A FILE STRUCTURE FOR LARGE DATA BASES

By

Tung Ching Chiang

Memorandum No. ERL-M357

1 September 1972

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720
Preparation of this Thesis is sponsored by the Army Research Office—Durham, Grant (AROD) DAHC04-67-C-0046.
TO MY PARENTS
ABSTRACT

This thesis introduces a new file structure which is based on the concept of atoms in a Boolean algebra. Starting with the assumption that the allowable queries are Boolean combinations of keywords, the process of answering a query is treated as evaluating a homomorphism which maps a Boolean algebra of queries into a Boolean algebra of the file. For implementation purposes, a file structure is represented by a nested sequence of partitions of the file, and trees and binary trees become natural choices for the data structure. With this representation, the process of evaluating a query is viewed as a sequence of successive approximations of a Boolean function.

A program incorporating these ideas has been written and run on some randomly generated data; the feasibility of this new file structure is confirmed. Comparison against inverted file structure, with respect to both the storage requirement and the retrieval time, is given.
ACKNOWLEDGEMENTS

The author is deeply indebted to Professor E. Wong for his encouragement and guidance during the research and writing of this dissertation. His advice, at the same time, has been timely, competent and motivating. The author also wishes to thank Professor M. Stonebraker and Professor W. Cooper for their constructive reading of this dissertation.

I wish to thank my friends Mark Chang for his nonstop typing of this thesis and Mary Chen for providing us with a pleasant atmosphere during the final stage of this work.
# TABLE OF CONTENTS

I. Introduction .................................................. 1

II. Existing File Structures ........................................ 3
   II.1. Definitions .............................................. 5
   II.2. Existing File Organization Techniques .................. 8
      II.2.1. Retrieval via the Primary Key ....................... 9
             A. Sequential Methods and Indexed Sequential Method ...
             B. Address Calculation Method (or Hash Coding) ........ 12
      II.2.2. Retrieval via Non-primary Keywords ................. 13
             A. Inverted File ....................................... 13
             B. Multilist File ..................................... 16

III.A New File Structure ........................................... 20
   III.1 Boolean Algebra and Propositional Calculus ............ 20
   III.2 Atoms of a File ......................................... 25
   III.3 Partitions of a File .................................... 33
   III.4 Discussion ............................................. 43

IV. Implementation as a Tree ..................................... 46
   IV.1. Trees and Binary Trees .................................. 46
   IV.2. Implementation of the Proposed File Structure as a File
      IV.2.1 Tree Representation .................................. 55
IV.2.2 Implementation Programs ........ 64

IV.3. Storage Requirement and Retrieval ...... 81
Time - A Comparison to an Inverted File

V. Conclusion ................................ 97

References .................................. 100

Appendix .................................... 103
I. INTRODUCTION

In recent years, it has become clear that the ever increasing demand for systems which can handle large amounts of data with complex information structures is taxing the resources of existing techniques of data management. Thus, the problem of data base design, more specifically the problem of file organization, has become a problem of considerable importance and urgency in data processing.

Roughly stated, the primary goal of organizing a data file is to enable it to be interrogated via its content. Short of exhaustive search, there are really only two general approaches to achieving this goal. First, where things are stored can be made to depend on what is stored in such a way that access can be facilitated via computation. This approach is exemplified by the familiar hash addressing techniques. Secondly, information in addition to the main data file can be stored and utilized in accessing. Indexing is a familiar example of this approach.

Naturally, how a file is organized should depend on how it is to be used. A fairly general and widely applicable mode of accessing is through keywords
and Boolean combinations of keywords, a keyword being a pair (attribute name, attribute values). Focusing our attention on files which are to be interrogated via keywords and Boolean combinations of keywords, we shall propose a file structure which corresponds closely to a canonical representation of a finite Boolean algebra. We shall consider in detail some ways in which such a structure can be implemented. Comparisons with the well known inverted file and multilist file organizations will be made.
II. EXISTING FILE STRUCTURES

In the field of data management, many articles have been written on the various aspects of file organizations. Some of the specific topics are: studies of existing commercial data management systems \([9,12,17,18]\), classification of the existing file organizations \([9,10,11]\), developments of formal systems or models for file organizations \([2,3,4,5,6,20]\) and discussions on particular file organization techniques \([15,21,22]\). Different authors use different techniques to describe files and file organizations. The differences are due either to the differences in their basic conceptual framework or to the authors' preferences in using different terms to describe the same concepts. Codd \([4,5]\) proposed a relational model in which a file is described by a collection of time variant relations and the data base sublanguage is in a form of the first order predicate calculus; McGee \([2]\) used the so-called property classification method to describe a file which can be viewed as a collection of data elements, each element being a (property name, property values) pair; relationships between these collections of data elements are explicitly indicated by the so called record types.
and ranks. Hsiao[6] define a record as a subset of the cartesian product A x V, where A is a set of "attributes", V is a set of "values" and developed a formal system to describe file organizations, for example, indexed sequential file and inverted file, and finally defined some retrieval functions to describe procedures for retrieving information from files. Designers of different existing commercial information systems such as GIS, IDS, TDMS, used their own languages to describe the systems they had implemented [9,17,18]. Terminologies that have been used to describe logical file structures include: hierarchical files which are in forms of trees, heterogeneous files which are in forms of networks; the terminologies used to describe a file include: data element which is a synonym for field, item, element, attribute and property; group which is a synonym for segment, subfile, group of elements[9]. While terminology does not appear to be standard, there is a good deal of agreement on the importance of some of the underlying concepts and on the need for a machine independent and data independent model for files and file structures.

In this Chapter, we make no attempt to standardize the terminology of file organizations. We shall adopt names which to us appear to be most consistent and
descriptive, and in each instance we shall attempt to give a precise definition for the term that we introduce. Finally, we will give a brief survey of some existing file organization techniques.

II.1. DEFINITIONS

Loosely speaking, a file is a collection of records, each record being a collection of properties pertaining to the same individual, item, or object. In its simplest representation, a record can be viewed as an \( n \)-tuple of pair (attribute name, attribute value). For example, a record in a personnel file may look like the following:

\[
\{(\text{Employee name}, \text{J. Smith}), (\text{Date of birth}, 6/7/40), (\text{Date employed}, 7/1/63), \ldots\}\]

Thus, an attribute can be viewed as a function \( f_i \) mapping a subset of the file into a value set, and a file can be viewed as a collection of functions with overlapping domain. For example, in a personnel file, "Employee name" may be a name of function mapping from a subset of personnel records to a value set which is a set of names, say, \( \{ \text{A. Jones, B. John, J. Smith, \ldots} \} \); "Date of birth", "Date of employed" may be other names of functions mapping from a subset of personnel records to a value set consisting of dates. A
collection of records will be called homogeneous if the same set of attributes are defined on every record in the collection, and will be called inhomogeneous otherwise. For an example of inhomogeneous file, consider a personnel file in a university. Suppose there are three subfiles: an employee file which is a collection of functions with names \{ "Employee name", "Date of birth", "Date of employed" \}; a department file which is a collection of functions with names \{ "Department name", "Population", "Building name" , \} and a employment file which is a collection of functions \{ "Department name", "Employee name" \}. Note the inhomogeneity in the file, for not all these functions have the same domain.

Clearly, a homogeneous file has the advantage that it admits a tabular representation, e.g.

<table>
<thead>
<tr>
<th>Employee name</th>
<th>Date of birth</th>
<th>Date of employed</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Smith</td>
<td>7/1/40</td>
<td>6/2/68</td>
</tr>
<tr>
<td>A. Jones</td>
<td>5/2/35</td>
<td>7/15/70</td>
</tr>
<tr>
<td>M. Chang</td>
<td>7/21/46</td>
<td>6/16/73</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
A homogeneous subfile has the further advantage that it can be viewed as a subset of the product space consisting of the product of the value spaces of the attributes involved, i.e., a relation. Because any file can be represented as a set of homogeneous subfiles, a file can be viewed as a collection of relations, and this is a database model that is enjoying considerable current popularity \([4,8]\).

Let \( R \) be a collection of records and let \( f \) be an attribute mapping \( R \) into some value space \( V \). A frequently occurring query has the form: Given the name of the attribute \( f \) and a subset \( S \) of \( V \), find all records \( x \) in \( R \) such that \( f(x) \in S \). Thus, such a query is specified by a pair \( ( \text{attribute name, a set of attribute values} ) \). We shall call such a pair a keyword. For example, \( ( \text{Employee age, less than 35} ) \) is a keyword, and so is \( ( \text{Employee number, 12345} ) \). Frequently, an attribute \( f \) which is a one-to-one map from \( R \) into \( V \) is designated as the identifying attribute for \( R \), so that \( f(x) \) can take the place of \( x \) for the reference purposes. Even when there is no such attribute to begin with, it is often convenient to introduce one. A keyword involving the name of an identifying attribute and a single attribute value will be called a primary key. Thus, for example,
(Employee number, 12345) is a primary key if there is a single record in R for each employee number.

The rest of this chapter will be devoted to a survey of some commonly used file organization techniques which are designated to facilitate access via keywords. The main objective of this thesis, to be developed in later chapters, however, will be to present and analyze a class of file structures aimed at retrieval via Boolean combination of keywords.

II.2. EXISTING FILE ORGANIZATION TECHNIQUES

We shall examine the following commonly used file organization techniques: sequential file, indexed sequential file, address calculating, inverted file and multilist file. They are divided into two categories, namely, retrieval via the primary key and retrieval via nonprimary keys, according to the classes of queries that they respond to most efficiently. For example, if a file is organized mainly for the retrieval via the primary key, to answer a query involving only nonprimary keys could mean a exhaustive search of the whole file. In practice, combinations of these techniques can be employed in a single file organization [10,11]. For example, in an inverted file, the collection of inverted lists can be viewed as records,
the keyword corresponding to a list can be viewed as the primary key of the record. Thus, the techniques for retrieval via the primary key can be employed to access these inverted lists. In fact, many existing information systems \([10,17,18]\) are using a mixture of these file organization techniques.

II.2.1. RETRIEVAL VIA THE PRIMARY KEY

A. Sequential Method and Indexed Sequential Method:

In the sequential file organization, a file is stored sequentially by the ordering of values of the primary key. When records are to be retrieved, the file is searched sequentially for the specified values of primary key. If the file is on a random access storage device nonsequential techniques, e.g., binary search, can be employed.

In the indexed sequential file organization, records are usually stored randomly in random access storage devices, for example, disks. In addition, a directory consisting of pairs of the form: value of the primary key versus address of the record, is also stored. Usually, the directory entries are ordered according to the ordering of the values of the primary key. Those value-address pairs are referred to as indexes,
which can be grouped into blocks. The maximum value of the primary key within one block can be served as the identifier for the block. Recursively, pairs of the identifier of a block versus the addrss of the block can be considered as indexes. Therefore, a directory may have a hierarchy structure which speeds up searches if the directory is stored on a disk-type storage. Conceptually, the file is partitioned into partitions by the indexes in the directory, each block representing some records whose values of the primary key are in the block. Graphically, the indexed sequential file organization can be illustrated in an example as shown in Fig. 2.1, where numbers represent values of the primary key, $T_{ij}$ represents the leading address of a block, $a_k$'s represent addresses of records. Each level in the hierarchy represents a partition of the file. Each block in a level represents one member in the partition. For example, at level 2, the partition consists of members: $T_{21}, T_{22}, T_{23}, T_{24}$. In $T_{21}$, there are four indexes, number 1, 3, 7, 10 being the values of the primary key of four records whose addresses are $a_1, a_2, a_3, a_4$ respectively. A query is answered by traversing the directory from top to bottom; at each level values of the primary key specified in the query is compared to the values in
Fig. 2.1
a block. If the values specified in the query are found to be within ranges of some blocks, then the pointers in those blocks are traced and the values in the next level are again compared. When the last level is reached, records whose values of the primary key are matched with those specified in the query are retrieved by tracing the pointers.

Generally, the response time of an indexed sequential file is less than that of the corresponding sequential file. But additional storage space is required for the directory in a indexed sequential file.

B. Address Calculation Method (or Hash Coding)

Let $P = \{1, 2, \ldots, p\}$ be the range of the primary key, $M = \{1, 2, \ldots, m\}$ be the set of addresses in the storage device, $r$ be the number of records in a file, and assume $p \geq m \geq r$. Let $f$ be a function mapping from $P$ to $M$. By address calculation, we mean that for a given value $p_1$ in $P$, apply $f$ to $p_1$ such that $m_1 = f(p_1)$ and $m_1$ in $M$. Usually, $f$ is not an one-one function, i.e., two different values in $P$, may be assigned to the same address by $f$. In this case, the second record may be stored in another location which is chained to the first one by a pointer in a link field in the first record, or by another method.
The advantage of this method is that in most cases, the computation time for f is smaller than the search time for either sequential or indexed sequential method. The disadvantage is that if conflicts of addresses occur very frequently, the price paid for maintaining chains among records will be high. Thus, it is important to choose a mapping f which keeps the conflicts a minimum. Such a function is difficult to find. It is commonly done by performing one or more arithmetic operations on all or part of the BCD coded representation of the key value and extracting part of resulting code to yield the address. [26] The best function f is then selected after several trials.

II.2.2. RETRIEVAL VIA NONPRIMARY KEYWORDS

Techniques of file organization described in the previous section are incapable of handling queries which contain keywords other than the primary key, without examining every record in the file. In this section we will describe two file organization techniques that can handle queries involved nonprimary keywords without resulting to exhaustive searches.

A. Inverted File
Let \( K = \{k_1, k_2, \ldots, k_n\} \) be the keyword set, 
\( L = \{L(k_i) \mid i=1,2,\ldots,n\} \) be the set of keyword lists, 
each \( L(k_i) \) being an ordered list of addresses of all 
records that have \( k_i \) as one of their keywords. 
Define \( D = \{ (k_i; L(k_i)) \mid i=1,2,\ldots,n \} \). An inverted 
file is the date file together with \( D \), which is 
referred to as the directory of the inverted file. 
The term "inverted" can be thought of as inverting 
a function. Recall that \( k_i \) is a (attribute name, 
attribute value) pair and an attribute can be 
considered as a function \( f_i \). Let \( k_i = (f_i, m_i) \), 
where \( m_i = f_i(x) \) for some \( x \) in \( R \), then \( L(k_i) = f_i^{-1}(m_i) = \) 
(address of \( x \mid f(x) = m_i \)). Addresses in \( L(k_i) \) are 
referred to as pointers.

Graphically, an inverted file can be illustrated 
in an example as shown in Fig.2.2, where the symbol 
\( r_i \rightarrow \) is representing a pointer which is the address 
of the record \( r_i \).

The allowable queries for the inverted file 
orrganization fall into two categories: (1) a single 
keyword being specified (2) Boolean combinations of 
keywords. The first type of query can be easily 
answered by retrieving a list \( L(k_i) \) in \( D \), then by 
tracing the pointers in \( L(k_i) \) to fetch the records. 
As for the second type of queries, Boolean operations
D

<table>
<thead>
<tr>
<th>K_1</th>
<th>K_2</th>
<th>K_3</th>
<th>K_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>r_2</td>
<td>r_4</td>
<td>r_3</td>
</tr>
<tr>
<td>r_3</td>
<td>r_5</td>
<td>r_6</td>
<td>r_6</td>
</tr>
</tbody>
</table>

Data File

Fig. 2.2
on lists $L(k_1)$ are necessary for queries to be answered.

**Example 1:** Given a query "$q = k_1" which is interpreted as "Get all records having $k_1". Assuming we have a file as shown in Fig.2.2. The answer to $q$, denoted by $L(q)$, is $L(q) = L(k_1) = (r_1, r_3)$.

**Example 2:** Given a query "$q = k_1 \wedge k_4" which is interpreted as "Get all records having $k_1$ and $k_4". The answer to this query $q$, denoted by $L(q)$, is $L(q) = L(k_1 \wedge k_4) = L(k_1) \cap L(k_4) = (r_3)$.

Update of an inverted file consists of updating the data file and putting new entries in the directory.

**B. Multilist File**

Conceptually, the multilist file is the same as the inverted file, in the sense that lists $L(k_1)$'s have to be created. The only difference between these two file organizations is that the ways of implementing those $L(k_1)$'s are different. In the inverted file, the entire list $L(k_1)$ is stored in the directory. In the case of multilist file, only the head of each list is stored in the directory and the rest of the list is threaded through the data file. Records that have the same keyword are chained together by pointers in records.

Let $h$ be an operation on a list $L(k_1)$ such that $hL(k_1) = (\text{the first element in } L(k_1))$. The directory of the multilist file is a collection of $(k_1; l_1;$
hl(k_i); i=1,2,...,n), l_i being the length of L(k_i).
Records in the data file are modified and represented as \( \{ (k_1/p_{j_1}, k_2/p_{j_2}, ..., k_n/p_{j_n}) \}, \) where \( p_{j_1} \) is a pointer in record \( j \), associated with keyword \( k_1 \). \( p_{j_1} \) points to a record which also has \( k_1 \). The end of a list can be signified by letting \( p_{j_1} = \) blank.

Graphically, the multilist file can be illustrated in an example as shown in Fig.2.3, where \( r_1 \) represents a pointer to \( r_1 \). List \( L(k_1) \) can be constructed by tracing pointers. For example, \( L(k_1) = (r_1, r_2) \), and it is terminated at \( r_2 \).

The allowable set of queries for multilist file is the same as that of inverted file, but the procedure for answering a query for the multilist file is somewhat different from that for the inverted file. The first type of query is answered by retrieving the head of a list in the directory and then tracing pointers to get the rest of the list. For the second type of query, records of the shortest list that involves in a query is retrieved, then examine each record for qualification of the query.

