Copyright © 1993, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
LOOPEED SCHEDULES FOR DATAFLOW
DESCRIPTIONS OF MULTIRATE DSP
ALGORITHMS

by

Shuvra S. Bhattacharyya and Edward A. Lee

Memorandum No. UCB/ERL M93/37

21 May 1993
LOOPED SCHEDULES FOR DATAFLOW
DESCRIPTIONS OF MULTIRATE DSP
ALGORITHMS

by

Shuvra S. Bhattacharyya and Edward A. Lee

Memorandum No. UCB/ERL M93/37
21 May 1993

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley
94720
LOOPED SCHEDULES FOR DATAFLOW
DESCRIPTIONS OF MULTIRATE DSP
ALGORITHMS

by

Shuvra S. Bhattacharyya and Edward A. Lee

Memorandum No. UCB/ERL M93/37
21 May 1993

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720
The synchronous dataflow (SDF) programming paradigm has been used extensively in design environments for multirate signal processing applications. In this paradigm, the repetition of computations is specified by the relative rates at which the computations consume and produce data. This implicit specification of iteration allows a compiler to easily explore alternative nested loops structures for the target code with respect to their effects on code size, buffering requirements and throughput. In this paper, we develop important relationships between the SDF description of an algorithm and the range of looping structures offered by this description, and we discuss how to improve code efficiency by applying these relationships.

1 Introduction

Synchronous dataflow (SDF) is a restricted form of the dataflow model of computation [5]. In the dataflow model, a program is represented as a directed graph. The nodes of the graph, also called actors, represent computations and the arcs represent data paths between computations. In SDF [15], each node consumes a fixed number of data items, called tokens or samples, per invocation and produces a fixed number of output samples per invocation. Figure 1 shows an
SDF graph that has three actors A, B, and C. Each arc is annotated with the number of samples produced by its source actor and the number of samples consumed by its sink actor. The "D" on the arc between B and C represents a unit delay, which can be viewed as an initial sample that is queued on the arc. SDF and related models have been studied extensively in the context of synthesizing assembly code for signal processing applications, for example [7, 8, 9, 10, 17, 18, 19, 20].

In SDF, iteration is defined as the repetition induced when the number of samples produced on an arc (per invocation of the source actor) does not match the number of samples consumed (per sink invocation) [12]. For example, in figure 1, actor B must be invoked two times for every invocation of A. Multirate applications often involve a large amount of iteration and thus subroutine calls must be used extensively, code must be replicated, or loops must be organized in the target program. The use of subroutine calls to implement repetition may reduce throughput significantly however, particularly for graphs involving small granularity. On the other hand, we have found that code duplication can quickly exhaust on-chip program memory [11]. As an alternative, we examine the problem of arranging loops in the target code.

In [11], How demonstrated that by clustering connected subgraphs that operate at the same repetition-rate, and scheduling these consolidated subsystems each as a single unit, we can often synthesize loops effectively. This technique was extended in [3] to cluster across repetition-rate changes and to take into account the minimization of buffering requirements. Although these techniques proved effective over a large range of applications, they do not always yield the most compact schedule for an SDF graph [2].

In this paper we define a simple optimality criterion for the synthesis of compact loop-structures from an SDF graph. The criterion is based on the looped schedule notation introduced in [3], in which loops in a schedule are represented by parenthesized terms of the form \((n \, M_1 \, M_2 \, \ldots \, M_k)\), where \(n\) is a positive integer, and each \(M_i\) represents an SDF actor or another (nested)

![Fig. 1. A simple SDF graph. Each arc is annotated with the number of samples produced by its source and the number of samples consumed by its sink. The "D" designates a unit delay.](image-url)
loop. For the graph in figure 1, for example, the looped schedule A(2 BC) specifies the firing sequence ABCBC. Using this notation, we can define an optimally-compact looped schedule as one that contains only one appearance of each actor in the SDF graph. We call such an “optimal” looped schedule a **single appearance** schedule. For example the looped schedule CA(2B)C for figure 1 is not a single appearance schedule since C appears twice. Thus, either C must be implemented with a subroutine, or we must insert two versions of C’s code block into the synthesized code. In the schedule A(2CB) however, no actor appears more than once, so it is a single appearance schedule; thus it allows in-line code generation without a code-size penalty.

Our observations suggest that we can construct single appearance schedules for most practical SDF graphs [2]. In this paper, we formally develop transformations that can be applied to single appearance schedules to improve the efficiency of the target code. We also determine necessary and sufficient conditions for an SDF graph to have a single appearance schedule. These conditions were developed independently, in a different form, by Ritz et al. [20], although their application of the condition is quite different to ours. Ritz et al. discuss single appearance schedules in the context of *minimum activation* schedules, which minimize the number of “context-switches” between actors. For example, in the looped schedule A(2 CB) for figure 1, the invocations of B and C are interleaved, and thus a separate activation is required for each invocation — 5 total activations are required. On the other hand, the schedule A(2 B)(2 C) requires only three activations, one for each actor. In the objectives of [20], the latter schedule is preferable, because in that code-generation framework, there is a large overhead involved with each activation. With effective register allocation and instruction scheduling, such overhead can often be avoided, however, as [18] demonstrates. Thus, we prefer the former schedule, which has less looping overhead and requires less memory for buffering.

Our focus has been on creating a general framework for developing scheduling algorithms that provably generate single appearance schedules when possible, and that incorporate other scheduling objectives, such as the minimization of buffering requirements, in a manner that is guaranteed not to interfere with code compaction goals. The framework modularizes different parts of the scheduling process, and the compiler developer has freedom to experiment with the component modules, while the framework guarantees that the interaction of the modules does not
impede code size minimization goals. We have applied conditions for the existence of a single appearance schedule to define our scheduling framework. Due to space limitations, we do not elaborate further on this scheduling framework in this paper; instead, we refer the reader to [2].

We begin with a review of the SDF model of computation and the terminology associated with looped schedules for SDF graphs. SDF principles were introduced [13] in terms of connected graphs. However, for developing scheduling algorithms it is useful to consider non-connected graphs as well, so in section 3 we extend SDF principles to non-connected SDF graphs. In sections 4 and 5, we discuss a schedule transformation called factoring, which can produce large reductions in the amount of memory required for buffering. Finally, in section 6, we develop conditions for the existence of a single appearance schedule, and we discuss the application of these conditions to synthesizing single appearance schedules whenever they exist. The sections form a linear dependence chain — each section depends on the previous ones. For reference, a summary of terminology and notation can be found in the glossary at the end of the paper.

2 Background

2.1 Synchronous Dataflow

An SDF program is normally translated into a loop, where each iteration of the loop executes one cycle of a periodic schedule for the graph. In this section we summarize important properties of periodic schedules.

For an SDF graph G, we denote the set of nodes in G by N(G) and the set of arcs in G by A(G). For an SDF arc α, we let source(α) and sink(α) denote the nodes at the source and sink of α; we let p(α) denote the number of samples produced by source(α), c(α) denote the number of samples consumed by sink(α), and we denote the delay on α by delay(α). We define a subgraph of G to be that SDF graph formed by any Z ⊆ N(G) together with the set of arcs {α ∈ A(G) | source(α), sink(α) ∈ Z}. We denote the subgraph associated with the subset of nodes Z by subgraph(Z, G); if G is understood, we may simply write subgraph(Z).
We can think of each arc in G as having a FIFO queue that buffers the tokens that pass through the arc. Each FIFO contains an initial number of samples equal to the delay on the associated arc. Firing a node in G corresponds to removing \(c(\alpha) \) tokens from the head of the FIFO for each input arc \(\alpha \), and appending \(p(\beta) \) tokens to the FIFO for each output arc \(\beta \). After a sequence of 0 or more firings, we say that a node is fireable if there are enough tokens on each input FIFO to fire the node. An admissable sequential schedule ("sequential" is used to distinguish this type of schedule from a parallel schedule) for G is a finite sequence \(S = S_1, S_2, \ldots, S_N \) of nodes in G such that each \(S_i \) is fireable immediately after \(S_1, S_2, \ldots, S_{i-1} \) have fired in succession.

