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Abstract

Computing and Evaluating Adversarial Grasp Objects with Systematic Face Rotations and
Applications of Dense Object Descriptors to Mechanical Search

by

David Tseng

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ken Goldberg, Chair

Learning-based approaches to understanding and manipulating 3D objects can handle a wide
variety of objects, but may be unable to generalize all sets of objects. We will study the generalization
of deep learning models in two subdomains of 3D objects: grasping and object descriptors.

In the first part of the thesis, we show how objects can be designed to be adversarial to Dex-Net,
a neural network based grasping policy. We define an “adversarial grasp object" as an object
that is visually similar to an original object but decreases the predicted graspability resulting
from a robot grasping policy. We propose a method for synthesizing adversarial grasp objects
by removing antipodal face pairs via systematic face rotations. We also explore a method that
maintains local convexity and a deep-learning based method. Experiments suggest that all three
algorithms consistently reduce graspability. Physical experiments demonstrate that the adversarial
objects generated by the convexity preserving analytic algorithm decrease the grasp success rate by
at least 87%. In simulation, the analytic rotation algorithm is able to reduce the graspability metric
by 66%, 57%, and 63% on intersected cylinders, intersected prisms, and ShapeNet bottles.

In the second part of the thesis, we explore the potential application of dense object descriptors
to mechanical search, where we attempt to find a target object in clutter. We find that dense object
descriptors can generalize reasonably well and learn a consistent representation for unseen classes
of objects. Feature matching methods can be combined with the descriptors to search for target
objects in a heap.
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Chapter 1

Introduction

Recent advancements in learning based methods have facilitated progress in understanding and
manipulating 3D objects, which will have a significant impact in industry. For example, robust
robot grasping of a large variety of objects and mechanical search can benefit a diverse range of
applications, such as the automation of industrial warehousing and home decluttering. However,
this is challenging because robots must be able to rapidly and reliably handle novel objects with
unique geometric and material properties such as new industrial parts, packaged consumer products,
and toys. Recent research suggests that deep learning policies can work well on data distributions
that the models are trained on, but can be prone to failures in examples not encountered during
training. For example, while robot policies can generalize somewhat to unseen objects [23, 25, 37,
29], it can still fail on other objects that lie farther from the training distribution [30].

Adversarial images [42, 35, 22, 1] are examples of input that challenge the ability of learning-
based approaches to generalize in the domain of computer vision. They are modified images that
drastically alter the prediction made by a classifier while applying minimal perturbation to the
original image. Similarly, we define “adversarial grasp objects," an analog of adversarial images in
the domain of robust robot grasping. Adversarial grasp objects aim to reduce graspability while
retaining geometric similarity to input objects. For the first project in the thesis, we present an
analytical algorithm for synthesizing adversarial objects using systematic face rotations to remove
antipodal faces. The chapter on adversarial grasp objects is part of a collaborative effort with David
Wang⇤, David Tseng⇤ Pusong Li⇤, Yiding Jiang⇤, Menglong Guo, Jeffrey Mahler, and Professor
Ken Goldberg and was accepted to IEEE CASE 2018. My specific contributions to this project are
listed in Sec. 3.4.

The second project in the thesis explores generalization in a different way. We evaluate how
well dense object descriptors [9] generalize to objects of different classes than in the training set,
and then extend them to applications in mechanical search [7].

This thesis contributes:

1. A formal definition of adversarial grasp objects.

2. An analytical algorithm to synthesize adversarial 3D objects for grasp planning from a given
3D object by performing systematic face rotations on pairs of antipodal faces.
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3. Experiments studying adversarial grasp objects of several categories (bottles, intersected
cylinders, and intersected prisms) generated by the algorithm for the Dexterity Network (Dex-
Net) 1.0 robust grasp planner, which plans parallel-jaw grasps based on a robust quasi-static
point contact model [28].

4. Physical experiments of a point contact gripper on the adversarial grasp objects generated by
our algorithm.

5. Experiments demonstrating the performance of dense object descriptors as a general descriptor
for unseen objects.

6. Exploratory experiments showing the potential application of dense object descriptors to
mechanical search.
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Chapter 2

Related Works

2.1 Adversarial Images
Adversarial images [42, 35, 22, 1] are inputs with a small added perturbation that can change the
output of an image classifier, and the problem of finding adversarial images is typically formulated
as a constrained optimization problem that can be approximately solved using gradient-based
approaches [42]. Yang et al. developed a method to perturb the texture maps of 3D shapes such that
their projections onto 2D image space can fool classifiers [46]. We build on this line of research
by studying adversarial examples in the context of generating adversarial 3D objects for robotic
grasping.

2.2 Grasp Planning
Grasp planning considers the problem of finding a gripper configuration that maximizes the prob-
ability of grasp success. Approaches generally fall into one of three categories: analytic [38],
empirical [2], and hybrid methods.

Analytic approaches typically assume knowledge of the object and gripper state, including
geometry, pose, and material properties, and consider the ability to resist external wrenches [38] or
constrain the object’s motion [39], possibly under perturbations to model robustness to sensor noise.
Examples include GraspIt! [12], OpenGRASP [24], and the Dexterity Network (Dex-Net) 1.0 [28].
To satisfy the assumption of known state, analytic methods typically assume a perception system
based on registration: matching sensor data to known 3D object models in the database [4, 6, 11,
14, 16, 20]. However, these systems do not scale well to novel objects and may be computationally
expensive during execution.