Update for multilist file involves putting a record at the end of a list, deleting a record from a list and changing the number representing the length.
Fig. 2.3
of a list in the directory.

There is a whole spectrum of file structures that can be constructed between inverted file and multilist file. \[6, 11\] The length of a list that threaded through the data file can be considered as a design parameter and fixed to a predetermined value to meet some specific requirements of a particular file. These file structures are referred to as controlled list files. Inverted files and multilist files are two extreme cases, the former with list length being one, the latter being infinite.

The basic concepts of file structures described above are very much the same, i.e. lists of keywords are created. Answering a query always involves list processing or examining a large portion of the file. In the next chapters, we will introduce some new concepts of file structure and propose an alternative which is advantageous for large data base with complex Boolean queries.
III. A NEW FILE STRUCTURE

In a file organization that admits all Boolean combination of keywords as its queries, the query language can be represented in a form of propositional calculus, and sets of records are usually retrieved by a sequence of set operations involving union intersection and complementation. We shall show that both the query set and the retrievable set of records are Boolean algebras. And the retrieval procedure can be viewed as the evaluation of a Boolean algebra homomorphism. Concepts of Boolean algebra will be applied to file organization and used as a tool to construct a new file structure. In Section III.1, we shall introduce some definitions and notations related to Boolean algebra and propositional calculus. Theorems of Boolean algebra will be stated without proof. Postulates of Boolean algebra have been given by many other authors and we shall not repeat them here. [33,34]

III.1. BOOLEAN ALGEBRA AND PROPOSITIONAL CALCULUS

Terms and notations in connection with Boolean algebra and propositional calculus are shown as follows:
<table>
<thead>
<tr>
<th>Notations</th>
<th>Boolean algebra</th>
<th>Prop. calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>∨</td>
<td>join</td>
<td>or</td>
</tr>
<tr>
<td>∧</td>
<td>meet</td>
<td>and</td>
</tr>
<tr>
<td>¬</td>
<td>complementation</td>
<td>not</td>
</tr>
<tr>
<td>↔</td>
<td>biconditional</td>
<td>biconditional</td>
</tr>
<tr>
<td>⇒</td>
<td>implication</td>
<td>implication</td>
</tr>
<tr>
<td>0</td>
<td>null element</td>
<td>false sentence (or formula)</td>
</tr>
<tr>
<td>1</td>
<td>universal element</td>
<td>valid sentence (or formula)</td>
</tr>
</tbody>
</table>

⇒ and ↔ are defined as follows:

For any \( \alpha, \beta \) in a Boolean algebra or in a set of well-formed formula in a propositional calculus

\[
\alpha \Rightarrow \beta = (\overline{\alpha} \lor \beta)
\]

\[
\alpha \Leftrightarrow \beta = (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)
\]

Notations \( \cup, \cap, \overline{\cdot} \) are used as union, intersection, and complementation operations respectively in set theory.

Definitions in connection with Boolean algebras are given as follows:

**Subalgebra:** Let \( A \) be a Boolean algebra. A subset \( B \subseteq A \) is called a subalgebra of \( A \) if \( B \) is closed under \( \land, \lor, \overline{\cdot} \) and \( 0, 1 \) are in \( B \).

**Generators:** Let \( E \) be an arbitrary subset of a Boolean algebra \( A \). The intersection of all those subalgebras
that contain $E$ is a subalgebra. That intersection, say $B$, is the smallest subalgebra of $A$ that contains $E$. The subalgebra $B$ is called the subalgebra generated by $E$. A generating set $E$ is called a set of generators of $B$.

**Homomorphism:** A Boolean Homomorphism is a mapping $f$ from a Boolean algebra $B$, to a Boolean $A$, such that

\begin{align*}
(1) \ f(p \land q) &= f(p) \land f(q) \\
(2) \ f(p \lor q) &= f(p) \lor f(q) \\
(3) \ f(\overline{p}) &= \overline{f(p)}
\end{align*}

for all $p$ and $q$ in $B$. The kernel of a homomorphism $f$ is defined as $(x | f(x) = 0$).

**Free Algebras:** Let $E$ be a subset in a Boolean algebra $B$. If the elements in $E$ satisfy no condition except those that can be derived from the set of postulates, it is a natural way to say $E$ is free. A Boolean algebra is called free if it has a free set of generators.

Let $A$, $B$, be two free Boolean algebras, $E_1, E_2$ be the sets of generators respectively. If there is a function $f$ mapping from $E_1$ to $E_2$, then there exist an unique homomorphism $H$ mapping from $A$ to $B$, such that $H(j) = f(j)$ for all $j$ in $E_1$.

**Order:** It is easy to show that $p \land q = q$ iff $p \lor q = p$. we write $p \geq q$ or $q \leq p$ if $p \land q = q$ or equivalently
p ∨ q = p. \leq\leq \text{ is a partial ordering relation.}

\textbf{Atoms:} An atom of a Boolean algebra \( B \) is an element that has no nontrivial subelements defined by the partial order \( \leq \). Let \( q \in B \), \( q \) is an atom of \( B \) if \( q \neq 0 \) and if \( p \leq q \), then \( p = 0 \) or \( q \). A Boolean algebra which has atoms is referred to as an atomic Boolean algebra.

It can be shown that a finitely generated Boolean algebra is finite, and in fact, the number of elements in a Boolean algebra with \( n \) generators is \( \leq 2^{2^n} \). Every finitely generated Boolean algebra is atomic and the number of atoms of a Boolean algebra with \( n \) generators is \( \leq 2^n \). Furthermore, if the Boolean algebra is freely generated by \( n \) generators, then the number of atoms is exactly equal to \( 2^n \).

Let \( E = (e_1, e_2, \ldots, e_n) \) be a set of generators of \( B \). An atom \( c \) has the form \( c = \bigwedge_{i=1}^{n} e_i^*; \ e_i^* = e_i \text{ or } \bar{e}_i \).

Let \( C = (c_1, c_2, \ldots, c_s) \) be the set of all atoms of \( B \) and \( I = (1, 2, \ldots, s) \) be the set of subscripts of \( c_1 \). Every element \( p \) in \( B \) can be represented in the form

\[ p = \bigvee_{i \in J} c_i = (\text{Joins of some atoms in } C) \]

where \( J \) is a subset of \( I \).

Propositional calculus can be viewed as a formal system \( \mathcal{A} = (\emptyset, \Sigma, -, \lor, \land) \), \( \Sigma \) is the set of statement letters, \( \emptyset \) is the set of all well-formed formulas,
such that \( \Sigma \subseteq \Phi \) and \( \Phi \) is closed under \(-, \wedge, \vee \) [35].

Let \( \mathcal{S} = (W, \wedge, \vee, \neg) \) be a special formal system, with \( W = (0, 1) \). Define

\[
\begin{array}{c|c|c|c|c|c|c}
X & \neg X & \wedge & 0 & 1 & \vee & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

If there is a function \( j: \Sigma \rightarrow W \), then \( j \) can be extended to a homomorphism \( v_j: \Phi \rightarrow W \).

Definitions: \( j \) is said to satisfy \( b \in \Phi \) if \( v_j(b) = 1 \). \( b \) is said to be logically valid if every \( j \) satisfies \( b \). Two formulas \( \phi \) and \( b \) are said to be logically equivalent if \( v_j(\phi) = v_j(b) \) for all \( j \), we write \( \phi \equiv b \). Note that \( \equiv \) is an equivalence relation.

Let \( \Sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n) \) be a set of statement letters in a given order. A truth function or a Boolean function \( b^* \) associated with a formula \( b \) in \( \Phi \), mapping from \( W^n \rightarrow W \), \( W^n = WxWx\ldotsxW \), is defined as follows:

For any \((p_1, p_2, \ldots, p_n) \) in \( W^n \), \( b^*(p_1, p_2, \ldots, p_n) = v_j(b) \), where \( j \) is a mapping from \( \Sigma \) to \( W \), for which \( j(\sigma_1) = p_1, j(\sigma_2) = p_2, \ldots, j(\sigma_n) = p_n \). We call \( b^* \) the \( n \)-place truth function or the \( n \)-place Boolean function defined by \( b \) in \( \Phi \). A truth table of a truth function \( b^* \) is the tabular representation of the truth function \( b^* \). The truth table of \( b^* \)
consists of two sets of n-tuples: \( s_1 = ( (p_1, p_2, \ldots, p_n) \quad b^*(p_1, p_2, \ldots, p_n) = 1 ) \), \( s_2 = ( (p_1,p_2,\ldots,p_n) \quad b^*(p_1,p_2,\ldots,p_n) = 0 ) \). \( s_1, s_2 \) are referred to as the on-set and the off-set of \( b^* \) respectively.

It can be shown that the set of equivalence classes of formulas is a Boolean algebra, or equivalently, the set of all Boolean functions defined by all formulas in is a Boolean algebra.

III.2. ATOMS OF A FILE:

Let \( K = (k_1, k_2, \ldots, k_n) \) be the set of keywords of a file \( F \). Let the query set \( Q \) be the set of all Boolean combinations of keywords, i.e., every \( q \) in \( Q \) is made up of elements in \( K \), connected by \(-, \wedge, \vee\) in an obvious way. The formal system \( \langle Q, K, -, \wedge, \vee \rangle \) is a propositional calculus. After identification of equivalent queries, \( Q \) is the free Boolean algebra \( B(K) \), generated by the set \( K \). Let \( L \) be a function mapping from \( K \) to the collection of all subsets of \( F \), such that \( L(k_i) \) is the set of all records that have \( k_i \) as a keyword. Let \( B(L) \) denote the Boolean algebra generated by \( L = ( L(k_i); i=1,2,\ldots,n) \). \( L \) can be considered as a function mapping from \( K \) to \( B(L) \). \( L \) can be uniquely extended to a homomorphism mapping from \( B(K) \) to \( B(L) \). We shall use the same notation \( L \) to denote this
homomorphism. Once \( L(k_1) \) are defined, every \( q \) in \( Q \) can be answered by finding the homomorphism image of \( q \) in \( B(\mathcal{L}) \). In other words, for any \( q \) in \( Q \), \( L(q) \) is the set of records that satisfy \( q \). For example, let \( q = k_1 \wedge k_2 \), then \( L(q) = L(k_1) \wedge L(k_2) \). Once \( L(k_1), L(k_2) \) are defined, \( L(q) \) can be obtained by the intersection of two lists \( L(k_1) \) and \( L(k_2) \). That is why, in the inverted file, by storing lists of addresses corresponding to \( L(k_1) \) we can retrieve every set in \( B(\mathcal{L}) \). Any other collection \( C \) of subsets in \( B(\mathcal{L}) \) can serve the purpose, provided that \( B(C) = B(\mathcal{L}) \). The question is what lists should be stored. We hope to show that in many situations, the lists representing atoms in \( B(\mathcal{L}) \) are the best choices. Note that \( B(\mathcal{L}) \) may not be free, i.e., there may be some implicit relationship in addition to those universal ones, existing between elements in the generating set \( \mathcal{L} \). In particular, intersection of some elements in \( \mathcal{L} \) may be the null element. This implies that the number of atoms of \( B(\mathcal{L}) \) may be much less than \( 2^n \). This is a favorable situation, because the lists that we store will correspond to atoms. It is conjectured that other relationships existing among elements of may be worthwhile to be explored and taken advantage of, but in this present work they are not considered.
The set of atoms of a file with respect to a set of keywords is defined to be the set of atoms of $B(\mathcal{L})$. Let $D$ be the set of atoms of $B(K)$, $C$ be the set of atoms of $B(\mathcal{L})$, then $C$ is the range of the restriction of the homomorphism $L$ on $D$. Standard results in Boolean algebra [33] imply that the atoms of a file have the following properties:

1. Atoms of a file are the minimal retrievable set of records in a file, for a given query set.

2. Atoms of a file are pairwise disjoint sets, i.e. $c_i \cap c_j \neq 0$, for any two distinct atoms $c_i, c_j$.

3. Any query in the query set can be answered by using only union operations on atoms of the file.

4. Atoms of a file are the nonempty sets obtained by $\bigcap_{i=1}^{n} L^*(k_i)$, $L^*(k_i) = L(k_i)$ or $\overline{L(k_i)}$.

We now propose a file structure in which lists of addresses of records which are stored correspond to the atoms of the file. This file structure has the following advantages:

(a) Each address appears on one and only one list. Hence the number of addresses to be stored is always less than the total number of addresses in $(L(k_i), i=1,2,\ldots,n)$.

(b) Every set to be retrieved is a union of disjoint atoms. We never need to take intersection
and we never need to eliminate duplications in taking union.

(c) The computation procedure in translating an arbitrary Boolean formula of keywords into a union of atoms is exceedingly simple (but may be time consuming).

Assertions (a) and (b) are obvious consequences of (2), (3), (4). Assertion (c) is justified by considering the standard procedure for translating a Boolean formula into its developed disjunctive normal form.

For an example, consider a file $F$ with 10 records denoted by $F = (1,2,\ldots,10)$. Let $K = (k_1,k_2,k_3,k_4)$ be the set of keywords. The query set $Q$ is the Boolean algebra $B(K)$ generated by $K$. For the purpose of this example, we do not distinguish between a record and its address. Let $\mathcal{L} = (L(k_1), L(k_2), L(k_3), L(k_4))$ be the set of lists of records that have $k_1,k_2,k_3,k_4$, respectively. The collection of all retrievable sets is the Boolean algebra $B(\mathcal{L})$ generated by $\mathcal{L}$. Let $F$ be represented as a tabular form as shown in Table 3.1, where an entry '1' indicates the record belongs to $L(K_1)$ and an entry '0' indicates it does not. It is clear that we have

$$L(k_1) = (1,2,4,6,9)$$

$$L(k_2) = (1,3,4,6,7)$$
<table>
<thead>
<tr>
<th>$k_1$</th>
<th>$k_2$</th>
<th>$k_3$</th>
<th>$k_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.1.

<table>
<thead>
<tr>
<th>$l(k_1)$</th>
<th>$l(k_2)$</th>
<th>$l(k_3)$</th>
<th>$l(k_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.2.
\[ L(k_3) = (2, 3, 5, 7, 8, 9, 10) \]
\[ L(k_4) = (5, 8, 10) \]

Let \( C \) be the set of atoms of the file. The atoms can be obtained easily from examining Table 3.1.

\[
c_1 = L(k_1) \cap L(k_2) \cap \overline{L(k_3)} \cap L(k_4) = (1, 4, 6)
\]
\[
c_2 = L(k_1) \cap \overline{L(k_2)} \cap L(k_3) \cap L(k_4) = (2, 9)
\]
\[
c_3 = \overline{L(k_1)} \cap L(k_2) \cap L(k_3) \cap \overline{L(k_4)} = (3, 7)
\]
\[
c_4 = \overline{L(k_1)} \cap \overline{L(k_2)} \cap L(k_3) \cap L(k_4) = (5, 8, 10)
\]

\( C = (c_1, c_2, c_3, c_4) \), \( c_1 \) are in an arbitrary order.

The set \( C \) of all atoms can be represented in a tabular form as shown in Table 3.2., where an entry '1' indicated \( L(k_1) \) appears in the disjunctive form, '0' indicated \( \overline{L(k_1)} \) appears in the disjunctive form.

Let \( q = (k_1 \land k_2 \land \overline{k_3}) \) be a query in \( Q \). The answer to \( q \) is

\[
\begin{align*}
L(q) &= L(k_1 \land k_2 \land \overline{k_3}) \\
&= L(k_1) \cap L(k_2) \cap \overline{L(k_3)} \\
&= (L(k_1) \cap L(k_2) \cap \overline{L(k_3)} \land L(k_4)) \\
&\cup (L(k_1) \cap \overline{L(k_2)} \cap L(k_3) \land \overline{L(k_4)}) \\
&= L(k_1) \cap L(k_2) \cap \overline{L(k_3)} \land \overline{L(k_4)} \\
&= (1, 4, 6)
\end{align*}
\]

or

\[
\begin{align*}
L(q) &= L(k_1 \land k_2 \land \overline{k_3}) \\
&= L((k_1 \land k_2 \land \overline{k_3} \land \overline{k_4}) \lor (k_1 \land k_2 \\
&\land \overline{k_3} \land \overline{k_4})) \\
&= (L(k_1) \cap L(k_2) \cap \overline{L(k_3)} \land \overline{L(k_4)}) \\
&\cup (L(k_1) \cap L(k_2) \land \overline{L(k_3)} \land L(k_4))
\end{align*}
\]
\[ = L(k_1) \cap L(k_2) \cap L(k_3) \cap L(k_4) \]
\[ = (1,4,6) \]

From the example above, we observe that to answer a query \( q \) we can apply the homomorphism \( L \) to \( q \) and expand the resulting formula into its developed disjunctive normal form; the nonempty clauses will be the atoms that are dominated by \( L(q) \). Alternatively, we can expand \( q \) into its disjunctive normal form and then apply \( L \) to it. Though the procedure for expanding a formula into its disjunctive normal form is straightforward, the procedure for determining which clauses represent atoms may be time consuming. A simple procedure for doing this is to intersect the list of clauses in the disjunctive normal form of \( q \) with the list of atoms of the file; those ones that match are atoms dominated by \( L(q) \). Obviously, if the number of empty clauses in a normal form is large (very often it is), this procedure will be very inefficient, in the sense that the whole set of atoms has to be compared against a long list of clauses and only a small portion of the set of atoms contained useful information pertinent to the query. In general, a procedure for eliminating clauses corresponding to the null element in \( B(\mathcal{L}) \) for a query \( q \) can be viewed as a procedure for finding atoms of the meet of two
Boolean formulas in $B(K)$, or equivalently, for finding the meet of two Boolean functions.