If some \(S_i \) is not fireable immediately after its antecedents have fired, then there is least one arc \(\alpha \) such that (1) \(\text{sink}(\alpha) = S_i \), and (2) the FIFO associated with \(\text{sink}(\alpha) \) contains less than \(c(\alpha) \) just prior to the \(i \)th firing in \(S \). For each such \(\alpha \), we say that \(S \) terminates on \(\alpha \) at firing \(S_i \). Clearly then, \(S \) is admissable if and only if it does not terminate on any arc \(\alpha \).

We say that a sequential schedule \(S \) is a periodic schedule if it invokes each node at least once and produces no net change in the number of tokens on a FIFO — for each arc \(\alpha \), (the number of times \(\text{source}(\alpha) \) is fired in \(S \)) \(\times p(\alpha) = (\)the number of times \(\text{sink}(\alpha) \) is fired in \(S \)) \(\times c(\alpha) \). A periodic admissable sequential schedule (PASS) is a schedule that is both periodic and admissable. We will also use the term valid schedule to describe a schedule that is a PASS. For a given sequential schedule, we denote the \(i \)th firing, or invocation, of actor \(N \) by \(N_i \), and we call \(i \) the invocation number of \(N_i \).

In [14], it is shown that for each connected SDF graph \(G \), there is a unique minimum number of times that each node needs to be invoked in a periodic schedule. We specify these minimum numbers of firings by a vector of positive integers \(q_G \), which is indexed by the nodes in \(G \), and we denote the component of \(q_G \) corresponding to a node \(N \) by \(q_G(N) \). Every PASS for \(G \) invokes each node \(N \) a multiple of \(q_G(N) \) times, and corresponding to each PASS \(S \), there is a positive integer \(J(S) \) called the blocking factor of \(S \), such that \(S \) invokes each \(N \in N(G) \) exactly \(Jq_G(N) \) times. We call \(q_G \) the repetitions vector of \(G \). If \(G \) is understood from context, we may refer to \(q_G \) simply as \(q \). The following properties of repetitions vectors are established in [14]:

Fact 1: The components of a repetitions vector are collectively coprime.
Fact 2: Suppose that G is a connected SDF graph and S is an admissible schedule for G. If there is a positive integer J_0 such that S invokes each $N \in N(G)$ exactly $J_0q(N)$ times, then S is a PASS.

Fact 3: The balance equation $q(source(\alpha)) \times p(\alpha) = q(sink(\alpha)) \times c(\alpha)$ is satisfied for each arc α in G. Also, any positive-integer vector that satisfies the balance equations is a positive-integer multiple of the repetitions vector.

Given an SDF graph G, we say that G is strongly connected if for any pair of distinct nodes A, B in G, there is a directed path from A to B and a directed path from B to A. We say that a strongly connected SDF graph is nontrivial if it contains more than one node. Also, we say that a subset Z of nodes in G is strongly connected if $subgraph(Z, G)$ is strongly connected. Finally, a strongly connected component of G is a strongly connected subset of $N(G)$ such that no strongly connected subset of $N(G)$ properly contains Z.

Although there is no theoretical impediment to infinite SDF graphs, we currently do not have any practical use for them, so in this paper, we deal only with SDF graphs that have a finite number of nodes and arcs. Also, unless otherwise stated, we deal only with SDF graphs for which a PASS exists.

2.2 Looped Schedule Terminology

Definition 1: A schedule loop is a parenthesized term of the form $(n T_1 T_2 \ldots T_m)$, where n is a positive integer and each T_i represents an SDF node or another schedule loop. $(n T_1 T_2 \ldots T_m)$ represents the successive repetition n times of the firing sequence $T_1 T_2 \ldots T_m$. If $L = (n T_1 T_2 \ldots T_m)$ is a schedule loop, we say that n is the iteration count of L, each T_i is an iterand of L, and $T_1 T_2 \ldots T_m$ constitutes the body of L. A looped schedule is a sequence $V_1 V_2 \ldots V_k$, where each V_i is either an actor or a schedule loop. Since a looped schedule is usually executed repeatedly, we refer to each V_i as an iterand of the associated looped schedule.

When referring to a looped schedule, we often omit the "looped" qualification if it is understood from context; similarly, we may refer to a schedule loop simply as a "loop". Given a looped schedule S, we refer to any contiguous sequence of actor appearances and schedule loops
in S as a **subschedule** of S. For example, the schedules $B(3AB)C$ and $(2B(3AB)C)A$ are both subschedules of $A(2B(3AB)C)A(2B)$, whereas $(3AB)CA$ is not. By this definition, every schedule loop in S is a subschedule of S. If the same firing sequence appears in more than one place in a schedule, we distinguish each instance as a separate subschedule. For example, in $(3A(2BC)D(2BC))$, "(2BC)" appears twice, and these correspond to two distinct subschedules. In this case, the content of a subschedule is not sufficient to specify it — we must also specify the lexical position, as in "the second appearance of (2BC)".

Given a looped schedule S and an actor N that appears in S, we define $\text{inv}(N, S)$ to be the number of times that S invokes N. Similarly, if S_0 is a subschedule, we define $\text{inv}(S_0, S)$ to be the number of times that S invokes S_0. For example, if $S = A(2(3BA)C)BA(2B)$, then $\text{inv}(B, S) = 9$, $\text{inv}(3BA), S) = 2$, and $\text{inv}(\text{first appearance of BA}, S) = 6$. Also, we refer to the schedule that a looped schedule S represents as the firing sequence generated by S. For example, the firing sequence generated by $A(2(3BA)C)BA(2B)$ is $ABABABACBABACBABB$. When there is no ambiguity, we occasionally do not distinguish between a looped schedule and the firing sequence that it generates.

Finally, given an SDF graph G, an arc α in G, a looped schedule S for G, and a nonnegative integer i, we define $P(\alpha, i, S)$ to denote the number of firings of $\text{source}(\alpha)$ that precede the ith invocation of $\text{sink}(\alpha)$ in S. For example, consider the SDF graph in figure 1 and let α denote the arc from B to C. Then $P(\alpha, 2, A(2BC)) = 2$, the number of firings of B that precede invocation C_2 in the firing sequence $ABCBC$.

3 Non-connected SDF Graphs

The fundamentals of SDF were introduced in terms of connected SDF graphs [13, 15]. In this section, we extend some basic principles of SDF to non-connected SDF graphs. We begin with two definitions.

Definition 2: Suppose that G is an SDF graph, M is any subset of nodes in G, and $M_\alpha \subseteq M$. We say that M_α is a **maximal connected subset of M** if $\text{subgraph}(M_\alpha, G)$ is connected, and no subset of
M that properly contains M_a induces a connected subgraph in G. Every subset of nodes in an SDF graph has a unique partition into one or more maximal connected subsets. For example in figure 2, the subset of nodes $\{A, B, C, E, G, H\}$ has three maximal connected subsets: $\{A, H\}$, $\{B, E, C\}$ and $\{G\}$. If M_a is a maximal connected subset of $N(G)$, then we say that $\text{subgraph}(M_a, G)$ is a maximal connected subgraph of G. We denote the set of maximal connected subgraphs in G by $\text{max}_\text{connected}(G)$. Thus, for figure 3, $\text{max}_\text{connected}(G) = \{\text{subgraph}\{A, B\}, \text{subgraph}\{C, D\}\}$.

Definition 3: Suppose that S is a looped schedule for an SDF graph and $N_b \subseteq N(G)$. If we remove from S all actors that are not in N_b, and remove all empty loops — schedule loops that contain no actors in their bodies — that result, we obtain another looped schedule, which we call the restriction of S to N_b, and which we denote by $\text{restriction}(S, N_b)$. For example, $\text{restriction}((2(2B)(5A)), \{A, C\}) = (2(5 A))$, and $\text{restriction}((5 C, \{A, B\})$ is the null schedule. If G_a is a subgraph of G, then we define $\text{restriction}(S, G_a) \equiv \text{restriction}(S, N(G_a))$.

