V(x,y) : \mathbb{R}^n \rightarrow \mathbb{R}^1 \) having continuous first partial derivatives and satisfying the following properties:

(i) the trajectory derivative \(\dot{V}(t) < 0 \) for any feasible initial state except at the equilibrium states.

(ii) all solutions are bounded.

Remark.

Condition (ii) of Theorem 1' can be replaced by the following sufficient condition:

\[V(x, y) \rightarrow \infty \quad \text{as} \quad \| (x, y) \| \rightarrow \infty \]

3.1 Complete Stability of RC or RL Networks.

Before we deal with the most general case, let us consider networks which contain only one kind of energy storage elements, i.e., either capacitors or inductors. Let \(\mathcal{N} \) be a reciprocal network containing

7The function \(s(x) \) may of course have to be updated from time to time by one which is valid over the appropriate neighborhood of points along the trajectory. This is because \(s(x) \) is only a local coordinate system [4].
capacitors, v.c. resistors and constant current sources. (This implies that any constant voltage source must be connected via a plier-type entry in series with some v.c. resistor and considered as part of a composite v.c. resistor). If the capacitors do not form loops, then one can always pick a tree \(J = J_1 \cup J_2 \) where \(J_1 \) consists of capacitors only. Let \(L \) be the cotree corresponding to \(J \). If we label the tree branches before the links, we obtain the following fundamental cut set equations:

\[
\begin{bmatrix}
\frac{1}{J_1 J_1} & 0 & \frac{1}{J_1 J_2} & \frac{1}{J_1 x} \\
0 & \frac{1}{J_2 J_1} & \frac{1}{J_2 J_2} & \frac{1}{J_2 x}
\end{bmatrix}
\begin{bmatrix}
-\frac{1}{J_1} \\
\frac{1}{J_2} \\
\frac{1}{x}
\end{bmatrix}
= 0
\]

where \(\frac{1}{J_1} \) is the current vector flowing out of the positive terminals of the capacitors. Now, let us extract the branches in \(J \) as external ports and define the pseudo-co-content \(\hat{G} \) of the n-port \(N \) as [3]

\[
\hat{G}(v_{J_1}, v_{J_2}) = \hat{G}(v_{J_1}^T, v_{J_2}^T) \\
\hat{v}_{\bar{J}} = \hat{Q}^T v_{\bar{J}}
\]

\[
= \hat{G}
\begin{bmatrix}
\frac{v_{J_1}^T}{Q_{J_1}} \\
\frac{v_{J_2}^T}{Q_{J_2}}
\end{bmatrix}
\]

where \(v_{J_1} \in \mathbb{R}^{n_1} \) and \(v_{J_2} \in \mathbb{R}^{n_2} \), and \(\hat{Q}^T = \left[Q_{J_1} x, Q_{J_2} x \right] \). Notice that the resistors in \(L \cup J_2 \) may be coupled to each other. It follows from the above definition of \(\hat{G} \) that

\[
\frac{\partial}{\partial v_{J_1}} \hat{G}(v_{J_1}, v_{J_2}) = Q_{J_1} \frac{1}{x} = \frac{1}{J_1}
\]

-23-
\[\frac{\partial}{\partial v_{j_2}} \hat{G}(v_{j_1}, v_{j_2}) = \frac{1}{l} j_2 + \frac{Q}{j_2} \cdot \hat{z} - \frac{\partial}{\partial v_{j_1}} \hat{G}(v_{j_1}, v_{j_2}) = 0. \]

Since \(J_1 \) consists of capacitors only, \(\frac{1}{l} j_1 = -C(v_{j_1}) (dy_{j_1}/dt) \); hence:

\[\frac{dv_{j_1}}{dt} = -C^{-1}(v_{j_1}) \cdot \frac{\partial}{\partial v_{j_1}} \hat{G}(v_{j_1}, v_{j_2}); \] (7)

\[\frac{\partial}{\partial v_{j_2}} \hat{G}(v_{j_1}, v_{j_2}) = 0. \] (8)

As usual, \(C^{-1}(v_{j_1}) \) is assumed to be symmetric and positive definite.

For the most general case, a trajectory may not exist corresponding to an arbitrary feasible initial point \([v_{j_1}, v_{j_2}] \in \mathbb{R}^{n_1 + n_2} \). Moreover, even if a trajectory through \([v_{j_1}, v_{j_2}]_0 \) exists, it may not be unique. If the system is locally solvable, however, a unique trajectory always exists for any feasible initial point \([v_{j_1}, v_{j_2}] \).

Lemma 2. The n-port \(N \) is locally solvable if the matrix

\[M \triangleq \frac{\partial}{\partial v_{j_2}} \frac{1}{l} j_2 (v_{j_2}) + \frac{Q}{j_2} \hat{z} \left[\frac{\partial}{\partial v_{j_2}} \hat{z} (v_{j_2}) \right] Q^T \]

is nonsingular for all \([v_{j_1}, v_{j_2}] \in \mathbb{R}^{n_1 + n_2} \).

Proof. It follows from the implicit function theorem that the implicit algebraic equation (8) is locally solvable if \(\partial^2 \hat{G}/\partial v_{j_2}^2 \) is nonsingular.

By direct calculation, we obtain \(M = \partial^2 \hat{G}/\partial v_{j_2}^2 \). \(\Box \)
Let us now consider the complete stability of capacitive n-ports.

Theorem 4. Consider the non-complete nonlinear RC network \mathcal{N} described by (7) and (8), where $\zeta(\mathbf{y})$ is symmetric and positive definite. Then \mathcal{N} is completely stable if the following conditions are satisfied:

(i) Equation (8) is locally solvable for \mathbf{y}_1 as a function of \mathbf{y}_2.

(ii) all solutions are bounded.

Proof. Since \mathcal{N} is locally solvable, it is described by a set of implicit differential equations. Choosing $\hat{g}(\mathbf{y}_1, \mathbf{y}_2)$ as the scalar function in Theorem 1', it suffices to show that $\hat{g}(\mathbf{y}_1, \mathbf{y}_2) < 0$ for all $[\mathbf{y}_1, \mathbf{y}_2] \in \mathbb{R}^{n_1+n_2}$, except at the equilibrium points at which it vanishes.

Now, applying (7) and (8) and recalling that $\zeta(\mathbf{y})$ is positive-definite, we obtain

$$\hat{g} = \begin{bmatrix} \mathbf{y}_1^T \\ \mathbf{y}_2^T \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial \mathbf{y}_1} \hat{g}(\mathbf{y}_1, \mathbf{y}_2) \\ \frac{\partial}{\partial \mathbf{y}_2} \hat{g}(\mathbf{y}_1, \mathbf{y}_2) \end{bmatrix} = \mathbf{y}_1^T \frac{\partial}{\partial \mathbf{y}_1} \hat{g}(\mathbf{y}_1, \mathbf{y}_2)$$

$$= -\left[\frac{\partial}{\partial \mathbf{y}_1} \hat{g}(\mathbf{y}_1, \mathbf{y}_2) \right]^T \zeta^{-1}(\mathbf{y}_1) \left[\frac{\partial}{\partial \mathbf{y}_1} \hat{g}(\mathbf{y}_1, \mathbf{y}_2) \right] < 0.$$

Notice that the equality holds only when $\frac{\partial}{\partial \mathbf{y}_1} \hat{g}(\mathbf{y}_1, \mathbf{y}_2) = 0$, i.e., at equilibrium points.

\[\square \]
Let us now consider a Corollary whose hypotheses can be easily verified:

Corollary 1. A non-complete nonlinear RC network \mathcal{N} is **completely stable** if the following conditions are satisfied:

(i) All non-monotonic resistors are connected in parallel with the capacitors and are possibly coupled among themselves only.

(ii) All other resistors are strictly increasing.

(iii) All solutions are bounded.

