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Abstract

Optical frequency synthesis (OFS) based on self-referenced optical combs has enabled a variety of

applications including absolute optical frequency measurements, optical spectroscopy, gas sens-

ing, light detection and ranging (LiDAR), and optical frequency metrology. Arbitrary OFS can be

achieved by locking a Continuous-Wave (CW) tunable laser to a programmable offset across mul-

tiple comb teeth. This report describes the design of a Radio Frequency (RF) frequency synthesizer

that will generate this programmable offset, enabling the optical synthesizer to span frequencies

between the comb lines with 1Hz tuning resolution and 10−13/τ Allan deviation. The RF-synth tun-

ing range requirement is 1GHz as dictated by the distance of adjacent optical comb teeth. To satisfy

these specs, a Flying Adder frequency synthesis topology is selected. A simulation framework that

evaluates the effect of different synthesizer variants on the spectral content and stability of the syn-

thesized output has been implemented in MATLAB Simulink. Simulations of this model are used

as a guide for actual circuit design choices. Finally, measurement results of the synthesizer that

has been built in silicon are presented.

viii



Chapter 1

Introduction

Since the first demonstration of optical frequency synthesis using self-referenced combs in the

early 2000’s [1]-[3] a lot of effort has been placed in the development and integration of optical

frequency synthesizers (OFS) over the past decade. This technology is expected to pave the way to

numerous applications ranging from optical spectroscopy, gas sensing, and metrology to LiDAR,

atomic clocks, and high bandwidth coherent communications [4]-[8]. However, integration of

optical synthesizers is quintessential to their widespread adaptation in these applications since their

current cost, size and power dissipation has been an effective showstopper. This can be understood

when looking at commercial products that report power consumption of 0.5kW with a form factor

of 0.14m3 [9]. The aim of the Direct On-Chip Digital Optical Synthesizer (DODOS) project is to

integrate all of the separate key components (non-linear optics, mode-lock lasers, tunable lasers,

optical modulators and CMOS RF frequency synthesizers) into a functional synthesizer system

with power dissipation of 1W and volume of 1cm3. The efforts for this project have so far, have

led to the integration of multiple photonic devices [10], [11].

The approach taken to implement this integrated OFS is to lock a Continuous-Wave (CW)

tunable laser to an arbitrary offset from a self-referenced, octave spanning comb. Generation of this

comb is achieved by pumping a Kerr medium, in this case Si, with an integrated mode-lock laser
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(MLL), and its specifics are beyond the scope of this report. The focus of this work has been on

selecting and modifying an RF frequency synthesizer topology that will create this arbitrary offset

in a programmable fashion. Once this offset is available, the RF-synth output is mixed with the

CW laser through an optical Single-Sideband (SSB) or Serrodyne modulator and the up-converted

modulator output is locked to the comb line of interest. That way, all frequencies in-between the

comb lines are generated, while the locking loop can be accounted upon to suppress potential

harmonics and spurs, originating in the modulator and/or the RF synthesizer, from showing up

at the CW laser output. The rest of this chapter will outline the modeling and design approach

followed for the RF-synth.

1.1 Scope of Work

Given the context in which this RF-synth will be operating, we derived the resolution, tuning

range and stability values that our design had to meet. Specifically, the resolution and tuning

range requirements led to the selection of a Flying-Adder (FA) frequency synthesizer topology, a

kind of RF-synth very similar in principle to a DDS, but with several additional intricacies that

complicate its behavior. From that point on we wanted to first create a simulation framework in

which behavioral models would allow us to evaluate standalone synthesizer performance as well

as synthesizer impact on the output of the overall locking loop, before proceeding to the actual

implementation of the synthesizer in silicon.

This framework was built in MATLAB Simulink, and it consisted of different types of digital

delta-sigma (∆Σ) modulator models, which are a basic building block of the FA-synth, complete

FA-synth models, as well as CW-locking loop models. Time-domain simulations of these models

helped verify theoretical expectations for synthesizer spur locations and design ∆Σ modulators that

would decrease spur level. Furthermore, using these simulation results we were able to quantify the

impact of spurious tones on the CW laser output in terms of the stability metric of interest, which

in our case was Allan deviation. Once we were satisfied with the simulation results, we went on
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to build the synthesizer chip. The core of the synthesizer was fully digital and occupied an active

area of 100µm x 140µm. Given that different ∆Σ modulator variants proved to be advantageous

for certain operating frequency ranges, and taking into account the small size of the FA-synth block

we implemented three different FA variants. The synthesized outputs of each variant were brought

out to a pad and evaluated separately. This concluded the modeling, design and measurement of

the FA-synth block to be used in the CW-laser locking loop of an integrated OFS.

1.2 Organization

The rest of this work is structured as follows: first we give a more thorough description of the

CW locking loop system, and derive the exact specs for the RF-synth in chapter 2. There, we

also establish basic relationships between the given stability metric, Allan deviation, and stability

metrics that are more familiar to circuit designers, namely phase noise and jitter. Then, in chapter 3

we go into the details of the chosen synthesizer topology, explaining the spur locations in the RF-

synth output spectrum and proving the need for modifications in the simple architecture. Chapter 4

discusses some key properties of digital ∆Σ modulators to provide some insight into the design of

the modulators and then presents simulation results from the synthesizers employing higher order

modulators. Throughout this report we attempt to refer back to the system level specifications

for resolution, tuning range and stability and show how our modifications improve initial results.

Finally, chapter 5 provides some design guidelines, implementation details, and post place and

route simulations, while chapter 6 presents preliminary measurement results from the taped-out

synthesizer chip. Chapter 7 concludes this report.
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Chapter 2

System Overview and Design Specifications

An concise overview of the OFS system is shown in Fig. 2.1. Octave spanning comb generation

through a pulse generator (MLL) pumping a Kerr material is depicted in the “Frequency Standard

Generation” block of Fig. 2.1, while self-referencing of the octave spanning comb is achieved by

the Second Harmonic Generation (SHG) block. The SHG loop ensures locking of the so called

carrier-envelope offset (fceo) which guarantees that the absolute frequency of generated comb teeth

is known and equal to fcomb = fceo + nfrep, where frep is the MLL repetition rate. The OFS also

includes the “Synthesizer” block of Fig. 2.1, which consists of a CW tunable laser source that is

locked to the comb, an optical SSB modulator (or a serrodyne modulator) and the RF synthesizer,

which is not shown in this figure. Here the arbitrary offset we talked about is depicted as fSSB. In

the rest of this work, fSSB will be denoted mostly as fout. In the following, the operation of the CW

locking loop will be detailed along with useful derivations of the RF-synth specs. A conversion

between the required stability metric (Allan deviation) and the most frequently used ones in RF

frequency synthesis (phase noise and jitter) will also be provided.
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Figure 2.1: OFS System Level Block Diagram

2.1 CW Laser Locking Loop Operation

An overview of the CW laser locking loop is shown in Fig. 2.2. Here, the CW laser is taken as

the final OFS output. Compared to a scheme that would take the SSB output as the final OFS

output (Fig. 2.1), this scheme (Fig. 2.2) has the advantage of utilizing the proportional integral

(PI) control block, which in practice is a thermal tuner, to perform filtering of the RF-synth and

SSB harmonics that persist in the output spectrum. Furthermore, in the first scheme in the case

that we attempt to synthesize frequencies close to fo + frep/2 there is an ambiguity regarding the

combline to which we are locked (i.e. n or n+1 combline of the octave-spanning supercontinuum),

which in turn is translated in ambiguity of the synthesized frequency itself. By locking the output

of the optical SSB to a constant offset of frep/4 from the comb tooth of interest we ensure that the

beat notes of the CW with the comb teeth that appear at the output of the photodetector (PD) are

equal to (2n + 1)frep
4

. A band-pass filter (BPF) following the PD is used to reject the beat notes

for which n 6= 0.
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Figure 2.2: CW Laser Locking Loop

2.2 Resolution and Tuning Range

Resolution and tuning range specifications of the RF-synth are derived from the system require-

ment that the CW laser spans the entire C-band with relative accuracy of one part in 1015. This is a

band spanning 1530-1565nm or equivalently 192-196THz. Thus the required frequency resolution

is on the order of:

fres =
fout
1015

≈ 0.2Hz (2.1)

Assuming a CW source with sufficient tuning range to span the C-band is available, the optical

comb lines can be used as a coarse locking mechanism. In order to generate all in-between fre-

quencies with the desired precision, the RF-synth tuning range has to be equal to the comb line

spacing. As mentioned above, in our system that is equal to the MLL repetition rate, which is

expected to be 1GHz.
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2.3 Stability

Typical stability and noise metrics used in circuit design include phase noise and RMS cycle-to-

cycle jitter. On the other hand, people in metrology specify the long-term stability of a synthesizer

in terms of Allan deviation or Allan variance. The purpose of this section is to derive the Allan

deviation requirement for the RF-synth and bridge the gap between that and circuit design stability

metrics.