Empirical approaches use machine learning to develop models that map from robotic sensor
readings directly to success labels from humans or physical trials. Research in this area has largely
focused on associating human labels with graspable regions in RGB-D images [23, 15, 19] or using
self-supervision to collect labels from successes and failures on a physical system [25, 37]. A
downside of empirical methods is that data collection may be time-consuming and prone to errors.
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Hybrid approaches make use of analytic models to automatically generate large training datasets
for machine learning models [18, 36]. Recent results suggest that these methods can be used to
rapidly train grasping policies to plan grasps on point clouds that generalize well to novel objects
on a physical robot [29, 30, 3]. In this paper, we consider synthesizing adversarial 3D objects for
the analytic supervisor used to train these hybrid grasp planning methods.

2.3 Generative Models
Deep generative models map a simple distribution, such as a multivariate Gaussian distribution,
to a much more complex distribution, such as natural images. Common deep generative models
fall into likelihood-based models (i.e., the Variational Auto-Encoder (VAE) [21] and PixelCNN
[33]) and likelihood-free models (i.e., various formulations of Generative Adversarial Networks
(GANs) [13]). During training of a GAN, a discriminator tries to distinguish the generated samples
apart from the samples from the real data while a generator tries to generate samples to confuse the
discriminator. Generative models have also been previously used in the domain of robot grasping,
where Veres et al. [44] used conditional generative models to synthesize grasps from RGB-D images,
and Bousmalis et al. [3] used GANs for simulation-to-reality transfer learning.

On the other hand, applications of deep generative models to 3D data are relatively under-
explored. Some notable works in this area include the 3D GAN work by Wu et al. [45], which
uses a GAN on the latent code learned by a variational autoencoder to generate 3D reconstruction
from an image, and the signed distance-based, higher-detail object generation by Jiang et al. [17],
where the low frequency components and high frequency components are generated by two separate
networks. We expand upon previous efforts in this direction by incorporating recent advances in
GANs for 2D image data.

2.4 Object Descriptors
Object descriptors are features that can be more easily processed for semantic understanding of an
object. One common use case is matching features between two views of the same object. ORB
[41], LIFT [47], and SIFT [27] have all been object descriptors introduced in the past. More recently,
Florence et al. proposed Dense Object Nets [9], in which networks learn to map pixels from an
RGB image to a set of descriptors. In the mapping, the pixels corresponding to the same point on an
object have the same descriptor, and the descriptors are consistent across different views and poses
of a given object. Florence et al. demonstrate the performance of the network on single class objects
as well as multiple classes of objects where the specific classes are known. In Chapter 4, we will be
exploring the ability of Dense Object Nets to generalize to unseen classes and look at its potential
application in mechanical search [7], in which a target object needs to be located inside clutter.
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Chapter 3

Adversarial Grasp Objects

3.1 Problem Statement

Adversarial Grasp Objects
Let X be the set of all 3D objects. Let p be a robot grasping policy mapping a 3D object x 2 X
specified as a 3D triangular mesh to a grasp action u. In this work, we only consider a parallel-jaw
grasping policy. We assume that the policy can be represented as:

p(x), argmax
u2U(x)

Q(x,u) (3.1.1)

where U(x) denotes the set of all reachable grasp candidates on x, and Q is a quality function
measuring the reliability or probability of success for a candidate grasp u on object x.

We define the graspability g(x,p) of x with respect to p as a measure of how well the policy
can robustly grasp the object. We measure graspability by the g-percentile of grasp quality [31]:

g(x,p), Pg(Q(x,u)) (3.1.2)

We then consider the problem of generating an adversarial grasp object: a 3D object that systemati-
cally reduces graspability under a grasping policy with constrained changes to the input geometry.
Let s(A,B) for subsets A,B⇢ X be a binary-valued shape similarity constraint between the two
subsets of objects. We study the following optimization problem, which defines an adversarial grasp
object x⇤:

x⇤ = argmin
x2X

g(x,p) subject to s({x},S) = 1 (3.1.3)

where S⇢ X is a subset of objects that the generated object should be similar in shape to.

Robust Grasp Analysis
In this paper, we optimize adversarial examples with respect to the Dexterity Network (Dex-Net)
1.0 grasping policy [28]. In this setting, the action set U(x) is a set of antipodal points on the
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object surface that correspond to a reachable grasp, where a pair of opposite contact points v1,v2
are antipodal if the line between the v1,v2 lie entirely within the friction cones [28]. The quality
function Q measures the robust wrench resistance, or the ability of a grasp to resist a target wrench
under perturbations to the object pose, gripper pose, friction, and wrench under a soft-finger point
contact model [30].