The following fact follows immediately from definition 3 and the definition of a PASS.

Fact 4: If S is a PASS for an SDF graph G and G_a is a subgraph of G, then $\text{restriction}(S, G_a)$ is a PASS for G_a.

The concept of blocking factor does not apply directly to SDF graphs that are not connected. For example, in figure 3 the minimal vector of repetitions for a periodic schedule is given by $\bar{q}(A, B, C, D) = (1, 1, 1, 1)$. The schedule $A (2 C) B (2 D)$ is a periodic schedule for this exam-
Non-connected SDF Graphs

Fig. 3. A simple non-connected SDF graph

Now suppose that S is a PASS for an arbitrary SDF graph G. By fact 4, for each $C \in \text{max_connected}(G)$, we have that $\text{restriction}^C(S) = C$. Thus, associated with S, there is a vector of positive integers J_S, indexed by the maximal connected subgraphs of G, such that $\forall C \in \text{max_connected}(G), \forall N \in N(C), \text{inv}(N, S) = J_S(C)q_C(N)$. We call J_S the \textit{blocking vector} of S. For example, if $S = A(B C) B(D E)$ for figure 3, then $J_S(\text{subgraph}\{A, B\}) = 1$, and $J_S(\text{subgraph}\{C, D\}) = 2$. On the other hand, if G is connected, then J_S has only one component, which is the blocking factor of S, $J(S)$.

It is often convenient to view parts of an SDF graph as subsystems that are invoked as single units. The invocation of a subsystem corresponds to invoking a minimal periodic schedule for the associated subgraph. If this subgraph is connected, its repetitions vector gives the minimum number of invocations required for a periodic schedule. However, if the subgraph is not connected, then the minimum number of invocations involved in a periodic schedule is not necessarily obtained by concatenating the repetitions vectors of the maximal connected subcomponents.

For example, consider the subsystem $\text{subgraph}\{A, B, D, E\}$ in the SDF graph of figure 4(a). It is easily verified that $q(A, B, C, D, E) = (2, 2, 1, 4, 4)$. Thus, for a periodic schedule, the actors in $\text{subgraph}\{D, E\}$ must execute twice as frequently as those in $\text{subgraph}\{A, B\}$. We see that the minimal repetition rates for $\text{subgraph}\{A, B, D, E\}$ \textit{as a subgraph of the original graph} are given by $\rho(A, B, D, E) = (1, 1, 2, 2)$, which can be obtained dividing each corresponding entry in q by $\text{gcd}(q(A), q(B), q(D), q(E)) = \text{gcd}(2, 2, 4, 4) = 2^1$. On the other hand, concatenating the repetitions vectors of $\text{subgraph}\{A, B\}$ and $\text{subgraph}\{D, E\}$ yields the repetition rates $\rho'(A, B, D, E) = (1, 1, 1, 1)$. However, repeatedly invoking the subsystem with these relative rates can

1. gcd denotes the greatest common divisor.
never lead to a periodic schedule for the enclosing SDF graph. We have motivated the following definition.

Definition 4: Let G be a connected SDF graph, suppose that Z is a subset of $N(G)$, and let $R = \text{subgraph}(Z)$. We define $q_G(Z) = \gcd(q_G(N) \mid N \in Z)$, and we define q_{RG} to be the vector of positive integers indexed by the members of Z that is defined by $q_{RG}(N) = q_G(N) / q_G(Z)$, $\forall N \in Z$. $q_G(Z)$ can be viewed as *the number of times a minimal periodic schedule for G invokes the subgraph R*, and we refer to q_{RG} as the *repetitions vector of R as a subgraph of G*. For example, in figure 4, if $R = \text{subgraph}([A, B, D, E])$, then $q_G(N(R)) = 2$, and $q_{RG} = q_{RG}(A, B, D, E) = (1, 1, 2, 2)$.

Fact 5: If G is a connected SDF graph and R is a connected subgraph of G, then $q_{RG} = q_R$. Thus for a connected subgraph R, $\forall N \in N(R), q_G(N) = q_G(N(R))q_R(N)$.

Proof. Let S be any PASS for G of unit blocking factor, and let $S' = \text{restriction}(S, R)$. Then from fact 4, for all $N \in N(R)$, we have $q_G(N) = J(S')q_R(N)$. But from fact 1, we know that the components of q_R are coprime. It follows that $J(S') = \gcd(q_G(N') \mid N' \in N(R)) = q_G(N(R))$. Thus, $\forall N \in N(R), q_R(N) = q_G(N) / q_G(N(R)) = q_{RG}(N)$. QED.

For example, in figure 4(a), let $R = \text{subgraph}([A, B])$. We have $q_G(A, B, C, D, E) = (2, 2, 1, 4, 4)$, $q_R(A, B) = (1, 1)$, and from definition 4, $q_G(N(R)) = 2$, and $q_{RG} = (2, 2) / 2 = (1, 1)$. As fact 4 assures us, $q_R = q_{RG}$.

![Fig. 4. An example of clustering a subgraph in an SDF graph.](image)
Finally, we formalize the concept of clustering a subgraph of a connected SDF graph G, which as we discussed above, is used to organize hierarchy for scheduling purposes. This process is illustrated in figure 4. Here \(\text{subgraph}\{\{A, B, D, E\}\} \) of figure 4(a) is clustered into the hierarchical node \(\Omega \), and the resulting SDF graph is shown in figure 4(b). Each input arc \(\alpha \) to a clustered subgraph \(R \) is replaced by an arc \(\alpha' \) having \(p(\alpha') = p(\alpha) \), and \(c(\alpha') = c(\alpha) \times q_{RG}(sink(\alpha)) \), the number of samples consumed from \(\alpha \) in one invocation of \(R \) as a subgraph of \(G \). Similarly we replace each output arc \(\beta \) with \(\beta' \) such that \(c(\beta') = c(\beta) \), and \(p(\beta') = p(\beta) \times q_{RG}(source(\beta)) \). We will use the following property of clustered subgraphs.

Fact 6: Suppose \(G \) is an SDF graph, \(R \) is a subgraph of \(G \), \(G' \) is the SDF graph that results from clustering \(R \) into the hierarchical node \(\Omega \), \(S' \) is a PASS for \(G' \), and \(S_R \) is a PASS for \(R \) such that \(\forall N \in N(R), inv(N, S_R) = q_{RG}(N) \). Let \(S^* \) denote the schedule that results from replacing each appearance of \(\Omega \) in \(S \) with \(S_R \). Then \(S^* \) is a PASS for \(G \).

As a simple example, consider figure 4 again. Now, \((2 \Omega)C \) is a PASS for the SDF graph in figure 4(b), and \(S \equiv AB \) \((2 DE) \) is a PASS for \(R \equiv \text{subgraph}\{\{A, B, D, E\}\} \) such that \(inv(N, S) = q_{RG}(N) \forall N \). Thus, fact 6 guarantees that \((2 AB \equiv (2 DE))C \) is a PASS for figure 4(a).

Proof of fact 6. Given a schedule \(\sigma \) and an SDF arc \(\alpha \), we define
\[
\Delta(\alpha, \sigma) = inv(source(\alpha), \sigma) \times p(\alpha) - inv(sink(\alpha), \sigma) \times c(\alpha).
\]
Clearly \(\sigma \) is a periodic schedule only if \(\Delta(\alpha, \sigma) = 0 \ \forall \ \alpha \).

We can decompose \(S' \) into \(s_1 \Omega s_2 \Omega \ldots \Omega s_k \), where each \(s_j \) denotes the sequence of firings between the \((j - 1) \)th and \(j \)th invocations of \(\Omega \). Then \(S^* = s_1 S_R s_2 S_R \ldots S_R s_k \).

