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Abstract

Sketching is an effective and natural method of visual communication among engineers,
artists, and designers. This thesis explores several deep-learning-driven techniques for rec-
ognizing and generating sketches. We introduce two novel systems: 1) Swire, a system for
querying large repositories of design examples with sketches; and 2) Sketchforme, a system
that automatically composes sketched scenes from user-specified natural language descrip-
tions. Through the development of these systems, we introduce multiple state-of-the-art
techniques to perform novel sketch understanding and generation tasks supported by these
systems. We also evaluate the performance of these systems using established metrics and
user studies of interactive use-cases. Our evaluations show that these systems can effectively
support interactive applications and open up new avenues of human-computer interaction in
the domains of art, education, design, and beyond.
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Chapter 1

Introduction

Sketching is a natural and effective way for people to communicate artistic and functional
ideas. Sketches are widely used by artists, engineers, and educators as a thinking tool
to materialize their vision. Sketching is also a popular form of artistic expression among
amateur and professional artists. The abstract yet expressive nature of sketches enables
humans to quickly communicate conceptual and high-level ideas visually. As such, sketchers
can transform their intents into concrete illustrations and artifacts across multiple domains,
and communicate these concepts tangibly while leaving out unnecessary details. These
characteristics are most notably manifested in the use of sketches in design processes, where
sketches are used by designers to iteratively discuss and critique high-level design concepts
and ideas.

Because sketching is a naturalistic medium for communicating users’ intent, computing
systems that are able to recognize or generate sketches can support effective large-scale appli-
cations. This report introduces Swire and Sketchforme1, two computing systems supported
by modern deep-learning techniques that can recognize and generate sketches for interactive
applications respectively.

Swire is a user interface (UI) retrieval system that ranks and retrieves UI screenshots from
large-scale datasets. Swire allows designers to sketch their target UIs and receive relevant UI
screenshots in the database for design inspiration or comparison against existing designs. We
also contribute the first large-scale dataset of designer-drawn UI sketches that correspond to
UI screenshots used to train Swire.

Built upon generative deep-learning models for sketches [13], Sketchforme composes
sketched scenes based on natural language descriptions specified by users. Sketchforme
uniquely factors the complex sketch generation task into layout composition and stroke ren-
dering subtasks. Using these generated sketches, Sketchforme can potentially improve large-
scale language learning applications by adding visual hints to foreign language phrases and

1Swire and Sketchforme were previously published at two major conferences in the Human-Computer
Interaction community. Swire was published in the proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems [18]. Sketchforme was published in the proceedings of the 32nd Annual
Symposium on User Interface Software and Technology [17].
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support sketching assistants that auto-complete sketched scenes based on users’ instructions
and preferences.

Chapter 2 reviews related work of computational sketch-based interactive applications
in the domains of Computer Vision, Computer Graphics and Human-Computer Interaction.
We then introduce and evaluate two sketch-based interactive systems mentioned above, Swire
and Sketchforme, in Chapter 3 and Chapter 4 respectively. Towards the end of the report, we
paint the landscape for future work and present several plausible research projects that build
upon this body of research in Chapter 5. Some of these research directions are currently
investigated by the author at the time of writing.
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Chapter 2

Related Work

Sketching is a popular medium used across diverse fields and domains. A wide range of prior
research work in Computer Vision, Computer Graphics, and Human-Computer Interaction
communities have explored using sketches as input and output modalities of interactive
applications, approaching this problem from both algorithmic and interaction perspectives.
Such prior work demonstrates the effectiveness of sketch-based human-computer interactions
and the efficacy of deep learning models in supporting sketch-based interactive tasks. This
section attempts to survey a few categories of important and relevant work in literature.

2.1 Sketch-based Design and Image Manipulation

Tools

Sketch-based interactions are commonly used in the early stages of the design process [32].
Thus, HCI researchers have explored sketch-based design applications to support interac-
tions in these stages. A significant amount of prior work in this area targeted the domain
of User interface/User Experience (UI/UX) design. The early work SILK [25] is the first
system that allows designers to author interactive, low-fidelity UI prototypes by sketching.
DENIM [30] allows web designers to prototype with sketches at multiple detail levels. More
recently, researchers have integrated verbal text descriptions into crowd-sourced sketch-based
UI prototyping tools [26].

Beyond the domain of UI/UX design, researchers have also developed sketch-based in-
teractive systems supporting other design processes. DreamSketch [22] introduces a 3D
sketch-based design interface that allows users to couple generative algorithms with sketch
contexts for solving mechanical engineering design problems. Sketchsoup [1] automatically
generates variations of users’ input sketches that differ in perspective or structure, to help
industrial designers more exhaustively explore the design space during the ideation process.

Perhaps more technically relevant to our work are image synthesis models developed by
the Machine Learning community. These models can translate user-generated doodles into
fine artwork [5] and realistic images [34]. These works utilize recent deep-learning-driven
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techniques to manipulate and transform user-defined sketch-based semantics or graphics to
closely-related domains.

2.2 Computational Assisted Sketch Authoring Tools

and Tutorials

Prior works have augmented the sketching process with automatically-generated and crowd-
sourced drawing guidance. ShadowDraw [27] and EZ-sketching [39] used edge images traced
from natural images to suggest realistic sketch strokes to users. The Drawing Assistant [19]
extracts geometric structure guides to help users construct accurate drawings. PortraitSketch
[43] provides sketching assistance specifically for facial sketches by adjusting geometry and
stroke parameters. Researchers also developed crowd-sourced web applications to provide
real-time feedback for users to correct and improve sketched strokes [29].

In addition to assisted sketching tools, researchers also developed sketching tutorial sys-
tems to improve users’ sketching proficiency. How2Sketch [14] automatically generates multi-
step tutorials for sketching 3D objects. Sketch-sketch revolution [11] provides first-hand
experiences created by sketch experts for novice sketchers.

2.3 Sketch-based Image Retrieval and Datasets

Sketch-based Image Retrieval is a frequently studied problem in the Computer Vision com-
munity. The standard sketch-based image retrieval task involves users creating simplistic
sketches with binary strokes depicting minimal user-defined features of the target natural
images. For instance, when a user desires to retrieve an image of a bird in a certain pose,
the user would only sketch the outline of the target body of the bird and lines that delineate
the bird’s wing.

Since users often focus on the target objects within the images when attempting to
retrieve these images, typical approaches in prior work are to first obtain edge-maps of
the original images that delineate boundaries between (foreground) objects and background
scenes using edge-detection techniques. These approaches then match the edge-maps with
the sketches created by users using image similarity techniques. Researchers have developed
a variety of image similarity metrics to improve retrieval performance, from the basic Peak
Signal-to-Noise Ratio (PSNR) to the more advanced Bag-of-words (BoW) Histogram of
Oriented Gradients (HOG) filters.

With the recent increasing popularity of deep neural networks and crowdsourcing, re-
searchers have developed large-scale pixel-based sketch datasets that correspond to natural
image datasets to power neural-network-driven techniques for image retrieval tasks. The
TU-Berlin [10] and Sketchy [36] sketch datasets consist of crowdsourced sketches drawn by
crowdworkers after seeing the original corresponding natural images. Using these correspond-
ing sketch-image pairs, neural networks are trained to directly encode matching sketches and



CHAPTER 2. RELATED WORK 5

images to similar low-dimensional outputs in the embedding space. When retrieving images
with a sketch query, the natural images are ranked by the distance (e.g., Euclidean Distance)
between their neural-network outputs and the sketch query’s outputs in the embedding space.

2.4 Neural Sketch Generation Model and Datasets

Beyond image recognition and retrieval, deep neural networks have also been used to gener-
ate sketches of various categories. The Sketch-RNN model is the first neural-network-based
sketch generation model [13] that generate sketch strokes using an LSTM-based architec-
ture. Sketch-RNN can either unconditionally generate stroke-based sketches based on object
classes, or conditionally reconstruct sketches based on users’ input sketches.