When calculating g, both the reward and policy are based on the Dex-Net 1.0 robust grasp
quality metric (which assumes a point contact model) and the associated maximal quality grasping
policy. Within the Dex-Net 1.0 robust quality metric, Q(x,u) is defined as:

Q(x,u), Eu0⇠p(·|u),x0⇠p(·|x)[R(x0,u0)] (3.1.4)

where p(u0|u) and p(x0|x) denote distributions over possible perturbations conditioned on x and
grasp u, and R represents a measure of grasp quality if the grasp is executed exactly as given; that
is, executed with zero uncertainty in object and gripper pose. In this case, we use the epsilon metric
by Ferrari and Canny with a soft-finger point contact model [8].

To calculate g(x,p) in practice, both the expected value over the distributions of object and
grasp pose p(x0|x) and p(u0|u) and the g-percentile are calculated using sample estimates [10]. To
do this, we first uniformly sample a constant number of antipodal grasps across the surface of the
object. We then approximate the robustness for each grasp by sampling perturbations in object and
gripper pose and taking the average grasp quality over all sampled configurations.

The empirical robust grasp quality is:

Q̂(x,u) = 1
N

NX

i=1

R(xi,ui) (3.1.5)

where {ui}N

i=1, {xi}N

i=1 are i.i.d. samples drawn from p(u0|u) and p(x0|x) respectively.
The empirical graspability ĝ(x,p) is estimated by taking the discrete g-percentile of Q̂(x,u) for

all sampled grasps.

3.2 Analytical Methods
We consider approaches for modifying an existing 3D triangular mesh x 2 X to decrease the
graspability of x. Let the mesh x be specified by a set of vertices V = {v1,v2, . . .vn}⇢ R3 and a set
of faces F = { f1, f2, . . . fm}, where each face fi is the triangle defined by three distinct elements of
V . Also, let Fa = {( fi, f j), . . .( fp, fq)} be the set of pairs of antipodal faces, and let the unit normal
of face fi be denoted by ni 2 R3. Finally, let the antipodality angle j between two faces be defined
as j( fi, f j) = arccos(�ni

T nj).

Case Study: Cube
To motivate our analytical methods, we show a technique for modifying a cube to become adversarial
to grasping by the Dex-Net 1.0 policy with minimal changes. Due to the shape of the cube, every
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pair of opposite facets is antipodal. To remove these pairs, we add an additional vertex to three sides
of the cube and perturb that vertex outwards by a distance d. The perturbed sides are chosen so that
any possible grasp would be in contact with at least one perturbed side. By perturbing the vertices in
this manner, all pairs of antipodal faces can be removed. The adversarial cube is shown in Fig. 3.1.

Figure 3.1: Two views of the adversarial cube described in Sec. 3.2. Here, d is chosen so that opposing faces have y =
15 degrees.

To test this adversarial cube on a physical system, we 3D printed both the original cube and
adversarial cubes with a side length of 1 inch and d = 0.22,0.32, and 0.53 cm using nylon material.
These values of d were chosen so that opposing faces have y = 10,15, and 20 degrees respectively.
Since a gripper with area contacts may be able to easily grasp corners, we used a gripper with a
steel ball bearing to simulate point contacts. We estimated the antipodal friction angle threshold
between the steel bearing and the nylon material to be around 16 degrees. For each object, we
sampled 5 grasps and attempted each grasp 3 times. The results are shown in Table 3.1. The results
are consistent with what we expect given the measured friction angle threshold. The object is able
to grasp the original cube most of the time, the 15 degree cube almost none of the time, and is never
able to grasp the 26 degree cube. This supports the idea that an adversarial object can be made by
systematically perturbing faces to remove antipodal pairs.

Object Fraction of Grasp Successes
Original Cube 14/15

Adversarial Cube (10 degrees) 9/15
Adversarial Cube (15 degrees) 2/15
Adversarial Cube (26 degrees) 0/15

Table 3.1: Results of physical trials on the 3D-printed cubes. For each object, we sampled 5 grasps and attempted each
grasp 3 times for a total of 15 attempted grasps.
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Figure 3.2: Physical experiments on the original and adversarial cubes with a gripper. Both ends of the gripper contain
a steel bearing to simulate a point contact. Left: The gripper successfully grasping the original cube. Right: The gripper
dropping the adversarial cube.

Antipodal Rotation Method
To generalize this idea of systematically removing pairs of antipodal faces to other objects, we
present two analytical algorithms. Both of these algorithms reduce the grasp metric quality by
perturbing faces or vertices in a way that increases the antipodal angle. The first analytical method
increases the antipodality angle by repeatedly sampling antipodal faces and then perturbing them.
At each iteration of this algorithm, we sample k points uniformly randomly on the surface of the
mesh. If the face normals at those two opposing points lie within the friction cone as described in
[28], then the two faces containing those two points are rotated to increase the antipodality angle,
in the direction that increases j the most. The perturbation parameter can be tuned in order to
determine how strong the shape similarity constraint should be. In order to encourage the algorithm
to make large structural changes instead of only local perturbations, if the mesh has more than d

faces, we decimate the mesh until it has less than d faces. For this paper, we use d = 350. An
in-depth description of the process is included in Algorithm 1.
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Algorithm 1: Antipodal Rotation Algorithm

1: procedure SAMPLEFORANTIPODALFACES(F , k, y) . F is the set of faces in the input mesh,
k is the number of points to sample on the mesh to test for antipodal faces, y is the antipodality
angle threshold. This was adapted from the grasp sampling method in [28].