Proof. Consider each parallel combination of a capacitor and a non-monotonic resistor as a composite branch and extract it across an external port. Let the remaining n-port \mathcal{N} be described by

$$\frac{d}{dt} \mathcal{J}_1 = \frac{\partial}{\partial \mathcal{J}_1} \mathcal{G}'(\mathcal{J}_1, \mathcal{J}_2)$$

$$\frac{\partial}{\partial \mathcal{J}_2} \mathcal{G}'(\mathcal{J}_1, \mathcal{J}_2) = 0$$

as was defined in (7) and (8). Observe that we have added a "prime" to \mathcal{G} in order to distinguish it from the overall resistive n-port which include the non-monotonic resistors. Hence $\mathcal{G}(\mathcal{J}_1, \mathcal{J}_2) = \mathcal{G}'(\mathcal{J}_1, \mathcal{J}_2) + \hat{a}(\mathcal{J}_1)$ where $\hat{a}(\mathcal{J}_1)$ is the co-content of the non-monotonic resistors across the capacitors. Equations (7) and (8) now assume the form

$$C \frac{d}{dt} \mathcal{V}_1 = -\frac{\partial}{\partial \mathcal{J}_1} \mathcal{G}(\mathcal{J}_1, \mathcal{J}_2)$$
where the second equation involves only strictly-increasing resistors. Hence the matrix \(M \) in Lemma 2 is nonsingular and the network is locally solvable. It follows from Theorem 4 that the network is completely stable.

\[\frac{\partial}{\partial V J_2} \hat{G} (V J_1, V J_2) = \frac{\partial}{\partial V J_2} \hat{G} (V J_1, V J_2) = 0 \]

Remark.

The concept of local solvability is introduced to ensure the existence of unique trajectories for all times. If this condition is not satisfied, a trajectory may not be defined beyond some finite time. To see this consider the simple circuit shown in Fig. 3(a). Let \(C = 1 \, \text{F} \), \(R_2 = -1 \, \Omega \) and let \(R_3 \) be defined by \(i_3 = V_3^{1/3} \). Choosing \(\{C, R_2\} \) as \(J_1 \), we obtain the equations:

\[
\begin{align*}
\dot{V}_1 &= V_2, \\
V_2^3 - V_2 + V_1 &= 0.
\end{align*}
\]

Observe that this circuit is not locally solvable at \(V_2 = \pm 1/\sqrt{3} \). Indeed, the condition of Lemma 2 is violated at these two points. To investigate what happens when a trajectory reaches these points, we plot the second equation \(V_1 = V_2 - V_2^3 \) in Fig. 3(b). Observe that since \(\dot{V}_1 > 0 \) in the upper half plane and \(\dot{V}_1 < 0 \) in the lower half plane, the trajectory in the vicinity of points A and B must converge toward these points in finite time \(t^* \). Consequently an impasse occurs whenever a trajectory arrives at either A or B and the solution no longer exists for \(t > t^* \). To overcome this dilemma, one could either modify the circuit model by introducing a parasitic in-
ductor in series with the resistor R_3, thereby increasing the order of the state equation [11], or one could postulate a jump hypothesis [12] and obtain a discontinuous oscillation. In either case, the circuit oscillates and is therefore not completely stable.

A dual of Theorem 4 can be easily formulated when inductors are the only energy storage elements. In particular, let \mathcal{N} be a network containing inductors, c.c. resistors and constant voltage sources. Assume the inductors do not form cut sets among themselves. Let \mathcal{L}_1 be the set of inductor branches and let $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2$ be a cotree. Denote the corresponding tree by J. Then the pseudo-content $G(\frac{1}{\mathcal{L}_1}, \frac{1}{\mathcal{L}_2})$ of the n-port N obtained by extracting all cotree branches as external current ports is defined by [3]

$$G(\frac{1}{\mathcal{L}_1}, \frac{1}{\mathcal{L}_2}) = G(J, \frac{1}{\mathcal{L}_2})$$

where $B = [\bar{B}, I]$ is the fundamental loop matrix of \mathcal{N}. We will state the dual theorem without proof:

Theorem 5. The non-complete nonlinear RL network \mathcal{N} described above is completely stable if the following conditions are satisfied:

(i) The incremental inductance matrix $L(\frac{1}{\mathcal{L}_2})$ is symmetric and positive definite.

(ii) The network is locally solvable for $\frac{1}{\mathcal{L}_2}$ as a function of $\frac{1}{\mathcal{L}_1}$.

(iii) All solutions are bounded.
Remark. In Theorem 4 and 5 we assume there are no loops of capacitors and no cut sets of inductors, respectively. In case these conditions are not satisfied, techniques are available for eliminating any such loops or cut sets. See [9] for details.

3.2 Complete Stability of RLC Networks.

Let us now consider networks which contain both capacitors and inductors. For simplicity, assume first that the resistors are uncoupled, and that there are neither capacitor loops nor inductor cut sets. Let us first assign all capacitive branches (i.e. composite branches of capacitors with v.c. resistors in parallel) to a subtree \mathcal{J}_1 and all inductive branches (i.e. composite branches of inductors with c.c. resistors in series) to a subcotree \mathcal{L}_2. To complete the tree, we add as many v.c. resistors as tree branches, forming another subtree \mathcal{J}_2. The remaining subset of v.c. resistors which cannot be included in the tree (because they formed loops with branches in \mathcal{J}_1 and \mathcal{J}_2) must be assigned as elements of the cotree \mathcal{L} and will be denoted by \mathcal{L}_1. Let us next fill up the tree with c.c. resistors and denote them by \mathcal{J}_3 so that $\mathcal{J} = \mathcal{J}_1 \cup \mathcal{J}_2 \cup \mathcal{J}_3$. Whatever branches that have not yet been assigned are necessarily c.c. resistors which we denote by \mathcal{L}_3. Clearly $\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_2 \cup \mathcal{L}_3$. To summarize, $\mathcal{J}_1 = \{\text{capacitive composite tree branches}\}$, $\mathcal{J}_2 = \{\text{v.c. tree branches}\}$, $\mathcal{J}_3 = \{\text{c.c. tree branches}\}$, $\mathcal{L}_1 = \{\text{v.c. cotree branches}\}$. $\mathcal{L}_2 = \{\text{inductive composite co-tree branches}\}$ and $\mathcal{L}_3 = \{\text{c.c. cotree branches}\}$. The fundamental loop matrix B is then given by:
Upon defining the pseudo-hybrid content \(\mathcal{H} \) by [3]

\[
\mathcal{H}(v_1, i^*_2, v_2, i^*_3) = \hat{G} \left(-B_1 v_1 - B_2 v_2 - B_3 v_3 \right) + G^* \left(i^*_3 \right) + \hat{G} \left(v_1 \right) + G^* \left(i^*_2 \right) + \hat{G} \left(v_2 \right) + G^* \left(i^*_2 \right) + \hat{G} \left(v_3 \right) + G^* \left(i^*_3 \right) + i^*_2 \left(B_2 v_1 + B_3 v_2 \right) + i^*_3 \left(B_3 v_1 + B_3 v_2 \right)
\]

we obtain the following system of differential-algebraic equations for the network \(\mathcal{N} \):

\[
\begin{align*}
C(v_1) \frac{d}{dt} v_1 &= - \frac{\partial}{\partial v_1} \mathcal{H} \\
L(i^*_2) \frac{d}{dt} i^*_2 &= - \frac{\partial}{\partial i^*_2} \mathcal{H}
\end{align*}
\]

\[
\frac{\partial}{\partial v_2} \mathcal{H} = 0 \quad \text{and} \quad \frac{\partial}{\partial i^*_3} \mathcal{H} = 0
\]

As will be shown latter, the resistors in \(\mathcal{J}_1 \cup \mathcal{J}_2 \cup \mathcal{L}_1 \) and those in \(\mathcal{J}_3 \) respectively, are allowed to be coupled to each other. In this case, the partial sum \(\hat{G}_1 + \hat{G}_2 + \hat{G}_3 \) in \(\mathcal{H} \) will be replaced by

\[
\hat{G}_1 \cup \mathcal{J}_2 \cup \mathcal{L}_1 \triangleq \hat{G}(v_1, v_2, v_3) \bigg|_{v_1 = -B_1 v_1 - B_2 v_2 - B_3 v_3, v_2 = -B_1 v_1 - B_2 v_2, v_3 = -B_3 v_1 - B_3 v_2}
\]
Theorem 6. Let \mathcal{N} be a non-complete nonlinear RLC network containing uncoupled two-terminal resistors described by (9), where the incremental capacitance matrix $\mathcal{C}(\mathcal{J}_1)$ and the incremental inductance matrix $\mathcal{L}(\mathcal{J}_2)$ are assumed to be symmetric (not necessarily diagonal) and positive definite. Then \mathcal{N} is completely stable if the following conditions are satisfied:

(i) There exists a tree $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2 \cup \mathcal{T}_3$ as defined above, where \mathcal{T}_3 consists of linear resistors which may be coupled to each other; i.e., let $\mathcal{V}_{\mathcal{T}_3} = R \mathcal{J}_3$, where R is a symmetric and positive definite constant matrix.

