
Secure Speculation: From Vulnerability to Assurances with
UCLID5

Cameron Rasmussen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-95
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-95.html

May 24, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank my advisor Sanjit Seshia, from helping me in my first
semester as a transfer student to now. His guidance has been immensely
helpful, and I’ve grown a lot working with him. I owe Pramod Subramanyan
for all his advice and direction during projects; credit goes to him for the
inception of many of these formalizations (that I gloss over) as well as some
of the figures. I appreciate and owe Kevin Cheang as he has been working
with me since I started my MS degree, working together on homework and
projects alike. This thesis is a culmination of joint work which is also
reported in a paper that is jointly authored with Kevin Cheang, Sanjit Seshia,
and Pramod Subramanyan. My contributions to this work are found largely in
the verification choices and adversary modeling.

Secure Speculation: From Vulnerability to Assurances

with Uclid5

Cameron Rasmussen

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cali-
fornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,

Plan II.

Approval for the Report and Comprehensive Examination:

Commi�ee

Sanjit Seshia
Research Advisor

(Date)

? ? ? ? ? ? ?

Krste Asanovic
Second Reader

(Date)

Abstract

Spectre and Meltdown represented a family of new vulnerabilities called transient execution attacks. They have
shown that micro-architectural state was taken for granted and side channels were capable of exposing more than
was previously believed possible. This thesis addresses the problem of determining whether a given program is
vulnerable to transient execution attacks. Using an approach based on formal methods, we formalize a secure
speculation property, adversary and platform models, and use the Uclid5 tool to verify whether a given program
satis�es the secure speculation property.

Acknowledgements

I would like to thank my advisor Sanjit Seshia, from helping me in my �rst semester as a transfer student to now.
His guidance has been immensely helpful, and I’ve grown a lot working with him. I owe Pramod Subramanyan for
all his advice and direction during projects; credit goes to him for the inception of many of these formalizations
(that I gloss over) as well as the �gures in the § 1.1. I also appreciate and owe Kevin Cheang as he has been working
with me since I started on my MS degree, working together on homework and projects alike. Many a late night was
spent debugging work on the verge of a deadline with him. The following thesis is a culmination of joint work
between the four of us over the course of my degree which is also reported in a paper [15] that is jointly authored
with Kevin Cheang, Sanjit Seshia, and Pramod Subramanyan. My contributions to this work are found largely in
the veri�cation choices and adversary modeling.

This work was supported in part by the ADEPT Center, SRC tasks 2867.001, the iCyPhy Center, and NSF grants
CNS-1739816 and CNS-1646208.

3

Contents

1. Introduction 5

1.1. Spectre Attack . 6
1.2. Primer on Uclid5 . 7
1.3. Overview . 9

2. Secure Speculation 11

2.1. The Platform Model . 11
2.2. The Adversary Model . 12
2.3. The Property . 13
2.4. Related Work . 13

3. Modeling and Verification 15

3.1. From C . 15
3.2. Using BAP . 15
3.3. Modeling with Uclid5 . 17

3.3.1. Abstractions for Scalability . 17
3.3.2. Veri�cation Choices . 17
3.3.3. Common Module . 18
3.3.4. Program Module . 19

3.4. Composing the Model with the Property . 23
3.5. Experiments . 26

4. Conclusion 29

Bibliography 33

A. Spectre Variant 1 C Source 34

B. BIL of Spectre Variant 1 35

C. Uclid5 Common Module 41

D. Uclid5 Model of Spectre Variant 1 43

E. Composition of Spectre Variant 1 with Secure Speculation 48

4

Chapter 1 Introduction

Recently discovered vulnerabilities Spectre [32] and Meltdown [37] have brought us to reevaluate many previously
accepted hardware architectures and optimizations. They highlighted that there can be a fundamental disconnect
between the ISA and micro-architectural state while proving that these side channels are more easily exploited
than expected. This point was driven even further in the subsequent �ood of variants [24, 25, 26, 27, 28, 34, 39] and
new attack vectors that this class of vulnerabilities, coined transient execution attacks [40], opened up. Not to be
left behind, the number of mitigations proposed has been steadily increasing [30, 42, 43, 55], but they lack soundness
guarantees, and in a high security context, we need more than just informal scrutiny to trust that a vulnerability is
no longer exploitable.

Transient execution attacks work by exposing micro-architectural state to a user through side-channels. Their
existence is due to a number of optimizations in modern processors which exist at the micro-architectural level,
but are abstracted away at the architectural level such as: out-of-order execution, branch prediction, caching,
speculation, etc. Out-of-order allows processors to execute nonsequential instructions as they become ready to
execute minimizing time spent idle, but branching control �ow poses a question of which instruction comes next.
The processor would normally have to �rst resolve branches before knowing which instruction to execute next.
Instead of waiting for branch resolution, the processor uses a prediction structure to guess whether a branch will be
taken or not and begins executing instructions speculatively. Once the branch condition is resolved, the processor
can walk back the speculative changes when there is a misprediction, or commit the changes as valid execution if
the prediction was correct. This accounts for great performance gains because we don’t have to pause execution
to wait for branch resolution when we guess correctly, and even mispredictions are only roughly equivalent to
idling until branch resolution. Predicting whether a branch will be taken has been observed to be reliable given
temporal consistency and locality; if a branch was taken consistently in the past, it will likely be taken again. What
is important here for these attacks is what is possible during speculative execution and what state gets walked
back. Only architectural state (registers, memory bu�ers) is considered when walking back from a misprediction,
whereas micro-architectural state such as the cache or prediction structure are not. This is our side channel; if we
can detect di�erences in this micro-architectural state, then we can learn about what happened during speculative
execution. If an attacker can train the prediction structure to mispredict on sensitive code, using our side channel
we can discern secret information.

The immediate �x is to disable speculation, but disabling this optimization wholesale would come with incredible
performance costs (as will disabling any of the other optimizations mentioned). Luckily, the processor does enable
instruction (or memory) serialization with special instructions which can selectively turn o� speculation or act
as a speculation fence. These fence instructions then face the new problem of �nding where to place them. This
exact question was approached by the Microsoft Visual Studio team, and their answer was to use static analysis to
identify where these instructions would be necessary [42]. The problem was that their solution is not sound, as
Paul Kocher was able to show using a number of di�erent examples that tweaked the canonical Spectre variant 1
example [31]. This is hints at the essence of the problem; we cannot formally reason about these vulnerabilities and
thus cannot prove anything about the proposed mitigations.

5

Some other approaches have attempted to prevent information leakage through side channels [30], but that
becomes a cat and mouse game of patching side channels only to �nd new ones being used. Each newly secured
side channel will come at a performance cost, and it is infeasible to remove all side channels. For these reasons, this
is not the approach proposed by this work.

1.1. Spectre A�ack

This section will describe in greater detail the spectre variant 1 attack. We focus on spectre variant 1 as a motivating
example because it presents the most interesting transient execution attack that hasn’t yet been readily solved like
variant 2, Meltdown or Foreshadow, but it is important to point out that this work can be generalized beyond just
variant 1.

1 void victim_function_v01(ull x) {
2 if (x < array1_size) {
3 temp &= array2[array1[x] * 512];
4 }
5 }

Figure 1.1.: The canonical example of Spectre variant 1 and appeared as example 1 in Kocher’s follow up post

S1: prepare ex�ltration
channel, branch

predictors

S2: invocation of victim
(trusted) code

S3: attacker triggered
misspeculation

S4: extract secret from
ex�ltration channel

Figure 1.2.: Four Stages of a Speculative Execution Attack. Execution of untrusted code is shown in red, while
trusted code is in blue. We show the attacker-triggered misspeculation in the trusted code in the violet
dotted box.

The attack is carried out in 4 stages as shown in Figure 1.2. Stage 1 sees the attacker prepare the side channel and
training the branch predictor. The commonly used side channel is the cache which can be primed by �rst �ushing
its contents then loading a number of sentinel values. The branch predictor can be trained by repeatedly forcing a
branch to be taken so that it will expect to be taken in the future.

For Stage 2, the attacker invokes the vulnerable code with their malicious inputs. These inputs in concert with
the trained branch prediction will force misspeculation. Here invocation does not necessarily require explicit API or
functions calls, but any instance where an attacker can guarantee execution will follow stage 1 with their supplied
inputs.

Stage 3 sees the vulnerable code intentionally trigger misspeculation which will cause changes in microarchitec-
tural state. These changes will persist even after the branch is resolved, and misspeculation is walked back. In the
case of the cache, that means we have evicted one of our sentinel values that was loaded into the cache previously,
and which value was evicted will leak some secret information.

6

Stage 4 sees control return to the attacker where they then probe the side channel to learn any leakage caused by
the misspeculation. For the cache, this involves reloading sentinel values and timing their accesses. The value that
takes longer to load is the value that was evicted.

These stages are sketched out in Figure 1.3

Attacker primes cache, mistrains branch predictor(S1)

A B . . .

Invoke victim code: call foo(N + 2)(S2)

A B . . .

Exploitable misspeculation: predict taken on if(i < N)(S3)

A B . . .

load v = a1[i]

A a1[i] . . . B . . .

load a2[v ∗ S]

a2[0]a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

v == 0? v == 1?

Squash misprediction
(note cache unchanged)

a2[0]a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Return to caller (attacker)

a2[0]a1[i] . . . B . . . A a1[i] . . . a2[S] . . .

Attacker probes A and B in cache to infer a1[N + 2](S4)

Figure 1.3.: Cache state evolution in Spectre variant 1. The rectangular boxes show the addresses that are cached.
Untrusted accesses are red while accesses by trusted code are blue. For simplicity, we show the attack
on a direct-mapped cache. The extension to set associative caches is straightforward.

1.2. Primer on Uclid5

We use formal methods to analyze whether a program is vulnerable to transient execution attacks like those
described in the preceding section. In particular, we use Uclid5, a modeling and veri�cation system for hardware-
software systems [51]. Uclid5 is a veri�cation language and toolkit. It supports modular abstraction which allows
for easy compositional reasoning and handles both sequential code and transition systems. A model in Uclid5
consists of state variables, initial state and a transition relation. With these models, we can then prove assertions,
invariants and/or properties. To solve these veri�cation problems, Uclid5 uses satis�ability modulo theories (SMT)
solvers [5].

7

Simple UCLID5 Example

1 module main {
2
3 var a,b : integer;
4
5 init {
6 a = 0;
7 b = 1;
8 }
9

10 next {
11 a' = b;
12 b' = a + b;
13 }
14
15 invariant a_lt_eq_b : a <= b;
16
17 control {
18 v = induction;
19 check;
20 print_results;
21 v.print_cex ();
22 }
23
24 }

Figure 1.4.: Uclid5 5 model using induction to try to prove a property about the Fibonacci sequence

We illustrate the operation of UCLID5 with a very simple example. In Figure 1.4, we see two di�erent ways to
model the Fibonacci sequence. We have two state variables (a,b) both of which are integers. They are initialized in
the init block. In the next block, we do primed assignments as part of the transition relationship when updating
a,b. We then have an invariant that a is always less than or equal to b.

Finally the control block is our proof script for how to approach this problem. We will use single step induction,
which will result in our invariants failing. This will happen because the solver starts in an arbitrary state which
satisfy all invariants then checks if we can then transition from this arbitrary state to break any invariants which is
possible when assigning negative values to a and b. To �x this, we would need to add strengthening invariants to
constrain the state variables to be strictly non-negative, and with that, we can prove all invariants are true of the
model.

Modular Uclid5 Example

The model in Figure 1.5 �rst implements swap which will swap the value of its two state variables x,y then tries to
prove the correctness of swap’s implementation. To do this, it uses two new features: procedural code and module
instantiation. Procedural code is handled in the procedure update() where we handle the addition swap between
the state variables. Module instantiation let’s us create an instance of a module, in this case s, which we can feed
inputs and step through execution by using the next operator on it. This model satis�es the invariant that the
addition swap works.

For a more in depth tutorial on how to use Uclid5 and what it can do, refer to [56].