First, suppose that \(\theta \) is an arc in \(G \) such that \(source(\theta) \), \(sink(\theta) \notin N(R) \). Then \(S_R \) contains no occurrences of \(source(\theta) \) nor \(sink(\theta) \), so \(P(\theta, i, S') = P(\theta, i, S') \) for any invocation number \(i \) of \(sink(\theta) \). Thus, since \(S' \) is admissable, \(S^* \) does not terminate on \(\theta \). Also, \(\Delta(\theta, S^*) = \Delta(\theta, s_1 s_2 \ldots s_k) = \Delta(\theta, S') = 0 \), since \(S' \) is periodic.

If \(source(\theta), sink(\theta) \in N(R) \), then none of the \(s_j \)'s contain any occurrences of \(source(\theta) \) or \(sink(\theta) \). Thus for any \(i \), \(P(\theta, i, S') = P(\theta, i, S'^*) \) and \(\Delta(\theta, S^*) = \Delta(\theta, S'^*) \), where \(S'^* = S_R S_R \ldots S_R \) denotes \(S^* \) with all of the \(s_j \)'s removed. Since \(S'^* \) consists of successive invocations of a PASS, it follows that \(S^* \) does not terminate on \(\theta \), and \(\Delta(\theta, S^*) = 0 \).
Now suppose that \(\text{source}(\theta) \notin N(R) \) and \(\text{sink}(\theta) \notin N(R) \). Then corresponding to \(\theta \), there is an arc \(\theta' \) in \(G' \), such that \(\text{source}(\theta') = \Omega, \text{sink}(\theta') = \text{sink}(\theta), p(\theta') = q_{RG}(\text{source}(\theta))p(\theta), \) and \(c(\theta') = c(\theta) \). Now each invocation of \(S_R \) produces \(\text{inv(source}(\theta), S_R)p(\theta) = q_{RG}(\text{source}(\theta))p(\theta) = p(\theta') \) samples onto \(\theta \). Since \(c(\theta') = c(\theta) \) and \(S' \) is a PASS, it follows that \(\Delta(\theta, S^*) = 0 \) and \(S^* \) does not terminate on \(\theta \).

Similarly, if \(\text{source}(\theta) \notin N(R) \), and \(\text{sink}(\theta) \in N(R) \), we see that each invocation of \(S_R \) consumes the same number of samples from \(\theta \) as \(\Omega \) consumes from the corresponding arc in \(G' \), and thus \(\Delta(\theta, S^*) = 0 \) and \(S^* \) does not terminate on \(\theta \).

We conclude that \(S^* \) does not terminate on any arc in \(G \), and \(\Delta(\alpha, S^*) = 0 \) for all arcs \(\alpha \) in \(G \). Thus \(S^* \) is a PASS for \(G \). \(QED. \)

We conclude this section with a fact that relates the repetition vector of an SDF graph obtained by clustering a subgraph to the repetitions vector of the original graph.

Fact 7: If \(G \) is a connected SDF graph, \(Z \subseteq N(G) \), and \(G' \) is the SDF graph obtained from \(G \) by clustering \(\text{subgraph}(Z) \) into the node \(\Omega \), then \(q_G(\Omega) = q_G(Z) \), and \(\forall N \notin Z, q_G(N) = q_G(N) \).

Proof. Let \(q' \) denote the vector that we claim is the repetitions vector for \(G' \). It can easily be verified that \(q' \) satisfies the balance equations (defined in fact 3) for \(G' \). Furthermore, from fact 1, no positive integer can divide all members of \(\{q_G(N) \mid N \notin Z \} \cup \{\text{gcd}\{q_G(N) \mid N \in Z\}\}) \). Since \(q_\Omega(Z) = \text{gcd}\{q_G(N) \mid N \in Z\} \), it follows that the components of \(q' \) are collectively coprime. From fact 3, we conclude that \(q' = q_\Omega \). \(QED. \)

4 Factoring Schedule Loops

In this section, we show that in a single appearance schedule, we can "factor" common terms from the iteration counts of inner loops into the iteration count of the enclosing loop. An important practical advantage of factoring is that it may significantly reduce the amount of memory required for buffering.
For example, consider the SDF graph in figure 5. One single appearance schedule for this graph is (100 A) (100 B) (10 C) D. With this schedule, prior to each invocation of C, 100 tokens are queued on each of C’s input arcs, and a maximum of 10 tokens are queued on D’s input arc. Thus 210 words of memory are required to implement the buffering for this schedule.

Now observe that this schedule induces the same firing sequence as (1 (100 A) (100 B) (10 C)) D. The result developed in this section allows us to factor the common divisor of 10 in the iteration counts of the three inner loops into the iteration count of the outer loop. This yields the new single appearance schedule (10 (10 A) (10 B) C) D, for which at most ten tokens simultaneously reside on each arc. Thus this factoring application has reduced the buffering requirement by a factor of 7.

There is, however a trade-off involved in factoring. For example, the schedule (100 A) (100 B) (10 C) D requires 3 loop initiations per schedule period, while the factored schedule (10 (10 A) (10 B) C) D requires 21. Thus the runtime cost of starting loops — usually, initializing the loop indices — has increased by the same factor by which the buffering cost has decreased. However the loop-startup overhead is normally much smaller than the penalty that is paid when the memory requirement exceeds the on-chip limits. Unfortunately, we cannot in general perform the reverse of the factoring transformation — i.e. moving a factor of the outer loop’s iteration count into the inner loops. This reverse transformation would desirable in situations where minimizing buffering requirements is not critical.

In this section, we prove the validity of factoring for an arbitrary “factorable” loop in a single appearance schedule.

Fig. 5. An SDF graph used to illustrate the factoring of loops. For this graph, q(A, B, C, D) = (100, 100, 10, 1).
Definition 5: Given a schedule S_0, we denote the set of actors that appear in S_0 by $\text{actors}(S_0)$. For example, $\text{actors}((2(2B)(5A))) = \{A, B\}$ and $\text{actors}((3 X (2Y(3Z))X)) = \{X, Y, Z\}$.

Lemma 1: Suppose that S is a single appearance schedule (that is not necessarily a PASS) for the SDF graph G, and S_0 is a subschedule in S such that S_0 is a PASS for $\text{subgraph}(\text{actors}(S_0), G)$. Then S does not terminate on any arc θ for which $\text{source}(\theta), \text{sink}(\theta) \in \text{actors}(S_0)$.

For example, suppose that S is the schedule $D(2 A(2 BC))E$ for the SDF graph in figure 6, and S_0 is the subschedule $(2 A(2 BC))$. Lemma 1 guarantees that S does not terminate on any arc that is contained in $\text{subgraph}(\{ABC\})$: No matter what the values of the delays $\{d_i\}$ are, S does not terminate on the arc from A to B, nor the arc from A to C.

Proof of lemma 1: Since S is a single appearance schedule, $\text{source}(\theta)$ and $\text{sink}(\theta)$ are invoked only through invocations of S_0. Since S_0 is admissible, the number of samples on θ prior to each invocation of $\text{sink}(\theta)$ is at least $c(\theta)$. Thus S does not terminate on θ. QED.

Lemma 2: Suppose that G is an SDF graph, S is an admissible looped schedule for G, and S_0 is a subschedule in S. Suppose also that S_0' is any looped schedule such that $\text{actors}(S_0') = \text{actors}(S_0)$, and $\text{inv}(N, S_0) = \text{inv}(N, S_0')$ $\forall N \in \text{actors}(S_0)$. Let S' denote the schedule obtained by replacing S_0 with S_0' in S. Then S' does not terminate on any arc θ that is not contained in $\text{subgraph}(\text{actors}(S_0), G)$; equivalently, $(\text{source}(\theta) \notin \text{actors}(S_0) \text{ or } \text{sink}(\theta) \notin \text{actors}(S_0)) \Rightarrow S'$ does not terminate on θ.