There are many formulas $b$ in $B(K)$ such that $L(b) = C$, the set of all atoms. Let $f$ be such a formula with the further property that every clause in the developed normal form of $f$ corresponds to an atom in $B(L)$, i.e., $L(\varphi) \neq 0$, for all clauses $\varphi$ in the developed disjunctive normal form of $f$. Therefore there is an one-one relationship between clauses of $f$ and atoms of $B(L)$, we can represent the set of atoms $C$ of $B(L)$ by $f$. Such a formula can be obtained easily. In fact, let the tabular representation of $C$ be the on-set of $f^*$, i.e., $(p_1, p_2, \ldots, p_n) f^* (p_1, p_2, \ldots, p_n) = 1$. Let $f^*$ denote the truth function associated with $f$. Then, $f$ can be constructed from the on-set of $f^*$. For example, consider the tabular representation of $C$ as shown in Table 3.2.

\[
f = (k_1 \land k_2 \land \overline{k_3} \land \overline{k_4}) \lor (k_1 \land \overline{k_2} \land k_3 \land \overline{k_4})
\lor (\overline{k_1} \land k_2 \land \overline{k_3} \land \overline{k_4}) \lor (\overline{k_1} \land \overline{k_2} \land k_3 \land k_4)
\]

is a Boolean formula associated with a truth function $f^*$ that has a on-set $(f^*-1(1) = (1100,1010,0110,0011))$.

The clauses in $q$ corresponding to atoms are those clauses in $f \land q$. Therefore to find all nonempty clauses in $q$ is to find all clauses in $f \land q$. It can be shown that all clauses in the developed disjunctive
normal form of $f \land q$ are not in the kernel of the homomorphism $L$. For if there is a clause $\varphi$ in $f \land q$ such that $L(\varphi) = 0$, and since $\varphi$ must be a clause in $f$, then an element of $L(f)$ is equal to 0, a contradiction. One way to find all clauses in $f \land q$ is to expand both $f$ and $q$ into their developed disjunctive normal form individually, then the meet of the two normal forms will consists of all the clauses in $f \land q$. This is how it is done in the simple procedure stated above. If the number of clauses in $q$ is large, execution time of this simple procedure will be large and require a large block of working space.

There are many other procedures which will serve the purpose for finding clauses in $f \land q$. An alternative that involves decomposition of Boolean function, or equivalently, partitioning of a file will be given in the next section. We hope to show that it will often be more efficient than the simple procedure.

III.3. PARTITIONS OF A FILE:

In this section, we will present a method for partitioning a file into a sequence of partitions and a procedure for finding clauses in $f \land q$. The procedure will consist of a sequence of steps, at
each step only a portion of a partition of the file has to be searched and a Boolean function of only m variables (m < n) has to be dealt with.

Let $K = (k_1, k_2, \ldots, k_n)$ be the set of keywords, $\mathcal{L} = (L(k_1), L(k_2), \ldots, L(k_n))$, $\mathcal{B}(\mathcal{L})$ be the algebra generated by $\mathcal{L}$. We are to find a sequence of sets of generators $G_0, G_1, G_2, \ldots, G_m = \mathcal{L}$, $G_i \subseteq \mathcal{B}(\mathcal{L})$, for $i = 1, 2, \ldots, m$, such that $\mathcal{B}(G_0) \subseteq \mathcal{B}(G_1) \subseteq \mathcal{B}(G_2) \ldots \subseteq \mathcal{B}(G_m) = \mathcal{B}(\mathcal{L})$. The atom-set $C_i$ of each $\mathcal{B}(G_i)$ is a partition of the file. Therefore, corresponding to the sequence of Boolean algebras we have a sequence of partitions $P_0, P_1, P_2, \ldots, P_m$ on the file; $P_{i+1}$ is a refinement of $P_i$. The procedure for answering a query $q$ is presented as a flow chart as shown in Fig.3.1. At each step $i$, instead of the whole file, only a subset $D_i$ of $C_i$ has to be examined to get a subset $D_{i+1}$ of $C_{i+1}$ such that $L(q) \subseteq \bigcup_{x \in D_{i+1}} x$. Graphically, assuming $m = 2$, we can show it in Fig.3.2. Let us represent sets of atoms in a two dimensional surface within the largest square, there are squares with three different sizes, labelled as 1, 2, 3 respectively. There are nine 1 squares in the largest square, nine 2 squares in each 1 square, nine 3 squares in each 2 square. For the sake of simplicity, we only draw a portion of all squares.
Fig. 3.1

Fig. 3.2
Let the set of all 1 squares represent the set of atoms of \( B(G_0) \), the set of all 2 squares represent the set of atoms of \( B(G_1) \), the set of 3 squares represent the set of atoms of \( B(G_2) \). Squares encircled with heavy lines are those satisfying \( L(q) \subseteq \bigcup_{x \in D_{H+}} X \), finally, squares that are blackened are atoms dominated by \( L(q) \).

Answering a query in this way can also be viewed as successively approximating a Boolean function. Let \( f_0, f_1, f_2, \ldots, f_m = f \) be the Boolean functions defined by the sets of atoms \( C_0, C_1, C_2, \ldots, C_m = C \) respectively. The tabular representation of \( C_i \) is the on-set of \( f_i \), i.e. \( C_i = ( (p_1, p_2, \ldots, p_n) / f_i(p_1, p_2, \ldots, p_n) = 1 ) \). The sequence of \( f_0, f_1, \ldots, f_m \) satisfies the relation \( f_0 \geq f_1 \geq f_2 \geq \ldots \geq f_m = f \).

The procedure for finding clauses in \( f \land q \) can be viewed as the evaluation of \( L( \ldots (f_0 \land q) \land f_1) \land f_2 \ldots \land f_m \), each \((\phi) \land f_i \) is an approximation of \( f \land q \), i.e. \((\phi) \land f_i \geq f \land q \).

Now, a method for constructing such a sequence of Boolean algebras is described. First, the notion of partition of the keyword set is introduced. By the partition of the keyword set \( K \) we mean an ordered pair of collections denoted by \((Y/Z)\), where \( Y = (y_1, y_2, \ldots, y_s) \), \( Z = (z_1, z_2, \ldots, z_t) \), \( Y \cup Z = K \), \( y_i, z_j \)
in $K$ for $i=1,2,\ldots,s$ and $j=1,2,\ldots,t$ with repetitions allowed, i.e. $s+t \geq n$. When there is no repetition in $Y$ and $Z$, $Y/Z$ is said to be disjunctive, otherwise nondisjunctive.

Let $Y/Z = (y_1,y_2,\ldots,y_s/z_1,z_2,\ldots,z_t)$ be a disjunctive partition of $K$. Let $g_{m-1}$ be an arbitrary Boolean function mapping $W^t$ into $W$, $W=\{0,1\}$ with $z_1$, $z_2,\ldots,z_t$ as variables. Let $G_{m-1} = (L(y_1),L(y_2),\ldots,L(y_s), L(g_{m-1}))$. It can be shown that $B(G_{m-1}) \subseteq B(L)$, and if we let $f_{m-1}$ denote the Boolean function defined by the set of atoms of $B(G_{m-1})$, then we have $f_{m-1} \geq f$. $f_{m-1}$ is said to be an approximation of $f$ and $f$ is said to be approximated by $f_{m-1}$. By consecutively selecting disjunctive partitions of generating sets, a nested sequence of Boolean algebras $B_0 \subseteq B_1 \subseteq B_2 \subseteq \ldots \subseteq B_m$ can be obtained, where $B_i = B(G_i)$ $i=1,\ldots,m$ and $B(G_m) = B(K)$. Corresponding to sets of atoms $C_0,C_1,\ldots,C_m$ of $B_0,B_1,\ldots,B_m$ respectively, there is a sequence of Boolean functions, $f_0,f_1,\ldots,f_m$ such that $f_0 \geq f_1 \geq f_2 \geq \ldots \geq f_m = f$.

Example: Consider a file $F$ with a keyword set $K = (k_1,k_2,k_3,k_4)$ and the set of atoms $C = (c_1,c_2,\ldots,c_7)$. Let $f$ be the Boolean function corresponding to $C$, such that the tabular representation of $C$ is the on-set of $f$ which is shown in Table 3.3.
The two columns in Table 3.3, the table representation of \( G_1 = (I(\mathbf{1}_x), I(z), I(z)) \) by applying \( \mathcal{E}_2 \) to the set \( \mathbf{X} / \mathbf{Z} \) be a distributive partition.

<table>
<thead>
<tr>
<th>( \mathbf{X} )</th>
<th>( \mathbf{Z} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>( \mathcal{E}_2 )</td>
<td>( \mathbf{X} / \mathbf{Z} )</td>
</tr>
</tbody>
</table>

Let \( \mathcal{E}_2 \) be a Boolean function with \( \mathbf{X} / \mathbf{Z} \) as variables.

Table 3.3.

<table>
<thead>
<tr>
<th>( \mathbf{X} )</th>
<th>( \mathbf{Y} )</th>
<th>( \mathbf{Z} )</th>
<th>( \mathbf{C}_1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>( \mathbf{C}_1 )</td>
<td>( \mathbf{C}_2 )</td>
<td>( \mathbf{C}_3 )</td>
<td>( \mathbf{C}_4 )</td>
</tr>
</tbody>
</table>

38
of the set \( C_1 \) of atoms of \( B(G_1) \) is obtained in Table 3.5.

<table>
<thead>
<tr>
<th>( a_1 )</th>
<th>( k_1 )</th>
<th>( k_2 )</th>
<th>( g_2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( a_1 )</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>( a_2 )</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>( a_3 )</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>( a_4 )</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>( a_5 )</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(c_1)

(c_2, c_4)

(c_3, c_7)

(c_5)

(c_6)

Table 3.5.

There are five elements in \( C_1 \), namely, \( C_1=(a_1, a_2, a_3, a_4, a_5) \). The entries in the last column are atoms of \( B(\mathcal{L}) \) contained in each atom of \( B(G_1) \). Next, let \( g_1 \) be a Boolean function with \( k_1, k_2 \) as variables defined by the truth table shown in Table 3.6.

<table>
<thead>
<tr>
<th>( X_1 )</th>
<th>( X_2 )</th>
<th>( g_1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.6

Let \( G_0 = (L(g_1), L(g_2)) \). By applying \( g_1 \) to the first
two columns in Table 3.5, the tabular representation of the set \( \mathcal{C}_0 \) of atoms of \( \mathcal{B}(\mathcal{G}_0) \) is obtained and shown in Table 3.7.

<table>
<thead>
<tr>
<th>( b )</th>
<th>( g_1 )</th>
<th>( g_2 )</th>
<th>( (c_1, c_3, c_7) )</th>
<th>( (a_1, a_3) )</th>
<th>( (c_2, c_4) )</th>
<th>( (a_2) )</th>
<th>( (c_5) )</th>
<th>( (a_4) )</th>
<th>( (c_6) )</th>
<th>( (a_5) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( b_1 )</td>
<td>0</td>
<td>1</td>
<td>( (c_1, c_3, c_7) )</td>
<td>( (a_1, a_3) )</td>
<td>( (c_2, c_4) )</td>
<td>( (a_2) )</td>
<td>( (c_5) )</td>
<td>( (a_4) )</td>
<td>( (c_6) )</td>
<td>( (a_5) )</td>
</tr>
<tr>
<td>( b_2 )</td>
<td>1</td>
<td>0</td>
<td>( (c_2, c_4) )</td>
<td>( (a_2) )</td>
<td>( (c_5) )</td>
<td>( (a_4) )</td>
<td>( (c_6) )</td>
<td>( (a_5) )</td>
<td>( (c_6) )</td>
<td>( (a_5) )</td>
</tr>
</tbody>
</table>

Table 3.7

There are four elements in \( \mathcal{C}_0 \), namely \( \mathcal{C}_0 = \{b_1, b_2, b_3, b_4\} \). The entries in the last column are atoms of \( \mathcal{B}(\mathcal{G}_1) \) contained in each atom of \( \mathcal{B}(\mathcal{G}_0) \). The entries in the second last column are atoms of \( \mathcal{B}(\mathcal{L}) \) contained in each atom of \( \mathcal{B}(\mathcal{G}_1) \). Let Table 3.5 correspond to the on-set of a Boolean function \( f_1 \), Table 3.7 correspond to the on-set of a Boolean function \( f_0 \). It is clear that \( f_0 \geq f_1 \geq f \). Since \( b_1 = \bigcup_{a_j \in \mathcal{C}_j} a_j \), \( \forall b_1 \) in \( \mathcal{C}_0 \) and \( a_1 = \bigcup_{c_j \in \mathcal{L}} c_j \), \( \forall a_1 \) in \( \mathcal{C}_1 \), it can be seen that \( \mathcal{B}(< \mathcal{G}_0) \subseteq \mathcal{B}(\mathcal{G}_1) \subseteq \mathcal{B}(\mathcal{L}) \). Note that \( \mathcal{C}_0 \) is a coarser partition than \( \mathcal{C}_1 \), \( \mathcal{C}_1 \) is a coarser partition than \( \mathcal{C} \).

Let us use this example to illustrate a procedure for answering a query as follows. Let \( \mathcal{W}^* = (0, 1, *) \).
Let \( g_1, g_2 \) be extended to functions mapping from \( W^* \times W^* \) to \( W^* \). \( g_1, g_2 \) are redefined as

\[
\begin{array}{c|ccc}
   & 0 & 1 & * \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
* & * & * & * \\
\end{array}
\quad
\begin{array}{c|cccc}
   & 0 & 1 & 1 & 1 \\
\hline
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
* & * & * & * & * \\
\end{array}
\]

Since every query can be written as one of its disjunctive normal forms, we consider queries involving the Boolean connector 'meet' only. For each such query \( q \), we create a vector \( q_2 = (d_1, d_2, d_3, d_4) \). \( d_j=1 \) if \( k_j \) is presented in \( q \); \( d_j=0 \) if \( \overline{k_j} \) is presented in \( q \); \( d_j=* \), if neither \( k_j \) nor \( \overline{k_j} \) is in \( q \). From \( q_2 \) we obtain \( q_1 = (d_1, d_2, p_2) \), where \( p_2 = g_2(d_3, d_4) \). From \( q_1 \) we obtain \( q_0 = (p_1, p_2) \). Before proceeding, we must define an operator \( \mathcal{D} \). Let \( E_1, E_2, E_3 \) be some vector spaces. \( \mathcal{D} \) is defined as a map from \( E_1 \times E_2 \) to \( E_3 \) such that for any \( V, D_1, U, D_2 \), where \( V = (v_1, v_2, \ldots, v_k) \), \( U = (u_1, u_2, \ldots, u_k) \), \( \mathcal{D}(V, U) = (v_1-u_1, v_2-u_2, \ldots, v_k-u_k) \),

where "-" is defined by

\[
\begin{array}{c|ccc}
   - & 0 & 1 & * \\
\hline
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
* & 0 & 0 & * \\
\end{array}
\]
An atom \( x \) is said to be relevant to the query \( q \) if \( x \land q \neq 0 \). It can be shown that an atom \( x \) in \( C_1 \) is relevant to \( q \) if \( D(x, q_1) = 0 \), where \( 0 \) is the zero vector \((000...0)\). Therefore the set of all relevant atoms in \( C_1 \) to \( q \) is the set \( X_1 = \{ x \in C_1 / D(x_1, q_0) = 0 \} \). \( X_1 \) can be obtained recursively without searching the whole \( C_1 \). Define \( Y_1 = \{ y \in C_1 / x \geq y, x \in X_{1-1} \} \), then \( X_1 = \{ y \in Y_1 / D(y, q_0) = 0 \} \), with \( X_0 = \{ x \in C_0 / D(x, q_0) = 0 \} \).

In our example above, let \( q = k_1 \land \overline{k_3} \), a vector \( q_2 = (1 \ast 0 \ast) \) is created. By mapping \( q_2 \) to the last two components of \( q_2 \), we have \( q_1 = (1 \ast 1) \). By applying \( q_1 \) to the first two components of \( q_1 \), we have \( q_0 = (0 \ast 1) \). We have \( Y_0 = C_0, X_0 = \{ x \in C_0 / D(x, q_0) = 0 \} = (b_1) \). Then in turn, we can obtain the following sets

\[
Y_1 = \{ y \in C_1 / x \in X_0, x \geq y \} = (a_1, a_3)
\]
\[
X_1 = \{ y \in Y_1 / D(y, q_1) = 0 \} = (a_1, a_3)
\]
\[
Y_2 = \{ y \in C_2 / x y, x \in X_1 \} = (C_1, C_3, C_7)
\]
\[
X_2 = \{ y \in Y_2 / D(y, q_2) = 0 \} = (C_1, C_3, C_7)
\]
\[
L(q) = X_2.
\]

Let us consider another query \( q = k_2 \land k_3 \). By following the same procedure as before we obtain

\[
q_2 = (* 1 1 *), q_1 = (* 1 0 *), q_0 = (* 0 *)
\]
\[
X_0 = (b_1, b_2, b_3, b_4)
\]
\[ y_1 = (a_1, a_2, a_3, a_4, a_5) \]
\[ x_1 = (a_2) \]
\[ y_2 = (c_2, c_4) \]
\[ x_2 = (c_2, c_4) \]
\[ L(q) = (c_2, c_4) = x_2. \]

III.4. DISCUSSION:

Let us define a measure of efficiency coefficient of this file structure corresponding to a certain query by

\[ \eta = \left( \frac{\sum_{i=1}^{m-1} |x_i|}{|Y_1|} \right) / (m-1) \]

where \( |X_1| \), \( |Y_1| \) are the number of elements in \( X_1 \), \( Y_1 \) respectively. \( \eta \) is the average ratio of the number of relevant atoms versus the number of atom to be searched. For the example in III.3, the coefficient for the first query is \( \eta = (1/4+1+1)/3 = 0.75 \), for the second query \( \eta = (1+1/5+1)/3 = 2.2/3 = 0.73 \).