8

1 module swap {
2 input a, b : bv4;
3 var x, y : bv4;
4
5 init {
6 x = a;
7 y = b;
8 }
9

10 procedure update ()
11 modifies x, y;
12 {
13 x = x + y;
14 y = x - y;
15 x = x - y;
16 }
17
18 next {
19 call update ();
20 }
21 }
22
23 module main {
24 var one , two : bv4;
25 var flag : boolean;
26
27 instance s : swap(a : (one), b : (two));
28
29 init {
30 flag = true;
31 }
32
33 next {
34 flag ' = !flag;
35 next(s);
36 }
37
38 invariant correct_swap :
39 (flag ==> (one == s.x && two == s.y)) &&
40 (!flag ==> (one == s.y && two == s.x));
41
42 control {
43 v = induction;
44 check;
45 print_results;
46 v.print_cex ();
47 }
48 }

Figure 1.5.: Uclid5 model trying to prove that a swap using addition is correct

1.3. Overview

The two primary contributions of this thesis are �rst to generalize the property that accurately isolates transient
execution vulnerabilities and second to create a formal veri�cation methodology that would allow us to reason
about them. The general property leverages a new class of information-�ow security properties introduced in
Cheang et. al [15] to capture the vulnerability. Figure 1.6 is our proposed work�ow for reasoning about potentially
vulnerable code using this generalized property.

9

*.c

Platform
Model

Adversary
Model

BAP *.bil Translation *.ucl Uclid5

Secure

Insecure +
Counterexample

Figure 1.6.: Work�ow from vulnerable C code to ultimately proving whether it is secure from transient execution
attacks.

The Workflow

We start with three things: the vulnerable C code, the platform which we will be running on, and the threat model
we are considering. The vulnerable code can be represented by the vulnerable snippet in Figure 1.1, while the
adversary and platform model aren’t explicit objects. The platform model takes into account that we are working
on an optimized out-of-order machine with speculation. While the code may assume an in-order processor, Spectre
relies on microarchitectural state, so how this platform works is a necessary component in order to model everything.
The adversary model answers the question of what an attacker is capable of on our platform. While the platform
model allows for microarchitectural state to be changed speculatively, the adversary model tells us that aspects of
this state are observable by an attacker. These two models are composed together with the output of CMU’s Binary
Analysis Platform (BAP) [12] to translate the potentially vulnerable code into a Uclid5 [51] model. This model can
then be handed o� to Uclid5 to prove whether it is secure or not.

10

Chapter 2 Secure Speculation

It was the aim of this work to �rst de�ne a generalized property that captures the class of vulnerabilities that Spectre
represents, and then to provide a methodology which can be used to reason about code using this property. Before
this can be done, it is necessary to construct a system model that is capable of speculation. Then the adversary must
be considered with respect to the system model. Once we have a reasonable model of the platform and attacker, we
can then formalize our property to isolate the vulnerability.

2.1. The Platform Model

Due to compiler optimizations and transformations, it is necessary that we reason about the vulnerability using
assembly instructions. No speci�c instruction set architecture (ISA) lends itself any advantages to reasoning about
the vulnerability, so we will use an abstract set of semantics that mimic BAP’s instruction language (BIL). For
instructions, we support:

• all basic ALU operations

• memory loads/stores

• direct branches

• jumps

• speculation fences

The instructions are standard with the exception of the speculation fence. The speculation fence prevents a processor
from continuing to speculatively execute beyond the fence until all previous instructions are committed. This results
in the fence instructions only �nishing when not misspeculating. The other point to highlight is the exclusion
of indirect branches. Their inclusion would increase the complexity of modeling substantially on a speculative
processor due to the need for branch target bu�ers, indirect branch predictors, and the return call stack. This does
mean we cannot reason about indirect jumps and returns.

Beyond the supported ISA, our processor must also support two optimizations: out-of-order execution and
speculation. Through previous work on this project, we found that modeling an out-of-order processor that works
on single instructions quickly becomes intractable in terms of runtime. Our decision was to approximate the e�ects
of out-of-order execution. How this is done is further explained in 3.3.1.

For speculation, we focus only on conditional branches. An advantage the model has over hardware is that we
only simulate stalling on instructions and speculation. This allows us to �rst evaluate the condition for a branch
before we begin speculation which allows us to know when we are misspeculating because we know which branch
should be taken. Speculation fences then work by disallowing further execution when misspeculating. We make
speculation and branch prediction deterministic based on a combination of the processor model’s current state
and the condition being evaluated. This branch condition also causes the branch predictor’s state to be updated.
With our interpretation of out-of-order execution, when choosing to speculate on a branch, we will speculatively

11

execute the entire basic block before branch resolution or continuing to speculate further. This does end up being
an overapproximation because we do not take into account some cases where data dependence may prevent certain
instructions from being executed speculatively.

2.2. The Adversary Model

As outlined in the § 1.1, the attacker has two “modes." One where the attacker has control where he is able to prime
the side channel, train the branch predictor, and probe the side channel. The other mode consists of the passive
attacker where the victim executes the vulnerable code on the malicious input and setup. Because we choose to
reason about vulnerable code, we focus on the passive attacker who is also capable of making observations and
assume that any malicious activity before the execution of the vulnerable code has already been carried out such as
priming the side channel or training the branch predictor.

The next necessary step is to de�ne what the attacker is capable of observing. In § 1.1, the attacker depends on a
side channel to ex�ltrate information due to secret dependent memory accesses which results in changed cache
state, but can only do so after the victim code is ran by detecting changes in the cache. To abstract away the exact
implementation of the cache or even the speci�c side channel, we consider all memory addresses that are accessed
during execution to be observable by the attacker. This considers a more powerful attacker who can consider all
intermediate memory accesses rather than only the di�erences found in the cache (e.g. in the �ush and reload or
prime and probe attacks); more speci�cs are continued in § 3.3.1. Now, this alone is not su�cient; an attacker can
still load a secret from an arbitrary address and taint other microarchitectural state using this secret. One such
example would be to speculatively branch based on this potential secret:

1 void victim_function_nested_ifs(unsigned x) {
2 unsigned val1 , val2;
3 if (x < array1_size) {
4 val1 = array1[x];
5 if (val1 & 1) {
6 val2 = 0;
7 }
8 }
9 }

Figure 2.1.: A Spectre variant 1 gadget that can result in changes to branch predictor state

In Figure 2.1, if misspeculation is triggered on line 3, then it would be possible to speculatively resolve the branch
on line 5. If the branch on line 5 resolves to true, then it will be pulled into the branch predictor and cause future
branches to be predicted true. Using similar methods that allow an attacker to train the branch predictor, an attacker
could detect whether the branch predictor was updated. This will then leak information about the value loaded on
line 5. To capture this, it is necessary to consider branch predictor state as observable.

As mentioned in the platform model, we do use an overappoximation of the system. Because of this, we expose
ourselves to false positives, but our security guarantees remain sound when proving code is not vulnerable. In
terms of our modeling, each basic block will be represented with a procedure.

12

2.3. The Property

We wish to formulate the property in a way that it isolates leaks that transient execution is solely responsible for.
Given an otherwise secure program, we want to be able to reason about if a Spectre-like vulnerability can leak
new information. To answer this dilemma, a new class of information �ow properties was formulated, called trace
property-dependent observational determinism (TPOD). It is a hyperproperty over four traces, or 4-safety property.
Let the four traces be π1,π2,π3,π4 and assume that the following holds:

• π1 and π2 satisfy the trace property T

• π3 and π4 do not satisfy the trace property T

• All traces share the same low security input

• π3 and π4 share the same high security input as π1 and π2 respectively

• π1 and π2 have equivalent observable state

If all of this holds, then TPOD is satis�ed if π3 and π4 have equivalent observable state. This property allows us
to determine if the trace property T can allow for new observations, or leakages. If π1 and π2 make the same
observations when given the same inputs as π3 and π4 respectively, then any new leaks must be directly attributable
to trace property T being broken in π3 and π4.

The re�nement to TPOD for this work is to consider T to be whether a trace is nonspeculative. This means
that we will consider traces π1 and π2 to act as nonspeculative processors, whereas traces π3 and π4 are capable of
speculative execution. Under this construction, if TPOD doesn’t hold, then the vulnerability is directly attributable
to speculative execution. This re�nement is called secure speculation.

∀π1,π2,π3,π4.
nonspec(π1) ∧ nonspec(π2) ∧ spec(π3) ∧ spec(π4) =⇒
π1 ≈L π2 ∧ π1 ≈L π3 ∧ π1 ≈L π4 =⇒
π1 ≈H π3 ∧ π2 ≈H π4 =⇒
obs(π1) = obs(π2) =⇒
obs(π3) = obs(π4)

Figure 2.2.: Secure Speculation Property

2.4. Related Work

One of the closer related works to ours is CheckMate [54] which uses happens-before graphs to analyze transient
execution vulnerabilities. CheckMate uses happens-before graphs to encode information about the orders in which
instructions can be executed. By searching for patterns in the graph where branches are followed by dependent
loads, an architectural model can be analyzed for susceptibility to Spectre/Meltdown. A key di�erence between
CheckMate and our approach is that we �rst assume that the hardware is vulnerable and reason about whether a

13

program is can be exploited, whereas CheckMate reasons about whether a vulnerability is possible on a speci�c
architecture through instruction orderings. For this reason, CheckMate’s work results in a pattern based method
whereas ours is semantic.

Another closely related e�ort is by McIlroy et al. [40] who introduce a formal model of speculative execution in
modern processors and analyze it for transient execution vulnerabilities. Similar to our work, they too introduce
speculative operational semantics, but their model includes indirect jumps and a timer. They focus on speci�c
micro-architectural models whereas we use a more abstract semantics that are capable of speculation. This gives
us a model that lends itself more easily to automated veri�cation. Further, we propose the novel contribution of
information-�ow properties TPOD and its re�nement, secure speculation.

The Spectre vulnerability was �rst discovered by Kocher et al. [32, 33] while Meltdown was discovered by Lipp
et al. [37]. Their public disclosure has triggered an avalanche of new transient execution vulnerabilities. Some of
the more notable examples of which are Foreshadow [13] which attacked enclave platforms and virtual machine
monitors, SpectreRSB [34] and Ret2Spec [39]. A thorough survey of transient execution vulnerabilities was done
by Canella et al. [14]. These vulnerabilities build on the well researched �eld of micro-architectural side-channel
attacks [1, 22, 23, 29, 36, 38, 44, 45, 46, 50, 52]. Veri�cation of mitigations to these “traditional” side-channel attacks is
well-studied as well [2, 3, 4, 6, 9, 11, 17, 18, 19, 20, 47].

TPOD and its re�nement, secure speculation, are examples of hyperproperties [16]. A large body of work has
studied hyperproperties that encode secure information �ow. In�uential examples of this line of work include
noninterference [21], separability [49] and observational determinism [41, 48, 57]. Our veri�cation method is based
on self-composition which has been well-studied (e.g., [7, 8]. While we take a straightforward approach to using
self-composition, more sophisticated approaches are also possible in some cases (e.g., [53]).

14

Chapter 3 Modeling and Veri�cation

Given the formal property, we then sought to explore a methodology which could allow users to reason about their
code using said property. There was a number of decisions here, as always arise when trying to determine what is
necessary to model. To reduce the trusted computing base, we chose to work at an assembly level. Out-of-order
execution and speculation would be required to simulate the vulnerability, and we would need to have a concept of
observable state in our models.

Our process follows 4 major steps which will be expanded upon in subsequent sections:

1. Compile C source code into binaries

2. Using CMU’s Binary Analysis Platform (BAP), convert the binary into an architecture independent assembly

3. Extract the potentially vulnerable segment and translate it into a Uclid5 model

4. Compose the model with the security property so that it can be veri�ed with Uclid5

As we walk through each of these steps, we will illustrate them on an example of the canonical example of
Spectre variant 1 (Figure 1.1, Appendix A).

3.1. From C

The choice of C as a starting point was easy. All examples of the original paper as well as Kocher’s followup
to Microsoft’s Qspectre Compiler mitigations were written in C, and its ubiquity in system code makes it a ripe
target for attackers. The problem with C code is it’s expressiveness, and how di�cult it would be to capture these
semantics in a generalizable way. As the shortcomings of Qspectre shows, C style semantics and compiler tricks
can be hard to reason about (for static analysis or otherwise). For these reasons, we knew we wanted to start with
C, but actually reason with something simpler.

As this example was explained previously in § 1.1, the explanation of the code is omitted here.

3.2. Using BAP

One of the bene�ts of C is that it works across all systems, but if we were going to be working at an assembly level,
then we would end up on a speci�c architecture. CMU’s Binary Analysis Platform [10, 12] allows us to abstract
the exact architecture that we target when compiling, and conveniently breaks our code down into basic blocks
with bare bones semantics. The output of BAP is referred to as the BAP Intermediate Language (BIL), and because
it can be quite long, only the victim function is listed here. The entire output for the compiled C can be found at
Appendix B.

