CONDITIONED INVARIANT SUBSPACES, DISTURBANCE
DECOUPLING AND SOLUTIONS OF RATIONAL MATRIX EQUATIONS

by

Z. Li and S. S. Sastry

Memorandum No. UCB/ERL M85/20

8 March 1985
CONDITIONED INVARIANT SUBSPACES, DISTURBANCE
DECOUPLING AND SOLUTIONS OF RATIONAL MATRIX EQUATIONS

by

Z. Li and S. S. Sastry

Memorandum No. UCB/ERL M85/20

8 March 1985

ELECTRONICS RESEARCH LABORATORY
College of Engineering
University of California, Berkeley
94720
Conditioned Invariant Subspaces, Disturbance Decoupling & Solutions of Rational Matrix Equations

Zexiang Li* and Shankar S. Sastry*

Department of Electrical Engineering & Computer Sciences
University of California, Berkeley, CA.94720

Abstract:

Conditioned invariant subspaces are introduced both in terms of output injection and in terms of state estimation. Various properties of these subspaces are explored and the problem of disturbance decoupling by output injection (OIP) is defined. It is then shown that OIP is equivalent to the problem of disturbance decoupled estimation as introduced in [1] & [2]. Both solvability conditions and a description of solutions for a class of rational matrix equations of the form \(X(s)M(s) = Q(s) \) on several ways are given in state space form. Finally, the problem of output stabilization with respect to a disturbance is briefly addressed.

* This research is supported partially under NASA grant NAG 2-243. The authors would like to thank Mr. Andrew Packard, Ping Hsu, Er-Wei Bai, Lichen Fu, Bradley Paden and Professors C. A. Desoer and E. Polak for their interest and encouragement in this research.
Conditioned Invariant Subspaces, Disturbance Decoupling & Solutions of Rational Matrix Equations

Zexiang Li* and Shankar S. Sastry*

Department of Electrical Engineering & Computer Sciences
University of California, Berkeley, CA. 94720

1. Introduction:

Undoubtedly, the most important concepts used in geometric control theory are conditioned invariant \{ or \(A,B\)-invariant\} subspaces and controllability subspaces introduced by G. Basile & G. Marro in [11] and W. M. Wonham & A. S. Morse in [12]. A further generalization of the controllability subspace is the stabilizability subspace introduced by M. L. J. Hautus [5]. Several examples where these subspaces arise can be found in disturbance decoupling by state feedback (DDP) [4], tracking & regulation, and non-interacting control, etc. Chapter 4 & 5 of W. M. Wonham [4] has a complete treatment on this topic. In particular, using these subspaces and the DDP schemes, one can solve a class of rational matrix equations \(M(s) X(s) = Q(s)\) in state space form, where \(M(s) \in \mathbb{R}_p(s)^{n \times n}\) and \(Q(s) \in \mathbb{R}_n(s)^{m \times n}\). Here \(\mathbb{R}_p(s)\) and \(\mathbb{R}_n(s)\) denote respectively the ring of proper and strictly proper rational function of \(s\), with real coefficients. Depending on the structures of \(M(s)\) and \(Q(s)\), one might obtain solutions \(X(s)\) belonging to one of the following rings: (1) \(\mathbb{R}_p(s)\) or \(\mathbb{R}_n(s)\), (2) \(\mathbb{R}(s)\) or \(\mathbb{R}_s(s)\), the subring of elements of \(\mathbb{R}_p(s)\) , or of \(\mathbb{R}_n(s)\) that are analytic in \(\mathbb{C}_+\), and (3) \(\mathbb{R}(u)\) or \(\mathbb{R}_s(u)\), the subring of elements of \(\mathbb{R}(s)\); or \(\mathbb{R}_s(s)\) that are analytic in a region \(u \in \mathbb{C}\). In the algebraic approach to the design of multivariable control systems, one frequently encounters solutions of rational matrix equations of this kind and its dual form \(X(s) M(s) = Q(s)\) with unknown \(X(s)\). See for example [5] and [13].

The dual notion of controlled invariance, namely conditioned invariant subspaces had suffered considerable neglect until the work of Schumacher [15], even though it was introduced at the same time as controlled invariance and has importance in its own right. Recently, in [1] and [2], J. C. Willems and C. Commault introduced complementary detectability and complementary observability subspaces based on observer design and disturbance decoupled estimation. Also, in the literature, DDEP (the disturbance decoupled estimation problem) was commonly suggested to be the dual of DDP.

But in this paper, we will propose a new scheme - disturbance decoupling by output injection (OIP) - as the dual of DDP. Based on output injection, we will introduce the concepts of conditioned invariant, complementary detectability and complementary observability subspaces. Although the new scheme is completely equivalent to DDEP, in some sense, the

* This research is supported partially under NASA grant NGL 2-243. The authors would like to thank Mr. Andrew Packard, Ping Hsu, Er-Wei Bai, Bradley Paden and Professors C. A. Desoer and E. Polak for their interest.
subspaces we define have a better physical interpretation under the output injection scheme.

In section 1, we will give complete characterizations of these subspaces and the results of Lemma 4 and Proposition 8, 9, 11, & 12 are new. In section 5, we will propose a direct method of solving rational matrix equation $X(s) M(s) = Q(s)$ in state space form using OIP and DDEP. Finally in section 6, we will generalize OIP to the problem of output stabilization with respect to disturbance and a direct dualization of this section leads to section 4 of [5].

The following notations will be standard throughout the paper: given a triple of maps (A, B, C), where $A : X \rightarrow X$, $B : U \rightarrow X$ and $C : X \rightarrow Y$, with $X = \mathbb{R}^n$, $U = \mathbb{R}^m$, and $Y = \mathbb{R}^p$, $\langle A \mid \text{Im}B \rangle = \text{Im}B + A \text{Im}B + A^2 \text{Im}B + \ldots + A^{n-1} \text{Im}B$, denote the controllable subspace of the pair (A, B) and $\langle \text{Ker}C \mid A \rangle = \text{Ker}C \cap A^{-1} \text{Ker}C \cap A^{-2} \text{Ker}C \cap \ldots \cap A^{-n+1} \text{Ker}C$, denote the unobservable subspace of the pair (C, A).

Let $V \subseteq X$, call vectors $x, y \in X$ equivalent mod V if $x - y \in V$. We define the quotient space X/V (or X mod V) as the set of equivalent classes:

$$\bar{x} = \{y : y \in X, y - x \in V\} \quad x \in V$$

(1-1)

Now let the map C be defined as before and suppose $V \subseteq \text{Ker}C$. If $P : X \rightarrow X/V$ is the canonical projection, we claim there is a unique map $\bar{C} : X/V \rightarrow Y$ such that

$$\bar{C} = \bar{C}P$$

(1-2)

thus, C "factors through" X/V. Also, assume $V \subseteq X$ and V is said to be invariant under the map A if

$$AV \subseteq V$$

(1-3)

Write $\bar{x} = X/V$, and $P : X \rightarrow \bar{x}$ be the canonical projection. There exists an unique map $\bar{A} : \bar{x} \rightarrow \bar{x}$ such that $\bar{A}P = PA$. Here \bar{A} (or A mod V) is called the map induced by A in X/V. Please see [4] for further geometrical preliminaries.