Allan deviation was introduced as an oscillator stability metric by D. Allan [12] in order to

address non-convergence of classical statistical tools such as the standard deviation, when the

oscillator under test exhibited white or flicker noise in the frequency rather than the phase do-

main. At this point it seems necessary to introduce some fundamental functions regarding Allan

deviation. Assuming we have an oscillator described by: Vout = Asin(Φ(t)), we can define the

following:

Phase Function:

Φ(t) = 2πfnomt+ φn(t) (2.2)

Frequency Function:

f(t) =
1

2π

dΦ(t)

dt
(2.3)

Time-error Function:

x(t) =
φn(t)

2πfnom
(2.4)

Fractional Frequency Function:

y(t) =
f(t)− fnom

fnom
=

1

2πfnom

dφn(t)

dt
=
dx(t)

dt
(2.5)

With these functions at hand we have the tools to calculate Allan deviation and express it in

many algebraic forms. Before we do that though, we need to define the N-sample variance of the

fractional frequency function, which is a measure of the oscillator frequency fluctuations from the
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nominal value:

σ2
y(N, T, τ) =

1

N − 1

{N−1∑
i=0

y2i −
1

N

[N−1∑
i=0

yi

]2}

=
1

N − 1

{
N−1∑
i=0

[
x(iT + τ)− x(iT )

τ

]2
− 1

N

[
N−1∑
i=0

x(iT + τ)− x(iT )

τ

]2} (2.6)

In eq. (2.6) it is assumed that we have N samples of the oscillator under test taken at time

intervals T seconds apart. Each sample consists of two measurements acquired at time instances

iT and iT + τ , where τ is said to be the observation period of the measurement. If counters with

no dead-time between measurements are used we can allow T = τ . Using the notation of eq. (2.6)

Allan variance is defined as the 2-sample variance of the fractional frequency function derived

using a counter with no dead-time:

σ2
y(τ) = σ2

y(2, τ, τ) (2.7)

And Allan deviation as its square root. Essentially, this reduces to one-half the squared average of

the first finite-difference of the fractional frequency function and one-half the squared time average

of the second finite-difference of the time-error function, so we can write:

σ2
y(τ) =

1

2

〈
(yi+1 − yi)2

〉
=

1

2τ 2

〈(
xi+2 − 2xi+1 + xi

)2〉 (2.8)

It is apparent from eq. 2.8 that Allan deviation is a function of the observation period τ . The

DODOS project has a goal of producing optical outputs with Allan deviation equal to 10−13

τ
at

τ = 1sec. This number however, refers to the optical output and needs to be down-converted to

RF. Since Allan deviation is defined as the two-sample variance of the fractional frequency of an

oscillator we can expect this spec to be relaxed proportionally with the carrier frequency value.

Hence, going down from 100THz to 1GHz the Allan deviation spec for the RF-synth will be 10−8

τ
.

That would be in the case that the RF-synth was accountable for all of the noise showing up at the

optical output. A 20% margin will be imposed to our design bringing the Allan deviation target for

the RF-synth down to 0.2·10−8

τ
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2.3.1 Allan Deviation to Phase Noise

The basic equation that allows to convert from the time to the frequency domain was introduced in

[13] and simplified in [14]:

σ2
y(τ) =

∫ ∞
0

2Sy(f)
sin4(πfτ)

(πfτ)2
(2.9)

Where Sy(f) is the power spectral density (PSD) of the fractional frequency function. Combining

eqs. (2.2)-(2.5) we can derive the following relationships regarding the PSDs of the functions that

we defined above:

Sφ(f) =
(fnom

f

)2
Sy(f)

Sx(f) =
( 1

2πf

)2
Sy(f)

Sφ(f) =
(
2πfnom

)2
Sx(f)

(2.10)

By definition, phase noise is equal to the single-sided PSD of phase fluctuations so:

L(f) =
1

2
Sφ(f) (2.11)

The above equations provide a link between Allan variance and phase noise, however in most

cases it is not possible to analytically calculate the integral of eq. (2.9). The practical solution used

when a quick, approximate conversion is needed is to assume that one type of noise source domi-

nates at a certain offset from the carrier. Knowing the power-law model describing different types

of noise according to which Sφ(f) ∝ fα and using (2.9), (2.10) we can derive expressions linking

Allan deviation directly to phase noise. These expressions have been tabulated in [14] and are also

repeated in table 2.1 here for convenience. Inspection of table 2.1 reveals that white and flicker

noise in the phase domain have the same dependency on τ and thus cannot be distinguished from

one another using Allan deviation. To resolve this ambiguity a modification known as modified

Allan variance has been introduced. The interested reader is pointed to [15]. Power-law relation-

ships for all types of oscillator noise are illustrated in the log-log plots of Fig. 2.3 [16]. We can see

that for increasing observation time the noise sources dominant are the ones that we typically find

close to the carrier such as white and flicker noise in the phase domain. It is also worth noting that
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Table 2.1: Phase noise to Allan deviation per Noise Type [14]

Noise Type Sφ(f)

White Phase (2π)2

3fh
(τσy)

2f 2
nom

Flicker Phase (2π)2

A
(τσy)

2 f
2
nom

f

White Freq. 2τσ2
y

(
fnom

f

)2
Flicker Freq. 6

(2π)2
τ−1σ2

y
f2nom

f3

fh: measurement system bandwidth

A = 1.038 + 3 ln(2πfh)

(a) (b)

Figure 2.3: Typical log-log plots for (a) Allan deviation, and (b) Sφ(f) [16]

for noise sources such as flicker walk in the frequency domain, for which Sφ ∝ fα with α < −4

Allan deviation diverges.

2.3.2 Allan Deviation to Jitter

The first jitter quantity we need to define before making the connection between these time-domain

stability metrics is timing jitter. If we denote time instances of zero-crossings as tk, k ∈ N in a

clock under test, with nominal period Tnom, then timing jitter is:

Jk = tk − kTnom (2.12)
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Which is the same as the time-error function defined in eq. (2.4). However, there is a significant

difference in the sense that the time-error function is continuous, while timing jitter is a discrete

sequence. Specifically, it is:

Jk = −x(kTnom) (2.13)

Where x(t) is the time-error function. Moving on, we can define period and cycle-to-cycle jitter

as the first and second finite-difference of timing-jitter [17]:

Pk = Jk+1 − Jk (2.14)

jc2c,k = Pk+1 − Pk = Jk+2 − 2Jk+1 + Jk (2.15)

From eq. 2.15 and remembering that Allan variance is one-half the squared time average of the

second finite-difference of the time-error function (eq. (2.8)) we can deduce the following, which

concludes this Allan deviation to jitter conversion:

σy(Tnom) =
1√

2Tnom
jc2c,RMS (2.16)

This section has provided a quick review of the definition of Allan deviation. It also has at-

tempted to bridge the gap between Allan deviation, phase noise, and jitter by rederiving conversion

formulas from one to another. Ability to perform such conversions will prove useful in the course

of this work, since it will allow us to evaluate our RF-synth design and compare it to existing

architectures using familiar metrics such as phase noise, jitter and SFDR, while at the same time

ensuring we are meeting project spec. Another useful reference outlining conversion from phase

noise to jitter can be found in [18].

