Copyright © 1990, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.
ROBOTIC CONTROL AND NONHOLONOMIC
MOTION PLANNING

by

Richard M. Murray

Memorandum No. UCB/ERL M90/117

20 December 1990
ROBOTIC CONTROL AND NONHOLONOMIC MOTION PLANNING

by

Richard M. Murray

Memorandum No. UCB/ERL M90/117

20 December 1990

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720
Abstract

This dissertation addresses the problem of control and kinematic planning for constrained robot systems. An example of a system of this type is a multi-fingered robot hand grasping an object. The individual fingers act as robot manipulators and are constrained by their contact with the object. If the contacts allow rolling between the object and the fingertips, it is possible for the constraints to be nonholonomic. That is, the constraints may not restrict the reachable configurations of the system, but rather, constrain only the allowable velocities of the system.

Using the multifingered hand as a motivating example, this dissertation presents a detailed analysis of the kinematics, dynamics, and control of robot systems with contact constraints. In particular, it presents a unified derivation of the dynamics of robot manipulators with Pfaffian velocity constraints, including the nonholonomic case. This derivation allows control laws to be specified which are provably stable for an entire class of systems, including unconstrained robots, robot hands, and other systems of multiple robots performing a coordinated task. A method for building complex controllers which respects this class of constraints is also developed using a set of simple primitives which allow hierarchical control structures to be created in an organized fashion.

Finally, the nonholonomic motion planning problem is introduced and discussed in detail. Using tools from differential geometric control theory, it is possible to classify and analyze systems with nonholonomic constraints. A brief review of the necessary tools along with a review of the current literature is presented. A practical method for steering nonholonomic systems using sinusoids is derived and applied to several kinematic systems with contact constraints.
Acknowledgements

First, I would like to thank my advisor, Shankar Sastry, for all of his support and encouragement over the past 5 years. Shankar's enthusiasm for all the things we have worked on has been an inspiration to me and I hope that I can follow his example as I continue my research. His attention to detail and demand for rigor have taught me the importance and joy of doing things right.

Several other professors have also enriched my education here at Berkeley. I would like to thank the members of my qualifying committee, Professors Desoer, Sastry, Canny, and Weinstein, for their time and effort. In addition to serving as my qualifying committee chair, Professor Desoer has also been a source of advice and inspiration during my entire graduate career. I would also like to thank the members of my thesis committee, Professors Sastry, Canny, and Marsden, for many useful comments which improved the quality of this dissertation. In addition, I had the pleasure of working with John Canny, Ron Fearing, and Richard Montgomery on a variety of projects related to my research.

Many members of the robotics lab have contributed to my studies at Berkeley and made the PhD process a very pleasant one. I would particularly like to thank Kris Pister for putting up with me for four and a half years and for sharing in at least as many interesting discussions as we did pots of coffee. I am also indebted to Curt Deno for his insights and for stimulating my interest in biological motor control and non-invasive surgical procedures. I would also like to thank John Hauser, Ping Hsu, Zexiang Li, Greg Heinzinger, Paul Jacobs, Raja Kadayala, Andrew Teel, Matt Berkemeier, Ed Nicolson, Greg Walsh, Karin Hollerbach, and the other members of the U.C. Berkeley robotics and control groups for the endless stream of conversations, questions, answers, encouragement, and amusement which are at the heart of any graduate student's life.

I would also like to acknowledge the financial support that I have received during my stay here. My research has been funded in part by the National Science Foundation, under grants DMC-84-51129, ECS-87-19298, and IRI-90-14490, NASA, under grant NAG-2-243, the Semiconductor Research Corporation, an Earl C. Anthony Scholarship, and an IBM Manufacturing fellowship.

I have also benefited from many people who are outside of the academic environment. My parents have provided emotional, intellectual, and monetary support on countless occasions. I would like to thank my brother, Tom,
David Hull for sending me e-mail and giving me something to talk about besides my research. And I would like to especially thank Mr. Henderson, my high school math teacher, for introducing me to the joy of mathematics and laying the foundation for my later studies.

Finally, I would like to thank my wife, RuthAnne. She has watched me go through more joy and suffering than any other person; her love and support have enabled me both to complete my PhD and to remain sane at the same time.
Contents

1 Introduction 1

2 Contact Kinematics and Statics 5
 2.1 Rigid body kinematics .. 5
 2.2 Fixed contact kinematics 7
 2.3 Rolling contact kinematics 11
 2.4 Finger Kinematics .. 16
 2.5 Grasp stability and manipulability 20
 2.6 Summary .. 23
Appendix I - Contact kinematics derivation 24

3 Dynamics and Control of Constrained Manipulator Systems 29
 3.1 Introduction .. 29
 3.2 Simple robot dynamics 32
 3.3 Robot hand dynamics .. 35
 3.4 Control .. 38
 3.5 Redundant manipulators 42
 3.6 Hybrid stiffness controller 45
 3.7 Summary .. 51
Appendix I - parameterization of internal motions 52
Appendix II - calculations for hybrid stiffness proofs 53

4 Primitives for robot control 55
 4.1 Introduction .. 55
 4.2 Primitive definitions 61
 4.3 Example ... 67
 4.4 Extensions to the basic primitives 69
 4.5 Discussion .. 72

5 Nonholonomic motion planning 75
 5.1 Introduction and motivation 76
 5.2 Nonlinear control theory 81
Chapter 1

Introduction

This dissertation addresses the problem of closed loop control and kinematic planning for constrained robot systems. Although the main emphasis is on constrained systems, most of the techniques can also be applied to unconstrained systems. In the unconstrained case, they reduce to methods which are common in robotics. Thus we are interested in studying controllers for a large class of robotic systems which includes single, multiple, constrained and unconstrained manipulators performing a coordinated task.

A single unconstrained robot is an actuated mechanical system which is controlled in some way to perform a useful task. One of the first problems in using a robot to perform a task is free space motion. That is, we would like to command the actuators to move the robot from one position to another, without worry about obstacles (initially). More generally, we may be given a trajectory which the robot should follow.

How we command the actuators to follow a given trajectory depends on the type of actuators used. If a robot has a stepper motor at each joint, we need only command the stepper motors to be at the desired position at the desired time. Assuming the trajectory is sufficiently slow and smooth, this is easily done. In effect, the control problem is solved by using the controllers inherent in a stepper motor. Much greater freedom is possible if the actuators can apply arbitrary torques at each joint. In this case, we are free to choose the torques based on our own measurements of the state of the system.

Once the control problem for robotic manipulators has been solved, the trajectory planning phase begins. We now try to construct a trajectory which accomplishes the desired task. This trajectory is passed to the robot controller for execution. Path planning typically is concerned with methods for avoiding obstacles in the workspace of the robot.

An unconstrained mechanical system is limited to performing simple pick and place tasks. The manipulator moves to a location, picks up an object, transports that object and deposits it. While there are many tasks which require
no more sophistication than this, other tasks do not fit this paradigm. One such
class of operations is those for which a robot manipulator must satisfy kinematic
constraints.

Kinematic constraints for manipulators have many sources. Perhaps the
most fundamental is a robot sliding or rolling along a surface. In this case,
the robot is free to move tangential to the surface, but not perpendicular to
it. Actually, the constraint is unidirectional, since we can move away from a
surface but not into it. More complicated kinematic constraints can be found
when a system of robots is performing a coordinated task, such as three robots
lifting a single object, or a set of fingers grasping an object.

The introduction of constraints introduces several complications. The ma
nipulators are no longer free to move in any direction. Controllers should be
aware of this restriction if a task is to be performed correctly. In the grasping
example, a controller must maintain its grip on an object without applying ex
cessive force. This is difficult to achieve with simple position controllers which
attempt to hold the individual fingers in a fixed location. Small errors in sensing
or modeling cause the object to be dropped.

To control such systems we must first model them. For simple contacts
(such as a robot gripper rigidly grabbing an object) the kinematic constraint
is modeled as an algebraic function relating the position of the object to the
configuration of the manipulator. More complicated constraints, such as one
object rolling against another, as in a finger rolling against an object, require
more complicated models. These constraints cannot always be represented as
algebraic constraints between configuration variables.

Once a representation for the constraints have been selected, a dynamic
model which observes the constraints must be constructed. Using this dynamic
model, a new controller can be generated. Part of the contribution of this disser
tation is to provide a technique for constructing the dynamics of a constrained
system in such a way that it resembles the dynamics of an unconstrained ma
nipulator. For some types of constraints, this method is equivalent to choosing
a different set of generalized coordinates for the system. In more complicated,
and realistic, examples, the technique is considerably more general than this.

Finally, we must reconsider the motion planning problem. In the case that
the constraint is holonomic, motion of the system is restricted to a manifold
in the configuration space. Abstractly, we can reduce the planning problem to
planning in local coordinates on this manifold, and hence it is equivalent to the
usual path planning problem in \mathbb{R}^n. If the constraints are not holonomic, or we
cannot explicitly characterize the submanifold, the planning problem becomes
much more difficult. We must plan motion which both avoid obstacles and
satisfy the constraints. This type of planning, called nonholonomic motion
planning, has only recently been studied.
Overview of the dissertation

This dissertation contains a systematic description and analysis of control and planning for constrained robot systems. We use as our primary example a multifingered robot hand grasping and manipulating an object. This example contains all of the elements in which we are interested—nonholonomic constraints, multiple robots performing a coordinated task, and kinematic and actuator redundancy.

The first task is to study the form of the kinematic constraints which might be present in a robotic system. These constraints arise from contact between two objects. We review the formulation of the kinematics of contact using a notation suited for our application. These equations of contact are equivalent to other derivations available in the literature.

Using the form of the constraints, we proceed to derive the equations of motion for the system. The primary contribution of the derivation is to show that the equations of motion for a large class of robot systems can be written in a consistent form with consistent properties. The consequence of this derivation is that we can easily extend controllers for simple robots into controllers for robot systems performing a coordinated task.

Having derived the dynamics for constrained systems, we proceed to review some standard controllers applied in the general context. The shortcomings of these controllers suggest the formulation of a new robot control law which allows position and stiffness to be controlled in complementary directions. Experimental results of this control law are presented to verify its correctness in application.

The structure of the dynamics is sufficiently straightforward that it admits an automated formulation. We exploit this by defining a set of control primitives which can be used to construct complicated controllers for robot systems. The control structures generated by these primitives are motivated by biological control structures.

Finally, we study the planning problem for constrained systems. Since this problem has only recently received attention in the robotics and control literature, we begin with a review of the mathematical tools necessary to study such systems. We also review several techniques that have been applied by various researchers.

A new approach to controlling nonholonomic systems is presented in Chapter 6. Using sinusoids at integrally related frequencies, we show how to generate motion for systems with nonholonomic constraints. These methods are first applied to a set of canonical systems and then extended for use in non-canonical systems.

The primary contributions of this dissertation are in the areas of robotic control and nonholonomic motion planning. First we present a unified formulation of the dynamics and control for robot manipulators. This formulation allows us to construct control laws which can be applied to a large class of systems.
This unified approach also provides a basis for the definition of a concise set of primitives for constructing complex robot controllers for complex systems. Secondly, a method is provided for generating feasible trajectories for nonholonomic systems. This method brings out the structure present in many nonholonomic systems in a very interesting manner. The study of nonholonomic motion planning is in its infancy; the research presented here provides first steps toward a better understanding of this problem and computational approaches toward its solution.
Chapter 2

Contact Kinematics and Statics

This chapter is an introduction to the kinematics and statics of contact. The material is presented from the perspective of grasping, although the formulation can be applied to other contact situations. We derive the basic velocity and force transformations for both fixed and rolling contacts. Using these relationships, we derive the general form of the constraints which are present in a contact environment. The results in this chapter are summarized on page 23.

The material in this chapter is largely based on the works of several authors. Early work in formulating the grasping problem can be found in Salisbury [83]. More appropriate to the presentation given here is the thesis of Kerr [47], the work of Li and Sastry [63], and several papers based on these works [48, 21, 60]. An earlier, alternate derivation of the equations of rolling has been given by Montana [68]. Other specific references are contained in the appropriate locations below.

2.1 Rigid body kinematics

A rigid motion of an object is a motion which preserves distance and orientation. Every such rigid motion can be represented by a rotation followed by a translation. Letting $SO(3)$ represent the group of all proper 3×3 rotation matrices and \mathbb{R} denote the real numbers, we can represent a rigid motion by the pair $(R, p) \in SO(3) \times \mathbb{R}^3$. We define $SE(3) = SO(3) \times \mathbb{R}^3$ to be the set of all rigid motions and note that $SE(3)$ is a manifold of dimension 6 as well as a group. It may be verified that $SE(3)$ is a Lie group.

The configuration of a rigid body with respect to some reference configuration is described by an element $g \in SE(3)$. g acting on a point attached to the body defines the new location of the point relative to its reference configuration.
If \(q \in \mathbb{R}^3 \) is a point on the body relative to some base (world) reference frame, then the location of \(q \) with respect to that basis after the body undergoes a rigid motion \(g \) is

\[
g(q) = Rq + p
\]

where \(R \) and \(p \) are represented in the same basis as \(q \). This action is shown pictorially in Figure 2.1. We refer to the absolute coordinates as the world or base coordinates and the coordinates of a point on the object relative to the reference configuration as the body coordinates.

An object trajectory is described by a time parameterized curve, \(g(t) \in SE(3) \). The velocity of an object is a tangent vector at \(g \), so \(\dot{g} \in T_gSE(3) \). \(\dot{g} \) also acts on points in \(\mathbb{R}^3 \), giving a velocity vector \(\dot{g}(q) \in \mathbb{R}^3 \). Since \(SE(3) \) is a Lie group, we can associate each element of \(T_gSE(3) \) with the Lie algebra \(se(3) \approx T_eSE(3) \) where \(e \) is the identity element. An element \(\xi \in se(3) \) can be represented as a skew symmetric matrix, \(S(\omega) \in so(3) \) and a vector \(v \in \mathbb{R}^3 \). Furthermore, any skew symmetric matrix has the form:

\[
S = \begin{bmatrix}
0 & -\omega_z & \omega_y \\
\omega_z & 0 & -\omega_x \\
-\omega_y & \omega_x & 0
\end{bmatrix}
\]

and hence we will often write \(S(\omega) \in so(3) \) to be the skew symmetric matrix associated with \(\omega \in \mathbb{R}^3 \). Note that \(S(\omega)q = \omega \times q \).

There are two ways to map \(T_gSE(3) \) to \(T_bSE(3) \) — left and right translation. The usual method is to use left translation, \(L_{g-1} \), where \(L_g h = g \circ h \). The tangent map of \(L_{g^{-1}} \) maps \(T_gSE(3) \) to \(T_bSE(3) \) and when applied to \(\dot{g} \), the resulting map, \(T_{g^{-1}}(L_{g^{-1}})\dot{g} \), takes a point in body coordinates to the velocity in body coordinates. For our purposes it is more natural to use the velocity of the point in world coordinates. This can be accomplished by using right translation and the resulting map takes a point in world coordinates to a velocity in world coordinates.

![Figure 2.1: Rigid motion](image)

Figure 2.1: Rigid motion
coordinated. Formally, we define the generalized velocity, \(\xi \in T_x SE(3) \), in terms of \(\dot{g} \in T_x SE(3) \) as

\[
\xi = \dot{g} \quad (2.1)
\]
The generalized velocity \(\xi \) is also called a twist.

Elements of \(SE(3) \) can be represented as \(4 \times 4 \) matrices, referred to as homogeneous coordinates. If \(g \in SE(3) \) we write

\[
g = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}
\]

A point \(q \in \mathbb{R}^3 \) can be represented as a vector in \(\mathbb{R}^4 \) by defining \(\bar{q} = (q, 1) \in \mathbb{R}^3 \times \mathbb{R} \). Using this representation, \(g(q) \) becomes matrix multiplication

\[
g\bar{q} = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q \\ 1 \end{bmatrix} = \begin{bmatrix} Rq + p \\ 1 \end{bmatrix}
\]

To simplify notation we shall usually refer to \(\bar{q} \) simply as \(q \).

The generalized velocity of a motion, in world coordinates, is

\[
\xi = \dot{g} \quad (2.2)
\]

which can be rewritten as

\[
\xi = \begin{bmatrix} \dot{R}R^T & \dot{p} - \dot{R}R^Tp \\ 0 & 0 \end{bmatrix}
\]

where \(\omega \in \mathbb{R}^3 \), \(v \in \mathbb{R}^3 \) and \(S(\omega) \) is the skew symmetric matrix generated by \(\omega \). The vector

\[
\xi = \begin{bmatrix} \omega \\ v \end{bmatrix}
\]

is referred to as the twist coordinates of \(\xi \) and represents the rotational and linear velocity of an object as viewed in world coordinates. We will omit the hat when the usage is clear from context.

2.2 Fixed contact kinematics

Traditionally, a fixed contact between a finger and an object is described as a mapping between forces exerted by the finger at the point of contact and the resultant forces at some reference point on the object (e.g., the center of mass). We represent the force exerted at the \(i^\text{th} \) contact as \(\bar{F}_{ci} = (f_{ci}, \tau_{ci}) \in \mathbb{R}^6 \) where \(f_{ci} \) is the force exerted by contact and \(\tau_{ci} \) is the moment. The relationship between contact force and object force has the form

\[
F_o = \begin{bmatrix} f_o \\ \tau_o \end{bmatrix} = \begin{bmatrix} f_{ci} \\ \tau_{ci} + \tau_{ci} \times f_{ei} \end{bmatrix} = \begin{bmatrix} I & 0 \\ S(\tau_{ci}) & I \end{bmatrix} \bar{F}_{ci}
\]
where $r_{ci} \in \mathbb{R}^3$ is the vector between the object reference point and the contact.

Typically, a finger will not be able to exert forces in every direction; several simple contact models are used to classify common contact configurations. A point contact is obtained when there is no friction between the fingertip and the object. In this case, forces can only be applied in the direction normal to the surface of the object and hence we can represent the applied force as

$$\vec{F}_{ci} = \begin{bmatrix} n_{ci} \\ 0 \end{bmatrix} f_{ci}$$

(2.2)

where n_{ci} is the unit vector normal to the object and $f_{ci} \in \mathbb{R}$ is the amount of force applied by the finger in that direction.
A point contact with friction model is used when friction exists between the fingertip and the object, in which case forces can be exerted in any direction that is within a cone of forces about the direction of the surface normal. This cone, called the friction cone, is determined by the coefficient of friction. Figure 2.2b shows a point contact with friction and the resultant friction cone. This model assumes that moments cannot be applied (i.e., there is no torsional friction about the surface normal). As before, we represent the force felt by the object with respect to a basis of directions which are consistent with the friction model:

$$\tilde{F}_{ei} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} f_{ei}$$

(2.3)

with $f_{ei} \in \mathbb{R}^3$.

A more realistic contact model is the soft finger contact. Here we allow not only forces to be applied in a cone about the surface normal but also torques about that normal (see Figure 2.2c). These torques are limited by the torsional friction coefficient. Inside the relevant friction cones, this contact can be described as

$$\tilde{F}_{ei} = \begin{bmatrix} I & 0 \\ 0 & m_{ei} \end{bmatrix} \begin{bmatrix} f_{ei} \\ \tau_{ei} \end{bmatrix}$$

(2.4)

where $f_{ei} \in \mathbb{R}^3$ and $\tau_{ei} \in \mathbb{R}$.

Matrices mapping finger forces to contact force as in equations (2.2), (2.3) and (2.4) are referred to as selection matrices and we denote them by $B_i(x_0) \in \mathbb{R}^{6 \times m_i}$, where m_i is the dimension of the range of forces and moments that can be applied for a given contact type. Note their dependence on the (fixed) contact point and the orientation of the object. Each of the contact types thus can be represented as a linear map $G_i(r_{ei}, x_0): F_{ei} \in \mathbb{R}^{m_i} \mapsto F_0$

$$G_i(r_{ei}, x_0) = \begin{bmatrix} I & 0 \\ S(r_{ei}) & I \end{bmatrix} B_i(x_0)$$

Since r_{ei} is a function of the object orientation, we shall usually write $G_i(r_{ei}, x_0)$ as $G_i(x_0)$.