1 000001 ba: sub victim_function_v01 ()

2 00000172:

3 00000173: v377 := RBP

4 00000174: RSP := RSP - 8

15

5 00000175: mem := mem with [RSP , el]:u64 <- v377

6 00000176: RBP := RSP

7 00000177: mem := mem with [RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 <- RDI

This part of the BIL handles the function prologue. The activation record is created by pushing the old base pointer
(v377) to the stack, setting the new base pointer (RBP), and loading the argument onto the stack (RDI).

8 00000178: RAX := mem[0x601050 , el]:u64

9 0000017a: CF := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 < RAX

10 00000180: when ~CF goto %000001 b4

11 00000181: goto %00000182

if (x < array1_size)

Here array1_size gets loaded from memory and assigned to the accumulator before being compared to the
argument x. Then branching is handled based on the result of the comparison. If it is false, then we jump to 0x1b4
(function epilogue/clean up), otherwise we fall through to 0x182 and begin executing the body of the if.

12 00000182:

13 00000183: RAX := mem[0x601040 , el]:u64

14 00000184: RDX := mem[0x601038 , el]:u64

15 00000185: RCX := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64

16 00000187: RCX := RCX << 3

17 0000018f: v274 := RCX

18 00000190: RDX := RDX + v274

19 00000197: RDX := mem[RDX , el]:u64

temp &= array2[array1[x] * 512];

This is a lengthy encoding for a seemingly short line. Lines 0x183-0x185, we load the pointer array2 into RAX,
array1 into RDX, and the argument x into RCX. Lines 0x187-0x190, we make x double aligned before adding it to
array1. At line 0x197, we load from this address (RDX = array1[x]).

20 00000199: RDX := RDX << 0xC

21 000001 a1: v284 := RDX

22 000001 a2: RAX := RAX + v284

23 000001 a9: RDX := mem[RAX , el]:u64

24 000001 aa: RAX := mem[0x601058 , el]:u64

25 000001 ab: RAX := RAX & RDX

26 000001 b2: mem := mem with [0x601058 , el]:u64 <- RAX

27 000001 b3: goto %000001 b4

temp &= array2[array1[x] * 512];

Next we multiply array1[x] by 512 and make it double aligned before adding it as an o�set to array2 to load from.
Then the remaining lines, 0x1aa-0x1b2, handle loading the value of temp before doing a bitwise AND operation and
storing it back to temp. This basic block �nishes by falling through to the function epilogue.

28 000001 b4:

29 000001 b5: RBP := mem[RSP , el]:u64

30 000001 b6: RSP := RSP + 8

31 000001 b7: v295 := mem[RSP , el]:u64

32 000001 b8: RSP := RSP + 8

33 000001 b9: return v295

16

This is the function epilogue where we clean up the activation record and restore the saved based pointer.

3.3. Modeling with Uclid5

This section will detail the exact steps taken in translating the BIL output, adversary model, and platform model as
well as the rationale behind these choices. The BIL and the models will be composed together to create a Uclid5
model of the program that simulates the its execution on a speculative processor while exposing certain state to the
adversary’s observations.

3.3.1. Abstractions for Scalability

As previously mentioned in § 2.1, we choose to approximate the execution of an out-of-order processor with
speculation. We approximate out-of-order execution by capturing its e�ects in the “worst case" scenario where
it executes all instructions in a basic block before speculation is resolved. This scenario models a superset of all
observations an attacker can make, so the security guarantees remain sound under this abstraction. To do this, we
will treat each basic block as an atomic operation on the state variables. This will mean our pc values will refer
to the current basic block to be executed rather than individual instructions. Speculation will be handled when
conditional branching is possible at the end of a basic block.

Memory was modeled with a word level array, where loading/storing from memory will correspond to reading
from/storing to the array. We do not explicitly model caching (hits/misses, evictions), but consider every mem-
ory address accessed to be visible to an adversary. The adversary will log all memory accesses in order when
loading/storing from memory, and these observations will be compared after each basic block.

The BIL utilizes a stack machine, so to avoid unnecessary stack use, we optimize out some of the unnecessary
operations and remove the function prologue/epilogue from our model. This helps reduce the amount of reasoning
with the theory of arrays that is o�oaded to the back-end SMT solver to speed up our proofs.

3.3.2. Verification Choices

As was previously mentioned, secure speculation is a 4-safety hyperproperty, or a property that is quantifying over
four traces of execution. We rely on the technique called self-composition to verify these properties, which sees us
instantiate separate instances of a module for each trace that we are quantifying over. These instances are then
sequentially executed in lock-step with the veri�cation of a hyperproperty transformed to the veri�cation of a
safety property over the four-way self-composition. This is handled in Uclid5 through module construction and
instantiation similar to Figure 1.5, except for secure speculation we will create four separate instances.

For the models capable of speculation, we know when we are misspeculating or speculatively executing valid
instructions and simplify reasoning by only considering two di�erent cases: speculative execution during misspecu-
lation and valid execution. We do not consider the case where we are speculatively executing valid instructions
because these instructions are guaranteed to be committed. This will be explained further when discussing the
branch() procedure in § 3.3.4.

We approached this veri�cation problem with two di�erent methods: bounded model checking (BMC) and
induction. Bounded model checking was used to identify whether code was insecure, and induction was used to

17

prove our mitigation satis�ed the property. For BMC, we used a 32b memory, unlike BIL which assumes a 64b
memory, for smaller models, while the induction models use uninterpreted types to scale.

We limit the speculation window by the number of basic blocks that can be executed. The window only needs
to be as large as the number of basic blocks in the code we are analyzing when unrolling to ensure soundness if
there are no loops. When the code contains loops, then BMC cannot be guaranteed to �nd the vulnerability, and
induction will be required. For k-induction, the speculation window only needs to be large enough for k blocks to
be sound.

Finally, we consider the inputs of these programs to not only include the arguments but the data memory as
well. Because of this, we need to identify what would be considered secret information for the concept of low/high
equivalence. To make this easier, we consider the initial data memories identical across traces except for a single
address which contains a secret.

3.3.3. Common Module

What follows is the model for the induction proofs. We identi�ed a number of type de�nitions, symbolic constants,
and uninterpreted functions that were being reused across all model instances. The module abstraction in Uclid5
allows us to collect these in a single module which can then be reused for di�erent models.

1 module common {

2 type byte_t;

3 type word_t;

4 type addr_t = word_t;

5 type mem_t = [addr_t]word_t;

6
7 type pc_t = enum {

8 block1 ,

9 block2 ,

10 block3 ,

11 halt

12 };

We are de�ne the uninterpreted types for the models. Because the pc values can only jump between basic blocks,
we restrict it to an enum type.

1 type obs_mem_t;

2 function update_obs_mem(mem_obs : obs_mem_t , addr : word_t) : obs_mem_t;

One of the most important aspects of the secure speculation property and adversary model is the de�nition of
the observation function. In the canonical example, the attacker relies on the cache as a timing side channel, but
we don’t want to focus on speci�c side channels for ex�ltration. We instead consider a more powerful attacker
for the purposes of these models, one where the attacker can observe any memory address that gets accessed
(instruction and data memory). This obs_mem_t type will be updated deterministically based on the sequence of
memory accesses within each instance using the uninterpreted update function.

1 type br_pred_state_t;

2 function update_br_pred(state : br_pred_state_t , cond : boolean) : br_pred_state_t;

3 function br_pred(state : br_pred_state_t , pc : pc_t) : boolean;

4 function br_resolve(state : br_pred_state_t , pc : pc_t) : boolean;

18

The speculation decision needs to be deterministic between the speculative processors as long as it does not
depend on secret inputs. If the speculative processors were allowed to diverge in their choices arbitrarily, then
our observations would be trivially allowed to diverge. This data type will handle branch predictor state which
will be used when deciding whether to misspeculate (br_pred) or not and when to walk back from misspeculation
(br_resolve).

1 type spec_idx_t = bv2;

2 const spec_idx0 : spec_idx_t = 0bv2;

3 const spec_idx1 : spec_idx_t = 1bv2;

4 const spec_idx2 : spec_idx_t = 2bv2;

5 const spec_idx_max : spec_idx_t = 3bv2;

6 function walk_back(state : br_pred_state_t , pc : pc_t , spec_idx : spec_idx_t) : spec_idx_t;

7
8 type spec_mem_t = [spec_idx_t]mem_t; // Stores memory across speculation so it can be

restored

9 type spec_reg_t = [spec_idx_t]word_t; // Stores shadow registers as we deepen speculation

10 type spec_flag_reg_t = [spec_idx_t]boolean; // Stores flag registers values for speculation

checkpoints

11 type spec_pc_t = [spec_idx_t]pc_t; // Stores the PC value that would have been correct

This is how we will store the current level of speculation in the speculation window. We are not misspeculating
when at spec_idx0. The uninterpreted function determines what state to walk back to when branch resolution
happens. It is important to note that this will be something an attacker could observe because speculative branch
resolution can a�ect persistent state in the branch predictor.

Finally the common module contains uninterpreted functions for our ALU operations because we are using
uninterpreted types, and symbolic constants used to initialize values across the models. It is also explicitly assumed
that all addresses referenced are distinct from each other, e.g. we do not consider array1 as the secret address.

3.3.4. Program Module

Now that we have some of the basic types out of the way, we can begin understanding the construction of model.
The model is primarily composed of somewhat optimized translations of the BIL basic blocks as procedures and a
number of procedures that were reused across di�erent models. The reason that these reused procedures couldn’t
be collected in the common module is because they both rely and can modify state of the module.

1 module program {

2 type * = common.*;

3
4 input speculative : boolean;

5 input lfence : boolean;

6 var pc : pc_t;

7 var mem : mem_t;

8
9 // Registers

10 var RDI ,

11 RAX ,

12 RDX ,

13 RCX: word_t;

14 var CF : boolean;

15
16 // Observable states

17 var br_pred_state : br_pred_state_t; // Branch predictor state

19

18 var obs_mem : obs_mem_t;

Here the model imports type de�nitions from common on line 2 and declares most of the state variables. The
inputs speculative and lfence respectively determine if the model is capable of speculation and whether we
have enabled the mitigation.

1 var spec_level : spec_idx_t;

2 var spec_mem : spec_mem_t;

3 var spec_pc : spec_pc_t;

4 var spec_RAX ,

5 spec_RDX ,

6 spec_RCX : spec_reg_t;

7 var spec_CF : spec_flag_reg_t;

The speculation stacks will store state before beginning a new level of misspeculation so that we can walk back
state. It is important to note that the spec_pc will store the correct pc value to jump to if a branch gets resolved.

1 procedure do_block1 ()

2 modifies pc, mem ,

3 RDI , RAX , RDX , RCX , CF,

4 br_pred_state , obs_mem ,

5 spec_level , spec_mem , spec_pc , spec_RAX , spec_RDX , spec_RCX , spec_CF;

6 {

7 // Ignore prologue

8 // 00000177: mem := mem with [RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 <- RDI

9 // 00000178: RAX := mem[0x601050 , el]:u64

10
11 call (RAX) = load_mem(array1_size_addr);

12 // 0000017a: CF := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 < RAX

13 CF = common.lessthan(RDI , RAX);

14 // 00000180: when ~CF goto %000001 b4

15 // 00000181: goto %00000182

16 call branch (!CF, block3 , block2);

17 }

This is the �rst basic block translated into a Uclid5 procedure. The other blocks are translated similarly, with the
inclusion of the �nal branch or assignment to pc directly dependent on the basic block. In this block, we see the use
of two important procedures: load_mem and branch.

1 procedure load_mem(addr : word_t)

2 returns (value : word_t)

3 modifies obs_mem;

4 {

5 value = mem[addr];

6 obs_mem = common.update_obs_mem(obs_mem , addr);

7 }

8
9 procedure store_mem(addr : word_t , value : word_t)

10 modifies mem , obs_mem;

11 {

12 mem[addr] = value;

13 obs_mem = common.update_obs_mem(obs_mem , addr);

14 }

The memory functions read/write to memory while logging all accesses into the obs_mem variable. Because of
the use of an uninterpreted function, if this procedure is ever called with di�erent inputs between instances or a

20

di�erent number of times between instances, then our observations will diverge between these instances. When
our observations diverge, that means an attacker has found an observable di�erence during speculative execution
that is secret dependent, and we have proven the model is insecure. We know that observable di�erences must
be secret dependent because all initial state is equal between all instances except for the secrets, and the model is
deterministic.