Perhaps as a final note we should mention that it is common practice to use jitter and phase

noise in short timescales on the order of ms and below. Allan deviation on the other hand, is

used for larger timescales, on the order of seconds, which is the range of interest in metrology

applications. It is a metric used to evaluate long-term stability rather than fast fluctuations of the

oscillator phase.
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Chapter 3

The Flying Adder Frequency Synthesizer

In this chapter, the circuit architecture along with the fundamental equations describing the prin-

ciple of operation of the synthesizer are initially presented. This mathematical analysis shows the

advantages (large tuning range and fine frequency resolution) that make this architecture suitable

for our application, but also brings forth the main drawback of this architecture, namely the dense

spurious content of the output spectrum. The analysis is supported with simulation results, which

point out the pathological cases of this type of synthesizer. To address this issue, higher order

delta-sigma (∆Σ) modulation in the phase accumulator block is proposed.

3.1 Synthesizer Architecture

A system level block diagram of the Flying Adder frequency synthesizer first proposed in [19] is

shown in Fig. 3.1. It consists of a phase generation a phase accumulation and a phase selection

unit.

The phase generation can be implemented as a DLL, a PLL, or even as a simple divider net-

work, which is what is used in this work and is shown in Fig. 3.2a. The purpose of this block is to

12



Figure 3.1: Flying Adder Block Diagram

generate N equally spaced phases of a reference clock. These reference phases are appropriately

combined to produce the desired output frequency. Selection of the next phase is controlled by the

phase accumulator. Phase accumulation is broken down to an MSB and an LSB sub-accumulator

each of which is responsible for integer and fractional synthesis as will be shown later on. The

carry-out of the LSB sub-accumulator is fed into the carry-in of the MSB thus implementing ∆Σ

modulation. The above are depicted in Fig. 3.2c , which shows 1st order and 3rd order Multi

StAge Noise Shaping (MASH) ∆Σ modulation, where the carry-in essentially modulates is the

phase increment of the synthesized clock. The modulator order used affects the “depth” of phase

increment modulation as well as the periodicity of the accumulator output sequence, a quantity

very important for the synthesizer spurs. It should be noted that the first implementations of this

architecture [19], [20] did not use any sub-accumulators or ∆Σ modulation, but simply truncated

the m = log2N MSB’s of a single n-bit accumulator. (It is suitable to select N to be a power of

two since this simplifies decoder and MUX design).

Finally, the phase selection operation is described in Fig. 3.2b. The phase selection unit con-

sists of a OH-decoder controlling a number of DFFs followed by tri-state buffers. The reference

phases clock a DFF each, while the DFF outputs are fed into the tri-state buffers. The outputs

13



(a) (b)

(c)

Figure 3.2: Details of Synthesizer Building Blocks. (a) Divider network based phase generation,

(b) phase multiplexer, and (c) phase accumulator (1st and 3rd order modulation)

of the OH-decoder control the tri-state buffers enable port. This implementation of the phase se-

lection unit prevents any glitching to propagate to the output while the phase accumulator is still

calculating the next reference phase to be selected. Many implementations of this architecture use

an additional divide-by-2 flop at the end to transform the irregular pulse train to square waveform

with a duty cycle closer to 50% .
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The main advantage of this synthesizer topology is that it is self clocked and fully digital,

while at the same time allowing for fast frequency hopping and wide tuning range. It is similar to

a DDS with the subtle difference that it does not require a LUT or an external clock. However, it

suffers from dense spurs in its output spectrum, due to inherent timing irregularities of the output

waveform. The design of the phase accumulator is key to spur minimization at the synthesizer

output, since it acts as a ∆Σ modulator as will be explained in the following sections and is shown

in Figs. 3.1, 3.2. Several accumulator variants from 1st order to 3rd order, have been designed

and evaluated both in behavioral models and post place and route layout simulation. It is shown

in this work and in [21] that higher order modulation randomizes the accumulation operation for

fractional inputs and helps distribute the quantization noise over a higher portion of the spectrum.

3.2 Principle of Operation - Governing Equations

As it has already been mentioned frequency synthesis in the FA architecture is performed by proper

selection of the next phase, through the accumulator block. The digital codeword fed into the

accumulator dictates it’s output sequence and thus controls next phase selection, setting the output

frequency to:

fout =
2n

w
fref (3.1)

Where we define w as the digital codeword with n number of bits, and fref as the frequency of all

reference phases. We repeat at this point that we have defined m = log2N ∈ Z the number of bits

of the integer sub-accumulator. It is also useful to define the time increment between two adjacent

reference phases as ∆ = 1
Nfref

(also being the period of the highest theoretically synthesizable

frequency).

It might have been already obvious that this synthesizer can only produce frequencies higher

than the frequency of the reference phases. A metric of interest for our application of CW laser

locking is the range of synthesizable frequencies. In this architecture, the minimum and maximum
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frequencies that can be synthesized are:

fout,max = 2mfref

fout,min =
2n

2n − 1
fref

(3.2)

Putting this into perspective, using a reference frequency of 312.5MHz and 32 reference phases

(i.e. N = 32,m = 5), we get that fmin ≈ 312.5MHz and fmax = 10GHz, which easily meets our

1GHz tuning range requirement.

Another important advantage of the Flying Adder frequency synthesizer is the high frequency

resolution that it provides. This resolution is at its minimum (best) for the lowest synthesizable

frequencies and at its maximum (worst) for the highest synthesizable frequencies. These values

are [21]:

δfmin =
2n

2n − 2
fref −

2n

2n − 1
fref ≈

1

2n
fref

δfmax =
2n

2n−m
fref −

2n

2n−m + 1
fref ≈

1

2(n−2m)
fref

(3.3)

To gain some more insight about the theoretical limitations of this circuit, we extend the pre-

vious numerical example: with the same fref and N assume we use 32-bit long codewords. Eq.

(3.3) yields δfmin = 0.07Hz, δfmax = 74.5Hz. Worst case resolution is an important parameter

based on which we will select the number of bits of the input codeword and consequently the size

of the integer and fractional sub-accumulators. This design procedure is outlined in more detail

in chapter 5 and uses eq. (3.3) to hit the sub-Hz resolution spec at the highest frequency we are

interested in generating based on the tuning range requirement.

Having derived the basic equations for output period, tuning range and resolution we will now

focus on the output spectrum of the Flying Adder synth. It has been shown in [22] that input

codewords with w < 2n−m are redundant, that is, all possible frequencies can be synthesized using

codewords w ≥ 2n−m. Furthermore, inputs with w < 2n−m are impractical since they take too

long to overflow the fractional sub-accumulator output and result in rather irregular patterns for the

synthesized clock, consequently generating spurs too close to the carrier that are difficult to filter

out.
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Taking into account only codewords with w ≥ 2n−m we can discern two basic cases: w mod

2n−m = 0, which implies that the n-m LSB’s are zero and corresponds to integer synthesis, and

w mod 2n−m 6= 0, in which case fractional synthesis occurs. In the first case the accumulator

continuously increments the output phase by the same amount, the output period is an integer

multiple of ∆, and the deterministic jitter is ideally zero. That is not true for the second case, in

which we get modulation of the number of phase shifts whenever the fractional sub-accumulator

overflows and feeds a non-zero carry into the integer sub-accumulator. Given that w mod 2n−m 6=

0 we can break down the input codeword into an integer and a fractional part:

w

2n−m
= I +

X

Y

I = b w

2n−m
c

X

Y
=
w mod 2n−m

2n−m

(3.4)

With X , Y prime to each other.