To facilitate the development of Sketch-RNN, researchers have crowdsourced the Quick,
Draw! [21] dataset that contains sketches drawn by human users in 20 seconds according to
various concept categories. The sketches are recorded at the stroke level with offsets from
the previous points and stroke types (e.g., pen up, pen down), similar to a vector format.
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Chapter 3

Swire: Sketch-based User Interface
Retrieval

The ability to recognize and understand sketches can bring upon naturalistic and intuitive
user experience in interactive systems. We believe such benefits can be potentially observed
in computationally supported design applications because sketching is an effective visual
medium for conveying abstract design ideas. For instance, UI/UX designers use sketches to
expand novel ideas, visualize abstract concepts, and compare alternative designs [4]. Sketches
also require minimal effort for designers to produce which allows them to rapidly generate
inspiring and focused discussions central to high-level design ideas, without distractions
from fine details. As such, designers sketch frequently in the design process, especially in
the earlier stages of the process.

Another type of artifact that UI/UX designers take reference of frequently in the earlier
stages of the design process is design example. Designers search, consult and curate design
examples to gain inspiration, explore viable alternatives and form the basis for comparative
evaluations [15, 3]. These examples embody rich information such as popular visual illustra-
tions, common flow patterns and high-fidelity layout implementations [7] that can greatly
augment various design tasks [24, 40, 33].

Retrieving relevant design examples from large-scale design datasets, however, can be a
daunting task. While designers can easily search for general categories of examples (e.g., UIs
from all Dating Apps), conducting fined-grained searches based on visual layouts and content
is much more difficult. A successful UI design retrieval technique, for instance, needs to 1)
allow users to easily express their query criteria in a way that can cover both visual layout
and content; and 2) match these criteria with design information obfuscated by raw pixels
and code in the design examples. While keyword-based matching and pixel-based matching
are either too low or high-level for this task, sketching might be a good medium for designers
to use when searching UI corpuses, as it allows designers to specify coarse visual patterns
while abstracting specific details from the UIs.

Using sketches as the querying modality also lends itself to the recent success of machine
learning techniques in recognizing visual patterns. Since both sketches and UI screenshots
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contain complex visual features, we can develop deep-neural-network-based models to effec-
tively learn correspondences between sketches and UI screenshots for retrieval.

Driven by the utility of using sketching as a medium for UI retrieval and the effectiveness
of machine learning vision models, we introduce Swire, a sketch-based UI retrieval technique
powered by neural networks in this chapter. To develop Swire, we collected the first large-
scale sketch dataset consisting of 3802 sketches corresponding to 2201 UI examples from the
Rico dataset [8] drawn by experienced UI designers recruited on an online freelance work
platform. This dataset allows us to develop techniques capable of learning UI sketch patterns
and supports future work in this area. We then introduce a versatile neural-network-based UI
retrieval technique adopted from a common machine learning method used for sketch-based
image retrieval. This technique enables sketches to be used by designers as a novel interaction
modality to interact with large-scale UI datasets. The workflow of Swire is summarized in
Figure 3.1.

Deep Neural Network 
Embedding

Sketch Query by User Nearest Neighbour Search Ranked Results (Most relevant on the left)
1 2 3 4

Figure 3.1: Overview of Swire. Swire encodes 1) a sketch query drawn by the user into 2)
the sketch-screenshot embedding space using its deep neural network. Swire then performs
a 3) nearest neighbor search in the embedding space and retrieves 4) design examples that
have similar neural-network outputs as the user’s sketch query.

We also present a quantitative evaluation of the accuracy of the model and derive quali-
tative insights from sample queries, expert evaluation, and embedding values that reflect the
concepts learned by the network. Furthermore, we demonstrate Swire’s capability to sup-
port multiple novel sketch-based data-driven design applications that tightly integrate into
the design process. With Swire, we hope to enable design applications that help designers
effortlessly gain inspirations, evaluate designs and communicate novel ideas.

3.1 Sketch Dataset

Our approach towards recognizing and deriving patterns from sketches requires a dataset of
actual sketches stylistically and semantically similar to designers’ sketches of UIs. To our
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knowledge, no large-scale public datasets of UI sketches are currently available, especially
those with sketches and corresponding screenshots of real-world UIs. Hence, we collected
sketches created by designers based on screenshots of original UIs in the Rico dataset. We
hope to support the development of future sketch-based data-driven design applications by
releasing the dataset at https://github.com/huang4fstudio/swire.

Designer Recruitment and Compensation

We recruited 4 designers through the freelancing platform Upwork. All designers reported
having at least occasional UI/UX design experience and substantial sketching experience.
In addition, all designers reported receiving formal training in UI design and degrees in
design-related fields. They were compensated 20 USD per hour and worked for 60-73 hours.

Dataset Statistics

We collected 3802 sketches of 2201 UI examples from 167 popular apps in the Rico dataset.
Each sketch was created with pen and paper in 4.1 minutes on average. Many UI examples
were sketched by multiple designers. 71.0% of the examples were sketched by 2 designers,
28.1% of the examples were sketched by 1 designer and the remaining examples (<1%)
were sketched by 3 designers in our dataset. Our 4 designers sketched 505/1017/1272/1008
UIs respectively based on their availability. We allocated batches of examples to different
combinations of designers to ensure the generality of the dataset.

We did not have the resources to generate sketches for every UI in the Rico dataset, so
we curated a diverse subset of well-designed UI examples that cover 23 app categories in the
Google Play Store and were of average to high design quality. We omitted poorly designed
UIs from the dataset because of the relatively small size of the dataset for neural network
training. Noise introduced into training by poor designs had the potential to negatively
impact the training time and quality of our model.

Data Collection and Postprocessing Procedure

We supplied screenshots of our curated UI examples to the recruited designers and asked
them to create sketches corresponding to the screenshots with pen and paper. They were
prompted to reconstruct a low-fidelity sketch from the screenshot as if they were the designers
of the interfaces. We instructed them to replace all actual image content in the screenshot
with a sketched placeholder (a square with a cross or a mountain) and replace dynamic text
in the screenshot with template texts as shown in Figure 3.2. We added these instructions
to obtain sketches with a more unified representation focused on the design layout of various
UIs. These instructions also make it easier for the neural network to learn the concepts of
images and text within the constraints of our small dataset.

In order to efficiently collect and calibrate sketches created by multiple designers in
various formats of photos and scans, we supplied them with paper templates with frames
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UI Screenshot Supplied 
to Designer

Designer Sketch on Template 
and Sends Photo/Scan Back

Post-process with Computer 
Vision Techniques

ArUco Marker for calibration

Template Text

Template Image

Figure 3.2: Data Collection Procedure. We first send a UI screenshot (Left) and paper
templates with ArUco markers to designers. Designers then sketch on the templates and
send back photos or scans of the completed sketches (Middle). We then post-process the
photos using Computer Vision techniques to obtain the final clean sketch dataset (Right).

for them to sketch on as shown in Figure 3.2. These frames are annotated with four ArUco
codes [31] at the corners to allow perspective correction. All photos and scans of the sketches
are corrected with affine transformation and thresholded to obtain binary sketches as final
examples in the dataset.

3.2 Deep Neural-network-based User Interface

Retrieval

The main component of Swire is a deep convolutional neural network. The operation of
Swire consists of a training phase and a querying phase. During the training phase, we train
Swire’s deep neural network to generate similar low-dimensional outputs (64-dimensions) for
matching pairs of screenshots and sketches, and dissimilar outputs for non-matching pairs
of screenshots and sketches. This training scheme is shown to be useful for sketch-based
image retrieval [36]. In the querying phase, we use Swire’s trained neural network to encode
a user’s sketch query and retrieve UIs with the closest outputs to the user’s query’s output.

Many other best alternative solutions to sketch-based image retrieval mentioned in Chap-
ter 2.3 use fixed image features of the original image extracted with edge detection methods.
These methods may work for certain types of UI designs that exhibit strong edges, such as a
grid-based photo viewer, but this approach can be inadequate when the sketches of the UIs
do not directly correspond to the edges. For example, list-based UIs without clear dividers
will have edge-maps which correspond less to their sketches compared to their grid-based
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counterparts with clear dividers.
Swire’s adoption of cross-modal embedding training has the advantage that it creates

a unified embedding space for both sketches and UIs with learned concepts based on their
correspondences. This means Swire can be used to search a dataset of UIs using either
sketches or actual screenshots as the querying modality.