2: V1 sample k points uniformly randomly on F

3: V2 corresponding intersections with F when shooting a ray starting from v 2V1.
4: F1 the faces ✓ F containing V1
5: F2 the faces ✓ F containing V2
6: Fant  {} . Stores all antipodal pairs of faces
7: for all (v1,v2, f1, f2) 2V1,V2,F1,F2 do
8: n1,n2 face normals of f1, f2
9: d vector from v1 to v2

10: if n1,n2 in friction cone of angle y from d then
11: Fant .append(( f1, f2))
12: return Fant

13: procedure ANTIPODAL ROTATION(F , Niter, k y , p, d) . F is the set of faces in the input
mesh, Niter is the number of iterations, k is the number of points to sample on the mesh to test
for antipodal faces, y is the antipodality angle threshold, p is the perturbation parameter, d is
the decimation threshold

14: if sizeof(F)> d then
15: F  decimate F until sizeof(F)6 d

16: p (p)· (mesh diameter) . Scale by p by the mesh diameter
17: for i 2 1...Niter do
18: Fant  SAMPLEFORANTIPODALFACES(F ,k,y)
19: for all pairs of faces fi, f j 2 Fant do
20: ni,n j face normals of fi, f j

21: j = angle between (�ni,n j)
22: if j < antipodality angle threshold then
23: u unit vector ? {ni,n j}
24: qi = (y�j)p

25: q j = �qi

26: Ri rotation matrix with origin at center of fi with angle qi around axis u

27: R j rotation matrix with origin at center of f j with angle q j around axis u

28: Apply Ri,R j to vertices of fi, f j respectively
29: return F

Random Perturbation with Convexity-Preserving Rejection Sampling
While the antipodal rotation method efficiently removes antipodal pairs, it can create concavities
in parts of the mesh that were originally convex and vice versa. This may end up generating an
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adversarial object that is significantly different the original. An alternative approach is to use
random perturbation with rejection sampling — we randomly perturb vertices and reject changes
that change the local convexity of the mesh. At each iteration, we sample points and directions to
perturb, and keep the change that maintains local convexity while maximizing y between antipodal
faces. The perturbation parameter can be tuned in order to determine how strong the shape similarity
constraint should be. Similar to the antipodal rotation method, in order to encourage the algorithm
to make large structural changes instead of only local perturbations, if the mesh has more than d

faces, we decimate the mesh until it has less than d faces. For this paper, we use d = 350.
An in-depth description of the process is included in Algorithm 2.

Algorithm 2: Random Perturbation with Rejection Sampling Algorithm

1: procedure RANDOM PERTURBATION WITH REJECTION SAMPLING(F , Niter, k y , p, d) . F
is the set of faces in the input mesh, Niter is the number of iterations, k is the number of points
to sample on the mesh to test for antipodal faces, y is the antipodality angle threshold, p is the
perturbation parameter, d is the decimation threshold

2: if sizeof(F)> d then
3: F  decimate F until sizeof(F)6 d

4: p (p)· (mesh diameter)
5: for i 2 1...Niter do
6: Fant  SAMPLEFORANTIPODALFACES(F ,k,y)
7: for all pairs of faces fi, f j 2 Fant do
8: ni,n j face normals of fi, f j

9: j = angle between (�ni,n j)
10: if j < antipodality angle threshold then
11: v random vertex in fi

12: jhist  {}
13: dhist  {}
14: for j 2 1...Ndirections do
15: d random unit direction scaled by p

16: v v+d

17: jperturb angle between (�ni,n j)
18: if local convexity maintained then
19: jhist .append(jperturb)
20: dhist .append(d)
21: Revert change
22: dbest  direction in dhist that maximizes corresponding jperturb

23: v v+dbest

24: return F



CHAPTER 3. ADVERSARIAL GRASP OBJECTS 11

3.3 Deep Learning Algorithm: CEM + GAN
One potential issue with the analytical methods described in Sec. 3.2 is that both assume an
ideal system with point contacts that cannot grasp vertices or edges. An alternative method for
the problem of generating adversarial grasp objects is to use a data-driven approach to learn a
distribution over objects X and extract adversarial grasp objects by sampling from it. As opposed
to the analytical algorithm, which generates an adversarial version of an existing object, the CEM +
GAN algorithm takes as input a set S⇢ X of objects and can output of a set of generated objects
similar to those in S. Most significantly, the analytical methods and the CEM + GAN method all
decrease the Dex-Net 1.0 metric, but the CEM + GAN method does not assume any knowledge
of how the metric is designed. As a result, the CEM + GAN method can still be applied with any
metric, including more accurate metrics that may be proposed in the future, such as an area-contacts
based metric.

