MEASUREMENT OF OPTICAL DIFFRACTION
BY WAVELENGTH-SIZED SLITS

by

William E. Haller

Memorandum No. UCB/ERL M88/37

27 May 1988
MEASUREMENT OF OPTICAL DIFFRACTION
BY WAVELENGTH-SIZED SLITS

by

William E. Haller

Memorandum No. UCB/ERL M88/37

27 May 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720
MEASUREMENT OF OPTICAL DIFFRACTION
BY WAVELENGTH-SIZED SLITS

by

William E. Haller

Memorandum No. UCB/ERL M88/37

27 May 1988

ELECTRONICS RESEARCH LABORATORY

 College of Engineering
University of California, Berkeley
94720
RESEARCH PROJECT

Submitted to the Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, in partial satisfaction of the requirements for the degree of Master of Sciences, Plan II.

Approval for the Report and Comprehensive Examination:

Committee: Andrew L. Kerstetter, Research Adviser

May 20, 1988, Date

Second Reader

May 20, 1988, Date
Measurement of Optical Diffraction by

Wavelength-Sized Slits

William E. Haller

Department of Electrical Engineering and Computer Sciences
Electronics Research Laboratory
University of California, Berkeley, CA 94720

CONTENTS

1. Introduction 2
2. Measuring Diffraction Patterns 3
3. Results 3
4. Total Diffracted Power 5
5. Conclusion 6
6. Acknowledgements 6
7. Appendix I 8
8. Appendix II 11
ABSTRACT

Diffraction by small open lines in chrome (slits) has been measured and the data compared to scalar diffraction theory. The measurement system consists of a chopped HeNe laser illumination, a mask held by a translational and rotational stage, and a photomultiplier tube on a revolving arm connected to a lock-in amplifier under the control of an IBM PC XT computer. Results for slits down to a wavelength in size show transmission nearly proportional to slit size and only slight polarization effects. Initial plots of total transmitted power divided by slit size showed a decrease for small slits. However, correcting for mask bias and/or edge roughness improves agreement with rigorous electromagnetic theory.

1. INTRODUCTION

In optical lithography projection printed images of both desired device features and undesired defects on the order of a wavelength in size are becoming a concern. As feature size is reduced the amount of light transmitted decreases and the patterns into which it is diffracted broaden; in addition polarization effects occur. How this impacts the use of 1x masks down to 0.25 um at 248 nm can be assessed by simulation programs such as SAMPLE. However, the limits of the current scalar diffraction model must be examined. While there are many rigorous and numerical analyses in the literature, direct measurement of the actual scattering with all the imperfections of the mask is most appealing.

Measurement of diffraction by small slits has been undertaken before but not specifically for chrome masks as used in optical projection printing. An exact solution of diffraction by a slit in a thin conducting screen of electromagnetic (vector) waves is available as well as a variational solution. These rigorous solutions provide guidance for the measurements here which seek to determine the limit of the much more tractable scalar diffraction approach. The model employed for analysing data collected is that for diffraction of a scalar wave by a slit in a thin screen, and provides a reasonable fit to the data. The scalar model predicts total transmitted power will vary in direct proportion to the width of the slit, and naturally does not exhibit any polarization effects. It is the departure of measured diffraction from these scalar predictions that is of interest here.

This paper presents measurements of diffraction by a set of features on a chrome mask used in optical lithography and compares the results with scalar diffraction and more rigorous vector diffraction. In the following, the system used to make the diffraction measurements will be described, as well as the technique employed to overcome vibration and alignment difficulties and build a picture of diffraction by each slit for each polarization. Each measured diffraction pattern is fit to a scalar model by minimizing the squared error and the parameters used to fit these curves are compared to determine polarization effects, amplitude
scaling, and consistency of the scalar model. Two possible explanations for departures from the model at small slit widths are considered in section 4, one based on assuming a different mask bias and the other on imperfections in the mask features.