1 procedure branch(cond : boolean , pc_if : pc_t , pc_else : pc_t)

2 modifies pc, mem , br_pred_state ,

3 RAX , RCX , RDX , CF,

4 spec_level , spec_mem , spec_RAX , spec_RCX , spec_RDX , spec_CF , spec_pc;

5 {

6 var pred : boolean;

7
8 br_pred_state = common.update_br_pred(br_pred_state , cond);

9 pred = common.br_pred(br_pred_state , pc);

10
11 if (cond) {

12 if (speculative && pred) {

13 call save_reg_states(pc_if);

14 spec_level = spec_level + common.spec_idx1;

15 pc = pc_else;

16 } else {

17 pc = pc_if;

18 }

19 } else {

20 if (speculative && pred) {

21 call save_reg_states(pc_else);

22 spec_level = spec_level + common.spec_idx1;

23 pc = pc_if;

24 } else {

25 pc = pc_else;

26 }

27 }

28 }

The branch procedure is more interesting by far. It �rst updates the branch predictor with the evaluation of the
branch condition; if a branch is secret dependent, our branch predictors will diverge due to this update (and
subsequent pc values will also diverge). After, we make a choice whether to misspeculate (possibly again) or not
with our updated branch predictor, storing the result in pred. We then identify which branch is valid based on the
branch condition and decide whether to misspeculate. If we are on a speculative processor and pred was true, then
we push onto the speculative stack (notice how we pass the correct pc value) before choosing the wrong branch. If
we are on a non-speculative processor or pred was false, we can continue onto the "valid" execution path. The
word valid here is ambiguous because this we can currently be executing speculatively.

1 procedure do_block2 ()

2 modifies pc, mem ,

3 RDI , RAX , RDX , RCX , CF,

4 br_pred_state , obs_mem ,

5 spec_level , spec_mem , spec_pc , spec_RAX , spec_RDX , spec_RCX , spec_CF;

6 {

7 var v274 , v284 : word_t;

8
9 if (lfence && spec_level != common.spec_idx0) {

10 call do_resolve ();

21

11 } else {

12 // 00000183: RAX := mem[0x601040 , el]:u64

13 call (RAX) = load_mem(array2_addr);

14 // 00000184: RDX := mem[0x601038 , el]:u64

15 call (RDX) = load_mem(array1_addr);

While the translations from basic blocks to BIL is formulaic, the beginning of block2() illustrates the implementation
of the lfence, or speculation fence. The implementation �rst checks whether the lfence option is turned on and
whether we are currently misspeculating. If these are both true, we force the model to walk back misspeculation
without executing any further. The placement of the speculation fence here was chosen due to inspection of the
vulnerable code snippet in Figure 1.1 and corroborated by counterexamples generated by BMC proving the existence
of the vulnerability.

1 next {

2 // If speculating and resolving

3 if (spec_level != common.spec_idx0 && common.br_resolve(br_pred_state , pc)) {

4 call do_resolve ();

5 } else {

6 case

7 (pc == block1) : { call do_block1 (); }

8 (pc == block2) : { call do_block2 (); }

9 (pc == block3) : { call do_block3 (); }

10 (pc == halt) : {}

11 esac

12 }

13 }

The next block represents each transition for our model. If we are misspeculating and the branch predictor wants
to resolve a branch, we do so. Otherwise, we execute the next block according to the pc.

1 // Handles walking back misspeculation

2 procedure do_resolve ()

3 modifies pc, mem , RAX , RDX , RCX , CF, spec_level;

4 {

5 var prev_spec_level : spec_idx_t;

6 // Non deterministic choice of walkback level

7 assume (prev_spec_level == common.walk_back(br_pred_state , pc, spec_level));

8 assume (common.spec_idx0 <=_u prev_spec_level && prev_spec_level <_u spec_level);

9 // Walkback

10 spec_level = prev_spec_level;

11 call restore_state ();

12 }

When walking back, we select any level of speculation which is greater than or equal to 0 (nonspeculative execution)
and less than our current level. Once we’ve decided, state is walked back by popping o� the speculation stacks.

Not explicitly shown are the translations of the other blocks, the model initialization, and pushing/popping from
the speculative stack. The other block’s procedures follow directly from the BIL and don’t di�er greatly from the
�rst block shown. Model initialization largely assigns to the symbolic constants in the common module, but these
initializations are largely unimportant in the inductive models. Finally pushing/popping from the speculative stack
just assigns to either the stack or the variable it tracks and is unnecessary to show.

22

3.4. Composing the Model with the Property

With a model that is capable of speculation, it is now possible to compose the secure speculation property. In Uclid5
that entails instantiating 4 instances of the model (or traces), and we encode the implication chain as a number
of assumptions and ultimately the tested invariants. Due to the nature of inductive proofs, we have a number of
auxiliary invariants which are used to strengthen the proof to remove spurious counterexamples.

1 module main {

2 type * = common.*;

3
4 var lfence : boolean;

5
6 instance t1 : program(speculative : (false), lfence : (lfence));

7 instance t2 : program(speculative : (false), lfence : (lfence));

8 instance t3 : program(speculative : (true), lfence : (lfence));

9 instance t4 : program(speculative : (true), lfence : (lfence));

10
11 assume (lfence == true);

12
13 init {

14 assume (t1.mem == t3.mem);

15 assume (t2.mem == t4.mem);

16 }

We instantiate the four traces, following the naming structure of the property: traces 1 & 2 are nonspeculative while
3 & 4 are speculative. The lfence is fed to them as an input; when it is false we should see the property broken,
while all invariants should pass when true. Because state variables are initialized to the symbolic constants in the
model’s init block with the exception of the secrets, we need only ensure that the traces pairwise share secrets.

1 assume (t1.pc == t2.pc);

2 assume (t1.obs_mem == t2.obs_mem);

3 assume (t1.br_pred_state == t2.br_pred_state);

Some of the implications are encoded here. The nonspeculative processors should be deterministic as should their
observations because if they weren’t then spectre style attacks wouldn’t be required to exploit them.

1 next {

2 // If we are not speculating , assume we have seen the same things up to this point

3 // If we are speculating , wait until the speculative model walks back to continue

4 if (t3.spec_level == common.spec_idx0) {

5 assume (t1.obs_mem == t3.obs_mem);

6 next(t1);

7 }

8 if (t4.spec_level == common.spec_idx0) {

9 assume (t2.obs_mem == t4.obs_mem);

10 next(t2);

11 }

12 next(t3); next(t4);

13 }

This is how we step execution of the traces. It is important to note that the non-speculative processors wait idle until
the corresponding speculative processor �nishes misspeculating. This makes it an invariant that the speculative
processor’s valid state is the same as the nonspeculative processor’s current state. This is a vital aspect of leveraging
the previous assumptions on the nonspeculative processors so that they constrain the search space for the speculative

23

processors. It is also necessary we assume that initial observations between corresponding nonspeculative and
speculative processors are the same. When this is the case, we ensure that all calls to update_mem_obs by the
speculative processor when not speculating will have the same inputs as its corresponding nonspeculative processor,
and thus will have the same observations at the end of this step.

It means that for any observations to diverge, the speculative processors must be (mis)speculating, otherwise
observations will be the same across all 4 traces. This allows the property to hone in on leakages that only happen
as a result of speculation.

1 // -------------- 4-Safety Properties -----------------------

2 invariant same_pc : t3.pc == t4.pc; // Same PC

3 invariant same_mem_obs : t3.obs_mem == t4.obs_mem;

4 invariant same_br_pred_state : t3.br_pred_state == t4.br_pred_state;

These are the invariants that are testing the property for this program. Given all the assumes to satisfy the
implication chain, these invariants must be true for the program to be secure. The speculative traces must follow
the same pc values, make the same memory accesses, and branch prediction cannot have depended on secrets (even
speculatively).

1 // --------------- Auxiliary Invariants -----------------------

2 // Same

3 invariant same_RDI : t1.RDI == t2.RDI && t1.RDI == t3.RDI && t3.RDI == t4.RDI;

4 // Start with the same speculation levels and return pcs (for resolution)

5 invariant same_spec_level : t3.spec_level == t4.spec_level;

6 invariant same_spec_pc : t3.spec_pc == t4.spec_pc;

7
8 // Nonspeculative models should never speculate

9 assume (t1.spec_level == t2.spec_level && t1.spec_level == common.spec_idx0);

This is the beginning of the auxiliary invariants used to prove that this model is secure when implementing the
speculative fence mitigation. same_RDI just states that the attacker controlled input is the same across all traces.
The next two invariants state that the speculative stacks are at the same level of misspeculation and that we’ve
been making the same choices on each branch. If this wasn’t true, then at some point our branch prediction already
diverged and the property wouldn’t hold. Finally, the last invariant asserts that the nonspeculative traces never
speculate.

1 // When not speculating , the speculative models should have identical state to the nonspeculative

models

2 invariant same_when_not_speculating :

3 (t3.spec_level == common.spec_idx0 ==> (

4 t1.spec_level == t3.spec_level &&

5 t1.pc == t3.pc &&

6 t1.mem == t3.mem &&

7 t1.RAX == t3.RAX &&

8 t1.RCX == t3.RCX &&

9 t1.RDX == t3.RDX &&

10 t1.CF == t3.CF)) &&

11 (t4.spec_level == common.spec_idx0 ==> (

12 t2.spec_level == t4.spec_level &&

13 t2.pc == t4.pc &&

14 t2.mem == t4.mem &&

15 t2.RAX == t4.RAX &&

16 t2.RCX == t4.RCX &&

17 t2.RDX == t4.RDX &&

24

18 t1.CF == t3.CF));

This invariant states that the pairwise traces maintain the exact same state when not speculating.

25

1 // When we completely undo misspeculation , we should be identical to the nonspeculative models

2 invariant eventually_the_same :

3 (t3.spec_level != common.spec_idx0 ==> (

4 t1.pc == t3.spec_pc[common.spec_idx0] &&

5 t1.mem == t3.spec_mem[common.spec_idx0] &&

6 t1.RAX == t3.spec_RAX[common.spec_idx0] &&

7 t1.RCX == t3.spec_RCX[common.spec_idx0] &&

8 t1.RDX == t3.spec_RDX[common.spec_idx0] &&

9 t1.CF == t3.spec_CF[common.spec_idx0])) &&

10 (t4.spec_level != common.spec_idx0 ==> (

11 t2.pc == t4.spec_pc[common.spec_idx0] &&

12 t2.mem == t4.spec_mem[common.spec_idx0] &&

13 t2.RAX == t4.spec_RAX[common.spec_idx0] &&

14 t2.RCX == t4.spec_RCX[common.spec_idx0] &&

15 t2.RDX == t4.spec_RDX[common.spec_idx0] &&

16 t2.CF == t4.spec_CF[common.spec_idx0]));

This invariant is a small tweak on the previous one; the state is pairwise the same between the nonspeculative
traces and the bottom of the speculative stack of their corresponding speculative trace while speculating. The
bottom of the speculative stack represents the correct state assignment for nonspeculative execution, so this should
hold as well.

1 define same_mem_entry(mem : mem_t , addr : addr_t) : boolean =

2 mem[addr] == common.mem_init[addr];

3
4 // All memory locations that are not secret or written to are constant/read-only

5 invariant same_mem_mostly : (forall (addr : addr_t) ::

6 (addr != common.secret && addr != common.temp_addr_init) ==> (

7 same_mem_entry(t1.mem , addr) &&

8 same_mem_entry(t2.mem , addr) &&

9 same_mem_entry(t3.mem , addr) &&

10 same_mem_entry(t4.mem , addr)));

This is where the invariants become much more model speci�c. First we de�ne a macro to evaluate whether a
memory address contains the same value as the symbolic constant memory in common. Then, we identify all
memory that must be the same among the traces. This invariant serves to identify both what addresses are de�ned
as secret and what can be written to which is why this section di�ers so much depending on the model. Up to this
point, the invariants and composition were not unique to this model. In this example, we only ever write back to
the variable temp once, so it is an easy version of this invariant. More complicated models have required a concept
of when they can be written to.

3.5. Experiments

We used our veri�er for a proof-of-concept demonstration to detect whether or not an arbitrary snippet of C code
is vulnerable to the Spectre class of attacks. As benchmarks, we rely on Paul Kocher’s list of 15 example victim
functions vulnerable to the Spectre attack [31].