(ii) All elements in \mathcal{T}_3 and all elements in series with the inductors in \mathcal{T}_2 are constant voltage sources, i.e. $\mathcal{V}_{\mathcal{T}_2} = E$ and $\mathcal{V}_{\mathcal{T}_3} = E$. Furthermore, $\begin{bmatrix} E & \mathcal{B}_{\mathcal{T}_2} \\ \mathcal{E}_{\mathcal{T}_3} & \mathcal{E}_{\mathcal{T}_3} \end{bmatrix} \in \mathcal{R} \left(\begin{bmatrix} \mathcal{B}_{\mathcal{T}_2} \\ \mathcal{B}_{\mathcal{T}_3} \end{bmatrix} \right)$.

(iii) $\mathcal{B}_{\mathcal{T}_2} = 0$ and $\mathcal{B}_{\mathcal{T}_3} = 0$.

(iv) $\mathcal{R} \left(\begin{bmatrix} \mathcal{B}_{\mathcal{T}_2} \\ \mathcal{B}_{\mathcal{T}_3} \end{bmatrix} \right) \subseteq \mathcal{R} \left(\begin{bmatrix} \mathcal{B}_{\mathcal{T}_2} \\ \mathcal{B}_{\mathcal{T}_3} \end{bmatrix} \right)$.

(v) Let $R^T \mathcal{A} = \begin{bmatrix} \mathcal{B}_{\mathcal{T}_2} \\ \mathcal{B}_{\mathcal{T}_3} \end{bmatrix}$ and let $R^T \mathcal{J}_{\mathcal{T}} = \begin{bmatrix} \mathcal{B}^T_{\mathcal{T}_2} \\ \mathcal{B}^T_{\mathcal{T}_3} \end{bmatrix}$.

Further, $\mathcal{R}^T \mathcal{A} = \begin{bmatrix} \mathcal{B}_{\mathcal{T}_2} \\ \mathcal{B}_{\mathcal{T}_3} \end{bmatrix}$.
as follow:

\[
R^I = \begin{bmatrix}
R_{11}^I & R_{12}^I \\
R_{21}^I & R_{22}^I
\end{bmatrix}
\]

where \(R_{11}^I \) is of dimension \(|L_2| \times |L_2| \), then

\[
\|K\|^2 \leq \left\| \frac{1}{2} \begin{bmatrix}
R_{11}^I \\
-1
\end{bmatrix} B_{I_2} J_1 \right\|^2 < 1 - \delta, \text{ for some } \delta > 0.
\]

(vi) The system is locally solvable and all solutions are bounded.

Proof. See Appendix A-4.

Example 2. Consider the circuit shown in Fig. 4(a), where \(R_3, R_4, \) and \(R_5 \) are v.c. resistors. Since \(R_1 \) is linear, shift \(E \) by v-shift theorem as in Fig. 4(b). Let \(J_1 = \{C-R_5\}, J_2 = \{R_3\}, J_3 = \{R_1, R_2\} \) so that

\[
J = J_1 \cup J_2 \cup J_3 \text{ is a tree. The associated cotree } L = L_1 \cup L_2 \cup L_3
\]

is partitioned as follow: \(L_1 = \{R_4\}, L_2 = \{L-E_1\} \) and \(L_3 = \{E_2\} \).

The fundamental loop matrix \(B \) is given by:

\[
B = \begin{bmatrix}
1 & -1 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & 1 \\
1 & -1 & 0 & 1 & 0
\end{bmatrix}
\]

It is easily verified that conditions (i) to (v) in Theorem 6 are satisfied.

\footnote{Elements in \{\ldots\} are written in the order of their branch numbers, thus \(R_1 \) is numbered prior to \(R_2 \).}
Hence, the circuit is completely stable if the system is locally solvable and if all solutions are bounded. Notice that in this case \(B = 0 \) and condition (v) is automatically satisfied by default.

To illustrate the significance of condition (v), consider the next example.

Example 3. Consider the network shown in Fig. 4(c), where \(R_3, R_4, \) and \(R_5 \) are non-monotonic v.c. resistors. Following the tree selection algorithm described earlier, we choose \(J_1 = \{C_1, C_2 - R_5\}, J_2 = \{R_3\} \) and \(J_3 = \{R_1, R_2\} \) so that \(J = J_1 \cup J_2 \cup J_3 \) formed a tree. Partition the associated cotree \(\mathcal{L} = \mathcal{L}_1 \cup \mathcal{L}_3 \cup \mathcal{L}_3 \) with \(\mathcal{L}_1 = \{R_4\}, \mathcal{L}_2 = \{L_1 - E, L_2\} \) and \(\mathcal{L}_3 = \emptyset \). The fundamental loop matrix \(B \) is given by

\[
\begin{bmatrix}
1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & -1 & 1 \\
0 & 0 & 1 & 1 & -1 & 0 & 1 & 0
\end{bmatrix}
\]

Observe that conditions (i), (ii), and (iii) of Theorem 6 are satisfied by inspection. Similarly, condition (iv) is also satisfied upon application of the following Lemma 3. To check condition (v) the following calculations are needed:

\[
\begin{bmatrix}
-1 & 1 \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
R_1 \\
R_2
\end{bmatrix}
\begin{bmatrix}
-1 & 1 \\
1 & 0
\end{bmatrix} =
\begin{bmatrix}
R_1 + R_2 & R_1 \\
R_1 & R_1
\end{bmatrix}
\]

\[
R_{11}^{-1} = \frac{1}{R_1 R_2} \begin{bmatrix}
R_1 & -R_1 \\
-R_1 & R_1 + R_2
\end{bmatrix}
\]
\[K = \frac{1}{R_1 R_2} \begin{bmatrix} -R_1 C_1^{-1/2} \frac{1}{L_1} & 0 \\ (R_1 + R_2) L_2 \frac{1/2}{C_1} & -R_2 L_2 \frac{1/2}{C_2} \end{bmatrix} \]

By requiring each element in \(K \) to be less than \(1/2 \) in magnitude so that \(\| K \| < 1 \), we obtain the following upper bounds for the two inductors \(L_1 \) and \(L_2 \) in order for condition (v) to hold:

\[L_1 < \frac{1}{4} \frac{R_2^2}{R_1 C_1} \]

\[L_2 < \min \left\{ \frac{1}{4} \frac{R_2^2}{R_1 C_2}, \frac{1}{4} \left(\frac{R_2}{R_1 + R_2} \right)^2 C_1 \right\} \]

It follows from Theorem 6 that if the above parameter relations are satisfied, then the network of Fig. 4(c) is completely stable provided condition (vi) is also satisfied. Observe that condition (vi) is satisfied by most networks of practical interest and can be checked using the results in [3]. It is condition (v), however, which is of main practical importance because it furnishes a quantitative upper bound on the values of the linear inductors in terms of the values of the linear capacitors and resistors.

In case the resistors in \(R_1 \cup R_2 \cup L \), or those in \(R_3 \), are coupled to each other, we obtain the following direct extension of Theorem 6.

Theorem 7. Let \(\mathcal{N} \) be a non-complete nonlinear RLC network as described above. The linear resistors in \(R_3 \) may be coupled to each other provided \(R_3 \) is symmetric. The nonlinear resistors in \(R_1 \cup R_2 \cup L \) may be coupled to each other so long the coupling is reciprocal. Then \(\mathcal{N} \) is completely stable if all conditions in Theorem 6 are satisfied.

Remarks.

1. Dual versions of Theorems 6 and 7 can be obtained by following the same
procedure used in driving Theorem 2' upon interchanging the roles of capacitors and inductors.

2. Conditions on the topology of the network \mathcal{N} similar to those in Lemma 1 which ensure that (iv) is true can be obtained in a similar fashion:

Lemma 3. Let \mathcal{N} be a connected network which has been partitioned into $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \mathcal{I}_1, \mathcal{I}_2,$ and \mathcal{I}_3 in accordance with the preceding rules.