2. MEASURING DIFFRACTION PATTERNS

The system used to measure the diffraction is shown in Figure 1. A spectrometer table has been fitted with an optical bench holding a HeNe laser (633 nm), a chopper, a polarizer and a reference detector. The spectrometer supports a motorized stage that holds the mask being measured, a 10x microscope objective for focusing the laser on the mask being measured, and a photomultiplier tube (PMT) as a detector. The output from the PMT is fed to a lock-in amplifier that is interfaced to an IBM PC XT computer to record data; this computer also controls the stepper motors that move the stage and detector as well. The apparatus is contained in a light tight box and the measurement area isolated from the other optical components by a baffle.

The features measured were twelve slits in chrome 10 um long and range in nominal width from 0.5 to 3.125 um, corresponding to 0.8λ to 4.9λ at the wavelength 633 nm used to make the measurements. It was found in initial attempts to measure diffraction by locating a slit in the beam and moving the PMT through a range of angles that excessive vibration resulted from the large stepper motor used to move the PMT. This vibration caused the beam to wander in relation to the target, introducing noise and making repeatable measurements impossible. To overcome the difficulty of aligning the laser spot accurately and the influence of vibration, an alternative approach was used. The PMT was located in a fixed angular position, and the slits, which are located side by side on the mask, were moved past the focussed laser spot while the computer continuously recorded the output from the lock-in amplifier.

A typical scan shown in Figure 2 shows twelve peaks corresponding to the intensity of energy scattered by each of the slits in to the angle where the PMT is located. The value of each of the 12 peaks was extracted from the 1000 data points, and the procedure repeated for angles from 5 to 70 degrees at 5 degree intervals for each polarization. A picture of the diffraction pattern for all twelve slits was then constructed.

3. RESULTS

Examples of the composite diffraction pattern for several slit sizes are given in Figure 3 for both polarizations. The slit widths range in size from 0.8λ to 2λ. There appears to be only small differences in the shape between the two polarizations. The larger slits have a narrow central lobe followed by minimum and maximum as a function of angle. The smaller slits show power diffracted into much broader angles.
The data for each slit was fit to a scalar model of diffraction by a slit by varying the parameters A_0 and β in the formula:

$$I = \left(\frac{A_0 \sin(\beta \sin(\theta))}{\beta \sin(\theta)} \right)^2$$

where

$$\beta = \frac{1}{2} k b = \frac{\pi b}{\lambda}$$

$$A_0 = \frac{a b}{r}$$

The parameter A_0 is the amplitude of the diffracted wave at $\theta = 0$ and the parameter β determines the shape of the diffraction pattern. The constants a, b, and r are the amplitude of the incident wave, the width of the slit, and the distance from the slit to the detector respectively. The shape and amplitude dependence for the orthogonal angle are not included in this expression since it was fixed at zero for the measured data, and in the scalar formula would have been the identical for all slits because they are the same height. Examples of this formula fit to several different slits are included as the connecting curve in Figure 3 for each polarization.

The parameter A_0 is plotted versus nominal slit width in Figure 4. To compare the behavior of the two polarizations one set of values was scaled so that A_0 for the largest slit was equal for both polarizations. Scalar theory predicts A_0 to be linear with respect to slit width b. It is evident from the figure that this is nearly true; however, there does exist some departure, which is more pronounced for the E field aligned along the slit.

If we examine the parameter β we find it is possible to determine an effective slit width from this parameter by solving for b:

$$b_{\text{eff}} = \frac{\beta \lambda}{\pi}$$

This effective slit width is plotted as a function of nominal slit width in Figure 5. This suggests that the two different polarizations see slightly different slit widths, but the difference is only about 0.1 um, or one sixth of a wavelength.

A measure of the self consistency of fitting the scalar formula to the experimental data may be found by considering the value of the 'fitting' constant arrived at by dividing A_0 by b_{eff}:

$$\frac{A_0}{b_{\text{eff}}} = \frac{a}{r} = \text{constant}$$
This fitting parameter is plotted as a function of nominal slit width in Figure 6. It is seen to be relatively constant for larger slit sizes, but as sizes on the order of a wavelength are approached it drops off abruptly. To investigate this inconsistency we turn to an electromagnetic formulation of diffraction by small slits, and consideration of total diffracted power.