Again consider the example in figure 6 and suppose that $D(2 A(2 BC))E$ is an admissible schedule for this SDF graph. Then lemma 2 (with $S_0 = A(2 BC)$, and $S_0' = BCABC$) tells us that $D(2 BCABC)E$ does not terminate on any of the four arcs that lie outside of $\text{subgraph}(\{A, B, C\})$.

![Diagram](image_url)

Fig. 6. An example used to illustrate the application lemmas 1 and 2. Each d_i represents the number of delays on the corresponding arc. Here $q(A, B, C, D, E) = (2, 4, 4, 1, 1)$.

14 of 28
Before moving to the proof, we emphasize that lemma 2 applies to general looped schedules, not just single appearance schedules.

Proof of lemma 2: Let \(\theta \) be any arc that is not contained in \(\text{subgraph}(\text{actors}(S_0), G) \). Let \(i \) be any invocation number of \(\text{sink}(\theta) \); that is, \(1 \leq i \leq \text{inv}(\text{sink}(\theta), S') \). The sequence of invocations fired in one period of \(S \) can be decomposed into \((s_1 b_1 s_2 b_2 \ldots b_n s_{n+1}) \), where \(b_j \) denotes the sequence of firings associated with the \(j \)th invocation of subschedule \(S_0 \), and \(s_j \) is the sequence of firings between the \((j-1)\)'th and \(j \)th invocations of \(S_0 \). Since \(S' \) is derived by rearranging the firings in \(S_0 \), we can express it similarly as \((s_1 b'_1 s_2 b'_2 \ldots b'_n s'_{n+1}) \), where \(b'_j \) corresponds to the \(j \)th invocation of \(S_0' \) in \(S' \).

If neither \(\text{source}(\theta) \) nor \(\text{sink}(\theta) \) is contained in \(\text{actors}(S_0) \), then none of the \(b_j \)'s nor any of the \(b'_j \)'s contain any occurrences of \(\text{sink}(\theta) \) or \(\text{source}(\theta) \). Thus \(P(\theta, i, S) = P(\theta, i, s_1 s_2 \ldots s_{n+1}) = P'(\theta, i, S') \).

Now suppose \(\text{source}(\theta) \in \text{actors}(S_0) \) and \(\text{sink}(\theta) \notin \text{actors}(S_0) \). Let \(k \) denote the number of invocations of \(S_0 \) that precede \(\text{sink}(\theta) \) in \(S \). Then, since \(\text{inv}(\text{sink}(\theta), b_j) = \text{inv}(\text{sink}(\theta), b'_j) = 0 \ \forall j \), we have that \(k \) invocations of \(S_0 \) precede \(\text{sink}(\theta) \) in \(S' \). It follows that \(P(\theta, i, S) = P(\theta, i, s_1 s_2 \ldots s_{n+1}) + k \times \text{inv}(\text{source}(\theta), S_0) \), and \(P(\theta, i, S') = P(\theta, i, s_1 s_2 \ldots s'_{n+1}) + k \times \text{inv}(\text{source}(\theta), S_0') \). But, by assumption, \(\text{inv}(\text{source}(\theta), S_0) = \text{inv}(\text{source}(\theta), S_0') \), so \(P(\theta, i, S) = P(\theta, i, S') \).

Finally, suppose \(\text{source}(\theta) \notin \text{actors}(S_0) \) and \(\text{sink}(\theta) \in \text{actors}(S_0) \). There are two sub-cases to consider here: (1) In \(S \), \(\text{sink}(\theta) \) occurs in one of the \(s_j \)'s, say \(s_k \). Since \(\text{inv}(\text{sink}(\theta), S_0) = \text{inv}(\text{-sink}(\theta), S_0') \), it follows that in \(S' \), \(\text{sink}(\theta) \) occurs in \(s_k \) as well. Since \(\text{source}(\theta) \notin \text{actors}(S_0) \), we have \(P(\theta, i, S) = P(\theta, i -(k-1) \text{inv}(\text{sink}(\theta), S_0), s_1 s_2 \ldots s_k) = P(\theta, i -(k-1) \text{inv}(\text{sink}(\theta), S_0'), s_1 s_2 \ldots s_k) = P(\theta, i, S') \). (2) In \(S \), \(\text{sink}(\theta) \) occurs in one of the \(b_j \)'s, say \(b_m \). Then \(\text{inv}(\text{sink}(\theta), S_0) = \text{inv}(\text{-sink}(\theta), S_0') \) implies that in \(S' \), \(\text{sink}(\theta) \) occurs in \(b_m \). Since \(\text{source}(\theta) \notin \text{actors}(S_0) \), \(P(\theta, i S) = \text{inv}(\text{-source}(\theta), s_1 s_2 \ldots s_m) = P(\theta, i, S') \).

Thus, for arbitrary \(i \), \(P(\theta, i, S) = P(\theta, i, S') \). From the admissability of \(S \), it follows that \(S' \) does not terminate on \(\theta \). *QED.*

The following theorem establishes the validity of our factoring transformation.
Theorem 1: Suppose that S is a valid single appearance schedule for G and suppose that $L = (m(n_1 S_1) n_2 S_2) \ldots (n_k S_k))$ is a schedule loop within S of any nesting depth. Suppose also that γ is any positive integer that divides n_1, n_2, \ldots, n_k and let L' denote the loop $(\gamma m (\gamma^1 n_1 S_1) (\gamma^1 n_2 S_2) \ldots (\gamma^1 n_k S_k))$. Then replacing L with L' in S results in a valid schedule for G.

Proof: We will use the following definition in our proof of this theorem.

Definition 6: Given a schedule loop L in S and an arc θ in G, we define $\text{consumed}(\theta, L)$ to be the number of samples consumed from θ by $\text{sink}(\theta)$ during one invocation of L. Similarly, we define $\text{produced}(\theta, L)$ to be the number of samples produced onto θ during one invocation of L. Clearly, if the number of samples on θ is at least $\text{consumed}(\theta, L)$ just prior to a particular invocation of L, then S will not terminate on θ during that invocation of L.

We will prove theorem 1 by induction on k. First, observe that for $k = 1$, L and L' generate the same firing sequence, and thus S and S' generate the same firing sequence. We conclude that S' is valid for $k = 1$.

Now consider the case $k = 2$. Then $L = (m(n_1 S_1) n_2 S_2))$ and $L' = (\gamma m (\gamma^1 n_1 S_1) (\gamma^1 n_2 S_2))$. By construction, $J(S') = J(S)$ and S' is also a single appearance schedule. Now let θ be an arc in G. If $\text{source}(\theta) \in \text{actors}(S_1)$ and $\text{sink}(\theta) \in \text{actors}(S_2)$ then

$$\text{produced}(\theta, (\gamma^1 n_1 S_1)) = J(S)q_{\theta}(\text{source}(\theta))p(\theta) / \text{inv}((\gamma^1 n_1 S_1), S') = J(S)q_{\theta}(\text{source}(\theta))p(\theta) / (\gamma m \times \text{inv}(L', S')) = J(S)q_{\theta}(\text{sink}(\theta))c(\theta) / (\gamma m \times \text{inv}(L', S')) \quad \text{(by fact 3)}$$

Similarly, if $\text{source}(\theta) \in \text{actors}(S_2)$ and $\text{sink}(\theta) \in \text{actors}(S_1)$, $\text{produced}(\theta, (\gamma^1 n_2 S_2)) = \text{consumed}(\theta, (\gamma^1 n_1 S_1))$. Summarizing, we have

$$\text{source}(\theta) \in \text{actors}(S_1), \text{sink}(\theta) \in \text{actors}(S_2) \Rightarrow \text{produced}(\theta, (\gamma^1 n_1 S_1)) = \text{consumed}(\theta, (\gamma^1 n_2 S_2)); \quad \text{and}$$

$$\text{source}(\theta) \in \text{actors}(S_2), \text{sink}(\theta) \in \text{actors}(S_1) \Rightarrow \text{produced}(\theta, (\gamma^1 n_2 S_2)) = \text{consumed}(\theta, (\gamma^1 n_1 S_1)). \quad \text{(EQ 1)}$$

Now we will show that S does not terminate on θ for an arbitrary arc θ in G.