In particular, we show here results on Examples 1, 5, 7, 8, 10, 11, and 15 from Paul Kocher’s list, along with
the example from Figure 2.1. We chose these based on what we believe are illustrative of a wide range of victim
functions that are not easily detectable using the currently existing static analysis tools such as Qspectre [42], which
was only able to detect the �rst two examples in Paul Kocher’s list. The shortened version of Kocher’s list we rely

26

on is primarily due to our modeling relying on assembly instruction semantics and multiple examples compiling to
the same assembly. We begin with a brief explanation of some of the benchmark examples and then discuss the
results from applying bounded model checking and induction with our secure speculation property on our Uclid5
5 models. Figure 3.1 lists all benchmarks we discuss here.
Example 1 (Figure 3.1a): This example was explained in detail in §1.1.
Example 5 (Figure 3.1b): This example is similar to the �rst variant but implemented within a for loop. The

low-security argument x may be larger than the array size, which causes the attack to occur as in example 1, but if
x is within bounds of the array, note that condition i > 0 is also potentially vulnerable to the attack.1

Example 7 (Figure 3.1c): This example is interesting because it depends on the value of a static variable updated
from a previous call of the function. Thus every call to the function should not make the second array access unless
x is equal to last_x.

Example 8 (Figure 3.1d): The ternary operator is interesting because the program counter is allowed to jump to
two di�erent basic blocks for the computation of the second array memory access in the BIL as opposed to one
block as in Example 1.

Example 10 (Figure 3.1e): This is the �rst example where a second load dependent on a secret is not required for a
leak. Knowing whether or not array2[0] was accessed is enough to leak the secret at array1[x].
Example 11 (Figure 3.1f): This example uses a call to memcpy to leak the secret, but because of the single byte

access, it gets optimized out in the assembly to a single load and store.
Example 15 (Figure 3.1g): This example is interesting because it passes a pointer instead of an integer as the

attacker controlled input. We assume that the value stored at the pointer is constant across traces to ignore cases
where the attacker forces a secret dependent branch during non-speculative execution.

Example NI (Figure 3.1h) In this example, nested if statements cause the attack to occur without a second address
load dependent on a secret. If the programs speculatively choose not to execute the second if statement, but only
one program eventually executes the second if as a result of a resolution, then a leak can occur.

ex1 ex5 ex7 ex8 ex10 ex11 ex15 Fig. 2.1 NI

BMC 6.558 8.957 10.243 5.688 9.604 6.366 5.783 6.599 12.896
Ind 4.991 5.066 5.693 4.647 5.812 5.864 4.838 4.792 5.433

Table 3.1.: Runtime (sec.) of each example using 5 steps for bounded model checking to �nd vulnerabilities and
1 step induction to prove correctness after inserting a memory fence. These experiments were run on
a 64-bit Little Endian machine with a Intel(R) Core(TM) i7-2670QM CPU at 2.20GHz with 5737MiB of
RAM.

Table 3.1 lists the run-time (in seconds) required for each veri�cation task with the memory fences implemented.
As can be seen, the veri�er is able to prove the correctness of these programs within a few seconds. Although these
programs are small, this exercise gives us con�dence that the method could be useful on larger programs. Scaling
to larger programs will need to adopt a stronger software model checking engine and property speci�c abstractions.
We assert that with these improvements, it will be possible to prove secure speculation for larger programs.

1In Paul Kocher’s list, the condition is x >= 0, but this introduces an in�nite loop.

27

1 void victim_function_v01(unsigned x)
{

2 if (x < array1_size) {
3 temp &= array2[array1[x] *

512];
4 }
5 }

(a) Example 1: Original Spectre BCB (bounds check by-
pass) example.

1 void victim_function_v05(unsigned x)
{

2 size_t i;
3 if (x < array1_size) {
4 for (i = x - 1; i > 0; i--)
5 temp &= array2[array1[

i] * 512];
6 }
7 }

(b) Example 5: BCB with a for loop.
1 void victim_function_v07(unsigned x)

{
2 static unsigned last_x = 0;
3 if (x == last_x) {
4 temp &= array2[array1[x] *

512];
5 }
6 if (x < array1_size)
7 last_x = x;
8 }

(c) Example 7: BCB with unsafe static variable check.

1 void victim_function_v08(unsigned x)
{

2 result = (x < array1_size);
3 temp &= array2[array1[result ? (

x + 1) : 0] * 512];
4 }

(d) Example 8: BCB with the ternary conditional operator.

1 void victim_function_v10(unsigned x,
unsigned k) {

2 if (x < array1_size) {
3 if (array1[x] == k)
4 temp &= array2 [0];
5 }
6 }

(e) Example 10: BCB using an additional attacker con-
trolled input.

1 void victim_function_v11(unsigned x)
{

2 if (x < array1_size) {
3 temp = memcmp (&temp , array2

+ (array1[x] * 512),
1);

4 }
5 }

(f) Example 11: BCB using the memory comparison func-
tion.

1 void victim_function_v15(unsigned *x)
{

2 if (*x < array1_size) {
3 temp &= array2[array1 [*x] *

512];
4 }
5 }

(g) Example 15: BCB using attacker controlled pointer.

1 void victim_function_nested_ifs(
unsigned x) {

2 unsigned val1 , val2;
3 if (x < array1_size) {
4 val1 = array1[x];
5 if (val1 & 1) {
6 val2 = 0;
7 }
8 }
9 }

(h) Example NI: BCB with nested if statements.

Figure 3.1.: Examples that were veri�ed for secure speculation with speculation fences implemented. In all code
snippets assume that that arguments x and k are untrusted (low-security) inputs to the trusted (high-
security) victim functions.

28

Chapter 4 Conclusion

The focus of this thesis is the exact abstractions and decisions made in the modeling process that made it possible
to reason about secure speculation. This thesis set out to start with Spectre and chronicle the process of arriving at
a proven sense of security. We did this by delving through the formal veri�cation methodology to explain each
step of the process and the rationale behind the numerous decisions made when creating the program models.
The result should be a general strategy which could be used to further reason about these vulnerabilities or other
applications of trace property-dependent observational determinism.

Future Work

This work focused on modeling a speci�c threat model with Spectre variant 1 in mind, but could be extended. It
would be possible to consider other vulnerabilities/variants through changes in the adversary and system model.
Some of the areas to explore in an expanded threat model would be including the stack accesses (function pro-
logue/epilogue), indirect jumps, and psuedoinstructions for resource power/congestion (half-warm on states/�oating
point operations). For stack accesses, it would be interesting to investigate if new stack smashing techniques could
be found by utilizing transient execution. Indirect jumps have already been found abusable by variant 2 [32] and
SpectreRSB [34], so the ability to reason about them would be invaluable (though these mitigations may rely on
hardware �xes). The immediate problem with indirect jumps is that they would break the basic block abstraction
we have used here, and would require that we reconsider some modeling choices. Another area that hasn’t been
fully addressed is some of these alternative side-channels which have been historically used. Some examples of
these side-channels could be whether a unit gets powered on through a speculative instruction (power consumption
optimization frequently cycles power o� of unused components on the processor), or the �oating point unit stalls
on an instruction because of an operation that began speculatively. These new avenues can be addressed by
introducing psuedoinstructions similar to how we currently handle reading/writing to memory, but would require
more architecture speci�c support. In this way, we would be able to capture more subtle tricks and provide an even
stronger security guarantee.

Going beyond this, we could consider other vulnerabilities that are not in the Spectre family. This could be done
by considering other optimization techniques and re�ning TPOD with di�erent trace properties. This area has
proven itself ripe for further inspection given that speculative execution was �rst introduced over 28 years ago,
proposed by Kung and Robinson [35], and only recently was Spectre discovered.

One of the greatest pain points in our modeling was the fact that TPOD is a 4-safety property and thus relies on
very careful abstractions and optimizations. It is future work to see if the veri�cation can be further optimized
for these sort of hyperproperties using intelligent construction of the models without loss of generality of the
property. This hurts us especially because of the limitation on the size of code we can reason about, placing large
programs out of reach. One optimization that could address this is to explore the application of taint analysis as a
preprocessing step to �rst identify minimal code portions which need to be reasoned about. This area would be a
joint e�ort between both how the modeling is done and Uclid5’s backend.

29

Bibliography

1. O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert. “Predicting secret keys via branch prediction”. In: Cryptographers’ Track at the
RSA Conference. Springer. 2007, pp. 225–242.

2. J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira. “Formal veri�cation of side-channel countermeasures using self-
composition”. In: Science of Computer Programming 78:7, 2013, pp. 796–812.

3. J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir. “Veri�able side-channel security of cryptographic implementations:
constant-time MEE-CBC”. In: International Conference on Fast Software Encryption. Springer. 2016, pp. 163–184.

4. J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi. “Verifying constant-time implementations”. In: 25th
USENIX Security Symposium (USENIX Security 16). 2016, pp. 53–70.

5. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. “Satis�ability Modulo Theories”. In: Handbook of Satis�ability. Ed. by
A. Biere, H. van Maaren, and T. Walsh. Vol. 4. IOS Press, 2009. Chap. 8.

6. G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie. “System-level non-interference for constant-time cryptography”.
In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. ACM. 2014, pp. 1267–1279.

7. G. Barthe, P. R. D’Argenio, and T. Rezk. “Secure Information Flow by Self-Composition”. In: 17th IEEE Computer Security
Foundations Workshop, (CSFW-17). 2004, pp. 100–114.

8. G. Barthe, P. R. D’Argenio, and T. Rezk. “Secure information �ow by self-composition”. In: Mathematical Structures in
Computer Science 21:6, 2011, pp. 1207–1252.

9. G. Barthe, B. Grégoire, and V. Laporte. “Secure compilation of side-channel countermeasures: the case of cryptographic
“constant-time””. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE. 2018, pp. 328–343.

10. Binary Analysis Platform (BAP) Repository. Available at https://github.com/BinaryAnalysisPlatform/bap. 2019.

11. B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch, B. Parno, A. Rane, S. Setty, and L. Thompson. “Vale:
Verifying high-performance cryptographic assembly code”. In: 26th USENIX Security Symposium (USENIX Security 17).
2017, pp. 917–934.

12. D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. “BAP: A Binary Analysis Platform”. In: Proceedings of the 23rd
International Conference on Computer Aided Veri�cation. CAV’11. Snowbird, UT, 2011, pp. 463–469.

13. J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx.
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution”. In: 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association, Baltimore, MD, 2018, 991–1008. isbn: 978-1-931971-46-1.

14. C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss. “A Systematic
Evaluation of Transient Execution Attacks and Defenses”. In: CoRR abs/1811.05441, 2018. arXiv: 1811.05441. url:
http://arxiv.org/abs/1811.05441.

15. K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan. “A Formal Approach to Secure Speculation”. In: Computer
Security Foundations Symposium, 32nd IEEE. IEEE. 2019.

16. M. R. Clarkson and F. B. Schneider. “Hyperproperties”. In: Journal of Computer Security 18:6, 2010, pp. 1157–1210. issn:
0926-227X.

30

https://github.com/BinaryAnalysisPlatform/bap
http://arxiv.org/abs/1811.05441
http://arxiv.org/abs/1811.05441

17. G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke. “CacheAudit: A Tool for the Static Analysis of Cache Side
Channels”. In: Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13). USENIX, Washington, D.C.,
2013, pp. 431–446. isbn: 978-1-931971-03-4.

18. G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke. “CacheAudit: A tool for the static analysis of cache side channels”. In:
ACM Transactions on Information and System Security (TISSEC) 18:1, 2015, p. 4.

19. H. Eldib, C. Wang, and P. Schaumont. “Formal veri�cation of software countermeasures against side-channel attacks”. In:
ACM Transactions on Software Engineering and Methodology 24:2, 2014, p. 11.

20. H. Eldib, C. Wang, and P. Schaumont. “SMT-based veri�cation of software countermeasures against side-channel attacks”.
In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems. 2014, pp. 62–77.

21. J. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In: IEEE Symposium on Security and Privacy. 1982,
pp. 11–20.

22. B. Gras, K. Razavi, H. Bos, and C. Giu�rida. “Translation Leak-aside Bu�er: Defeating Cache Side-channel Protections
with TLB Attacks”. In: 27th USENIX Security Symposium (USENIX Security 18). 2018, pp. 955–972.