In integer synthesis the output period is always T = I∆. However, in fractional synthesis since

the circuit can only produce periods that are multiples of ∆, the output period alternates between

T1 = I∆ and T2 = (I + 1)∆ with the time-average period being T = 1/fout, fout and given

by (3.1). The period of time over which this averaging is taking place, determines the frequency

offset at which harmonics appear at the output spectrum. We will be referring to this period of time

as the fundamental period of the phase selection sequence. It intuitively makes sense that in the

case of 1st order ∆Σ it takes Y cycles for the accumulator to return to its initial state, out of which

X are (I + 1)∆ long and Y −X are I∆ long. Analytically, the fundamental period can be written

as [20], [22]:

Tfund =
[
(I + 1)X + I(Y −X)

]
∆ = (IY +X)∆ (3.5)

Thus we can expect a spur appearing at frequencies:

fspur = fout ±
1

Tfund
= fout ± ffund (3.6)

As an example that clarifies this accumulation operation we can set I = 2, X
Y

= 3
4
, (i.e. w =

(2 + 3
4
)2n−m), with the initial condition being zero. For this input codeword we will get the
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following accumulation sequence: {2∆, 3∆, 3∆, 3∆}, while the actual accumulation result is:

{23
4
, 51

2
, 81

4
, 11}. We can see that every 4 cycles we get 3 cycles of length 3∆ and 1 cycle of length

2∆. Simulations of the synthesizer model presented in the next section, demonstrate the above

argument more clearly.

3.3 Synthesizer Simulink Model - 1st Order ∆Σ Spur Locations

In order to evaluate the effect of the different synthesizer parameters such as the input codeword,

number of fractional and integer accumulator bits, and ∆Σ modulator order on the metrics of

interest, namely resolution, tuning range, and Allan deviation (and implicitly spectral clarity) we

have built a model in MATLAB Simulink. This model is depicted in Fig. 3.3.

In this model we do not have an actual dll, rather we explicitly multiplex 16 square-wave

pulses, running at 312.5MHz, in one Simulink bus. These pulses play the role of the reference

phases, with each phase being delayed 200ps from the previous one. Using such a simplified

model for the synthesizer allows us to focus on its inherent irregularities and is much easier to

Figure 3.3: Synthesizer Model - 1st order ∆Σ phase accumulator
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debug at the same time. Real-life non-idealities such as delay mismatch between the reference

phases can be easily added in this model if necessary. Simulation of models incorporating delay

mismatch has given very similar results, which indicates that the effect of delay mismatch in the

reference phases is not as important (especially for fractional codewords). This point will be made

clearer in the following chapters.

The phase multiplexer can be ideally modeled as a dot product between different phases and

the output of the OH-decoder following the phase accumulator. Finally, 1st order ∆Σ for the phase

accumulator can be implemented by simply truncating the m MSBs of a single accumulator block

which is what is shown in Fig. 3.3.

Having explained how the model is put together we now move on to use it in order to validate

and expand the conclusions of the previous section. It is obvious from eq. (3.5), (3.6) that larger

Y (longer fundamental periods) will result in spurious tones closer to the carrier frequency which

are very difficult to be filtered out. In that sense, the most problematic set of input codes is the

one for which Y = 2n−m. This implies that the n − m LSB’s of the input codeword (input of

the fractional sub-accumulator) form a number non-divisible by 2n−m. Such a case is shown here

for an accumulator with 30 bits, 4 of which are responsible for integer frequency synthesis (since

we have a 16 phase “DLL”) and the 26 implement fractional frequency synthesis. The input is

set equal to w = 2n−1 + 2n−2 + d 2n

1051
e, which if we recall the definition of X/Y in (3.4), gives:

X
Y

= w mod 2n−m

2n−m =
d 2n

1051
e

2n−m = d 2m

1051
e ≈ 2m

1051
. This ensures that we get a fundamental period that is

long enough to create strong spurs close to the carrier, at an offset where they can be captured by

reasonable FFT resolution (which can be achieved through increasing simulation time or through

zero padding). For comparison a non-pathological case where w = 2n−1+2n−2 is also shown here.

Finally, for completeness we show the case where w = (2 + 3
4
)2n−m which we used as an example

previously. The simulated spectra and their zoomed in versions are presented below in Figs. 3.4 -

3.5

With respect to Fig. 3.4 we can first validate eq. (3.1) which gives the output (carrier) frequency

and in this case is: fout = 2n

w
fref = 416.138MHz for this choice of w. The strong spur at a
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(a) (b)

(c) (d)

Figure 3.4: (a) Simulated spectrum for w = 2n−1 + 2n−2 + d 2n

1051
e, (b)-(d) zoomed in versions

revealing the effect of periodicity in spur locations

harmonic frequency of the output (here 832.3MHz), shown in Fig. 3.4a, is to be expected since

our output is a square wave. However, we can also see in Fig. 3.4b that for the case of w = 2n−1 +

2n−2 + d 2n

1051
e the output spectrum is very dense with spurs of relatively high magnitude (about

-20dB worst case) very close to the carrier. By extending eq. (3.5), which gives the periodicity of

the phase accumulation sequence, we can predict the spur locations:

Tfund = (IY +X)∆
(3.4)
==⇒ Tfund

Y
=

w

2n−m
∆ =

w

2n
Tref

=⇒ ffundY =
2n

w
fref

(3.1)
==⇒ Y =

fout
ffund

(3.7)
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Eq. (3.7) can be validated from the simulated spectrum in Fig. 3.4c in which case we get:

ffund = (412.2− 411.8)MHz = 0.4MHz, fout = 416.1MHz

=⇒ Y =
fout
ffund

= 1040.25

A result close to Y = 1051 which we are expecting for the given input. Another observation at

this point is that every 16 spurs we obtain a strong one, which is directly related to the fact that our

fractional input is approximately 2m

1051
, with m = 4. Under close examination we can also see that

there are 15 intermediate spurs between the ones at 422.5MHz and 428.8MHz.

As far as the integer input is concerned we can see that we get almost ideal waveforms with

only harmonic spurs appearing for the special case where w = 2n−1 + 2n−2 and no spurs close

to the carrier (Fig. 6.3a), while for the case where Y = 4 (small) the fundamental spur is indeed

as predicted by eq. (3.7) as ffund = fout/4 = 454.5MHz. Both figures agree with eq. (3.1)

regarding the value of the output frequency, which is 416.7MHz and 1.82GHz in Figs. 6.3a and

6.3b respectively.

The above simulations dictate that in order to get acceptable output spectrum over the entire

tuning range (including fractional inputs) we need to come up with an architecture that will be

able to reduce the spur level. To this direction we will introduce higher order ∆Σ modulation in

the fractional sub-accumulator. It will be shown that even though we end up with a much larger

(a) (b)

Figure 3.5: Simulated spectra for: (a) w = 2n−1 + 2n−2 (b) w = (2 + 3
4
)2n−m
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fundamental period (i.e. much denser spur profile) the quantization noise (originating from phase

truncation) is spread over a fairly larger portion of the spectrum, essentially improving the SFDR

(and the Allan deviation) by a significant amount. The mathematical concepts underlying the

operation of higher order modulators are laid out in the following chapter, while good reference

points for deeper mathematical analysis of the Flying Adder architecture are [22] - [24].
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Chapter 4

Digital ∆Σ Modulators for the FA

Frequency Synthesizer

It has already been pointed out in the previous chapter that in order to address the unacceptable spur

profile of the FA-synth output when simple 1st order modulation is employed, we need to come-

up with solutions that better randomize the accumulation sequence. A possible solution to this

problem could be increasing the modulation order. A lot of work has been done in the field of Dig-

ital ∆Σ Modulators (DDSMs) since they are an essential building block in numerous applications

including fractional-N frequency synthesizers, digital-to-analog and analog-to-digital converters