2. Conditioned Invariant Subspaces

Conditioned invariant subspaces have been introduced before [1], [2] & [3]. They play a dual role to controlled invariant subspaces and can be introduced from this point of view. However, it is more natural to view them either in the context of output injection or in the context of observer design. In this section, we will use both output injection and observer design schemes to develop the theory of conditioned invariant subspaces and consequently show the relation between these two approaches. We consider a linear, finite dimensional, deterministic system given by

$$\dot{z}(t) = Az(t)$$

and encouragement in this research.
\[y(t) = Cz(t) \tag{2-1} \]

Where \(x(t) \in X = \mathbb{R}^n \) is the state of the system, \(y(t) \in Y = \mathbb{R}^{\nu} \) is measured outputs and \(C, A \) are maps of appropriate dimensions.

Definition 1: A subspace \(S \subseteq X \) is said to be *conditioned invariant*, if for all \(z_0 \in S \), there exists a constant output injection \(L : Y \to X \) in (2-1) that renders \(x(t) \) in \(S \) for all \(t \geq 0 \), i.e., after incorporation of output injection map \(L \), \(\dot{z}(t) = Ax + Ly \), and \(z(t) = e^{(A+LC)t}z_0 \in S \) for all \(t \).

Remark: Let \(\mathcal{S} \) denote the class of conditioned invariant subspaces, then definition 1 implies that \(S \in \mathcal{S} \) if there exists a map \(L : Y \to X \) such that \((A + LC)S \subseteq S\).

The following characterizations of conditioned invariant subspaces are equivalent.

First, we consider a state observer for the system (2-1) of the form:

\[\dot{w}(t) = Kw(t) + Fy(t) \tag{2-2} \]

Where \(w(t) \in W = \mathbb{R}^\pi \) is the state of the observer; \(K \in \mathbb{R}^{\pi \times \nu} \) and \(F \in \mathbb{R}^{\pi \times \nu} \). Then we have

Lemma 2: A subspace \(S \subseteq X \) is conditioned invariant if and only if there exist maps \(K \) & \(F \) in (2-2) such that \(w(0) = x(0) \mod S \) implies that \(w(t) = x(t) \mod S \) for all \(t \geq 0 \).

Remark: Let \(P : X \to X/S \) be the canonical projection. By Lemma 2, \(S \in \mathcal{S} \) if and only if there exist maps \(K \) & \(F \) such that \(Pz(t) \) satisfies (2-2).

Second, we have

Lemma 3: A subspace \(S \subseteq X \) is conditioned invariant if and only if \(A(S \cap \ker C) \subseteq S \).

Proof: We show that Definition 1 implies Lemma 2; Equation (2-2) implies Lemma 3 and that \(A(S \cap \ker C) \subseteq S \) implies Definition 1. This completes the proof of Lemma 2 and Lemma 3 together. (i) Suppose that \(S \) is conditioned invariant, then by definition there exists a map \(L : Y \to X \) such that \((A + LC)S \subseteq S\). Let \(K = (A + LC) \mod S \), \(F = -L \mod S \) and in (2-1) we have:

\[\dot{Pz}(t) = PAz(t) = P(A + LC - LC)z(t) = (A + LC) \mod S \ z(t) - PLy(t) = KPz(t) + Fy(t) \]

which shows necessity part of Lemma 2.

(ii). From the above arguments we know that if \(S \) is conditioned invariant, then there exists an observer of the form (2-2) such that \(w(t) - Pz(t) = 0 \) for all \(t \). Thus, for all \(z \in S \cap \ker C \), it follows that \(P\dot{z}(t) = PAz(t) = KPz(t) + FCz(t) = 0 \) and \(A \ z(t) \in \ker P = S \) for all \(t \). This establishes the necessity part of Lemma 3.

(iii). Lemma 3 implies Definition 1. Suppose that \(S \subseteq X \) satisfies \(A(S \cap \ker C) \subseteq S \). Then, let \(\{v_1, \ldots, v_r\} \) be a basis for \(S \cap \ker C \) and complete this basis for \(S \) by \(\{v_1, \ldots, v_r, v_{r+1}, \ldots v_\nu\} \). Define \(L_0 : CS \to X \) by
and let \(L \) be any extension of \(L_0 \) to \(Y \). Then, \((A + LC)v_i \subset S, \) \(i = 1, \ldots, q \), and \((A + LC)S \subset S \). This proves sufficiency part of Lemma 3.

Thus, we have three alternative ways to characterize conditioned invariant subspaces, namely a subspace \(S \subset X \) in (2-1) is conditioned invariant if and only if one of the following conditions holds: (1) there exists \(L : Y \rightarrow X \) such that \((A + LC)S \subset S \), (2) \(A(S \cap \text{Ker}C) \subset S \) and (3) there exists an observer of the form (2-2) such that \(Pz(t) \) satisfies the equation with \(P : X \rightarrow X/S \).

Characterization (2) is commonly referred to as the geometric characterization; characterization (1) the injection characterization, and (3) the observer characterization. By (2), conditioned invariant subspace is also referred to as \((C,A)\)-invariant subspaces and both terminologies will be used interchangeably in the sequel. The set of maps that satisfy (1) are called the "friends of \(S \)" denoted as \(L(S) \).

Remark: A simpler version of Lemma 2 without using projections is:

Lemma 2': Given a map \(H : X \rightarrow Z \) with \(Z = \mathbb{R}^r \), if there exists an observer of the form (2-2) and \(w(t) - Hz(t) = 0 \) for all \(t \), then \(S = \text{Ker}H \) is conditioned invariant.

A further generalization of Lemma 2' leads to:

Lemma 4: Suppose \(H \) is the map defined as in Lemma 2', and \(S = \text{Ker}H \), which may or may not be conditioned invariant. If there exist maps \(K, F \) & \(N \) such that:

\[
\dot{w}(t) = Kw(t) + Fy(t)
\]

and \(Nw(t) - Hz(t) = 0 \), then \(S \) is conditioned invariant.

Proof: Without loss of generality, we may assume that the pair \((N, K)\) is observable for otherwise we could factor out the unobservable kernel of \((N, K)\). Now for all \(z \in S \cap \text{Ker}C \), \(Nw(t) - Hz(t) = 0 \) implies that \(Nw(t) = 0 \) for all \(t \). Thus, \(w(t) \) and therefore \(\dot{w}(t) \in \text{Ker}N \) for all \(t \). It then follows that \(H\dot{z}(t) = N\dot{w}(t) = 0 \) and by (2-1) we have \(H\dot{z}(t) = HAz(t) = 0 \). This shows that \(A \dot{z}(t) \in \text{Ker}H = S \) and by Lemma 2, \(S \) is conditioned invariant. Actually from (2-4), if \(z \in S \cap \text{Ker}C \), then \(\dot{w}(t) \in \text{Ker}N \) implies that \(w(t) = 0 \) for all \(t \) since \((N, K)\) is observable and \(y(t) = 0 \).