4. TOTAL DIFFRACTED POWER

Using the parameters A_0 and β it is possible to calculate the total diffracted power by integrating with respect to θ from -90° to $+90^\circ$. This quantity is plotted in Figure 7 as a ratio of the measured total power to that expected from geometric optics, which would be proportional to the area. The results for each polarization are shown, with the ratio set equal to one for the largest slit size. The solid line in the figure represents the same ratio found by solving the appropriate boundary conditions for the vector wave equation in elliptical coordinates\(^4\), for the E field aligned along a slit in a thin perfect conductor. A considerable discrepancy is apparent.

A major portion of this discrepancy appears to be associated with what is assumed to be the linewidth, which is in turn a function of the quality of the mask. An SEM inspection of the mask indicated that while the top edge of the chrome agreed with the linewidth used, a small residue exists near the edge which might be optically opaque or cause scattering into the third dimension, Figure 8. If we hypothesize that the bias in making the mask was not as great as assumed, and hence the slits are smaller than their nominal width, then the measured diffracted power for the smaller slits will increase relative to the larger slits, moving the lower portion of the experimental curve up, Figure 9. The lowest solid line corresponds to the assumption of 0.125 um bias per edge, as has been assumed up to this point; reducing this bias by 0.025 um intervals until zero bias is reached results in the family of curves shown. It should be noted, however, that adjusting the bias in this manner is inconsistent with the measured value of b_{eff} as shown in Figure 5.

Examination of the mask by SEM revealed a roughness in the edges of the slits, as shown in Figure 8 for the smallest slit. This suggests that possibly a fixed amount of energy is scattered out of the plane of measurement by imperfections in the edges of the slits; this would make the smaller slits less efficient than the larger ones. To test this hypothesis we assume a fixed amount of power is scattered out of the plane of measurement, and add this back into the measured power for each slit. In Figure 10 this amount ranges from zero to 100% of the measured power of the smallest slit, added in 20% increments. At 100% reasonable agreement is achieved and this hypothesis is at least consistent with the measured value of b_{eff}.
5. CONCLUSION

The measurement of diffraction by sub-wavelength sized features has been demonstrated by scanning the features past the laser spot and measuring the power scattered at a particular angle, and repeating for additional angles to build a total picture of diffraction. This overcomes difficulties with aligning the laser to features and maintaining alignment, as well as noise due to vibration that results from measuring one feature at a time with a moving detector. This technique has been applied to a series of twelve slits for each polarization, and is believed to show accurately feature size effects on the amount and distribution of diffracted power.

Scalar diffraction theory provides a reasonable fit to the experimental data. In comparing the parameters fit to the data it appears that wave amplitude is nearly linear with respect to slit width, and only slight polarization effects are observed. Total transmitted power appears to drop off faster than predicted by scalar theory and is credited to the mask structure, specifically edge roughness, scattering light out of the plane of measurement. The results are consistent with rigorous electromagnetic theory but slits significantly smaller than a wavelength were not available.

The adequate performance of small slits down to a wavelength in size is a good indicator that 1x projection printing will be possible down to 0.25 um at 248 nm.

6. ACKNOWLEDGEMENTS

The author would like to acknowledge R. Viswanathan, H. Voelker, A. D. Wilson, and M. Rosenfield of the IBM T. J. Watson Research center for providing the mask measured here. This work was supported through the Industrial-SRC Consortium and the California State MICRO program, under grants MICRO 86-220 and 87-121 and SRC 87-MP118.
[1] SAMPLE User Guide, Electronics Research Laboratory, Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA

APPENDIX I.

Measuring System and Technique

Optics and Mechanics

The system used to make the measurements consists of a spectrometer table fit with an optical bench holding a HeNe laser, chopper, beam splitter with reference diode, and polarizer. The beam was delivered to a 10x microscope objective mounted on the central stage so as to reduce vibration of laser spot with respect to the mask targets. The stage was equipped with a stepper motor to scan the mask past the laser spot. The PMT was located on a revolving arm, whose position was controlled by another stepper motor. The entire apparatus was enclosed within a light tight box, and a baffle installed to separate the laser and chopper from the measurement area to minimize optical noise.

Electronics

A lock-in amplifier was used to measure the output of the PMT, with the chopping frequency supplied by the reference diode, Figure 1. The lock-in amplifier was interfaced to the PC by means of an RS-232 connection. The stepper motor positioning the PMT was under the direct control of the PC, and the stepper motor controlling the lateral position of the stage was controlled by a Newport stepper motor controller.