(DACs) and (ADCs) [25] - [27]. Some of the most common types of modulators analyzed in lit-

erature are Single-Quantizer (SQ) DDSMs, Error Feedback Modulators (EFMs), and Multi StAge

Noise Shaping (MASH) DDSMs. Our focus in this work is mainly on MASH DDSM, which is

most commonly used in fractional-N frequency synthesis and whose stable input range is equal to

the full scale range of the modulator quantizer. In this chapter we first lay down the theoretical

basis of higher order MASH DDSMs, and then incorporate them in the FA synth design in an

attempt to improve the spur profile. Finally, the simulation framework that has been developed is

used to examine the effect of different variants of ∆Σ modulators (different modulation order) on

the output spectrum and the Allan deviation of the FA synth.
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4.1 Theoretical Background

It has already been mentioned in chapter 3 that the initial state and the type of input (odd vs even) of

a ∆Σ modulator can affect the number of cycles, that a modulator will go through before returning

to its initial state. In that sense it is useful to think about ∆Σ modulators (DSMs) as finite state

machines (FSMs) that must return to a state they have visited in the past, assuming they are given

a constant input [26]. The more states we introduce, the larger the fundamental period becomes,

and the more spread out the quantization noise will be. DSMs are deterministic in nature, which

makes it possible for us to predict exactly how the noise will be spread out and at which locations

spurs will appear depending on the input, initial condition, and modulator order. This motivates the

use of higher order modulators even though they are expected to increase the fundamental period,

hence bringing the 1st spur closer to the carrier. Our bet will be that because the quantization noise

is now distributed among many more different spurs (as many as the fundamental sequence length)

the power of each individual spur will be pretty low (ideally close to the noise floor level).

4.1.1 1st Order ∆Σ Modulator

The building block of most DDSM’s is the Error Feedback Modulator (EFM). The block diagram

of a first order digital EFM is shown in Fig. 4.1 . It is comprised of an m-bit digital accumulator

(adder and delay cell). The outputs of the digital accumulator are the sum s[n] (also m-bit) and

carry c[n] (single bit), where n now denotes discrete time. Assuming the input to the EFM is a

constant digital codeword w, the outputs s[n], c[n] are derived as:

s[n] =
(
w[n] + s[n− 1]

)
mod 2m

c[n] = bw[n] + s[n− 1]

2m
c

(4.1)

What is of interest for spur minimization of DDSM’s is the fundamental period of the accumu-

lator carry output for a given input w and initial condition s[0], c[0]. It has been shown in [25] that
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the fundamental period is independent of the initial condition and equal to at most 2m only when

the input w is an odd number. In general, the fundamental period, Lfund satisfies the condition

[25]:

(Lfund ∗ w) mod 2m = 0 (4.2)

The FA synthesizer using a first order EFM modulator has been theoretically analyzed in 3.2, 3.3,

where simulation results have also been provided, motivating the investigation of higher order

MASH modulators.

4.1.2 Higher Order MASH ∆Σ Modulators

The general block diagram of a higher order MASH ∆Σ modulator is presented in Fig 4.2 . It con-

sists of a cascade of first-order EFMs, where the sum output of each EFM is an input to the next

one. The carry output of each stage is back propagated through a noise cancellation network to

produce the final output of the modulator. This noise cancellation network rejects the quantization

noise of all the modulators in the chain but the very last one, significantly improving the quanti-

zation noise level. However, it also the imposes a constraint on the maximum frequency of the

synthesizer by reducing the critical path of the integer accumulator. Notice that the output range

of the 2nd and 3rd order DDSMs is {−1, 0, 1, 2} and {−3,−2, ..., 3, 4} respectively, compared to

{0, 1} in the case of the 1st order DDSM. This effect will be explained in more detail in chapter 5,

and is one of the main drawbacks of using higher order modulators in the fractional part of the FA

Figure 4.1: 1st order EFM Block Diagram
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RF-synth.

The main advantage of higher order modulators is the increased length of the period of the

carry out sequence. It has been shown empirically (through a large number of simulations) in [26]

and proved mathematically [25] that the minimum fundamental period of the carry out sequence is

guaranteed to be achieved when the initial condition of the first accumulator in the MASH chain

is odd. The result is tabulated in table 4.1 and can be compared with the one given by eq. (4.2) for

the 1st order DDSM output sequence length, which only reaches a maximum cycle length of 2m

for odd input values.

The effect of longer periodicity on the spur profile of the Flying Adder synthesizer is the reduc-

tion of the spurious tones and the subsequent improvement of SFDR, since now the accumulation

operation is better randomized and the quantization noise is distributed over a larger portion of the

output spectrum. It should be noted however, that this improvement comes at the expense of a

slightly increased noise floor. Simulation results using the Simulink models of the FA synthesizer

that support this point are provided in the next section.

Figure 4.2: Higher order MASH block diagram
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Table 4.1: Modulator Output Sequence Lengths

Modulator order Initial Condition Guaranteed sequence length Maximum sequence length

2 s1[0] odd 2m−1 2m+1

3 s1[0] odd 2m+1 2m+1

4 s1[0] odd 2m+1 2m+2

4.2 FA Frequency Synthesizer with Higher Order MASH Mod-

ulators

In this part we will first examine how the spectra of 2nd and 3rd order modulators compare against

the simple 1st order case when they are used to perform the phase accumulation operation of the FA

synthesizer. Subsequently, we will evaluate how this difference in performance is reflected upon

our basic metric, Allan Deviation. The model used for these simulations is shown in Fig. 4.3. It

is identical with the 1st order model in Fig. 3.3 with the addition of a fractional phase accumulator

that is implemented as a higher order MASH ∆Σ modulator according to Fig. 4.2.

Figure 4.3: Synthesizer Model - 3rd order ∆Σ phase accumulator
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4.2.1 Improved Spectra

The comparison will be made for the test input w = 2n−1 + 2n−2 + d 2n

1051
e, which was used in

chapter 3 to illustrate the problematic spur profile of the 1st order EFM based FA synthesizer. As

it can be seen in Fig. 4.4, using higher order modulator to randomize the spectrum does indeed

lower the power of spurious tones, increasing the overall SFDR dramatically. Modulators of 2nd

and 3rd order provide a 20dB and 17dB improvement in SFDR respectively! The spurs still appear

at the theoretically expected frequency since the integer input is identical. Notice though, that the

spectrum in between those main spurs looks much smoother. This indicates that the Σ∆ modulator

has essentially randomized the fractional sub-accumulator output. In both cases using a higher

order modulator increases the noise floor as expected. Also of interest and to be expected is the

noise shaping characteristic of the MASH modulators. In both higher order spectra the out-of-band

noise floor increases as we move further away from the carrier, while previously it was decreasing.

This is a well known behavior of high order MASH modulators, that push the quantization noise

out of the carrier band. Perhaps one last thing to point out is that even though we noticed a huge

improvement from 1st to 2nd order modulator, there is little difference in the spectra of 2nd and 3rd

order.

4.2.2 Allan Deviation Comparison

Fig. 4.5 shows the corresponding Allan Deviation for the same input codeword, for all synthesizer

variants and the same input codeword, w = 2n−1 + 2n−2 + d 2n

1051
e. Simulation indicated that

increasing the modulator order provided an improvement from 1st to 2nd order, while the 3rd order

was slightly worst than the 2nd. The simulation was run up to only 0.5ms to avoid unnecessarily

long runtimes. However, when extrapolated to 1sec all synthesizer variants easily meet the σy =

0.2∗10−8

τ
spec, which ensures the synthesizer contributes only 20% of the total noise budget. Note

that since Simulink models run in the time-domain it is fairly straightforward to derive the Allan

Deviation directly using eq. 2.8.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Simulated spectrum of different synthesizer variants for w = 2n−1 + 2n−2 + d 2n

1051
e.