Network Architecture

Since the system is required to match correspondence between images, we used two convo-
lutional sub-networks to handle the two inputs of sketch-screenshot pairs.

These two sub-networks are similar to VGG-A [38], a shallow variant of the state-of-
the-art network that won the ILSVRC2014 image recognition challenge [35]. Our network
consists of 11 layers, with five convolutional blocks and three fully-connected layers. Each
convolutional block contains two (one for the first two blocks) convolutional layers with 3x3
kernels and one max-pooling layer. The convolutional layers in the five blocks have 64, 128,
256, 512, and 512 filters respectively. The first two fully-connected layers have 4096 hidden
units. The last layer has 64 hidden units and outputs the 64-dimension embedding used for
querying. The activation functions of all layers except the last layer are ReLU. The network
architecture is described in detail in Figure 3.3.

The final 64-dimensional output embeddings of the sub-networks are trained to produce
appropriate embeddings represented as codes in the last layer. The model is trained with a
pairwise sampling scheme described in the following subchapter.

3x3 conv x 64 

x1

2x2 pooling 3x3 conv x 128 

x1

2x2 pooling 3x3 conv x 256 

x2

2x2 pooling 3x3 conv x 512 

x2

2x2 pooling 3x3 conv x 512 

x2

2x2 pooling fc 4096 x2
fc 64 x1

Sketch VGG-A Net

Embedding Space

(Minimize distance)

Screenshot VGG-A Net (Same Network as above, Different Weights)

…...
ScreenshotSketch

Figure 3.3: Network Architecture of Swire’s Neural Network. Swire’s neural network consists
of two identical sub-networks similar to the VGG-A deep convolutional neural network.
These networks have different weights and attempt to encode matching pairs of screenshots
and sketches with similar values.
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Triplet Loss

The model is trained with a Triplet Loss function [37, 44] that involves the neural-network
outputs of three inputs: an ‘anchor’ sketch s, a ‘positive’ matching screenshot i and a
‘negative’ mismatched screenshot i′. This forms two pairs of input during training. The
positive pair p(s, i)+ consists of a sketch-screenshot pair that correspond to each other.
The negative pair p(s, i′)− consists of a sketch-screenshot pair that does not correspond.
The negative pair is obtained with the same sketch from the positive pair and a random
screenshot sampled from the mini-batch.

During training, each pair p(s, i) is passed through two sub-networks such that the sketch
sample s is passed through the sketch sub-network and outputs an embedding fs(s), and
we similarly obtain the neural-network output of the screenshot fi(i). We compute the l2

distance D between the neural network outputs. For the positive pair,

D(p(s, i)+) = ||fs(s)− fi(i)||2

Similarly, for the distance of the negative pair,

D(p(s, i′)−) = ||fs(s)− fi(i′)||2

With these distances, we formulate a triplet loss function,

L = D(p(s, i)+) + max (0,m−D(p(s, i′)−))

m = margin between positive and negative pairs

We maintain a margin m between the positive and negative pairs to prevent the network
from learning trivial solutions (zero embeddings for all samples).

Data and Training Procedure

Since we collected data from four separate designers, we split the data and used data collected
from three designers for training and from one designer for testing. This is to ensure that
the model generalizes across sketches produced by different designers. In addition, we do
not repeat interfaces from the same apps between the training and test sets. This creates
1722 matching sketch-screenshot pairs for training and 276 pairs for testing.

During training, the sketches and screenshots are resized to 224 × 224 pixels, and the
pixel values are normalized between (−1, 1) centered at 0. The network is trained using a
Stochastic Gradient Descent Optimizer with a mini-batch size of 32. The learning rate is
1×10−2. The margin is 0.2 in all models. All hyper-parameters listed above were determined
by empirical experiments on the training set.
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Querying

When the user makes a query with a drawn sketch, the model computes an output by passing
the sketch through the sketch sub-network. This output is then compared with all neural-
network outputs of the screenshots of UI examples in the dataset using a nearest-neighbor
search. The UI results are ranked by the distance between their outputs and the user’s
sketch’s output.

3.3 Experiments and Results

Baseline

We implement a competitive non-neural baseline to evaluate the performance of our method.
As described in Chapter 2.3, typical methods of sketch-based image retrieval involve two
steps: 1) extract an edge-map from the original image to be queried, 2) match the edge-map
using a specific similarity metric. Using this framework, we first extracted the edges of the
screenshots using the Canny Edge detector. We then extracted features from the edges using
Bag-of-words (BoW) Histogram of Oriented Gradients (HOG) filters. BoW-HOG filters are
an advanced method of computing similarity between images. It captures edge features in
an image by computing the magnitude of gradients across the entire image with respect
to multiple orientations. This method summarizes image features with fixed-length vectors
that describe the occurrences and characteristics of edges in images. This method is highly
effective for sketch-based image retrieval as it focuses on the characteristics of edges while
being insensitive to local translations and rotations.

After obtaining these fixed-length vectors, we compare them using Euclidean Distance
as a simple metric to obtain similarity values between images, and subsequently use these
values to query for closest matching images (design screenshots in our case) to the sketch
queries.

Quantitative Results

We use a test set that consists of 276 UI examples to compare Top-1 and Top-10 performances
of BoW-HOG filters and Swire. The results are summarized in Table 3.1. We observe that
Swire significantly outperform BoW-HOG filters for Top-10 performance at 60.9%. For
Top-1 accuracy, Swire achieves an accuracy of 15.9% which only slightly outperformed the
strong baseline of BoW-HOG filters at 15.6%. This shows Swire to be particularly effective
for retrieving complex examples from the dataset compared to the BoW-HOG filters. We
believe deep-learning-based Swire is advantageous compared to BoW-HOG filters that rely on
matching edge-maps because UI sketches have semantic complexities that are not captured
by edge-maps of screenshots.
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Technique Top-1 Top-10

(Chance) 0.362% 3.62%
BoW-HOG filters 15.6% 38.8%
Swire 15.9% 60.9%

Table 3.1: Top-k Accuracy of Various Models on the Test Set. Swire significantly outperforms
BoW-HOG filters for top-10 accuracy.

Qualitative Results

We visualize query results from the test set to qualitatively understand the performance
of Swire in Figure 3.4. Swire is able to retrieve relevant menu-based interfaces despite the
difference in the visual appearance of the menu items (Example a). Swire is also able to
retrieve pop-up windows implemented in various ways despite the drastic difference in the
dimensions of the pop-up windows (Example b). We observe similar efficacy in retrieving
settings (Example c), list-based (Example f), and login layouts (Example e). Nevertheless, we
observe that Swire sometimes ignores smaller details of the interfaces described by sketched
elements. This limitation will be further discussed in Chapter 3.5.

Expert Evaluation

To better evaluate Swire’s performance from professional users’ perspectives, we recruited
5 designers on Upwork with substantial experience in mobile UI/UX design to evaluate
selected results from the test set. There was no overlap between these designers and those
recruited for creating the dataset. We provided them with 9 sets of query sketches and the
corresponding Top-10 retrieved results for each query from the test set. The 9 sets consist
of 3 ‘best’ results (the corresponding screenshot of the sketch query is retrieved as the Top-1
result), 3 ‘mediocre’ results (the corresponding screenshot of the sketch query is retrieved
within the Top-10 results, but not Top-1), and 3 ‘poor’ results (the corresponding screenshot
of the sketch query is not retrieved within the Top-10 results). We asked the designers to
provide comments on each set of results regarding the relevance between the sketches and
the screenshots, and to comment on the potential integration of this tool into their design
workflows.