Deep Generative Models
One challenge in performing the optimization in Equation 3.1.3 is that the graspability function
g(x,p) is not differentiable; therefore, we need to perform the derivative-free optimization by
querying the function with different inputs and adjust the model parameters based on the responses
of the function. Let pq (x) be a probability distribution over X parameterized by some q 2Q. Then,
we can formulate a similar objective to Equation 3.1.3, but instead optimizing for a distribution of
objects that we want to be similar to some prior subset S⇢ X :

q ⇤(p) = arg min
q2Q

Ex⇠pq (·)[g(x,p)] subject to s(Xq ,S) = 1, (3.3.1)

where Xq ⇢ X is the support of the probability distribution pq for some parameter q 2Q.
We propose a deep learning method using the cross-entropy method (CEM) and generative

adversarial networks (GANs) to approach this optimization problem. Let Pq be the distribution over
X induced by the model with parameter q and PS be the distribution empirically defined by S. We
then define the shape similarity constraint s(Xq ,S) in Objective 3.1.3 as DKL(PS||Pq )< e , where
DKL is the Kullback-Leibler divergence between two distributions, and e > 0 is a hyperparameter
that can be controlled through the sampling percentile g (smaller g means more similar distributions).

Optimization via Resampling
The cross-entropy method (CEM) [40] is an adaptive derivative-free optimization algorithm that has
been widely applied. We are interested in finding the distribution of rare events that minimize a
real-valued quality function q(x) over X . To minimize graspability, we choose q(x) = g(x,p).

As a starting point, the GAN is initialized with a prior distribution of objects S⇢ X so that it
generates objects similar in shape. We start by training the GAN on this prior set of objects. Then,
in a resampling step, we use the GAN to generate objects and take a subset of the objects with the
lowest graspability to use as training data to retrain the GAN. We continue alternating between
training and resampling steps for a number of iterations.
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Signed Distance Generative Adversarial Network
To represent 3D geometry, we use the Signed Distance Function (also known as signed distance field
or SDF) [34] as an alternative representation for generating 3D geometry. Binary 3D occupancy
grids were considered, but produce blocky artifacts.

We draw on techniques used in Spectral-Normalization GAN (SNGAN) [32], which can generate
high-fidelity images, and apply them to SDF’s. We denote the standard Gaussian noise vector as
z 2 R200 drawn from pz, the empirical distribution defined by training data as pdata, the Generator
as G : R200!

⇥
�1,1

⇤32⇥32⇥32, and the Discriminator as D :
⇥
�1,1

⇤32⇥32⇥32!R. For the training
objective, we use the hinge version of adversarial loss [26] as we empirically found that it stabilizes
training. The GAN objective is then

Ldata

D =�Ex⇠pdata(·)[min(0,�1+D(x))] (3.3.2)

Lgen

D
=�Ez⇠pz(·)[min(0,�1�D(G(z)))] (3.3.3)

LD = Ldata

D +Lgen

D
(3.3.4)

LG =�Ez⇠pz(·)[D(G(z))] (3.3.5)

3.4 Experiments
We run the algorithms to minimize overall graspability on several datasets. For the first experiment,
we explore and compare the results of applying the two analytical algorithms on simple convex mesh.
In the subsequent sections, we run the antipodal rotation method and the CEM + GAN method on
two synthetic datasets and the ShapeNet [5] bottles category. To allow a fair comparison between
our two algorithms, we converted all three datasets to SDFs. All three datasets are preprocessed
into signed distance field format with stride 0.03125 after being scaled such that the entire set
has bounding boxes of approximately 1⇥1⇥1. For the synthetic datasets, we used the process
presented by Bousmalis et al. [3] where they generated objects to grasp in simulation by randomly
attaching rectangular prisms of varying sizes together at varying angles. The intersected cylinders
dataset consists of one large central cylinder with two smaller cylinders randomly grafted onto
it. To show that the GAN also works on non-cylindrical objects, the intersected prisms dataset is
similar to previous dataset but uses prisms instead: it consists of one central rectangular prism with
two other rectangular prisms randomly grafted onto it. All three prisms have a wide distribution
of sizes. The bottle, cylinder, and prism datasets have averages of 1,391 vertices and 2,783 faces,
1,202 vertices and 2,400 faces, and 2731 vertices and 4739 faces, respectively, and have 479, 1000,
and 1000 total objects, respectively. Examples from each of these datasets are shown in Fig. 3.7.

Unless otherwise specified, in the following experiments, we set the angle of the friction cone
to be arctan(0.5). For the graspability metric g(x,p), we chose g = 75%: often, one of the top
25% of grasps is accessible, so we choose to look at the worst case from this set. Consider a set of
generated objects {x1,x2, . . .xn}⇢ X from a prior dataset of objects. We define mean normalized
graspability as k = c · 1

n

P
n

i=1 g(xi,p), where c is a normalizing constant. We note that the objects
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in the figures in the section have been smoothed for visual clarity to demonstrate the behavior of the
algorithms, but the metrics represent the results of the objects without smoothing. Meshes in all
datasets have large numbers of vertices and faces, and displaying all of them makes it difficult to
distinguish differences within and between algorithms.