We now wish to define when the output injection in (2-1) will be called stable. Towards this goal, let us first fix some (symmetric) part of the complex plane that we wish to associate the word "stable" with; write \(\mathbb{C}_g \) for this part of \(\mathbb{C} \), and \(\mathbb{C}_b \) for its complement in \(\mathbb{C} \). For an operator \(A \) acting on a linear space \(X \), we write \(X_g(A) \) for the subspace of \(X \) spanned by the (generalized) eigenvectors of \(A \) associated with eigenvalues in \(\mathbb{C}_g \), and define \(X_b(A) \) analogously. We recall that, if \(S \) is an \(A \)-invariant subspace of \(X \), the operator \(A \mod S \) (or \(A^\perp \)), induced by \(A \) on \(X/S \) is stable if and only if \(X_b(A) \subset S \).
Definition 5: A conditioned invariant subspace S_g is said to be a complementary detectability subspace (relative to C_g) if i) it is conditioned invariant, and ii) there exists $L \in L(S_g)$ such that $\sigma (A + LC) \mod S_g \subset C_g$.

Similarly, we have

Definition 6: A conditioned invariant subspace N is said to be a complementary observability subspace if i) it is conditioned invariant and ii) for any given set Λ of ρ symmetric complex numbers, with $\dim(N) = n - \rho$, there exists a map $L \in L(N)$ such that $\sigma (A + LC) \mod N \subset C_g$.

Definitions 5 & 6 will become clearer as we get into the problem of disturbance decoupling by output injection. Denote the family of complementary detectability (complementary observability) subspaces by S_g (N). We have, as a consequence of Lemma 2:

Proposition 7: $S_g \in S_g$ (or $N \in N$) if and only if there exist maps K & F with $\sigma (K) \subset C_g$ (or $\sigma (K)$ can be arbitrarily assigned in C) such that $Pz(t)$ satisfies $\dot{w}(t) = Kw(t) + Fy(t)$.

Proof: Similar to the proof of Lemma 2, except with the extra requirement that $\sigma (A + LC)$ belongs to C_g (or assignable in C).

Let S_g be any conditioned invariant subspace, and let maps $L : Y \to X$, $G : Y \to \hat{Z}$ with $\hat{Z} = R^n$ for some n, satisfy $L \in L(S_g)$ and $\ker GC = S_g + \ker C$. Such choice of G is possible because $\ker C \subset \ker GC$ for any $G : Y \to \hat{Z}$ and $\ker C \subset \ker C + S_g$. Denote the nonempty set of such pairs of maps L & G by $\Phi (S_g)$.

Proposition 8: Assume $S_g \subset X$ (or $N \subset X$) is a conditioned invariant subspace and assume $(L, G) \in \Phi (S_g)$ (or $\Phi (N)$), then S_g (or N) is a complementary detectability (or a complementary observability) subspace if and only if $(A + LC, GC) \mod S_g$ (or $\mod N$) is detectable (or observable).

Proof: The if part is obvious because by detectability of $(A + LC, GC) \mod S_g$ there exists a map \hat{L} such that $\sigma (A + LC + \hat{L} GC) \mod S_g = \sigma (A + (L + \hat{L} G)C) \mod S_g$ belongs to C_g. In order to prove the necessity part, we notice that if $(A + \hat{L} C) \mod S_g \subset C_g$ for some \hat{L}, we must have

\[(\hat{L} - L)CS_g \subset S_g \subset S_g + \ker C \]

Hence, $\hat{L} C = LC + L_0 GC$, for some L_0. Define $L_1 = (L + L_0 G)$, it follows $\sigma (A + L_1 C) \mod S_g = \sigma (A + \hat{L} C) \mod S_g \subset C_g$ and $A + L_1 C = A + LC + L_0 GC$.

Remark: Proposition 8 is a direct dualization of proposition 2.16 of Hautus [5].

Consequently, from Lemma 4 we have:

Proposition 9: Let S_g be any conditioned invariant subspace of X in system (2-1). S_g is a complementary detectability subspace if and only if the observer (2-2) in Lemma 4 is stable, i.e., $\sigma (K) \subset C_g$ and $P : X \to X / S_g$.

Proof: Analogous to the proof of Lemma 3.
If poles of K can be placed arbitrarily, then \mathcal{S}_f is a complementary observability subspace.

Lemma 10: The class of (C, A)-invariant subspaces is closed under the operation of subspace intersection, i.e., $S_1, S_2 \in \mathcal{S} \Rightarrow S_1 \cap S_2 \in \mathcal{S}$.

Proof: $S_i \in \mathcal{S}$ implies $A(S_i \cap \text{Ker}C) \subset S_i$, for $i = 1,2$. But, $S_1 \cap S_2 \subset S_1$ and $S_1 \cap S_2 \subset S_2$. Thus,

$$A(S_1 \cap S_2 \cap \text{Ker}C) \subset A(S_1 \cap \text{Ker}C) \subset S_1$$

and

$$A(S_1 \cap S_2 \cap \text{Ker}C) \subset A(S_2 \cap \text{Ker}C) \subset S_2$$

Combining (2-6) with (2-7) we have: $A(S_1 \cap S_2 \cap \text{Ker}C) \subset S_1 \cap S_2$. \qed

Let Ψ be a given subspace of X, which may or may not be conditioned invariant. By Lemma 10, there exists an infimal (C,A)-invariant subspace that contains Ψ, denoted by S_Ψ^*, such that:

(i). $S_\Psi^* \in \mathcal{S}$,

(ii). $\Psi \subset S_\Psi^*$

(iii). $S \in \mathcal{S}$ and $\Psi \subset S$ implies that $S_\Psi^* \subset S$.

S_Ψ^* is just the intersection of all conditioned invariant subspaces that contain Ψ. The following proposition gives an explicit expression for S_Ψ^*

Proposition 11: $S_\Psi^* \subset X$ is the infimal (C,A)-invariant subspace containing Ψ if and only if

$$S_\Psi^* = \Psi + <A \mid \Psi \cap \text{Ker}C>$$

Proof: We have to show that S_Ψ^* satisfies the three requirement in its definition.