In general, the coefficient is high for a certain class of queries and low for others, depending on how the atoms in each algebra are distributed. For a given file, distribution of atoms in each algebra is solely determined by the choice of sets of generators. If the frequencies of usages of queries are known a priori, then, by a certain choice of sets of generators,
the file structure can be tailored to the one that responds most efficiently to those queries that are most frequently used. The response time to a query is closely related to the coefficient $\eta$. It depends on how the file structure is implemented and what kind of hardware is being used. But it also depends on the distribution of atoms. Therefore the choice of sets of generators plays an important role in improving both the efficiency and the response time for the file structure.

An extension of this can be made by considering the nondisjunctive partitions of the keyword set. Redundant information may be created as a result of duplications of keywords in the disjunctive partitions. But it might improve the efficiency of the file structure with respect to some classes of queries. Another extension can be made if we consider the resulting set $G_0$ of Boolean functions $(g_1, g_2, \ldots, g_{m-1})$ as a set of new keywords and apply the procedure to $G_0$ as is was applied to $K$, we will have a second sequence of Boolean algebras whose set of atoms correspond to some coarser partitions of $B(G_0)$. Therefore by repeated application of this procedure, a file can be partition into any number of sequences of partitions. When the file and the keyword set
are extremely large, this may result in some important computational advantages.
IV. IMPLEMENTATION AS A TREE

The file structure involving a nested sequence of partitions, as discussed in the preceding chapter, leads to the idea of implementing the proposed file structure as a tree structure. Each level in the tree corresponds to a Boolean algebra in the sequence, and the nodes at that level represent the atom of the corresponding Boolean algebra in a one-to-one manner. Succeeding levels in the tree correspond in an obvious and natural way to succeeding Boolean algebras in the nested sequence, and descending nodes represent splitting of atoms in an equally natural way.

First of all, we will review some notions of tree and binary trees, as they will be used in our implementation.

IV.1 TREES AND BINARY TREES

The definitions of trees and binary trees that we introduce here are taken from Knuth [36], in which trees and binary trees are defined recursively as follows:

A tree is defined as a finite set T of one or more nodes such that
(a) there is one special node in a tree called the root of the tree, denoted by \(\text{root}(T)\);

(b) the remaining nodes (excluding the root) are partitioned into \(m \geq 0\) disjoint sets \(T_1, \ldots, T_m\) and each of these sets in turn is a tree. The trees \(T_1, \ldots, T_m\) are called the subtrees of \(T\).

In a tree \(T\), a node \(n_2\) is called a son of another node \(n_1\), if there is a branch connecting from \(n_1\) to \(n_2\), and \(n_1\) is called the father of \(n_2\). Two nodes \(n_1\) and \(n_2\) in a tree \(T\) are called brothers if \(n_1\) and \(n_2\) are sons of the same node. The number of sons of a node \(n\) is called the degree of \(n\). Nodes with degree zero are called the terminal nodes or leaves. Other nodes, excluding the root, are called nonterminal nodes. The level number of a node is the level number of its father plus one, with the root having zero as its level number. A level in a tree is a set of nodes with the same level number. For an example, in Fig. 4.1, consider a tree \(T\) in which the level number of \(D\) is 2, or we say \(D\) is in the level 2 of the tree \(T\). The height of a tree is the maximum level number that a node in a tree can have.

Let the path to a node \(n\) be defined as an ordered concatenation of \(n\) with all its ancestors, with the root at the beginning position of the concatenation.
For an example, the path to H is ABDH. Within a tree, a node can be labelled with any name, i.e. any alpha-numeric code. In fact two nodes may have the same label. Let us call the label of a node **code name** of the node. A path of a node can be represented as a concatenation of code names. We call the concatenation of the path to a node the **path name** of the node. The path name of a node is unique, provided that sons of a node have distinct names. For an example, we have a tree T in which nodes are labelled as shown in Fig. 4.2. There are two nodes in T labelled
with B, but one has the path name AB, another has ACB. Therefore two nodes with the same code name can be uniquely identified if their path name were used. Similarly, it applies to two nodes with a code name D.

A forest is defined as a collection of zero or more disjoint trees. For example, let $T_1$, $T_2$ be two trees as shown in Fig. 4.3. $\{T_1, T_2\}$ is a forest.

![Trees Diagram]

Fig. 4.3

Of course, a forest can be transposed into a tree by connecting all the roots to an extra common node which serves as the root of the created tree.

A binary tree is a finite set of nodes which is either empty or consisting of a root and two disjoint binary trees which are the left and right subtrees of the root.

The differences between trees and binary trees are

(1) A tree is never empty, i.e. it always has at least one node, and each node of a tree can have
0,1,2,...,m sons.

(2) A binary tree can be empty, and each of its node can have 0,1,2 sons; when the number of sons $\geq 0$, we distinguish between a left son and a right son.

There is a natural correspondence between forests and binary trees, i.e. every forest can be represented as a binary tree and vise versa. Consider the forest $\{ T_1, T_2 \}$ shown in Fig.4.3, the corresponding binary tree is obtained by linking root($T_1$) with root($T_2$) and linking together sons of a node and eliminating all branches to the sons except for the left most one. The corresponding binary tree $T_3$ for the forest $T_1, T_2$ is shown in Fig.4.4.

![Binary Tree Diagram](image)

In general, let $F = (T_1, ..., T_m)$ be a forest. The binary tree $B(F)$ corresponding to $F$ can be obtained formally as follows:

(1) $m = 0$, $B(F)$ is empty
(2) if \( m > 0 \), the root of \( B(F) \) is the root of \( T_1 \); the left subtree of \( B(F) \) is \( B(T_{11}, \ldots, T_{1n}) \), where \( T_{11}, \ldots, T_{1n} \) are subtrees of \( T_1 \), the right subtree of \( B(F) \) is \( B(T_2, \ldots, T_m) \).

Since trees are representable in binary trees and many algorithms in applications are of binary trees nature, it is worthwhile to study binary tree a little further.

By the nature of the definition of a binary tree, there is a simple way to represent a binary tree within a random access computer memory. A node is represented by a set of memory cells, in which there are two fields LLINK and RLINK. LLINK stores the address of the left subtree of the node and RLINK stores the address of right subtree of the node. Within a node there may be another field called INFO, in which information of data or about the tree can be stored. Therefore, in general, a node has the form

| LLINK | INFO | RLINK |

There is a variable \( T \) which is a pointer to a tree. If the tree is empty, \( T = 0 \); otherwise \( T = \) address of the tree, and LLINK(\( T \)), RLINK(\( T \)) denote pointers to the left subtree and right subtree of the root respectively. These rules recursively define a
memory representation of a binary tree within a computer memory. For example, for the binary tree \( T \) in Fig. 4.5, the corresponding representation in a computer memory is shown in Fig. 4.6, where \( \varnothing \) in a
field indicates the corresponding subtree is empty.

The basic algorithm needed for manipulating a binary tree is the algorithm for traversing a binary tree, i.e. examining the nodes of the tree systematically so that every node is traversed only once. A traversing of the whole tree produces a linear ordering of all nodes in a tree. There are three principal ways to traverse a tree, namely, preorder, postorder and inorder which are defined recursively as follows:

**Preorder:**
Visit the root.
Traverse the left subtree.
Traverse the right subtree.

**Postorder:**
Traverse the left subtree.
Visit the root.
Traverse the right subtree.

**Inorder:**
Traverse the left subtree.
Traverse the right subtree.
Visit the root.

For the example in Fig.4.6, if we traverse the
tree T by preorder, we are examining the nodes in the following order

ABDGHCEFJ

by postorder, we have

GDHBAECIFJ

by enorder, we have

GHDBEIJFCA

Note that fields containing zero are merely a waste of space, because they convey no information other than that the link is terminated. To make use of this extra memory space, the so called "threaded" tree representation is introduced. In this representation, terminal links contain pointers to other parts of the tree, instead of zero. In fact LLINK(P) will contain the precessor of P and RLINK(P) will contain the successor of P, with respect to a certain traversing order. For example, with respect to postorder, a threaded tree representation of the tree T in Fig. 4.5 is shown in Fig. 4.7, where the thinner lines representing threads. Within a compouter, a node is modified to

\[
\begin{array}{|c|c|c|c|c|}
\hline
TL & LLINK & INFO & TR & RLINK \\
\hline
\end{array}
\]

TL, TR are tags indicating the link fields to which they are attached are threads or regular links. For example,
TL = 1 or TR = 1 indicates LLINK or RLINK is a regular link respectively, and TL = 0 or TR = 0 indicates LLINK or RLINK is a thread.

The advantage of a threaded tree is that the traversing algorithms become much simpler, for there is no stack to be maintained in the traversing algorithms. The threads give enough information as to where is the next node to traverse.

IV.2. IMPLEMENTATION OF THE PROPOSED FILE STRUCTURE AS A TREE

IV.2.1. TREE REPRESENTATION:

Let $B(G_0) \leq B(G_1) \leq \ldots \leq B(G_m) = B(L)$ be a sequence of Boolean algebras as defined in Chapter III, $C_0, C_1, \ldots, C_m$ be the sets of atoms of $B(G_0), B(G_1), \ldots,$
respectively. Since \( \{ C_0, C_1, \ldots, C_m \} \)
are a nested set, there is a nature tree structure representation. Let every atom
in \( C_0 \) be represented by the root of a tree in the forest. Let \( U \) be any node in the tree. \( U \) represents an atom in some set, say \( C_i \), and sons of \( U \), say
\( \{ U_1, \ldots, U_p \} \) represent atoms in \( C_{i+1} \).

The procedure for constructing this forest is described as follows:

Let \( K = \{ k_1, \ldots, k_n \} \) be the set of keywords.
Let \( X_1 / X_2 / X_3 / \ldots / X_m \) be a disjoint partition of \( K \), where \( X_1 = \{ k_1, \ldots, k_{v_1} \} \), \( X_2 = \{ k_{v_1+1}, \ldots, k_{v_2} \} \),
\( \ldots \), \( X_i = \{ k_{v_{i-1}+1}, \ldots, k_{v_i} \} \), \( \ldots \), \( X_m = \{ k_{v_{m-1}+1}, \ldots, k_{v_m} \} \), \( g_i \) be a Boolean function, with \( X_i \) as the set of variables, mapping from \( W^i \rightarrow W \), for \( i=1, \ldots, m \).

Thus, we have \( G_0 = \{ g_1, \ldots, g_m \} \), \( G_1 = \{ k_1, \ldots, k_{v_1}, g_2, \ldots, g_m \} \), \( \ldots \), \( G_i = \{ k_1, \ldots, k_{v_i}, g_{i+1}, \ldots, g_m \} \), \( \ldots \), \( G_m = \{ k_1, \ldots, k_n \} \). Let us assume that \( C_0, \ldots, C_m \) are represented in their tabular forms, i.e. atoms are represented as an array of codes which are tuples of "0" and "1". The code name of the root in a tree is the code of an atom in \( C_0 \) in the tabular representation. At level \( i \), for \( i = 1, \ldots, m \), of a tree in the forest, a node \( U \) is represented by a partial code of an atom.
in $C_1$. Let $u$ be a node representing an atom $x$ in $C_1$; if $x$ appears in the tabular form of $C_1$ as

$$(y_1, \ldots, y_{v_1}, y_{v_1+1}, \ldots, y_m)$$

then the code name for $u$ is simply

$$(y_{v_1-1+1}, \ldots, y_{v_1})$$

Furthermore, if $u$ is a descendant of a root $T$ with a code name $(p_1, \ldots, p_m)$, then $g_i(y_{v_1-1+1}, \ldots, y_{v_1}) = p_1$. Let us consider the example given in Chapter III, $K=\{k_1, k_2, k_3, k_4\}$; $X_1/X_2 = (k_1, k_2/k_3, k_4)$ is a disjoint partition of $K$; $g_1, g_2$ are defined as follows in Table 4.1

<table>
<thead>
<tr>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$g_i$; $i=1,2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4.1

$C_0 = (00, 01, 10, 11)$

$C_1 = (111, 010, 101, 011, 100)$

$C_2 = (1100, 0110, 1000, 0111, 0101, 1011, 1001)$

where tuples of 1 and 0 are codes of atoms in the tabular forms of $C_1$. The forest is represented as follows in Fig. 4.8.
Fig. 4.8
The tree representation of the sets of atoms $C_0, C_1, \ldots, C_m$ can be viewed as a compact representation of the tabular forms of $C_0, C_1, \ldots, C_m$; relationships between $C_i$ are expressed explicitly by branches in the tree and codes of atoms can be decoded from paths in the trees. For the example above, let us use path name to identify nodes in the tree, we can see that (Fig. 4.8) there are two sons branching from (0 1) at level 0 of the second tree, namely 0111, 0110, which represent two atoms 111, 101 in $C_1$ respectively; 0111 has a son 011100; 0110 has two sons 011000, 011001; where (011100, 011000, 011001) represent atoms 1100, 1000, 1001 in $C_2$.

This illustrates the fact that $b_1 \supseteq (a_1, a_3)$, $a_1 \supseteq (c_1)$, $a_3 \supseteq (c_3, c_7)$ as shown in Chapter III.

The retrieval procedure for this tree representation of atom sets is a modification of the retrieval procedure described in Chapter III. For a given query $q$, a vector $q_m = (p_1, \ldots, p_n)$ is constructed, where $p_1, \ldots, p_n$ is in $W^* = (0, 1, *)$ and $p_i = 1$ if $k_i$ is in $q$; $p_i = 0$ if $\overline{k}_i$ is in $q$; $p_i = *$ if neither $k_i$ nor $\overline{k}_i$ is in $q$. From $q_m$, obtain vector $q_{m1} = (p_{v_1-1}, \ldots, p_{v_1})$, for $i = 1, \ldots, m$. A vector $q_m0 = (x_1, \ldots, x_m)$ is constructed from $q_m$ as follows. First of all, $q_1$, for $i = 1, \ldots, m$, are extended to functions mapping from $W^*(v_1-v_1-1)$ to $W^*$, in a well defined way. Then let
\[ x_i = q_i(p_{v_i-1} + 1, \ldots, p_{v_i}), \text{ for } i=1, \ldots, m \]

After we have constructed \( q_{m0}, q_{m1}, \ldots, q_{mm} \), these vectors are used to compare with nodes in the trees. Define the binary operator \( D \) between two vectors \( U, V \) as in Chapter III. Starting from \( i=0 \), at each level \( i \), the value of \( D(y_i, q_{m1}) \) is computed, where \( y_i \) is a code name of a node. If \( D(y_i, q_{m1}) = 0 \), then sons of the node with code name \( y_i \) are traversed and a subset \( Y_{i+1} \) of code names of these sons is obtained, where \( Y_{i+1} = \{ y_{i+1} / D(y_{i+1}, q_{m1}) = 0 \} \). Finally, when \( i=m \), a set \( Y_m = \{ y_{m1} / D(y_{mm}, q_{mm}) = 0 \} \) is the set of code names representing atoms in \( B(\mathcal{L}) \), satisfying \( q \).

Consider the example given in Fig. 4.8. Let \( q = k_1 \land \neg k_3 \), then \( q_m = (1 * 0 * ) \), \( q_{m1} = (1 * ) \), \( q_{m2} = (0 * ) \), \( q_{m0} = (0 1) \). At level 0, the node 01 satisfies the equation \( D(01, q_{m0}) = 0 \); at level 1, two sons \( (0111), (0110) \) of 01, satisfy the equation \( D(y_1, q_{m1}) = 0 \), \( Y = (0111, 0110) \); at level 2, \( Y_2 = (011100, 011000, 011001) \). Since \( Y_2 \) is a set of leaves, the procedure stops and atoms of \( B(\mathcal{L}) \) are decoded as \( (1100, 1000, 1001) \), which are atoms in \( B(\mathcal{L}) \) satisfying \( q \).

While update of a file consists of inserting a record into or deleting a record from the file, update of the atom sets in the trees representation involves adding nodes to or deleting nodes from the trees.
An atom of $B(\mathcal{L})$ consists of one or more records; inserting a record to or deleting a record from a file does not always mean adding nodes to or deleting nodes from the tree representation. Adding nodes to the tree is required only if the record to be inserted is contained in an atom that is not yet represented in the tree structure. Deletion of nodes from the tree is required if the record to be deleted is the only record that is contained in an atom or if the whole atom is to be deleted. By update here, we mean update of the atom sets. We shall write an "atom" to mean an atom in $B(\mathcal{L})$.

The procedure for adding an atom to a tree with a height $m$ can be described as follows. From $q_m$, we obtain $q_{m0}, q_{m1}, \ldots, q_{mm}$ as defined earlier. Consider the following procedure:

1. $i = 0$
2. $i > m$, go to (9)
3. get the eldest brother $x$, let $y = x$
4. $D(y, q_{mj}) = 0$, go to (7)
5. if there are no more brothers, go to (8)
6. get next younger brother $z$, let $y = z$ go to (4)
7. $i = i + 1$ go to (2)
8. add a partial path with a name $q_{mj}, \ldots, q_{mm}$
This procedure adds an atom to the tree. Note that the value * will never appear in $q_m$ or $q_{m0}$, therefore at each level $i$, there is either no node or an unique node $y$, such that $D(y, q_{mi}) = 0$. In the case that there is no node $y$, such that $D(y, q_{mi}) = 0$, as in step (8), a partial path has to be added to the tree, and it has the form:

```
q_{m1} \rightarrow \ldots \rightarrow q_{mm}
```

For example, consider the forest in Fig. 4.8. Suppose an atom with a code (0011) is to be added to the tree. Let $q_m = (0011)$. Then $q_{m0} = 10, q_{m1} = 00, q_{m2} = 11$. The third tree in the forest will look like this after insertion, (Fig. 4.9)

```
00 \rightarrow \quad 11
10 \rightarrow 01 \rightarrow 10
\quad Fig. 4.9
11
```

where the path to be added is $\rightarrow 00 \rightarrow 11$.