Analytical Methods: Simple Convex Shapes
We run the two analytical algorithms on convex shapes. Since there are relatively few faces in
these simple meshes, we iterated through all pairs of antipodal faces instead of sampling antipodal
faces. We still introduce randomness by randomly shuffling the order of antipodal face pairs that we
perturb. For this particular experiment, we set the antipodal angle threshold to 10 degrees, and used
p = 0.01. We set Niter to infinity and terminated the algorithm only when there were no longer any
pairs of antipodal faces. The results from running the two algorithms on a dodecahedron mesh is
shown in Fig. 3.3 and 3.4. Similar results can be observed when running the two algorithms on
other simple meshes like a cube or cuboctahedron or meshes that are not necessarily convex. The
antipodal rotation algorithm reduces the majority of the antipodal pairs in much fewer iterations
than the convex rejection sampling method. However, upon inspection, the convexity-preserving
rejection sampling method appears to maintain the shape of the original object more closely than
the antipodal rotation method, since the antipodal rotation method produces visible concavities.
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Original Rejection Sampling Antipodal Rotation

Figure 3.3: Results from applying the two analytical algorithms described in Sec. 3.2 to a dodecahedron to produce an
adversarial dodecahedron. Top/middle row: Two different views of the adversarial mesh. Bottom row: The most robust
25 of 100 parallel-jaw grasps sampled on each object are displayed as grasp axes colored by relative reliability on a
linear gradient from green to red, using an antipodal angle threshold of 10 degrees. From grasp quality visualization the
last row, we can see that all antipodal pairs have been eliminated.
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Figure 3.4: Plot of the number of antipodal pairs over the first 25 iterations of the analytical algorithms on a do-
decahedron, averaged over five different iterations. The antipodal rotation algorithm described in Section 3.2 more
rapidly reduces the number of antipodal pairs than the convexity-preserving rejection sampling algorithm described in
Section 3.2, although the rejection sampling method reaches 0 antipodal pairs more quickly. In terms of wall time, the
convexity-preserving rejection sampling method takes significantly longer due to the number of rejections — it takes
5.3 seconds compared to 0.21 seconds for the antipodal rotation method.

In addition to the dodecahedron shape, we applied the convexity-preserving rejection sampling
method to cuboctahedron shape with antipodal angle thresholds y = 10,15, and 26 degrees. We
then 3D printed these objects with nylon and ran physical trials using the same experimental setup
as described in Sec. 3.2. The 3D prints are shown in Fig. 3.5 and the results are shown in Table 3.2.
The results suggest that the objects generated by the analytical method are indeed adversarial to real
physical robotic point-contact grasps.

Figure 3.5: 3D printed adversarial cuboctahedrons generated by the convexity-preserving rejection sampling method.
Antiespodal threshold from left to right: Original, 10 degrees, 15 degrees, 26 degrees.
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Object Fraction of Grasp Successes
Original Cuboctahedron 15/15

Adversarial Cuboctahedron (10 degrees) 9/15
Adversarial Cuboctahedron (15 degrees) 2/15
Adversarial Cuboctahedron (26 degrees) 0/15

Table 3.2: Results of physical trials on the 3D-printed cuboctahedrons. For each object, we sampled 5 grasps and
attempted each grasp 3 times for a total of 15 attempted grasps.

Analytical Methods: Synthetic Dataset and ShapeNet Bottles
We run the antipodal rotation algorithm on 100 objects from each of the three datasets. We
experimented with p = 0.01,0.075,0.3 for the shape similarity constraint described in Section 3.2.
We find that the antipodal rotation algorithm decreases the graspability metric for all datasets. With a
value of p= 0.01, the mean normalized graspability is decreased by 32% on the intersected cylinders
dataset, 11% on the intersected prisms dataset, and 21% on the ShapeNet bottles datset. At each level
of p, we observe that the objects from the prism dataset have the highest graspability; we conjecture
that it is difficult to decrease the antipodality of large, flat prism surfaces with perturbations. Sample
object examples along with their adversarial versions, the associated graspability metrics, and the
distribution of graspability metrics before and after applying the analytical algorithm are shown
in Fig. 3.6. Increasing p decreases the graspability at the cost of similarity to the original object,
corresponding to an increasingly relaxed shape similarity constraint.
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k = 1.00 k = 0.68 k = 0.34 k = 0.20

k = 1.00 k = 0.89 k = 0.43 k = 0.26

k = 1.00 k = 0.79 k = 0.37 k = 0.25

Figure 3.6: Antipodal Rotation Algorithm. We show the progression of an example from each dataset as we increase
pertubation parameter p: each row (from left to right) shows the original object before decimation and then the perturbed
versions using the surface normal constraint with p = 0.01, p = 0.075, and p = 0.3, respectively. The metric k is the
mean noramlized graspability of the generated dataset for the level of p, where the graspability is the empirical 75th

percentile of samples from the grasp quality function. The rightmost column shows the histograms of the graspability of
all the objects. The analytical algorithm is able to decrease graspability on objects from all three datasets. The objects
have been smoothed for visualization purposes with OpenGL smooth shading.