Most designers agreed that all retrieved results in the ‘best’ result sets are relevant to
the query, and they would be satisfied with the results. They were especially satisfied with a
result set of sliding menus (also shown in Figure 3.4a). They were able to identify the results
as ‘variations on the theme of navigation drawers’ (D3) or ‘slide out modal pattern.’ (D2)
Moreover, the designers also expressed satisfaction towards some sets of ‘mediocre’ results.
Most were satisfied with a set of results that ‘show variations of the top tabbed navigation’
(D5) which is a common design pattern.
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Query Results (Ranked 1, 2, 3)

a)

b)

c)

d)

e)

f)

Query Results (Ranked 1, 2, 3)

Figure 3.4: Query Results for Complete Sketches. Swire is able to retrieve common types of
UIs such as sliding menus (a), settings (c), and login (e) layouts.

On the other hand, some designers considered the ‘poor’ results unsatisfactory. For
example, designers were less satisfied with the model’s performance on a sign-up sketch,
commenting that the model only gathered screens with similar element layouts while ignoring
the true nature of the input fields and buttons in the query (D3). However, D4 considered
‘rows of design elements’ common in the results relevant to the sketch, and D1 considered
two similar sign-up screens retrieved by the model as strong results even they did not match
up perfectly with the sketch.

In general, we observed that designers were more satisfied with the results when the
model was able to retrieve results that are semantically similar at a high-level instead of
those with matching low-level element layouts. Notably, D1 commented that we ‘probably
already considered the common UI sketch patterns and train’ our ‘system to match it up
with image results,’ which reflects the effectiveness of Swire in detecting common UI patterns
in some instances provided that it was not specifically trained to recognize these patterns.
All designers also considered Swire to be potentially useful in their workflows for researching,
ideating and implementing novel designs.
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3.4 Applications

In Chapter 3.3, we evaluated and validated Swire’s effectiveness for generally finding design
examples through sketch-based queries. Since both sketches and UI design examples are
commonly used in early stages of the user interaction design process as reported by a variety
of prior studies [32, 15], we explore the potential usage of Swire through several design
applications in this chapter. Prototypes of these applications implemented with the Jupyter
Notebook are available at https://github.com/huang4fstudio/swire.

Auto-completing Partial Designs

Sketches are often used for rapid exploration of potential design solutions [4]. Designers use
partial sketches to express core ideas, while leaving out parts of the interface in sketches for
considering viable design alternatives. We trained an alternative model Swire-segments on
partial sketches of UIs, which allows us to ‘auto-complete’ the remaining UI by retrieving a
variety of examples that are only required to match parts of the UI sketched by the user.
This model allows designers to quickly gain design inspirations that are relevant to the key
UI elements desired by them.

In the training and querying phases of Swire-segments, UI examples are split into small
parts. Designers can thus specify one-or-more parts of the UI to be matched by the model
with the examples in the dataset. We compute an embedding for each part of the interface
and match only the embeddings of the parts specified by the users for retrieval. Example
a in Figure 3.5ii demonstrates that Swire-segments is able to retrieve multiple designs that
all contain the Floating Action Button (FAB, a popular Android design paradigm) but with
diverse layouts. Swire-segments is also able to retrieve interfaces with only tab-based top
bars in common (see Example b). These examples show that Swire-segments is able to
remain agnostic to the unspecified part of the sketch queries.

Evaluation with Alternative Designs

Designers often explore alternative design examples to support the implementation and com-
parative evaluation [15] of their own designs. Prior work in HCI research literature also rec-
ommends the use of parallel prototyping techniques to obtain better final products through
extensive comparison [9]. Swire is able to support design comparisons because it enables
querying for similar UIs with high-fidelity UI prototypes.

Swire is effective in retrieving similar UIs because the visual content of UI screenshots is
reinforced with the semantic structure of sketches in the embedding space during training.
Swire can thus be used as a semantically-aware similarity metric between interfaces.

Figure 3.5i shows that Swire retrieves similar menus (Example a), login screens (Example
b), list-based UIs (Example c), and grid-based UIs (Example d) when querying with high-
fidelity screenshots. Most notably, Swire is able to retrieve multiple types of list-based UIs
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despite differences among the individual items within the lists in Example c. This enables
effective comparison between similar designs with slight variations.

Query Results (Ranked 1, 2, 3)

a)

b)

c)

d)

Query Results (Ranked 1, 2, 3)

(i) Alternative Design Query Results

19837

53739
(Match any 
Results)

(Match any 
Results)

a)

b)

Results (Ranked 1, 2)Query

a)

b)

Query Results (Ranked 1, 2, 3)

(ii) Autocomplete Query Results

19837

53739
(Match any 
Results)

(Match any 
Results)

a)

b)

Results (Ranked 1, 2)Query

a)

b)

Query Results (Ranked 1, 2, 3)

(iii) Flow Query Results

Figure 3.5: Query results for applications supported by Swire. Swire is able to retrieve
interfaces only based on parts specified by users’ sketches while remaining agnostic to other
parts of the UIs as shown in (i). Swire is also able to retrieve similar UIs in the dataset from
queries of complete, high-fidelity UI screenshots in (ii). In (iii), Swire is able to query UIs
with multiple sketches concurrently to retrieve user flows.

User Flow Examples

Beyond querying for single UIs, designers also use sketches to illustrate user experience at
multiple scales [32], such as conveying transitions and animations between multiple interfaces.
Since the Rico dataset also includes user interaction data, we use this data to enable flow
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Query Results (Ranked 1, 2, 3)

a) b)

Query Results (Ranked 1, 2, 3)

Figure 3.6: Failure Modes of UI Retrieval using Swire. Swire failed to understand a) custom
and b) colorful UI elements.

querying with Swire. Designers can use this application to interact with interaction design
examples that can accelerate the design of effective user flows.

To query flow examples in the dataset, since Swire creates a single embedding for each
UI, we can match an arbitrary number of interfaces in arbitrary order by concatenating the
embedding values during the ranking process of querying. Figure 3.5iii shows the results
of querying for two sketches that occur consequently in a user interaction. Swire is able to
retrieve registration (Example a) and ‘closing menu’ (Example b) flows that are commonly
implemented by designers. Since Rico also contains transition details between each con-
sequent UIs, these examples can demonstrate popular animation patterns [7] that provide
inspiration to interaction and animation designers.

3.5 Limitations

Despite Swire’s success in retrieving relevant UI examples, we observed its inability to obtain
a fine-grained semantic understanding of certain sketches. Figure 3.6 shows several modes
of the failure cases we observed during the evaluation of Swire.

Rare, Custom UI Elements

The first mode occurs when Swire handles rare, custom UI elements as exhibited by Example
a. Swire failed to understand the sophisticated weather chart and retrieved another interface
with similar layouts as the most relevant result with the query.

UI with Diverse Colors

The second mode is Swire’s failure in understanding UIs with diverse colors, such as those
with image backgrounds. In Example b, Swire confused a login screen with a background
image, although the most relevant UI was still ranked in the second place.
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Chapter 4

Sketchforme: Composing Sketched
Scenes from Text Descriptions for
Interactive Applications

Beyond understanding sketches and using them as the input modality with Swire, compu-
tational systems that generate sketches and use them as outputs can lead to engaging user
experiences. Having these systems produce diverse sets of sketches could further encourage
the adoption of sketches for various applications, especially in applications when it is time-
consuming or difficult for users to create sketches. These interactions could be useful for
domains such as language learning and communication.

Recent advances in neural-network-based generative models drastically increased ma-
chines’ ability to generate convincing graphical content, including sketches, from high-level
concepts. The Sketch-RNN model [13] demonstrates that recurrent neural networks (RNNs)
trained on crowd-sourced data can generate original sketches of various concept classes.

With the advancement in sketch-generation algorithms and the benefits of using sketches
as outputs in interactive applications, this chapter introduces Sketchforme, the first system
that is capable of synthesizing complex sketches for users while allowing them to maintain
control over the sketches’ content naturally using text descriptions. Sketchforme uses a
novel, automated two-step neural method for generating sketched scenes from text descrip-
tions. Sketchforme first uses its Scene Composer, a neural network that learned high-level
composition principles from datasets of human-annotated natural images that contain text
captions, bounding boxes of individual objects, and class information of the objects, to gen-
erate composition layouts of the scenes. Sketchforme then uses its Object Sketcher, a neural
network that learned low-level sketching mechanics to generate sketches adhering to the
objects’ aspect ratios in the compositions. Finally, Sketchforme composes these generated
objects of certain aspect ratios into meaningful sketched scenes.