When an atom is to be deleted from the atom
sets, a partial path will be deleted from the tree. Let $q_m$, $q_m^{(1)}$, ..., $q_m^{(m)}$ be defined as earlier for an atom to be deleted. The partial path to be deleted from the tree has the form

$$\rightarrow q_{m1} \rightarrow q_{m(i+1)} \rightarrow \ldots \rightarrow q_{mm}$$

where $q_{m(i+1)}$ is the only son of $q_{mk}$, $k=1, \ldots, m$.

For example, consider Fig. 4.8 and suppose that the atom $1100$ in $B(\mathcal{L})$ is to be deleted. Let $q_m = (1100)$. Construct $q_{m0} = (01)$, $q_{m1} = (11)$, $q_{m2} = (00)$. Since the code name $T$ of the root of the second tree satisfies $D(T, q_{m0}) = 0$, we know that $(1100)$ is contained in the second tree which will have the following form after deletion (Fig. 4.10):

$$
\begin{array}{c}
01 \\
\downarrow 10 \\
11 \rightarrow 00 \\
\downarrow \\
0 \rightarrow 00 \\
\downarrow \\
1 \rightarrow 01
\end{array}
$$

Fig. 4.10

where $11 \rightarrow 00$ is the partial path that has been deleted. Usually, deletion of a partial path means disconnecting a link from the father of the eldest member in the partial path. The space that was occupied by the partial path is then returned
to the free space list. This is a problem of garbage
collection which will not be discussed here.[36]

IV.2.2. IMPLEMENTATION PROGRAMS:

The purpose of the programs is to demonstrate
feasibility and to serve as a guide to the analysis
of the proposed file structure. The programs were
written in FORTRAN and COMPASS. A sample file of
1000 records are generated by a pseudo-random number
generator, each record being represented by a 100-
bit code and each bit representing one keyword. The
pseudo-random generator is written so that each record
it generates is a concatenation of ten 10-bit pseudo-
random numbers generated independently. In a way, it
simulates the bit patterns of fields in an actual
record. For example, a record in a personnel file has
a field name AGE. The values for AGE range from 20
to 65, then codes for these values must have some
bit patterns. A linear recurrence algorithm is used
in writing of the generator. Output of the generator
is a set of random numbers punched on cards.

The programs accept the deck of cards as the
representation of the set of records. A forest
of trees is built up from this representation of records,
under the following specifications:
Let \( K = \{ k_1, \ldots, k_n \} \), \( X_1/X_2/\ldots/X_m \), \( g_1, \ldots, g_m \) have the same general meaning as defined in Chapter IV.2.1. In particular, for the purpose of our programs, we choose \( n=100, m=10, X_1=(k_1, \ldots, k_{10}), X_2=(k_{11}, \ldots, k_{20}), \ldots, X_1=km_{1-1}+1, \ldots, km_{m1}, \ldots, X_{10}=(k_{91}, \ldots, k_{100}) \); \( g_1, \ldots, g_{10} \) are chosen to be the OR function of \( X_1, X_2, \ldots, X_{10} \) respectively. The reason for choosing \( g_1, \ldots, g_{10} \) this way is the ease of programming, because the validity of an OR function is relatively easy to verify. The reason for choosing \( X_1, \ldots, X_{10} \) to have the same number of elements and to choose \( n = m^2 \) is that the computer representation of a node in a tree will have a fixed format, another convenience for programming. All these restrictions on \( K, n, m, g_1 \) are rather artificial. But the programs were written only to illustrate feasibility; hence we made everything simple.

Within a computer, a forest is represented as a threaded binary tree, more precisely, a half threaded binary tree, with the LLINK field of a leaf pointing to its father, and the RLINK field of a leaf storing an atom number. A node, occupying one CDC 6400 computer word, has the following format

<table>
<thead>
<tr>
<th>INFO</th>
<th>LLT</th>
<th>RLT</th>
<th>LNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>12</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>
where INFO, (12 bits, of which only 10 bits are used), stores the code name of a node; LLT, (21 bits), is the LLINK and LT fields and stores a pointer to its brother, or, if the node is a leaf with a father, stores the negative of the address of its father, or, if the node is a leaf without a father, is filled with 1's; RLT, (21 bits), is the RLINK and RT fields and stores a pointer to its son, or, if the node is a leaf, stores the negative of an atom number of the atom it represents; and, LNO, (6 bits), stores the level number of a node.

Note that negative values in RLT indicate that the corresponding node is a leaf and the negative value in RLT is the atom number of an atom it represents. In reality, RLT may store a pointer to some memory locations in which other information about the atom is stored. A negative value in a LLT indicates that it is a threaded, instead of a regular link. A thread is the negative of a pointer to the father of this node. If the node does not have a father, i.e., a node representing the youngest brother at level 0 in the forest, its LLT has the value of negative zero (all 1's).

For example, consider a forest in Fig. 4.11. The binary tree representation for this forest is shown
In a computer memory, by considering A, B, C, D, E, F, G, H as addresses in the memory, this binary tree has the representation shown in Fig. 4.13, where PT is a pointer to the root of the binary tree, and the thinner lines represent threads. We shall call the binary tree representation within the computer the tree from now on. The tree will be traversed by preorder algorithm, i.e.

Visit the root,
Traverse the right subtree,
Traverse the left subtree.

"Visit the root" means to do something with the root; here it means to compare the code name of a root with a vector $q_{mi}$ as defined earlier for a query. Note
Fig. 4.13
that we traverse the right subtree before traversing the left subtree, which is different from the definition of preorder given in Section IV.1. However, it should be clear that it is just a matter of reordering of brothers in a forest.

Our program consists essentially of eight subprograms, namely, TREE, CONVERT, DETREE, RETRIEV, ADDBIT, RETRI, MASH and MATCH. Relationship among these programs is shown in Fig. 4.14, where a link represents a call from one program to another.

```
    TREE
       /\       \\
      /  \     /  \\
    CONVERT  DETREE  RETRIEV
          /\      /\      /\  \\
         /  \    /  \    /  \   \\
       ADDBIT RETRI MASH MATCH
```

Fig. 4.14

These programs first convert a set of records into the tree, then they process a query and print out all those atoms that satisfy the query. We assume that each atom in $B(\mathcal{L})$ contains one record for the sake of simplicity. Therefore, the set of records is identical with the set of atoms in $B(\mathcal{L})$. In practice, each
atom may contain more than one record. A pointer to the set of records belonging to that atom must then be stored in the leaf representing that atom, instead of the record number being stored as we did.

The function of each individual program will be described as follows:

TREE: It is the main program which accepts the set of atoms punched on cards; calls CONVERT to convert each atom into an appropriate form; calls DETREE to construct the tree; finally calls RETRIEV to read a query and retrieve from the tree all atoms satisfying that query. This main program is written in FORTRAN.

CONVERT: It converts each atom into a vector \( q_m \) defined earlier, i.e. for an atom \((X_1, \ldots, X_{100})\), construct a vector \( q_m = (P_1, \ldots, P_{10}) \) such that \( P_i = 1 \), if
\[
g_i(X_{m(i-1)+1}, \ldots, X_{mi}) = V(X_{m(i-1)+1}, \ldots, X_{mi}) = 1
\]
or equivalently, if there exist a k in \( \{ m(i-1)+1, \ldots, mi \} \) such that \( X_k = 1 \); \( P_i = 0 \), if \( g_i(X_{m(i-1)+1}, \ldots, X_{mi}) = V(X_{m(i-1)+1}, \ldots, X_{mi}) = 0 \) or equivalently, if for all k in \( \{ m(i-1)+1, \ldots, mi \} \) \( \forall X_k = 0 \).

Functionally, CONVERT determines codes for nodes at level 0 of trees in the forest. CONVERT is written in FORTRAN.

DETREE: Constructs the tree from the set of atoms.

For each atom, DETREE determine what part of the tree
the atom belongs to. A vector $q_{m0}$ is obtained from the output of CONVERT. $q_{mi}$, for $i=1,...,m$ are obtained by left shifting 10 bits of the vector $q_m$ of each atom consecutively into a register $M$. $q_{mi}$, $i=0,...,m$ are compared one after another with code names in the tree to determine where in the tree $q_{m1}$ should be stored. DETREE is written in COMPASS.

RETRIEV: Calls ADDBIT to translate a query $q$ from query language to a vector form that is appropriate for processing. And then calls RETRI to traverse the tree and to retrieve atoms satisfying $q$ from the tree. RETRIEV is written in FORTRAN.

ADDBIT: The query language we use here is very simple. To specify a query, a sequence of integers is used to specify which keywords or complement of keywords are in the query. All queries are in conjunctive forms. Negative integers are used to specify the complements of keywords. For example, $( -5 \ 6 \ 9 )$ means $\overline{k_5} \land k_6 \land k_9$.

Instead of using the symbol $\ast$, ADDBIT converts a query $q$ in a form of a sequence of integers into three vectors: $q_{m0}=(z_1,\ldots,z_m)$, where $m=10$, and $z_1=0$ if there exists a $j$ in $\{ m(i-1)+1,\ldots,mi \}$ such that $k_j$ is in $q$; $P_m=(x_1,\ldots,x_{100})$, $q_m=(y_1,\ldots,y_{100})$, where $x_1=0$ if $k_1$ is in $q$, $y_1=0$ if $\overline{k_1}$ is in $q$. For example, if $q=(-5 \ 6 \ 9)$, we will have $q_{m0}=(011...1)$, $P_m=(11111011011...1)$,
\( q_m = (l1l10l1l...l) \). The reason for doing this will be given when MATCH is described. ADDBIT is written in COMPASS.

RETRI: The tree is traversed in preorder by RETRI. When the root of a subtree is being visited, the code name of the root is compared with a vector which is a result from a call to MASH. A comparison between a code name and a vector is done by a call to MATCH. The traversing process stops when the node being visited has a LLT containing a negative zero(11...1). It means that there are no more trees in the forest to be traversed. RETRI is written in COMPASS.

MASH: Since \( P_m \), \( q_m \) are vectors of 100 bits, each needs two CDC computer words to be stored. \( P_m \) is stored in IQUERY(1) and IQUERY(2). \( q_m \) is stored in IQUERY(3) and IQUERY(4). MASH leftshifts \( P_m, q_m \) 10 bits each time consecutively into MM(1) and MM(2) respectively. MM(1) and MM(2) are used in MATCH to compare with code names in the tree. MASH is written in COMPASS.

MATCH: MATCH performs a matching procedure between a code name INFO(n) of a node n and MM(1), MM(2). Let \( q = (p_1, p_2, ..., p_{100}) \) be a vector representation of a query q, as described in Section IV.2.1, i.e. where \( p_i = 1 \) if \( k_i \) is in q; \( p_i = 0 \) if \( k_i \) is in q; \( p_i = * \) if neither
\( k_1 \) nor \( \overline{k_1} \) is in \( q \). Let \( q_{m_1} = (P_m(i-1)+1, \ldots, P_{m_1}) \).

Claim: \( D(\text{INFO}(n), q_{m_1}) = 0 \) if \( \text{MM}(1) \lor \text{INFO}(n) = (1l \ldots 1) \) and \( \text{MM}(2) \lor \overline{\text{INFO}(n)} = (1l \ldots 1) \).

Proof of the claim:

Let \( \text{INFO}(n) = (u_1, \ldots, u_m) \), \( u_i = 0 \) or 1. By definition \( d(\text{INFO}(n), q_{m_1}) = 0 \) if \( u_j - P_m(i-1)+j = 0 \) for all \( j = 1, \ldots, m \). Also by definition \( \text{MM}(1) = (x_m(i-1)+1, \ldots, x_{m_1}) \), \( \text{MM}(2) = (y_m(i-1)+1, \ldots, y_{m_1}) \) where

\[
x_m(i-1)+j = 0 \iff P_m(i-1)+j = 1
\]

\[
1 \iff P_m(i-1)+j = 0 \text{ or } *
\]

\[
y_m(i-1)+j = 0 \iff P_m(i-1)+j = 0
\]

\[
1 \iff P_m(i-1)+j = 1 \text{ or } *
\]

Suppose \( \text{MM}(1) \lor \text{INFO}(n) \neq (1l \ldots 1) \) or \( \text{MM}(2) \lor \overline{\text{INFO}(n)} \neq (1l \ldots 1) \) implies that there is a \( j \) such that \( u_j \lor x_m(i-1)+j = 0 \), which implies \( u_j = 0 \) and \( x_m(i-1)+j = 0 \), implies \( u_j = 0 \) and \( P_m(i-1)+j = 1 \), implies \( u_j - P_m(i-1)+j \neq 0 \), implies \( D(\text{INFO}(n), q_{m_1}) \neq 0 \), contradicting the fact that \( D(\text{INFO}(n), q_{m_1}) = 0 \).

\( \text{MM}(2) \lor \overline{\text{INFO}(n)} \neq (1l \ldots 1) \), implies that there is a \( j \) such that \( u_j \lor y_m(i-1)+j = 0 \), implies \( u_j = 0 \) and \( y_m(i-1)+j = 0 \), implies that \( u_j = 1 \) and \( P_m(i-1)+j = 0 \), implies \( u_j - P_m(i-1)+j \neq 0 \), implies \( D(\text{INFO}(n), q_{m_1}) \neq 0 \), also a contradiction to \( D(\text{INFO}(n), q_{m_1}) = 0 \). Q.E.D.

By using this claim we can process the query without using the symbol *. MATCH is written in COMPASS.
While the statements of these programs can be found in the Appendix, the algorithms for these programs will be given as follows:

TREE:

0. Read N, K. Allocate space for TR.
   (N is the number of cards, K is the number of bits in a code name, TR is the address of the tree.)
1. PT ← TR. (PT stores a pointer to a root.)
2. Read Ith card, and I+1th card into B(I) and B(I+1).
3. Call CONVERT (B,I,M).
   (B is a buffer, storing an atom; I, number of cards being read; M, code name of a node.)
4. NL=1, J=0. (NL, level number to be stored in LNO, but actually, NL is a number greater than the level number by 1, i.e. at level 0, NL=1; J is a counter for number of leftshifts.)
5. \( I_3 = (I+1)/2. \) (Each atom occupying two cards, \( I_3 \) is an atom number.)
6. Call DETREE (M, NL, TR, PT, \( I_3 \)).
7. Leftshift B, \((J+1)*10\) bits into M, MASK left most 10 bits of M, put it into M.
8. J \( \geq 0 \), Go to 10.
9. NL =NL+1, J=J+1 Go to 4.
10. I \( \geq N \). Go to 12. (All card read?)
11. \( I = I + 2 \). Go to 2. (Read the next two cards.)
12. Print TR. (Print the whole tree.)
13. Call RETRIEV ( TR, KEY, NK ).
   (KEY is an array containing keyword numbers or the negatives of keyword numbers in a query, NK is the number of keywords appearing in a query.)

CONVERT ( B, I, M ):

0. J=0, JA=0. (J is a counter for the number of leftshifts, JA stores the bit position that has to be a "1" in M.)
1. \( IA \leftarrow [B(I)] \). (Content of B go into IA.)
2. Leftshift (zero filled) IA, \( J \times 10 \) bits into IA.
3. MASK left most 10 bits of IA into IT.
4. IT=0. Go to 6.
5. Set \( p^{th} \) bit of M to "1", \( p = \text{Mod}_{10} [JA \times 10] + 1 \).
8. JA > 10. Go to 11. (Pattern of left most 10 bits of M has been determined.)
9. Go to 2.
10. I=I+1 Go to 1.
11. Return.

DETREE ( M, NL, TR, PT, RN ):

Notations: \([A]\) means the content of a variable A.
p ← B means address of B being put into p; \( p \leftarrow [B] \)
means content of B being put into p; \( F(p) \) means the
field F in a node p, for example, \( \text{INFO}(p) \) means the
\( \text{INFO}(p) \) in P; and \(-0 = (11...1)\).

1. \( p \leftarrow \text{TR}. \) (\( p \) is a pointer to the root of a
subtree.)

2. \( [[p]] = 0 \) Go to 4. (The tree is empty.)

3. Go to 6. (If the tree is not empty.)

4. \( \text{INFO}([p]) \leftarrow [M]; [p] = \text{TR}, \)
\( \text{LT} \leftarrow -0, RLT \leftarrow -[RN], LNO \leftarrow [NL], \)
\( PT \leftarrow [PT] + 1, \text{Return.} \)
(\( PT \) is a pointer to an available space; \(-0 \) will
be propagated to the brother of \( p \); RN is an
atom number propagated to the son of \( p \).)

5. \( LNO \leftarrow [NL], RLT \leftarrow -[RN], \text{LLT} \leftarrow -([PT] - 1), \)
\( PT \leftarrow [PT] + 1, \text{Return.} \) (Address of its father
being put into LLT.)

6. \( [LNO] = [NL] \) Go to 11. (The level number
of a node is matched with that of the on-coming
atom.)

7. \( RLT \neq -, \text{Go to 9.} \) (If it has a son.)