16 of 28
Factoring Schedule Loops

Case 1: \textit{source(\theta) \in actors(S_1), sink(\theta) \in actors(S_2)}. From EQ 1, we know that prior to each invocation of \((\gamma^1n_2 S_2)\), at least \textit{consumed}(\theta, (\gamma^1 n_2 S_2)) samples reside on \theta. Thus \(S'\) never terminates on \theta during an invocation of \((\gamma^1 n_2 S_2)\). Furthermore, since \(S'\) is a single appearance schedule, \textit{sink(\theta)} is fired only through invocations of \((\gamma^1 n_2 S_2)\), and it follows that \(S'\) does not terminate on \theta.

Case 2: \textit{source(\theta) \in actors(S_2) and sink(\theta) \in actors(S_1)}. Since \(S\) is an admissible schedule, \textit{delay(\theta)} \geq \textit{consumed(\theta, (n_1 S_1))}, otherwise \(S\) would terminate on \theta during the first invocation of \((n_1 S_1)\). Since \(\gamma \geq 1\), it follows that \textit{delay(\theta)} \geq \textit{consumed(\theta, (\gamma^1 n_1 S_1))}, so \(S'\) does not terminate on \theta during the first invocation of \((\gamma^1 n_1 S_1)\). From EQ 1, we know that prior to each subsequent invocation of \((\gamma^1 n_1 S_1)\), at least \textit{consumed}(\theta, (\gamma^1 n_1 S_1)) samples reside on \theta, so \(S'\) does not terminate on \theta for invocations 2, 3, 4, ... of \((\gamma^1 n_1 S_1)\). We conclude that \(S'\) does not terminate on \theta.

Case 3: \textit{source(\theta), sink(\theta) \in actors(S_1)}. Since \(S\) is a valid single appearance schedule, \(S_1\) must be a pass for \textit{subgraph(actors(S_1))}. Applying lemma 1 with \(S_0 = S_1\), we see that \(S'\) does not terminate on \theta.

Case 4: \textit{source(\theta), sink(\theta) \in actors(S_2)}. From lemma 1 with \(S_0 = S_2\), \(S'\) does not terminate on \theta.

Case 5: \textit{source(\theta) \notin (actors(S_1) \cup actors(S_2)) or sink(\theta) \notin (actors(S_1) \cup actors(S_2))}. Applying lemma 2 with \(S_0 = L\) and \(S_0' = L'\), we see that \(S'\) does not terminate on \theta.

From our conclusions in cases 1-5, \(S'\) does not terminate on any arc in \(\theta\), and it follows that \(S'\) is a valid schedule. Thus theorem 1 holds for \(k = 2\).

Now suppose that theorem 1 holds whenever \(k \leq k'\), for some \(k' \geq 2\). We will show that this implies the validity of theorem 1 for \(k \leq k' + 1\). For \(k = k' + 1\), \(L = (m (n_1 S_1) (n_2 S_2) \ldots (n_{k+1} S_{k+1}))\) and \(L' = (\gamma m (\gamma^1 n_1 S_1) (\gamma^1 n_2 S_2) \ldots (\gamma^1 n_{k+1} S_{k+1})).\) Let \(S_a\) denote the schedule that results from replacing \(L\) with the loop \(L_a = (m (1 (n_1 S_1) (n_2 S_2) \ldots (n_{k} S_{k})) (n_{k+1} S_{k+1})).\) Since \(L_a\) and \(L\) induce the same firing sequence, \(S_a\) induces the same firing sequence as \(S\). Now theorem 1 for \(k = k'\) guarantees that replacing \((1 (n_1 S_1) (n_2 S_2) \ldots (n_{k} S_{k}))\) with \((\gamma (\gamma^1 n_1 S_1) (\gamma^1 n_2 S_2) \ldots (\gamma^1 n_{k} S_{k})))\) in \(S_a\) results in a valid schedule \(S_b\).

Observe that \(S_b\) is the schedule \(S\) with \(L\) replaced by \(L_b = (m (\gamma (\gamma^1 n_1 S_1) (\gamma^1 n_2 S_2) \ldots (\gamma^1 n_{k} S_{k}))) (n_{k+1} S_{k+1})).\) Theorem 1 for \(k = 2\) guarantees that replacing \(L_b\) with \(L_c = (\gamma m (1 (\gamma^1 n_1 S_1) (\gamma^1 n_2 S_2) \ldots (\gamma^1 n_{k} S_{k})))\) results in a valid schedule \(S_c\).
Reduced Single Appearance Schedules

\((y^1n_2 S_2) \ldots (y^1n_k S_k)) (y^1n_{k+1} S_{k+1}))\) yields another valid schedule \(S_c\). Now \(L_o\) yields the same firing sequence as \(L = (yn (y^1n_1 S_1) (y^1n_2 S_2) \ldots (y^1n_{k+1} S_{k+1}))\), so replacing \(L_o\) with \(L'\) in \(S_c\) yields an admissible schedule \(S_d\). But, by our construction, \(S_d = S'\), so \(S'\) is a valid schedule for \(G\).

We have shown that theorem 1 holds for \(k = 1\) and \(k = 2\), and we have shown that if the result holds for \(k \leq k'\), then it holds for \(k \leq (k' + 1)\). We conclude that theorem 1 holds for all \(k\).

QED.

5 Reduced Single Appearance Schedules

We begin this section with a definition.

Definition 7: Given a schedule loop \(L\), we say that \(L\) is **reduceable** if all iterands of \(L\) are schedule loops, and there exists an integer \(j > 1\) that divides all of the iteration counts of the iterands of \(L\). If \(L\) is not reduceable, we say that \(L\) is **irreducible**.

For example, the schedule loops \((3 (4 A) (2 B))\) and \((10 (7 C))\) are both reduceable, while the loops \((5 (3 A) (7 B))\) and \((70 C)\) are irreducible. From our discussion in the previous section, we know that reduceable schedule loops may result in much higher buffering requirements than their factored counterparts.

Definition 8: Given a single appearance schedule \(S\), we say that \(S\) is **fully reduced** if:

1) \(S\) is not a schedule loop; AND
2) Every schedule loop contained in \(S\) is irreducible.

In this section, we show that we can always convert a valid single appearance schedule that is not fully reduced into a valid fully reduced schedule. Thus, we can always avoid the overhead associated with using reduceable schedule loops over their corresponding factored forms. To prove this, we use another useful fact: that any fully reduced schedule has blocking factor 1. This implies that any schedule that has blocking factor greater than one is not fully reduced. Thus, if we decide to generate a schedule that has nonunity blocking factor, then we risk introducing higher buffering requirements.
Theorem 2: Suppose that S is a single appearance schedule for a connected SDF graph G. If S is fully reduced then S has blocking factor 1.

Proof: First, suppose that not all iterands of S are schedule loops. Then some actor N appears as an iterand. Since N is not enclosed by a loop in S, and since S is a single appearance schedule, $\text{inv}(N, S) = 1$, and thus $J(S) = 1$.

Now suppose that all iterands of S are schedule loops, and suppose that j is an arbitrary integer that is greater than one. Then since S is fully reduced, j does not divide at least one of the iteration counts associated with the iterands of S. Define $i_0 = 1$ and let L_1 denote one of the iterands of S whose iteration count i_1 is not divisible by $j = j / \text{gcd}(j, i_0)$. Again, since S is fully reduced, if all iterands of L_1 are schedule loops then there exists an iterand L_2 of L_1 such that $j / \text{gcd}(j, i_0i_1)$ does not divide the iteration count i_2 of L_2. Similarly, if all iterands of L_2 are schedule loops, there exists an iterand L_3 of L_2 whose iteration count i_3 is not divisible by $j / \text{gcd}(j, i_0i_1i_2)$.