Technique

A combination of manual and automatic operation was used to make measurements. The software used in making actual measurements was relatively simple: the PC interrogated the lock-in amplifier to determine the current scale, and then continually recorded the output. One thousand values were recorded, and then stored on floppy disk with a user supplied file name. These values were later examined to find the maximums corresponding to the passage of each slit in front of the laser beam.

Several methods of measuring diffraction were tried using a fixed target and a moving detector, but it was impossible to reliably locate a target that is less than a micron across and maintain it in the beam while introducing vibration due to the movement of the PMT. An alternative approach, relying on the data handling capabilities of the PC, proved much more successful. The procedure for measuring the diffraction of all the slits in a set was to measure the light diffracted into a particular angle by each of the slits, and repeat for additional angles. Then the data for each slit is correlated to produce the desired diffraction pattern. In actual practice, care must be taken to align the mask to the laser beam so as each target 'sees' the same
beam as it is scanned. To determine that the mask was aligned properly an optical microscope was mounted so as to project the image of the mask on the wall of the enclosure. The mask was adjusted so that the beam, approximately 8 um in diameter, was centered on each of the slits as it passed across it. This required a combination of manual angular and vertical positioning, iterated until sufficient was obtained when the stepper motor scanned across the entire set of slits. The mask was also adjusted so that the plane of the chrome on the mask intersected the waist of the focused laser beam, and the mask adjusted so that the angle of incidence was normal.

To produce a scan, the laser spot was located approximately 100 um to one side of the first slit to be measured. The PMT was adjusted to give a maximum signal; this corresponded to power coming directly through the chrome at zero degrees. Ten values of this were recorded; these values were later averaged and used to normalize the subsequent data to account for the slow drift in the laser power and the differences in the laser output for each normalization.

The mask was then moved so that the laser spot was 25 um to one side of the first slit to be measured. The PMT was carefully moved to the desired angular position to be measured; in the measurements presented here readings were made from 5 to 70 degrees in 5 degree increments. The program to record the output from the lock-in amplifier was then started, while at the same time the stepper motor on the stage was made to slowly scan the mask past the laser spot at the speed of 0.7 um/second. As each slit slides past the spot the output reaches a maximum and then declines again. The implicit assumption is that the maximum corresponds to the spot being centered on the laser beam. One may speculate that if a null occurred at the angle of measurement that the peak would then be missing or breakup into two peaks; in fact this happened only once for the nearly three hundred data peaks examined, in this case the value used was determined by using the value located in the same position for peaks in similar, better defined scans.

The movement of the stage is 'free running', it is not controlled by the computer. The reason for this is that there was not a second RS-232 port on the PC available to control the stepper motor controller. In addition, it is not possible to give one command to the stepper motor controller for it to move a full 300 um at the speed of 0.7 um/s; instead a series of commands must be issued to it to move 50 um at a time, otherwise the controller defaults to a higher speed with undesirable results. If the computer were to give these intermediate motion commands it would have to interrupt it's measurements to do so, with unsatisfactory discontinuities on the scan being recorded. This limitation could be overcome in the future by programming the required commands in the stepper motor controller and installing the necessary hardware in the PC to provide the second RS-232 port.
The value of peaks on the resulting scan can be determined by direct examination of the scan files. A short program has been written that automatically locates peaks (local maxima) but it is not robust and the results were interpreted with caution. The value of these peaks for each slit were then collected to produce a pattern.

Start Up Sequence

1. Turn on laser (key switch on Hughes box). Allow to warm up for several hours to allow output to stabilize.
2. Turn on chopper - toggle switch on body of chopper.
3. Turn high voltage power supply to stand by.
4. Turn on computer monitor and computer with DOS disk in drive.
5. Turn on Newport 855C programmable controller. Consult manual for operation details.
6. Check milliamperere meter; this indicates output from reference diode amplifier, check that output is around 4 mA. Adjust potentiometer (amplifier gain) or position of beam splitter in reference diode housing if necessary.
7. Using plastic glove place mask on stage and secure in place using metal clips, chrome side towards detector.
8. Manually rotate detector so that it is across the spectrometer table, out of the way so that horizontal microscope can be placed on table close to mask. Suggested lenses on microscope: 20x objective, 5x eyepiece.
9. Use manual adjustment (vertical) and stepper motor (horizontal) to locate target in beam.
10. Minimize spot size at chrome surface by focussing image of mask on enclosure wall and adjusting position of mask along beam by combination of manual positioner at bottom of stage and focussing lens positioner.
11. Locate a horizontal line and scan across using motor. If laser spot 'walks' off line, rotate mask about beam axis by using knob on top of stage and adjust vertical position. Iterate until alignment is achieved.
13. Remove microscope. System is now prepared for making measurements.
APPENDIX II.