If we have several fingers contacting an object then the net force on the object is the sum of the forces due to each finger. The map between finger forces and the total object force is called the grasp map, $G: \mathbb{R}^m \mapsto \mathbb{R}^6$. Since each contact map is linear and forces can be superposed, we can add the individual contact maps to form G:

$$F_0 = \begin{bmatrix} G_1 & \cdots & G_k \end{bmatrix} \begin{bmatrix} F_{e1} \\ \vdots \\ F_{ek} \end{bmatrix} = GF_e, \quad F_0 \in \mathbb{R}^6, \quad F_e \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \times \ldots \times \mathbb{R}^{m_k}$$

(2.5)

The null space of the grasp map corresponds to finger forces which cause no net force to be exerted on the object. We call the force on the object resulting from
finger forces which lie in the null space of G, denoted $\mathcal{N}(G)$, internal or null forces. It is in part these internal forces which allow us to grip or squeeze an object.

Dual to the representation of contacts as applied force and torque, one may also represent a contact as a constraint between the relative velocity of the object and the finger. Letting v_{c_i} and ω_{c_i} represent the linear and angular velocity of the contact point and v_o and ω_o represent the object velocity,

$$
\begin{pmatrix}
 \bar{v}_{c_i} \\
 \bar{\omega}_{c_i}
\end{pmatrix} =
\begin{bmatrix}
 I & \mathcal{S}(r_{c_i}) \\
 0 & I
\end{bmatrix}
\begin{pmatrix}
 v_o \\
 \omega_o
\end{pmatrix}
$$

As before, the contact type determines which velocities are actually constrained; unconstrained directions can experience sliding or rolling. If we define v_c to be the velocities conjugate to F_o, the forces exerted by the fingers, it follows that

$$
\begin{pmatrix}
 v_c \\
 \omega_c
\end{pmatrix} = G^T
\begin{pmatrix}
 v_o \\
 \omega_o
\end{pmatrix}
$$

This relationship between object velocity and finger velocities can also be derived in a more general setting using the principle of virtual work.

Example

Consider a simple two-fingered planar hand as shown in Figure 2.3. Since we are in the plane, the grasp matrix maps finger forces into x and y forces, and a torque perpendicular to the xy plane. If we assume that the contacts are point
contacts with friction,

$$G_i(x, y, \phi) = \begin{bmatrix} I & 0 \\ S \left(\begin{array}{c} \rho \cos \phi \\ \rho \sin \phi \end{array} \right) & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

and the planar map for Figure 2.3, restricted to the plane, is

$$G(x, y, \phi) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ r \sin(\phi) & -r \cos(\phi) & -r \sin(\phi) & r \cos(\phi) \end{bmatrix}$$

where all forces are measured with respect to the \(xy\) coordinates shown in the figure.

Equation (2.6) shows that \(x\) and \(y\) forces from the fingers cause the same \(x\) and \(y\) forces to be exerted on the object as well as a torque that is dependent on the orientation of the object. The null space of this map is spanned by the vector

$$\begin{bmatrix} \cos \phi \\ \sin \phi \\ -\cos \phi \\ -\sin \phi \end{bmatrix}$$

which corresponds to forces applied along the line connecting the two fingertips. Finger forces applied along this line will cause no net force on the object.

2.3 Rolling contact kinematics

Most real world grasping situations involve moving rather than fixed contacts. Human fingers and many robotic fingers are actually surfaces and manipulation of an object by a set of fingers involves rolling of the fingers along the object surface. In this section we derive the kinematic equations for one object rolling against another.

Consider two objects, \(S_o\) and \(S_f\) in \(\mathbb{R}^3\) which are touching at a point. We will restrict ourselves to the case where motion is contained in a single coordinate chart for each object. Let \((c_o, U_o)\) and \((c_f, U_f)\) be charts for the two surfaces and \(\alpha_o = (u_o, v_o) \in U_o\) and \(\alpha_f = (u_f, v_f) \in U_f\) be local coordinates. We will assume that \(c_o\) and \(c_f\) are orthogonal representations of the surface. Furthermore, we let \(\psi\) represent the relative orientation of the tangent planes at the point of contact (see Figure 2.4). We call \(\eta = (\alpha_o, \alpha_f, \psi)\) the contact coordinates.

1 A surface representation \(c: (u, v) \rightarrow \mathbb{R}^3\) is orthogonal if \(\frac{\partial c}{\partial u}\) and \(\frac{\partial c}{\partial v}\) are orthogonal. Such a representation can always be constructed for a regular surface in a given coordinate chart.
Let $g \in SE(3)$ describe the relative position and orientation of S_f with respect to S_o. We wish to study the relationship between g and the local contact coordinates. To do so we assume that $g \in W \subset SE(3)$ where W is the set of all relative positions for which the two objects remain in contact.

We begin by writing the algebraic equations that η must satisfy. At any point of contact the location of the contact in space must agree for both objects

$$g \circ c_f(\alpha_f) = c_o(\alpha_o)$$ \hspace{1cm} (2.7)

Furthermore, the tangent planes must coincide and hence the outward surface normals $n_o: S_o \to S^2 \subset \mathbb{R}^3$ and $n_f: S_f \to S^2 \subset \mathbb{R}^3$ must also agree. Letting $R \in SO(3)$ be the rotational component of g

$$R n_f(\alpha_f) = -n_o(\alpha_o)$$ \hspace{1cm} (2.8)

Finally, we define the angle between the tangent planes as the unique angle $\psi \in [0, 2\pi)$ such that

$$R \frac{\partial c_f}{\partial \alpha_f} M_f^{-1} R_\psi = \frac{\partial c_o}{\partial \alpha_o} M_o^{-1}$$ \hspace{1cm} (2.9)

where

$$M_i = \begin{bmatrix} \| \frac{\partial c_i}{\partial u_i} \| & 0 \\ 0 & \| \frac{\partial c_i}{\partial v_i} \| \end{bmatrix}$$

insures that the columns of $\frac{\partial c_i}{\partial \alpha}$ are unit length and

$$R_\psi = \begin{bmatrix} \cos \psi & -\sin \psi \\ -\sin \psi & -\cos \psi \end{bmatrix}$$
converts \(\alpha_0 \) coordinates to the equivalent \(\alpha_f \) coordinates at the point of contact. Since the normals are in opposite directions, \(R_\psi \) acts by negating the \(y \) coordinate and rotating by an angle \(\psi \). Note that \(R_\psi = R_\psi^T = R_\psi^{-1} \).

Theorem 2.1 There is a smooth local bijection between \(\eta \) and \(g \subset W \) if and only if

\[
\frac{\partial n_0}{\partial \alpha_0} M_{\alpha_0}^{-1} + R \frac{\partial n_f}{\partial \alpha_f} M_{\alpha_f}^{-1} R_\psi
\]

is full rank

Proof. Functionally, equations (2.7) through (2.9) are of the form \(h(g, \eta) = 0 \). It is therefore sufficient (and necessary) to show that \(\frac{\partial h}{\partial \alpha} \) spans the allowable velocity space, \(TW \). Since \(\psi \) can be defined directly, we omit the \(\psi \) coordinate and consider the dependence on \(\alpha = (\alpha_0, \alpha_f) \),

\[
\begin{align*}
\begin{pmatrix}
\alpha_0 & \alpha_f
\end{pmatrix} &= \\
\begin{pmatrix}
\alpha_0 & \alpha_f
\end{pmatrix} =
\end{align*}
\]

First we show that the span of the rows of \(\frac{\partial h}{\partial \alpha} \) does not contain either \((n_0, 0)\) or \((0, n_0)\), corresponding to translation and rotation about \(n_0 \). \((0, n_0)\) is spanned directly by \(d\psi \) and \((n_0, 0)\) should not belong to the row span of \(\frac{\partial h}{\partial \alpha} \) because motion in the \(n_0 \) direction is not contained in \(TW \). Since the range of \(\frac{\partial n_0}{\partial \alpha} \) and \(\frac{\partial n_f}{\partial \alpha_f} \) define the tangent plane and the \(n_i \) have unit magnitude and using equation (2.8), we find

\[
\begin{pmatrix}
\alpha_0 & \alpha_f
\end{pmatrix} T \frac{\partial h}{\partial \alpha} = \\
\begin{pmatrix}
\alpha_0 & \alpha_f
\end{pmatrix} T \frac{\partial n_0}{\partial \alpha} R T R \frac{\partial n_f}{\partial \alpha_f} = 0
\]

Next we examine the conditions under which \(\frac{\partial h}{\partial \alpha} \) loses rank. Plugging equation (2.9) into equation (2.11), \(\frac{\partial h}{\partial \alpha} \) can only lose rank when \(\frac{\partial n_f}{\partial \alpha_f} = M_{\alpha_f}^{-1} R_\psi M_{\alpha_0} \frac{\partial n_0}{\partial \alpha_0} \), so \(\frac{\partial h}{\partial \alpha} \) is full rank if and only if

\[
\frac{\partial n_0}{\partial \alpha_0} M_{\alpha_0}^{-1} + R \frac{\partial n_f}{\partial \alpha_f} M_{\alpha_f}^{-1} R_\psi
\]

is full rank. \(\square \)
Proceeding along the lines of the proof given above, the differential relationship between \(\eta \) and \(g \) can be derived (see appendix at end of this chapter). It is convenient to make use of the normalized Gauss frame defined on each surface

\[
\begin{bmatrix}
 x_i \\
 y_i \\
 z_i
\end{bmatrix} = \begin{bmatrix}
 \frac{\partial z_i}{\partial \alpha_i} M_{i}^{-1} \\
 n_i
\end{bmatrix}
\]

If we do not allow the fingers to slide on the object (soft finger contacts) then the motion of the contacts, \(\dot{\eta} \), as a function of the relative motion, \((\omega, v) \), is given by

\[
\begin{align*}
\dot{\alpha}_o &= M_o^{-1}(K_o + \tilde{K}_f)^{-1}\omega_t \\
\dot{\alpha}_f &= M_f^{-1} R_{\phi}(K_o + \tilde{K}_f)^{-1}\omega_t \\
\psi &= T_o M_o \dot{\alpha}_o + T_f M_f \dot{\alpha}_f
\end{align*}
\]

where

\[
\begin{align*}
\omega_t &= \begin{bmatrix}
 x_o^T \\
 y_o^T
\end{bmatrix} \times \omega \\
K_o &= \begin{bmatrix}
 x_o^T \\
 y_o^T
\end{bmatrix} \frac{\partial n_o}{\partial \alpha_o} M_o^{-1} \\
\tilde{K}_f &= R_{\phi} \begin{bmatrix}
 x_f^T \\
 y_f^T
\end{bmatrix} \frac{\partial n_f}{\partial \alpha_f} M_f^{-1} R_{\phi} \\
T_o &= y_o^T \frac{\partial z_o}{\partial \alpha_o} M_o^{-1} \\
T_f &= y_f^T \frac{\partial z_f}{\partial \alpha_f} M_f^{-1}
\end{align*}
\]

\((K_o + \tilde{K}_f)\) is called the relative curvature [68]. From equations (2.9) and (2.12) we see that the relative curvature is invertible precisely when \(\frac{\partial \eta}{\partial \alpha} \) is onto \(TW \). We shall assume that all manipulation occurs in an open set on which the relative curvature is invertible.

We can now describe the kinematics for rolling contact—the relationship between the object velocities and a set of finger velocities. This situation is identical to that given for fixed contacts except that the vector \(r_o \) between the object reference frame and the \(i^{th} \) contact point is now a function of \(\eta \) as well as the object orientation. But \(\eta \) is a continuous function of \(g = z_o^{-1} x_f \), so we have

\[
F_o = G(x_o, x_f) F_c
\]

where \(x_f = (x_{f1}, \ldots, x_{fn}) \) is the position and orientation of the fingers and \(F_c \in \mathbb{R}^{m_1} \times \cdots \times \mathbb{R}^{m_k} \) is the force exerted by the fingers at the contact point.
2.3 Rolling contact kinematics

As before, G is composed of matrices of the form

$$G_i(x_0, x_f) = \begin{bmatrix} I & 0 \\ S(r_{ci}) & I \end{bmatrix} B_i(x_0, x_f)$$

The velocity relationship can again be derived from the principle of virtual work or algebraically to determine

$$\begin{pmatrix} v_c \\ \omega_c \end{pmatrix} = G^T(x_0, x_f) \begin{pmatrix} v_o \\ \omega_o \end{pmatrix} \tag{2.14}$$

Examples

To illustrate the form of the contact equations, we consider two examples—a sphere rolling on a plane and a sphere rolling on another sphere [59]. The local coordinates of the plane are chosen to be $c_0(u, v) = (u, v, 0)$. The sphere requires multiple coordinate charts to describe the entire surface, so we shall restrict ourselves to the chart

$$c_f(u, v) = (\rho \cos u \cos v, -\rho \cos u \sin v, \rho \sin u)$$

where ρ is the radius of the sphere and $-\pi/2 < u < \pi/2$, $-\pi < v < \pi$. The curvature, torsion and metric tensors are easily calculated to be

$$K_o = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad K_f = \begin{bmatrix} 1/\rho & 0 \\ 0 & 1/\rho \end{bmatrix}$$

$$M_o = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad M_f = \begin{bmatrix} \rho & 0 \\ 0 & \rho \cos u \end{bmatrix}$$

$$T_o = \begin{bmatrix} 0 & 0 \end{bmatrix}, \quad T_f = \begin{bmatrix} 0 & -1/\rho \tan u \end{bmatrix}$$

Consider first a spherical finger of radius ρ rolling on a plane. The equations governing the evolution of the contact point are

$$\begin{align*}
\dot{u}_f &= \omega_1 \\
\dot{v}_f &= \sec u_f \omega_2 \\
\dot{u}_o &= \rho \cos \psi \omega_1 - \rho \sin \psi \omega_2 \\
\dot{v}_o &= -\rho \sin \psi \omega_1 - \rho \cos \psi \omega_2 \\
\dot{\psi} &= -\tan u_f \omega_2
\end{align*} \tag{2.15}$$

where $\omega_i = (\omega_1, \omega_2)$. If our object is a sphere of unit radius instead of a plane, the contact equations become

$$\begin{align*}
\dot{u}_f &= \frac{1}{1+\rho} \omega_1 \\
\dot{v}_f &= \frac{1}{1+\rho} \sec u_f \omega_2 \\
\dot{u}_o &= \frac{\rho}{1+\rho} \cos \psi \omega_1 - \frac{\rho}{1+\rho} \sin \psi \omega_2 \\
\dot{v}_o &= -\frac{\rho}{1+\rho} \sin \psi \sec u_o \omega_1 - \frac{\rho}{1+\rho} \cos \psi \sec u_o \omega_2 \\
\dot{\psi} &= \frac{\rho}{1+\rho} \sin \psi \tan u_o \omega_1 + \frac{\rho}{1+\rho} (\cos \psi \tan u_o - 1/\rho \tan u_f) \omega_2
\end{align*} \tag{2.16}$$
2.4 Finger Kinematics

Up to this point we have assumed that the fingers which contact our object are rigid bodies which can move freely in space. We are more interested in the case when the fingers are kinematic mechanisms. We model each finger as an open kinematic chain with \(n_j \) degrees of freedom. Using the product of exponentials formulation of the fingers kinematics, we can then describe the constraints between the object velocity and the joint velocities of the fingers.

The product of exponentials formula was introduced by Brockett [12] as an elegant means of describing the kinematics of open kinematic chains with a single degree of freedom at each joint. Using this formulation allows us to derive the kinematic equations which relate the position of the rigid bodies which compose the robot to the configuration variables which specify the positions of the joints. We briefly review the formalism here; a more complete treatment can be found in Paden's thesis [76].

Consider the motion of a point \(p \) which is rotated about a fixed axis in space, as shown in Figure 2.6a. Let \(\omega \in \mathbb{R}^3 \) be the direction of the axis and \(q \in \mathbb{R}^3 \) be any point on the axis. If the link connecting the particle to the axis has unit rotational velocity, then the velocity of the particle is given by

\[
\dot{p}(t) = \omega \times (p - q) = \begin{bmatrix} S(\omega) & -\omega \times q \\ 0 & 0 \end{bmatrix} \begin{pmatrix} p \\ 1 \end{pmatrix} =: \xi(p)
\]

(2.17)

where \(\xi \in se(3) \) is a twist which represents the axis of rotation. Equation (2.17) is a differential equation which represents the motion of a particle \(p \) which is attached to the link.

Suppose now that we wish to determine where the point \(p \) moves if we rotate the link about the axis \(\xi \) by an angle \(\theta \). One way to accomplish this motion is to move at unit speed and integrate equation (2.17) for time \(\theta \). Since (2.17) is
2.4 Finger Kinematics

Figure 2.6: Revolute and prismatic joints

A linear equation, the result is

\[p(\theta) = e^{\theta \mathbf{q}} p(0) \]

This formula is the basis for the product of exponentials formula. It gives the location of a point attached to the link after the link has been rotated by \(\theta \). A joint which causes a link to rotate about a fixed axis is called a revolute joint.

Next we consider a joint which moves a link along an axis, called a prismatic joint (see Figure 2.6b). This motion can also be modeled as a twist:

\[\dot{p}(t) = \mathbf{q} \begin{bmatrix} 0 & \omega \\ 0 & 0 \end{bmatrix} \begin{bmatrix} p \\ 1 \end{bmatrix} \]

and again \(p(\theta) = e^{\theta \mathbf{q}} p(0) \), where \(\mathbf{q} \) represents the amount of translation in some convenient set of units. The motion is much simpler in this case, consisting of rectilinear motion in the direction of the axis.

A large number of robot manipulators can be modeled as series chains of revolute and prismatic joints. Such a robot consists of a set of rigid links which are connected to each other by revolute and prismatic joints. Joints may be placed at the same location in space to model a joint with more than one degree of freedom. An example of such a mechanism is a spherical wrist, which can rotate in any direction and is modeled by three revolute joints with mutually perpendicular axes intersecting at a single point.

We are now in a position to calculate the location of a point attached to a robot as the joints move through specified angles. For concreteness, consider a point attached to the end of an \(n \) link robot, as shown in Figure 2.7. We begin by choosing a zero configuration for the robot and writing down the constant
screws, \(\xi_i \), corresponding to each joint. Let \(\theta \in \mathbb{R}^n \) be the final joint angles of the robot. If we move any single joint of the robot, the particle moves to a new location \(e^{\theta_i \xi_i} p \). By moving the links starting from the end of the manipulator and moving towards the base, we can compose the rigid motions and obtain the final location of the particle:

\[
p(\theta) = e^{\theta_1 \xi_1} \cdots e^{\theta_{n-1} \xi_{n-1}} e^{\theta_n \xi_n} p
\]

This formula for \(p(\theta) \) is called the product of exponentials formula.

More generally, we have defined a map \(K(\theta) : SE(3) \rightarrow SE(3) \) which describes the kinematics of the mechanism:

\[
K(\theta) = e^{\theta_1 \xi_1} \cdots e^{\theta_n \xi_n}
\]

This map tells us how points (or a frame) attached to the end effector of a robot varies with the joint angles, \(\theta \). It is clear from its definition that \(K(\theta) \) is a smooth function of \(\theta \).