Continuing in this manner, we generate a sequence L_1, L_2, L_3, \ldots such that the iteration count i_k of each L_k is not divisible by $j / \text{gcd}(j, i_0i_1i_2 \ldots i_{k-1})$. Since G is of finite size, we cannot continue this process indefinitely — for some $m \geq 1$, not all iterands of L_m are schedule loops. Thus, there exists an actor N that is an iterand of L_m. Since S is a single appearance schedule, $\text{inv}(N, S) = \text{inv}(L_1, S)\text{inv}(L_2, L_1)\text{inv}(L_3, L_2) \ldots \text{inv}(L_m, L_{m-1})\text{inv}(N, L_m) = i_0i_1i_2 \ldots i_m$.

By our selection of the L_k's, $j / \text{gcd}(j, i_0i_1i_2 \ldots i_{m-1})$ does not divide i_m, and thus j does not divide $\text{inv}(N, S)$.

We have shown that given any integer $j > 1$, $\exists N \in N(G)$ such that $\text{inv}(N, S)$ is not divisible by j. It follows that S has blocking factor 1. QED.

Theorem 3: If an SDF graph G has a valid single appearance schedule, then G has a valid fully reduced schedule.

Proof. We prove theorem 3 by construction. This construction process can easily be automated to yield an efficient algorithm for synthesizing a fully reduced schedule from an arbitrary valid single appearance schedule.

Given a looped schedule Ψ, we define nonreduced(Ψ) to be the set of schedule loops in Ψ that are reduceable. Now suppose that S is a valid single appearance schedule for G, and let $\lambda_1 =$
(m (n₁ Ψ₁) (n₂ Ψ₂) ... (nₖ Ψₖ)) be any innermost member of nonreduced(S) — i.e. λ₁ is reducible, but every loop nested within λ₁ is irreducible. From theorem 1, replacing λ₁ with λ₁' = (γm (y⁻¹n₁ Ψ₁) (y⁻¹n₂ Ψ₂) ... (y⁻¹nₖ Ψₖ)), where γ = gcd{n₁, n₂, ..., nₖ}, yields another valid single appearance schedule S₁. Furthermore, λ₁' is irreducible, and since every loop nested within λ₁ is irreducible, every loop nested within λ₁' is irreducible as well. Now let λ₂ ∈ nonreduced(S₁), and observe that λ₂ cannot equal λ₁'. Theorem 1 guarantees a replacement λ₂' for λ₂ that leads to another valid single appearance schedule S₂. If we continue this process, it is clear that no replacement loop λₖ' ever replaces one of the previous replacement loops λ₁' λ₂' ... λₖ₋₁', since these are already irreducible. Also, no replacement changes the total number of loops in the schedule. It follows that we can continue this process only a finite number of times — eventually, we will arrive at an Sₙ such that nonreduced(Sₙ) is empty.

Now if Sₙ is not a schedule loop we are done. Otherwise, let L denote the outermost loop in Sₙ such that 1) all iterands of L are actors, OR 2) L has more than one iterand. If Ψ denotes the body of L, then Sₙ is of the form (n₁ (n₂ ... (nₖ Ψ) ...)). Clearly Sₙ generates the same firing sequence as (n₁n₂ ... nₖ Ψ). From the definition of a PASS, it follows that Ψ is a PASS, and by our selection of L, Ψ is not a schedule loop. Finally, by our construction of Sₙ, all schedule loops in Ψ are irreducible. QED.

6 Constructing Single Appearance Schedules

Since single appearance schedules implement the full repetition inherent in an SDF graph without requiring subroutines or code duplication, we examine the topological conditions required for such a schedule to exist. First suppose that G is an acyclic SDF graph containing N nodes. Then we can take some root node r₁ of G and fire all q_G(r₁) invocations of r₁ in succession. After all invocations of r₁ have fired, we can remove r₁ from G, pick a root node r₂ of the new acyclic graph, and schedule its q_G(r₂) repetitions in succession. Clearly, we can repeat this process until no nodes are left to obtain the single appearance schedule (q_G(r₁) r₁) (q_G(r₂) r₂) ... (q_G(r_N) r_N) for G. Thus we see that any acyclic SDF graph has a single appearance schedule.
Also, observe that if G is an arbitrary SDF graph, then we can cluster the subgraphs associated with each nontrivial strongly connected component of G. Clustering a strongly connected component into a single node never results in deadlock since there can be no directed loop containing the clustered node. Since clustering all strongly connected components yields an acyclic graph, it follows from fact 4 and fact 6 that G has a valid single appearance schedule if and only if each strongly connected component has a valid single appearance schedule.

Observe that we must, in general, analyze a strongly connected component R as a separate entity, since G may have a single appearance schedule even if there is a node N in R for which we cannot fire all $q_G(N)$ invocations in succession. The key is that q_R may be less than q_G, so we may be able to generate a single appearance subschedule for R (e.g. we may be able to schedule N $q_R(N)$ times in succession). Since we can schedule G so that R’s subschedule appears only once, this will translate to a single appearance schedule for G. For example, in figure 7(a), it can be verified that $q(A, B, C) = (10,4,5)$, but we cannot fire so many invocations of A, B, nor C in succession. However, consider the strongly connected component R^* consisting of nodes A and B. Then we obtain $q_{R^*}(A) = 5$ and $q_{R^*}(B) = 2$, and we immediately see that $q_{R^*}(B)$ invocations of B can be scheduled in succession to obtain a subschedule for R^*. The SDF graph that results from clustering $\{A, B\}$ into is shown in figure 7(b). This leads to the single appearance schedule $(2(2B)(5A))(5C)$.

Theorem 4: Suppose that G is a connected SDF graph and suppose that G has a valid single appearance schedule of some arbitrary blocking factor. Then G has valid single appearance schedules for all blocking factors.

![Diagram](image-url)
Proof: Clearly, any schedule S of unity blocking factor can be converted into a schedule of arbitrary blocking factor j simply by encapsulating S inside a loop of j iterations. Thus, it suffices to show that G has a single appearance schedule of unity blocking factor. Now, theorem 3 guarantees that G has a valid fully reduced single appearance schedule, and theorem 2 tells us that this schedule has blocking factor 1. QED.

Corollary 1: Suppose that G is an arbitrary SDF graph that has a valid single appearance schedule. Then G has a valid single appearance schedule for all blocking vectors.

Proof. Suppose S is a valid single appearance schedule for G, let $R_1, R_2, ..., R_k$ denote the maximal connected subgraphs of $N(G)$, let $J'(R_1, R_2, ..., R_k) = (z_1, z_2, ..., z_k)$ be an arbitrary blocking vector for G, and for $1 \leq i \leq k$, let S_i denote the restriction of S to R_i. Then from fact 4 each S_i is a valid single appearance schedule for the corresponding R_i. From theorem 4, for $1 \leq i \leq k$, there exists a valid single appearance schedule S'_i of blocking factor z_i for R_i. Since the R_i's are mutually disjoint and non-adjacent, it follows that $S'_1 \cdot S'_2 \cdot ... \cdot S'_k$ is a valid single appearance schedule of blocking vector J' for G. QED.

Our condition for the existence of a single appearance schedule involves a form of precedence independence that we call subindependence.

Definition 9: Suppose that G is a connected SDF graph. If Z_1 and Z_2 are disjoint subsets of $N(G)$ we say that "Z_1 is subindependent of Z_2 in G" if for every arc α in G such that $source(\alpha) \in Z_2$ and $sink(\alpha) \in Z_1$, we have $delay(\alpha) \geq q_G(sink(\alpha))c(\alpha)$.

For example, consider the SDF graph in figure 8. Here $q(A, B, C, D) = (2, 1, 2, 2)$, and we see that $\{A, D\}$ is subindependent of $\{B, C\}$ and trivially, $\{B, C, A\}$ is subindependent of $\{D\}$.