(i) Let \mathcal{N}' be the sub-network obtained by shrinking (short-circuiting) all branches except those belonging to \mathcal{I}_3. Let b' and n' be the number of branches and nodes in \mathcal{N}'; respectively, so that \mathcal{N}' has $b' - n' + 1$ independent loops. Then the rows of $\begin{bmatrix} B_{2} & \mathcal{I}_3 \\ B_{3} & \mathcal{I}_3 \end{bmatrix}$ are linearly independent if, and only if, $b' - n' + 1 = |\mathcal{L}_2| + |\mathcal{L}_3|$, where $|\mathcal{L}_2|$ and $|\mathcal{L}_3|$ denote the original number of branches in \mathcal{L}_2 and \mathcal{L}_3, respectively. Equivalently, let \mathcal{N}'' be the sub-network obtained by shrinking all branches in $\mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{L}_1$. Then the rows of $\begin{bmatrix} B_{2} & \mathcal{I}_3 \\ B_{3} & \mathcal{I}_3 \end{bmatrix}$ are linearly independent if, and only if, \mathcal{N}'' contains no loop formed exclusively of branches belonging to $\mathcal{L}_2 \cup \mathcal{L}_3$.

(ii) \(\mathcal{R} \left(\begin{bmatrix} B_{2} & \mathcal{I}_1 \\ B_{3} & \mathcal{I}_1 \end{bmatrix} \right) \subset \mathcal{R} \left(\begin{bmatrix} B_{2} & \mathcal{I}_3 \\ B_{3} & \mathcal{I}_3 \end{bmatrix} \right) \) if, and only if, upon open-circuiting all branches in \mathcal{L}_1 and \mathcal{I}_3, the current $\begin{bmatrix} \mathcal{I}_1 \\ \mathcal{I}_2 \end{bmatrix} = 0$.

-35-
identically, i.e., branches in J_1 and J_2 are not contained in any loop in the reduced network.

Proof. The proof is quite similar to that of Lemma 1 and is therefore omitted.

IV. CONCLUDING REMARKS

A remark concerning the relationship between this paper and a recent paper by Chua and Green is in order: While Theorems 6 and 7 of [10] also deal with complete stability, our results in this paper are much more general in the sense that the networks considered in [10] are essentially restricted to two-element kind RC or RL networks having global state equations. In this paper we deal with RLC networks and their state equations need only exist locally through each point in \mathbb{R}^n.

It is important to observe that the local solvability hypothesis guarantees a unique trajectory through each point $(x, y) \in \mathbb{R}^n_x \times \mathbb{R}^n_y$ but not necessarily through each point $x \in \mathbb{R}^n_x$. In fact, for a locally solvable network which cannot be described by a global state equation, each point $x \in \mathbb{R}^n_x$ may correspond to several points $\{y_a, y_b, \ldots, y_m\} \subset \mathbb{R}^n_y$, each of which satisfying the implicit algebraic equation. From the computer-simulation point of view [13], this situation is equivalent to the existence of multiple dc solutions when the capacitors are replaced by dc voltage sources and the inductors are replaced by dc current sources. In this case, the point y_k which the internal equation solution algorithm—usually a modified Newton-Raphson method—converged to will be selected by the computer. The local solvability hypothesis will then guarantee that the numerical integration process can proceed without ever reaching an
"impasse point" of the sort exemplified in Fig. 4. In other words, the local solvability hypothesis is the weakest requirement that one needs to ensure that a given network may be meaningfully simulated on a computer regardless of the initial condition.

Each of the complete stability results presented in the preceding sections requires several conditions to be satisfied. Most of these conditions are topological in nature and are directly verifiable. The condition involving the norm of a matrix, however, is quantitative in nature and has to be calculated for each specific network. This quantitative condition is the one which gives rise to an upper bound on the value of the inductor parameters (resp., capacitor parameters) as a function of the capacitor (resp., inductor) and resistor parameters, and are therefore extremely useful.

Notwithstanding the complexities of the hypotheses of the theorems some of them are in fact the best possible that can be obtained for the class of networks under consideration. One should recognize that complete stability is a very strong qualitative property not possessed by many practical networks. Consequently any theorem which guarantees complete stability must necessarily impose rather severe conditions. The subtle problem here is to ensure that the conditions are no more severe than are necessary. For otherwise, a theorem on complete stability may turn out to be just a theorem on global asymptotic stability where the severity of the hypothesis forces the network to have only one equilibrium state [10]. When we talk about complete stability in this paper, however, we are primarily concerned with the more interesting cases where the network can possess multiple equilibrium states.
Finally we remark that our results in this paper are restricted exclusively to networks containing reciprocal elements. Generalization of these results to non-reciprocal dynamic networks having more than one equilibrium states remain an outstanding open problem.

ACKNOWLEDGEMENT

The authors would like to thank Professor A. San-Giovanni Vincentelli and Mr. L. K. Chen, W. Kim, and S. Suwannukul for their criticisms and suggestions on an earlier version of this paper.
APPENDICES

A-1. Physical Interpretation of $\mathbf{L}^T \mathbf{R} \mathbf{L} + \mathbf{V} \mathbf{J}_1$

Consider the network \mathcal{N} shown in Fig. 5(a), where $\mathcal{N}_1 = \mathcal{L}_1 \cup \mathcal{J}_1$ and $\mathcal{N}_2 = \mathcal{L}_2 \cup \mathcal{J}_2$. Partition the set of nodes of \mathcal{N} into three subsets S_1, S_2 and S_3, where S_1 is the set of all nodes in \mathcal{N}_1 which are not also nodes of \mathcal{N}_2, S_2 is the set of all nodes in \mathcal{N}_2 which are not also nodes of \mathcal{N}_1, and S_3 is the set of all nodes which are common to both \mathcal{N}_1 and \mathcal{N}_2. The reduced incidence matrix \mathbf{A} of \mathcal{N} is of the form

$$\mathbf{A} = \begin{bmatrix}
\mathbf{A}_{\mathcal{L}_1}(S_1) & 0 & \mathbf{A}_{\mathcal{J}_1}(S_1) & 0 \\
0 & \mathbf{A}_{\mathcal{L}_2}(S_2) & 0 & \mathbf{A}_{\mathcal{J}_2}(S_2) \\
\mathbf{A}_{\mathcal{L}_1}(S_3) & \mathbf{A}_{\mathcal{L}_2}(S_3) & \mathbf{A}_{\mathcal{J}_1}(S_3) & \mathbf{A}_{\mathcal{J}_2}(S_3)
\end{bmatrix}
$$

where $\mathbf{A}_{\mathcal{L}_1}(S_1)$ is the part of $\mathbf{A}_{\mathcal{L}_1}$ which is connected to the nodes in S_1, etc. Notice that since \mathcal{N} can be torn into two separate parts by removing all nodes in S_3, we have $\mathbf{A}_{\mathcal{L}_1}(S_1) = \mathbf{0}$, $\mathbf{A}_{\mathcal{L}_2}(S_2) = \mathbf{0}$, $\mathbf{A}_{\mathcal{J}_1}(S_1) = \mathbf{0}$ and $\mathbf{A}_{\mathcal{J}_2}(S_2) = \mathbf{0}$.

Denoting the node voltages of \mathcal{N} with respect to an arbitrary datum node in either S_1 or S_2 by v_n and the part of v_n associated with the nodes in S_3 by $v_n(S_3)$, the instantaneous power W delivered from \mathcal{N}_2 to \mathcal{N}_1 is given by
where \(i(S) \) is the "net-current" vector flowing from \(\mathcal{N}_2 \) to \(\mathcal{N}_1 \) through the corresponding nodes in \(S \). This current vector can be visualized as follow. Let us split each node in \(S \) into two "half-nodes" connected by a short circuit as shown in Fig. 5 (b). The net-current vector \(i(S) \) is defined as the currents flowing from the "primed" nodes to the "double primed" nodes. We now make the following two observations:

Observation 1.

The net-current vector \(i(S) \) is given explicitly by

\[
i(S) = A_{12} i(S) B_{12}^T \left(J_1^T J_1 \right)^{-1} J_2^T
\]

where \(A_{12} \) is defined in Sec. 2.1 (\(A \) and \(B \) are written with respect to the same branch labellings).