8. \( \text{RN} \leftarrow [RLT], RLT \leftarrow [PT], p \leftarrow [PT] \text{ Go to 2.} \)

9. \( \text{NEXT} = 0, p \leftarrow ([PT] - 1) \text{ Go to 2.} \)
(\( \text{NEXT} \) is a pointer to the next memory address
to be examined; if \( \text{NEXT} = 0 \), let \( p \) be the
address of a node that is just implemented before this call of DETREE.)

10. Go to 17. (NEXT ≠ 0.)

11. M ≠ INFO([p]), Go to 14. (Code name not existed yet.)

12. RLT([p]) = −, Return. (Code name already existed.)

13. Go to 17.

14. [LLT] ≠ − Go to 16. (Not the youngest brother.)

15. TEMP ← [LLT], LLT ← [PT], p ← [PT],
    INFO([p]) ← [M], LNO(p) ← [NL],
    LLT(p) ← [TEMP], RLT(p) ← [RN],
    NEXT ← [PT], PT ← [PT] + 1, Return.
    (A new brother node is implemented, NEXT contains address of a node next to be visited.)

16. p ← [LLT] Go to 11. (Go back to check the code name of the next younger brother.)

17. p ← [NEXT], NEXT ← 0, Go to 2. (NEXT gives the next address to be visited without traversing any branch.)

18. NEXT ← [RLT([p])], Return.

RETRIEV:

1. Read NK. (NK is the number of keywords in a query.)

2. Read KEY(I), I=1, NK. (KEY(I) stores the keyword numbers.)
3. \( k_1 = 1, \ k_2 = k_1 + 9 \). (To form a disjoint partition \( X_1/X \) for the keyword set \( K, \ K = X_1 \cup X \), and \( X_1 = (k_{k_1}, \ldots, k_{k_2}) \).)

4. \( \text{KEY}(I) > 0 \), Go to 6.

5. Go to 2.

6. \( k_1 \leq \text{KEY}(I) \leq k_2 \), Go to 10. (\( k_j \) in \( X_1 \), \( j = \text{KEY}(I) \).)

7. \( k_1 = k_1 + 10 \). (To form \( X_2 \).)

8. \( k_1 > 100 \), Go to 13.

9. \( k_2 = k_1 + 9 \) Go to 6.

10. \( \text{NBIT} = \text{Mod}_{10}(\text{KEY}(I)) + 1 \).

11. If there is some \( I_1 \), such that \( \text{KEY}(I_1) \)
    \( \text{KEY}(I) \) and \( k_1 \leq \text{KEY}(I_1) \leq k_2 \), Go to 2.

12. Call ADDBIT (M, NBIT). (To construct a
    vector M representing \( q_{m0} \).)

13. Continue.

14. \( \text{IQUERY}(I) \leftarrow -0, \ I=1, \ldots, 4 \). (\( \text{IQUERY}(I) \), \( I=1,2 \),
    contains information about which keywords are
    in the query; \( \text{IQUERY}(I) \), \( I=3,4 \), contains
    information about complements of which keywords
    are in the query.)

15. Call RETRI (TR, IQUERY, M). (To traverse
    the tree.)

16. End.

ADDBIT (X, N). (X is a vector of "0" and "1", and
N is an integer.)
1. Set \(N^{th}\) bit of \(X\) to zero.

RETRI (TR, IQUERY, M).

0. \(J \leftarrow 0\).
1. \(PT \leftarrow TR\).
2. \(INFO([p]) = M?\) Yes, Go to 5. (If \(M\) matches with the code name of the root of a subtree, go to its son.)
3. \(LLT([PT]) = -0?\) If no, Go to 4, else stop.
4. \(PT \leftarrow LLT([PT])\) Go to 2. (Visit its brother.)
5. \(PT \leftarrow RLT([PT])\).
6. \(JJ=J+k, NLQ=J+2.\) (Traversing the tree at level 1.)
7. Call MASH(JJ, IQUERY, MM).
8. If \(MM(1)=-0\) and \(MM(2)=-0\) Go to 16. (If there is no keyword or complement of keyword of \(X_1\) in a query, let \(i=i+1\).)
10. If match Go to 16, else if \(NLQ=LNQ\) Go to 19.
11. \(LLT([PT]) = -\) Go to 13.
12. \(PT \leftarrow LLT([PT])\) Go to 9.
13. \(PT \leftarrow -LLT([PT]), J \leftarrow LBO([PT])-2,\) if \(J=-1,\) let \(J=0,\) Go to 3.
14. If \(LLT([PT]) = -\) Go to 13.
15. \(PT \leftarrow LL([PT])\) Go to 6. (Visit its brother.)
16. If \(RLT([PT]) > 0\) Go to 18.
17. Print -RLT([PT]) Go to 11. (Print atom number.)
18. PT ← RLT([PT]), J = J+1 Go to 6.

MASH (JJ, INQUERY, MM):
1. If JJ = 0, TEMP(1) ← [IQUERY(1)], TEMP(2) ← [IQUERY(3)], Go to 5.
2. If JJ ≥ 60 Go to 6.
3. TEMP(1) ← [IQUERY(1)], TEMP(2) ← [IQUERY(3)].
4. Left shift TEMP(1) JJ bits → TEMP(1)
   Left shift TEMP(2) JJ bits → TEMP(2).
5. Mask the left most 10 bits of TEMP(1),
   TEMP(2) into MM(1), MM(2) Return.
6. If JJ = 60 Go to 9.
7. JJ = JJ - 60.
8. TEMP(1) ← [IQUERY(2)], TEMP(2) ← [IQUERY(4)]
   Go to 4.
9. TEMP(1) ← [IQUERY(2)], TEMP(2) ← [IQUERY(4)]
   Go to 5.

MATCH (PT, MM, NLQ):
1. If LNO([PT]) ≠ NLQ Go to 9.
2. If MM(1) = -0 Go to 6.
3. MM(1) .OR. INFO([PT]) → MM(1).
4. If MM(1) = -0 Go to 6. (Indicates keywords is matched.)
5. MN=+1 Return.
6. MM(2).OR.-INFO([PT])→MM(2).
7. If MM(2)==0, then MN←0 Return.
   (Complements of keywords also matched, return.)
8. MN=+1 Return. (No match.)
9. MN=0 Return. ( [NLQ] ≠ [LNO] , wrong level.)

IV.3. STORAGE REQUIREMENT AND RETRIEVAL TIME - A COMPARISON TO AN INVERTED FILE:

The storage requirement of the tree is directly proportional to the total number of nodes and the size, being the number of bits, of each node in the tree. In the most general case, the model for our file structure may have many sequences of Boolean algebras. For example, if we have 1000 keywords, we can partition them into 100 groups, each group has 10 keywords, and then partition these 100 groups into 10 groups, each new group contains 10 old groups. In this way, we are actually building two subsequences of algebras, say \( B(F_0), B(F_1), \ldots B(F_9); B(G_0), B(G_1), \ldots, B(G_{100}) \), such that \( B(F_0) \subseteq B(F_1) \subseteq \ldots \subseteq B(F_9) \subseteq B(G_0) \)
\( \ldots \subseteq B(G_{100}) \), where \( F_0, F_1, \ldots F_9, G_0, \ldots, G_{100} \) are sets of generators. Let \( G_0 = (g_1, \ldots, g_{100}) \), then \( F_9 = (g_1, \ldots, g_{90},f_{10}) \), where \( f_{10} \) is a function of
\( g_1, \ldots, g_{10} ; F_i = (g_1, \ldots, g_{10(i-1)}, f_1, \ldots, f_{10}) \), where 
\( f_1 \) is a function of \( g_{10(i-1)+1}, \ldots, g_{10i} \). Corresponding to each subsequence of algebras, there is, in the tree representation, a set of nodes which are representing atoms of algebras in the subsequences. Let us call such a set of nodes a layer of a tree. In our implementation example, there is only one subsequence of algebras, therefore the tree has only one layer.

In general, let \( n \) be the number of keywords, \( m \) be the number of bits in the code name of a node, and \( n = m^k \); then the height \( h \) of a tree can be calculated as follows:

\[
h = 1 + m + m^2 + \ldots + m^{k-1} = \frac{m^k - 1}{m - 1} = \frac{n - 1}{m - 1}
\]

Let \( u_1 \) be the average number of nodes at level \( i \). \( u_1 \) is defined as

\[
\frac{\text{total number of nodes at level } i}{\text{number of the sets of sons of nodes at level } i-1.}
\]

As the height of a tree is defined as the maximum level number among all nodes in a tree, the total number \( N \) of nodes in a tree can be calculated as follows:

\[
N = \sum_{j=1}^{h} \prod_{i=1}^{j} u_1
\]

If \( u_1 = u \), a constant, at all levels, then
\[ N = \sum_{j=1}^{h} u^j = u \frac{u^k - 1}{u - 1} = \frac{uR}{u - 1} \]

where \( R = u^k \) the number of leaves that are atoms in \( B(L) \). Let \( M \) be the size of a node in terms of bits which include bits for the code names, links and other data. Then, the total storage requirement for the tree is

\[ S = MN = M \cdot \frac{uR}{u - 1} \]

The storage requirement \( S \) may be much smaller than that of storing the atoms of \( B(L) \) in a tabular form, if the overhead ratio, \( M/m \), in each node is close to 1. Let \( C \) be the number of bits required to code each atom, the total storage requirement \( S_1 \) for storing the tabular form of atoms is

\[ S_1 = CR \]

and

\[ \frac{S}{S_1} = \frac{M}{C} \cdot \frac{u}{u - 1} ; \quad S < S_1 \text{ if } \frac{M}{C} \frac{u}{u - 1} < 1. \]

If \( h \) and \( R \) are fixed, the worst case happens when every node has only one son, i.e. the forest becomes \( R \) linear lists, then

\[ S = h R M \]

Again, if \( M/m \approx 1 \), implies \( Mh=C \), then \( S=CR \). Certainly, if \( M > m \), then \( S > S_1 \). For example, if \( h=11 \), \( m=10 \), \( M=60 \),
R=1000, as in our case, \( S = 11 \times 1000 \times 60 = 66 \times 10^4 \) bits, 
\( S_1 = 100 \times 1000 = 10 \times 10^4 \) bits. \( S = 6.6S_1 \) is the worst case.

In order to save storage space, we can store the node with its only son, if it is the case, consecutively, without using a pointer. In this way, the spaces for storing links are saved, but a node will have variable size. Let us define an X-tree as a rooted tree in which every node (except the leaves) has at least two sons. For a given \( R \) and a given \( h \), a X-tree exists if \( h+1 \leq R \); a binary tree exists if \( h+1 \leq R \leq 2^h \). An upper bound for the maximum storage requirement for a X-tree with \( R \) leaves, if the X-tree exists, can be shown to be \( 2R-1 \) in the following Theorem.

**Theorem:** The number of nodes including the root and leaves in a X-tree (including binary X-tree) with a fixed number \( R \) of leaves is smaller than \( 2R-1 \).

In order to prove this Theorem, we need the following Lemmas:

Lemma 1: A binary X-tree with \( R \) leaves has \( 2R-1 \) nodes, including the root and leaves.

Let us denote an X-tree with \( R \) leaves by \( t(R) \). The number of nodes of \( t(R) \) is denoted by \( N(t(R)) \). We are to show that for a binary X-tree \( t_b(R) \), \( N(t_b(R)) = 2R-1 \).

**Proof:** It can be proven by induction on \( R \).
(1) Let $R=2$, $N_{b}(R)=3$, as shown in Fig. 4.15.

\[
N_{b}(2) = 3
\]

\[\text{Fig. 4.15}\]

(2) Suppose $N_{b}(R) = 2R - 1$, for $R \leq m$;

(3) Let $R = m + 1$.

Let us remove two brother leaves from $t_{b}(m+1)$.

The result is a binary X-tree with $m$ leaves, i.e. $t_{b}(m)$. It is clear that $N_{b}(m+1) - 2 = N_{b}(m)$. Thus,

\[N_{b}(m+1) = (2R-1) + 2 = 2(R+1) - 1 \quad \text{Q.E.D.}\]

Lemma 2: For a given positive integer $R$, a binary X-tree is a X-tree that has the maximum number of nodes, among all X-trees with $R$ leaves.

Proof: It can be proven by showing that for any non-binary X-tree $t(R)$ with $R$ leaves, there exists a binary X-tree $t_{b}(R)$, such that

\[N_{b}(R) > N_{t}(R)\]

Let $t(R)$ be an arbitrary non-binary X-tree with $R$ leaves. In the tree $t(R)$, let $S$ be the set of all those nodes that have more than two leaves as their sons. Let us convert $t(R)$ into a binary X-tree with $R$ leaves by removing one son of a node in $S$ each time and connecting two leaves to another leaf of $t(R)$. At each step, the intermediate result is a X-tree $t_{1}(R)$, and $N_{t_{1}}(R) = N_{t}(R+1)$. Repeat this process until
S is empty. Now we have a binary X-tree \( t_b(R) \), and
\[ Nt_b(R) > Nt(R). \]

Q.E.D.

Now the proof of the Theorem is obvious from the results of Lemma 1 and Lemma 2.

Proof of the Theorem:

For any given non-binary X-tree \( t(R) \), by Lemma 2, there exists a binary X-tree \( t_b(R) \), such that \( Nt_b(R) > Nt(R) \), and by Lemma 1, \( Nt_b(R) = 2R - 1 \). Thus, \( Nt(R) < 2R - 1 \).

Q.E.D.

The query processing time in a file structure is dependent on how a file is logically organized and how it is physically stored. This query processing time consists of the processing time of the central processing unit (CPU) of a computer and the actual record accessing time of a random access device, say a disk. When a query is processed, physical records of a disk are accessed into core in which the structure of a file is searched. In our case, we assume that the search time of the tree for a query is proportional to the number of links in the tree to be traversed. Let us call the set of all sons of a node the filial set of the node. Let \( u_1 \) be the average number of sons in a filial set of a node at level 1 as defined earlier. Let \( r \) be the ratio of the number of nodes satisfying a query within a
filial set versus the total number of nodes in a filial set. The search time \( t \) in terms of number of links to be traversed can be determined as follows.

At level \( i \), there will be \( r^{i-1}u_{i-1}u_i \) nodes that satisfying the query; therefore there are \( r^{i-1}u_{i-1}u_i \) links to be traversed. Thus, the total expected number of links to be traversed in a \( h \) level tree is

\[
t = \sum_{i=1}^{h} r^{i-1} \prod_{j=1}^{i} u_j
\]

In the case of \( u_1 = u \) a constant

\[
t = \sum_{i=1}^{h} r^{i-1} u^i = u \cdot \frac{r^h u^h - 1}{ru - 1}
\]

when \( ru \rightarrow 1 \), \( t \rightarrow uh \). The limiting case occurs when there is only one atom in \( B(\mathcal{L}) \) satisfying the query; at each level \( i \) there is only one node to be traversed.

For many queries, the tree is searched without traversing down to the leaves level. For example, if a query consists of keywords from \( X_1, \ldots X_i \) of a disjoint partition \( X_1/X_2/\ldots/X_m \) of the keyword set, then the tree only has to be traversed down to level \( i \), for all descendants of the satisfying nodes at level \( i \) are retrieved as the answer to the query.

Thus, we have
\[ t = \frac{u^i \cdot r^i - 1}{u \cdot r - 1} \]

If we consider all these factors, the average retrieval time over all queries will be smaller than

\[ t = \frac{r^h \cdot u^h - 1}{r \cdot u - 1} \]

This tree representation of the proposed file structure can be viewed as a file organization that allows retrieval by a partial key, with concatenation of codes of keywords in a record being the primary key. The level 0 in the forest can be viewed as an index to the rest of the forest. Indexes of this kind are not ordered by the ordering of the primary keys but are calculated by a evaluation of some Boolean functions of keywords. It is conjectured that the query processing time is more uniform than other secondary keys retrieval allowable file structure, say inverted file. The uniformity is justified by the fact that for those queries involving few keywords, few numbers of levels of the tree have to be searched for those queries involving many keywords, few numbers of trees in the forest have to be traversed. Further research is in order to justify this hypothesis.
In an inverted file, the CPU processing time is proportional to the number of inverted lists to be intersected and the number of elements in each list. Suppose the intersection of two lists \( L_1, L_2 \) is obtained by two way merge of these two lists. Let \( L_1 \) have \( r \) elements and \( L_2 \) have \( s \) elements; the minimum number of comparisons is the minimum of two numbers \( r \) and \( s \). The maximum number of comparisons has to be performed as \( r+s-1 \). If there are \( k \) keywords in a query, then there are \( k \) lists to be operated on. Let \( L_1, \ldots, L_k \) denote these \( k \) lists. Let us order these lists so that \( L_1 \) is the shortest list among them. Assuming the intersection of these \( k \) lists is obtained by repeatedly intersecting of two lists \( L_1 \) and \( N_{i-2} \),
\[
N_{i-2} = L_{i-1} \cap N_{i-3}.
\]
The final result is a list \( N_{k-1} \) which will be a list of addresses of all the records satisfying the query. \( N_{k-1} \) is the shortest list among all lists being operated on. The minimum of the maximum number of comparisons it needs to process a query with \( k \) keywords is calculated by
\[
t_1 = L_1 + (k - 2) N_{k-1}
\]
Note that \( t_1 \) is a function of the number of keywords in a query, the length of the shortest list and the number of "hits" of each intersection.