We also build and evaluate several applications, including a sketch-based language learn-
ing system and an intelligent sketching assistant. These applications illustrate the potential
value of Sketchforme in supporting novel sketch-based interactions (Chapter 4.4). In these



CHAPTER 4. SKETCHFORME: COMPOSING SKETCHED SCENES FROM TEXT
DESCRIPTIONS FOR INTERACTIVE APPLICATIONS 19

applications, Sketchforme creates new interactions and user experiences with the interplay
between language and sketches. These features of Sketchforme are highlighted in Figure 4.1.

a horse under 
a tree.

User
Sketchforme

Composed Sketches

Language-Learning Applications

Sketching Assistants

Figure 4.1: Sketchforme synthesizes sketched scenes corresponding to users’ text descriptions
to support interactive applications.

4.1 System Description

To support applications that afford sketch and natural-language based interactions, we de-
veloped Sketchforme, the system that provides the core capability of synthesizing sketched
scenes from natural language descriptions. Sketchforme implements a two-step approach to
generate a complete scene from text descriptions as illustrated in Figure 4.2. In the first
step, Sketchforme uses its Scene Composer to generate composition layouts represented by
bounding boxes of individual objects. These bounding boxes dictate locations, sizes, and
aspect ratios of objects in the scene. Sketchforme’s Object Sketcher then uses this informa-
tion at the second step of the generation process to generate specific sketch strokes of these
objects in their corresponding bounding boxes. These steps reflect a fundamental process
suggested in many sketching tutorials, where the overall composition of the scene is drafted
before filling in details that characterize each object [6].

By taking this two-step approach, Sketchforme is able to model high-level object rela-
tions critical to composing the scenes, enabling a multitude of applications that require such
information. Moreover, this approach overcomes the difficulty for end-to-end sketch gener-
ation methods to capture global structures of sequential inputs [13]. End-to-end sketched
scene generation also requires datasets of dedicated sketch-caption pairs that are difficult for
crowd-workers to create [46].

Scene Composer: Generating Composition Layouts

To generate composition layouts of scenes, we first model composition layouts as a sequence
of n objects (and start/end tokens), such that each object generated by the network is
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Generates sketches of 
individual objects and 

composes them in the scene

Generates scene 
composition layout

[0.0, 0.0, 1.0, 0.94, “tree”]

[0.06, 0.52, 0.81, 0.48, “horse”]

r = 0.59

a horse under 
a tree.

User
1) Scene 

Composer

Natural Language 
Description

r = 0.94

2) Object 
Sketcher

Figure 4.2: Overall system architecture of Sketchforme. Sketchforme consists of two steps
in its sketch generation process.

represented with 8 values:

bt = [xt, yt, wt, ht, lt, boxt, startt, endt], t ∈ [1, n]

The first 5 values are fundamental data that describes bounding boxes of objects in the
scene: x-position, y-position, width, height, and the class label. The last three values are
boolean flags used as extra ‘tokens’ to mark the actual objects, the beginning of sequences
and the end of sequences.

Using this sequential encoding of scenes, we designed a Transformer-based Mixture Den-
sity Network as our Scene Composer to generate realistic composition layouts. Transformer
Networks [41] are state-of-the-art neural networks for sequence-to-sequence modeling tasks,
such as machine translation and question answering. We use a Transformer Network to per-
form a novel task: generating a sequence of objects from a text description c, a sequence of
words. As multiple scenes can correspond to the same text descriptions, we feed the outputs
of the Transformer Network into Gaussian Mixture Models (GMMs) to model the variation
of scenes, forming a Mixture Density Network [2].

The generation process of the composition layouts involves taking the previous bounding
box bt−1 (or the start token) as an input and generating the current box bt. At each time-
step, the Transformer Network generates an output tt conditioned on the text input c and
previously generated boxes b1...t−1 using self-attention and cross-attention mechanisms built
into the architecture. This process is repeated for multiple bounding boxes until an end
token is generated:

tt = Transformer([b1...t−1; c]) (4.1)

tt is then projected to the appropriate dimensionality to parameterize the GMMs with various
projection layers Wxy and Wwh to model P (xt, yt), the distribution of the bounding boxes’
positions, and P (wt, ht), the distribution of the bounding boxes’ sizes. Sketchforme can then
generate bounding boxes [xt, yt, wt, ht] by sampling from these distributions in Equations 4.2
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and 4.3. The GMMs use the projected values as mean and covariance parameters for mixtures
of multivariate Gaussian distributions M . These values are passed through appropriate
activation functions (Sigmoid, exp and tanh) to comply with the required range of the
parameters.

P (xt, yt) =
∑
i∈M

Π1,iN (xt, yt|µ1,Σ1), [Π1, µ1,Σ1] = a(Wxy(tt)) (4.2)

P (wt, ht) =
∑
i∈M

Π2,iN (wt, ht|µ2,Σ2), [Π2, µ2,Σ2] = a(Wwh([xt; yt; tt])) (4.3)

While P (xt, yt) is modeled only from the first projection layer Wxy, we consider P (wt, ht)
to be conditioned on the position of the boxes similar to [16]. To introduce this condition, we
concatenate tt and [xt, yt] as inputs to the second projection layer as described in Equation
4.3. The probability of each generated bounding box being an actual object or a start/end
token are generated using a softmax-activated third projection layerWc from the Transformer
output:

P (boxt, startt, endt) = softmax(Wctt) (4.4)

In addition, Sketchforme separately uses an LSTM to generate class labels lt because the
class labels given certain descriptions are assumed to not vary across examples. The full
architecture of the Scene Composer is shown in Figure 4.3i.

Object Sketcher: Generating Individual Sketches

After obtaining scene layouts from the Scene composer, we designed a modified version of
Sketch-RNN model to generate individual objects in Sketchforme according to the layouts.
We adopt the decoder-only Sketch-RNN that is capable of generating sketches of individ-
ual objects as sequences of individual strokes. Sketch-RNN’s sequential generation process
involves generating the current stroke based on previously generated strokes, a method com-
monly used in sequence modeling tasks. Sketch-RNN also uses a GMM to model variation
of sketch strokes.

While the decoder-only Sketch-RNN generates realistic sketches of individual objects in
certain concept classes, the aspect ratios of the output sketches generated by the original
Sketch-RNN cannot be constrained. Hence, sketches generated by the original Sketch-RNN
may be unfit for assembling into scene sketches guided by the layouts generated by the
Scene Composer. Further, naive direct resizing of the sketches can produce sketches of
unsatisfactory quality for complex scenes.

We modified Sketch-RNN as the Object Sketcher that factors in the aspect ratios of
objects when generating sketches. To incorporate this information in the Sketch-RNN model,
we compute the aspect ratios of the training data and concatenate the aspect ratio r = ∆y

∆x

of each sketch with the previous stroke as input to our modified Sketch-RNN in the sketch
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generation process as shown in Figure 4.3ii. The new formulation and output of the modified
Sketch-RNN for t-th stroke is:

[ht; ct] = LSTM([St−1; r;ht−1; ct−1]), yt = Wht + bt (4.5)

Since each Sketch-RNN model only handles a single object class, we train multiple modi-
fied Sketch-RNN models based on multiple classes and use appropriate models based on class
labels in the layouts generated by the Scene Composer for assembling the final sketched scene.

After generating the strokes, the Object Sketcher converts them into SVG paths and fills
each object in white using the non-zero rule. The object corresponding to the first generated
bounding box generated by the Scene Composer is then composed as the foreground of the
sketched scene, and subsequently generated objects are placed in the background according
to the order of generation.
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Figure 4.3: Model architecture of (i) the Scene Composer and (ii) the Object Sketcher.