IBM PC Software

NOTE: The code has been continuously modified and the versions listed here are not claimed to be complete or robust, only representative of the type of routines used to collect and analyse data for the system and technique presented in this report.

"Scanner": BASIC program to record data from a single scan.

```
5 REM
10 REM INITIALIZATION
11 REM
15 KEY OFF;Q=1;DIM V(10);K1(1)=1;K1(2)=1;K1(3)=1;K1(4)=1
16 OPEN "COM1:1200,0,7,1,CS,DS,CD" AS #2
17 DIM MEAS(2500);DIM REF(2500)
18 PRINT "SCANNER: DO YOU WISH TO INITIALIZE LOCKIN?"
19 AS=INKEYS:IF AS="n" THEN GOTO 19
22 IF AS = "y" OR AS = "Y" THEN GOSUB 3700
30 CLS:INPUT "Scale on lockin amplifier = ";SCALE
31 GOSUB 3754
2999 REM
3000 REM Start of data taking Routine
3001 REM
3055 SCREEN 2,0,0
3055 CLS:PRINT :PRINT
3065 INPUT "NUMBER OF DATA POINTS = ";FINISH%
3070 CLS
3090 FOR N=1 TO 199 STEP 30:DRAW"BM0,=I;R5"
3095 DRAW"BM157,=tR5;BM317,=IOtf;BM477,=LR5;BM634,=L;R5"
3100 NEXT I
3105 DRAW"BM0,19;R639;BM0,199;R639"
3110 DRAW"BM0,19;D180;BM159,19;D180;BM319,19;D180;BM479,19;D180;BM639,19;D180"
3120 CNT=0
3130 FOR N=1 TO FINISH%
3135 GOSUB 3485 :REM TAKE A MEASUREMENT
3145 MEAS(2*N)=N :REM RECORD POSITION
3146 MEAS(2*N+1)=READING :REM RECORD DETECTOR VOLTAGE
3164 PSET (639*N/FINISH%;200-200*READING/SCALE) :REM PLOT DETECTOR VOLTAGE
3210 NEXT N
3218 A$=INKEYS:IF AS="n" THEN GOTO 3218
3219 REM
3220 REM data storage routine
3221 REM
3225 PRINT "Store Data?"
3230 AS=INKEYS:IF AS="n" THEN GOTO 3230
3235 IF AS="y" OR AS="Y" THEN GOTO 3251
3240 AS=INKEYS:IF AS="n" THEN GOTO 3240
3245 IF AS="y" OR AS="Y" THEN GOTO 3251
3250 GOTO 30
3251 CLS:INPUT "New File Series ":AS:IF AS="N" OR AS="n" THEN GOTO 3260
3252 IF AS ="Y" OR AS = "y" THEN GOTO 3255
3253 GOTO 3251
3255 CLS:INPUT "File Name ":FS
```
FILE.NO=64
FILE.NO=FILE.NO+1:FILE.NS=FS+.00+CHR$(FILE.NO)
PRINT"Insert Data Disk. Press Any Key When Ready"
AS=INKEYS:IF AS="" THEN GOTO 3270
PRINT "Storing Data"
OPEN FILE.NS FOR OUTPUT AS #1
PRINT#1,"1"
FOR I=1 TO FINISH%
PRINT#1,USING"####n;FINISH%
PRINT#1,USING"##.###~~";MEAS(2*I+1)
PRINTMEAS(2*I)/',MEAS(2*I+1)
NEXT I
PRINT#1,:PRINT
CLOSE #1
GOTO 30
REM
REM Take reading from Lockin. Appropriate range should have
REM already been selected BEFORE starting program.
REM
PARAM$="Q1":GOSUB 3540 :REM REQUEST DETECTOR MEASUREMENT
VALUE=ABS(VAL(BUFF2$)):REM GET MEASUREMENT
READING=ABS((VALUE/2000)*(10^-INT(SENS1/3))*SENS2):REM CONVERT TO V
RETURN services
REM**
REM
REM SUBROUTINE FOR RS232 I/O (SEND AND ECHO BACK). For reference,
REM please read IBM/PC BASIC manual and Newport 855C linear actuator
REM controller's manual.
REM
LOCATE 1,1:PRINT
LOCATE 3,1:PRINT
BUFFERS="":SIGNAL= 0
PARAM$=PARAM$+CHR$(13)
FOR COUNTER= 1 TO LEN(PARAM$)
VAR$=MTO$(PARAM$,COUNT)
IF LOC(2)<1GOTO 3600
VAR1$=INPUT$(1,#2)
IF VAR$=CHR$(13)THENGOTO 3605
BUFFERS=BUFFERS+VAR1S
NEXT COUNTER
VAR1$=INPUT$(1,#2)
IF VAR1$=CHR$(42)THENRETURN
BUFF2S=""
IF LOC(2)<1THENGOTO 3600
VAR1$=INPUT$(1,#2)
IF VAR1$=CHR$(13)THENGOTO 3605
VAR1$=CHR$(23)THEN RETURN
BUFF2S = BUFF2S + VAR1S
GOTO 3655
REM Activate Auto Set function in Lockin Amp,
REM wait for completion
REM
PARAM$="A2 1":GOSUB 3540
PRINT BUFF2S
FOR IT=1 TO 7000:NEXT IT
PARAMS="ST "GOSUB 3540
PRINT BUFF2S
STATUS%=VAL(BUFF2S) AND 32
IF STATUS% = 0 THEN GOTO 3750
PARAMS="A2 0":GOSUB 3540
RETURN
REM Get sensitivity setting
"SINXX.PAS": Turbo Pascal program for fitting diffraction patterns to \[A \cdot \frac{\sin(c \cdot \sin(\theta))}{(c \cdot \sin(\theta))} \]².