Proof. Let us consider first the matrix \(T = A_{12} B_{12}^T A_{12}^T \). Consider a typical row, say the \(\ell \)-th row of \(B_{12}^T A_{12}^T \), written \(B_{12}^T A_{12}^T __ \ell \). This row designates a path consisting of branches in \(J_1 \) which is part of the fundamental loop associated with branch \(l \) in \(J_2 \). Call this path \(p_\ell \). Traversing \(p_\ell \) in the direction of branch \(l \), we can classify the nodes encountered which are also in \(S \) into three categories: (i) the starting node \(n_s \in S \) at which we enter \(\mathcal{N}_1 \) from \(\mathcal{N}_2 \). (ii) the final node \(n_f \in S \) at which we leave \(\mathcal{N}_1 \) and enter \(\mathcal{N}_2 \) again. (iii) an intermediate node \(n_i \in S \) which is neither the starting node nor the final node but is only being passed through. (Traversing through this node would bring us back into \(\mathcal{N}_1 \)). Observe that while \(n_s \) and \(n_f \) are unique, there may be more than one inter-
mediate nodes.

To clarify the general statements to be made in the following proof, consider the network shown in Fig. 5(c) along with its partitioned network in Fig. 5(d) relative to the choice of \(\mathcal{J}_1 = \{C_1, C_2, C_3\} \), \(\mathcal{J}_2 = \{R_2\} \), \(\mathcal{L}_1 = \{R_1\} \), and \(\mathcal{L}_2 = \{L_1, L_2\} \). Observe that \(\mathcal{N}_1 = \{R_1, C_1, C_2, C_3\} \), \(\mathcal{N}_2 = \{L_1, L_2, R_2\} \), and hence \(S_1 = \{n_5\} \), \(S_2 = \{n_4\} \), and \(S_3 = \{n_1, n_2, n_3\} \) where \(n_k \) denotes node \(k \). The two paths \(\ell_1 \) and \(\ell_2 \) corresponding to the two fundamental loops associated with links \(L_1 \) and \(L_2 \) are given respectively by

\[
\ell_1 = \{L_1, n_1, C_1, n_5, C_2, n_2, C_3, n_3, R_2, n_4\} \quad \text{and} \quad \ell_2 = \{L_2, n_2, C_3, n_3, R_2, n_4\}.
\]

The portions of these paths which correspond to \(B_{2\mathcal{J}_1} \) are given respectively by \(p_1(B_{2\mathcal{J}_1}) = \{n_1, C_1, n_5, C_2, n_2, C_3, n_3\} \) and \(p_2(B_{2\mathcal{J}_1}) = \{n_2, C_3, n_3\} \). Hence the starting node of \(p_1 \) is \(n_1 \), its final node is \(n_3 \), while \(n_2 \in S_3 \) is an intermediate node.

Before we discuss the meaning of each row of \(T \), let us also consider the matrix \(A^T(S_3) \). Each column of \(A^T(S_3) \) corresponds to one node in \(S_3 \) and the nonzero components in that column (either 1 or -1) represent the branches in \(\mathcal{J}_1 \) which are incident with the node. The sign convention is the usual one: +1 for branches incident from (leaving) the node and -1 for branches incident to (entering) the node.

Let us now consider the path associated with \((B_{2\mathcal{J}_1})_k \), i.e., \(p_k \). Let \(b_s \in \mathcal{J}_1 \) be the branch in \(p_k \) connected to the starting node \(n_s \). Then we have \((B_{2\mathcal{J}_1})_{\ell, b_s} = \pm 1 \) and \((A^T(S_3))_{b_s, n_s} = \pm 1 \), respectively, where \((B_{2\mathcal{J}_1})_{\ell, b_s} \) denotes the \((\ell, b_s)\) component of the matrix \(B_{2\mathcal{J}_1} \), etc.

In this case, \((B_{2\mathcal{J}_1})_{\ell, b_s} \cdot (A^T(S_3))_{b_s, n_s} = 1 \). Similarly, let \(b_f \) be the branch in \(p_k \) connected to the final node \(n_f \). We then have \((B_{2\mathcal{J}_1})_{\ell, b_f} = \pm 1 \).
and $\left(A^T \mathcal{J}_1 \right)_{b_f, n_f} = \mp 1$ respectively. In this case, $\left(B \mathcal{J}_1 \right)_{b', n_f}$

$\left(A^T \mathcal{J}_1 \right)_{b_f, n_f} = -1$. Finally, let $b'_m \in \mathcal{J}_1$ and $b''_m \in \mathcal{J}_1$ be the branches

in p_ℓ such that we pass b'_m, n_m, b''_m in that order in the traversal of the

path, where $n_m \in S_3$ belongs to category (iii) defined above. In this case, we have:

Here $\left(B \mathcal{J}_1 \right)_{b', n_f} \cdot \left(A^T \mathcal{J}_1 \right)_{b'_m, n_{m}} + \left(B \mathcal{J}_1 \right)_{b''_m, n_{m}} \cdot \left(A^T \mathcal{J}_1 \right)_{b''_m, n_{m}} = 0.$

Similarly, all product terms of the form $\left(B \mathcal{J}_1 \right)_{b, n} \cdot \left(A^T \mathcal{J}_1 \right)_{b, n}$

$n \in S_3$ other than those mentioned above are equal to zero. Hence the elements in the ℓ-th row of $\mathcal{T} = \left(B \mathcal{J}_1 \right)_{b, n} \cdot \left(A^T \mathcal{J}_1 \right)_{b, n}$ are given by

$$
T_{\ell, n_s} = \sum_{b \in \mathcal{J}_1} \left(B \mathcal{J}_1 \right)_{b, \ell} \cdot \left(A^T \mathcal{J}_1 \right)_{b, n_s}
$$

$= \left(B \mathcal{J}_1 \right)_{b, \ell} \cdot \left(A^T \mathcal{J}_1 \right)_{b, s} \cdot n_s = 1,$

$$
T_{\ell, n_f} = \left(B \mathcal{J}_1 \right)_{b, \ell} \cdot \left(A^T \mathcal{J}_1 \right)_{b, n_f} = -1,$

$$
T_{\ell, n_m} = \left(B \mathcal{J}_1 \right)_{b', \ell} \left(A^T \mathcal{J}_1 \right)_{b'_m, n_m} + \left(B \mathcal{J}_1 \right)_{b''_m, \ell} \left(A^T \mathcal{J}_1 \right)_{b''_m, n_m} = 0,
$$

and $T_{\ell, n} = 0$ for all $n \in p_\ell, n \neq n_s, n_f, n_m$.

Thus, each row of \mathcal{T} has only two nonzero elements +1 and -1.
The +1 corresponds to the starting node \(n_s \) and the -1 corresponds to the final node \(n_f \). For example, referring to our earlier network shown in Fig. 5(d), we have

\[
\begin{align*}
B_{21} &= \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix} L_1, \\
A_{21} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \quad \text{and,}
\end{align*}
\]

Referring to Figs. 5(b) and (d), we observe that each element of \(T \) corresponding to each node \(n_k \in S_3 \) can be interpreted as the current flowing in the short-circuit branch from right to left. Hence, in general,

\[
\mathbf{i}(S_3) = T_{21} \mathbf{J}_1 A_{21} = A_{21} \mathbf{J}_1 B_{21} \mathbf{J}_1 \mathbf{i}_{21} = A_{21} \mathbf{J}_1 B_{21} \mathbf{J}_1 \mathbf{i}_{21} \text{ is equal to the net-current vector flowing from } \mathcal{N}_2 \text{ into } \mathcal{N}_1 \text{ through the common nodes in } S_3. \]

This concludes our proof of observation 1.