The Jacobian of the forward kinematic map relates joint velocities to the end effector velocities,

\[
\begin{pmatrix}
S(\omega) & v \\
0 & 0
\end{pmatrix} = K \circ K^{-1} = DK(\theta) \circ K^{-1}
\]

\(\theta \in \mathbb{R}^n \)

\((v, \omega) \in \mathbb{R}^6 \)

We can make this formula more explicit using the product of exponentials no-
2.4 Finger Kinematics

tation:
\[\dot{K} = \sum_{i=1}^{n} \dot{\theta}_i \left(e^{\dot{\theta}_i \xi_i} \cdots e^{\dot{\theta}_{i-1} \xi_{i-1}} \right) \xi_i \left(e^{\dot{\theta}_i \xi_i} \cdots e^{\dot{\theta}_n} \right) \]
\[\dot{K} \dot{K}^{-1} = \sum_{i=1}^{n} \dot{\theta}_i \left(e^{\dot{\theta}_i \xi_i} \cdots e^{\dot{\theta}_{i-1} \xi_{i-1}} \right) \xi_i \left(e^{-\dot{\theta}_{i-1} \xi_{i-1}} \cdots e^{-\dot{\theta}_i} \right) \]

This map is linear in \(\dot{\theta} \). If we replace the conjugated \(\xi_i \)'s by \(\bar{\xi}_i \) and use twist coordinates (suppressing the hat), we have
\[\begin{pmatrix} \nu_{f_i} \\ \omega_{f_i} \end{pmatrix} = [\xi_1 \ \bar{\xi}_2 \ \cdots \ \bar{\xi}_n] \dot{\theta}_{f_i} =: J_{f_i}(\theta_{f_i}) \dot{\theta}_{f_i} \]

\(J_{f_i}(\theta_{f_i}) \in \mathbb{R}^{6 \times n} \) is the finger Jacobian for the \(i^{th} \) finger.

Combining this with the velocity transformation between the finger location and the contact location (a function of \(x_0^{-1} x_f \)) we write the contact Jacobian as
\[J_c(x_o, \theta_{f_i}) = \begin{pmatrix} I \\ S(\tau_{c_i}) \end{pmatrix} J_{f_i} \]
\[J_{c_i} : \theta_{f_i} \mapsto \begin{pmatrix} \nu_{c_i} \\ \omega_{c_i} \end{pmatrix} \] (2.18)

As with the fixed contacts, fingers are only allowed to exert forces in certain directions depending on the contact type. This is equivalent to saying that finger motions are only constrained in certain directions; these directions are given by the column span of \(B_{f_i}(x_o, \theta_{f_i}) : \mathbb{R}^{m_i} \rightarrow \mathbb{R}^6 \) (where \(B_i \) is the selection matrix defined in section 2.2). Combining this with the grasp map for the \(i^{th} \) finger, we obtain the velocity constraint due to the \(i^{th} \) contact,
\[G^T_i(x_o, \theta_{f_i}) \begin{pmatrix} \nu_o \\ \omega_o \end{pmatrix} = B_{f_i}^T(x_o, \theta_{f_i}) J_{c_i}(x_o, \theta_{f_i}) \dot{\theta}_{f_i} \]

We now stack these matrices and write the grasp constraint for the hand as
\[\begin{bmatrix} G_{c_1}^T \\ \vdots \\ G_{c_n}^T \end{bmatrix} \begin{pmatrix} \nu_o \\ \omega_o \end{pmatrix} = \begin{bmatrix} B_{f_1}^T J_{c_1} & 0 \\ \vdots & \vdots \\ 0 & B_{f_n}^T J_{c_n} \end{bmatrix} \dot{\theta} \]
\[G^T(x_o, \theta) \begin{pmatrix} \nu_o \\ \omega_o \end{pmatrix} = J(x_o, \theta) \dot{\theta} \] (2.19)

Equations (2.19) describes the constraints between the object and finger velocities. Roughly speaking, it equates the contact velocities of the fingers and the object. As in previous cases, this velocity constraint induces a relationship between joint forces and object forces. A diagram which summarizes the transformations between frames is shown in Figure 2.8.
20 Contact Kinematics and Statics

2.5 Grasp stability and manipulability

In the preceding analysis, we have modeled a contact constraint as a bidirectional constraint. Using such a constraint, a finger can both push and pull on an object. In reality, a finger is only allowed to apply unidirectional forces. A further complication is sliding—if the ratio of the tangent forces to the normal force is too great, a finger may slide along an object, violating the constraint. By choosing a grasp carefully, we can often circumvent these restrictions.

For contact models involving friction, we must insure that all contact forces lie within the friction cone determined by the coefficient of friction. The set of all forces lying in or on the friction cone is

\[FC = \left\{ f_c \in \mathbb{R}^n : \|f_{tij}\| \leq \mu_{ij} \|f_{nij}\|, \quad i = 1, \ldots, k, \quad j = 1, \ldots, m_i \right\} \quad (2.20) \]

where \(f_{tij} \) is the tangent component of the \(j^{th} \) element of \(f_{c_i} \), \(f_{nij} \) is the normal force for the \(i^{th} \) contact, and \(\mu_{ij} \) is the coefficient of friction corresponding to \(f_{c_i} \). For soft finger contacts, the torques exerted by the fingers also satisfy equation (2.20) with \(f_{tij} \) replaced by the torque (i.e., we do not want to apply a torque which is greater than the torsional friction coefficient multiplied by the magnitude of the normal force).
2.5 Grasp stability and manipulability

We say a grasp on an object is stable if we can resist, through a set of contacts, arbitrary forces and torques on the object. This requires that the image of the grasp map over the set of forces in the friction cone span the space of forces and torques on the object, that is $G_{x,\theta}(FC) = \mathbb{R}^6$ for all x, θ. Note that this is a condition only on the contact kinematics and not the finger kinematics. A stable grasp is also called a force closure grasp [73].

A grasp is prehensile [21] if there exists a force contained in the nullspace of the grasp map which also lies in the interior of the friction cone. More formally, $\mathcal{N}(G) \cap FC \neq \{\}$ where FC is the set of forces lying completely within the friction cone (i.e., $\|f_{\text{eq}}\| < \mu_{\text{ij}}\|f_{\text{ij}}\|$). We shall require this property in order to insure that our controllers can maintain a grip on an object while manipulating it. A prehensile grasp guarantees that we can exert any force on the object while remaining inside the friction cone.

If a grasp contains no frictionless contacts and G is full rank, then stable and prehensile grasps are equivalent. A proof of this fact can be found in the thesis of Cole [20] using the mathematical formulation of Mishra, Schwartz, and Sharir [67]. If a grasp contains frictionless contacts then FC is necessarily empty since the condition $\|f_{\text{ij}}\| < 0$ can never be satisfied. A example of a grasp which is stable but not prehensile is shown in Figure 2.9.

A grasp is said to be manipulable if arbitrary motions of the object can be accommodated by the fingers. Unlike stability, manipulability is a property of both the contact and finger kinematics. Since the range of motion of the contacts is given locally by the range of the hand Jacobian, the condition can be written as $\mathcal{R}(G^T) \subseteq \mathcal{R}(J)$, for all x, θ. It is clearly necessary that a grasp be manipulable if we are interested in unconstrained object motion. An example of a point at which a grasp loses manipulability is shown in Figure 2.9. Motion
which results in the right-hand contact moving in the singular direction of the right finger is not possible, hence we lose manipulability at that point. Unlike the previous properties, manipulability does not depend on the friction cone.

We shall generally assume that a grasp has been chosen which is stable, manipulable and prehensile in some operating region. Methods for find such grasps have been explored by Nguyen [74], Li and Sastry [64], and Mishra, Schwartz, and Sharir [67] and the references therein.
2.6 Summary

In this chapter we have derived the kinematic equations for fixed and rolling contacts. The fundamental kinematic relationships are the grasp kinematics

\[G^T(x_o, \theta) \dot{x}_o = J(x_o, \theta) \dot{\theta} \]

(2.21)

and, for rolling contacts, the contact kinematics

\[
\begin{align*}
\dot{\alpha}_o &= (K_o + \tilde{K}_f)^{-1} \omega_t \\
\dot{\alpha}_f &= R\phi(K_o + \tilde{K}_f)^{-1} \omega_t \\
\dot{\psi} &= T_o \dot{\alpha}_o + T_j \dot{\alpha}_f
\end{align*}
\]

(2.22)

The rolling kinematics are useful because it is easier to calculate \(G \) and \(J \) using \(\eta = (\alpha_o, \alpha_f, \psi) \) rather than \(\theta \) and \(x_o \) alone.

A grasp is said to be stable when finger forces lying in the friction cone span the space of object forces

\[\mathbb{R}^6 = G(FC) \]

(2.23)

manipulable when arbitrary motions can be generated by the fingers

\[\mathcal{R}(G^T) \subseteq \mathcal{R}(J) \]

(2.24)

and prehensile when

\[\mathcal{N}(G) \cap FC \neq \{\} \]

(2.25)

In the case that \(G \) is full rank and \(FC \neq \{\} \) (i.e., no frictionless contacts), stability and prehensility are equivalent.
Appendix I – Contact kinematics derivation

In this appendix we derive the kinematics of contact for two objects touching each other at a point. The notation is described more fully in Section 2.3. An alternate derivation can be found in a recent paper by Montana [68].

To derive the kinematics, we begin with constraint equations given by equating the points of contact, normals of contact and tangent planes at the contact points:

\[R_{cf}(\alpha_f) + p = c_0(\alpha_o) \]
\[R_{nf}(\alpha_f) = -n_0(\alpha_o) \]
\[R_{cf} \frac{\partial c_f}{\partial \alpha_f} M^{-1}_f R_{\phi} = \frac{\partial c_o}{\partial \alpha_o} M^{-1}_o \]

Differentiate (2.26) and (2.27)

\[\dot{R}_{cf} + R \frac{\partial c_f}{\partial \alpha_f} \dot{\alpha}_f + \dot{p} = \frac{\partial c_o}{\partial \alpha_o} \dot{\alpha}_o \]
\[\dot{R}_{nf} + R \frac{\partial n_f}{\partial \alpha_f} \dot{\alpha}_f = -\frac{\partial n_o}{\partial \alpha_o} \dot{\alpha}_o \]

Multiply (2.29) by \(\frac{\partial c_o}{\partial \alpha_o} \) and substitute \(\dot{\alpha}_o \) into (2.30)

\[\dot{R}_{nf} + R \frac{\partial n_f}{\partial \alpha_f} \dot{\alpha}_f = -\frac{\partial n_o}{\partial \alpha_o} M^{-2}_o \frac{\partial c_o}{\partial \alpha_o} T \left(\dot{R}_{cf} + R \frac{\partial c_f}{\partial \alpha_f} \dot{\alpha}_f + \dot{p} \right) \]

Using (2.28) in the last term of (2.31) and rearranging

\[\left(R \frac{\partial n_f}{\partial \alpha_f} + \frac{\partial n_o}{\partial \alpha_o} M^{-2}_o \frac{\partial c_o}{\partial \alpha_o} T \left(\dot{R}_{cf} + \dot{p} \right) \right) \dot{\alpha}_f = -\dot{R}_{nf} - \frac{\partial n_o}{\partial \alpha_o} M^{-2}_o \frac{\partial c_o}{\partial \alpha_o} T \left(\dot{R}_{cf} + \dot{p} \right) \]

Simplify the first term and multiply by \(M^{-T}_o \frac{\partial c_o}{\partial \alpha_o} T \) on the left

\[M^{-T}_o \frac{\partial c_o}{\partial \alpha_o} T \left(R \frac{\partial n_f}{\partial \alpha_f} + \frac{\partial n_o}{\partial \alpha_o} M^{-1}_o R_{\phi} M_f \right) \]

\[= M^{-T}_o \frac{\partial c_o}{\partial \alpha_o} T \left(R \frac{\partial n_f}{\partial \alpha_f} M^{-1}_f R_{\phi} + \frac{\partial n_o}{\partial \alpha_o} M^{-1}_o \right) R_{\phi} M_f \]

\[= \left(R_{\phi} M_f M^{-T}_o \frac{\partial c_f}{\partial \alpha_f} T \frac{\partial n_f}{\partial \alpha_f} M^{-1}_f R_{\phi} + M^{-T}_o \frac{\partial c_o}{\partial \alpha_o} T \frac{\partial n_o}{\partial \alpha_o} M^{-1}_o \right) R_{\phi} M_f \]

\[\dot{\kappa}_f \]

\[\kappa_o \]
2.6 Summary

Multiply both sides of (2.32) by $M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T$ and use the previous calculation

$$\dot{\alpha}_f = M_f^{-1} R_\phi \left(\dot{K}_f + K_o \right)^{-1}$$

$$= M_f^{-1} R_\phi \left(\dot{K}_f + K_o \right)^{-1} \left(-M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T \left(\dot{R}_n f - M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T \left(\dot{R}c_f + \dot{p} \right) \right) \right)$$

Let ω_t stand for the $\dot{R}_n f$ term and v_t represent the $\dot{R}c_f + \dot{p}$ term:

$$\dot{\alpha}_f = M_f^{-1} R_\phi \left(\dot{K}_f + K_o \right)^{-1} \left(\omega_t - K_o v_t \right)$$ \hspace{1cm} (2.33)

Now ω_t and v_t can now be calculated in terms of the relative velocity given by $(S(\omega), v) = \dot{g}^{-1}$. We use the fact that $S(\omega)a = \omega \times a$ and $\omega \times a = -a \times \omega$ to obtain

$$w_t = -M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T \left(\omega \times (R f) \right) = -M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T \left(n_o \times \omega \right)$$

$$v_t = M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T \left(\omega \times (R c_f) + \omega \times p + v \right)$$

$$= M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T \left(\omega \times (c_0 - p) + \omega \times p + v \right)$$

$$= M_o^{-T} \frac{\partial c_o}{\partial \alpha_o}^T \left(-c_0 \times \omega + v \right)$$

We see that ω_t is the relative rotational velocity projected onto the tangent plane at the contact. It includes only terms due to rolling since rotation normal to the surface is annihilated by taking the cross product with n_o. Likewise, v_t is the relative linear velocity between the contacts, projected onto the tangent plane, i.e., the sliding velocity.

A similar calculation yields

$$\dot{\alpha}_o = M_o^{-1} \left(\dot{K}_f + K_o \right)^{-1} \left(w_t - \dot{K}_f v_t \right)$$ \hspace{1cm} (2.34)

which gives the kinematics for the object contact point in local coordinates.

Next we solve for ψ, the angle between the tangent planes of the finger and object. Combining (2.27) and (2.28) we can write

$$R \left[\frac{\partial \psi}{\partial \alpha_f} M_f^{-1} \right] \left[\begin{array}{cc} R_\phi & 0 \\ 0 & -1 \end{array} \right] = \left[\frac{\partial \psi}{\partial \alpha_o} M_o^{-1} \right] \left[\begin{array}{c} n_f \\ 0 \end{array} \right]$$
and using the normalized Gaussian coordinates this can be rewritten

\[R(x_f, y_f, z_f) \dot{R}_\psi = [x_o, y_o, z_o] \]

(2.35)

Take the derivative of (2.35)

\[\dot{R}[x_f, y_f, z_f] \dot{R}_\psi + R[x_f, y_f, z_f] \frac{\dot{R}_\psi}{0} = [\dot{x}_o, \dot{y}_o, \dot{z}_o] \]

Premultiply by \(y_f^T R^T \)

\[y_f^T R^T \dot{R}[x_f, y_f, z_f] \dot{R}_\psi + y_f^T [\dot{x}_f, \dot{y}_f, \dot{z}_f] \dot{R}_\psi + (010) \left[\frac{\dot{R}_\psi}{0} \right] = y_f^T R^T [\dot{x}_o, \dot{y}_o, \dot{z}_o] \]

Postmultiply by \(\dot{R}_\psi \left(\frac{1}{0} \right) \) and note \(\dot{R}_\psi \dot{R}_\psi = I \)

\[y_f^T R^T \dot{R}_x + y_f^T \dot{x}_f + (010) \left[\frac{\dot{R}_\psi}{0} \right] \left(\frac{1}{0} \right) = y_f^T R^T [\dot{x}_o, \dot{y}_o, \dot{z}_o] \dot{R}_\psi \left(\frac{1}{0} \right) \]

From (2.35) we see that \(y_f^T R^T = (010) \dot{R}_\psi \left[\frac{x_f^T}{y_f^T} \right] \) and so

\[\psi = y_f^T R^T \dot{x}_f + y_f^T \frac{\partial x_f}{\partial \alpha_f} \dot{\alpha}_f + (01) \dot{R}_\psi \left[\frac{x_f^T}{y_f^T} \right] \left(\frac{1}{0} \right) \]

(2.36)

Using the following identities

\[x_f^T y_i = 0 \Rightarrow \dot{x}_f^T y_i = -x_f^T \dot{y}_i = y_i^T \dot{x}_i \]

\[x_f^T x_i = 1 \Rightarrow \dot{x}_f^T x_i = 0 \]

(2.36) can be written as

\[\psi = y_f^T R^T \dot{x}_f + y_f^T \frac{\partial x_f}{\partial \alpha_o} \dot{\alpha}_o + y_f^T \frac{\partial x_f}{\partial \alpha_f} \dot{\alpha}_f \]

\[= \omega_n + T_o M_o \dot{\alpha}_o + T_f M_f \dot{\alpha}_f \]

(2.37)

where

\[\omega_n = y_f^T R^T \dot{x}_f = (R y_f)^T \omega \times (R x_f) \]

\[= (R x_f)^T \omega = z_f^T \omega \]
and the last equality follows from the vector formula $a \cdot b \times c = b \cdot c \times a$. This last equation shows that ω_n is just the relative rotational velocity projected onto the surface normal.

Collecting equations (2.33), (2.34) and (2.37) we have

\[
\begin{align*}
\dot{\alpha}_o &= M_o^{-1}(K_o + \tilde{K}_f)^{-1}(\omega_t - \tilde{K}_fv_t) \\
\dot{\alpha}_f &= M_f^{-1}R_p(K_o + \tilde{K}_f)^{-1}(\omega_t - K_o v_t) \\
\dot{\psi} &= \omega_n + T_o M_o \dot{\alpha}_o + T_f M_f \dot{\alpha}_f
\end{align*}
\]

The matrix $K_o + \tilde{K}_f$ is called the \textit{relative curvature} by Montana [68].
Chapter 3

Dynamics and Control of Constrained Manipulator Systems

In this chapter we review the formulation of robot dynamics and extend those results to include robot systems with contact constraints. The primary result is that even for relatively complicated robot systems, the equations of motion can be written in standard form. This point of view has been used by Khatib in his operational space formulation [49]; recent extensions [50] can be used to cover special, but important, cases of the results presented here.

3.1 Introduction

There are several methods for generating the dynamic equations of an open kinematic chain. All of these methods generate the same set of equations, but the form of the equations may be better suited for computation or analysis depending on the formulation. We will rely on Lagrangian analysis for our derivation.

Lagrange's equations work well for constrained systems since they make explicit use of allowable displacements, usually called virtual displacements. Define the Lagrangian as

\[L(q, \dot{q}) = T(q, \dot{q}) - V(q) \]

where \(q \) is a set of coordinates for the mechanism, \(T \) is the kinetic energy, and \(V \) the potential energy. Let \(\delta q \) represent the infinitesimal displacements which satisfy the constraints on the system. Then the motion of the system satisfies

\[
\left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - Q \right) \delta q = 0
\]
where L is the Lagrangian and Q is a vector of external forces conjugate to q. If q is a set of generalized coordinates (i.e., all configurations of the system are parameterized by q and q is unconstrained) then δq is free and Lagrange's equations become

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = Q$$

This is the usual form of Lagrange's equations when applied to robots and $q = \theta$. We derive a more explicit formulation using this method in later sections.

History of robot control

A control law for a robot manipulator is a rule which assigns joint torques at a given time such that a given task is accomplished. The most common control task is trajectory tracking—given a desired joint trajectory $\theta_d(t)$, design a control law such that the actual robot position tracks the desired position, $\lim_{t \to \infty} \theta_d(t) - \theta(t) = 0$. Such a task is an integral part of any higher level robot task such as assembly, painting, or welding. The task itself is usually described in terms of a desired trajectory of the end-effector rather than the joint angles of the robot.

One of the simplest approaches to controlling the end-effector location is using joint interpolation. By using the inverse kinematics of the manipulator, an end-effector trajectory can be converted to a joint trajectory. Due to the computational complexity of inverse kinematics algorithms, this calculation is typically performed at a only a few points. The commanded trajectory consists of straight line motions (in joint space) between interpolation points. The resulting end-effector motion consists of curvilinear segments which match the desired end-effector trajectory at the interpolation points. The main feature of controllers using this approach is that the control law calculation occurs in the joint space of the manipulator. Examples of joint space controllers can be found in standard texts on robot control [29, 89].