We are now ready to establish a recursive condition for the existence of a single appearance schedule. Recall that an arbitrary SDF graph has a single appearance schedule iff each
strongly connected component has a single appearance schedule. Theorem 5 gives necessary and sufficient conditions for a strongly connected SDF graph to have a single appearance schedule.

Theorem 5: Suppose that G is a nontrivial strongly connected SDF graph. Then G has a single appearance schedule if and only if there exists $N_a \subseteq N(G)$ such that

1. N_a is subindependent of $(N(G) - N_a)$ in G; and
2. subgraph(N_a, G) and subgraph($N(G) - N_a$, G) both have a single appearance schedules.

Proof: \Leftarrow Let S and T denote single appearance schedules for $Y = \text{subgraph}(N_a, G)$ and $Z = \text{subgraph}(N(G) - N_a, G)$ respectively; let y_1, y_2, \ldots, y_k denote the maximal connected subsets of $N(Y)$; and let z_1, z_2, \ldots, z_l denote the maximal connected subsets of $N(Z)$. From corollary 1, we can assume without loss of generality that for $1 \leq i \leq k$, $J_S(\text{subgraph}(y_i)) = q_G(y_i)$, and that for $1 \leq i \leq l$, $J_T(\text{subgraph}(z_i)) = q_G(z_i)$. From fact 5, it follows that S invokes each $N \in N_a q_G(N)$ times, and T invokes each $N \in (N(G) - N_a) q_G(N)$ times, and since N_a is subindependent, it follows that $(S \circ T)$ is a valid single appearance schedule (of blocking factor 1) for G.

\Rightarrow Suppose that S is a single appearance schedule for G. From theorem 4, we can assume without loss of generality that S has blocking factor 1. Then S can be expressed as $S_a S_b$, where S_a and S_b are nonempty single appearance subschedules of S that are not encompassed by a loop (if we could represent S as a single loop $(n \ldots) \ldots (\ldots)$ then $\gcd(\{q_G(N) \mid N \in N(G)\}) \geq n$, so S is not of unity blocking factor — a contradiction). Since $S_a S_b$ is a PASS for G, every actor $N \in \text{actors}(S_a)$ is fired $q_G(N)$ times before any actor outside of $\text{actors}(S_a)$ is invoked. It follows that $\text{actors}(S_a)$ is subindependent of $\text{actors}(S_b)$. Also S_a is a single appearance schedule for $\text{subgraph}(\text{actors}(S_a))$ and S_b is a single appearance for $\text{subgraph}(\text{actors}(S_b))$. QED.

![Diagram](image.png)

Fig. 8. An example used to illustrate subindependence.
Theorem 5 shows that a strongly connected SDF graph G has a single appearance schedule only if we can find a subindependent partition of the nodes — a partition into two subsets Z_1 and Z_2 such that Z_1 is subindependent of Z_2. If we can find such Z_1 and Z_2, then we can construct a single appearance schedule for G by constructing a single appearance schedule for all invocations associated with Z_1 and then concatenating a single appearance schedule for all invocations associated with Z_2. By repeatedly applying this decomposition, we can construct single appearance schedules whenever they exist [2].

The partitioning process on which this decomposition method is based can be performed efficiently. Given a nontrivial strongly connected SDF graph G, we first remove all arcs from G whose delay is not less than the total number of samples consumed from the arc in a schedule period. If the resulting graph G' is still strongly connected then no subindependent partition exists. Otherwise, any root strongly connected component of G' is subindependent. This method of determining a subindependent partition is illustrated in figure 9.

Fig. 9. An example of subindependence partitioning. For the strongly connected SDF graph on the left, $q(A, B, C, D) = 1, 10, 2, 20$. Thus the delay on the arc directed from D to B (25) exceeds the total number of samples consumed by B in a schedule period (20). We remove this arc to obtain the new graph on the right. Since this graph is not strongly connected, a subindependent partition exists: the root strongly connected component $\{A, B\}$ is subindependent of the rest of the graph $\{C, D\}$.

Conclusion

We have formally discussed the organization and manipulation of loops in uniprocessor schedules for synchronous dataflow programs. We have introduced two main techniques: (1) constructing single appearance schedules, which permit the efficiency of inlined code without requir-
Acknowledgment

The authors are grateful to Sebastian Ritz of Aachen University for his helpful comments.

Glossary

actors(L) The set of actors that appear in the schedule loop L.

admissable schedule A schedule that does not deadlock.

\(c(\alpha) \) The number of samples consumed from SDF arc \(\alpha \) by one invocation of \(\text{sink}(\alpha) \).

\(\text{delay}(\alpha) \) The number of delays on SDF arc \(\alpha \).

The trade-offs involved in compiling an SDF program are complex. These trade-offs include the effects of parallelization; code compactness; the amount of memory required for buffering; the amount of data transfers that occur only through machine registers; the number of subroutine calls and their associated overhead; the amount of context-switch overhead, as [20] addresses; and the total loop overhead (initiation and indexing). We have only begun to explore these tradeoffs — the existing techniques focus on a small subset of the full range of considerations. A more global objective of the formal techniques for working with looped schedules that this paper presents is to facilitate the exploration of tradeoffs involved in compiling SDF programs. This is demonstrated to some extent by our scheduling framework [2]; there is much more room for work in this area.
Glossary

gcd
Greatest common divisor.

inv(X, S)
The number of times that the looped schedule S invokes actor or subschedule X.

iterand
Given a schedule loop \((n \Psi_1 \Psi_2 ... \Psi_k)\), we refer to each \(\Psi_i\) as an iterand.

iteration count
Given a schedule loop \((n \Psi_1 \Psi_2 ... \Psi_k)\), we refer to \(n\) as the iteration count.

J(S)
The blocking factor of the PASS S. Every PASS S invokes each actor \(N\) some multiple of \(q_G(N)\) times. This multiple is the blocking factor.

looped schedule
A schedule that has zero or more parenthesized terms of the form \((n \Psi_1 \Psi_2 ... \Psi_k)\), where \(n\) is a nonnegative integer, and each \(\Psi_i\) represents either an SDF node or another parenthesized term. \((n \Psi_1 \Psi_2 ... \Psi_k)\) represents the successive repetition \(n\) times of the firing sequence \(\Psi_1 \Psi_2 ... \Psi_k\).

max_connected(G)
The set of maximal connected subgraphs of the graph SDF G.

N(G)
The set of nodes in the SDF graph G.

P(α, i, S)
The number of invocations of the source actor of SDF arc \(α\) that precede the \(i\)th invocation of \(sink(α)\) in schedule S.

PASS
A periodic admissible sequential schedule.

p(α)
The number of samples produced onto SDF arc \(α\) by one invocation of \(source(α)\).

periodic schedule
A schedule that invokes each actor at least once and produces no net change in the number of samples buffered on any arc.

q_G
The repetitions vector \(q_G\) of the SDF graph G is a vector that is indexed by the nodes in G. \(q_G\) has the property that every PASS for G invokes each node \(N\) a multiple of \(q_G(N)\) times.

single appearance schedule
A looped schedule that contains only one appearance of each actor in the associated SDF graph.

sink(α)
The actor at the sink of SDF arc \(α\).

source(α)
The actor at the source of SDF arc \(α\).

subgraph
A subgraph of an SDF graph G is the graph formed by any subset \(Z\) of nodes in G together with all arcs \(α\) in G for which \(source(α), sink(α) \in Z\). We denote the subgraph corresponding to the subset of nodes \(Z\) by \(subgraph(Z, G)\), or simply by \(subgraph(Z)\) if G is understood from context.

termination of a schedule
If S is not an admissible schedule then some invocation \(f\) in S is not fireable immediately after all of its antecedents in the schedule have fired. Thus \(f\) does not have sufficient data on at least one of its input arcs. If \(α\) is one such input arc, we say that S terminates on \(α\) at \(f\).

valid schedule
A schedule that is a PASS.
References