(i). Construct a basis $\{ \nu_1, \ldots, \nu_r \}$ for $\Psi \cap \text{Ker}C$ and extends this basis for Ψ to $\{ \nu_1, \ldots, \nu_r, \nu_{r+1}, \ldots, \nu_k \}$. Complete the basis for S_Ψ^* to $\{ \nu_1, \ldots, \nu_r, \nu_{r+1}, \ldots, \nu_k, \nu_{k+1}, \ldots, \nu_p \}$. We define a map L_s such that

$$A\nu_i = -L_s C\nu_i, \quad \text{for } i = r+1, \ldots, k$$

and

$$L_s C\nu_i = 0, \quad \text{for } i = k+1, \ldots, p$$

(2-9)

Since $<A \mid \Psi \cap \text{Ker}C>$ is A-invariant, it follows from (2-9) and the construction of the basis set that

$$(A + L_s C)\nu_i = A\nu_i \in <A \mid \Psi \cap \text{Ker}C> \subset S_\Psi^*, \text{ for } i = 1, \ldots, r, k+1, \ldots, p$$

(2-10)

and therefore

$$(A + L_s C)\nu_i \in S_\Psi^*, \quad \text{for } i = 1, \ldots, p$$

(2-11)

Let L be the completion of L_s we have
\[(A + LC)S^\psi \subset S^\psi\] \hspace{1cm} (2-12)

This shows that \(S^\psi \in \mathcal{S}\).

(ii). \(\Psi \subset S^\psi\) is obvious from (2-8).

(iii). Suppose that \(S \in \mathcal{S}\) is any conditioned invariant subspace that contains \(\Psi\), then

\[S^\psi = \Psi + \langle A \mid \Psi \cap \ker C \rangle\]
\[\subset \Psi + \langle A \mid S \cap \ker C \rangle \quad \text{(since } \Psi \subset S)\]
\[\subset \Psi + S \quad (S \in \mathcal{S})\]
\[\subset S\]

This completes our proof. \(\square\)

In an analogous fashion, we have the following proposition for \(N^\psi\), the infimal complementary observability subspace that contains \(\Psi\).

Proposition 12: \(N^\psi\) is the infimal complementary observability subspace containing \(\Psi\) if and only if

\[N^\psi = \langle S^\psi + \ker C \mid A + LC \rangle\]

for \(L \in L(S^\psi)\)

Remark: Proposition 12 could also be obtained through a direct dualization of Theorem 5-5, Wonham [4].

Proof: (i). The subspace \(\langle \ker C \mid A \rangle = \langle \ker C \mid A + LC \rangle\) for \(L \in L(S^\psi)\) clearly belongs to \(N^\psi\). This implies that \(N^\psi\) is complementary observable and therefore \(N^\psi \in N\).

(ii). Since in (2-14) \(L \in L(S^\psi)\), then \((A + LC)^i(S^\psi + \ker C) \supset (A + LC)^{-1}S^\psi = S^\psi\), for \(i = 1, \ldots, n-1\) and it follows that \(\Psi \subset N^\psi\).

(iii). Let \(N\) be any complementary observability subspace that contains \(\Psi\). Then, \(S^\psi \subset N\) and \(\langle \ker C \mid A \rangle \subset N\), i.e., \(N\) contains the largest \(A\)-invariant factors of \(\ker C\). Let \(V_1\) be the largest \(A\)-invariant factor in \(\ker C\) and \(V_2\) be its direct summand, i.e., \(V_1 + V_2 = \ker C\). We claim that \((S^\psi + \ker C) \cap (A + LC)^{-1}(S^\psi + \ker C) \subset N^\psi\). To see this, if \(v_2 (\in V_2) \in (A + LC)^{-1}(S^\psi + \ker C)\), then \((A + LC)v_2 = Av_2 \in S^\psi + \ker C\). Since \(V_1\) is the largest \(A\)-invariant factor in \(\ker C\), \(Av_2 \in S^\psi\). Thus \(v_2 \in S^\psi \subset N\). This completes our proof of \(N^\psi \subset N\). \(\square\)

Lemma 13: \(S^\psi\) is invariant in the sense that \((A + LC)S^\psi \subset S^\psi\) for every \(L: Y \to X\).

Proof: Since \(S^\psi\) is the infimal complementary detectability subspace, it follows that \(S^\psi \subset \langle \ker C \mid A \rangle\) and thus \(S^\psi \subset \ker C\). But \(A(S^\psi \cap \ker C) \subset S^\psi\) implies that \(AS^\psi \subset S^\psi\) and therefore, \((A + LC)S^\psi = A S^\psi \subset S^\psi\) for every map \(L: Y \to X\). \(\square\)
The following algorithms are conceptual algorithms for computing S^Ψ and N^Ψ. Please refer to Moore & Laub [9] for numerically stable algorithms.

Define two sequences by:

$$S^0 = 0,$$

$$N^0 = X$$

$$S^{\mu+1} = \Psi + A(S^\mu \cap \text{Ker}C)$$

$$N^{\mu+1} = \Psi + (A^{-1}N^\mu) \cap \text{Ker}C$$

Then, $S^\Psi = S^{\infty} = S^{n-\text{dim} \Psi+1}$, $N^{\infty} = N^{n-\text{dim} \Psi}$ and $N^\Psi = S^\Psi + N^{\infty}$.

We first observe that the sequence S^μ is nondecreasing, and $S^{\infty} = \lim_{\mu \to \infty} S^\mu$. If $\{S^\mu + 1 = S^\mu\}$, then $\{S^\mu = S^{\infty}\}$. Similarly, the N^μ sequence is nonincreasing, and $N^{n-\text{dim} \Psi} = N^{\infty} = \lim_{\mu \to \infty} N^\mu$ implies that $\{N^\mu = N^{\infty}\}$. A careful inspection reveals that the above sequences are just decompositions of (2-9) and (2-14) in Proposition 11 and 12 respectively.

3. Disturbance Decoupling by Output Injection

We consider the following dynamical system:

$$\dot{x}(t) = Ax(t) + Eq(t)$$

$$y(t) = Cz(t)$$

$$z(t) = Hz(t)$$

(3-1)

Where $q(t) \in \mathbb{R}^n$ is the disturbance, $z(t) \in \mathbb{R}^n$ is the outputs to be controlled.

The problem of disturbance decoupling by output injection (OIP) is: find a constant injection map $L : Y \to X$ in (3-1) so that the transfer function from the disturbance term $q(t)$ to the controlled outputs $z(t)$ is identically zero.

After incorporating output injection in (3-1) we have:

$$\dot{x}(t) = (A + LC)x(t) + Eq(t)$$

(3-2)

and OIP requires that:

$$z(t) = H \int_0^t e^{(A + LC)(t-r)}Eq(r)dr = 0$$

(3-3)

(3-3) is satisfied if there exists a conditioned invariant subspace S that containing $\text{Im}E$ is contained in $\text{Ker}H$. Namely, that there exists a map $L : Y \to X$ such that

$$\langle A + LC \mid \text{Im}E \rangle \subseteq \text{Ker}H$$

(3-4)
Theorem 14: OIP is solvable if and only if $S_{\text{imE}} \subset \text{Ker} H$.

Proof: (\rightarrow) If L solves OIP, then the subspace

$$S = \langle A + LC \mid \text{ImE} \rangle$$

(3-5)

belongs to $\text{Ker} H$. It then follows that $S_{\text{imE}} \subset S \subset \text{Ker} H$.