Let us now proceed to prove that \(w = \frac{T_{21} B_{21} \mathbf{J}_1}{A_{21} \mathbf{J}_1} v \). Observe that since \(A_{21} \mathbf{J}_1(S_2) = 0 \), we can write

\[
\begin{align*}
\frac{T_{21} B_{21} \mathbf{J}_1}{A_{21} \mathbf{J}_1} v &= \frac{T_{21} B_{21} \mathbf{J}_1}{A_{21} \mathbf{J}_1} \left(A_{21} \mathbf{J}_1 v_n \right) \\
&= \frac{T_{21} B_{21} \mathbf{J}_1}{A_{21} \mathbf{J}_1} \left[A_{21} \mathbf{J}_1 v_n(S_1) + A_{21} \mathbf{J}_1 v_n(S_3) \right] \\
&= \frac{T_{21} B_{21} \mathbf{J}_1}{A_{21} \mathbf{J}_1} \left[A_{21} \mathbf{J}_1 v_n(S_1) + A_{21} \mathbf{J}_1 v_n(S_3) \right]
\end{align*}
\]

where \(v_n(S_1) \) and \(v_n(S_3) \) denotes the subvectors of \(v_n \) corresponding to nodes.
in S_1 and S_3, respectively. We now pause to prove the following:

Observation 2.

$$M = A^T \mathcal{J}_{2,1} (S_1) = 0$$ \hspace{1cm} (A-5)

Proof. Consider the (ℓ, n_k) element

$$[M]_{\ell, n_k} = \sum_{b \in \mathcal{J}_1} \left(B_{\mathcal{J}_{2,1}} \right)_{\ell, b} \left(A^T \mathcal{J}_{1} (S_1) \right)_{b, n_k}$$

$$= \sum_{b \in \mathcal{J}_1} \left(B_{\mathcal{J}_{2,1}} \right)_{\ell, b} \left(A^T \mathcal{J}_{1} (S_1) \right)_{n_k, b}$$

where $\ell \in \mathcal{L}_2$, $n_k \in S_1$. Using the same interpretation for elements of $B_{\mathcal{J}_{2,1}}^T (S_3)$ given in our earlier proof of Observation 1, we note that the product $\left(B_{\mathcal{J}_{2,1}} \right)_{\ell, b} \left(A^T \mathcal{J}_{1} (S_1) \right)_{n_k, b}$ is nonzero only if branch b is both in the path p_{ℓ} and incident with node n_k. Since $n_k \in S_1$, n_k is an interior node of p_{ℓ}. Therefore, there must be another branch $b' \in p_{\ell}$ which is also incident with n_k. Furthermore, $\left(B_{\mathcal{J}_{2,1}} \right)_{\ell, b'} \left(A^T \mathcal{J}_{1} (S_1) \right)_{n_k, b'}$ is of opposite sign as $\left(B_{\mathcal{J}_{2,1}} \right)_{\ell, b} \left(A^T \mathcal{J}_{1} (S_1) \right)_{n_k, b}$. This proves $M = 0$.

Finally, substituting (A-5) into (A-4) and making use of (A-3), we obtain

$$\frac{1}{i} \mathcal{J}_{2,1} ^T \mathcal{J}_{1} = \frac{1}{i} \mathcal{J}_{2,1} ^T (S_3) \mathcal{v}_n (S_3) = \frac{1}{i} (S_3) \mathcal{v}_n (S_3) = W.$$ \hspace{1cm} (A-6)

Noting now that $\frac{1}{i} = -\frac{1}{i}$, we conclude that the topological term $\frac{1}{i} \mathcal{J}_{2,1} ^T \mathcal{J}_{1}$, in the hybrid content $H \left(\mathcal{J}_{1}, \frac{1}{i} \mathcal{J}_{2} \right)$ can be interpreted as the instantaneous power delivered from \mathcal{N}_1 into \mathcal{N}_2 through the common nodes in S_3.

A-2. Complete Network with Ideal Transformers

Suppose \(\mathcal{N} \) is a complete network and has been partitioned into \(\mathcal{L}_1 \), \(\mathcal{L}_2 \), \(\mathcal{J}_1 \), and \(\mathcal{J}_2 \) as described in Sec. II. Let \(N_T \) be an ideal 2-port transformer as shown in Fig. 6(a) and let this transformer be represented as two coupled 2-terminal elements as shown in Fig. 6(b) with the coupling relationship given by

\[
V_1 = kV_2, \quad I_2 = -ki_1
\]

(A-7)

where \(k \) is the transformer turns-ratio. Notice that an ideal transformer is neither v.c. nor c.c. However, since \(i_1V_1 + i_2V_2 = 0 \), it is nonenergetic [8]. Now suppose each of the two windings of the transformer is added across an arbitrary pair of nodes belonging to branches in \(\mathcal{J}_1 \). Then the two corresponding branches must be added to the original graph, each of which forms a loop exclusively with branches in \(\mathcal{J}_1 \). In other words, the augmented network remains complete with the number of branches in \(\mathcal{L}_2 \) increased by two. Now observe that the equivalent transformer representation in Fig. 6(b) can be replaced by two independent current sources as shown in Fig. 6(c) with the additional constraint \(v_1 = k v_2 \) between the terminal voltages \(v_1 \) and \(v_2 \). Since the co-content of each independent current source is simply equal to \(\int_0^{v} i_k dV_k = i_k V_k \), the total co-content of the two current sources add up to zero in view of the nonenergetic property of the transformer. The same argument can be used to show that when there are more than one transformer, or when the transformers have more than two ports, the total co-content of each transformer is zero. In other words, so long as all ports of the ideal n-port transformers can be augmented with
the branches in \mathcal{L}_1, the overall network remains complete and the hybrid content $H(\mathcal{L}_1, \mathcal{L}_2)$ defined by (3) in Sec. II remains invariant. A dual property of course also holds when all ports can be augmented with the branches in \mathcal{J}_2.

The invariance of the hybrid content makes use of only the current relation of the ideal transformers. The voltage relation has not been used so far and must therefore be considered as another independent equation. Now since, by construction, all elements in \mathcal{L}_1 must necessarily form loops with elements in \mathcal{J}_1, each voltage relation introduces a linear constraint among the voltage state variables $V = v$. This constraint is analogous to the presence of a loop of capacitors and can therefore be used to eliminate one of the "n" state variables [9]. The presence of an ideal 2-port transformer with both windings in \mathcal{L}_1 therefore leads to a reduced order state equation. The interesting question to pose at this point is whether this can still be expressed in terms of the gradient of a new potential function, and if so, whether any qualitative property of the original network is preserved. The answer turns out to be yes in both cases. To derive this property, let us assume for simplicity that only capacitors (no inductors) are present and that there is only one ideal 2-port transformer to be augmented in \mathcal{L}_1. The same property can be proved to hold in the general case but the notations becomes rather unwieldy.

Let n be the number of tree (capacitor) voltages of \mathcal{N}, with the tree voltages $v' = [v_1, v_2, \cdots, v_n] \in \mathbb{R}^n$. The presence of the transformer will eliminate one tree branch voltage, say v_n. To be specific, assume the branch associated with v_n forms a loop with the second port of the transformer so that the voltage relationship $v_1 = kv_2$ leads to a linear
constraint \(v_1 = a^T v = k [b^T, 1] \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{n-1} \\ v_n \end{bmatrix} \), where \(v = [v_1, v_2, \ldots, v_{n-1}] \) is the reduced set of independent variables alluded to earlier, and where \(a, b \) are column vectors consisting of 1's and 0's. Now, let us replace the branches of the transformer by two independent current sources as shown in Fig. 6(c) along with the constraint \(v_1 = kv_2 \). The co-content function \(P(v_1, v_2, \ldots, v_n) \) of the augmented network is then given by

\[
P(v_1, v_2, \ldots, v_n) = [a^T v] + (-k) [b^T v + v_n] + \hat{G}(v')
\]

(A-8)

where \(\hat{G}(v') \) is the co-content function of \(\mathcal{N} \) with the transformer removed. The state equation of \(\mathcal{N} \) is given by

\[
\zeta' \hat{v} = -\frac{\partial P}{\partial v'}
\]

(A-9)

where \(\zeta' \) is an \(n \times n \), symmetric, and positive definite matrix with the additional constraint \(a^T v = k [b^T v + v_n] \). Let us next eliminate \(v_n \) and obtain a new co-content function from (A-8). Now, since \(v_n = \frac{1}{k} (a^T - kb^T) v \), we can write \(v' = \begin{bmatrix} 1_{n-1} \\ \frac{1}{k} a^T - b^T \end{bmatrix} v \) and (A-9) becomes

\[
\zeta' \begin{bmatrix} 1_{n-1} \\ \frac{1}{k} a^T - b^T \end{bmatrix} \hat{v} = -\frac{\partial P}{\partial v'}
\]

(A-10)