For an example, consider a file with \( 10^6 \) records,
$10^3$ keywords. Assuming 20 keywords per record, the average number of addresses in an inverted keyword list can be calculated by

$$L = \frac{20 \times 10^6}{1000} = 2 \times 10^4$$

Suppose a query contains $10^6$ keywords and assume arbitrarily that the minimum number of "hits" per intersection is 100. Then, the minimum maximum number of comparison is

$$t_1 = L + (k - 2) \cdot N_{k-1} = 2 \times 10^4 + (8) \times 100 = 2 \times 10^4.$$

On the other hand, assuming on the average each filial set has 10 nodes, i.e. $u=10$, and $h=6$, $r=0.3$, then the processing time for the query in the proposed file structure is

$$t = 10 \cdot \frac{3^6}{3 - 1} = 5 \times 3^6 = 3645$$

Note that $u, r$ are very critical parameters. For example, let $r=0.5$, $u=10$, then $t = 3.75 \times 10^4$. On the other hand, let $r=0.5$ and $u=4$, then $t=256$.

Suppose we use disk as the storage device; once the characteristic of disks is known, we can compare the access time for the proposed file structure with that of the inverted file. As we mentioned earlier, level 0 of the forest can be viewed as an index to the rest of the forest; we can store level 0 in core and the rest of the forest can be stored level by level
or by preorder on disk. The basic characteristics concerning about disks are the head position time, $T_p$, the latency time, $T_l$, the track read time, $T_r$, which is equal to the time for one rotation of the disk. $T_l$ is assumed to be $T_r/2$. Typical value of these timings for a disk say an IBM 2311, are

$T_p = 75$ ns, $T_r = 25$ ns, $T_l = 12.5$ ns.

A cylinder of a disk is defined as tracks that can be read at one position of the head. Suppose each tree in the forest is stored in one cylinder. Assuming at level 0, on the average, there are $ru$ nodes satisfying a query. We can formulate the access time as

$$T = ruT_p + 1.5T_r + 2(n-1)T_r$$
$$= ruT_p + (2n - 0.5)T_r$$

where $n$ is the number of tracks to be read and is dependent on the size of a tree. The second term in the formula is the sum of one track read time plus one latency time. The third term is the sum of $(n-1)$ track read time plus one rotation loss for the CPU processing time after every reading of one track for $(n-1)$ tracks. If the whole set of keywords is chosen for the set of generators for $B(\mathcal{L})$ and if every record is solely defined by a subset of keywords, then all those records satisfying a query can be decoded.
from the tree structure and T is the time for processing the query.

In case of inverted file, the processing time consists of three parts, \( T_D, T_I \) and \( T_A \)\(^{[1]} \). \( T_D \) is the decoding time for the index for the inverted lists; \( T_I \) is the processing time for the inverted lists; and \( T_A \) is the access time for accessing the satisfying records. Let us define some symbols:

- \( L \): average length of a list.
- \( A \): number of file record addresses per physical record (say a track).
- \( N_t \): number of keywords in a query.
- \( p \): ratio of number of satisfied records in a list over total number in a list.
- \( T_mD \): decoding time for a m-level index decoding tree.

The formulation for \( T_mD \) with first level of the index decoder stored in core is

\[
T_mD = t_p + 1.5t_R + 2(m-2)t_R \quad m > 1
\]

The total decoding time \( T_D \) for a query with \( N_t \) keywords is

\[
T_D = N_t T_mD
\]

Before finding the intersection of \( N_t \) lists in core, we must transfer \( L/A \) \( N_t \) physical records (say tracks) from disk into core. Therefore the processing time \( T_I \) for \( N_t \) inverted list is
\[ T_I = N_t \cdot \left[ \frac{L}{A} \right] \cdot (T_p + 1.5 T_r) \]

Finally \( pL \) satisfying records must be accessed from the disk. We have

\[ T_A = pL \cdot (T_p + 1.5 T_r) \]

The total query processing time is

\[ T_1 = T_D + T_I + T_A \]
\[ = T_p + (2m-2.5)T_r + \frac{N_t}{L/A} \cdot (T_p + 1.5 T_r) + pL \cdot (T_p + 1.5 T_r) \]
\[ = (1 + N_t \cdot \frac{L}{A} + pL)T_p + (2m + 1.5 N_t \cdot \frac{L}{A} + 1.5pL - 2.5)T_r \]

Assuming \( n=10 \), i.e. 10 tracks per cylinder, consider the previous example, \( r_u=3 \), \( T = 10T_p + (20-0.5)T_r \).

For \( A=500 \), \( L=2 \times 10^4 \), \( L/A=40 \), \( N_t=10 \), \( m=3 \) and \( pL=100 \),

\( T_1 \) can be calculated as

\[ T_1 = (1 + 10 \times 40 + 100)T_p + (6 + 600 + 150 - 2.5)T_r \]
\[ = 500 T_p + 750 T_r \]

For the purpose of comparison, we shall derive the storage requirement for the inverted file. The total storage requirement for the inverted file also consists of three parts: \( S_D \), \( S_I \), and \( S_A \).

\( S_D \) is the storage requirement for the index decoder.

\( S_I \) is the storage requirement for the inverted lists.

\( S_A \) is the storage for the data file.

Suppose that the decoder has \( h \) levels, the branching factor is \( m \), i.e. each node has \( m \) sons. Let \( N \) be
the number of keywords, \( N = m^h \).

The size of the decoding tree can be calculated by

\[
D = m \frac{m^h - 1}{m - 1} \leq \frac{m}{m - 1} N
\]

We are only interested in how much information we have to store in terms of the number of bits to represent the collection of data. The physical size of storage we need, say the number of tracks, can be determined if the capacities of the physical device is known. For example, if the number of the available bits per track is known, we can determine how many tracks we need to store the collection of data.

Assuming for coding of \( x \) objects, we need \( \log_2 x \) each keyword is coded with \( \log_2 N \) bits. Within a node there are three portions, namely a code for a keyword a code for a storage device address which is a pointer to its son, and a code for list length. Let us assume each node have \( M \) bits, therefore

\[
S_D = MD = \frac{m}{m - 1} N M
\]

Let us define:

- \( L = \) average list length.
- \( R = \) number of records.
- \( K = \) average number of keywords per record.
- \( N = \) number of keywords.
It is clear that \( L = \frac{K \times R}{N} \) and \( S_I = N L \log_2 R \).

Even though we can assume that the collection of lists contains as much information as the data file, if there is an inverted list for every keyword and every record is defined by the subset of keywords, the reconstruction of a record from the collection of inverted lists is very inefficient. Therefore we still have to store the data file for the ease of retrieval. We can calculate \( S_A \) by

\[
S_A = R \times K \times \log_2 N
\]

Now, the total storage requirement for an inverted file is

\[
S_2 = S_D + S_I + S_A
\]

\[
= \sum_{m=1}^{m} N M + N L \log_2 R + R \times K \times \log_2 N
\]

Consider the previous example, \( N=1000 \), \( L=2 \times 10^4 \), \( R=10^6 \), \( K=20 \), \( u=10 \) and let \( m=3 \) and \( M=100 \), we have

\[
S_2 = \frac{3}{2} \times 10^3 \times 100 + 10^3 \times 2 \times 10^4 \times 20
\]

\[
+ 10^6 \times 20 \times 10
\]

\[
= 1.5 \times 10^5 + 4 \times 10^8 + 2 \times 10^8
\]

\[
= 6 \times 10^8 \text{ bits}
\]

For the proposed file structure under the same assumption, we have

\[
S = 100 \times \frac{10 \times 10^6}{10 - 1} = 1.1 \times 10^8 \text{ bits.}
\]
From these crude estimates, we can conclude that

(1) The storage requirement and the query processing time, especially for large file and complex queries, the proposed file structure has the advantage over the inverted file.

(2) The CPU processing time for a query in the proposed file structure depends on a very sensitive parameter $r$, for $r \geq \frac{1}{2}$, the CPU processing time may be larger than that of the inverted file.

(3) The query processing time of the proposed file structure is not directly proportional to the number of keywords in a query and the list lengths. Thus, we conjecture that the proposed file structure has an uniform processing time.

The file maintenance problem for the proposed file structure is similar to the problem of retrieval. For example, to add a record to the file, a set of Boolean functions has to be evaluated to determine what part of the tree this record will belong to, then the record is broken up into fragments which correspond to nodes in the tree. But for the inverted file, to update the file is to update the index decoder, the collection of inverted lists and the data file. By this simple reasoning, we believe that the proposed file structure will also has an advantage over the inverted file.
V. CONCLUSION

We have defined a file as a collection of functions mapping from a set of records to some value sets. A homogeneous subfile is defined as a subset of a space of the product of some value spaces, i.e. a relation. In general, a file consists of a collection of homogeneous subfiles. Thus, our definition of a file is equivalent to Codd's relational model of a file which is defined as a collection of normalized relations. \[ 4 \]

In this thesis, we have introduced a new file structure which is based on the concept of atoms in a Boolean algebra. Starting with the assumption that the allowable queries are Boolean functions of keywords, we can view the process of answering a query as evaluating a homomorphism which maps a Boolean algebra of queries into a Boolean algebra of the file. From this point of view, a file structure based on the atoms of the Boolean algebra of the file arises naturally. For implementation purposes, we have found it advantageous to represent our file structure by a nested sequence of partitions of the file. With this representation, evaluating a query becomes the problem of successive approximations of a
Boolean function. With the representation of the file as a nested sequence of partitions, trees and binary trees become natural choices for the data structure. A program incorporating these ideas has been written and run on some randomly generated data. The purpose of writing this program was to confirm feasibility. As written, it is neither a general data management package nor an adequate test program for alternative strategies. Nevertheless, we feel that the experience that we have obtained in running this program has simply confirmed the feasibility of the basic idea. Our experience from running this program and from a simple analysis have also demonstrated that our proposed structure should compare extremely favorable against competing structures, e.g. inverted file and multilist, with respect to both storage requirement and retrieval time.

We conclude that the Boolean algebra representation is a natural basic model for a file. Once we have a basic model, more complex structures can be constructed for a file organization. For example, by defining a set of operators on a set of homogeneous subfiles, we will have a relational model of a file \([4, 5]\), since a relational algebra is a Boolean algebra with a set of additional operators.\([34]\) The tree
representation of data is not new, but the concept of
indexing by Boolean functions is believed to be novel.
The sample file is implemented in the core memory
of a CDC computer. The techniques we use can be
applied immediately to a computer system with virtual
memory and associated programming facilities. [37,38]

For future work, we plan to study other aspects
of Boolean algebras applicable to our file structure.
For example, we will study the possibility of finding
a reasonable way for selecting the sets of generators
of those nested Boolean algebras, such that the tree
representation will have a desired form. The
separability of a file is also worth studying. If
a file can be represented by a linearly separable
Boolean function, then answering a query can be viewed as
finding the intersection of the query with the
separating hyperplane [31] of the Boolean function
representing the file. The problem of constructing
more complex structure onto the file, say relational
algebras, is also an interesting area to be investigated.
REFERENCES


APPENDIX

This appendix contains listings of programs which are written for the implementation of the sample file and for the process of Boolean queries. Results from several runs of the programs are also included in this appendix. A set of queries is tested on the programs. Processing times are recorded by making a call to a library subroutine, SECOND.

The listings of programs include statements for the following procedures:

(1). TREE  (5). ADDBIT  
(2). CONVERT  (6). RETRI  
(3). DETREE  (7). MATCH  
(4). RETRIEV  (8). MASH

The listings of outputs from the programs include:

(1). The set of randomly generated records
(2). The tree representation
(3). A set of queries with various number of keywords involved
(4). Sets of records pertaining to a query
(5). Processing times for queries

Due to the bulk of the computer print-out, only a part of the set of records and a part of the tree representation are listed.
PROGRAM TREE (INPUT, OUTPUT)
INTEGER B(2000), TR(5000), PT
COMMON K
000003 1 FORMAT (200)
000003 15 FORMAT (/2X,*NUMBER OF NODES = *I6/*2X,*SIZE OF EACH NODE IS
1 ONE COMPUTER WORD*)
000003 14 FORMAT (2X,020)
000003 12 FORMAT (/2X,*HERE IS THE DECODING TREE */(2X,020))
000003 11 FORMAT (I6)
000003 17 FORMAT (/2X,*NO. OF KEYWORDS IN THE QUERY*/(4X,I10))
000003 22 FORMAT (2I4)
000003 2 FORMAT (2X,*NO. OF RECORDS NO. OF BITS PER CODE*/(2X,2I4))
000003 3 FORMAT (2X,*THE SET OF RECORDS*/(2X,2020))
000003 READ 222, N*K
000013 READ 1*, (B(I), I=1,N)
000026 PRINT 2*, N*K
000036 PRINT 3*, (B(I), I=1,N)
000051 DO 100 I=1,5000
000053 TR(I)=0
000054 100 CONTINUE
000056 PT=LOC(F(TR))
000060 DO 9 I=1,N,2
000061 M=0
000062 CALL CONVERT (B,I,M)
000065 PRINT 14,M
000073 NL=1
000074 J=0
000075 I1=I
000077 4 CONTINUE
000077 I3=(I1+1)/2
000102 CALL DETREE (4,NL/TR,P,T,I3)
000105 11 M=B(I1)
000107 IF (J, EQ, 6) GO TO 10
000111 JJ=J*K
000113 IF (JJ, EQ, 0) GO TO 13
000114 CALL LSQ (4, JJ)
000116 13 M=7749000000000000000000000N, AND, M
000120 5 NL=NL+1
000122 J=J+1
000123 IF (NL, GT, K+1) 30 TO 9;
000127 IF (M, EQ, 0) GO TO 11
000130 GO TO 4
000130 10 I1=I1+1
000132 J=0
000133 9 CONTINUE
000133 GO TO 11
000136 PRINT 12*, (TR(I), I=1,5000)
000147 NODE=0
000150 DO 16 I=1,5000
000152 IF (TR(I), EQ, 0) GO TO 16
000153 NODE=NODE+1
000155 16 CONTINUE
000157 PRINT 15, NODE
RUN FORTRAN COMPILER VERSION 2.3 8.2

000165       IK1=1
000166       444 CONTINUE
000166       READ 111,NKK
000174       PRINT 17,NKK
000202       CALL RETRIEV (TR,KE,NKK)
000205       IK1=IK1+1
000207       IF (IK1.LE.10) 30 TO 44
000211       END
SUBROUTINE CONVERT(A, K, MT)
  INTEGER A(2000)
  COMMON K
  MT=0
  JA=0
  K2=KK+1
  DO 6 I=KK,K2
    J=0
  5 JJ=J*K
    IA=A(I)
    IF (JJ.EQ.0) GO TO 11
    CALL LSHIFT (IA,JJ)
  11 IT=7774000000000000000000000000000B AND IA
    IF (IT.EQ.0) GO TO 3
    GO TO 4
  3 J=J+1
  4 JA=JA+1
    IF (J.EQ.6) GO TO 6
  6 JA=JA+1
    IF (JA.EQ.10) GO TO 6
    GO TO 5
  5 IT=4000000000000000000000000000000B
    CALL RSHIFT (IT,JA)
    GO TO 13
  12 IT=4000000000000000000000000000000B
  13 MT=MT OR IT
    JA=JA+1
    IF (J.EQ.5) GO TO 5
  5 JA=JA+1
    IF (JA.EQ.10) GO TO 6
    J=J+1
    GO TO 5
  6 CONTINUE
  RETURN
END
IDENT DETREE

PROGRAM LENGTH

BLOCKS

PROGRAM LOCAL

ENTRY POINTS

000000 DETREE

ENTRY DETREE

DETREE HSS 1
SA1 B3
L2 NZ X1+L4
SA2 B1
BX1 X2
SB6 A1
NE B3,B6,L3
MX3 33
MX2 12
BX2 X3+X2
BX1 X1+X2
SA4 B5
HX4 -X4
LX4 6
MX3 54
MX2 33
BX2 X3+X2
BX2 X2+X4
BX1 X1+X2
SA2 B2
BX1 X1+X2
SA4 B4
SX6 X4+1
SA6 B4
HX6 X1
SA6 A1
EQ 30+R0+DETREE
SA2 B2
BX1 X1+X2
SA4 RN
LX4 6
MX3 54
MX2 33
BX2 X3+X2
BX2 X2+X4
BX1 X1+X2
SA4 B4
SX4 X4+1
BX4 -X4
LX4 27
MX3 33
LX2 33
PL X2,L14
EQ B0,B0,DETREE
   MX3 33
   MX2 12
   BX2 X1+X2
   BX3 X2
   BX2 X1*X2
   BX3 X1*X3
   BX6 X2
   AX6 27
   LX2 12
   PL X2,L12
   SA6 TEMP
   SA4 B4
   LX4 27
   BX6 X3*X4
   SA6 A1
   SA1 B4
   SA1 X1
   SA2 B1
   BX1 X1*X2
   SA2 B2
   BX1 X1*X2
   SA2 TEMP
   LX2 27
   MX3 33
   MX4 12
   BX4 X3*X4
   BX2 X2*X4
   BX1 X1*X2
   SA2 B5
   BX2 X3
   LX2 6
   MX3 54
   MX4 33
   BX4 X3*X4
   BX2 X2*X4
   BX1 X1*X2
   SA2 B4
   SX6 X2
   SA6 NEXT
   SX6 X2+1
   SA6 B4
   BX6 X1
   SA6 A1
   EQ B0,B0,DETREE
   MX3 33
   MX2 15
   BX2 X3*X2
   BX2 X1*X2
   AX2 27
   SA1 X2
| L13  | EQ  B0, B0, L8  
|      | SA1  X2  
|      | SX6  000000B  
|      | SA6  NEXT  
|      | EQ  B0, B0, L2  
| L14  | MX3  54  
|      | MX2  36  
|      | BX2  X3-X2  
|      | BX2  X1*X2  
|      | AX2  6  
|      | BX6  X2  
|      | SA6  NEXT  
|      | EQ  B0, B0, DETREE  
| NEXT | BSSZ  1  
| TEMP | BSSZ  1  
| RN   | BSSZ  1  
| END  |  