1st, 2nd, and 3rd order Σ∆ modulators respectively ((a), (c), (e)), along with their corresponding

zoom-ins ((b), (d), (f))
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(a) (b)

(c)

Figure 4.5: Simulated Allan Deviation of different synthesizer variants for w = 2n−1 + 2n−2 +

d 2n

1051
e. 1st, 2nd, and 3rd order Σ∆ modulators respectively shown in (a), (b), and (c)
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Chapter 5

Chip Design

Having thoroughly simulated and analyzed this architecture, we finally designed a fully digital

Flying Adder (FA) frequency synthesizer in a 45nm CMOS-SOI process. The chip was meant to

be co-packaged with an optical SSB modulator in order to enable 1Hz resolution optical frequency

synthesis over a BW of 4THz (the entire C-band). Three different modulator variants were im-

plemented, with the modulator order ranging from 1st to 3rd . To bring the clock onto the chip a

CML-to-CMOS clock receiver was used. It was either fed as a reference to an on chip PLL or

directly to the phase generation divide-by-2 network of the FA. The system level block diagram of

Figure 5.1: Block Diagram of Taped-out System
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the chip is shown in Fig. 5.1. In this chapter, design decisions will be explained. Moving on to

actual implementation, design intricacies of the different building blocks of the FA will be detailed,

followed by post place and route simulations.

5.1 Design Variables

The main design choices that need to be made in this architecture are the following:

(a) Accumulator bit count

(b) Modulator order

(c) Reference frequency, fref

For our application, the main specs in scope are the frequency range and resolution that can be

achieved. On top of that we would like the Allan Deviation, phase noise, and SFDR to also meet

certain stability and spectral purity requirements. The easiest specs to satisfy are the frequency

range and resolution. As seen in eq. (3.1) the maximum and minimum synthesizable frequencies

are fmax = 2m ∗ fref and fmin ≈ fref respectively, where m is the number of integer accumulator

bits. Also, the best and worst case resolution equations (3.2), are repeated here for convenience:

δfmin =
2n

2n − 2
fref −

2n

2n − 1
fref ≈

1

2n
fref

δfmax =
2n

2n−m
fref −

2n

2n−m + 1
fref ≈

1

2(n−2m)
fref

Where n is the accumulator bit count. Recalling that our locking scheme in Fig. 2.2 locks the

CW output to frep
4

we can set fmin = fref = frep
4

= 250MHz. However, since we have already

implemented a digital LC-PLL that uses an input reference of 625MHz, and which we can reuse,

we set fref = 312.5MHz. The LC tank resonates at ≈ 20GHz and it’s output is then fed to a

CML divider followed by CML-to-CMOS dividers that provide 10GHz and 5GHz outputs. Using

the 5GHz output and dividing it down 16 times as shown in next section 5.2 naturally gives us
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312.5MHz, which is the selected fref . Note that the same locking scheme can be used. The choice

of this division ratio is justified below.

Next, we need to calculate the number of accumulator bits that give us the required resolution

over the entire tuning range of operation. That is 312.5MHz to 1.3125GHz, in which case fmax

fmin
≈ 4.

Plugging in m = 2 in the worst-case resolution formula above, we get that n needs to be at least

32. Note that the accumulator bit count cannot be arbitrarily big. Even though a high bit count

provides higher resolution, it also limits the maximum synthesizable frequency, especially if no

pipelining is employed in the accumulator data path.

The final choice to be made is the number of integer bits (or equivalently the number of refer-

ence phases). Picking more phases than what is actually needed (in this case 4 would be sufficient

to get the required tuning range) helps reduce cycle to cycle jitter and improve the spur profile of

the synthesized output. However, keeping the phases as uniformly spaced as possible in the time

domain, sets an upper limit to their number. Simulation indicated 32 and 16 phases all running

at 312.5MHz while being acceptably uniform can be generated without the use of a DLL. The

table below summarizes the design variables selected for all three synthesizer variants on this chip,

assuming fref = 312.5MHz. We intended the 3rd order to have the highest resolution at the ex-

pense of speed, the 2nd order to go faster without a big resolution penalty, and the 1st order to be

able to cover any tuning range that the other two could not. The theoretical resolution presented

is calculated over the required tuning range using eq. 3.3 with m = 2 in the worst case resolution

formula.

Table 5.1: Design Choices for Different Synthesizer Variants

Modulator order Phases Fractional bits Theoretical tuning range Theoretical resolution

1 16 26 5GHz 0.29− 4.65Hz

2 32 26 10GHz 0.14− 2.32Hz

3 32 32 10GHz 0.002− 0.34Hz
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5.2 Divide-by-2 Network

The simulink model that was outlined previously in chapter 3 was used again to evaluate the effect

of phase skew between the reference phases to the SNR and SFDR of the output. To do so,

random skew between the phases was incorporated in the model. The non-ideal spectra had sub-dB

degradation in the SFDR and 3-5dB increase in the noise floor, which was considered acceptable.

Thus, a digital divide-by-two network was used for phase generation. Further validation of this

scheme is provided through the post place and route simulations shown in section 5.5. This solution

is much more simple, compact and easier to implement than using a DLL to produce the phases.

The divider tree was implemented in structural Verilog using standard cells. Fig. 5.2 depicts the

tree structure for the generation of four phases in quadrature. The 32 phases are generated by

cascading 3 more divide-by-two FF stages. Special care must be taken to properly enumerate each

phase coming out of the tree, such that the accumulator code will indeed select the proper phase.

This enumeration is shown in Fig. 5.2 for only 4 phases.

Figure 5.2: Divide-by-two network generating quadrature
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5.3 Timing and Initialization

The self clocked nature of this architecture does not come without potential hazards. These issues

only manifest themselves in certain “special” cases, which do not surface until extensive simulation

is done and are not at all emphasized in the corresponding literature. This point further justifies the

need for proper modeling and simulation of the FA synthesizer topology.

5.3.1 Glitching Mitigation and Proper Initialization

In order to ensure no metastability or glitching occurs during the transition from one phase to the

other an extra latch is added after the OH decoder, making the actual implementation look like in

Fig. 5.3. This latch has synchronous set and reset active low and high respectively, that are also

employed to help initialize the circuit. Since this architecture is self-clocking, initialization is of

great importance. To properly initialize the synthesizer, we need to ensure that one of the reference

phases will be selected at start-up. This reference phase will clock the first couple of cycles until

the accumulation operation begins normally, and the free-running, self-clocking mode takes over.

In this design we are using the set and reset of the glitch mitigation latch to achieve that target.

Figure 5.3: Block diagram with glitch mitigating latches in place
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Let’s say that we select the 2nd reference phase to start clocking the accumulator (this is a random

choice since it could be any phase). To do so, we assign the set of the 2nd OH latch to set& reset,

where set and reset are the global set and reset signals of the rest of the latches. At start-up, we are

resetting the rest of the latches so set and reset are both high. Consequently, the set of the 2nd latch

is going to be low, so that latch is set and the 2nd phase is selected, and the circuit is initialized.

Note that the latch stops being set after reset is no longer asserted (i.e. during normal operation).

5.3.2 Self-Clocking Intricacies

A very important detail that is not mentioned in the first work implementing phase multiplexing

through the use of tri-state buffers [28] is that in the case the same phase gets selected again before

it has completed one full cycle (i.e exactly one reference period, T , after it was initially selected)

the synthesizer will stop clocking and the circuit as shown in Fig. 5.3 will fail, with the output

staying high. To make this more clear imagine that the integer part of the input codeword, w is

16, while the fractional part is relatively small, such that for the first two cycles the carry in from

the fractional sub-accumulators is 0. Assume also, that the integer part accumulator is 5 bits and

all initial conditions are 0. In that case the sequence of selected phases is {φ0, φ16, φ0}. Let’s say

for simplicity that at t0, φ0 is selected and propagated to the output. After some dt = tclk−q + ttri,

φ0 propagates to clkout, which clocks the accumulator making it calculate the next phase to be

selected. Assuming we meet timing, the accumulator output (in this case 16) propagates to the

output of the OH decoder before φ16 goes high. Since all initial conditions are 0 the output of DFF16

is also initially 0 so the output, clkout gets pulled low, through the corresponding tristate buffer.