Program Sinxxfit;

{ This program fits a \[A \cdot \frac{\sin(x)}{x} \]² function to a set of data }
{ Parameters being fit are: A and c where x = c \cdot \sin(\theta) }
{ assumption: (c - c₀) = c }

var i, j, k: integer;
A, c: real;
Points: integer;
rawdata: dataset;
ssc: real;
filename: string[20];
sample: dataset;
maxval, minval: dataset;
temp1, temp2, temp3, error: real;
minx, maxx, maxy, xscale, yscale: real;
delA, delc: real;
home1, home2: real;
norm: real;
step: array[1..2] of real;
fittedcurve: text;
fittedparameters: text;
angle: real;
RDataFile: text;

{ This function calculates the sum of squared differences between data and fitted curve }
function sqerr(var rawdata: dataset; var points: integer; var A, c: real): real;
begin;
err := 0.0;
for i := 1 to points do
begin;
samp := rawdata[i];
temp := sin(samp[1]*pi/180);
temp := samp[2]-
sqr(A*sin(c*temp)/(c*temp));
err := err + temp*temp;
end;
sqerr := err;
end;
procedure plotdat(var rawdata:dataset; { plot data on screen }
var points:integer;
var A,maxx,minx,yscale:real);
var maxy,xscale:real;
sample:datapt;
i:integer;
begin;
GraphWindow(0,0,500,99);
ClearScreen;
HiResColor(White);
sample := rawdata[1];
minx := sample[1];
sample := rawdata[points];
maxx := sample[1];
xscale := 500/(maxx-minx);
maxy := sqr(A);
yscale := 99/maxy;
for i := 1 to points do
begin;
sample := rawdata[i];
Hot(round((sample[1]-minx)*xscale),99-round(sample[2]*yscale),1);
end;
end;