The next generation of controllers improved performance by measuring errors in end-effector coordinates rather than joint coordinates. There are several advantages to such an approach. The inverse kinematics no longer have to be calculated since the control algorithm instead uses the computationally simpler forward kinematics to map the current position into end-effector coordinates. Furthermore, motion between points consists of straight line segments in end-effector space (with properly defined controllers). For many tasks this is highly desirable. Controllers which were originally proposed in joint space were extended to operate in end-effector coordinates [66].

In the late 1980's, researchers began experimenting with coordinated robot systems, such as a multi-fingered hand. These systems presented new challenges since the motion of individual robots was constrained. This led to yet another round of control laws, many bearing strong resemblances to joint and end-effector based control laws. A variety of techniques were developed, including
3.1 Introduction

master/slave algorithms [91, 95], Cartesian (object) space algorithms [21, 60] and many others (see for example [37, 71]).

Overview of results

The goal of this chapter is to develop a systematic method for writing control laws for systems of robots. To accomplish this, we begin with a systematic development of the dynamics of such systems. In particular, we are interested in writing the dynamic equations of a set of robot manipulators interacting with each other via a set of contact constraints. This class of systems includes classical robot manipulators which are not in contact with anything, robots which have limited degrees of freedom due to contact constraints with a fixed environment, and robots interacting with each other through a grasped object, such as the case with multi-fingered robot hands.

By writing the equations of motion in a consistent form, we are able to derive control laws which work for the entire class of robot systems. This allows us to simultaneously prove convergence properties for control laws which operate in joint, end-effector (Cartesian), or object coordinates. In proving stability, we use both the form and structure of the dynamic equations.

On the surface, the results presented seem to be straightforward consequence of Lagrangian nature of robot dynamics. The different spaces in which the control law calculation is carried out naively correspond to different choices of generalized coordinates for the configuration space of the manipulator. However, in may important situations, the coordinates in which the control law operates is not a valid set of generalized coordinates. In particular, for the case of rolling contact between a finger and an object, it is possible that there are no minimal set of generalized coordinates for the system (due to the nonholonomic nature of the system).

The first half of this chapter presents a complete derivation of the dynamics of an open chain robot manipulator. We then extend that derivation to cover more general robot systems with contact constraints such as the rolling contact constraints derived in the previous chapter. Although the notation will reflect our prejudice towards control of multifingered hands, the results are more general, holding for any robot system with constraints which can be written in a certain way. In particular, we show how these constraints can be used to model changes of coordinates and contact with the environment.

The second half of the chapter uses the dynamics formulation to derive some common control laws for robot manipulators. In particular, we derive and analyze a control law which generalizes some of the more commonly used control laws. As previously noted, the control law can be applied to a wide variety of robot systems using the same proof of stability. Experimental results are presented to show the performance of the control law in a contact situation.
3.2 Simple robot dynamics

The Lagrangian for an open chain robot

To apply Lagrange's equations, we must calculate the kinetic and potential energy of the robot links as a function of the joint angles and velocities. This in turn requires that we have a model for the mass distribution of the links. Since each link is a rigid body, its kinetic and potential energy can be defined in terms of its total mass and its inertia about the center of mass.

Let $V \subset \mathbb{R}^3$ be the volume occupied by a rigid body and $\rho(r)$, $r = (x, y, z) \in \mathbb{R}^3$, be the mass distribution of the body. If the object is made from a homogeneous material then $\rho(r) = \rho$, a constant. The mass of the body is the volume integral of the mass density:

$$m = \int_V \rho(r) dV$$

The center of mass is the weighted average of the density

$$\bar{r} = \frac{\int_V \rho(r) r dV}{m}$$

By choosing coordinates $r' = r - \bar{r}$ we can place the center of mass at the origin of the new coordinate system. This coordinate system is referred to as center of mass coordinates.

The inertia of a rigid body is more complicated. It models the kinetic energy due to rotation and is represented by a matrix $I \in \mathbb{R}^{3 \times 3}$. The kinetic energy for a body rotating about its center of mass with body angular velocity ω_b is $\frac{1}{2} \omega_b^T I \omega_b$. The components of I in center of mass coordinates (denoted $r = (x_1, x_2, x_3)$ for simplicity) are given by

$$I_{ii} = \int_V \rho(r)(r^2 - x_i^2) dV \quad i = 1, 2, 3$$

$$I_{ij} = \int_V \rho(r)x_i x_j dV \quad i \neq j$$

I is symmetric and positive definite.

We now wish to write the total kinetic energy of a moving rigid body. Let $g = (R, p) \in SE(3)$ be the configuration of the center of mass of the body and $\lambda = (v, \omega)$ its velocity in world coordinates. The kinetic energy is the sum of the translational and rotational components

$$K(g, \lambda) = \frac{1}{2} mv^T v + \frac{1}{2} \omega^T R^T I R \omega$$
3.2 Simple robot dynamics

We will write

\[
K(g, \lambda) := \frac{1}{2} \lambda^T M(g) \lambda := \frac{1}{2} \begin{pmatrix} \nu \\ \omega \end{pmatrix}^T \begin{bmatrix} mI & 0 \\ 0 & R^T I R \end{bmatrix} \begin{pmatrix} \nu \\ \omega \end{pmatrix}
\]

The matrix \(M(g) \) is the inertia matrix for a rigid body. \(M(g) \) is symmetric and positive definite for all \(g \in SE(3) \).

To calculate the kinetic energy of the entire robot manipulator, we sum the kinetic energy of each link. Using the forward kinematics, we can write an expression for \(K_i \), the kinetic energy of the \(i^{th} \) link, in terms of the robot configuration and joint velocities. Let \(\theta_i \) be the configuration of the \(i^{th} \) link and \(\lambda_i(\theta, \dot{\theta}) = (v_i, \omega_i) = J_i(\theta) \dot{\theta} \) be the corresponding velocity. If \(\tilde{r}_i \) is the location of the center of mass of the \(i^{th} \) link relative to the origin of that link, then the velocity of the center of mass is given by

\[
\tilde{v}_i = \begin{pmatrix} v_i + \omega_i \times \tilde{r}_i \\ \omega_i \end{pmatrix} =: \begin{pmatrix} \tilde{v}_i \\ \omega_i \end{pmatrix}
\]

Since \(v_i \) and \(\omega_i \) are linear in \(\dot{\theta} \), \(\tilde{v}_i \) is also linear in \(\dot{\theta} \) and hence we can write the kinetic energy as

\[
K_i(\theta, \dot{\theta}) = \frac{1}{2} \tilde{v}_i^T M_i(\theta) \tilde{v}_i = \frac{1}{2} \dot{\theta}^T J_i^T(\theta) J_i(\theta) \lambda_i(\theta) \dot{\theta}
\]

where \(\lambda_i =: J_i(\theta) \dot{\theta} \). Now the total kinetic energy can be written as

\[
K(\theta, \dot{\theta}) = \sum_{i=1}^{n} K_i(\theta, \dot{\theta}) =: \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta}
\]

To complete our derivation of the Lagrangian, we must calculate the potential energy of the manipulator. Let \(h_i(\theta) \) be the height of the center of mass of the \(i^{th} \) link (height is the component of the position of the center of mass in the direction of gravity). The potential energy for the \(i^{th} \) link is

\[
V_i(\theta) = m_i g h_i(\theta)
\]

where \(m_i \) is the mass of the \(i^{th} \) link and \(g \) is the gravitational constant. Combining this with the kinetic energy, we have

\[
L(\theta, \dot{\theta}) = \sum_{i=1}^{n} \left(K_i(\theta, \dot{\theta}) - V_i(\theta) \right) = \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta} - V(\theta)
\]
Equations of motion for an open chain manipulator

Let $\theta \in \mathbb{R}^n$ be the joint angles for the manipulator and $r \in \mathbb{R}^n$ be the corresponding joint torques. The Lagrangian is of the form

$$L(\theta, \dot{\theta}) = \frac{1}{2} \dot{\theta}^T M(\theta) \dot{\theta} - V(\theta)$$

where $M(\theta)$ is the inertia matrix for the manipulator and $V(\theta)$ is the potential energy due to gravity. Substituting into Lagrange's equations

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = r$$

and letting τ represent the actuator torques (and other non-conservative forces), we obtain

$$M_{ij}(\theta) \ddot{\theta}_j + \frac{\partial M_{ij}(\theta)}{\partial \theta_k} \dot{\theta}_j \dot{\theta}_k - \frac{1}{2} \frac{\partial M_{jk}(\theta)}{\partial \theta_i} \dot{\theta}_j \dot{\theta}_k + \frac{\partial V(\theta)}{\partial \theta_i} = \tau_i$$

where summation over repeated indices is assumed. To put this in a more conventional form we define the matrix $C(\theta, \dot{\theta})$ as

$$C_{ij}(\theta, \dot{\theta}) = \frac{1}{2} \frac{\partial M_{ij}(\theta)}{\partial \theta_k} \dot{\theta}_j \dot{\theta}_k + \frac{1}{2} \frac{\partial M_{ik}(\theta)}{\partial \theta_j} \dot{\theta}_j \dot{\theta}_k - \frac{1}{2} \frac{\partial M_{jk}(\theta)}{\partial \theta_i} \dot{\theta}_j \dot{\theta}_k$$

and write

$$M(\theta) \ddot{\theta} + C(\theta, \dot{\theta}) \dot{\theta} + N(\theta, \dot{\theta}) = \tau$$

where $N(\theta, \dot{\theta})$ includes gravity terms and other forces (such as friction) which act at the joints. This equation has several structural properties:

Theorem 3.1 Equation (3.3) has the following properties

1. $M(\theta)$ is symmetric and positive definite
2. $\dot{\theta} M(\theta) = 2C(\theta, \dot{\theta})$ is a skew symmetric matrix.

Proof. (1) From equation (3.1) and the definition of K_i,

$$M(\theta) = \sum_{i=1}^n J_i^T M_i(\theta) J_i$$

where $M_i(\theta)$ is the inertia matrix of the i^{th} link and is therefore positive definite. Expanding the kinetic energy

$$\dot{\theta}^T M(\theta) \dot{\theta} = \sum_{i=1}^n \dot{\theta}^T J_i^T M_i J_i \dot{\theta}$$

$$= \sum_{i=1}^n \begin{pmatrix} \dot{\theta}_i \\ \omega_i \end{pmatrix}^T M_i \begin{pmatrix} \dot{\theta}_i \\ \omega_i \end{pmatrix}$$
Each term in the summation is \(\geq 0 \) and hence \(M(\theta) \geq 0 \). Equality is only achieved when \((v_i, \omega_i) = 0\) for all \(i \) and this is possible only if \(\theta = 0 \). Thus \(M(\theta) > 0 \).

For (2) we calculate the matrix \(\dot{M} - 2C \):

\[
(M - 2C)_{ij} = \frac{\partial M_{ij}(\theta)}{\partial \theta_k} - \frac{\partial M_{ij}(\theta)}{\partial \theta_k} + \frac{\partial M_{ij}(\theta)}{\partial \theta_k}
\]

Switching \(i \) and \(j \) shows \((M - 2C)^T = -(M - 2C)\).

3.3 Robot hand dynamics

We now examine the dynamics of a set of fingers actuated at each joint connected through a set of contacts to a rigid body. The finger dynamics can be written as

\[
M_j(\theta)\ddot{\theta} + C_j(\theta, \dot{\theta})\dot{\theta} + N_j(\theta, \dot{\theta}) = \tau - \mathbf{J}^T \mathbf{f}_c
\]

(3.4)

where \(\theta \in \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_a} \) is now the set of joint angles for all of the robots and \(\tau \) is the corresponding set of torques. \(f_c \) is the vector of contact forces. The object dynamics are given by the Newton-Euler equations

\[
\begin{bmatrix}
m_o I & 0 \\
0 & \mathcal{I}_o
\end{bmatrix}
\begin{bmatrix}
\dot{\mathbf{v}}_o \\
\omega_o \times \mathcal{I}_o \omega_o
\end{bmatrix} + \left(\begin{array}{c}
0 \\
DV_o(x_o)
\end{array} \right) = Gf_c
\]

where \(\mathcal{I}_o = R \mathcal{I} R^T \) is the object inertia in world coordinates and \(V_o \) is the potential energy. In local coordinates this has the same basic form as the robot dynamics, lacking only the actuator torques:

\[
M_o(x)\ddot{x} + C_o(x, \dot{x})\dot{x} + N_o(x, \dot{x}) = Gf_c
\]

(3.5)

where \(x \) is a local parameterization of \(x_o \in SE(3) \). To find the dynamics we can solve for \(f_c \) in equation (3.4) (assuming we stay away from finger singularities) and substitute the resulting expression into (3.5). \(f_c \) represents the forces which maintain the grasping constraint.

A slightly more elegant analysis can be obtained using the Lagrangian approach directly. The advantage of using this method is that it holds for arbitrary mechanical systems with equality constraints which are linear in the velocities. Consider two mechanical systems with decoupled dynamics of the form

\[
\begin{align*}
M_j(\theta)\ddot{\theta} + C_j(\theta, \dot{\theta})\dot{\theta} + N_j(\theta, \dot{\theta}) &= \tau \\
M_o(x)\ddot{x} + C_o(x, \dot{x})\dot{x} + N_o(x, \dot{x}) &= 0
\end{align*}
\]

We attach these two systems with a set of constraints

\[
G^T(x, \theta)\dot{\theta} = J(x, \theta)\dot{x}
\]

(3.6)
which represents the grasp. We will assume that the grasp is both stable and manipulable. For the moment we will also require \(J \) to be injective.

This velocity constraint generates a constraint on the virtual displacements \(\delta \theta \) and \(\delta x \), namely \(\delta \theta = J^{-1}(q)G^T(q)\delta x \) with \(q = (x, \theta) \). Using this relationship, we can write Lagrange's equations as

\[
\begin{pmatrix}
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} - (\tau, 0)
\end{pmatrix} \delta q = 0
\]

\[
\begin{pmatrix}
\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} - \tau
\end{pmatrix} \delta \theta = 0
\]

\[
GJ^{-T} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} - \tau \right) \delta x + \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x} \right) \delta x = 0
\]

and since \(\delta x \) is arbitrary

\[
\begin{pmatrix}
\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} - \frac{\partial L}{\partial x}
\end{pmatrix} + GJ^{-T} \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} \right) = GJ^{-T} \tau
\]

This equation together with the velocity constraint given in equation (3.6) describes the system completely. Note that equation (3.7) is a vector differential equation with \(n - m \) rows and equation (3.6) is a vector equation with \(m \) rows.

It is tempting to derive equation (3.7) by using the velocity constraint directly in the kinetic energy equation (which is a function of \(\dot{\theta} \) and \(\dot{x} \)) and then substituting this into Lagrange's equations. As noted in Rosenberg [81], section 14.2, this can only be done if the constraint is holonomic, i.e., \(\theta \) can be written as a function of \(x \).

Next we separate the kinetic energy into an object portion and a robot portion

\[
T = \frac{1}{2} \dot{\theta}^T M_f(\theta) \dot{\theta} + \frac{1}{2} \dot{x}^T M_o(x) \dot{x}
\]

Using equation (3.7) we find

\[
\ddot{M}(q) \ddot{x} + \ddot{C}(q, \dot{q}) \dot{x} = GJ^{-T} \tau = F
\]

where

\[
\ddot{M} = M_o + GJ^{-T} M_f J^{-1} G^T
\]

\[
\ddot{C} = C_o + GJ^{-T} (C_f J^{-1} G^T + M_f \dot{\theta}^T (J^{-1} G^T))
\]

and \(C_f \) and \(C_o \) are obtained from equation (3.2) by replacing \(M \) with \(M_f \) and \(M_o \) respectively. \(F \) is the applied force represented in the object's frame of reference.

Theorem 3.2 Equation (3.8) has the following properties

1. \(\ddot{M} \) is symmetric and positive definite for all \(q \).
2. $\dot{M} - 2\dot{C}$ is skew-symmetric.

Proof. Since the grasp is assumed to be stable and manipulable and J is assumed injective, (1) follows from its definition. To show (2),

$$
\dot{M} - 2\dot{C} = (\dot{M}_f - 2C_f) + GJ^{-T}(\dot{M}_f - 2C_f)J^{-1}G^T + \frac{d}{dt} (GJ^{-T}) M_f J^{-1}G^T - GJ^{-T}M_f \frac{d}{dt} (J^{-1}G^T)
$$

The first line is the sum of skew-symmetric pieces. Taking transposes and using symmetry of M_f inverts the sign of the last line and hence it too is skew-symmetric. \(\Box\)

Thus we have an equation with form and structure similar to the open chain robot. In the object frame of reference, \dot{M} is the effective mass of the object, and \dot{C} is the effective Coriolis and centrifugal matrix. These matrices include the dynamics of the fingers, which are being used to actually control the motion of the object. However the details of the finger kinematics and dynamics are effectively hidden in the definition of M and C.

This simple result has important consequences in control. Typically robot controllers are designed by placing a feedback loop around the joint positions (and velocities) of the robot. The controller generates torques which attempt to make the robot follow a prescribed joint trajectory. This can lead to difficulty in grasping situations since the joint level controllers are often not aware of the constraints and therefore may violate them. However, since the grasping dynamics are of the same form as the dynamics of a single manipulator, we can just as easily write the control algorithm in object coordinates. An additional advantage of this approach is that controller objectives are often specified in terms of the object motion and hence it is easier to perform the controller design and analysis in that space.

Internal forces

Even though we will write our controllers in terms of F, it is actually the joint torques which we are able to specify. Given the desired force in constrained coordinates, we can apply that force using an actuator force of $J^T G^+ F$, where G^+ is a pseudo-inverse for G. In general G is not square and by examining the right side of the equations of motion (3.8) we note that if $J^{-T} r \in \mathcal{N}(G)$ then the net force in the object frame of reference is zero and hence forces of this form cause no net motion on the object. These forces are in fact the forces which act against the constraint and are generally termed internal or constraint forces.

We can use these internal forces to satisfy other conditions, such as keeping the contact forces inside the friction cone (to avoid slipping) or varying the load distribution of a set of manipulators rigidly grasping an object.

To describe the internal forces more explicitly, we can extend the grasp map by defining an orthonormal matrix $H(\theta)$ whose rows form a basis for the null space of $G(\theta)$. As before we assume that $G(\theta)$ has constant rank and we break
all forces up into an external and an internal piece, F_e and F_i. Given these desired forces, the torques that should be applied by the actuators is

$$\tau = J^T \left(\begin{array}{c} G \\ H \end{array} \right)^{-1} \left(\begin{array}{c} F_e \\ F_i \end{array} \right) = J^T \left(\begin{array}{cc} G^+ & H^T \end{array} \right) \left(\begin{array}{c} F_e \\ F_i \end{array} \right) \quad (3.9)$$

Other robot systems

Although we have derived the dynamics in the context of grasping, the same derivation holds for a number of other interesting robot systems. If we let $\mathcal{F}: \mathbb{R}^n \rightarrow \mathbb{R}^n$ represent the forward kinematics of a manipulator (in local coordinates), then differentiating $x = \mathcal{F}(\theta)$ gives

$$DF(\theta) \dot{\theta} = \dot{x}$$

This has the same form as our basic constraint with $G = I$. Defining $M_0 = 0$ gives the proper dynamic equations for a robot in Cartesian coordinates:

$$\ddot{M}(q) \dot{x} + \ddot{C}(q, \dot{q}) \dot{x} = F \quad (3.10)$$

This formulation holds only away from singularities of the matrix $DF(\theta)$ since the effective inertia matrix, \ddot{M}, is unbounded when DF is singular. This reflects the physical condition that if there is a kinematic singularity then the effective inertia in the direction of the singularity appears to be infinite (since we cannot move in that direction).