23. D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR”. In: Proc. of the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS ’16. 2016, pp. 368–379.

24. Intel. Deep Dive: Analyzing Potential Bounds Check Bypass Vulnerabilities. 2018. url: https://software.intel.
com/security- software- guidance/insights/deep- dive- analyzing- potential- bounds- check- bypass-

vulnerabilities.

25. Intel. Deep Dive: Managed Runtime Speculative Execution Side Channel Mitigations. 2018. url: https://software.intel.
com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-

channel-mitigations.

26. Intel. Deep Dive: Mitigation Overview for Side Channel Exploits in Linux. 2018. url: https://software.intel.com/
security-software-guidance/insights/deep-dive-mitigation-overview-side-channel-exploits-linux.

27. Intel. Rogue System Register Read / CVE-2018-3640 / INTEL-SA-00115. 2018. url: https://software.intel.com/
security-software-guidance/software-guidance/rogue-system-register-read.

28. Intel. Speculative Store Bypass / CVE-2018-3639 / INTEL-SA-00115. 2018. url: https://software.intel.com/security-
software-guidance/software-guidance/speculative-store-bypass.

29. G. Irazoqui, T. Eisenbarth, and B. Sunar. “S$A: A Shared Cache Attack That Works across Cores and De�es VM Sandboxing
– and Its Application to AES”. In: IEEE Symposium on Security and Privacy. 2015, pp. 591–604.

30. V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer. DAWG: A Defense Against Cache Timing Attacks in
Speculative Execution Processors. Cryptology ePrint Archive, Report 2018/418. https://eprint.iacr.org/2018/418.
2018.

31. P. Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler. 2018. url: https : / / www . paulkocher . com / doc /
MicrosoftCompilerSpectreMitigation.html.

32. P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
“Spectre Attacks: Exploiting Speculative Execution”. In: ArXiv e-prints, 2018. arXiv: 1801.01203.

33. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: Proceedings of the IEEE Symposium on Security and
Privacy, 2019, pp. 19–37.

34. E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh. “Spectre Returns! Speculation Attacks using the Return
Stack Bu�er”. In: 12th USENIX Workshop on O�ensive Technologies (WOOT 18). USENIX Association, Baltimore, MD, 2018.

31

https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/insights/deep-dive-analyzing-potential-bounds-check-bypass-vulnerabilities
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-mitigation-overview-side-channel-exploits-linux
https://software.intel.com/security-software-guidance/insights/deep-dive-mitigation-overview-side-channel-exploits-linux
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://eprint.iacr.org/2018/418
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
http://arxiv.org/abs/1801.01203

35. H. T. Kung and J. T. Robinson. “On Optimistic Methods for Concurrency Control”. In: ACM Trans. Database Syst. 6:2, 1981,
pp. 213–226. issn: 0362-5915. doi: 10.1145/319566.319567. url: http://doi.acm.org/10.1145/319566.319567.

36. S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. “Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing”. In: CoRR abs/1611.06952, 2016. url: http://arxiv.org/abs/1611.06952.

37. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg.
“Meltdown”. In: ArXiv e-prints, 2018. arXiv: 1801.01207.

38. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. “Last-Level Cache Side-Channel Attacks Are Practical”. In: Proceedings of
the 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society, 2015, pp. 605–622. isbn: 978-1-4673-6949-7.
doi: 10.1109/SP.2015.43. url: http://dx.doi.org/10.1109/SP.2015.43.

39. G. Maisuradze and C. Rossow. “Ret2Spec: Speculative Execution Using Return Stack Bu�ers”. In: Proc. of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’18. 2018.

40. R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest. “Spectre is here to stay: An analysis of side-channels and
speculative execution”. In: arXiv preprint arXiv:1902.05178, 2019.

41. J. Mclean. “Proving Noninterference and Functional Correctness Using Traces”. In: Journal of Computer Security 1, 1992,
pp. 37–58.

42. Microsoft. /Qspectre. 2018. url: https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-
2017.

43. Microsoft. Spectremitigations inMSVC. 2018.url: https://devblogs.microsoft.com/cppblog/spectre-mitigations-
in-msvc/.

44. Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis. “The Spy in the Sandbox - Practical Cache Attacks in
Javascript”. In: CoRR abs/1502.07373, 2015. url: http://arxiv.org/abs/1502.07373.

45. C. Percival. Cache missing for fun and pro�t. 2005.

46. P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU
Attacks”. In: 25th USENIX Security Symposium (USENIX Security 16). 2016, pp. 565–581.

47. J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro, P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C.
Hriţcu, K. Bhargavan, C. Fournet, et al. “Veri�ed low-level programming embedded in F”. In: Proceedings of the ACM on
Programming Languages 1:ICFP, 2017, p. 17.

48. A. W. Roscoe. “CSP and Determinism in Security Modelling”. In: Proceedings of the 1995 IEEE Symposium on Security and
Privacy, Oakland, California, USA, May 8-10, 1995. 1995, pp. 114–127.

49. J. M. Rushby. “Proof of separability: A veri�cation technique for a class of a security kernels”. In: Proceedings of the
International Symposium on Programming, 5th Colloquium, Torino, Italy. 1982, pp. 352–367.

50. M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. “Malware Guard Extension: Using SGX to Conceal Cache
Attacks”. In: CoRR abs/1702.08719, 2017. url: http://arxiv.org/abs/1702.08719.

51. S. A. Seshia and P. Subramanyan. “Uclid5: Integrating Modeling, Veri�cation, Synthesis and Learning”. In: Proceedings of
the 16th ACM-IEEE International Conference on Formal Methods and Models for System Design (MEMOCODE). 2018.

52. Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur. “Unveiling Hardware-based Data Prefetcher, a Hidden Source of
Information Leakage”. In: Proc. of the 2018 ACM SIGSAC Conference on Computer and Communications Security. CCS ’18.
2018, pp. 131–145.

53. M. Sousa and I. Dillig. “Cartesian Hoare Logic for Verifying K-safety Properties”. In: Proc. of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’16. Santa Barbara, CA, USA, 2016, pp. 57–69.
isbn: 978-1-4503-4261-2.

32

http://dx.doi.org/10.1145/319566.319567
http://doi.acm.org/10.1145/319566.319567
http://arxiv.org/abs/1611.06952
http://arxiv.org/abs/1801.01207
http://dx.doi.org/10.1109/SP.2015.43
http://dx.doi.org/10.1109/SP.2015.43
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/reference/qspectre?view=vs-2017
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
http://arxiv.org/abs/1502.07373
http://arxiv.org/abs/1702.08719

54. C. Trippel, D. Lustig, and M. Martonosi. “CheckMate: Automated Synthesis of Hardware Exploits and Security Litmus
Tests”. In: 51st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2018. 2018, pp. 947–960.

55. P. Turner. Retpoline: a software construct for preventing branch-target-injection. 2018. url: https://support.google.
com/faqs/answer/7625886.

56. UCLID5 Veri�cation and Synthesis System. Available at http://github.com/uclid-org/uclid/.

57. S. Zdancewic and A. C. Myers. “Observational Determinism for Concurrent Program Security”. In: Proc. of the 16th IEEE
Computer Security Foundations Workshop. IEEE. 2003, pp. 29–43.

33

https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
http://github.com/uclid-org/uclid/

Appendix A Spectre Variant 1 C Source

1 #include <stdlib.h>

2 #include <stdint.h>

3 #include <string.h>

4
5 typedef unsigned long long int ull;

6 extern ull array1_size , array2_size , array_size_mask;

7 extern ull *array1 , *array2 , temp;

8 ull array1_size , array2_size , array_size_mask , temp;

9 ull *array1;

10 ull *array2;

11
12 void victim_function_v01(ull x) {

13 if (x < array1_size) {

14 temp &= array2[array1[x] * 512];

15 }

16 }

17
18 int main() {

19 ull x = 3;

20 victim_function_v01(x);

21 return 0;

22 }

34

Appendix B BIL of Spectre Variant 1

1 000001 bb: program

2 00000006: sub __libc_csu_fini ()

3 00000002:

4 00000003: v331 := mem[RSP , el]:u64

5 00000004: RSP := RSP + 8

6 00000005: return v331

7
8
9 00000083: sub __libc_csu_init ()

10 00000007:

11 00000008: v241 := R15

12 00000009: RSP := RSP - 8

13 0000000a: mem := mem with [RSP , el]:u64 <- v241

14 0000000b: v243 := R14

15 0000000c: RSP := RSP - 8

16 0000000d: mem := mem with [RSP , el]:u64 <- v243

17 0000000e: R15 := pad :64[low :32[RDI]]

18 0000000f: v245 := R13

19 00000010: RSP := RSP - 8

20 00000011: mem := mem with [RSP , el]:u64 <- v245

21 00000012: v247 := R12

22 00000013: RSP := RSP - 8

23 00000014: mem := mem with [RSP , el]:u64 <- v247

24 00000015: R12 := 0x600E10

25 00000016: v249 := RBP

26 00000017: RSP := RSP - 8

27 00000018: mem := mem with [RSP , el]:u64 <- v249

28 00000019: RBP := 0x600E18

29 0000001a: v251 := RBX

30 0000001b: RSP := RSP - 8

31 0000001c: mem := mem with [RSP , el]:u64 <- v251

32 0000001d: R14 := RSI

33 0000001e: R13 := RDX

34 00000021: RBP := RBP - R12

35 0000002a: RSP := RSP - 8

36 00000032: RBP := RBP ~>> 3

37 00000039: RSP := RSP - 8

38 0000003a: mem := mem with [RSP , el]:u64 <- 0x400581

39 0000003b: call @_init with return %0000003c

40
41 0000003c:

42 0000003d: v337 := RBP

43 00000043: ZF := 0 = v337

44 00000044: when ZF goto %0000006a

45 00000045: goto %00000046

46

35

47 00000046:

48 00000047: RBX := 0

49 0000004e: goto %0000004f

50
51 0000004f:

52 00000050: RDX := R13

53 00000051: RSI := R14

54 00000052: RDI := pad :64[low :32[R15]]

55 00000053: v321 := mem[R12 + (RBX << 3), el]:u64

56 00000054: RSP := RSP - 8

57 00000055: mem := mem with [RSP , el]:u64 <- 0x40059D

58 00000056: call v321 with return %00000057

59
60 00000057:

61 0000005a: RBX := RBX + 1

62 00000061: v401 := RBX - RBP

63 00000067: ZF := 0 = v401

64 00000068: when ~ZF goto %0000004f

65 00000069: goto %0000006a

66
67 0000006a:

68 0000006d: RSP := RSP + 8

69 00000074: RBX := mem[RSP , el]:u64

70 00000075: RSP := RSP + 8

71 00000076: RBP := mem[RSP , el]:u64

72 00000077: RSP := RSP + 8

73 00000078: R12 := mem[RSP , el]:u64

74 00000079: RSP := RSP + 8

75 0000007a: R13 := mem[RSP , el]:u64

76 0000007b: RSP := RSP + 8

77 0000007c: R14 := mem[RSP , el]:u64

78 0000007d: RSP := RSP + 8

79 0000007e: R15 := mem[RSP , el]:u64

80 0000007f: RSP := RSP + 8

81 00000080: v317 := mem[RSP , el]:u64

82 00000081: RSP := RSP + 8

83 00000082: return v317

84
85
86 00000086: sub __libc_start_main ()

87 00000084:

88 00000085: goto mem[0x601018 , el]:u64

89
90
91 000000 ac: sub _init()

92 00000087:

93 0000008a: RSP := RSP - 8

94 00000091: RAX := mem[0x600FF8 , el]:u64

95 00000092: v347 := RAX

96 00000098: ZF := 0 = v347

36

97 00000099: when ZF goto %0000009f

98 0000009a: goto %0000009b

99
100 0000009b:

101 0000009c: RSP := RSP - 8

102 0000009d: mem := mem with [RSP , el]:u64 <- 0x4003A5

103 0000009e: call @sub_4003d0 with return %0000009f

104
105 0000009f:

106 000000 a2: RSP := RSP + 8

107 000000 a9: v393 := mem[RSP , el]:u64

108 000000 aa: RSP := RSP + 8

109 000000 ab: return v393

110
111
112 000000 fa: sub _start ()

113 000000 ad:

114 000000 ae: RBP := 0

115 000000 b6: RSI := mem[RSP , el]:u64

116 000000 b7: RSP := RSP + 8

117 000000 b8: RDX := RSP

118 000000 b9: RSP := RSP & 0xFFFFFFFFFFFFFFF0

119 000000 c0: v325 := RAX

120 000000 c1: RSP := RSP - 8

121 000000 c2: mem := mem with [RSP , el]:u64 <- v325

122 000000 c3: v327 := RSP

123 000000 c4: RSP := RSP - 8

124 000000 c5: mem := mem with [RSP , el]:u64 <- v327

125 000000 c8: RDI := 0x400525

126 000000 c9: RSP := RSP - 8

127 000000 ca: mem := mem with [RSP , el]:u64 <- 0x400409

128 000000 cb: call @__libc_start_main with return %000000 cc

129
130 000000 cc:

131 000000 cd: RAX := 0x601037

132 000000 ce: v297 := RBP

133 000000 cf: RSP := RSP - 8

134 000000 d0: mem := mem with [RSP , el]:u64 <- v297

135 000000 d3: RAX := RAX - 0x601030

136 000000 da: v305 := RAX - 0xE

137 000000 db: CF := RAX < 0xE

138 000000 e0: ZF := 0 = v305

139 000000 e1: RBP := RSP

140 000000 e2: when CF | ZF goto %000000 ef

141 000000 e3: goto %000000 e4

142
143 000000 e4:

144 000000 e5: RAX := 0

145 000000 e6: v333 := RAX

146 000000 ec: ZF := 0 = v333

37

147 000000 ed: when ZF goto %000000 ef

148 000000 ee: goto %000000 f5

149
150 000000 ef:

151 000000 f0: RBP := mem[RSP , el]:u64

152 000000 f1: RSP := RSP + 8

153 000000 f2: v319 := mem[RSP , el]:u64

154 000000 f3: RSP := RSP + 8

155 000000 f4: return v319

156
157 000000 f5:

158 000000 f6: RBP := mem[RSP , el]:u64

159 000000 f7: RSP := RSP + 8

160 000000 f8: RDI := 0x601030

161 000000 f9: goto RAX

162
163
164 00000117: sub main()

165 000000 fb:

166 000000 fc: v405 := RBP

167 000000 fd: RSP := RSP - 8

168 000000 fe: mem := mem with [RSP , el]:u64 <- v405

169 000000 ff: RBP := RSP

170 00000102: RSP := RSP - 0x10

171 00000109: mem := mem with [RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 <- 3

172 0000010a: RAX := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64

173 0000010b: RDI := RAX

174 0000010c: RSP := RSP - 8

175 0000010d: mem := mem with [RSP , el]:u64 <- 0x400541

176 0000010e: call @victim_function_v01 with return %0000010f

177
178 0000010f:

179 00000110: RAX := 0

180 00000111: RSP := RBP

181 00000112: RBP := mem[RSP , el]:u64

182 00000113: RSP := RSP + 8

183 00000114: v309 := mem[RSP , el]:u64

184 00000115: RSP := RSP + 8

185 00000116: return v309

186
187
188 0000011a: sub sub_4003d0 ()

189 00000118:

190 00000119: goto mem[0x600FF8 , el]:u64

191
192
193 00000171: sub sub_4004ca ()

194 0000011b:

195 0000011c: v383 := RBP

196 0000011d: RSP := RSP - 8

38

197 0000011e: mem := mem with [RSP , el]:u64 <- v383

198 0000011f: RBP := RSP

199 00000120: v385 := RAX

200 00000121: RSP := RSP - 8

201 00000122: mem := mem with [RSP , el]:u64 <- 0x4004D0

202 00000123: call v385 with return %00000124

203
204 00000124:

205 00000125: RBP := mem[RSP , el]:u64

206 00000126: RSP := RSP + 8

207 00000127: goto %00000128

208
209 00000128:

210 00000129: RSI := 0x601030

211 0000012a: v351 := RBP

212 0000012b: RSP := RSP - 8

213 0000012c: mem := mem with [RSP , el]:u64 <- v351

214 0000012f: RSI := RSI - 0x601030

215 00000137: RSI := RSI ~>> 3

216 0000013e: RBP := RSP

217 0000013f: RAX := RSI

218 00000141: RAX := RAX >> 0x3F

219 00000149: v368 := RAX

220 0000014a: RSI := RSI + v368

221 00000152: RSI := RSI ~>> 1

222 00000155: ZF := 0 = RSI

223 00000159: when ZF goto %00000166

224 0000015a: goto %0000015b

225
226 0000015b:

227 0000015c: RAX := 0

228 0000015d: v291 := RAX

229 00000163: ZF := 0 = v291

230 00000164: when ZF goto %00000166

231 00000165: goto %0000016c

232
233 00000166:

234 00000167: RBP := mem[RSP , el]:u64

235 00000168: RSP := RSP + 8

236 00000169: v329 := mem[RSP , el]:u64

237 0000016a: RSP := RSP + 8

238 0000016b: return v329

239
240 0000016c:

241 0000016d: RBP := mem[RSP , el]:u64

242 0000016e: RSP := RSP + 8

243 0000016f: RDI := 0x601030

244 00000170: goto RAX

245
246

39

247 000001 ba: sub victim_function_v01 ()

248 00000172:

249 00000173: v377 := RBP

250 00000174: RSP := RSP - 8

251 00000175: mem := mem with [RSP , el]:u64 <- v377

252 00000176: RBP := RSP

253 00000177: mem := mem with [RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 <- RDI

254 00000178: RAX := mem[0x601050 , el]:u64

255 0000017a: CF := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 < RAX

256 00000180: when ~CF goto %000001 b4

257 00000181: goto %00000182

258
259 00000182:

260 00000183: RAX := mem[0x601040 , el]:u64

261 00000184: RDX := mem[0x601038 , el]:u64

262 00000185: RCX := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64

263 00000187: RCX := RCX << 3

264 0000018f: v274 := RCX

265 00000190: RDX := RDX + v274

266 00000197: RDX := mem[RDX , el]:u64

267 00000199: RDX := RDX << 0xC

268 000001 a1: v284 := RDX

269 000001 a2: RAX := RAX + v284

270 000001 a9: RDX := mem[RAX , el]:u64

271 000001 aa: RAX := mem[0x601058 , el]:u64

272 000001 ab: RAX := RAX & RDX

273 000001 b2: mem := mem with [0x601058 , el]:u64 <- RAX

274 000001 b3: goto %000001 b4

275
276 000001 b4:

277 000001 b5: RBP := mem[RSP , el]:u64

278 000001 b6: RSP := RSP + 8

279 000001 b7: v295 := mem[RSP , el]:u64

280 000001 b8: RSP := RSP + 8

281 000001 b9: return v295

40

Appendix C Uclid5 Common Module

1 module common {

2 type byte_t;

3 type word_t;

4 type addr_t = word_t;

5 type mem_t = [addr_t]word_t;

6

7 type pc_t = enum {

8 block1 ,

9 block2 ,

10 block3 ,

11 halt

12 };

13

14 type obs_mem_t;

15 function update_obs_mem(mem_obs : obs_mem_t , addr : word_t) : obs_mem_t;

16

17 type br_pred_state_t;

18 function update_br_pred(state : br_pred_state_t , cond : boolean) : br_pred_state_t;

19 function br_pred(state : br_pred_state_t , pc : pc_t) : boolean;

20 function br_resolve(state : br_pred_state_t , pc : pc_t) : boolean;

21

22 type spec_idx_t = bv2;

23 const spec_idx0 : spec_idx_t = 0bv2;

24 const spec_idx1 : spec_idx_t = 1bv2;

25 const spec_idx2 : spec_idx_t = 2bv2;

26 const spec_idx_max : spec_idx_t = 3bv2;

27 function walk_back(state : br_pred_state_t , pc : pc_t , spec_idx : spec_idx_t) : spec_idx_t;

28

29 type spec_mem_t = [spec_idx_t]mem_t; // Stores memory across speculation so it can be

restored

30 type spec_reg_t = [spec_idx_t]word_t; // Stores shadow registers as we deepen speculation

31 type spec_flag_reg_t = [spec_idx_t]boolean; // Stores flag registers values for speculation

checkpoints

32 type spec_pc_t = [spec_idx_t]pc_t; // Stores the PC value that would have been correct

33

34 function multiply(x : word_t , y : word_t) : word_t;

35 function add(x : word_t , y : word_t) : word_t;

36 function sub(x : word_t , y : word_t) : word_t;

37 function left_shift(shift : word_t , x : word_t) : word_t;

38 function mask(x : word_t , num_bits : word_t) : word_t;

39

40 function lessthan(x : word_t , y : word_t) : boolean;

41 function and(x : word_t , y : word_t) : word_t;

42

43 const val0x0 : word_t;

44 const val0x1 : word_t;

45 const val0xC : word_t;

46

47 const last_x_addr_init : addr_t;

48 const array1_addr_init : addr_t;

49 const array2_addr_init : addr_t;

50 const array1_size_addr_init : addr_t;

51 const temp_addr_init : addr_t;

41

52 const N_addr_init : addr_t;

53 const S_addr_init : addr_t;

54

55 const obs_mem_init : obs_mem_t;

56 const RAX_init : word_t;

57 const RCX_init : word_t;

58 const RDX_init : word_t;

59 const RDI_init : word_t;

60 const CF_init : boolean;

61 const ret_init : word_t;

62 const mem_init : mem_t;

63 const br_pred_init : br_pred_state_t;

64 const spec_mem_init : spec_mem_t;

65 const spec_reg_init : spec_reg_t;

66 const spec_flag_reg_init : spec_flag_reg_t;

67 const spec_pc_init : spec_pc_t;

68

69

70 const secret : addr_t;

71

72 assume distinct(secret , array1_addr_init , array2_addr_init , array1_size_addr_init , temp_addr_init)

;

73 }

42

Appendix D Uclid5Model of Spectre Variant 1

1 module program {

2 type * = common.*;

3

4 input speculative : boolean;

5 input lfence : boolean;

6 var pc : pc_t;

7 var mem : mem_t;

8

9 // Registers

10 var RDI ,

11 RAX ,

12 RDX ,

13 RCX: word_t;

14 var CF : boolean;

15

16 // Observable states

17 var br_pred_state : br_pred_state_t; // Branch predictor state

18 var obs_mem : obs_mem_t;

19

20 // Speculation stack for saving register values at branch checkpoints

21 var spec_level : spec_idx_t;

22 var spec_mem : spec_mem_t;

23 var spec_pc : spec_pc_t;

24 var spec_RAX ,

25 spec_RDX ,

26 spec_RCX : spec_reg_t;

27 var spec_CF : spec_flag_reg_t;

28

29 const array1_addr : word_t;

30 const array2_addr : word_t;

31 const array1_size_addr : word_t;

32 const temp_addr : word_t;

33

34 assume (array1_addr == common.array1_addr_init);

35 assume (array2_addr == common.array2_addr_init);

36 assume (array1_size_addr == common.array1_size_addr_init);

37 assume (temp_addr == common.temp_addr_init);

38

39 procedure do_block1 ()

40 modifies pc, mem ,

41 RDI , RAX , RDX , RCX , CF,

42 br_pred_state , obs_mem ,

43 spec_level , spec_mem , spec_pc , spec_RAX , spec_RDX , spec_RCX , spec_CF;

44 {

45 // Ignore prologue

46 // 00000177: mem := mem with [RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 <- RDI

47 // 00000178: RAX := mem[0x601050 , el]:u64

48

49 call (RAX) = load_mem(array1_size_addr);

50 // 0000017a: CF := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64 < RAX

51 CF = common.lessthan(RDI , RAX);

52 // 00000180: when ~CF goto %000001 b4

53 // 00000181: goto %00000182

43

54 call branch (!CF, block3 , block2);

55 }

56

57 procedure do_block2 ()

58 modifies pc, mem ,

59 RDI , RAX , RDX , RCX , CF,

60 br_pred_state , obs_mem ,

61 spec_level , spec_mem , spec_pc , spec_RAX , spec_RDX , spec_RCX , spec_CF;

62 {

63 var v274 , v284 : word_t;

64

65 if (lfence && spec_level != common.spec_idx0) {

66 call do_resolve ();

67 } else {

68 // 00000183: RAX := mem[0x601040 , el]:u64

69 call (RAX) = load_mem(array2_addr);

70 // 00000184: RDX := mem[0x601038 , el]:u64

71 call (RDX) = load_mem(array1_addr);