procedure plotAsinxx(var A,c,maxx,minx,yscale:real); { plot function }
var tempi ,temp2,temp3,ss:real; { on screen }
i:integer,
begin;
for i := 1 to 50 do
begin;
 tempi := (i*10/500)*(maxx-minx)+minx;
 graphwindow(0,0,500,99);
 if sin(tempi)<0 then
 begin
 temp2 := sqr(A*sin(c*sin(tempi*pi/180)))/(c*sin(tempi*pi/180));
 plot(i*10,99-round(temp2*yscale),1);
 end;
end;
end;

procedure printparam(A,c:real); { print parameters on screen }
begin;
window(1,1,38,24);
gotoxy(1,1);
writeln;
writeln('A*sin(c*sin(theta))/(c*sin(theta)) Parameters:');
writeln(' A = ',A);
writeln(' c = ',c);
end;

procedure printdel(delA,delc,k:real); { print parameter increments on screen }
begin;
window(42,1,80,24);
gotoxy(1,1);
writeln;
writeln('Increments of parameters:');
writeln(' delA = ',delA);
writeln(' delc = ',delc);
writeln(' k = ',k);
end;
begin;
hires;
hirescolor(15);
goxy(1,15);

writeln('Enter file name : '); { Get file name and read in data }
readln(FileName);
writeln('file name is :', filename);
assign(RDataFile, filename);
reset(RDataFile);
for i := 1 to 14 do begin
 read(RDataFile, sample[1], sample[2]);
 rawdata[i] := sample;
end;
close(RDataFile);
Points := 14;

maxval := rawdata[1]; { locate maximum and use as initial A, find }
minval := rawdata[1]; { initial value for c }
for i := 1 to Points do begin
 sample := rawdata[i];
 maxval := sample;
 end;
 minval := sample;
 end;
end;
A := sqrt(maxval[2]);

sample := rawdata[Points];
c := sample[1];
sample := rawdata[1];
c := 4*(c - sample[1])*pi/180;
printparam(A, c); { print initial parameters }

plotdata(rawdata, Points, A, maxx, minx, yscale); { plot data, then plot function }
plotAsinxx(A, c, maxx, minx, yscale);
delA := A/4; { initialize increments }
delc := c/4;
k := 0;
printdel(delA, delc, k); { print initial increments }

while k < 12 do begin { twelve iterations of reducing increments }
 home := sqerr(rawdata, Points, A, c);
 step[1] := sqerr(rawdata, Points, A + delA/10, c) - home;
 home2 := sqerr(rawdata, Points, A - step[1]*delA, c - step[2]*delc);
 if home2 < home then begin
 A := A - step[1]*delA; c := c - step[2]*delc; { move towards smaller }
 else begin
 if home2 > home then begin
 delA := delA/3; { ...reduce increments }
 delc := delc/3;
 end
 end
end
delc := delc/3;
k := k+1;
printparam(A,c); writeln(k = .k);
printdel(delA,delc.k);
plotdata(rawdata,points,A,maxx,minx,yscale);
plotAsinxx(A,c,maxx,minx,yscale);
end;
end;

assign(fittedcurve,'fc'*filename); { store fitted curve, }
assign(fittedparameters,'fp'*filename); { fitted parameters }
rewrite(fittedcurve);
rewrite(fittedparameters);

for i:= 1 to 70 do
begin
angle := i*pi/180;
if sin(angle)<>0 then
begin
write(fittedcurve,i/3,'*');
writeln(fittedcurve,sqr(A*sin(c*sin(angle))/(c*sin(angle))):8:6);
end;
end;
close(fittedcurve);

writeln(fittedparameters,'A = ',A:8:6);
writeln(fittedparameters,'c = ',c:8:6);
close(fittedparameters);
end.
Figure 1. Diffraction measuring system.

Figure 2. Typical scan: 25 degrees, E field across slit
Figure 3a. Diffraction patterns: E field across slit.

Figure 3b. E field along slit.
Figure 4. Parameter A_0 versus slit width

Figure 5. Effective slit size from fitted parameters.
Figure 6. Ratio of A_\circ over b_{eff}.

- E field along slit
- E field across slit

Figure 7. Ratio of measured power to geometric power.
Figure 8. 0.5 um mask slit.

Figure 9. Varying mask bias.

Measured Power / Geometrical Power

Slit Size (um)
Figure 10. Adding in scattered power.