From an analytical framework, we can simplify (3.10) further. Since (3.10) only holds away from singularities of \mathcal{F}, we can assume that \mathcal{F} is a diffeomorphism and write $x = \mathcal{F}^{-1}(\theta)$. This allows us to write $\ddot{M}(q)$ as $\ddot{M}(x)$ and hence (3.10) becomes a function only of x. This corresponds exactly to choosing x as a generalized set of coordinates for the system. Computationally, it is much more desirable to leave (3.10) in the given form. Since we typically measure the joint angles and use them to determine x, a great computation savings is achieved by evaluating $\ddot{M}(\theta)$ rather than $\ddot{M}(x) = M(\mathcal{F}^{-1}(\mathcal{F}(\theta)))$.

Another system which can be modeled using this framework is a robot following a surface. If we let α denote the local coordinates of a point on the surface, then our constraint is $\mathcal{F}(\theta) = G(\alpha)$, where $G(\alpha)$ is the world coordinates of the point α. Differentiating this system gives the desired velocity constraint. As in the previous example, setting $M_0 = 0$ gives the equations of motion in terms of the surface position α. In the case of a rolling contact between the robot and the surface, it may be necessary to use the more general tools developed in Chapter 2.

3.4 Control

For a constrained robotic system, we can break the control problem into two parts: tracking the desired trajectory and maintaining a desired internal force.
3.4 Control

In the context of grasping, this is a restatement of our desire to both maneuver the grasped object and maintain the finger forces inside of their respective friction cones. This latter goal is particularly important in the context of grasping since we assumed in our derivation of the grasp dynamics that contact was not broken.

If a grasp is prehensile it can be shown that given an arbitrary set of finger forces, \(F_e \), we can find an internal force, \(F_n \in \mathcal{N}(G) \), such that the combined force \(F_e + F_n \) is inside the friction cone. Thus, given a force generated to solve the tracking problem, we can always add a force to this such that the applied forces lie within the friction cones of the fingers. Since internal forces cause no net motion of the hand or object, this additional force does not affect the net force exerted by the fingers on the object. We shall assume in the sequel that such an internal force is available at all times. The choice of this force is discussed in more detail below.

To illustrate the control of robot systems, we look at two controllers which have appeared in the robotics literature and apply them to robotic grasping. We consider only grasps which are stable, manipulable and prehensile. We start by considering systems of the form

\[
M(q)\ddot{q} + C(q, \dot{q})\dot{q} + N(q, \dot{q}) = F
\]

(3.11)

where \(M(q) \in \mathbb{R}^{n \times n} \) is a positive definite inertia matrix and \(C(q, \dot{q})\dot{q} \) is the Coriolis and centrifugal force vector. The vector \(N(q, \dot{q}) \in \mathbb{R}^{n} \) contains all friction and gravity terms and the vector \(F \in \mathbb{R}^{n} \) represents generalized forces in the object coordinate frame. Given a desired object force \(F \), we apply that force by commanding a set of joint torques

\[
\tau = J^T G^+ F + J^T F_N
\]

(3.12)

where \(J \) and \(G \) define the grasping constraint and \(F_N \in \mathcal{N}(G) \).

As before, we note that although our analysis is being done in the context of grasping, the control laws derived here can be applied to a number of robotic systems. The proofs of stability rely only on the positive definiteness of \(M(q) \) and the property that \(M - 2C \) is skew-symmetric. In particular, we can apply these control laws to robots using joint coordinates or end-effector coordinates (away from kinematic singularities). As we shall see in a subsequent section, the controllers can also be extended to robot systems with kinematic redundancies.

Computed torque

Computed torque is an exactly linearizing control law (i.e., the dynamics are rendered linear by state feedback) that has been used extensively in robotics research. It has been used for joint level control [5], Cartesian control [66], and most recently, control of multi-fingered hands [60, 21, 69].
Given a desired trajectory x_d we use the control

$$F = M(q)(\ddot{z}_d + K_v \dot{e} + K_p e) + C(q, \dot{q}) \dot{e} + N(q, \dot{q})$$ \hspace{1cm} (3.13)$$

where $e = x_d - x$ and K_v and K_p are constant gain matrices. When substituted into equation (3.11), this gives the resulting error equation

$$M(q)(\dot{e} + K_v \dot{e} + K_p e) = 0$$ \hspace{1cm} (3.14)$$

and since $M(q)$ is always positive definite we have

$$\dot{e} + K_v \dot{e} + K_p e = 0$$ \hspace{1cm} (3.15)$$

This differential equation is linear and thus it is easy to choose K_v and K_p so that the overall system is stable and $e \to 0$ exponentially as $t \to \infty$. Moreover, since equation (3.15) is linear we can choose K_v and K_p such that we get independent exponentially stable systems (by choosing K_p and K_v diagonal).

The disadvantage of this control law is that it is not easy to specify the interaction with the environment. From the form of the error equation we might think that we could use K_p to model the stiffness of the system and exert forces by commanding trajectories which result in fixed errors. Unfortunately this does not work as can be seen by examining the force due to a quasi-static displacement Δq

$$\Delta F = M(q)K_p \Delta q$$ \hspace{1cm} (3.16)$$

Since K_p must be constant, the resultant stiffness will vary with configuration. Additionally, given a desired stiffness matrix it may not be possible to find a positive definite K_p that achieves that stiffness (the product of two symmetric positive definite matrices is not necessarily positive definite nor symmetric).

PD controllers

A much simpler control law can be achieved by using linear feedback to attempt trajectory tracking. A control law of the form

$$F = K_v \dot{e} + K_p e$$

is called a PD controller since it contains proportional plus derivative feedback of the error. The convergence properties of this control law are weak: the most that has been shown is stabilization to a stationary point. In many settings, we can achieve trajectory tracking if the rate of convergence of the controller is sufficiently fast relative to the rate of change of the trajectory.

There have been many control laws which extend the basic PD control law to give provably asymptotic trajectory tracking for arbitrary trajectories. One of the earliest (and most elegant) examples of one of these control methods is the natural control law proposed by Koditschek [52]:

$$F = M(q)\ddot{z}_d + C(q, \dot{q}) \dot{z}_d + N(q, \dot{q}) + K_v \dot{e} + K_p e$$ \hspace{1cm} (3.17)$$
The first three terms in the control law provide a feedforward-like torque to move the manipulator along the desired trajectory.\(^1\) The feedback terms, \(K_v \dot{e} + K_p e\), are used to move the manipulator back onto the desired trajectory in the case of initial condition or sensing errors.

The proof of stability for the natural control law relies on the skew-symmetry of \(M - 2C\). This is the reason that the Coriolis matrix is multiplied by \(\dot{x}_d\) instead of \(\dot{x}\), as in the computed torque control law. We omit the proof of stability for this control law since it is substantially similar to the proof of a slightly more general case.

Consider the control law

\[
F = M(q)(\dot{\ddot{x}}_d + \lambda \dot{e}) + C(q, \dot{q})(\dot{\ddot{x}}_d + \lambda \dot{e}) + N(q, \dot{q}) + K_p e + K_v \dot{e} \tag{3.18}
\]

where \(\lambda > 0\) and \(K_p, K_v\) are symmetric positive definite. This control law is very similar to controllers which have appeared in the literature for joint-based control of robots [86, 82]. The additional damping term, not present in the natural control law, allows us to prove exponential trajectory tracking.

Theorem 3.3 The control law (3.18) applied to the system (3.11) results in exponential trajectory tracking if \(K_v, K_p > 0\).

Proof. We use a Lyapunov-based argument. The closed loop dynamics are

\[
M(q)(\ddot{e} + \lambda \dot{e}) + C(q, \dot{q})(\ddot{e} + \lambda \dot{e}) + K_v \dot{e} + K_p e = 0
\]

Choose the Lyapunov candidate

\[
V = \frac{1}{2}(\dot{e} + \lambda \dot{e})^T M(q)(\ddot{e} + \lambda \dot{e}) + \frac{1}{2} \dot{e}^T K_p e + \frac{1}{2} \lambda \dot{e}^T K_v e
\]

Since \(M(q) > 0\), it follows that \(V\) is quadratic in \(e\) and \(\dot{e}\):

\[
\sigma_1 \|e\| \|e\| \leq \|V(e, \dot{e})\| \leq \sigma_2 \|e\|^2
\]

Differentiating \(V\) along trajectories of the system yields

\[
\dot{V} = (\dddot{e} + \lambda \ddot{e})^T M(q)(\ddot{e} + \lambda \dot{e}) + \frac{1}{2} (\dddot{e} + \lambda \ddot{e})^T M(q)(\dddot{e} + \lambda \dot{e}) + \dddot{e}^T K_p e + \lambda \dot{e}^T K_v e
\]

\[
= (\dddot{e} + \lambda \ddot{e})^T (-C(q, \dot{q})(\dddot{e} + \lambda \dot{e}) - K_v \dot{e} - K_p e)
\]

\[
+ \frac{1}{2} (\dddot{e} + \lambda \ddot{e})^T M(q)(\ddot{e} + \lambda \dot{e}) + \dddot{e}^T K_p e + \lambda \dot{e}^T K_v e
\]

Using the fact that the matrix \(\dot{M} - 2C\) is skew-symmetric and canceling terms

\[
\dot{V} = -\dddot{e}^T K_v \dot{e} - \lambda \dot{e}^T K_p e
\]

Since \(\dot{V}\) is quadratic in \(e\) and \(\dot{e}\), \(e \to 0\) exponentially as \(t \to \infty\). □

\(^1\)strictly speaking a feedforward torque would only depend on the desired input
This PD-like control law has the advantage that for a change in position Δq the resulting force is

$$\Delta F = K_p \Delta q$$

and thus we can achieve an arbitrary symmetric stiffness. This is convenient for tasks in which we wish to specify how the robot interacts with the environment. Unfortunately, experimental results indicate that the trajectory tracking performance of this control law does not compare favorably with the computed torque control law [69]. Additionally there is no simple design criteria for choosing λ, K_v and K_p to achieve good tracking performance. While the stability results give necessary conditions for stability they do not provide a method for choosing the gains.

Internal forces

For constrained manipulator systems satisfying $J\dot{\theta} = G^T \dot{x}$, applied forces which lie in the null space of G generate no net motion of the object. In a real control application, we choose internal force to insure that all contact forces remain strictly inside the relevant friction cones. Using the notation of Section 2.5, if the condition $\mathcal{N}(G) \cap FC \neq \emptyset$ is satisfied then we can apply an arbitrary external force (in the range of G) and still remain inside the friction cone by applying sufficient internal forces.

It is not clear how such an internal force should be chosen. In practice, it is often easiest to use a single constant internal force which is chosen based on the task to be performed [69]. Since there are no dynamics associated with applying a force, no control law is needed (in principle) to stabilize the applied internal force. To overcome measurement noise and modeling errors, some researchers use integral feedback to adjust the internal force [60].

3.5 Redundant manipulators

In order to perform a given task, a robot must have enough degrees of freedom to accomplish that task. In the analysis presented so far, we have assumed that our robots had exactly the number of degrees of freedom required to complete the task. This assumption manifested itself in our requirement that J be a square matrix in the dynamics derivation. We now relax that requirement and discuss its consequences.

Unlike conventional robot manipulators, constrained robot manipulators do not need to have more than 6 degrees of freedom in order to be redundant. The constraints themselves can introduce kinematic redundancy into a system. For example, if we attach a 6 degree of freedom finger to an object using a rolling contact, we have introduced two redundant degrees of freedom: the finger is free to roll in either of two directions without affecting the position of the object.
Thus it is absolutely essential that we include redundant mechanisms in our formulation.

It is interesting to note that there are two sources of redundancy introduced by our constraints: kinematic redundancy and actuator redundancy. *Kinematic redundancy* refers to motions of the fingers which do not affect the position of the object. *Actuator redundancy* refers to forces applied by the fingers which do not affect the object location, i.e., internal forces. The grasping constraint

\[J(q)\dot{\theta} = G^T(q)\ddot{x} \]

contains all of the information necessary to determine these redundancies. Namely, the null space of \(J \) is the set of internal motions which do not affect the location of the object and the null space of \(G \) is precisely the space of internal forces. Since we have already discussed internal forces, we restrict our discussion to kinematic redundancy.

Dynamics of redundant systems

Consider first the kinematics of a single redundant manipulator, with no constraints. If we are willing to control the manipulator in joint space, the dynamics and control formulation presented above holds without modification. Suppose instead that we wish to write our controllers in end-effector coordinates. Mathematically, we represent the kinematics as a function \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \), where \(m > n \). In this case \(J = \frac{\partial T}{\partial \theta} \) is not square and hence \(J^{-1} \) is not well defined so our derivation of equation (3.8) does not hold.

It is still possible to write the dynamics of redundant manipulators in a form consistent with equation (3.8). To do so, we define a matrix \(K^T(\theta) \) whose columns span the null space of \(J(\theta) \). As before, we assume that \(J(\theta) \) is full row rank and hence \(K(\theta) \) has constant rank \(m - n \). The rows of \(K^T(\theta) \) are basis elements for the space of velocities which cause no motion of the end-effector; we can thus define an internal motion, \(\dot{y} \in \mathbb{R}^{m-n} \), using the equation

\[\left(\begin{array}{c} \dot{z} \\ \dot{\theta} \end{array} \right) = \left[\begin{array}{c} J \\ K \end{array} \right] \dot{\theta} =: J^r \dot{\theta} \]

By definition \(J^r \) is invertible and it follows from our previous derivation that

\[\tilde{M}(q)\left(\begin{array}{c} \ddot{z} \\ \ddot{\theta} \end{array} \right) + \tilde{C}(q, \dot{q})\left(\begin{array}{c} \dot{z} \\ \dot{\theta} \end{array} \right) + \tilde{N}(q, \dot{q}) = J^r T_r \]

where \(\tilde{M} \) and \(\tilde{C} \) are obtained as in the nonredundant case but replacing \(J \) with \(J^r \) and \(G \) with \(I \). If we choose \(K \) such that its rows are orthonormal, then \(J^{-1} = (J^r K^T)^{-1} \) where \(J^r = J^T(JJ^T)^{-1} \) is the least-squares right (pseudo) inverse of \(J \). This approach is related to the extended Jacobian technique for resolving kinematic redundancy [2].
It would appear from the notation we have chosen that we have parameter-
ized the internal motion of the system by a variable y. This is not necessarily
the case. Since we chose K only to span the null space of J, there may not
exist a function g such that $y = g(\theta)$ and $Dg = K$. A necessary and sufficient
condition for such a g to exist is that each row of K satisfy $\frac{\partial K_i}{\partial \theta_k} = \frac{\partial K_k}{\partial \theta_i}$. This is
merely the statement that mixed partials of g must commute. A more thorough
treatment is given in Appendix I, at the end of the chapter.

It may not always be easy to choose $K(\theta)$ such that it is the differential of
some function. For this reason, we shall not generally assume that an explicitly
 coordinatization of the internal motion manifold is available.

Example

Consider a three link planar manipulator with unit length links. If we let (x, y)
be the location of the end-effector then

$$
\begin{align*}
 x &= \cos \theta_1 + \cos \theta_2 + \cos \theta_3 \\
 y &= \sin \theta_1 + \sin \theta_2 + \sin \theta_3
\end{align*}
$$

where the link angles are all with respect to a fixed (inertial) axis. The Jacobian
is

$$
J(\theta) = \begin{bmatrix}
 -\sin \theta_1 & -\sin \theta_2 & -\sin \theta_3 \\
 \cos \theta_1 & \cos \theta_2 & \cos \theta_3
\end{bmatrix}
$$

There are many choices of $K(\theta)$ to complete $J(\theta)$. If we choose

$$
K(\theta) = \begin{bmatrix}
 0 & 0 & 1
\end{bmatrix} \Rightarrow g(\theta) = \theta_3
$$

this corresponds to choosing the angle of the end effector to parametrize internal
motions. This choice of $K(\theta)$ is valid as long as $\theta_1 \neq \theta_2$ (i.e., when the first two
links are not aligned).

If on the other hand we allow Mathematica to solve for $K(\theta)$, we are led to

$$
K(\theta) = \begin{bmatrix}
 \sin(\theta_2 - \theta_3) & -\sin(\theta_1 - \theta_3) & \sin(\theta_1 - \theta_2)
\end{bmatrix}
$$

However

$$
\frac{\partial K_1}{\partial \theta_2} = \cos(\theta_2 - \theta_3) \neq -\cos(\theta_1 - \theta_3) = \frac{\partial K_2}{\partial \theta_1}
$$

Hence there is no g such that $Dg = K$ and the "variable" y has no physical
meaning.

Control of redundant manipulators

Since the dynamics for a redundant manipulator have the same form as our
canonical robot system, it is easy to extend the previous control laws to handle
this case. If a coordinatization of the internal motion manifold is available,
3.6 Hybrid stiffness controller

the control laws are identical with the addition of the redundant states. If we do not have a set of coordinates for the internal motion, but rather, only the velocities, then we must be slightly more careful. For example, the computed torque control law becomes

\[
F = M(q) \left(\ddot{\mathbf{x}}_d + K_v \mathbf{e}_x + K_p \mathbf{e}_p \right) + C(q, \dot{q}) \left(\dot{x} \right) + N(q, \dot{q})
\]

Motion specification for such a control law would be in terms of a position trajectory \(x_d(\cdot) \) and a velocity trajectory \(\dot{y}_d(\cdot) \).

This control law will guarantee tracking of the given velocity. One method of calculating this velocity is to attempt to use the redundant degrees of freedom to minimize a cost function. Given the gradient of the cost function, we can project this vector (in joint space) onto the range of \(K(\theta) \) which spans the internal motion directions. This determines \(\dot{y}_d \), which can be passed to the controller. This type of cost criterion has been used with a computed torque-like controller by Hsu, et al. [44].

3.6 Hybrid stiffness controller

We now present a controller which partially generalizes the computed torque and PD-like controllers of Section 3.4. The motivation in analyzing this controller is twofold. First, it allows us to use the form and structure of the equations of motion and show how they are required in analyzing a robot control algorithm. Furthermore, the control includes as special cases the computed torque and PD controllers and hence we can prove stability for a class of controllers in one stroke.

While the analysis so far has only considered position control of manipulators, it is clear that we would like to allow for the possibility of contact with the environment. Such contact is crucial in many operations such as small parts assembly. The PD controller is useful for such situations since we can directly specify the quasi-static impedance of the manipulator. Unfortunately, the trajectory tracking capabilities of this controller are not ideal. To overcome this difficulty, we combine the computed torque and PD control laws. The intuition is that we can separate the controller and the task into two sets of directions—position directions and force directions. In the position directions we use a control law similar to computed torque, on the basis that we know how to select computed torque gains since the error equation is linear. In the force directions we use a PD controller with the same basic form as equation (3.18).

This type of hybrid approach has a rich history in the robotics literature. One of the first such hybrid controllers was proposed by Raibert and Craig [79]. They decomposed the task as above and applied closed loop position control in one set of directions and closed loop force control in a complementary set of directions. The disadvantage of their approach is that the system does not
behave well when contact is lost. Indeed, if the robot loses contact with the
environment, the force controlled variables undergo constant acceleration. By
using stiffness control rather than force control in constrained directions, we
seek to avoid this problem.

Combining a variant of computed torque control law and the natural control
law we propose the position feedback law

\[F = M(q)(\ddot{\mathbf{x}}_d + (\lambda_1 + \lambda_2)\dot{\mathbf{e}} + \lambda_1\lambda_2\mathbf{e}) + N(q, \dot{q}) + C(q, \dot{q})(\dot{\mathbf{x}}_d + \lambda_1\mathbf{e}) + K_v\dot{\mathbf{e}} + K_pe \]

with \(\lambda_1, \lambda_2 \in \mathbb{R}\) and \(K_v, K_p \in \mathbb{R}^{n \times n}\). This gives the error equation

\[M(q)(\ddot{\mathbf{e}} + (\lambda_1 + \lambda_2)\dot{\mathbf{e}} + \lambda_1\lambda_2\mathbf{e}) + C(q, \dot{q})(\dot{\mathbf{e}} + \lambda_1\mathbf{e}) + K_v\dot{\mathbf{e}} + K_pe = 0 \]

(3.20)

Before separating the space into position and force directions we examine the
stability of the general equation. Notice that with \(\lambda_2 = K_v = 0\) this control law
is the same as the modified natural control law in equation (3.18). If \(K_p = K_v = 0\) then the control law is similar to computed torque. The primary difference is
that the control gains have a special form and consequently we can only place
the poles of the linearized system at real values in the complex plane. Also,
for simplicity, we have taken \(\lambda_1, \lambda_2\) to be scalars, implying that the position
directions have diagonal gain matrices.