(\leftarrow) Choose $L \in L(S_{\text{imE}})$, we have from $\text{ImE} \subset S_{\text{imE}}$.

$$\langle A + LC \mid \text{ImE} \rangle \subset \langle A + LC \mid S_{\text{imE}} \rangle = S_{\text{imE}} \subset \text{Ker} H$$

Let us now formulate the stability requirement. Since the exponents appearing in the dynamics of the controlled outputs are precisely the points in the spectrum of the operator $(A + LC) \mod S$ induced by $(A + LC)$ on the quotient space X/S, we get as our second stability requirement:

$$\sigma(A + LC) \mod S \subset \mathbb{C},$$

(3-6)

Consequently, we have the problem of disturbance decoupling by output injection with stability (OIPS) to be solvable if both requirements (3-4) & (3-6) are met. For OIP with pole placement (OIPPP) one requires further, in addition to (3-4), that the poles of $(A + LC) \mod S$ be arbitrarily assignable in \mathbb{C}.

Theorem 15: OIPS is solvable if and only if $S_{\text{imE}} \subset \text{Ker} H$; and OIPPP is solvable if and only if $N_{\text{imE}} \subset \text{Ker} H$.

Proof: Analogous to the proof of Theorem 14.

We now consider a slightly modified version of the output injection problem (OIP') with the controlled outputs of the form:

$$z(t) = Hz(t) - Ny(t)$$

(3-7)

(3-7) implies that we can subtract some linear combinations of the measured outputs from the controlled outputs and then decouple the disturbance from the new outputs.

Lemma 16: Let Ψ be a subspace of X, then $\Psi \cap \text{Ker} C \subset \text{Ker} H$ if and only if there exists a map N such that $\Psi \subset \text{Ker}(H - NC)$.

Proof: Follows along the lines of the proof of Lemma 3.

It follows from Theorem 14, Theorem 15 and Lemma 16 that:

Theorem 17:

(a) OIP' is solvable if and only if $S_{\text{imE}} \cap \text{Ker} C \subset \text{Ker} H$.

(b) OIPS' is solvable if and only if $S_{\text{imE}} \cap \text{Ker} C \subset \text{Ker} H$.

(c) OIPPP' is solvable if and only if $N_{zE} \cap \text{Ker}C \subset \text{Ker}H$.

Remark: Using Proposition 8, we can achieve two-step design in the solutions of OIPS and OIPPP. (i) Choose any map $L \in L(S)$ so as to hold $\text{Im}E$ in S and subsequently filter the measured outputs by G. Thus $(A + LC, GC) \mod S$ is detectable (or observable). (ii) Apply output injection L_1 with the filtered outputs to stabilize the whole process, i.e., $\sigma (A + LC + L_1 GC) \mod S$ belongs to C_f (or C_u).

4. Disturbance Decoupled Estimation Problem

The problem of disturbance decoupled estimation (DDEP) has been treated in the literature, see for example Willems [1] and Schumacher [3]. Here in this section, we will use the theory developed in section 2 for conditioned invariant subspaces to give a simpler proof of the DDEP results and establish a relation between OIP and DDEP.

Consider again the dynamical system

$$\dot{z}(t) = Az(t) + Eq(t)$$

$$y(t) = Cz(t), \quad z(t) = Hx(t)$$

(4-1)

Where $z(t)$ are the outputs to be estimated (instead of controlled outputs in OIP). The problem of disturbance decoupled estimation (DDEP) is the problem of constructing an observer of the form:

$$\dot{w}(t) = Kw(t) + Fy(t)$$

(4-2)

$$\dot{\hat{z}}(t) = Nw(t)$$

(4-3)

such that the resulting estimation error

$$e(t) = \hat{z}(t) - z(t)$$

(4-4)

depends only on the initial conditions $w(0), z(0)$ and not on the disturbance. The problem of disturbance decoupled estimation with stability (DDEPS) further requires that $\sigma (K) \subset C_f$ and DDEP with pole placement (DDEPPP) requires spectrum of the error dynamics be arbitrarily assignable in C.

In comparison to OIP, where we desire to hold $\text{Im}E$ in $\text{Ker}H$ through output injection, we need here to estimate the states lying in the space $X/\text{Ker}H$ with the estimation error independent of the disturbance.
Theorem 18: (a). DDEP is solvable if and only if \(S_{\text{ImE}}^* \subset \ker H \).

(b). DDEPS is solvable if and only if \(S_{\text{ImE}}^* \subset \ker H \).

(c). DDEPPP is solvable if and only if \(N_{\text{ImE}}^* \subset \ker H \).

Remark: The solvability conditions for DDEP, DDEPS and DDEPPP are then precisely the same as that of OIP, OIPS and OIPPPP respectively.

Before proving Theorem 18, we need the following important result:

Lemma 19: Let \(S \) be a subspace of \(X \) in (4-1) that contains \(\text{ImE} \). Then, there exists an injection \(L: Y \rightarrow X \) such that \(\langle A + LC | \text{ImE} \rangle \subset S \) if and only if there exist maps \(K, F \in N \) such that

\[
\dot{w}(t) = Kw(t) + Fy(t) \quad (4-5)
\]

and \(Nw(t) - Pz(t) = 0 \quad (4-6) \)

where \(P: X \rightarrow X/S \) is the canonical projection.

Proof: \((\rightarrow)\) Let \(S_1 = \langle A + LC | \text{ImE} \rangle \subset S \), then \(S_1 \subset S \), and \(\text{ImE} \subset S_1 \). By Lemma 2, there exist maps \(K, F \in N \) such that

\[
\dot{w}(t) = Kw(t) + Fy(t) \quad (4-7)
\]

and \(w(t) - P_1z(t) = 0 \quad (4-8) \)

where \(P_1: X \rightarrow X/S_1 \). Let \(P: X \rightarrow X/S \) and \(S_1 \subset S = \ker P \) implies that there exists a unique \(\bar{N}: X/S_1 \rightarrow X/S \) such that \(P = \bar{N}P_1 \). From (4-8), we have

\[
\bar{N}w(t) - \bar{N}P_1z(t) = \bar{N}w(t) - Pz(t) = 0 \]

\((\leftarrow)\) Using Lemma 4, \(S \) is then conditioned invariant and \(L \in L(S) \) will do the job. □

Stability and pole placement versions of Lemma 19 follow trivially from the fact that \(\sigma(K) \subset C \) and \(\sigma(A + LC) \mod S \subset C \) or that both \(\sigma(K) \) and \(\sigma(A + LC) \mod S \) must be arbitrarily placed in \(C \). For the sake of completeness, we state this as a lemma and leave the verifications to the reader.