When φ16 goes high, it propagates to the output again after delay dt = tclk−q + ttri. This pulse

clocks the 3rd accumulator calculation, which gives 0 again. Notice however, that now, assuming

we meet timing and since a full cycle has not gone through (i.e. φ0 has not had an opportunity

to clock QDFF0 and set it to 0), the output of DFF0 is still high, hence it does not pull clkout low.

Under these conditions, when φ0 goes high, clkout is simply maintained high. Consequently, no

clocking pulse will trigger the accumulator to calculate the next phase to be selected, meaning that
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the accumulation operation will stop and the circuit will fail. These are all depicted in the timing

diagram 5.4. Note, that even though diagram assumes there is no latch between the OH decoder

and the flops, adding the latching stage does not affect this operation. Even though this seems like

a very special case, one cannot argue to simply avoid using such an input code. It should be pointed

out that this “clock killing” condition can occur any time the same phase (in the above example

φ0 and φ16) happens to repeatedly get selected within one reference period window, a case pretty

common for inputs that are midcode (i.e. wint = 14 − 18 in a 5-bit integer accumulator). Neither

can it be easily predicted, given that a pseudorandom accumulator output can lead to this case even

after a long number of cycles. Thus, an actual solution that eliminates this problem is in order.

Figure 5.4: Self-clocking failure timing diagram
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An elegant way to solve this issue is to add an AND gate prior to the input of each tri-state

buffer as depicted in Fig. 5.5. This way, in the case when a reference phase has not had the time

to clock its corresponding DFF and pull the synthesized clk output low, we rely on the reference

phase itself to bring the synthesized output low during its low phase. The above are illustrated

in the timing diagram 5.6, which shows the phase φ0 pulling clkout low through the AND gate.

Note that under normal operation the path from the reference phase through the AND gate and the

tri-state buffer does not affect the output in any way (i.e. glitching) since the corresponding DFF

output will be low.

An alternative solution has been proposed in [28], [29] with the use of differentially clocked

DFFs, which ensure that DFF outputs will be pulled low on the falling edge of the phase of interest.

Thus, when this phase is selected next it is going to cause a positive pulse that will trigger the

accumulator and the phase selection operation will continue normally. However, this point of

failure was not as thoroughly explained in [28], [29].

Figure 5.5: Block diagram with AND gates addressing self-clocking failure
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Figure 5.6: Self-clocking timing diagram with AND gates in place

5.4 Chip Layout

A synthesizer layout is shown in Fig. 5.7. This block is only 100 x 140µm2 justifying the use

of this fully digital architecture to generate multiple independent clock domains out of a single

reference PLL in a power and area efficient manner. The layout of the entire system outlined in

Fig. 5.1 is illustrated here in Fig. 5.8.

39



Figure 5.7: Synthesizer layout

Figure 5.8: Chip layout
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5.5 Post Place and Route Simulations

The last verification step to ensure proper functionality of the implemented circuit was to run post

place and route (pnr) simulations. Comparing the post pnr sims shown in Fig. 5.9 with the ones

run using our matlab models in chapter 4, Fig. 4.4 we see that the spur level is only degraded

1-2dB. At the same time, the noise floor is somewhat increased (5-10dB degradation) which can

be mainly attributed to the non-uniform spacing of the phases. This is acceptable since the output

signal will be subjected to more filtering through the SSB driver circuit.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Post place and route simulation of different synthesizer variants for w = 2n−1 +

2n−2 + d 2n

1051
e. 1st, 2nd, and 3rd order Σ∆ modulators respectively ((a), (c), (e)), along with their

correpsonding zoom-ins ((b), (d), (f)).
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Chapter 6

Preliminary Experimental Results

In this chapter preliminary measurement results from the chip that was taped out in a 45nm CMOS-

SOI Global Foundries process the will be presented. Testing is still ongoing, but results from the 1st

and 2nd order modulator variants indicate that the required tuning range and resolution have been

accomplished. A photograph of the taped-out chip is shown in the Fig. 6.1. The 3 x 3 mm2 area

was shared with another project, so only the right half of the depicted chip is used to implement

this system.

Figure 6.1: Photograph of the packaged and wirebonded chip

43



So far the PLL has not been brought up and we are directly feed a 1.6GHz clock source to

the CML-to-CMOS block. Since we have used 16 and 32 phases for the 1st and 2nd 5.1 the corre-

sponding divider networks will divide down the CML clock input by 8 and 16 respectively. Thus

the reference frequency will be 200MHz and 100MHz respectively.

6.1 1st order Σ∆ Modulator

The main use of the 1st order modulator was to ensure that we cover the entirety of the required

tuning range and to compare against the higher order modulators. First we wanted to check the

functionality of the synthesizer so we attempted to synthesize a random frequency. We set the

input codeword to w = 228 + 2387291 since 2387291 is a prime number and would be a good

worst case test for the synthesizer close-in spur profile. Fig. 6.2 shows the synthesized spectrum.

The theoretically expected synthesized frequency is fth =
fref∗230

w
= 792, 948, 086Hz, which

matches the measurement.

Figure 6.2: 1st order modulator with input w = 228 + 2387291, fth = 792, 948, 086Hz
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(a) (b)

Figure 6.3: Zoomed-in spectra of Fig. 6.2 showing the carrier (a) and closest spur power (b)

A zoom-in of this measurement in Fig. 6.3 shows a close-in spur at 29MHz and −9dB. This

result validates the developed theory in chapter 3 regarding the location of close-in spurs, but also

shows the SFDR is worst than expected. Hence, we need to rely on higher order modulator variants

for higher spectral purity.

Figure 6.4: 1st order modulator with input whigh = 140799305, fth = 1.525GHz
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(a) (b)

Figure 6.5: Zoomed-in spectra used to estimate the synthesizer resolution. (a) w = whigh + 32,

and (b) w = whigh

The highest synthesizable frequency (up to which timing in the accumulator was met) was

found to be ≈ 1.525GHz, as shown in Fig. 6.4. The corresponding codeword was whigh =

140799305. The worst case resolution was indirectly measured at that frequency (highest end of

the tuning range) by changing the input codeword by 32 and observing the change in the carrier

frequency. The difference observed was 100Hz as illustrated in Fig. 6.5, while the spectrum ana-

lyzer span for this measurement was set to 60kHz. This indirect measurement yields an expected

worst case resolution of δfout ≈ 100
32

= 3.125Hz.

6.2 2nd order Σ∆ Modulator

Moving on to the 2
nd order synthesizer variant we started by testing a fractional input code, w =

1879050240 with fth = 114.286MHz to verify the operation and check the performance in terms of

SFDR. The measured spectrum shown in Fig. 6.6 has an SFDR > 50dB and validated the proper

operation of the synthesizer. The small offset that is observed between the theoretical and measured

carrier frequencies in both 1st and 2
nd order variants can be attributed either to lack of calibration

in the clock source, skew between the reference phases that are generated by the divide-by-two
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Figure 6.6: 2
nd order modulator with input w = 1879050240, fth = 114.286MHz

network, or inaccuracy in the measurement. On the up-side, this offset appears to be constant;

thus we should be able to calibrate it out without any effect on the resolution or stability of the

synthesized clock.

The same method as in the 1st order synth was used to evaluate the resolution of this variant

as well. However, in this case in order to observe a change of 100Hz in the synthesized output

frequency we had to vary the input code by 1024, yielding an expected frequency resolution of

δf = 100
1024

= 0.097Hz! This measurement is illustrated in Fig. 6.7. Admittedly this resolution is

only valid for the lower range of the tuning range.