4.2 Model Training and Data Sources

Sketchforme’s Scene Composer and Object Sketcher are trained on different datasets that
encapsulate visual-scene-level knowledge and sketching knowledge separately. This relaxes
the requirement for Sketchforme to be trained on natural language annotated datasets of
sketched scenes that provide varied scenes corresponding to realistic scene-caption pairs.

We trained the Scene Composer using the Visual Genome dataset [23], which contains
natural language region descriptions and object relations of natural images, to demonstrate
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its flexibility in utilizing various types of scene-layout datasets. Object relations in the
dataset each contains a ‘subject’ (e.g., ‘person’), a ‘predicate’ (e.g., ‘on’), and an ‘object’
(e.g., ‘car’) represented by class labels and bounding boxes of participating objects in the
image. Natural language region descriptions are represented by bounding boxes of the re-
gions and description texts that correspond to the regions. We reconcile these two types of
information using region graphs in the dataset. With the paired data of natural language
descriptions and relations, we train the Scene Composer to generate composition layouts.
We selected relations that contain subsets of the 100 most commonly used object classes and
70 predicates in the dataset. This dataset of selected object classes and predicates contains
101,968 instances. We split this dataset in the scheme of: 70% training set, 10% validation
set, and 20% test set.

The Object Sketcher is trained with the Quick, Draw! [21] dataset that contains 70,000
training sketches, 2,500 validation sketches and 2,500 test sketches for each of the 345 object
categories in the dataset. As mentioned in Chapter 4.1, we preprocess the data by computing
the aspect ratios of all sketches as inputs to the Object Sketcher in addition to the original
stroke data.

Using these data sources, we train multiple neural networks of various configurations and
loss functions in Sketchforme. The LSTM architectures in the Scene Composer for generating
composition layouts are stacked with 2 hidden-layers of size 512. Similarly, the Transformer
Network has the configuration (dmodel, Nlayers) = (512, 6).

The Scene Composer is trained by minimizing the negative log-likelihoods of the position
data Lxy and size data Lwh, and cross-entropy loss for categorical outputs Lp:

Lxy = −
n∑

i=1

log(P (xi, yi)) (4.6)

Lwh = −
n∑

i=1

log(P (wi, hi)) (4.7)

Lp = −(
n∑

t=1

P (boxt) log(boxt) + P (startt) log(P (startt)) + P (endt) log(P (endt))) (4.8)

For generating the class labels, each lt is represented as a 100-dimensional vector in our
model, with each value li,t corresponding to the output probability of the class. Lclass is thus
computed as:

Lclass = −
n∑

t=1

100∑
i=1

li,t log(li,t) (4.9)

We combine these losses with weight hyper-parameters to obtain a general training ob-
jective LSC for the Scene Composer:

LSC = λ1Lxy + λ2Lwh + λ3Lp + λ4Lclass (4.10)
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We set λ1 = 1.0, λ2 = 1.0, λ3 = 1 × 10−5, λ4 = 1 × 10−3. We used the Adam Optimizer
with an initial learning rate of 1 × 10−5 and β1 = 0.9, β2 = 0.999 to minimize the loss
function. We used 5 mixtures in each of the GMMs. We chose these hyper-parameters based
on empirical experiments.

The Object Sketcher uses an HyperLSTM cell [12] of size 2048 for the modified Sketch-
RNN model. The loss function of the Sketch-RNN model is identical to the reconstruction
loss LR in the original Sketch-RNN model to maximize the log-likelihood of the generated
probability distribution for each of the strokes St. The model is trained with an initial
learning rate of 0.0001 and gradient clipping of 1.0.

4.3 Experiments and Results

Central to evaluating Sketchforme’s success is assessing its effectiveness in generating realistic
and relevant sketches and layouts from text descriptions. We evaluated the data generated
by Sketchforme at each step of the generation process qualitatively and quantitatively to
demonstrate its effectiveness of generating sketched scenes. We further conducted two user
studies on the overall utility of the generated sketches to explore their potential in supporting
real-world applications.

Composition Layout Generation

The composition layouts generated by the Scene Composer in the first step of Sketchforme’s
sketch generation process are represented as bounding boxes of individual objects in the
scene. While the Scene Composer already directly maximizes the log-likelihood of the data,
we can evaluate the performance of the model by visualizing and comparing heat-maps
created by super-positioning instances of real data and generated data.

Because Sketchforme considers the text input when generating the composition layouts,
we should only compare the generated bounding boxes with ground-truth bounding boxes
from the dataset that are relevant to the text input. We obtain these ground-truth com-
positions by filtering the subjects, objects, and predicates based on the descriptions. For
instance, the composition layouts generated from ‘a person riding a horse.’ are compared to
all ground-truth layouts with ‘person’ subjects, predicates that are related to riding such as
’on’, ’on top of’ etc. and ‘horse’ objects.

Heat-maps in Figure 4.4 shows the distributions of Sketchforme-generated bounding
boxes and ground-truth bounding boxes from the dataset. From these heat-maps, we can
obtain a holistic view of the generation performance of the model by visually evaluating the
similarity between the heat-maps. We observe similar distributions between the ground-truth
layouts and the generated layouts based on all of the descriptions.

We can further approximate an overlap metric between the distributions using Monte-
Carlo simulations to evaluate the model’s performance quantitatively. To estimate the degree
of overlap between the generated data distribution and the dataset’s distribution, we gener-
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ated 100 composition layouts for each description and randomly sampled 1000 data points
within each bounding box in these layouts. We estimate the overlap between the distributions
by counting the number of data points that lie within the intersections between any gener-
ated and ground-truth bounding boxes. We compare Sketchforme’s performance with both
a heuristic-based bounding box generator and a naive random bounding box generator. The
heuristic-based bounding box generator only generates the first bounding boxes above/below
the second bounding boxes for descriptions with the above-related/below-related predicates.
The random bounding-box generator samples random values that describe the bounding
boxes from uniform distributions, which serves as a naive baseline. Table 4.1 shows the
percentage of the 1000 data points that lie in the intersections. The metric value for overlap
between real and Sketchforme-generated data is considerably higher than both the value for
overlap between real and heuristic-generated data and the value for overlap between real and
randomly generated data, which confirms our analysis from qualitative visual inspection of
the heat-maps.
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Figure 4.4: Heat-maps generated by super-positioning Sketchforme-generated/Visual
Genome (ground-truth) data. Each horizontal pair of heat-maps corresponds to an object
from a description.

Description Sketchforme Heuristics Random
a dog on a chair 89.1% 64.4% 61.6%

an elephant under a tree 68.4% 40.3% 30.6%
a person riding a horse 94.0% 57.7% 51.5%
a boat under a bridge 31.8% 15.0% 6.85%

Table 4.1: Overlap metric from Monte-Carlo simulations for each description between real
data and Sketchforme-generated/heuristics-generated/random data.
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Generating Individual Object Sketches at Various Aspect Ratios

The main addition of Sketchforme to the original Sketch-RNN model is a new input that
allows the Object Sketcher to generate sketches based on target aspect ratios (r = ∆y

∆x
) of

completed sketches. We evaluate this approach by generating sketches of various aspect
ratios. The Object Sketcher is able to adhere to input aspect ratios and generate individual
object sketches coherent to the ratios. As shown in Figure 4.5, sketched trees generated with
ratio r = 1.0 can be perceived as shorter than those generated with r = 2.0.

= 1.0
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Aspect Ratio Sketched Objects
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Figure 4.5: Generated sketches of trees with various aspect ratios by the Object Sketcher in
Sketchforme.