We also explored using the convexity-preserving rejection sampling algorithm on the datasets,
but found that it modified the mesh shape significantly and does not reduce the grasp quality as
much as the antipodal rotation algorithm. We find that while the rejection sampling method creates
reasonable adversarial meshes with simple convex shapes in Sec. 3.4, it does not perform well on
large complex shapes. This makes sense, since we can perturb a vertex by significant amounts and
still maintain convexity. For example, a plane in the prism objects is convex, but perturbing a vertex
outwards within the plane can dramatically change its appearance yet still remain convex. Fig 3.7.
shows some sample results of applying the rejection sampling algorithm on the same objects from
Fig. 3.6. The objects look more perturbed and still has higher grasp quality than the adversarial
objects shown in Fig. 3.7.
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0.71 0.65 0.59

Figure 3.7: Left to right: results after applying the convexity-preserving rejection sampling algorithm to the original
objects from Fig. 3.6. The number on top of each object represents the graspability metric for that object

CEM + GAN Algorithm
We train the resampling GAN on the previously described intersected prisms and cylinders datasets,
as well as the ShapeNet bottles category.

For all three datasets, we sample 2500 new objects and keep 500, and train the GAN for 16000
iterations between resampling steps. Resampling in all experiments rejects output grids that produce
non-watertight meshes, as producing meshes with non-orientable faces, gaps, self-intersection, or
disjoint pieces is not desirable when generating a distribution of 3D objects. Such outputs are
possible because the GAN does not explicitly enforce such constraints, but this rejection rate is
very low: for bottles, no grids were rejected in any resampling iteration, and on the intersected
sets, rejection rate remained below 10% in all episodes. Training the GAN in each iteration takes
approximately 4.5 hours on a Titan X Pascal GPU and 2 hours on a Nvidia V100 GPU in the Nvidia
DGX cluster.

Examples of objects from the GAN output distributions and histograms showing the overall
distribution of graspability over resampling episodes are shown in Fig. 3.8. After 3 resampling
iterations on the intersected cylinders dataset, the mean normalized graspability is reduced by
22% relative to objects in the original dataset. Similarly, graspability is reduced by 36% on the
intersected prisms datset after 4 resampling iterations and by 17% on the ShapeNet bottles dataset
after 5 resampling iterations.
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k = 1.00, Original Dataset: k = 1.02, Episode 0: k = 0.83, Episode 5:

Figure 3.8: CEM + GAN Algorithm. The images on the left are example objects from the GAN output distribution
as the resampling progresses. “Original" means the original SDF dataset, “Episode 0" denotes the GAN trained on
the prior dataset (the first GAN trained, or Episode 0), and “Episode n" denotes the n

th GAN trained excluding the
first. The k values are the mean normalized graspabilities over a set of 100 objects generated during the corresponding
stage in the training, where the graspability is the empirical 75th percentile of samples from the grasp quality function.
The right image is the histogram showing the overall distribution of the graspability metric (normalized to the mean
graspability Episode 0) on the GAN output distribution as resampling progresses. As the algorithm progresses through
the episodes, the probability mass shifts towards lower graspability. The objects have been smoothed for visualization
purposes with OpenGL smooth shading.

Comparing Local and Global Changes
A concern of these algorithms may be that they could be reducing grasp quality by adding surface
noise. To quantify how much of the grasp quality reduction is due to surface noise, we use 1
iteration of Laplacian smoothing on the generated objects from each of the two synthetic datasets
and the ShapeNet bottles dataset by the antipodal rotation algorithm and the CEM + GAN algorithm
to minimize surface roughness and measure the effect of smoothing on object graspability. The
objects generated by the antipodal rotation algorithm use p = 0.075. The full results are shown
in Table 3.3. After smoothing, the mean normalized grasp quality of the generated objects from
the antipodal rotation algorithm is 72.8%, 107%, and 109% higher than before smoothing. After
smoothing, the mean normalized grasp quality of the generated objects from the CEM + GAN
algorithm is 10.0%, 34.7%, and 8.70% higher than before smoothing. This suggest that the majority
of the grasp quality reduction in the analytical rotation method comes from surface perturbation,
while the majority of the grasp quality reduction in the CEM + GAN method appears to come from
global changes since the smoothing does not affect the mean grasp quality as significantly. However,
even after smoothing, the antipodal rotation method produces adversarial objects that have a mean
grasp quality that is lower than the ones generated by the CEM + GAN method in the cylinders and
bottles dataset. In addition, some global changes can be seen in both algorithms — for example,
both algorithms generate a tapered bottle that resembles a bottle but was not in the original bottles
dataset.
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Dataset Graspability Before Smoothing Graspability After Smoothing
Antipodal R. CEM + GAN Antipodal R. CEM + GAN

Intersected Cylinders 0.345±0.017 0.783±0.011 0.596±0.036 0.862±0.031
Intersected Prisms 0.429±0.016 0.577±0.012 0.889±0.039 0.777±0.037
ShapeNet Bottles 0.372±0.019 0.827±0.012 0.779±0.029 0.899±0.033

Table 3.3: Comparison of the normalized mean graspability (reported with 95% confidence intervals) of objects
generated by both the antipodal rotation algorithm (p = 0.075) and the GAN algorithm before and after Laplacian
smoothing. The smoothing causes the graspability metric of the objects generated by the antipodal rotation method
increase more dramatically compared to the objects generated by the CEM + GAN algorithm. However, the objects
generated by the antipodal rotation algorithm still have lower graspability in the cylinders and bottles datasets before
and after smoothing.