Theorem 3.4 There exists \(\lambda_1, \lambda_2\) and \(K_v, K_p\) such that the control law (3.6)
asymptotically tracks any \(\mathbf{x}_d(\cdot)\).

Proof. To prove stability we use the Lyapunov candidate

\[V = \frac{1}{2}(\dot{\mathbf{e}} + \lambda_1\mathbf{e})^T M(q)(\dot{\mathbf{e}} + \lambda_1\mathbf{e}) + \frac{1}{2}\mathbf{e}^T K_pe + \frac{1}{2}\lambda_1^T K_v \lambda_1 \mathbf{e} \]

\[= \frac{1}{2} \begin{pmatrix} \mathbf{e} & \dot{\mathbf{e}} \end{pmatrix}^T \begin{pmatrix} \lambda_1^2 M(q) + K_p + \lambda_1 K_v & \lambda_1 M(q) \\ \lambda_1 M(q) & M(q) \end{pmatrix} \begin{pmatrix} \mathbf{e} \\ \dot{\mathbf{e}} \end{pmatrix} \]

which can be bounded above and below by positive scalar multiples of the
magnitude of \((\mathbf{e} \dot{\mathbf{e}})\). The derivative of \(V\) along a trajectory of (3.20) is

\[\dot{V} = -\left(\dot{\mathbf{e}} + \lambda_1\mathbf{e}\right)^T \lambda_2 M(q)(\dot{\mathbf{e}} + \lambda_1\mathbf{e}) - \dot{\mathbf{e}}^T K_v \dot{\mathbf{e}} - \mathbf{e}^T \lambda_1 K_pe \]

\[= -\left(\begin{pmatrix} \mathbf{e} \\ \dot{\mathbf{e}} \end{pmatrix}\right)^T \begin{pmatrix} \lambda_1^2 M(q) + \lambda_1 K_v & \lambda_1\lambda_2 M(q) \\ \lambda_1\lambda_2 M(q) & \lambda_2 M(q) + K_v \end{pmatrix} \begin{pmatrix} \mathbf{e} \\ \dot{\mathbf{e}} \end{pmatrix} \]

The calculation is similar to that given in the proof of Theorem 3.3 and re-
quires that \(\dot{M} - 2C\) is skew-symmetric. A more explicit calculation is given in
Appendix II, at the end of this chapter.

A sufficient set of conditions for an exponentially stable error system is

\[M(q) > 0 \]

\[\lambda_1 > 0 \quad K_p > 0 \]

\[\lambda_2 \geq 0 \quad K_v \geq 0 \]
3.6 Hybrid stiffness controller

<table>
<thead>
<tr>
<th>Controller</th>
<th>λ_1</th>
<th>λ_2</th>
<th>K_p</th>
<th>K_v</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computed torque</td>
<td>>0</td>
<td>>0</td>
<td>$=0$</td>
<td>$=0$</td>
<td>exponential trajectory tracking</td>
</tr>
<tr>
<td>PD</td>
<td>$=0$</td>
<td>$=0$</td>
<td>>0</td>
<td>>0</td>
<td>asymptotic setpoint control</td>
</tr>
<tr>
<td>Natural</td>
<td>>0</td>
<td>$=0$</td>
<td>$=0$</td>
<td>>0</td>
<td>asymptotic trajectory tracking</td>
</tr>
<tr>
<td>Modified natural</td>
<td>>0</td>
<td>$=0$</td>
<td>>0</td>
<td>>0</td>
<td>exponential trajectory tracking</td>
</tr>
</tbody>
</table>

Table 3.1: Control laws which are special cases of the hybrid stiffness control law

and we see that the stability of the modified natural control law (3.18) can be derived from this by setting $A_2 = 0$. Also, the simpler PD control law

$$F = K_p e + K_v \dot{e} + N(q, \dot{q})$$

can be shown stable when $\lambda_1 = \lambda_2 = 0$ and x_d is a constant ($\ddot{x}_d, \dddot{x}_d = 0$). A table of control laws which can derived from this one is given in Table 3.1. □

Next we would like to analyze the stability of the control law when we only allow A_2 to be nonzero in position directions and K_p, K_v to be nonzero in force directions. Intuitively this would give us a computed torque like scheme in position directions and a stiffness controller in the force directions. If we break x into x_1 (position) and x_2 (force) directions and apply the above noted restrictions the control law becomes:

$$F = M(q) \begin{pmatrix} \dddot{x}_1 + \lambda_1 \dot{e}_1 \\ \dddot{x}_2 \end{pmatrix} + C(q, \dot{q}) \begin{pmatrix} \dddot{e}_1 + \lambda_1 e_1 \\ \dddot{e}_2 \end{pmatrix} + \begin{pmatrix} M_{11} \lambda_2 (\dddot{e}_1 + \lambda_1 e_1) \\ K_v \dddot{e}_2 + K_p e_2 \end{pmatrix} + N(q, \dot{q})$$

(3.21)

Note that we have redefined K_v and K_p in this equation to act only in the x_2 direction. That is, $K_p, K_v \in \mathbb{R}^{n_2 \times n_2}$ where n_2 is the number of force directions. As before we choose λ_1, λ_2 as scalars for notational simplicity.

Theorem 3.5 The closed loop system obtained using the control law (3.21) is asymptotically stable to zero if $\lambda_1, \lambda_2 > 0$ and $K_v, K_p > 0$.

Proof. The error dynamics become

$$M(q) \begin{pmatrix} \dddot{e}_1 + \lambda_1 \dot{e}_1 \\ \dddot{e}_2 \end{pmatrix} + C(q, \dot{q}) \begin{pmatrix} \dddot{e}_1 + \lambda_1 e_1 \\ \dddot{e}_2 \end{pmatrix} + \begin{pmatrix} M_{11} \lambda_2 (\dddot{e}_1 + \lambda_1 e_1) \\ K_v \dddot{e}_2 + K_p e_2 \end{pmatrix} = 0$$

(3.22)

We can analyze the stability of the system with a similar Lyapunov function,

$$V = \frac{1}{2} \begin{pmatrix} \dot{e}_1 + \lambda_1 e_1 \\ \dot{e}_2 \end{pmatrix}^T M(q) \begin{pmatrix} \dot{e}_1 + \lambda_1 e_1 \\ \dot{e}_2 \end{pmatrix} + \frac{1}{2} e_2^T K_p e_2$$

which gives (using the calculation in the appendix)

$$\dot{V} = -(\dot{e}_1 + \lambda_1 e_1)^T \lambda_2 M_{11} (\dot{e}_1 + \lambda_1 e_1) - e_2^T K_v \dot{e}_2$$

(3.23)
We see that \dot{V} is only positive semidefinite and thus we cannot show exponential stability. We can however show asymptotic stability using Matrosov's theorem as presented by Paden and Panja [77]. In order to use the version of Matrosov's theorem presented there we must verify that $V^{(2)}$ is negative definite when restricted to the set of states $\dot{V} = 0$ (i.e. $\dot{e}_1 + \lambda_1 e_1 = 0$ and $\dot{e}_2 = 0$). Differentiating equation (3.23) twice and using the system dynamics in equation (3.22) we find

$$V^{(3)} = \begin{pmatrix} 0 \\ K_p e_2 \end{pmatrix}^T M^{-T} \begin{pmatrix} \lambda_2 M_{11} & 0 \\ 0 & K_v \end{pmatrix} M^{-1} \begin{pmatrix} 0 \\ K_p e_2 \end{pmatrix}$$

which is negative definite as a function of e_2. Thus $(\dot{e}_1 + \lambda_1 e_1, e_2, \dot{e}_2) \to 0$. It can be shown that e_1 and e_1 also approach zero (consider the linear system $\dot{e} = -\lambda e + u$; if u is zero then the state must converge to zero).

The end result is that we get asymptotic stability in the case where no external forces are applied (i.e. we are not actually touching the environment). As a consequence, if we have a task in which we need to apply forces to an object and we lose contact completely we converge to the center of stiffness and the desired trajectory. Furthermore, if our task is such that motion in force directions is not allowed (i.e. pressing against a rigid surface) then we have exponential stability in the position directions since we can eliminate the force directions from the dynamics and the resulting stiffness control law is exponentially stable.

Experimental results

The hybrid stiffness control law presented in equation (3.21) has been implemented on a GE-A4 robot at U.C. Berkeley. The robot was commanded to apply a constant force along a surface aligned with the y axis while controlling the position along the x axis. To demonstrate the stability of the control law in both free and constrained environments, the surface was misaligned so that contact would be broken (see Figure 3.1). To apply a force normal to the surface the robot was commanded to move along a trajectory a fixed distance past the expected surface and K_p was chosen to achieve the desired force. A sinusoidally varying position was commanded in the x direction.

The results of the experiment are shown in Figure (3.2). Note that when contact is broken the end-effector converges to the commanded path. When contact is regained the force applied to the surface increases as the distance to the commanded path increases. The forces applied in the y direction do not affect the positioning along the x axis. Due to the gear backlash and coulomb friction on the GE arm the performance when the manipulator joints change direction is degraded (this occurs at $y = \pm 15\text{cm}$).

2LaSalle's invariance principle cannot be used in this context since (3.22) is a nonautonomous system which respect to e.

There are several important points to make about the control law presented here. Unlike the computed torque control law, the closed loop dynamics of the system using a hybrid stiffness controller are not decoupled in the position and forces directions. This is evident from the form of equation (3.22) \((M\) is not diagonal\). This is the price that must be paid for being able to specify the quasi-static stiffness. If the position error is small then the position terms will not cause large forces in the stiffness directions so in practice this coupling is often negligible.

Furthermore, the hybrid stiffness control law should not be considered to be a replacement for the more conventional hybrid force/position control law presented by Raibert and Craig [79]. If the task is such that a desired force is required, then the hybrid force formulation can often provide better performance since the force is controlled directly. For some problems, like peg-in-hole insertion, the system must be controlled in such a way that a desired stiffness is achieved in a certain set of directions. It is this class of problems for which the hybrid control algorithm is applicable. The hybrid force control algorithm can be derived using the formulation presented here but it cannot be shown to be stable when the force directions are not constrained (the manipulator accelerates at a constant rate). For this reason there may be force tasks for which the hybrid stiffness/position algorithm has a better overall performance than the hybrid force/position formulation.
Figure 3.2: Response of hybrid stiffness controller pushing against surface that is misaligned
3.7 Summary

Given a set of robots with joint configuration θ and an object with configuration x, it is possible to derive the dynamics of the constrained system. We consider constraints of the form

$$J(\theta, x)\dot{\theta} = G^T(\theta, x)\dot{x}$$

(3.24)

This constraint includes grasping contacts (fixed or rolling), changes of coordinates, and contact with the environment. The resulting dynamics can be written as

$$M(q)\ddot{x} + C(q, \dot{q})\dot{x} + N(q, \dot{q}) = F = GJ^T\tau$$

(3.25)

where $q = (\theta, x)$. The following properties are satisfied for this system: $M(q) > 0$ for all q and $M - 2C$ is skew symmetric for all q.

The constraints (3.24) contain the information on the structure of the redundancies of the system:

$$\mathcal{N}(J) \quad \longleftrightarrow \quad \text{internal motions}$$

$$\mathcal{N}(G) \quad \longleftrightarrow \quad \text{internal forces}$$

In the case of internal motions, it is possible to extend the derivation of the dynamics by extending the Jacobian. The form of the equations of motion are preserved by this extension.

Using the form and structure of the robot dynamics, several control laws can be shown to track arbitrary trajectories with exponential rate of convergence:

Computed torque: $F = M(q)(\ddot{x}_d + K_v \dot{e} + K_p e) + C(q, \dot{q})\dot{e} + N(q, \dot{q})$

Modified natural: $F = M(q)(\ddot{x}_d + \lambda \dot{e}) + C(q, \dot{q})(\ddot{x}_d + \lambda \dot{e}) + N(q, \dot{q}) + K_v \dot{e} + K_p e$

It is possible to combine these control laws by identifying position and force control directions and applying the computed torque and natural controllers in respective directions. Experimental results indicate that this is can be an effective approach for systems requiring simultaneous position and stiffness control.
Appendix I – parameterization of internal motions

In this appendix we discuss the parameterization of the internal motion of a redundant manipulator. This presentation requires the use of exterior differential forms on \(\mathbb{R}^n \). The necessary details can be found in Spivak [88] or another book on differential geometry. In particular, we rely on the fact that on \(\mathbb{R}^n \) all closed one forms are exact. That is, given a one form \(\omega \) on \(\mathbb{R}^n \), if the exterior derivative \(d\omega \) is identically zero then \(\omega \) is exact; there exists a real-valued function \(\theta \) on \(\mathbb{R}^n \) such that \(\omega = d\theta \).

Let \(\mathcal{F} : \mathbb{R}^m \to \mathbb{R}^n \) be a function representing the kinematics of a redundant manipulator \((m > n)\). Define \(J(\theta) := \tfrac{\partial \mathcal{F}}{\partial \theta}(\theta) \in \mathbb{R}^{m \times n} \) and let \(K(\theta) \in \mathbb{R}^{(m-n) \times m} \) be a matrix such that the columns of \(K^T \) span the null space of \(J(\theta) \). We consider only those \(\theta \) for which \(J \) is full row rank.

Proposition 3.6 For all \(\theta \) for which \(J(\theta) \) is full row rank, the matrix

\[
\tilde{J}(\theta) = \begin{bmatrix}
J(\theta) \\
K(\theta)
\end{bmatrix}
\]

is invertible.

Proof. For any matrix \(A \in \mathbb{R}^{m \times n} \), \(\mathbb{R}^n = \mathcal{R}(A^T) \oplus \mathcal{N}(A) \). Letting \(A = J \), \(\mathcal{R}(A^T) \) is precisely the row span of \(J \) and the null space of \(A \) is spanned by the rows of \(K \). Hence the rows of \(J \) and \(K \) are linearly independent. \(\Box \)

Proposition 3.7 There exists \(g : \mathbb{R}^m \to \mathbb{R}^{n-m} \) such that \(K = \tfrac{\partial g}{\partial \theta} \) if and only if

\[
\frac{\partial K_{ij}}{\partial \theta_k} = \frac{\partial K_{ik}}{\partial \theta_j} \quad i = 1, \ldots, m
\]

Proof. Let \(\omega = K_i \), the \(i^{\text{th}} \) row of \(K \). \(\omega \) is a one-form on \(\mathbb{R}^n \)

\[
\omega = \sum \alpha_i d\theta_i
\]

Since all closed one forms on \(\mathbb{R}^n \) are exact, a necessary and sufficient condition for \(K_i \) to be exact is that it be closed

\[
0 = d\omega = \sum_{i,j} \frac{\partial \alpha_i}{\partial \theta_j} d\theta_j \wedge d\theta_i
\]

Equating terms and using skew-symmetry of the wedge product yields \(\frac{\partial \alpha_i}{\partial \theta_j} = -\frac{\partial \alpha_j}{\partial \theta_i} \), which is equivalent to the stated condition. \(\Box \)
Appendix II – calculations for hybrid stiffness proofs

This appendix provides detailed calculations for the proofs of stability (tracking) for the hybrid control laws presented in Section 3.6. The notation used here is described in more detail in that section.

Calculations for Theorem 3.4

We use the Lyapunov candidate

\[V = \frac{1}{2}(\dot{e} + \lambda_1 e)^T M(\dot{e} + \lambda_1 e) + \frac{1}{2}e^T K_p e + \frac{1}{2}\lambda_1 e^T K_v e \]

The error equation for the system, obtained by substituting the control law \(3.6\) into the equations of motion, is

\[M(\dot{e} + \lambda_1 \dot{e}) = -M(\lambda_2 \dot{e} + \lambda_2 \lambda_1 e) - C(\dot{e} + \lambda_1 e) - K_v \dot{e} - K_p e \]

Taking the derivative of \(V\) and evaluating along trajectories of the error system:

\[\dot{V} = (\dot{e} + \lambda_1 e)^T M(\dot{e} + \lambda_1 e) + \frac{1}{2}(\dot{e} + \lambda_1 e)^T M(\dot{e} + \lambda_1 e) + \dot{e}^T K_p e + \lambda_1 \dot{e}^T K_v e \]

\[= -(\dot{e} + \lambda_1 e)^T M \lambda_2 (\dot{e} + \lambda_1 e) + \frac{1}{2}(\dot{e} + \lambda_1 e)^T [M - 2C](\dot{e} + \lambda_1 e) \]

\[= -(\dot{e} + \lambda_1 e)^T M \lambda_2 (\dot{e} + \lambda_1 e) - \dot{e}^TK_v e - \lambda_1 \dot{e}^T K_p e \]

This proof can be extended to the case where \(\lambda_1\) and \(\lambda_2\) are matrices if \(\lambda_1\) and \(K_v\) commute. Also \(M\lambda_2\) becomes \(\lambda_2^{1/2} M \lambda_2^{1/2}\) for \(\lambda_2 \in \mathbb{R}^{n \times n}\) symmetric.

Calculations for Theorem 3.5

The control law is

\[F = M \left(\begin{array}{c} \ddot{\xi}_{1d} + \lambda_1 \ddot{e}_1 \\ \ddot{\xi}_{2d} \end{array} \right) + C \left(\begin{array}{c} \dot{\xi}_{1d} + \lambda_1 \dot{e}_1 \\ \dot{\xi}_{2d} \end{array} \right) + \left(\begin{array}{c} M_{11} \lambda_2 (\dot{\xi}_1 + \lambda_1 \xi_1) \\ K_v \dot{\xi}_2 + K_p \xi_2 \end{array} \right) + N \]

(3.26)

This gives closed loop dynamics

\[M \left(\begin{array}{c} \ddot{e}_1 + \lambda_1 \ddot{e}_1 \\ \ddot{e}_2 \end{array} \right) + C \left(\begin{array}{c} \dot{e}_1 + \lambda_1 \dot{e}_1 \\ \dot{e}_2 \end{array} \right) + \left(\begin{array}{c} M_{11} \lambda_2 (\dot{e}_1 + \lambda_1 e_1) \\ K_v \dot{e}_2 + K_p e_2 \end{array} \right) = 0 \]

(3.27)
Use the Lyapunov candidate

\[V = \frac{1}{2} \left(\dot{\mathbf{e}}_1 + \lambda_1 \mathbf{e}_1 \right)^T M \left(\dot{\mathbf{e}}_1 + \lambda_1 \mathbf{e}_1 \right) + \frac{1}{2} \mathbf{e}_2^T K_p \mathbf{e}_2 \]

This is basically the restriction of the previous Lyapunov function to the respective force and position coordinates (i.e., \(\lambda \)'s acting in position directions and \(K \)'s acting in force directions). The derivative of \(V \) evaluated along the trajectory is calculated as in the previous case, leaving:

\[
\dot{V} = -\left(\begin{array}{c} e_1 \\ e_2 \\ \dot{e}_1 \\ \dot{e}_2 \end{array} \right)^T \left(\begin{array}{cccc}
\lambda_1^2 \lambda_2 M_{11} & 0 & \lambda_1 \lambda_2 M_{11} & 0 \\
0 & 0 & 0 & 0 \\
\lambda_1 \lambda_2 M_{11} & 0 & \lambda_2 M_{11} & 0 \\
0 & 0 & 0 & K_v \\
\end{array} \right) \left(\begin{array}{c} e_1 \\ e_2 \\ \dot{e}_1 \\ \dot{e}_2 \end{array} \right)
\]

This matrix is clearly singular, so we calculate the derivatives in order to apply Matrosov's theorem. Define \(S := \dot{\mathbf{e}}_1 + \lambda_1 \mathbf{e}_1 \)

\[
\dot{V} = -S^T \lambda_2 M_{11} S + \dot{\mathbf{e}}_2^T K_v \mathbf{e}_2
\]

\[
V^{(2)} = -2S^T \lambda_2 M_{11} S - S^T \lambda_2 M_{11} S - 2\dot{\mathbf{e}}_2 K_v \mathbf{e}_2
\]

\[
V^{(3)} = -2S^T \lambda_2 M_{11} S - 2S^T \lambda_2 M_{11} S - 2S^T \lambda_2 M_{11} S
\]

Restricting \(V^{(3)} \) to the surface \(\dot{V} = 0 \) (\(S = 0, \dot{\mathbf{e}}_2 = 0 \))

\[
V^{(3)} = -2(\dot{\mathbf{e}}_1 + \lambda_1 \dot{\mathbf{e}}_1)^T \lambda_2 M_{11} (\dot{\mathbf{e}}_1 + \lambda_1 \dot{\mathbf{e}}_1) - 2\dot{\mathbf{e}}_2^T K_v \mathbf{e}_2
\]

\[
= -2 \left(\begin{array}{c} \dot{\mathbf{e}}_1 + \lambda_1 \dot{\mathbf{e}}_1 \\ \dot{\mathbf{e}}_2 \end{array} \right)^T \left(\begin{array}{cc}
\lambda_2 M_{11} & 0 \\
0 & K_v \\
\end{array} \right) \left(\begin{array}{c} \dot{\mathbf{e}}_1 + \lambda_1 \dot{\mathbf{e}}_1 \\ \dot{\mathbf{e}}_2 \end{array} \right)
\]

On the manifold \(\dot{V} = 0 \) the closed loop dynamics become

\[
\left(\begin{array}{c}
\dot{\mathbf{e}}_1 + \lambda_1 \dot{\mathbf{e}}_1 \\
\dot{\mathbf{e}}_2 \\
\end{array} \right) = M^{-1} \left(\begin{array}{c}
0 \\
K_v \mathbf{e}_2 \\
\end{array} \right)
\]

and hence

\[
V^{(3)} = -2 \left(\begin{array}{c}
0 \\
K_v \mathbf{e}_2 \\
\end{array} \right)^T M^{-1} \left(\begin{array}{c}
\lambda_2 M_{11} & 0 \\
0 & K_v \\
\end{array} \right) \left(\begin{array}{c}
0 \\
K_v \mathbf{e}_2 \\
\end{array} \right)
\]

which is negative definite as a function of \(\mathbf{e}_2 \). Thus the conditions for Matrosov's theorem are satisfied and \((S, \mathbf{e}_2, \dot{\mathbf{e}}_2) \rightarrow 0\).