Pre-multiplying both sides of (A-10) by \([1_{n-1}, \frac{1}{k} a - b] \), we obtain

\[
[1_{n-1}, \frac{1}{k} a - b] \zeta' \begin{bmatrix} 1_{n-1} \\ \frac{1}{k} a^T - b^T \end{bmatrix} \hat{v} = -[1_{n-1}, \frac{1}{k} a - b] \frac{\partial P}{\partial v'}
\]

-47-
We now prove that \(\frac{1}{l-1} \frac{1}{k} a - b \) is equal to \(\frac{\partial G}{\partial v} \) where
\[
\tilde{G} \left[v \right] = \left[\frac{1}{l-1} \frac{1}{k} a - b \right] v.
\]
Observe that
\[
\left[\frac{1}{l-1} \frac{1}{k} a - b \right] \frac{\partial P}{\partial v} = \left[\frac{1}{l-1} \frac{1}{k} a - b \right] \left[\begin{array}{c} i a - k b + \frac{\partial G}{\partial v} \\ - k i + \frac{\partial G}{\partial v} \end{array} \right].
\]

Therefore the new state equation of \(\mathcal{M} \) is given by
\[
\dot{\mathbf{v}} = - \frac{\partial \tilde{G}(v)}{\partial v},
\]
where \(\tilde{G}(v) \) is the new co-content function and
\[
\mathbf{C} \triangleq \left[\frac{1}{l-1} \frac{1}{k} a - b \right] \mathbf{C}' \left[\begin{array}{c} \frac{1}{l-1} \\ \frac{1}{k} a^T - b^T \end{array} \right] \text{ is an } (n-1) \times (n-1), \text{ symmetric, and positive definite matrix. Hence we have proved that the reduced-order state equation can be expressed in terms of the gradient of a potential function } \tilde{G}(v), \text{ and that the new capacitance matrix } \mathbf{C} \text{ remains a positive-definite matrix so long as the original matrix } \mathbf{C}' \text{ is positive definite. It follows that the various qualitative properties described in [9-10] are preserved in the augmented network.}

Let us define R^I first. Since $R = B J_2 B^T J_2^{-1}$ is symmetric and at least positive semidefinite, there exists an orthogonal matrix S such that

$$R = S \begin{bmatrix}
\lambda_1 & 0 \\
\lambda_2 & \ddots \\
0 & \ddots & 0 \\
0 & \ddots & 0 & \lambda_m
\end{bmatrix} S^T = \begin{bmatrix}
\frac{1}{\lambda_1} S_1^T, \ldots, \frac{1}{\lambda_m} S_m^T
\end{bmatrix}$$

where $\lambda_k > 0$ are the eigenvalues of R, and S_k^T is the kth column of S. If R is nonsingular, $m = n$, otherwise $m < n$. The generalized inverse R^I of R is then defined as:

$$R^I = F \begin{bmatrix}
\lambda_1^{-2} & 0 \\
\ddots & \ddots \\
0 & \ddots & \lambda_m^{-2}
\end{bmatrix} F^T = F (F^T F)^{-2} F^T$$

Notice that in this case R^I is symmetric and positive semidefinite. Furthermore, for any $x \in \mathcal{R}(R)$, $R R^I x = R^I R x = x$, as it should.

We are now ready to prove the theorem. Under conditions (i) and (ii), the hybrid content H of \mathcal{A} is given by:

$$H(\nu J_1, \nu J_2) = C \circ \left(B J_1 J_1^{-1} J_2 \right) + \frac{1}{2} \left(E J_2^T J_1 \right) + \frac{1}{2} \left(\nu J_1 \nu J_1^{-1} \right) + \frac{1}{2} \left(J_2^T B J_1 \nu J_2 \right)$$

(A-14)
\[
\begin{align*}
R &= \begin{bmatrix} R_1 & R_2 & R_2 & R_3 \\ J_2 & J_2 & J_2 & J_2 \end{bmatrix}.
\end{align*}
\]

Define \(H^* \) as follows:
\[
H^*(\begin{bmatrix} \gamma_1^* \\ \gamma_2^* \end{bmatrix}, \begin{bmatrix} \lambda_1^* \\ \lambda_2^* \end{bmatrix}) = H + \left(\frac{\partial H}{\partial \lambda_1^*}\right)^T \begin{bmatrix} R_1 \\ J_2 \end{bmatrix} \left(\frac{\partial H}{\partial \lambda_1^*}\right) \tag{A-15}
\]

In order to prove complete stability, we only need to show that \(\frac{d}{dt} H^* < 0 \) along any trajectory of (4), with the equality holding only at equilibrium states. Using (A-15) and (4), we obtain
\[
\begin{align*}
\frac{d}{dt} H^* &= \nabla H^* \cdot \dot{\gamma} + \frac{\partial H^*}{\partial \lambda_1^*} \lambda_1^* - \frac{\partial H^*}{\partial \lambda_2^*} \lambda_2^* - \frac{\partial H^*}{\partial \gamma_1^*} \gamma_1^* - \frac{\partial H^*}{\partial \gamma_2^*} \gamma_2^*
\end{align*}
\]

\[
\begin{align*}
&= -\gamma_1^* \dot{\gamma}_1^* + \frac{\partial H^*}{\partial \lambda_1^*} + \gamma_2^* \dot{\gamma}_2^* + \frac{\partial H^*}{\partial \lambda_2^*} - \frac{\partial H^*}{\partial \gamma_1^*} \gamma_1^* - \frac{\partial H^*}{\partial \gamma_2^*} \gamma_2^*
\end{align*}
\]

\[
\begin{align*}
&= -\gamma_1^* \dot{\gamma}_1^* - \lambda_1^* \dot{\lambda}_1^* - \lambda_2^* \dot{\lambda}_2^* - \frac{\partial H^*}{\partial \gamma_1^*} \gamma_1^* - \frac{\partial H^*}{\partial \gamma_2^*} \gamma_2^*
\end{align*}
\]

\[
\begin{align*}
&+ \frac{\partial H^*}{\partial \lambda_1^*} + \frac{\partial H^*}{\partial \lambda_2^*} + \frac{\partial H^*}{\partial \gamma_1^*} \gamma_1^* + \frac{\partial H^*}{\partial \gamma_2^*} \gamma_2^*
\end{align*}
\]

\[
\begin{align*}
&= -\gamma_1^* \dot{\gamma}_1^* - \lambda_1^* \dot{\lambda}_1^* - \lambda_2^* \dot{\lambda}_2^* - \gamma_1^* \frac{\partial H^*}{\partial \gamma_1^*} - \gamma_2^* \frac{\partial H^*}{\partial \gamma_2^*}
\end{align*}
\]

\[
\begin{align*}
&+ \gamma_1^* \frac{\partial H^*}{\partial \lambda_1^*} + \gamma_2^* \frac{\partial H^*}{\partial \lambda_2^*} + \gamma_1^* \frac{\partial H^*}{\partial \gamma_1^*} + \gamma_2^* \frac{\partial H^*}{\partial \gamma_2^*}
\end{align*}
\]

It follows from (2) and hypotheses (ii) and (iii) that \(\frac{\partial H^*}{\partial \gamma_1^*} \in R(\mathbf{R}) \).

Hence
\[\begin{bmatrix} \frac{\partial H^*}{\partial \gamma_1^*} \\ \frac{\partial H^*}{\partial \gamma_2^*} \end{bmatrix} \in R(\mathbf{R}) \]

and we obtain
\[
\begin{align*}
-\frac{d}{dt} H^* &= \nabla H^* \cdot \dot{\gamma} + \frac{\partial H^*}{\partial \lambda_1^*} \lambda_1^* - \frac{\partial H^*}{\partial \lambda_2^*} \lambda_2^* - 2\gamma_1^* \frac{\partial H^*}{\partial \gamma_1^*} - 2\gamma_2^* \frac{\partial H^*}{\partial \gamma_2^*}
\end{align*}
\]

\[
\begin{align*}
&\geq \frac{1}{2} \left\| \frac{\partial H^*}{\partial \gamma_1^*} - K \gamma_1^* \right\|^2 + \left(\frac{1-\|K\|^2}{L}\right) \left\| \frac{\partial H^*}{\partial \gamma_2^*} \right\|^2
\end{align*}
\]

\[
\begin{align*}
&\geq 0 \quad \text{for all} \quad \begin{bmatrix} \dot{\gamma}_1^* \\ \dot{\gamma}_2^* \end{bmatrix}
\end{align*}
\]

and
\[
\begin{align*}
\frac{d}{dt} H^* &= 0 \quad \text{only when} \quad \dot{\gamma}_1^* = 0 \quad \text{and} \quad \dot{\gamma}_2^* = 0.
\end{align*}
\]

\[
\begin{align*}
\text{(A-17)}
\end{align*}
\]

\[
\begin{align*}
\text{(A-18)}
\end{align*}
\]
It follows from (A-17), (A-18) and condition (v) that the network is completely stable.