72 // 00000185: RCX := mem[RBP + 0xFFFFFFFFFFFFFFF8 , el]:u64

73 RCX = RDI;

74 // 00000187: RCX := RCX << 3

75 RCX = common.left_shift(common.val0x3 , RCX);

76 // 0000018f: v274 := RCX

77 v274 = RCX;

78 // 00000190: RDX := RDX + v274

79 RDX = common.add(RDX , v274);

80 // 00000197: RDX := mem[RDX , el]:u64

81 call (RDX) = load_mem(RDX);

82 // 00000199: RDX := RDX << 0xC

83 RDX = common.left_shift(common.val0xC , RDX);

84 // 000001 a1: v284 := RDX

85 v284 = RDX;

86 // 000001 a2: RAX := RAX + v284

87 RAX = common.add(RAX , v284);

88 // 000001 a9: RDX := mem[RAX , el]:u64

89 call (RDX) = load_mem(RAX);

90 // 000001 aa: RAX := mem[0x601058 , el]:u64

91 call (RAX) = load_mem(temp_addr);

92 // 000001 ab: RAX := RAX & RDX

93 RAX = common.and(RAX , RDX);

94 // 000001 b2: mem := mem with [0x601058 , el]:u64 <- RAX

95 call store_mem(temp_addr , RAX);

96 // 000001 b3: goto %000001 b4

97 pc = block3; br_pred_state = common.update_br_pred(br_pred_state , true);

98 }

99 }

100

101 procedure do_block3 ()

102 modifies pc, mem ,

103 RDI , RAX , RDX , RCX , CF,

104 br_pred_state , obs_mem ,

105 spec_level , spec_mem , spec_pc , spec_RAX , spec_RDX , spec_RCX , spec_CF;

106 {

107 // Ignore epilogue

108 pc = halt; br_pred_state = common.update_br_pred(br_pred_state , true);

109 }

110

111 assume (spec_level == common.spec_idx0 || spec_level == common.spec_idx1);

44

112

113 init {

114 var secret_value : word_t;

115 // Initiallze memory with 1 secret value in the secret address

116 mem = common.mem_init;

117 mem[secret] = secret_value;

118 // Initialize registers

119 RDI = common.RDI_init;

120 RAX = common.RAX_init;

121 RDX = common.RDX_init;

122 RCX = common.RCX_init;

123 CF = common.CF_init;

124 // Initialize observation datastructures

125 obs_mem = common.obs_mem_init;

126 br_pred_state = common.br_pred_init;

127 // Initialize speculation metadata

128 spec_level = common.spec_idx0;

129 spec_mem = common.spec_mem_init;

130 assume (forall (addr_ : addr_t , spec_level_ : spec_idx_t) :: common.read(common.mem_init ,

addr_) == common.read(spec_mem[spec_level_], addr_));

131 spec_pc = common.spec_pc_init;

132 // Initialize speculation register checkpoint arrays

133 spec_RAX = common.spec_reg_init;

134 spec_RDX = common.spec_reg_init;

135 spec_RCX = common.spec_reg_init;

136 spec_CF = common.spec_flag_reg_init;

137 // Start PC at the first blcok of victim function

138 pc = block1;

139 }

140

141 next {

142 // If speculating and resolving

143 if (spec_level != common.spec_idx0 && common.br_resolve(br_pred_state , pc)) {

144 call do_resolve ();

145 } else {

146 case

147 (pc == block1) : { call do_block1 (); }

148 (pc == block2) : { call do_block2 (); }

149 (pc == block3) : { call do_block3 (); }

150 (pc == halt) : {}

151 esac

152 }

153 }

154

155 procedure branch(cond : boolean , pc_if : pc_t , pc_else : pc_t)

156 modifies pc, mem , br_pred_state ,

157 RAX , RCX , RDX , CF,

158 spec_level , spec_mem , spec_RAX , spec_RCX , spec_RDX , spec_CF , spec_pc;

159 {

160 var pred : boolean;

161

162 br_pred_state = common.update_br_pred(br_pred_state , cond);

163 pred = common.br_pred(br_pred_state , pc);

164

165 if (cond) {

166 if (speculative && pred) {

167 call save_reg_states(pc_if);

168 spec_level = spec_level + common.spec_idx1;

45

169 pc = pc_else;

170 } else {

171 pc = pc_if;

172 }

173 } else {

174 if (speculative && pred) {

175 call save_reg_states(pc_else);

176 spec_level = spec_level + common.spec_idx1;

177 pc = pc_if;

178 } else {

179 pc = pc_else;

180 }

181 }

182 }

183

184 // Add speculation checkpoint to speculation checkpoint stack

185 procedure save_reg_states(resolvePC : pc_t)

186 modifies spec_level , spec_mem , spec_pc , spec_RAX , spec_RDX , spec_RCX , spec_CF;

187 {

188 spec_RAX[spec_level] = RAX;

189 spec_RDX[spec_level] = RDX;

190 spec_RCX[spec_level] = RCX;

191 spec_CF[spec_level] = CF;

192

193 spec_pc[spec_level] = resolvePC;

194 spec_mem[spec_level] = mem;

195 }

196

197 procedure restore_state ()

198 modifies pc, mem , RAX , RDX , RCX , CF;

199 {

200

201 RAX = spec_RAX[spec_level];

202 RDX = spec_RDX[spec_level];

203 RCX = spec_RCX[spec_level];

204 CF = spec_CF[spec_level];

205

206 pc = spec_pc[spec_level];

207 mem = spec_mem[spec_level];

208 }

209

210 // Handles walking back misspeculation

211 procedure do_resolve ()

212 modifies pc, mem , RAX , RDX , RCX , CF, spec_level;

213 {

214 var prev_spec_level : spec_idx_t;

215 // Non deterministic choice of walkback level

216 assume (prev_spec_level == common.walk_back(br_pred_state , pc, spec_level));

217 assume (common.spec_idx0 <=_u prev_spec_level && prev_spec_level <_u spec_level);

218 // Walkback

219 spec_level = prev_spec_level;

220 call restore_state ();

221 }

222

223 procedure load_mem(addr : word_t)

224 returns (value : word_t)

225 modifies obs_mem;

226 {

46

227 value = mem[addr];

228 obs_mem = common.update_obs_mem(obs_mem , addr);

229 }

230

231 procedure store_mem(addr : word_t , value : word_t)

232 modifies mem , obs_mem;

233 {

234 mem[addr] = value;

235 obs_mem = common.update_obs_mem(obs_mem , addr);

236 }

237 }

47

Appendix E Composition of Spectre Variant 1 with

Secure Speculation

1 module main {

2 type * = common.*;

3

4 var lfence : boolean;

5

6 instance t1 : program(speculative : (false), lfence : (lfence));

7 instance t2 : program(speculative : (false), lfence : (lfence));

8 instance t3 : program(speculative : (true), lfence : (lfence));

9 instance t4 : program(speculative : (true), lfence : (lfence));

10

11 assume (lfence == true);

12

13 init {

14 assume (t1.mem == t3.mem);

15 assume (t2.mem == t4.mem);

16 }

17

18 assume (t1.pc == t2.pc);

19 assume (t1.obs_mem == t2.obs_mem);

20 assume (t1.br_pred_state == t2.br_pred_state);

21

22 next {

23 // If we are not speculating , assume we have seen the same things up to this point

24 // If we are speculating , wait until the speculative model walks back to continue

25 if (t3.spec_level == common.spec_idx0) {

26 assume (t1.obs_mem == t3.obs_mem);

27 next(t1);

28 }

29 if (t4.spec_level == common.spec_idx0) {

30 assume (t2.obs_mem == t4.obs_mem);

31 next(t2);

32 }

33 next(t3); next(t4);

34 }

35

36 // -------------- 4-Safety Properties -----------------------

37 invariant same_pc : t3.pc == t4.pc; // Same PC

38 invariant same_mem_obs : t3.obs_mem == t4.obs_mem;

39 invariant same_br_pred_state : t3.br_pred_state == t4.br_pred_state;

40

41 // --------------- Auxiliary Invariants -----------------------

42 // Same

43 invariant same_RDI : t1.RDI == t2.RDI && t1.RDI == t3.RDI && t3.RDI == t4.RDI;

44 // Start with the same speculation levels and return pcs (for resolution)

45 invariant same_spec_level : t3.spec_level == t4.spec_level;

46 invariant same_spec_pc : t3.spec_pc == t4.spec_pc;

47

48 // Nonspeculative models should never speculate

49 assume (t1.spec_level == t2.spec_level && t1.spec_level == common.spec_idx0);

48

50 // When not speculating , the speculative models should have identical state to the nonspeculative

models

51 invariant same_when_not_speculating :

52 (t3.spec_level == common.spec_idx0 ==> (

53 t1.spec_level == t3.spec_level &&

54 t1.pc == t3.pc &&

55 t1.mem == t3.mem &&

56 t1.RAX == t3.RAX &&

57 t1.RCX == t3.RCX &&

58 t1.RDX == t3.RDX &&

59 t1.CF == t3.CF)) &&

60 (t4.spec_level == common.spec_idx0 ==> (

61 t2.spec_level == t4.spec_level &&

62 t2.pc == t4.pc &&

63 t2.mem == t4.mem &&

64 t2.RAX == t4.RAX &&

65 t2.RCX == t4.RCX &&

66 t2.RDX == t4.RDX &&

67 t1.CF == t3.CF));

68

69 // When we completely undo misspeculation , we should be identical to the nonspeculative models

70 invariant eventually_the_same :

71 (t3.spec_level != common.spec_idx0 ==> (

72 t1.pc == t3.spec_pc[common.spec_idx0] &&

73 t1.mem == t3.spec_mem[common.spec_idx0] &&

74 t1.RAX == t3.spec_RAX[common.spec_idx0] &&

75 t1.RCX == t3.spec_RCX[common.spec_idx0] &&

76 t1.RDX == t3.spec_RDX[common.spec_idx0] &&

77 t1.CF == t3.spec_CF[common.spec_idx0])) &&

78 (t4.spec_level != common.spec_idx0 ==> (

79 t2.pc == t4.spec_pc[common.spec_idx0] &&

80 t2.mem == t4.spec_mem[common.spec_idx0] &&

81 t2.RAX == t4.spec_RAX[common.spec_idx0] &&

82 t2.RCX == t4.spec_RCX[common.spec_idx0] &&

83 t2.RDX == t4.spec_RDX[common.spec_idx0] &&

84 t2.CF == t4.spec_CF[common.spec_idx0]));

85

86 define same_mem_entry(mem : mem_t , addr : addr_t) : boolean =

87 mem[addr] == common.mem_init[addr];

88

89 // All memory locations that are not secret or written to are constant/read-only

90 invariant same_mem_mostly : (forall (addr : addr_t) ::

91 (addr != common.secret && addr != common.temp_addr_init) ==> (

92 same_mem_entry(t1.mem , addr) &&

93 same_mem_entry(t2.mem , addr) &&

94 same_mem_entry(t3.mem , addr) &&

95 same_mem_entry(t4.mem , addr)));

96

97

98 control {

99 // v = unroll (3);

100 v = induction;

101

102 check;

103 print_results;

104 v.print_cex(t3.pc, t4.pc,

105 t3.spec_level , t4.spec_level ,

106 t3.mem , t4.mem ,

49

107 t3.spec_mem , t4.spec_mem ,

108 common.read(t3.mem , t3.array1_size_addr), common.read(t4.mem , t4.array1_size_addr)

,

109 t3.obs_mem , t4.obs_mem ,

110 t3.RAX , t4.RAX ,

111 (t3.RAX == t4.RAX),

112 t3.RDX , t4.RDX ,

113 t3.lfence && t3.spec_level != common.spec_idx0 ,

114 t4.lfence && t4.spec_level != common.spec_idx0);

115 }

116 }

50

	Introduction
	Spectre Attack
	Primer on Uclid5
	Overview

	Secure Speculation
	The Platform Model
	The Adversary Model
	The Property
	Related Work

	Modeling and Verification
	From C
	Using BAP
	Modeling with Uclid5
	Abstractions for Scalability
	Verification Choices
	Common Module
	Program Module

	Composing the Model with the Property
	Experiments

	Conclusion
	Bibliography
	Spectre Variant 1 C Source
	BIL of Spectre Variant 1
	Uclid5 Common Module
	Uclid5 Model of Spectre Variant 1
	Composition of Spectre Variant 1 with Secure Speculation