To show that \(\mathbf{e}_1, \dot{\mathbf{e}}_1 \rightarrow 0 \), we use a simple linear systems argument. Consider the linear system

\[
\dot{\mathbf{e}}_1 + \lambda_1 \mathbf{e}_1 = u \quad \Rightarrow \quad \dot{\mathbf{e}}_1 = -\lambda_1 \mathbf{e}_1 + u
\]

This is a stable linear system (\(\lambda_1 > 0 \)) and hence \(u \rightarrow 0 \) implies \(\mathbf{e}_1 \rightarrow 0 \) as \(t \rightarrow \infty \). Therefore \(S \rightarrow 0 \) implies that \(\mathbf{e}_1 \) (and hence \(\dot{\mathbf{e}}_1 \)) converge to zero.
Chapter 4

Primitives for robot control

This chapter presents a constructive method for describing hierarchical control systems for robots with contact constraints. Our goal is to define a set of language primitives which can be used as building blocks to construct complex controllers for complex systems. The actions of the individual primitives are derived from the mathematical structure of the equations of motion derived in the previous chapter.

4.1 Introduction

Motivation

A multi-fingered robot hand can be modeled as a set of robots which are connected to an object by a set of constraints. The analysis presented in Chapter 3 allows us to model this interconnection and create a new dynamic system which encodes the constraints. In fact, this procedure is sufficiently straightforward that it may be automated: by specifying the contact constraint between the robots and the object, the new equations of motion for the composite robot can be derived using a symbolic manipulation program. Computer programs have been used to automatically generate robot equations of motion for some time (see [18] and the references therein). Part of the goal of this chapter is to describe the manner in which this can be done for robots obeying contact constraints.

More importantly, in the context of robotics we are interested in constructing controllers for robot systems. Section 3.4 showed control laws which could be applied to a very general class of robots. In an actual robot control system, it may not be desirable to perform the feedback compensation only to the composite robot. The computations that must be carried out at this level are complex and may take too much time to compute for a satisfactory control
To avoid these difficulties, we would like the ability to distribute our control at different levels and among different processing units. Controlling systems with many degrees of freedom performing a coordinated task is of interest not only to robotics researchers but also to the biomechanics community. The study of human motor control mechanisms led the Russian psychologist Bernstein to question how the brain could control a system with so many different degrees of freedom interacting in a complex fashion [41]. Many of the properties which make mammalian motor control systems complicated are also present in robotic systems. By studying some of the control structures present in biological systems, we can gain insight into the design of robot control systems.

To some degree of accuracy, a human finger can be modeled as a set of rigid bodies (bones) which are actuated by muscles. Control of these muscles is distributed throughout the central nervous system [32]. The first level of motor control occurs at the spinal cord, which is responsible for reflex responses, such as the knee jerk in humans. Higher levels of control occur in the brain stem and motor cortex, with both hierarchical and parallel pathways to the muscle present. These higher levels of motor control integrate motor commands and allow more sophisticated processing of stimuli to affect muscle behavior. The difference levels of motor control are characterized by differences in response times, typically 30-50 msec for the spinal loop and 150-250 msec for higher level control loops [33]. These differences in time scale are also seen in robotic systems, where fusion of complex sensor information requires increased computational complexity.

Another important feature of biological systems is redundancy. From the mechanics point of view, the redundancy has two chief forms.

Kinematic redundancy refers to an excess in the number of degrees of freedom present over that needed to perform a generic task. Thus a human arm has (roughly) seven degrees of freedom even though only six are needed to locally position the hand in space. These excess degrees of freedom serve many purposes. Since the range of motion of the individual joints is limited, kinematic redundancy can be used to increase the volume of the reachable configurations. In a more local context, redundancy can be used to optimize the arm configuration based on the task to be performed. Thus we might use different arm configurations when writing on a chalk board versus lifted a heavy object. The first task requires dexterity while the second requires strength and stability. Different arm configurations can be used to maximize these properties [43].

Actuator redundancy is indicated by the presence of internal forces which cause no net motion on the underlying system. In lifting a box we may use large or small grasping forces without affecting the location of the box. In biological systems actuator redundancy is often inherent in the muscle actuation system. Internal forces in muscles can be used to alter the characteristics of the overall system [43]. By pretensing muscles in the arm, the impulse response of the arm is considerably changed.
In designing controllers for robot systems, it is useful to consider systems with some of the same properties as biological robots. In doing so, we gain an understanding not only of robot control, but also insight into the biological control process. In particular, we will be interested in allowing specification of hierarchical control systems for robots with kinematic and actuator redundancy.

Background

The robotics and control literature contains a number of topics which are applicable to the approach presented here. We limit ourselves to a brief review of robot programming languages and hierarchical control mechanisms. Other relevant references will be presented in the body of the chapter.

Robot programming languages

Traditional robot programming languages, such as AML, Robot-BASIC, and VAL II, are general purpose computer languages with special features added to allow specification of robot motion [22, 29]. By incorporating the ability to perform coordinate transformations, communicate with sensing and control hardware, and alter program flow based on sensor measurements, robot programming languages allow complicated tasks to be implemented. The control algorithms underlying robot programming languages usually employ a two stage hierarchy. Using kinematics calculations and joint interpolation, a task is converted to a set of joint angle trajectories. These trajectories are passed to a low level controller which executes them using feedback to insure performance and accuracy.

A more general description of motion is possible using Brockett’s Motion Description Language [14, 28]. One of the key ideas is the use of sequences of triples \((u, K, T)\) which convey trajectory information, feedback control and termination conditions to a PostScript-like interpreter. The controller construction described in this chapter was motivated by descriptions of MDL. Our work utilizes the explicit form of robot dynamics and contact constraints to describe the organization and control of complex robots; Brockett’s work is less explicit but more complete in the description of sequences of motion.

An object oriented approach similar to that presented here has been described by Cutkosky, Howe and Witkin [23]. They present a method for describing the dynamics of a robot hand grasping an object. The advantage of the method they propose is that it is very general and does not rely on rigid contact models, allowing compliant fingertips to be considered. Their method is closely related to graph theoretic methods in mechanics which keep track of generalized forces and displacements along branches of a graph representing the system interconnection. The main emphasis of their approach is on system description rather than controller design. It is precisely because we are interested in designing controllers that we have initially limited the class of interconnections we are
Hierarchical control

Time delays inherent in biological motor systems indicate that control is decentralized, occurring at many different levels of the central nervous system. For the same reasons that biological controllers are decentralized, it is desirable to construct hierarchical controllers in a computer controlled robot system. Communication and computation delays make nested levels of control and attractive method for providing high system bandwidth while coordinating many degrees of freedom. These motivations are not limited to robotics: there is a large literature concerned with the use of decentralized control for general dynamic systems.

Centralized control has been defined as a case in which every sensor's output influences every actuator [84]. The study of large scale systems led to a number of results concerning weakly coupled systems and multi-rate controllers. Graph decomposition techniques permitted the isolation of sets of states, inputs, and outputs which were weakly coupled. This decomposition simplified stability analyses and controller design. In multi-processor control systems, decentralized control is often mandated by restrictions on the communication rates between processors. Hierarchical controllers limit communication to adjacent levels of the hierarchy.

Robotic applications of hierarchical control are exemplified by Clark's HIC [19], an operating system intended to manage servo loops found in robot controllers. Clark emphasises distributed processing and interprocessor communication in his description of HIC. He also notes that in executing a task it is necessary to switch between different planning procedures at appropriate points in a task. Thus, writing may be decomposed into grasping a pencil, transporting it, and making marks on a sheet of paper. Each of these subtasks requires a different controller to properly reflect the constraints on the system. Many of the same considerations are present in our work. However, the approach here is considerably more explicit in the areas of controller construction and analysis.

Overview

The fundamental objects in our robot specification environment are objects called robots. In a graph theoretic formalism they are nodes of a tree structure. At the lowest level of the tree are leaves which are instantiated by the define primitive. Robots are dynamical systems which are recursively defined in terms of the properties of their daughter robot nodes. Inputs to robots consist of desired positions and conjugate forces. The outputs of a robot consist of actual positions and forces. Robots also possess attributes such as inertial parameters and kinematics.
4.1 Introduction

There are two other primitives which act on sets of robots to yield new robots, so that the set of robots is closed under these operations. These primitives (attach and control) may be considered as links between nodes and result in composite robot objects. Nodes closer to the root may possess fewer degrees of freedom, indicating a compression of information upon ascending the tree.

The attach primitive reflects geometrical constraints among variables and in the process of yielding another robot object, accomplishes coordinate transformations. Attach is also responsible for a bidirectional flow of information: expanding desired positions and forces to the robots below, and combining actual position and force information into an appropriate set for the higher level robot. In this sense the state of the root robot object is recursively defined in terms of the states of the daughter robots.

The control primitive seeks to direct a robot object to follow a specified "desired" position/force trajectory according to some control algorithm. The controller applies its control law (several different means of control are available such as PD and computed torque) to the desired and actual states to compute expected states for the daughter robot to follow. In turn, the daughter robot passes its actual states through the controller to robot objects further up the tree.

The block diagram portion of Figure 4.1 may be seen to be an example of a robot system comprised of these primitives. Starting from the bottom: two fingers are defined; each finger is controlled by muscle tension/stiffness and spinal reflexes; the fingers are attached to form a composite hand; the brainstem and cerebellum help control and coordinate motor commands and sensory information; and finally at the level of the cortex, the fingers are thought of as a pincer which engages in high level tasks such as picking.

The material in this chapter arose from joint work with Curt Deno, Kris Pister and Shankar Sastry [26, 24]. A complete description, including an implementation of the basic primitives using Mathematica is described in a technical memo [25].
Figure 4.1: Hierarchical control scheme of a human finger [26]. At the highest level, the brain is represented as sensory and motor cortex (where sensory information is perceived and conscious motor commands originate) and brainstem and cerebellar structures (where motor commands are coordinated and sent down the spinal cord). A pair of fingers forms a composite system for grasping which is shown integrated at the level of the spinal cord. The muscles and sensory organs of each finger form low level spinal reflex loops. These low level loops respond more quickly to disturbances than sensory motor pathways which travel to the brain and back. Brain and spinal feedback controllers are represented by double lined boxes. (Figure courtesy of D. Curtis Deno)
4.2 Primitive definitions

In this section we describe a set of primitives that gives us the mathematical structure necessary to build a system and control specification for dynamical robot systems. We do not require any particular programming environment or language, borrowing instead freely from languages such as C, Lisp and C++. As much as possible, we have tried to define the primitives so that they can be implemented in any of these languages.

As our basic data structure, we will assume the existence of an object with an associated list of attributes. These attributes can be thought of as a list of name-value pairs which can be assigned and retrieved by name. A typical attribute which we will use is the inertia of a robot. The existence of such an attribute implies the existence of a function which is able to evaluate and return the inertia matrix of a robot given its configuration.

Attributes will be assigned values using the notation attribute := value. Thus we might define our inertia attribute as

\[M(\theta) := \begin{bmatrix} m_1 l_1^2 + m_2 l_2^2 & m_2 l_1 l_2 \cos(\theta_1 - \theta_2) \\ m_2 l_1 l_2 \cos(\theta_1 - \theta_2) & m_2 l_2^2 \end{bmatrix} \]

In order to evaluate the inertia attribute, we would call \(M \) with a vector \(\theta \in \mathbb{R}^2 \). This returns a 2 \(\times \) 2 matrix as defined above. The Coriolis/centrifugal attribute, \(C \), and friction/gravity/nonlinear attribute, \(N \), are defined similarly.

To encourage intuition, we will first describe the actions of the primitives for the case of non-redundant robots. Additionally, we ignore the internal forces that are present in constrained systems. Extensions to these cases are presented in Section 4.4.

The robot object

The fundamental object used by all primitives is a robot. Associated with a robot are a set of attributes which are used to define its behavior:

- \(M \) inertia of the robot
- \(C \) Coriolis/centrifugal vector
- \(N \) friction and gravity vector
- \(rd \) return position and force information about the robot
- \(wr \) send position and information to the robot

The \(rd \) function returns the current position, velocity, and acceleration of the robot, and the forces measured by the robot. Each of these will be a vector quantity of dimension equal to the number of degrees of freedom of the robot. Typically a robot may only have access to its joint positions and velocities, in which case \(\hat{\mathbf{x}} \) and \(F \) will be \(\text{nil} \).

The \(wr \) function is used to specify an expected position and force trajectory that the robot is to follow. In the simplest case, a robot would ignore everything
but F and try to apply this force/torque at its actuators. As we shall see later, other robots may use this information in a more intelligent fashion. We will often refer to the arguments passed to write by using the subscript e. Thus x_e is the expected or desired position passed to the wr function.

The task of describing a primitive is essentially the same as describing how it generates the attributes of the new robot. The following sections describe how each of the primitives generates these attributes. The new attributes created by a primitive are distinguished by a tilde over the name of the attribute.

DEFINE primitive

Synopsis:

```
DEFINE(M, C, N, rd, wr)
```

The `define` primitive is used to create a simple robot object. It defines the minimal set of attributes necessary for a robot. These attributes are passed as arguments to the `define` primitive and a new robot object possessing those attributes is created:

\[
\begin{align*}
\ddot{M}(\theta) &:= M(\theta) \\
\dot{C}(\theta, \dot{\theta}) &:= C(\theta, \dot{\theta}) \\
\dot{N}(\theta, \dot{\theta}) &:= N(\theta, \dot{\theta}) \\
\dot{rd}(\cdot) &:= rd(\cdot) \\
\dot{wr}(\theta_e, \dot{\theta}_e, \ddot{\theta}_e, \tau_e) &:= wr(\theta_e, \dot{\theta}_e, \ddot{\theta}_e, \tau_e)
\end{align*}
\]

Several different types of robots can be defined using this basic primitive. For example, a DC motor actuated robot would be implemented with a wr function which converts the desired torque to a motor current and generates this current...
4.2 Primitive definitions

by communicating with some piece of hardware (such as a D/A converter). This type of robot system is shown in Figure 4.2. On the other hand, a stepper motor actuated robot might use a \(wr\) function which ignores the torque argument and uses the position argument to move the actuator. Both robots would use a \(rd\) function which returns the current position, velocity, acceleration and actuator torque. If any of these pieces of information is missing, it is up to the user to insure that they are not needed at a higher level. We may also define a payload as a degenerate robot by setting the \(wr\) argument to the nil function. Thus commanding a motion and/or force on a payload produces no effect.

ATTACH primitive

Synopsis:

\[
\text{ATTACH}(J, G, h, \text{payload}, \text{robot-list})
\]

The attach primitive is used to describe constrained motion involving a payload and one or more robots. Attach must create a new robot object from the attributes of the payload and of the robots being attached to it. The specification of the new robot requires a velocity relationship between coordinate systems \((J\dot{\theta} = G^T \dot{z})\), an invertible kinematic function relating robot positions to payload position \((x = h(\theta))\), a payload object, and a list of robot objects involved in the contact.

The only difference between the operation of the attach primitive and the equations derived for constrained motion of a robot manipulator is that we now have a list of robots each of which is constrained to contact a payload. However, if we define \(\theta_R\) to be the combined joint angles of the robots in \text{robot-list} and similarly define \(M_R\) and \(C_R\) as block diagonal matrices composed of the individual inertia and Coriolis matrices of the robots, we have a system which is identical to that presented previously. Namely, we have a "robot" with joint angles \(\theta_R\) and inertia matrix \(M_R\) connected to an object by a constraint of the form

\[
J\dot{\theta}_R = G^T \dot{z}
\]
(4.2)

where once again \(J\) is a block diagonal matrix composed of the Jacobians of the individual robots. To simplify notation, we define \(A := J^{-1}G^T\) so that

\[
\dot{\theta}_R = A\dot{z}
\]
(4.3)

The attributes of the new robot can thus be defined as:

\[
\begin{align*}
\tilde{M} & := M_p + A^T M_R A \\
\tilde{C} & := C_p + A^T C_R A + A^T M_R \dot{A} \\
\tilde{N} & := N_p + A^T N_R \\
\tilde{wr}(\hat{x}_e, \tilde{x}_e, \tilde{\dot{x}}_e, F_e) & := wr_R(h^{-1}(x_e), A\tilde{x}_e, A\tilde{\dot{x}}_e, A^T \tilde{\tau}_R)
\end{align*}
\]
(4.4)(4.5)(4.6)(4.7)

\[
\begin{align*}
\tilde{wr}(x_e, \dot{x}_e, \ddot{x}_e, F_e) & := \text{wr}_R(h^{-1}(x_e), A\dot{x}_e, A\ddot{x}_e, A^T F_e)
\end{align*}
\]
(4.8)
Figure 4.3: Data flow in a two robot attach. In this example we illustrate the structure generated by a call to attach with 2 robots and a payload (e.g. a system like Figure 4.5). The two large interior boxes represent the two robots, with their input and output functions and their inertia properties. The outer box (which has the same structure as the inner boxes) represents the new robot generated by the call to attach. In this example the robots do not have acceleration or force sensors, so these outputs are set to nil.

where M_p, C_p, N_p are attributes of the payload, M_R and C_R are as described above, and N_R is a stacked vector of friction and gravity forces. This construction is illustrated in Figure 4.3.

The $\vec{r}d$ attribute for an attached robot is a function which queries the state of all the robots in robot-list. Thus θ_R in equation (4.7) is constructed by calling the individual rd functions for all of the robots in the list. The θ values for each of these robots are then concatenated to form θ_R and this is passed to the forward kinematic function. A similar computation occurs for $\vec{\theta}_R$, $\vec{\dot{\theta}}_R$, and τ_R. Together, these four pieces of data form the return value for the $\vec{r}d$ attribute.