Lemma 20: Let \(S_g \) (or \(N \)) be a given subspace of \(X \) that contains \(\text{ImE} \). Then there exists an injection map \(L: Y \rightarrow X \) as defined in Lemma 19 and \(\sigma(A + LC) \mod S_g \subset C_g \) (or \(\sigma(A + LC) \mod N \) is assignable in \(C \)) if and only if there exist maps \(K, F \in N \) as defined in (4-5), (4-6), of course with \(P: X \rightarrow X/S_g \) (or \(P: X \rightarrow X/N \)), and that \(\sigma(K) \subset C_g \) (or assignable in \(C \)).
Proof (of Theorem 18-a): Suppose that \(S'_{\text{imE}} \subseteq \text{Ker}H \). Write \(S = \text{Ker}H \), and let \(L \in L(S'_{\text{imE}}) \). Then, \(<A + LC \mid \text{ImE} > \subseteq <A + LC \mid S'_{\text{imE}} > \subseteq \text{Ker}H = S \). Solvability of DDEP then follows from Lemma 19. Conversely, if there exist maps \(K, F \& N \) that solve DDEP, then it is necessary that \(\text{ImE} \subseteq \text{Ker}H = S \). Using Lemma 19 again our conclusion follows.

The proofs of (Theorem 18-b) and of (Theorem 18-c) proceed analogously to the above argument.

Remark: By Theorem 18, holding disturbance for the system (4-1) in \(\text{Ker}H \) is as good as estimating \(z \mod \text{Ker}H \) with estimation error independent of the disturbance.

Now, let us consider the modified version of DDEP (DDEP'), namely with the estimator of the form

\[
\dot{z}(t) = Nw(t) + My(t)
\]

(4.9)

Then, it may be be easily verified that

Corollary 21: (a) DDEP' is solvable if and only if \(S'_{\text{imE}} \cap \text{Ker}C \subseteq \text{Ker}H \).

(b) DDEPS' is solvable if and only if \(S'_{\text{imE}} \cap \text{Ker}C \subseteq \text{Ker}H \).

(c) DDEPPP' is solvable if and only if \(N'_{\text{imE}} \cap \text{Ker}C \subseteq \text{Ker}H \).

5. Solutions of \(X(s)M(s) = Q(s) \)

In the design of multivariable control systems, one frequently encounters the problem of solving rational matrix equations on various rings. In particular, solutions of \(M_1(s)X(s) = M_3(s) \), \(X(s)M_2(s) = M_3(s) \) and \(M_1(s)X(s)M_2(s) = M_3(s) \) are extremely important in the algebraic design methodology (see [10]). Using developments in geometric control theory, one is able to solve \(M_1(s)X(s) = M_3(s) \) in state space form using the concept of \((A, B)\) - invariance along with the scheme of disturbance decoupling by state feedback. In [13] a complete description to the solutions of \(M_1(s)X(s) = M_3(s) \) in state space form was given. In parallel to the work of [13], we will give in this section complete solutions to the matrix equation \(X(s)M_2(s) = M_3(s) \). In a later paper, we will treat the third problem, namely solutions of \(M_1(s)X(s)M_2(s) = M_3(s) \) in state space form. In this section and the section that follows, we will fix \(\mathcal{C} \) to be the open left half plane \(\mathcal{C}_- \). So when we say \(\mathcal{C}_+ \), we really means \(\mathcal{C}_- \).

Given the equation:

\[
X(s)M(s) = Q(s)
\]

(5.1)

where \(M(s) \in \mathbb{R}_{p,o}^{n\times n}(s) \), \(Q(s) \in \mathbb{R}_{p,o}^{n\times n}(s) \) and \(X(s) \) unknown, we want to solve for \(X(s) \) over one of the following rings: (1) \(\mathbb{R}_{p,o}(s) \), (ii) \(\mathbb{R}_{p,o}(s) \), (iii) \(\mathbb{R}_{p,u}(s) \) and (iv) any of the above rings with no restriction that the solution be strictly proper, only that it be proper.
The solution of (5-1) proceeds in two steps: First, we check certain solvability conditions to be derived in this section; Second, if they are satisfied we give descriptions of the solution in state space form.

To verify solvability of (5-1), we concatenate M(s) with Q(s) to form a new transfer function G(s) and realize G(s) as in (5-2). Partition the \hat{H} matrix as shown in (5-2).

$$G(s) = \begin{bmatrix} M(s) \\ Q(s) \end{bmatrix} = \hat{H}(sI-A)^{-1}E = \begin{bmatrix} C \\ H \end{bmatrix}(sI-A)^{-1}E$$ \hspace{1cm} (5-2)

Thus, $M(s) = C(sI-A)^{-1}E$, $Q(s) = H(sI-A)^{-1}E$ and (5-1) is equivalent to

$$X(s)C(sI-A)^{-1}E = H(sI-A)^{-1}E$$ \hspace{1cm} (5-3)

Recall now that the OIP is solvable if and only if the transfer function from $q(s)$ to $\hat{z}(s)$ is zero, i.e.

$$\hat{z}(s) = H(sI-A-LC)^{-1}Eq(s) = 0$$ \hspace{1cm} (5-4)

Using the identity $(I + PQ)^{-1} = I - P(I + QP)^{-1}Q$ in (5-4) we have:

$$\hat{z}(s) = H(sI-A)^{-1}[I - LC(sI-A)^{-1}]Eq(s)$$

$$= H(sI-A)^{-1}[I + LC(sI-A)^{-1}]Eq(s)$$

$$= [H(sI-A)^{-1}E + H(sI-A-LC)^{-1}LC(sI-A)^{-1}E]q(s)$$

$$= 0$$ \hspace{1cm} (5-5)

(5-5) holds for all $q \in \mathbb{R}^n$ if and only if

$$H(sI-A)^{-1}E + H(sI-A-LC)^{-1}LC(sI-A)^{-1}E = 0$$ \hspace{1cm} (5-6)

With $X(s) = -H(sI-A-LC)^{-1}L$ in (5-6), we see that there exists a correspondence between the solution of (5-1) and the solution of OIP (or DDEP). The following theorems in fact establish their exact equivalences.

Theorem 22: (a). (5-1) is solvable over $\mathbb{R}^{n \times n}_p(s)$ if and only if $S_{mE}^p \subset \ker H$.

(b). (5-1) is solvable over $\mathbb{R}^{n \times n}_p(s)$ if and only if $S_{mE}^p \cap \ker C \subset \ker H$.
Proof (of Theorem 22-a): () if there exists \(X(s) \in \mathbb{R}^{n_x \times n_z}(s) \) that solves (5-1), then by (5-3)

\[
[X(s)C(sI-A)^{-1}E - H(sI-A)^{-1}E] \tilde{q}(s) = 0
\text{ for all } \tilde{q}(s)
\]

(5-7)

In the DDEP, \(y(s) = C(sI-A)^{-1}E \tilde{q}(s) \), \(z(s) = H(sI-A)^{-1}E \tilde{q}(s) \) and (5-7) implies that the DDEP is solvable with the observer defined by

\[
\dot{\omega}(t) = Kw(t) + Fy(t)
\]

(5-8)

\[
\dot{z}(t) = Nw(t)
\]

where \(N(sI-K)^{-1}F = X(s) \). It then follows from Theorem 18 that \(S_{\text{imE}}^* \subset \text{Ker}H \).