166 STATEMENTS  13 SYMBOLS
IDENT RSHIFT
PROGRAM LENGTH

BLOCKS

PROGRAM LOCAL

ENTRY POINTS

000000 RSHIFT

ENTRY RSHIFT

RSHIFT
BSS 1
SA1 B1
SA2 B2
SB3 X2
AX3 R3×X1
BX6 X3-X1
SA6 B1
SB3 X3=1
EQ B3,B0×RSHIFT
AX4 B3×X1
BX6 X3-X4
SA6 B1
JP RSHIFT
END

16 STATEMENTS 1 SYMBOLS

IDENT LSHIFT
PROGRAM LENGTH

BLOCKS

PROGRAM LOCAL

ENTRY POINTS

000000 LSHIFT

ENTRY LSHIFT

LSHIFT
BSS 1
SA1 B1
SA2 B2
SB3 X2
LX3 B3×X1
BX6 X3
SA6 B1
JP LSHIFT
END

11 STATEMENTS 1 SYMBOLS
SUBROUTINE RETRIEV (TR1, KEY, NK)
DIMENSION KEY(NK)
DIMENSION IQUERY(4)
5 FORMAT (2X, *RECORDS SATISFYING THE QUERY*)
300 FORMAT (2X, *CPU TIME FOR ANSWERING THIS QUERY, IN SEC. */(F10.7))
200 FORMAT (2X, *END OF FILE SEARCH*)
4 FORMAT (2X, *QUERY*)
PRINT 4
CALL SECOND (T1)
ENCODER (10, 2, FM) NK
2 FORMAT (2H1, 14, 3H4))
READ FM, (KEY(I), I=1, NK)
PRINT FM, (KEY(I), I=1, NK)
M=777777777777777777B
NB=0
NBIT=0
K1=1
K2=K1*9
N=100
14 CONTINUE
DO 12 I=1, NK
IF (KEY(I)*GT. 0) GO TO 3
GO TO 12
3 CONTINUE
KEYC=KEY(I)
33 CONTINUE
IF (KEYC.LE.K2.AND.KEYC.GE.K1) GO TO 7
6 K1=K1+10
IF (K1.GT.100) GO TO 11
K2=K1+9
GO TO 33
7 NBIT=(KEYC-1)/10 +1
IF (NB.EQ.NBIT) GO TO 12
NB=NBIT
8 CALL ADDBIT (4, NBIT)
12 CONTINUE
11 CONTINUE
DO 100 I=1, 4
IQUERY(I)=777777777777777777B
100 CONTINUE
DO 108 I=1, NK
101 IF (KEY(I).GT.0) GO TO 102
GO TO 103
102 CONTINUE
IF (KEY(I).GT.60) GO TO 104
CALL ADDBIT(IQUERY(I), KEY(I))
GO TO 108
104 KCON=KEY(I)-60
CALL ADDBIT(IQUERY(2), KCON)
GO TO 108
103 CONTINUE
IF (-KEY(I).GT.60) GO TO 105
KCON=-KEY(I)
CALL ADDBIT(IQUERY(3), KC0N)
GO TO 108
KCON = -KEY(I) - 60
CALL ADDBIT(IQUERY(4), KC0N)
CONTINUE
CALL RETRI(TS1, IQUERY, M)
CALL SECON(D(T2))
T3 = T2 - T1
PRINT 300, T3
PRINT 200
RETURN
END
IDENT ADDBIT
PROGRAM LENGTH

BLOCKS

PROGRAM LOCAL

ENTRY POINTS

000000 ADDBIT

ENTRY ADDBIT

ADDBIT BSS 1
    MX1 1
    SA2 B1
    SA3 B2
    SB3 X3-1
    EQ B0,B3,L1

    AX4 B3,X1
    SB3 B3-1
    AX3 B3,X1
    BX1 X4-X3

    BX6 X2-X1
    SA6 B1

    EQ B0,B0,ADDBIT

L1    JP L2
    END

17 STATEMENTS  3 SYMBOLS
IDEVT RETRI
PROGRAM LENGTH

BLOCKS

PROGRAM LOCAL

ENTRY POINTS

000000 RETRI

EXTERNAL SYMBOLS

<table>
<thead>
<tr>
<th>PRIV</th>
<th>MASH</th>
<th>MATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRY RETRI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXT PRIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXT MASH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXT MATCH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RETRI BSS 1
IXX*IX OPDEF I,J,K
PX.J A0+X.J
PX.K A0+X.K
DX.I X.J+X.K
UX.I B7*X.I
UX.K B7*X.K
UX.J B7*X.J

ENDM

SAVE MACRO I,J,K
SX6 B*I
SA6 S1
SX6 B*J
SA6 S2
SX6 B*K
SA6 S3

ENDM

SETT MACRO I,J,K
SA1 S1
SB*I X1
SA1 S2
SB*J X1
SA1 S3
SB*K X1

ENDM

SX6 10
SA6 K
MX6 60
SA6 ONE
SX6 0000009
SA6 J
SX6 B1
SA6 PTR

L2 SA2 PTR
```
BX2 X1*X2
LX2 33
PL X2,L18
AX2 39
BX6 -X2
SA6 REC
SAVE 1,2,3
SB1 REC
RJ PRIN
SETT 1,2,3
JP L11
L18
  AX2 39
  BX6 X2
L19
  SA6 PTR
  SA1 J
  SX6 X1+1
  SA6 J
  JP L6
K
JJ BSSZ 1
J BSSZ 1
VL3 BSSZ 1
PTR BSSZ 1
S1 BSSZ 1
S2 BSSZ 1
S3 BSSZ 1
REC BSSZ 1
ONE BSSZ 1
WM BSSZ 2
WN BSSZ 2
END

243 STATEMENTS  28 SYMBOLS
```

```
SUBROUTINE PRIV(C)
  PRINT 1, C
  FORMAT (2X,*RECORD*,2X,I10)
  RETURN
END
```
### IDENT MATCH

#### PROGRAM LENGTH

#### BLOCKS

#### PROGRAM LOCAL

#### ENTRY POINTS

<table>
<thead>
<tr>
<th>ENTRY MATCH</th>
<th>MATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000 MATCH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BSS 1</td>
</tr>
<tr>
<td></td>
<td>MX6 60</td>
</tr>
<tr>
<td></td>
<td>SA6 XONE</td>
</tr>
<tr>
<td></td>
<td>SA1 B1</td>
</tr>
<tr>
<td></td>
<td>SA1 X1</td>
</tr>
<tr>
<td></td>
<td>SA2 B3</td>
</tr>
<tr>
<td></td>
<td>MX3 60</td>
</tr>
<tr>
<td></td>
<td>MX4 54</td>
</tr>
<tr>
<td></td>
<td>BX3 X3=X4</td>
</tr>
<tr>
<td></td>
<td>BX3 X1 X3</td>
</tr>
<tr>
<td></td>
<td>BX2 X3=X2</td>
</tr>
<tr>
<td></td>
<td>ZR X2=X9 L9</td>
</tr>
<tr>
<td></td>
<td>SX6 B0</td>
</tr>
<tr>
<td></td>
<td>SA6 B4</td>
</tr>
<tr>
<td></td>
<td>JP MATCH</td>
</tr>
<tr>
<td>L9</td>
<td>SA2 B2</td>
</tr>
<tr>
<td></td>
<td>SA3 XONE</td>
</tr>
<tr>
<td></td>
<td>BX3 X2 X3</td>
</tr>
<tr>
<td></td>
<td>ZR X3 X6 L6</td>
</tr>
<tr>
<td></td>
<td>MX3 12</td>
</tr>
<tr>
<td></td>
<td>BX3 X1 X3</td>
</tr>
<tr>
<td></td>
<td>SA2 B2</td>
</tr>
<tr>
<td></td>
<td>BX3 X2 X3</td>
</tr>
<tr>
<td></td>
<td>SA2 XONE</td>
</tr>
<tr>
<td></td>
<td>BX3 X2=X3</td>
</tr>
<tr>
<td></td>
<td>ZR X3 X6 L6</td>
</tr>
<tr>
<td></td>
<td>SX6 1</td>
</tr>
<tr>
<td></td>
<td>SA6 B4</td>
</tr>
<tr>
<td></td>
<td>JP MATCH</td>
</tr>
<tr>
<td>L6</td>
<td>SA2 B2+1</td>
</tr>
<tr>
<td></td>
<td>MX3 12</td>
</tr>
<tr>
<td></td>
<td>BX3 X1 X3</td>
</tr>
<tr>
<td></td>
<td>BX3 X3 X3</td>
</tr>
<tr>
<td></td>
<td>BX3 X2 X3</td>
</tr>
<tr>
<td></td>
<td>ZR X3 X6 L10</td>
</tr>
<tr>
<td></td>
<td>SX6 1</td>
</tr>
<tr>
<td></td>
<td>SA6 B4</td>
</tr>
<tr>
<td></td>
<td>JP MATCH</td>
</tr>
<tr>
<td>L10</td>
<td>MX6 60</td>
</tr>
<tr>
<td></td>
<td>SA6 B4</td>
</tr>
<tr>
<td></td>
<td>JP MATCH</td>
</tr>
<tr>
<td>XONE</td>
<td>BSS 1</td>
</tr>
<tr>
<td></td>
<td>END</td>
</tr>
</tbody>
</table>

**46 STATEMENTS ... 5 SYMBOLS**
<table>
<thead>
<tr>
<th>ENTRY POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000 MASH</td>
</tr>
</tbody>
</table>

```
MASH
BSS 1
MACRO P2*K
SA1 B2*K
BX6 X1
SA6 P2
SA1 A1+2
BX6 X1
SA6 A6+1
ENDM

MASK
MACRO K
SA1 TEMP
SA1 A1*K
MX2 10
BX6 X1*X2
MX1 60
BX1 X1*X2
BX6 X1*X6
SA2 B3
SA2 A2*K
SA6 A2
ENDM
SA1 B1
ZR X1,L12
SX1 X1=60
NG X1,L3
JP L8
L12
TEM TEMP,0
JP L7
L3
TEM TEMP,0
L4
SA1 TEMP
SA2 B1
SB4 X2
LX6 B4*X1
SA6 TEMP
SA1 A1*K
LX6 B4*X1
SA6 A1
L7
MASK 0
MASK 1
JP MASH
L8
SX6 X1
ZR X6,L11
SA6 B1
L10
TEM TEMP,1
JP L4
L11
TEM TEMP,1
JP L7
TEMP
BSS 2
END
```
NO. OF RECORDS  NO. OF BITS PER CODE

998  10

THE SET OF RECORDS

7441140460230114030724347363571674796103
6367513654572275137012121306543261536501
606067433615706754772023553657327552425
1762447223511644636305214346153671434121
0317365772675336406176711224512245123757
522706143061430605334616757367573675467
3572245122451224535565452143061430612465
2346041020410204154361360370174076036441
2066013005402601234117557707743761771641
053325152465232512377651464632315146613
5357043241610704357131310364172075036451
6710764372175076543122735236517247523367
1626641230514246065572163571674736356233
2606113055426613216715757107443621717123
0453271534656327126174311504642321150421
2410730354166673156114042661330554257321
7376723711744762311726512165072435216705
623060430214106042752167576767373575525
6055324552265132521320306233115446563173
60135576677337556727005332552665533515
1430262131054626201573676217107443620005
5122561270534256177547154566273135457253
427343546267133446314152643321550642211
3732237117447623760712656127053425512575
71545702741365073257334516247123451663
626534656327153465575623135456273135445
4562713345562671243534562711344562271413
6432151064432215040754117307543661731403
3370510244212051137711243061430614307125
706367536757367471550225532655326553505
25252525252525252525563603314146063014
2107567673735756773717024552265132455227
72763451624713234516351516427213505643057
4733237517647723703335111644722351158011
1307055426613305477171010324152065033527
5077011404602301046347527713745762771421
42455266533255526417414331546663334373
40426733355666667365137422271134456225647
124161470634316433506372055026413204113
75861447623711740712454243521650724027
3016531154466233130367721110444222110677
552570674336157075344632755366573275331
4356625312545262466741315626713345552233
406732155066433216174022661330542661205
4015556667333555660340073339555667332201
37751104422211017712530714366163070053
714502613205502774750430154066033015243
474277337557667731413536251124452250737
646614706343161462652356043021406042155
1645740760370174173305432415206503240511
327234516247123447376626135056427214265
HERE IS THE DECODING TREE

777477777777000432401
74400004336000432502

23007773453000432603
23007773452000432704
23007773451000433005
23007773450000433106
14347773447000433207
24347773446000433310
16747773445000433411
16747773444000433512
167477734437777777613
63640004350000433702
72247773441000434003
72247773440000434104
72247773437000434205
72247773436000434306
74047773435000434407
21207773434000434510
26147773433000434611
26147773432000434712
261477734317777777513
60600004362000435102
15707773427000435203
15707773426000435304
15707773425000435405
15707773424000435506
63747773423000435607
20207773422000435710
73247773421000436011
73247773420000436112
732477734177777777413
17600004374000436302
51147773415000436403
51147773414000436504
51147773413000436605
51147773412000436706
17147773411000437007
05207773410000437110
30707773407000437211
30707773406000437312
307077734057777777313
03140004406000437502
67507773403000437603
67507773402000437704
67507773401000440005
67507773400000440106
03047773377000440207
76707773376000440310
22447773375000440411
22447773374000440512
2244777337377777777213
52240004420000440702
61407773371000441003
61407773370000441104
61407773367000441205
61407773366000441306
25547773365000441407
46147773364000441510
23707772643000513605
23707772642000513706
03447772641000514007
24547772640000514110
16507772637000514211
16507772636000514312
165077726357777772713
30140005156000514502
46607772633000514603
46607772632000514704
46607772631000515005
46607772630000515106
54147772627000515207
67707772626000515310
42207772625000515411
42207772624000515512
422077726237777772613
55240005170000515702
36147772621000516003
36147772620000516104
36147772617000516205
36147772616000516306
66547772615000516407
44607772614000516510
65707772613000516611
65707772612000516712
657077726117777772513
43540005202000517102
54507772607000517203
54507772606000517304
54507772605000517405
54507772604000517506
33347772603000517607
41307772602000517710
33347772601000520011
33347772600000520112
334477725777777772413
40640005214000520302
66407772575000520403
66407772574000520504
66407772573000520605
66407772572000520706
70747772571000521007
40207772570000521110
55407772567000521211
55407772566000521312
554077725657777772313
40140005226000521502
33347772563000521603
33347772562000521704
33347772561000522005
33347772560000522106
30147772557000522207
40047772556000522310
66647772555000522411
66647772554000522512
NUMBER OF NODES = 4991

SIZE OF EACH NODE IS ONE COMPUTER WORD

NO. OF KEYWORDS IN THE QUERY

2

QUERY
B = 63

RECORDS SATISFYING THE QUERY
RECORD 2
RECORD 3
RECORD 4
RECORD 6
RECORD 7
RECORD 17
RECORD 18
RECORD 22
RECORD 23
RECORD 31
RECORD 36
RECORD 40
RECORD 42
RECORD 44
RECORD 49
RECORD 51
RECORD 58
RECORD 60
RECORD 61
RECORD 70
RECORD 74
RECORD 84
RECORD 86
RECORD 95
RECORD 98
RECORD 103
RECORD 105
RECORD 111
RECORD 115
RECORD 116
CPU TIME: FOR ANSWERING THIS QUERY, IN SEC.

4300000

END OF FILE SEARCH
NUMBER OF NODES = 4991

SIZE OF EACH NODE IS ONE COMPUTER WORD

NO. OF KEYWORDS IN THE QUERY

3

QUERY
4 20 -70

RECORDS SATISFYING THE QUERY
RECORD 4
RECORD 34
RECORD 42
RECORD 55
RECORD 61
RECORD 85
RECORD 86
RECORD 92
RECORD 104
RECORD 128
RECORD 139
RECORD 142
RECORD 149
RECORD 154
RECORD 173
RECORD 176
RECORD 177
RECORD 186
RECORD 195
RECORD 202
RECORD 206
RECORD 207
RECORD 216
RECORD 224
RECORD 243
RECORD 264
RECORD 268
RECORD 272
RECORD 273
RECORD 292
CPU TIME FOR ANSWERING THIS QUERY, IN SEC.

*2630000
END OF FILE SEARCH

NO. OF KEYWORDS IN THE QUERY

15

QUERY
-4 5 6 -25 -26 27 40 -41 -42 -49 50 -51 -58 59 60

RECORDS SATISFYING THE QUERY
RECORD 444

CPU TIME FOR ANSWERING THIS QUERY, IN SEC.

*0700000
END OF FILE SEARCH
NUMBER OF NODES = 4991

SIZE OF EACH NODE IS ONE COMPUTER WORD

NO. OF KEYWORDS IN THE QUERY

10

QUERY

1 2 -3 -13 14 15 -28 29 30 58

RECORDS SATISFYING THE QUERY

RECORD 26

CPU TIME FOR ANSWERING THIS QUERY, IN SEC.

.0570000

END OF FILE SEARCH
NUMBER OF NODES = 4991

SIZE OF EACH NODE IS ONE COMPUTER WORD

NO. OF KEYWORDS IN THE QUERY

   6

QUERY
-1  2  3 -82 -83 -84

RECORDS SATISFYING THE QUERY

RECORD  7
RECORD  41
RECORD  51
RECORD  95
RECORD 214
RECORD 297
RECORD 424

CPU TIME FOR ANSWERING THIS QUERY, IN SEC.

.1130000

END OF FILE SEARCH