In a dual manner, the $\vec{w}r$ attribute is defined as a function which takes a desired trajectory (position and force), converts it to the proper coordinate frame and sends each robot the correct portion of the resultant trajectory. A special case of the attach primitive is its use with a nil payload object and $G = I$. In this case, $M_p, C_p,$ and N_p are all zero and the equations above reduce to a simple change of coordinates.
4.2 Primitive definitions

CONTROL primitive

Synopsis:
CONTROL(robot, controller)

The control primitive is responsible for assigning a controller to a robot. It is also responsible for creating a new robot with attributes that properly represent the controlled robot. The attributes of the created robot are completely determined by the individual controller. However, the rd and wr attributes will often be the same for different controllers. Typically the rd attribute for a controlled robot will be the same as the rd attribute for the underlying robot. That is, the current state of the controlled robot is equivalent to the current state of the uncontrolled robot. A common wr attribute for a controlled robot would be a function which saved the desired position, velocity, acceleration and force in a local buffer accessible to our controller. This configuration is shown in Figure 4.4.

The dynamic attributes \ddot{M}, \ddot{C} and \ddot{N} are determined by the controller. At one extreme, a controller which compensates for the inertia of the robot would set the dynamic attributes of the controlled robot to zero. This does not imply that the robot is no longer a dynamic object, but rather that controllers at higher levels can ignore the dynamic properties of the robot, since they are being compensated for at a lower level. At the other end of the spectrum, a controller may make no attempt to compensate for the inertia of a robot, in which case it should pass the dynamic attributes on to the next higher level. Controllers which lie in the middle of this range may partially decouple the dynamics of the manipulator without actually completely compensating for them. To illustrate these concepts we next consider one possible controller class, computed torque.
However, many control laws originally formulated in joint space may also be employed since the structure of equation (3.8) has been preserved.

Computed torque controller

As we mentioned in Chapter 3.4, the computed torque controller is an exactly linearizing controller which inverts the nonlinearities of a robot to construct a linear system. The dynamics of the system are compensated for by the use of feedforward torques and premultiplication of the feedback terms by the inertia matrix of the system. As a consequence, the resulting system has no uncompensated dynamics. The proper representation for such a system sets the dynamical attributes \(M, C, \) and \(N \) to zero and uses the \(rd \) and \(wr \) attributes as described above. We introduce \(x_d \) to refer to the buffered desired trajectory.

The control process portion of the controller is responsible for generating input robot forces which cause the robot to follow the desired trajectory (available in \(x_d \)). Additionally, the controller must determine the "expected" trajectory to be sent to lower level robots. For the computed torque controller we use the resolved acceleration [66] to generate this path. This allows computed torque controllers running at lower levels to properly compensate for nonlinearities and results in a linear error response. The methodology is similar to that used in determining that the dynamic attributes of the output robot should be zero. The control algorithm is implemented by the following equations:

\[
\begin{aligned}
(x, \dot{x}, \ddot{x}) &= rd() \\
\dot{\ddot{x}} &= \ddot{x}_d + K_v (\ddot{x}_d - \ddot{x}) + K_p (x_d - x) \\
\dot{x}_e &= \int_0^t \ddot{x}_d \\
x_e &= \int_0^t x_d \\
F_e &= M(q) \ddot{x}_e + C(q, \dot{q}) \dot{x} + N(q, \dot{q}) + F_d \\
wr(x_e, \dot{x}_e, \ddot{x}_e, F_e)
\end{aligned}
\]

where \(rd \) and \(wr \) are attributes of the robot which is being controlled.

Note the existence of the \(F_d \) term in the calculation of \(F_e \). This is placed here to allow higher level controllers to specify not only a trajectory but also a force term to compensate for higher level payloads. In essence, a robot which is being controlled in this manner can be viewed as an ideal force generator which is capable of following an arbitrary path.

The computed torque controller defines two new attributes, \(K_p \) and \(K_v \), which determine the gains (and hence the convergence properties) of the controller. A variation of the computed torque controller is the feedforward controller, which is obtained by setting \(K_p = K_v = 0 \). This controller can be used to distribute nonlinear calculations in a hierarchical controller, as we shall see in Section 4.3.
Figure 4.5: Planar two-fingered hand. Contacts are assumed to be maintained throughout the motion. For this particular system the box position and orientation, \(x \), form a generalized set of coordinates for the system.

4.3 Example

To make the use of the primitives more concrete we present an example of a planar hand grasping a box (Figure 4.5) using a complicated control structure. We shall assume the existence of the following functions

- \(M_b \): box inertia matrix in Cartesian coordinates
- \(M_l, M_r \): inertia matrix for the left and right fingers
- \(C_b, C_l, C_r \): Coriolis/centrifugal vector for box and fingers
- \(f \): finger kinematics function, \(f : (\theta_l, \theta_r) \mapsto (x_l, x_r) \)
- \(g \): grasp kinematics function, \(g : (x_l, x_r) \mapsto x_b \)
- \(J \): finger Jacobian, \(J = \frac{\partial f}{\partial \theta} \)
- \(G \): grasp map, consistent with \(g \)
- \(\text{rd.left, rd.right} \): read the current joint position and velocity
- \(\text{wr.left, wr.right} \): generate a desired torque on the joints

where \(\theta_l, \theta_r, x_l, x_r \), and \(x_b \) are defined as in Figure 4.5.

Consider the control structure illustrated in Figure 4.6. This control structure is obtained by analogy with biological systems in which controllers run at several different levels simultaneously. At the lowest level we use simple PD control laws attached directly to the individual fingers. These PD controllers mimic the stiffness provided by muscle coactivation in a biological system [42]. Additionally, controllers at this level might be used to represent spinal reflex actions. At a somewhat higher level, the fingers are attached and considered as
Primitives for robot control

a single unit with relatively complicated dynamic attributes and Cartesian configuration. At this point we employ a feedforward controller (computed torque with no error correction) to simplify these dynamic properties, as viewed by higher levels of the brain. With respect to these higher levels, the two fingers appear to be two Cartesian force generators represented as a single composite robot.

Up to this point, the representation and control strategies do not explicitly involve the box, a payload object. These force generators are next attached to the box, yielding a robot with the dynamic properties of the box but capable of motion due to the actuation in the fingers. Finally, we use a computed torque controller at the very highest level to allow us to command motions of the box without worrying about the details of muscle actuation. By this controller we simulate the actions of the cerebellum and brainstem to coordinate motion and correct for errors.

In terms of the primitives that we have defined, we build this structure from the bottom up

\[
\begin{align*}
\text{left} &= \text{DEFINE}(M_l, C_l, 0, 0, rd\textunderscore left, wr\textunderscore left) \\
\text{pd\textunderscore left} &= \text{CONTROL(left, pd)} \\
\text{right} &= \text{DEFINE}(M_r, C_r, 0, 0, rd\textunderscore right, wr\textunderscore right) \\
\text{pd\textunderscore right} &= \text{CONTROL(right, pd)} \\
\text{fingers} &= \text{ATTACH}(J, I, f, nil, pd\textunderscore left, pd\textunderscore right) \\
\text{ff\textunderscore fingers} &= \text{CONTROL(fingers, feed\textunderscore forward)} \\
\text{box} &= \text{DEFINE}(M_b, C_b, 0, 0, nil, nil) \\
\text{hand} &= \text{ATTACH(I, G, g, box, ff\textunderscore fingers)} \\
\text{ct\textunderscore hand} &= \text{CONTROL(hand, computed\textunderscore torque)}
\end{align*}
\]

It is helpful to illustrate the flow of information to the highest level control law. In the evaluation of \(z_b\) and \(\dot{z}_b\), the following sequence occurs through calls to the \(rd\) attribute:

\[
\begin{align*}
\text{hand: asks for current state, } z_b \text{ and } \dot{z}_b \\
\text{finger: ask for current state, } x_f \text{ and } \dot{x}_f \\
\quad \text{left: read current state, } \theta_l \text{ and } \dot{\theta}_l \\
\quad \text{right: read current state, } \theta_r \text{ and } \dot{\theta}_r \\
\quad \text{finger: } x_f, \dot{x}_f \leftarrow f(\theta_l, \dot{\theta}_l), J(\theta_l, \dot{\theta}_l) \\
\text{hand: } z_b, \dot{z}_b \leftarrow g(x_f), G^T \dot{x}_f
\end{align*}
\]

When we write a set of hand forces using the \(wr\) attribute, it causes a similar chain of events to occur.

The structure in Figure 4.6 also has interesting properties from a more traditional control viewpoint. The low level PD controllers can be run at high servo rates (due to their simplicity) and allow us to tune the response of the system to reject high frequency disturbances. The Cartesian feedforward controller permits a distribution of the calculation of nonlinear compensation terms.
4.4 Extensions to the basic primitives

Having presented the primitives for non-redundant robot systems in which we ignore internal forces, we now describe the modifications necessary to include both internal motion and internal forces in the primitives. As before, these extensions are based on the dynamic equations given in Chapter 3 and rely on the fact that the equations of motion of this class of systems can be expressed in a unified way. Recall that the fundamental constraint used to generate the equations of motion had the form

$$J\dot{\theta} = G^T \ddot{\chi}$$ \hspace{1cm} (4.9)

Internal motion and force can be thought of as manifestations of redundancies in the manipulator, and both can be used to improve performance. A common use of redundant motion in robotics is to specify a cost function and use the redundancy of the manipulator to attempt to minimize this cost function [65]. If we extend our definition of the \(wr\) function so that it takes not only an "external" trajectory, but also an internal trajectory (which might be represented as a cost function or directly as a desired velocity in the internal motion directions) then this internal motion can be propagated down the graph structure. A similar situation occurs with internal or constraint forces.

The matrices \(J(q)\) and \(G(q)\) in equation (4.9) embody the fundamental properties of the constrained system. We begin by assuming that \(J(q)\) and \(G(q)\) are both full row rank. The null space of \(J(q)\) corresponds to motions which do not affect the configuration of the object, i.e., internal motions. Likewise, the null space of \(G(q)\) describes internal forces—the set of forces which cause no motion of the object. A complete trajectory for a robot must specify not only external motion and force for a robot but also the internal motion and force which lie in these subspaces.

Internal forces

To allow internal forces to be specified and controlled, we must first add them to the \(rd\) and \(wr\) attributes. This is done by simply adding an extra value to the list of values returned by \(rd\) and adding an extra argument to \(wr\). Thus the \(wr\) attribute is called as

$$wr(x_e, \dot{x}_e, \ddot{x}_e, F_e, F_i)$$ \hspace{1cm} (4.10)

where \(F_i\) is the desired internal force.
Internal forces are "created" by the attach primitive. The internal force directions for a constraint are represented by an orthonormal matrix $H(0)$ whose rows form a basis for the null space of $G(0)$. Since any of the daughter robots may itself have an internal force component, the internal force vector for a robot created by attach consists of two pieces: the internal forces created by this constraint and the combined internal forces for the daughter robots. We shall refer to these two components as $F_{i,1}$ and $F_{i,2}$, respectively. The force transformations which describe this relationship are

$$\tau_R = \begin{pmatrix} \tau_{R,e} \\ \tau_{R,i} \end{pmatrix} = \begin{pmatrix} J^T G^+ & J^T H^T \\ 0 & 0 \end{pmatrix} \begin{pmatrix} F_e \\ F_{i,1} \\ F_{i,2} \end{pmatrix}$$

(4.11)

where $\tau_{R,e}$ is the vector of external forces for the daughter robots and $\tau_{R,i}$ is the vector of internal forces. This equation is analogous to equation (3.9) in Section 3.3. Note that $\tau_{R,i}$ is identical to $F_{i,2}$, thus internal force specifications required by the daughter robots are appended to the internal force specification required due to the constraint. Expanding equation (4.11) we see the appropriate definition for the new wr attribute generated by attach is

$$\bar{wr}(x_e, \dot{x}_e, \ddot{x}_e, F_e, F_i) := wr_R(\ldots, J^T G^+ F_e + J^T H^T F_{i,1}, F_{i,2})$$

(4.12)

The inclusion of internal forces in the rd attribute is similar. The sensed forces from the robots, τ_R, are simply split into external and internal components and converted to the appropriate internal and external forces for the new robot. This is equivalent to inverting equation (4.11):

$$F = \begin{pmatrix} F_e' \\ F_{i,1} \\ F_{i,2} \end{pmatrix} = \begin{pmatrix} GJ^{-T} & 0 \\ 0 & HJ^{-T} \end{pmatrix} \begin{pmatrix} \tau_{R,e} \\ \tau_{R,i} \end{pmatrix}$$

(4.13)

It follows that

$$\bar{rd}(\ldots, GJ^{-T} \tau_{R,e}, HJ^{-T} \tau_{R,i})$$

(4.14)

Internal forces are resolved by the control primitive. In principle, a controller can specify any number of the internal forces for a robot. Internal forces which are not resolved by a controller are left as internal forces for the newly defined robot. In practice, controllers will often be placed immediately above the attached robots since internal forces are best interpreted at this level. Unlike external motions and forces, internal forces are not subject to coordinate change and so leaving such forces unresolved causes higher level controllers to use low level coordinates.
Internal motions

Internal motions are also created by the `attach` primitive, this time due to a non-square Jacobian matrix. As before, we must add arguments to the `rd` and `wr` attributes of robots to handle the extra information necessary for motion specification. We only assume that the redundant velocities and accelerations are defined, so we add only those quantities to `rd` and `wr`. Since the notation becomes quite cumbersome, we won’t actually define the `rd` and `wr` primitives, but just specify the internal and external motion components.

Given a constraint which contains internal motions, the `attach` primitive must again properly split the motion among the robots attached to the object. Define \(K(\theta) \) to be a matrix whose rows span the null space of \(J(\theta) \). Then we can rewrite our constraint as

\[
\begin{pmatrix}
 J & 0 \\
 K & 0 \\
 0 & I
\end{pmatrix}
\begin{pmatrix}
 \dot{\theta}_{R,e} \\
 \dot{\theta}_{R,i}
\end{pmatrix}
= \begin{pmatrix}
 GT & 0 & 0 \\
 0 & I & 0 \\
 0 & 0 & I
\end{pmatrix}
\begin{pmatrix}
 \dot{x}_e \\
 \dot{x}_i,1 \\
 \dot{x}_i,2
\end{pmatrix}
\]

(4.15)

Defining \(\bar{J} \) and \(\bar{G} \) as the extended Jacobian and grasp matrices,

\[
\bar{J} = \begin{pmatrix} J \\ K \end{pmatrix} \quad \bar{G} = \begin{pmatrix} GT & 0 \\ 0 & I \end{pmatrix}
\]

(4.16)

we see that \(\bar{J} \) is full rank and so we can use it to define \(A = \bar{J}^{-1} \bar{G} \) in equations (4.4-4.8). This then defines the dynamics attributes created by `attach`. Note that the dimension of the constrained subspace (where internal forces act) is unchanged by this extension.

The input and output attributes are described in a manner similar to those used for internal forces. For `wr` the external component of the motion is given by

\[
\dot{\theta}_{R,e} = A \begin{pmatrix}
 \dot{x}_e \\
 \dot{x}_i
\end{pmatrix}
= \bar{J}^T \bar{G} \dot{x}_e + K^T \dot{x}_i
\]

(4.17)

\(\dot{\theta}_{R,e} \) is defined similarly. \(\theta_{R,e} \) is only defined if an inverse kinematic function, \(h^{-1} \), is given. Otherwise that information is not passed to the daughter robots. As before, if the robots themselves have internal motions then these should be split off and passed unchanged to the lower level robots.

The `rd` attribute is defined by projecting robot motions into an object motion component and an internal motion component. That is

\[
\begin{align*}
 x_e &= h(\theta_{R,e}) \\
 \dot{x}_e &= G^T \dot{\theta}_{R,e} \\
 \dot{x}_i &= \begin{pmatrix} K \dot{\theta}_{R,e} \\ \dot{\theta}_{R,i} \end{pmatrix}
\end{align*}
\]

(4.19)

(4.20)

(4.21)
\[\ddot{x}_e \quad \text{and} \quad \ddot{x}_i \quad \text{are obtained by differentiating the expression for } \dot{x}_e \quad \text{and} \quad \dot{x}_i. \]

Controllers must also be extended to understand redundant motion. This is fundamentally no different than control of an ordinary manipulator except that position information is not available in redundant directions. Thus the computed torque law would become

\[F = M(q) \begin{pmatrix} \ddot{x}_e, \dot{x}_e \\ \ddot{x}_i, \dot{x}_i \end{pmatrix} + C(q, \dot{q}) \begin{pmatrix} \dot{x}_e \\ \dot{x}_i \end{pmatrix} + N(q, \dot{q}) \quad (4.22) \]

Motion specification for such a control law would be in terms of a position trajectory \(x_e(\cdot) \) and a velocity trajectory \(\dot{x}_e(\cdot) \). If a controller actually resolves the internal motion (by specifying \(\dot{x}_i, \dot{q}(\cdot) \) based on a pseudo inverse calculation for example), then the internal motion will be masked from higher level controllers; otherwise it is passed on.

Control laws commonly use the position of the object as part of the feedback term. This may not always be available for systems with non-integrable constraints (such as grasping with rolling contacts). If the object position cannot be calculated from \(\dot{\theta} \) then we must retrieve it from some other source. One possibility is to use an external sensor which senses \(x \) directly, such as a camera or tactile array. The function to "read the sensor" could be assigned to the payload \(rd \) function and attach could use this information to return the payload position when queried. Another possible approach is to integrate the object velocity (which is well defined) to keep track of the payload position.

Some care must also be taken with the evaluation of dynamic attributes for robots which do not have well defined inverse kinematic functions. There are some robot control laws which use feedforward terms that depend on the desired output trajectory, e.g., \(M(x_d) \ddot{x}_d \). The advantage of writing such control laws is that this expression can be evaluated offline, increasing controller bandwidth. This calculation only makes sense if the desired configuration, \(q_d \), can be written as a function of \(x_d \) and more generally if \(q \) can be written as a function of \(x \). One solution to this problem is to only evaluate dynamic attributes of a robot at the current configuration. Assuming each robot in the system can determine its own position, these attributes are then well defined. For all the control laws presented in this paper, \(M \), \(C \) and \(N \) are always evaluated at \(q \), the current configuration.

4.5 Discussion

Working from a physiological motivation we have developed a set of robot description and control primitives consistent with Lagrangian dynamics. Starting from a description of the inertia, sensor, and actuator properties of individual robots, these primitives allow for the construction of a composite constrained motion system with control distributed at all levels. Robots, as dynamical
systems, are recursively defined in terms of daughter robots. The resulting hierarchical system can be represented as a tree structure in a graph theoretic formalism, with sensory data fusion occurring as information flows from the leaves of the tree (individual robots and sensors) toward the root, and data expansion as relatively simple motion commands at the root of the tree flow down through contact constraints and kinematics to the individual robot actuators.

One of the major future goals of this research is to implement the primitives presented here on a real system. This requires that efforts be made toward implementing primitives in as efficient fashion as possible. The first implementation choice is deciding when computation should occur. It is possible that the entire set of primitives could be implemented off-line. In this case, a controller-generator would read the primitives and construct suitable code to control the system. A more realistic approach is to split the computation burden more judiciously between on-line and off-line resources. Symbolically calculating the attributes of the low level robots and storing these as precompiled functions might enable a large number of systems to be constructed using a library of daughter robot systems. Although the expressions employed are continuous time, in practice digital computers will be relied upon for discrete time implementations. This raises the issue of whether lower computation rates may be practical for higher level robots/controllers.

In addition to implementation issues, there are still several theoretical issues which we hope to address. We would like to have stability proofs for classes of control hierarchies, e.g. any hierarchy with a computed torque controller at the highest level and only feedforward controllers below it can be shown to be exponentially stable. There is also no provision in the primitives for dynamics which can not be written in the form of equation (3.8). Adaptive identification and control techniques may be useful in cases where unmodeled dynamics substantially affect system performance.
Figure 4.6: Multi-level computed torque and stiffness (PD). Controllers are used at each level to provide a distributed control system with biological motivation, desirable control properties, and computational efficiency.