() If \(S_{\text{imE}}^* \subset \text{Ker}H \), then both the OIP and the DDEP are solvable. \(X(s) = -H(sI-A-LC)^{-1}L \) with \(L \in L(S_{\text{imE}}^*) \), or \(X(s) = N(sI-K)^{-1}F \), the observer transfer function, is a solution of (5-1). \(\square \)

The proof of (Theorem 22-b) follows from OIP' and DDEP'.

Theorem 23. If \((A,E)\) is stabilizable, then (5-1) is solvable over \(\mathbb{R}^{n_x \times n_z}(s) \) if and only if \(S_{\text{imE}}^* \subset \text{Ker}H \).

Theorem 23 is the stable version of Theorem 22. The importance of this theorem lies in the fact that usually only stable solutions to (5-1) are needed in real control system design. By the theorem, existence of a strictly proper and stable \(X(s) \) that solves (5-1) is completely equivalent to the solvability of DDEPS or of OIPS. The proof of Theorem 23 proceeds in two steps. First we prove the following lemma:

Lemma 24: If the proper rational function \(X(s) \) is stable and the pair \((A,E)\) is stabilizable, then

\[
X(s)C(sI-A)^{-1}E - H(sI-A)^{-1}E = 0
\]

(5-9)

implies that

\[
u(s) = X(s)C(sI-A)^{-1}z(0) - H(sI-A)^{-1}z(0)
\]

(5-10)

is stable for all initial conditions \(z(0) \).

The proof of Lemma 24 is somewhat lengthy but is straigh forward.

Proof: Since \(X(s) \) is stable, we can only consider the case where \(z(0) \in X_1(A) \). Again, \(X_1(A) \) denotes the subspace of \(X \) spanned by the (generalized) eigenvectors of \(A \) corresponding to eigenvalues in \(C_1 \). For if \(z(0) \in X_1(A) \), then stability of (5-10) is automatically guaranteed.
First, let's assume that \(\nu \in X_k(A) \) is a generalized eigenvector of \(A \) of degree \(k \) corresponding to eigenvalue \(\lambda \in C \). Then, \((A - \lambda I)^i \nu \neq 0 \) for \(1 \leq i \leq k-1 \) and \((A - \lambda I)^k \nu = 0 \). Denote this generalized eigenvector chain by \(\{\nu_i\}_{i=1}^k \), where \(\nu_k = \nu \) and \(\nu_i = (A - \lambda I)^{k-i} \nu \) for \(i = 1, \ldots, k-1 \). Stabilizability of \((A, E) \) implies that for each \(\nu_i \), there exists an input \(q_i \in \mathbb{R}^n \) such that

\[
\nu_i = \int_0^t e^{A(t-\tau)}E q_i(\tau) d\tau, \quad 0 < t < \infty
\]

(5-11)

Taking the Laplace transform of the above expression we have

\[
\frac{\nu_i}{s} = (sI - A)^{-1}E \hat{q}_i(s)
\]

(5-12)

Thus, \(\nu_i = (sI - A)^{-1}E \hat{q}_i(s) \), where \(\hat{q}_i(s) = s^i \hat{q}_i(s) \). Multiply equation (5-9) by \(\hat{q}_i(s) \) to give

\[
X(s)C(sI - A)^{-1}E \hat{q}_i(s) - H(sI - A)^{-1}E \hat{q}_i(s) = \{X(s)C - H\} \nu_i = 0
\]

(5-13)

Now, consider the expression \((sI - A)^{-1}z(0) \). Without loss of generality, we may assume that \(z(0) \) is a linear combination of the generalized eigenvector chain \(\{\nu_i\}_{i=1}^k \) alone, i.e.,

\[
z(0) = \sum_{i=1}^k \alpha_i \nu_i \text{ for some constant } \alpha_i \text{'s.}
\]

Thus

\[
(sI - A)^{-1}z(0) = \left(\frac{I}{s} + \frac{A}{s^2} + \frac{A^2}{s^3} + \cdots \right)z(0)
\]

(5-14)

In turn using the definition of generalized eigenvectors, we have

\[
(sI - A)^{-1}z(0) = \sum_{i=1}^k \hat{\alpha}_i(s, \lambda)\nu_i
\]

(5-15)

for some \(\hat{\alpha}_i(s, \lambda) \), which is generally a function of both \(s \) and \(\lambda \).

Using (5-15) we can rewrite (5-10) as

\[
v(s) = \{X(s)C - H\} \sum_{i=1}^k \alpha_i(s, \lambda)\nu_i
\]

(5-16)

On the other hand, (5-13) implies that

\[
\{X(s)C - H\} \sum_{i=1}^k \alpha_i(s, \lambda)\nu_i = 0
\]

(5-17)

Which shows that (5-10) is identically zero for all initial conditions \(z(0) \in X_k(A) \) and therefore completes our proof. \(\square \)

We are now in the position to prove Theorem 23.

Proof (of Theorem 23): By the OIP, \(X(s) = -H(sI - A - LC)^{-1}L \) with \(L \in \mathcal{L}(s^{p \text{ dim}}) \) is a
stable solution of (5-1).

(—) Using a minimal realization of \(X(s) \) of the form \(N(sI-K)^{-1}F \), we may construct an observer using (N, K & F). By minimality of the realization, \(\sigma(K) = P(X(s)) \subset C \); with \(P(X(s)) \) denoting the Smith-McMillan poles of \(X(s) \). Now, consider the Laplace transform of the error term \(e(t) = \hat{z}(t) - z(t) \) in the solution of DDEPS:

\[
e(s) = N(sI-K)^{-1}w(0) + N(sI-K)^{-1}FC(sI-A)^{-1}z(0) - H(sI-A)^{-1}z(0)
\]

\[
+ N(sI-K)^{-1}FC(sI-A)^{-1}Eq(s) - H(sI-A)^{-1}Eq(s)
\]

By (5-3), the last two terms in the right hand side of (5-18) drop out. Also, \(\sigma(K) \subset C \) implies that the first term in (5-18) is stable. It follows from Lemma 24 that the remaining two terms and therefore the whole expression in (5-18) is stable for all initial conditions \(z(0) \). This shows that DDEPS is solvable and by Theorem (18-b) \(S_{f^{*},r_{e}} \subset \text{Ker}H \).

Theorem 23 gives necessary and sufficient condition for existence of a strictly proper stable \(X(s) \) that solves (5-1). For an proper and stable \(X(s) \) that also solves (5-1), we have the following result:

Corollary 25: If \((A,E)\) is stabilizable, then there exists \(X(s) \in R_{f}^{n_{x} \times n_{x}}(o) \) that solves (5-1) if and only if \(S_{f^{*},r_{e}} \cap \text{Ker}C \subset \text{Ker}H \).