Complete Scene Sketches

Combining the Scene Composer and the Object Sketcher, Sketchforme generates complete
scene sketches directly from text descriptions. Several examples of the sketches are shown
in Figure 4.1, Figure 4.6, and Figure 4.8. In these figures, sketches that correspond to ‘a
boat under a bridge’ consist of small boats under bridges, whereas sketches that correspond
to ‘an apple on a tree’ consist of small apples on large trees that follow the actual sizes and
proportions of the objects. Moreover, Sketchforme is able to generalize to novel concepts
of ‘a cat on top of a horse,’ such that the only relations involving a cat and a horse in the
Visual Genome dataset which the model was trained on correspond to ‘a horse facing a cat.’
The sizes of cats and horses in these sketches are in proportion to their actual sizes, and the
cat is adequately placed on the back of the horse, as shown in Figure 4.8.

a boat under 
a bridge

Description Complete Sketches

a dog on  
top of a car

an apple 
on a tree

Description Complete Sketches

a bike next to 
a bench

Figure 4.6: Complete scene sketches generated by Sketchforme.

We further trained Sketchforme on the Abstract Scenes dataset [45] to evaluate the
approach’s generalizability on handling complex scenes. We included examples of sketches
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generated by Sketchforme based on a) ‘Some squirrels near the pond under the trees on a
sunny day’ (a multi-object multi-relation scene) and b) ‘Living room with some paintings
on the wall’ (a scene consists of an abstract setting, i.e., living room) in Figure 4.7.

Sketchforme was able to generate these scenes adhering to the captions: for description
a), Sketchforme was able to locate each object according to inter-object relations dictated by
the description; for description b), Sketchforme was able to analyze the phrase ‘living room’
and generate couches and house plants in the scenes. When Sketchforme needs to handle
a large number of objects, we found that it can be further improved by making a minor
modification to the Scene Composer: feeding the generated classes into the Transformer
network to synchronize the generated bounding boxes with the generated class labels of
the objects. Moreover, we observed that the limitation of occlusions (further discussed in
Chapter 4.5) is more apparent as the scenes become more crowded with objects, such as the
multiple overlapping trees in scenes based on description a).

Some squirrels 
near the pond 

under a tree on a 
sunny day

Description Complete Sketches

Living room 
with some 

paintings on the 
wall

Description Complete Sketches

Figure 4.7: Complete scene sketches generated by Sketchforme trained on the Abstract
Scenes dataset that contains complex multi-object scenes.

Human Perception User-Study

Sketchforme’s high-level goal is to augment users’ communication and learning processes by
generating realistic, plausible, and coherent sketches for users to interact with. To comple-
ment the quantitative and qualitative evaluation of the sketches, we conducted a user study
on Amazon Mechanical Turk (AMT) to gauge human subjects’ opinions on the sketches’
realism and ability to convey the descriptions used to generate them.

Study Procedure

We recruited 51 human subjects on AMT and asked them to each review 50 sketches gen-
erated by either humans or Sketchforme. These 50 sketches are generated from five descrip-
tions. The human-generated sketches are obtained from another AMT task prior to this user
study based on Quick, Draw! [21]. These human-generated sketches are shown in Figure 4.8.
In this study, subjects are provided with complete sketched scenes and descriptions that the
scenes are based on. Subjects are required to respond to the following questions:

1. Do you think this sketch was generated by a computer (AI) or a human?
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2. On a scale of 1-5 (1 represents that description conveyed very poorly, 5 represents that
description conveyed very well), how well did you think the message is conveyed by
the sketch?

The subjects are given 10 sketches as trial questions with answers to the first question
at the beginning of the task. After completing the trial tasks, the subjects’ answers to the
remaining 40 sketches are aggregated as the study results. This study protocol is similar to
perception studies commonly used to evaluate synthetic visual content generation techniques
in the deep learning community [20]. In addition, we collected comments from the users (if
any) and their perceived overall difficulty of the task at the end of the task.

SketchformeHumans

an airplane in front 
of a mountain

an elephant  
under a tree

a cat on top  
of a horse

Description SketchformeHumans

a clock on 
a building

a boat under 
a bridge

Description

Figure 4.8: Samples of sketches produced by humans and Sketchforme used in the AMT user
study.

Results

The first question probes the realism of the sketches with a Turing-test-style question asking
the subjects to determine whether the sketches are created by humans. As shown in Figure
4.9i, subjects on average considered 64.6% of the human-generated sketches as generated
by humans, while they considered 36.5% of Sketchforme-generated sketches as generated by
humans. Although the percentage of Sketchforme-generated sketches considered as generated
by humans is significantly lower (p < 1.05 × 10−10, paired t-test) than that of human-
generated sketches, individual participants commented in the study that it was difficult to
distinguish between human-generated and Sketchforme-generated sketches. P2 mentioned
that they ”really couldn’t tell the difference in most images.” P6 commented that they
”didn’t know if it was (a) human or a computer (that generated the sketches).” These
results demonstrate the potential for Sketchforme in generating realistic sketched scenes.

We hypothesize one of the possible reasons for the lower percentage of Sketchforme-
generated sketches to be considered as human-drawn is that the curves of the synthetic
sketches are in general less jittery than human-drawn sketches. We suggest future work
explore introducing stroke variation to generate more realistic sketches.

The results for the second question reflects the ability of the sketches to communicate
the underlying descriptions that they are based on. The average score for human-generated
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sketches is µ = 3.46, whereas the average score for Sketchforme-generated sketches is µ =
3.21 as shown in Figure 4.9ii. Although Sketchforme-generated sketches achieved lower
scores overall, Sketchforme-generated sketches achieved statistically better average scores
for sketches based on two of the descriptions: ‘a boat under a bridge’ and ‘an airplane in
front of a mountain’ (p < 0.0005, paired t-test). This shows the competitive performance
of Sketchforme-generated sketches in communicating the underlying descriptions for some
scenes.
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Figure 4.9: Results of the human perception user-study on Sketchforme. 64.6% of human-
generated sketches and 36.5% of Sketchforme-generated sketches are perceived as human-
generated in (i). In (ii), Sketchforme-generated sketches was considered more expressive than
human-generated sketches for sketches of ‘a boat under a bridge.’ and ‘an airplane in front
of a mountain.’

Sketch Interpretation User-Study

To further evaluate Sketchforme’s ability to deliver messages through sketches, we conducted
an exploratory user-study to gauge users’ ability to translate Sketchforme-generated sketches
back into natural language descriptions.

Study Procedure

We recruited 10 participants on AMT. Each participant was provided with 5 sketches gen-
erated by humans and 5 sketches generated by Sketchforme from the same descriptions, but
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without the original text descriptions. The sketches are reused from the previous study, but
the order and selection of the sketches from the set of sketches in the previous study are
randomized for each participant. Participants are then asked to produce text descriptions
that represent the meaning of each of the sketches. We ensured that the participants had
not participated in any of our other studies.

Results

We aggregated the text descriptions produced by each of the participants and compared
the subjects, objects, and predicates included in their text descriptions with the origi-
nal descriptions used to generate the sketches. The percentage of user-generated descrip-
tions that match the subjects/objects/predicates of the original descriptions are respectively
86%/72%/46% for human-generated sketches, and 86%/76%/38% for Sketchforme-generated
sketches. While we did not observe a significant difference between the communication abil-
ity of both sets of sketches (p > 0.269, each paired t-test for subjects/objects/predicates),
one novel insight brought by this study is that these sketches are particularly weak in con-
veying the predicates. Multiple descriptions provided by the users on both sets of sketches
did not mention the predicates at all, such as ’an elephant and a tree,’ or mentioned more
general predicates, such as ‘elephant walking near a tree,’ for sketches based on ‘an elephant
under the tree.’ Effectively conveying the descriptions’ predicates through sketches can be
an interesting issue for further research investigation.

4.4 Applications

In this chapter, we explore several applications that can benefit from Sketchforme’s ability
to generate compelling sketches from natural language descriptions.

Sketch-Assisted Language Learning

Sketches have been shown to improve memory [42]. As language learning is a memory-
intensive task, Sketchforme could support language education applications based on sketches.
These sketches can potentially create engaging and effective learning processes and avoid rote
learning.

Language Learning Application

To explore the possibility of Sketchforme in supporting language learning, we built a basic
language-learning application that aims to educate learners with a translation task from
German to English. In this application, learners are presented with German phrases and
asked to translate them to English in the form of multiple-choice questions similar to the
process of learning term definitions from flash-cards. This application also implements the
Leitner system [28] with three bins that repeats phrases which learners make the most
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mistakes on most frequently. Under this system, the phrases are moved to different bins
depending on the participants’ familiarity with the translations.