We found that the highest fout we can get out of this variant ≈ 1GHz, as shown in Fig. 6.8,

for w = 107, 395, 661. The observed reduction compared to the 1st order counterpart is due to

the increased accumulator bit-count. Running the same experiment we found that the worst case

resolution was δf = 100/128 = 0.78Hz (an input code change of 128 incurred a frequency change

of 100Hz), still well within the 1Hz spec. As we can see the noise floor of≈ 50dB was maintained

but some unwanted spurs came up at ≈ 3MHz offset from the carrier and −22dBc.
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(a) (b)

Figure 6.7: 2nd order synth resolution measurement. (a) w = 1879050240 + 1024, and (b) w =

1879050240

Figure 6.8: 2nd order synth with input w = 1879050240, fout,max = 999.8MHz
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6.3 Future Measurements

Thorough characterization of the SFDR and resolution over the entire tuning range is the next step

in this ongoing testing effort. On top of that, we have to bring up the PLL and measure the total

power dissipation which is expected to be lower than traditional fractional-N PLL approaches.

Finally, we need to further evaluate stability by measuring jitter, allan deviation and phase noise

of our synthesized output both for typical and pathological input codes for all synthesizer variants.

Essentially, the goal is to validate through measurements that this architecture is a solid option

for anyone who wishes to trade-off spectral purity for area and power efficiency as well as design

agility.
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Chapter 7

Conclusion

In summary, a fully digital RF frequency synthesizer has been designed. The resolution, tuning

range and stability requirements of this circuit have been derived, with the consideration that it

will be used to enable locking of a CW laser, thus implementing a direct on-chip digital optical

synthesizer. In the process, a useful translation from the long-term time domain stability metric

of Allan Deviation to the frequency domain metric of phase noise and the short-term time domain

metric of jitter has been presented. Subsequently, the selected architecture of the Flying Adder

frequency synthesizer has been analyzed and simulated. Useful guidelines and intuition behind the

expected spurious content of the synthesized output have been developed, attempting at the same

time to refer back to the Allan Deviation requirement. The design procedure along with some

intricacies of this self-clocked fully-digital topology have been outlined. Finally, some preliminary

measurement results have been presented indicating that the designed synthesizer can meet the

required tuning range and frequency resolution, while testing is still ongoing.

Apart from enabling fine tuning of the optical frequency synthesizer, to a 1Hz resolution over

a 4THz tuning range, this chip constitutes the first fully digital implementation of a Flying Adder

frequency synthesizer. This is particularly interesting since this topology can also be used to pro-

vide multiple clock domains through a single reference with great power and area efficiency in
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large SoC’s as well as in cognitive radio type of applications.

This report not only provides a proof of concept through implementation, but also attempts to

concisely present mathematical analysis backed by a simulation framework. At the same time, it

bridges fundamental stability metrics that may be relevant to frequency synthesis depending on the

type of application. The method and analysis presented here provide valuable insights to designers

interested in utilizing the Flying Adder frequency synthesis topology.
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Ippen, M. R. Watts, and F. X. Kärtner, “An optical frequency synthesizer using an integrated

erbium tunable laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest

(Optical Society of America, 2019), paper SW4G.6.

[12] W. Allan, “Statistics of atomic frequency standards,” in Proc. IEEE, vol.64, pp. 221-230,

1996.

[13] J.A. Barnes, A.R. Chi, L.S. Cutler, D.J. Healey, D.B. Leeson,T.E. McGunigal, J.A. Mullen,

Jr., W.L. Smith, R.L. Sydnor,R.F.C. Vessot, and G.M.R. Winkler, “Characterization of Fre-

quency Stability,” in IEEE Trans. Instrum. Meas. 20, 105, 1971.

[14] D.W. Allan, “Conversion of Frequency Stability Measures from the Time-domain to the

Frequency-domain, vice-versa and Power-law Spectral Densities,” [Online]. Available:

http://www.allanstime.com/Publications/DWA/Conversion from Allan variance to Spectral

Densities.pdf

[15] D. W. Allan and J. A. Barnes, “A modified “Allan variance” with increased oscillator charac-

terization ability,” in Proc. 35th Ann. Frequency Control Symp., 1981, pp. 470-475.

[16] G. Trudgen, “Variance as Applied to Crystal Oscillators,” Rakon Tutorial, [Online].

[17] “Variance as Applied to Crystal Oscillators,” Statek Technical Note 35 Tutorial, [Online].

Available: http://statek.com/wp-content/uploads/2018/03/tn35-Rev-B.pdf.

[18] W. Kester, “Converting oscillator phase noise to time jitter,” Analog Devices, Inc., Tutorial

MT-008.

[19] H. Mair and L. Xiu, “An architecture of high-performance frequency andphase synthesis,” in

IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 835-846, June 2000.

53



[20] D. E. Calbaza and Y. Savaria, “A direct digital periodic synthesis circuit,” in IEEE J. Solid-

State Circuits, vol. 37, no. 8, pp. 1039-1045, 2002.

[21] T. Rapinoja, et al., “A Digital Frequency Synthesizer for Cognitive Radio Spectrum Sensing

Applications,” in IEEE Trans. Microwave Theory and Tech., vol. 58, no. 5, pp 1339-1348, May

2010.

[22] P. P. Sotiriadis, “Theory of flying-adder frequency synthesizers-PartI: Modeling, signals? pe-

riods and output average frequency,” in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no.

8, pp. 1935-1948, Aug. 2010.

[23] P. P. Sotiriadis, “Theory of flying-adder frequency synthesizers-Part II:Time and frequency

domain properties of the output signal,” in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57,

no. 8, pp. 1949-1963, Aug. 2010.

[24] P. P. Sotiriadis, “Exact spectrum and time-domain output of flying-adder frequency synthesiz-

ers,” in IEEE Trans. Ultrasonics, Ferroelectrics, Freq. Control, vol. 57, no. 9, pp. 1926-1935,

Sept. 2010.

[25] K. Hosseini and M.P. Kennedy, “Minimizing Spurious Tones in Digital Delta-Sigma Modu-

lators,” Springer, 2011.

[26] M. J. Borkowski, T. A. D. Riley, J. Hakkinen, and J. Kostamovaara, “A practical delta sigma

modulator design method based on periodical behavior analysis,” in IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 52, pp. 626?630, Oct. 2005.

[27] S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz fractional-N PLL with 1 Mb/s

in-loop modulation,” in IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 49?62, Jan.

2004.

[28] T. Rapinoja, L. Xu, K. Stadius, and J. Ryynänen, “Implementation of all-digital wideband

RF frequency synthesizers in 65-nm CMOS technology,” in IEEE Int. Symposium on Circuits

and Systems (ISCAS), May 2011, pp. 1948-1951.

54



[29] T. Rapinoja, Y. Antonov, K. Stadius, and J. Ryynänen, “Fractional-N open-loop digital fre-

quency synthesizer with a post-modulator for jitter reduction,” in IEEE Radio Frequency Inte-

grated Circuits Symp. (RFIC), May 2016, pp. 130-133.

55


	Introduction
	Scope of Work
	Organization

	System Overview and Design Specifications
	CW Laser Locking Loop Operation
	Resolution and Tuning Range
	Stability
	Allan Deviation to Phase Noise
	Allan Deviation to Jitter


	The Flying Adder Frequency Synthesizer
	Synthesizer Architecture
	Principle of Operation - Governing Equations
	Synthesizer Simulink Model - 1st Order  Spur Locations

	Digital    Modulators for the FA Frequency Synthesizer
	Theoretical Background
	1st Order  Modulator
	Higher Order MASH  Modulators

	FA Frequency Synthesizer with Higher Order MASH Modulators
	Improved Spectra
	Allan Deviation Comparison


	Chip Design
	Design Variables
	Divide-by-2 Network
	Timing and Initialization
	Glitching Mitigation and Proper Initialization
	Self-Clocking Intricacies

	Chip Layout
	Post Place and Route Simulations

	Preliminary Experimental Results
	1st order  Modulator
	2nd order  Modulator
	Future Measurements

	Conclusion