For the solution of \(X(s) \) in (5-1) with pole placement we have:

Theorem 26: a) If \((A,E)\) is reachable, then there exists \(X(s) \in R_{f}^{n_{x} \times n_{x}}(u) \) that solves (5-1) if and only if \(N_{f^{*},r_{e}} \subset \text{Ker}H \).

b) With the reachability assumption of \((A,E)\) hold, there exists \(X(s) \in R_{f}^{n_{x} \times n_{x}}(u) \) that solves (5-1) if and only if \(N_{f^{*},r_{e}} \cap \text{Ker}C \subset \text{Ker}H \).

Remark 1: To prove Theorem 26 is really no more than to duplicate the proof of Theorem 23.

Remark 2: The result of Theorem 23 is no longer valid if the stabilizability condition is omitted. Consider the example \(n_{i} = n_{e} = 1, n = 2, C = \{ s | \text{Res} < 0 \}, H = [0, 1], C = [1, 0] \)

\[
A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

Then, \(S = \text{Im}E = \{ (z_{1}, 0)^{T} | z_{1} \subset R \} \) is \((C,A)\)-invariant (even \(A \)-invariant). We have \((A + LC)S \subset S \) for \(L^{'} = [l_{1}, l_{2}] \) if and only if \(l_{2} = 0 \). But then

\[
(A + LC) = \begin{bmatrix} l_{1} & 0 \\ 0 & 1 \end{bmatrix}
\]

and \(\sigma(A + LC) \mod S = \{1\} \not\subset C \). Thus, \(S_{f^{*},r_{e}} = R^{2} \) which obviously does not belong to \(\text{Ker}H \). But, \(H(sI-A)^{-1}E = 0 \), and \(C(sI-A)^{-1}E = 1/s \), (5-1) has a strictly proper stable
solution \(X(s) = 0 \).

6. Output Stabilization with Respect to Disturbances

Disturbance decoupling by output injection as described in section 3 cannot proceed without the satisfaction of the necessary condition \(HE = 0 \). In this section, we shall be content with a more modest objective, namely, attempt to find an injection \(L : Y \rightarrow X \), such that the noise to output map of the closed loop system is stable.

OSDP: Given the system (3-1), determine \(L : Y \rightarrow X \) such that \(H(sl - A - LC)^{-1}E \) is stable.

Theorem 27: OSDP is solvable if and only if \(S_{iM}^* \cap S_i^* \subset \text{Ker}H \), where \(S_i^* \) denote the infimal complementary detectability subspace.

Proof: We choose \(G_0 \), as in Proposition 8, such that \(\text{Ker}G_0C = S_i^* + \text{Ker}C = \text{Ker}C \) and \(L_0 \in L \left(S_{iM}^* \right) \), then \(S_i^* \), and therefore \(S_i^* \cap S_{iM}^* \) is \((A + L_0C)\)-invariant (see Lemma 13).

We choose a basis \((q_1, q_2, \ldots, q_n) \) of \(X \) such that \((q_1, q_2) \) is a basis of \(S_{iM}^* \cap S_i^* \), \((q_1, \ldots, q_l) \) is a basis of \(S_{iM}^* \) (where \(l \geq k \)), \((q_1, \ldots, q_{l-1}, q_{l+1}, \ldots, q_n) \) a basis of \(S_i^* \). Accordingly, we can split matrices and vectors as:

\[
A + L_0C = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
0 & A_{22} & 0 & A_{24} \\
0 & 0 & A_{33} & A_{34} \\
0 & 0 & 0 & A_{44}
\end{bmatrix}, \quad E = \begin{bmatrix}
E_1 \\
E_2 \\
0 \\
0
\end{bmatrix}
\]

\[
G_0C = \begin{bmatrix}
0 & C_2 & 0 & C_4
\end{bmatrix}, \quad H = \begin{bmatrix}
0 & H_2 & H_3 & H_4
\end{bmatrix}
\]

Since \(S_i^* \) is a complementary detectability subspace and \((L_0, G_0) \in \Phi \left(S_i^* \right) \) it follows that

\[
\begin{bmatrix}
A_{22} & A_{24} \\
0 & A_{44}
\end{bmatrix}
\]

\((C_2, C_4)\)

is detectable. Hence, \((A_{22}, C_2)\) is detectable. Therefore, there exists \(L_2 \) such that \(\sigma(A_{22}+ L_2C_2) \subset \mathbb{C} \). If we define \(\dot{L}' = [0, G'_0L'_2, 0, 0] \), we see that \(H(sI - A - (L_0 + \dot{L})C)^{-1}E = H_2(sI - A_{22} + \dot{L}_2C_2)^{-1}E_2 \) is stable if \(S_i^* \cap S_{iM}^* \subset \text{Ker}H \).

Corollary 28: a). There exists \(X(s) \in \mathbb{R}^{n_x \times n_x}(s) \) such that \(X(s)M(s) - Q(s) \) is stable if and only if \(S_i^* \cap S_{iM}^* \subset \text{Ker}H \).

b). There exists an \(X(s) \in \mathbb{R}^{n_x \times n_x}(s) \) such that \(X(s)M(s) - Q(s) \) is stable if and only if \(S_i^* \cap S_{iM}^* \subset \text{Ker}H \).

Remark: Let \(e(s) = H(sI - A - LC)^{-1}E \) in the solution of OSDP and by (5-5), \(e(s) = H(sI - A)^{-1}E + H(sI - A - LC)^{-1}LC(sI - A)^{-1}E \). Thus, the error term, i.e., \(X(s)M(s) - Q(s) \) is given by \(H_2(sI - A_{22} + \dot{L}_2C_2)^{-1}E_2 \) with \(A_{22}, C_2, H_2, \) and \(\dot{L}_2 \) defined in the proof of
Theorem 27.

7. Conclusions

We have introduced conditioned invariant, complementary detectability and complementary observability subspaces both in terms of output injection and in terms of observer design schemes. We have given detailed characterizations of the infimal \((C,A) \)-invariant subspace that contains a subspace \(\Psi \). Section 2 is a complete dualization of Chapters 4 and 5 of Wonham [4]. In sections 3 & 4, we have proposed the disturbance decoupling by output injection scheme - a natural dualization of the disturbance decoupling by state feedback (DDP) scheme and have given solutions to stability and pole placement versions of OIP. We have established a direct relation between OIP and DDEP.

We have solved \(X(s)M(s) = Q(s) \) in section 5 using OIP and DDEP: necessary and sufficient conditions for solvability of the equation with or without stability or pole placement are given and proven; and we have shown when strictly proper and when proper solutions exist to the above equation. We mention here that the techniques of [13] may be used to solve the transposed equation (5-1). Our techniques are however of independent interest. Finally, we have briefly addressed the problem of output stabilization with respect to the disturbance in the OIP scheme and have subsequently given necessary and sufficient conditions for existence of an \(X(s) \) such that the error term \(X(s)M(s) - Q(s) \) is stable.

References:

436, July 1980.