We gathered 10 pairs of German-English sentences from a native German speaker and
form 2 sets of 5 translations each. In addition, deceptive English sentences are added as
other choices in the multiple-choice test to be selected by the learners in the application.
We deployed this application on AMT to test the improvement of learning performance
by presenting Sketchforme-generated sketches along with the phrases. The UI of the full
application with a sketch presented to the users is shown in Figure 4.10i.

Study Procedure

The study consists of a training phase and a test phase for each participant. In the training
phase, participants are presented with correct answers after answering each question. The
participant can only advance to the next phase when they answer all questions correctly
consecutively for all translations according to the Leitner system. In the test phase, partic-
ipants are given one chance to provide their answer to all translations without seeing the
correct answers. The participants are divided into two conditions, with the ’control’ group
only receiving phrases on their interface during training, and the ’treatment’ group that
receives both phrases and sketches generated by Sketchforme on their interface during the
training phase. Both groups receive only the phrases on their interface during the test phase.
Moreover, we use our two sets of translations for training and test phases alternatively, such
that the participants will not get consecutive training and test phases for the same set of
descriptions.

The performance of the participants during the study are monitored with multiple ana-
lytical metrics, including completion time of each phase, and scores in the test phase, etc.
At the end of the study, we also provide surveys for them to rate the difficulty of the task
and the usefulness of the sketches (if applicable) on five-point Likert scales, and ask them to
provide any additional suggestions to the interface.

Results

We recruited 38 participants on AMT to participate in the study. While we did not see
a significant difference (p = 0.132, unpaired t-test) in the correctness of answers in the
test phase of the phrases between the ‘control’ and ‘treatment’ groups of participants, we
discovered that the time taken to complete the learning task for the ‘treatment’ group (246
seconds on average) was significantly less (p = 0.011, unpaired t-test) than the control group
(338 seconds on average). The ‘treatment’ group also generally found the sketches to be
helpful for learning (rated 4.58 out of 5 in the post-study survey).

As Sketchforme is an automated system that is capable of generating sketches from free-
form text descriptions, and with these promising results on sketch-assisted language learning,
we envision Sketchforme to support and improve large-scale language learning applications
in the future.
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Intelligent Sketching Assistant

Since Sketchforme uses sequence models and a multi-step generation process to generate
sketches, by design it can support interactive human-in-the-loop sketching systems. To
demonstrate such capability, we built a prototype of an intelligent sketching assistant reflec-
tive of two potential use-cases:

Auto-completion of scenes

As Sketchforme’s Scene Composer consists of the Transformer Network, a sequence model
that attends to previous objects in the scene to generate the upcoming object, we can
complete unfinished user scenes instead of starting with a blank canvas by starting the
generation with both the start token b1 and an existing object in the scene created by the
user b2. Figure 4.10ii shows examples of Sketchforme completing users’ sketch of a horse in
step a) by adding potential sketched trees involved in the scene.

User-Steerable generation

Sketchforme’s Scene Composer is capable of generating multiple potential candidates sketched
objects at each step of composing the final sketched scenes. As such, users can select their
preferred scene layout from the candidates. Figure 4.10ii shows multiple candidates proposed
by Sketchforme based on a text description in step b). Moreover, since Sketch-RNN is also
capable of generating a variety of sketches, the users can select their preferred sketches of
each individual object in the scene.

(i) Sketch-augmented language-learning ap-
plications

“a horse under a tree.”
1 2 3

a

b:

a a

(ii) Intelligent sketching assistant

Figure 4.10: Applications enabled by Sketchforme. Sketchforme can augment (i) language-
learning applications and significantly reduced the time taken for users to achieve similar
learning outcomes. With the (ii) intelligent sketching assistant powered by Sketchforme, the
user can create a partial sketch for Sketchforme to suggest multiple candidates for them to
choose the adequate sketch they prefer from the description ‘a horse under a tree.’
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4.5 Limitations

Occlusions and Layer Order

Sketchforme is trained to model scene compositions from a natural image dataset. In natural
images, objects might occlude each other, hence affecting sizes and positions of the bounding
boxes in the composition layouts. Figure 4.11i shows several boats that were inadequately
placed in front of parts of the bridges that should have occluded the boats. To overcome this
limitation, future systems can augment Sketchforme by including advanced vision models to
determine the objects’ layer order in the original natural image. The current Sketchforme
system only considers a naive layer order determined by the generation sequence of the
composition layout, which is ‘subject’ then ‘object’ from the dataset.

Moreover, novel methods should be developed to handle overlapping sketched objects
generated from occluded compositions. For instance, the model that generates composition
layouts could enforce constraints to avoid overlaps in the sketches or follow user-specified
heuristics to handle overlaps.

Aspect Ratios might be Weak Signals for Object Poses

Sketchforme uses aspect ratios of bounding boxes as the primary signal to inform the shapes
of sketches of individual objects. Although these shapes can be sufficient to determine
the correct poses for objects in some classes, such as the ‘tree’ class, merely constraining
the shapes might be weak signals for objects of other classes. These shapes can suggest
incoherent perspectives or incomplete sketches, such as examples shown in Figure 4.11ii.
In Figure 4.11ii, only faces of the elephants were sketched due to aspect ratios provided to
the Object Sketcher, which is inappropriate for composing sketched scenes. To mitigate this
limitation, future work could model the poses of objects in sketches and natural images more
closely using other cues, such as complete masks of the objects.

(i) Occluded Objects (ii) Incoherent Poses

Figure 4.11: Limitations of Sketchforme’s sketch generation process. In (i), the boats are
significantly occluded by the bridges. In (ii), the elephants were represented with square
bounding boxes which guided the system to sketch only the faces of the elephants.
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Chapter 5

Conclusion and Future Work

In this report, we introduced two novel systems that recognize and generate sketches for
interactive applications, and developed the associated deep-learning models that support
these applications at the core of these systems. Swire enables designers to interact with
large-scale UI datasets with sketches by adopting a sketch-based image retrieval technique.
Sketchforme is capable of generating abstract scene sketches that involve multiple objects
based on natural language descriptions.

We hope the findings from the investigation of these systems can inspire and accelerate
future research to explore further, more sophisticated sketch-based human-computer inter-
actions. In the remainder of this chapter, we discuss a few directions that we find promising
extending this body of research.

5.1 Design and Engineering Applications in Other

Domains

We showed computational systems can support sketching as an effective medium for retriev-
ing relevant UI design inspiration with Swire. While the UI/UX design process embodies
the ambiguous and creative properties of design thinking in general, design sketches in other
domains, such as industrial design and mechanical engineering, might contain additional
complexity of multiple perspectives, and/or larger numbers of basic components. Such com-
plexity creates new challenges and opportunities for innovation in sketch-based design and
engineering applications.

5.2 Conversational Sketch Suggestion and Tutorial

System

To fully reap the benefits of the highly interactive media of sketching and natural language,
and the high-level and low-level information of each element of the sketched scenes modeled
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by Sketchforme, we believe future work should expand beyond generating a single sketched
scene from a single text description, and explore conversational interfaces that guide users
to progressively create sketches coherent to dialogues. Beyond generating sketches based on
dialogues of sketching instructions, future work can also explore automatic storyboarding
applications that generate sketch-illustrated stories with the support of relevant narration
and description data.

Moreover, since both components involved in Sketchforme’s sketch generation process are
capable of completing partial sketches created by users, Sketchforme can suggest possible
strokes following incomplete user-drawn sketches for pedagogical purposes.

5.3 Coloring and Animation

The sketches generated by Sketchforme are binary sketch strokes without colors or anima-
tions. Future work should explore colored and/or animated sketches to enable richer user
experiences. For instance, the natural image dataset that was used to train Sketchforme’s
Scene Composer can be used to determine possible colors of the sketched objects. Video seg-
mentation datasets can also be used to inform the motion of sketched objects in animation
sequences.
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