The proof is quite similar to that of Theorem 2. Constructing R^I in the same way as in Appendix A-3, we obtain the following expression for \tilde{H}:

$$\tilde{H} = \hat{G}_1(v_{J_1}) + \hat{G}_2(v_{J_2}) + \hat{G}_3(v_{J_3}) - B_{J_1}v_{J_1} - B_{J_2}v_{J_2}$$

$$+ \left(E_{J_2}^{T} E_{J_2} + E_{J_3}^{T} E_{J_3} \right) - \frac{1}{2} \left[\begin{array}{c} E_{J_2}^{T} \ 0 \ 0 \end{array} \right] R^I \ \left[\begin{array}{c} v_{J_2} \\
0 \\
0 \end{array} \right]$$

$$+ \left[\begin{array}{c} E_{J_2}^{T} \ 0 \ 0 \end{array} \right] \left[\begin{array}{c} B_{J_1} \\
0 \\
0 \end{array} \right] v_{J_1}$$

Define \tilde{H} as follow:

$$\tilde{H}(v_{J_1}, v_{J_2}, v_{J_3}) = \tilde{H} + \left[\begin{array}{c} \frac{\partial \tilde{H}}{\partial v_{J_2}} \\
\frac{\partial \tilde{H}}{\partial v_{J_3}} \end{array} \right] R^I \left[\begin{array}{c} v_{J_2} \\
v_{J_3} \end{array} \right]$$

We only need to prove that

$$\tilde{H}^* \leq 0$$

along any trajectory, with equality holding only at equilibrium states. First, notice that

$$\frac{\partial \tilde{H}}{\partial v_{J_2}} = B_{J_2} v_{J_2} + B_{J_3} v_{J_3} + E_{J_2}$$

(A-21)
\[\frac{\partial}{\partial z_3} \mathcal{H} = B_3 J_1 v_1 + B_3 J_2 v_2 + E \]
\[\begin{bmatrix} \frac{\partial \mathcal{H}}{\partial z_1} \\ \frac{\partial \mathcal{H}}{\partial z_2} \\ \frac{\partial \mathcal{H}}{\partial z_3} \end{bmatrix} \in \mathcal{R}(R). \]

It follows from (ii) and (iv) that \(\mathcal{H} \in \mathcal{R}(R). \)

Differentiating next \(\mathcal{H}^* \) with respect to time, we obtain

\[\mathcal{H}^* = \mathcal{H} + \frac{d}{dt} \begin{bmatrix} \frac{\partial \mathcal{H}^T}{\partial z_2} \\ \frac{\partial \mathcal{H}^T}{\partial z_1} \end{bmatrix} + \begin{bmatrix} \frac{\partial \mathcal{H}^T}{\partial z_2} \\ \frac{\partial \mathcal{H}^T}{\partial z_1} \end{bmatrix} \mathcal{I} \]

The function \(\mathcal{H} \) can be obtained from (9):

\[\mathcal{H} = \frac{\dot{v}_T}{J_1} - \mathcal{H} + \frac{\dot{v}_T}{J_2} + \frac{\dot{v}_T}{J_3} + \frac{\dot{v}_T}{J_3} \]

The second term of \(\mathcal{H}^* \) is equal to:

\[2 \begin{bmatrix} \frac{\partial \mathcal{H}^T}{\partial z_2} \\ \frac{\partial \mathcal{H}^T}{\partial z_1} \end{bmatrix} \mathcal{I} \begin{bmatrix} B_2 J_1 \\ B_3 J_1 \end{bmatrix} \left[\begin{bmatrix} \frac{\dot{v}_T}{J_1} - \mathcal{I} \frac{\dot{v}_T}{J_1} \end{bmatrix} \right] \]

Now, since \(\frac{\partial \mathcal{H}}{\partial z_3} = 0 \) and \(\frac{\partial \mathcal{H}}{\partial z_2} = L \frac{\dot{v}_T}{J_2} \), we have

-52-
Making use of (A-22), we obtain

\[
\begin{bmatrix}
\frac{\partial \hat{H}^T}{\partial \hat{Z}_2} & \frac{\partial \hat{H}^T}{\partial \hat{Z}_3} \\
\frac{\partial \hat{A}^*}{\partial \hat{Z}_2} & \frac{\partial \hat{A}^*}{\partial \hat{Z}_3}
\end{bmatrix}
\begin{bmatrix}
\hat{I} \\
\hat{R}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial \hat{H}^T}{\partial \hat{Z}_2} & \frac{\partial \hat{H}^T}{\partial \hat{Z}_3} \\
\frac{\partial \hat{A}^*}{\partial \hat{Z}_2} & \frac{\partial \hat{A}^*}{\partial \hat{Z}_3}
\end{bmatrix}
\begin{bmatrix}
\dot{\hat{X}}_2 \\
\dot{\hat{X}}_3
\end{bmatrix}
= \frac{\partial \hat{H}^T}{\partial \hat{Z}_2}
(\text{since } \frac{\partial \hat{H}^T}{\partial \hat{Z}_3} = 0 \text{ along the trajectory})
\]

= \frac{\partial \hat{H}^T}{\partial \hat{Z}_2}
\hat{X}_2
\]

Finally, following the same procedure as in the derivation of (A-17) and (A-18), we obtain

\[
\hat{H}^* = -\dot{\hat{X}}_2 \hat{C} \dot{\hat{X}}_2 - \frac{\partial \hat{A}^*}{\partial \hat{Z}_2} \hat{I}^* + 2 \frac{\partial \hat{A}^*}{\partial \hat{Z}_2} \hat{R}^{\top} \hat{Z}_1 \hat{I}_1 \hat{I}_2.
\]

\leq 0 \quad \text{along any trajectory}

= 0 \quad \text{only if } \dot{\hat{X}}_2 = 0 \text{ and } \hat{I}^*_2 = 0
\]

It follows from (A-31) and condition (vi) that the network is completely stable.
REFERENCES

FIGURE CAPTIONS

Fig. 1 (a) A typical composite branch in J_1. The resistor R_t is the parallel combination of all v.c. resistors connected across the capacitor. Note the current into R_t is denoted by i'_t.
(b) A typical composite branch in J_2. The resistor R_z is the series combination of all c.c. resistors connected in series with the inductor. Note the voltage across R_z is denoted by v'_z.

Fig. 2 (a) The circuit for Example 1.
(b) Equivalent circuit obtained by applying the v-shift theorem.
(c) The $v_4 - i_4$ curve for v.c. resistor R_4.

Fig. 3 (a) A simple RC circuit.
(b) Graphical illustration of impasse points A and B and the discontinuous oscillation resulting from invoking the jump postulate.

Fig. 4 (a) The circuit for Example 2.
(b) The same circuit of (a) with the voltage source E shifted in series with the remaining branches in the cut set.
(c) The circuit for Example 3.

Fig. 5 The partition of network \mathcal{N} into $\mathcal{N}_1 \cup \mathcal{N}_2$, where $\mathcal{N}_1 = \mathcal{L}_1 \cup J_1$ and $\mathcal{N}_2 = \mathcal{L}_2 \cup J_2$.

Fig. 6 An ideal 2-port transformer and its various equivalent representations.
Fig. 1
Fig. 2.
Fig. 3.
If \(I = \frac{R}{E_1} \), \(E_1 = E_2 = E \),

\(R_3, R_4, R_5 \) : v.c.

nonlinear resistors.

\(R_1, R_2, L_1, L_2, C_1, C_2 \) : positive constants.

\(R_3, R_4, R_5 \) : v.c.

nonlinear resistors.

Fig. 4.
Fig. 5.
Fig. 6.

(a) $v_1 = k v_2$

(b) $i_2 = -k i_1$

(c) $v_1 = kv_2$