Failure Modes
GANs are prone to mode collapse [43], the phenomenon where a GAN can learns to only outputs
one distinct object regardless of the input. Furthermore, since resampling decreases diversity of
objects in the dataset due to similar generated objects tending to have similar metric scores, complete
mode collapse tends to occur after enough resampling episodes. We observed mode collapse by the
9th iteration on all three datasets.

We experimented with several variations of the GAN architecture and observed that removing
spectral normalization can lead to more diverse objects on the intersected cylinders dataset. In
this experiment, mode collapse does not occur before the metric quality mean stops improving,
reaching a decrease of 83% from the original dataset. However, these generated objects deviate
quite significantly from the prior dataset. Some examples are shown in Fig. 3.9.

Figure 3.9: The left object is from the initial input prior distribution of intersected cylinders, and the others are objects
sampled from the GAN’s output distribution when it is trained on this prior without spectral normalization. The objects
shown have been smoothed via Laplacian smoothing to emphasize that the GAN produces significant structural changes
rather than simply adding surface roughness. However, this modified GAN also generates objects that deviate more
from the original dataset.
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CEM + GAN Generated Objects: Physical Trials
While the CEM + GAN generated shapes shown in Fig. 3.9 deviate significantly from the prior
dataset, the shapes are relatively interesting. We collaborated with Hewlett-Packard to obtain high
resolution prints of these objets and also ran physical trials on these objects.

Figure 3.10: High resolution prints from Hewlett-Packard of two objects generated by the CEM + GAN method without
spectral normalization.

Dex-Net 4.0 was successful on 10/12 attempts, 83.3% with soft area contact grippers. However,
with the point contact grippers, the grasps were successful on 1/30 attempts.

Individual Contributions
This work on Adversarial Grasp Objects was made in collaboration with multiple authors: David
Wang⇤, David Tseng⇤ Pusong Li⇤, Yiding Jiang⇤, Menglong Guo, Michael Danielczuk, Jeffrey
Mahler, and Professor Ken Goldberg. Our paper was accepted to IEEE CASE 2019. I was
responsible for the design and evaluation of the two analytical methods described in this chapter.
David Wang worked on a variant of the two analytical methods using constrained perturbations that is
explored in detail in that paper. The CEM + GAN algorithm was designed by Pusong Li and Yiding
Jiang, while I helped train different GAN architectures. For the physical experiments, I worked with
David Wang on the design of the adversarial cube and on running all of the physical experiments.
The design of the cuboctahedron was generated using the convexity-preserving rejection sampling
method described in this chapter. Michael Danielczuk provided help with registering objects and
integrating grasp sampling from Dex-Net in the physical experiments. Menglong Guo designed
the point-contact gripper and 3D printed all of the objects. Jeff Mahler provided extensive advice
and feedback on our project and helped with editing our submitted paper, and his work on Dex-Net
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provided the foundation for our project. Professor Goldberg provided valuable input and ideas on
the direction of the project.
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Chapter 4

Characterization of Dense Object
Descriptors on Unseen Objects

4.1 Overview and Objective
Dense Object Nets is a work by Florence et al. [9] in which networks learn to map pixels from
an RGB image to a set of descriptors. In the mapping, the pixels corresponding to the same point
on an object have the same descriptor, and the descriptors are consistent across different views
and poses of a given object. Florence et al. demonstrate the performance of the network on single
class objects as well as multiple classes of objects where the specific classes are known. In this
chapter, we explore the generalization of dense object descriptors to any unseen object as well as its
potential applications in the mechanical search domain as described in [7]. Since this chapter is
focused on the characterization of dense object descriptors, the main focus will be on experiments
and applications. The training process and loss functions are the same as in [9].

4.2 Dataset Generation
For our experiments, we use a simulated dataset for rapid experimentation. To do this, we use
objects from the Dex-Net dataset [28], sample random poses of the objects, and save the RGB and
depth images. For our RGB datasets, we use textureless blue material on the objects with shading.
Each dataset consists of 3,700 images of one object. Example objects in our datasets are shown in
Fig. 4.4.
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Figure 4.1: Sample RGB images from the generated datasets. The rendered objects are textureless and consist of a
single color.

4.3 Generalization to Depth Data
We trained the dense object nets on depth-only data to test the generalization of dense object
descriptors to depth. The input to the network is the depth data stacked together to create three
channels, replacing the usual RGB channels. Examples of the network trained on a dataset consisting
of images of a simulated shark object is shown in Fig. 4.4. We plot the cumulative distribution plot
of the L2 distance between the best matches and the ground truth matches, and find that the network
trained on depth images suffers some performance loss compared to the network trained on RGB
images. However, sample images show that the network trained on depth images still performs
reasonably well and is able to learn semantic regions of the shark, such as the fin and head.
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Figure 4.2: Results from applying dense object descriptors to a simulated shark dataset with only depth images. The
cumulative distribution plot is shown on the left, and sample images are shown on the right. The top right image shows
the best matches between the two images, where points are randomly sampled on the left image and matched with the
pixel with the closest corresponding descriptor on the right image. The bottom left images show the mapping of the
shark image to descriptor space.

4.4 Generalization to Unseen Classes of Objects
We trained the network on 21 object classes and tested on unseen classes. Each of the 21 object
classes consisted of 3700 training images, resulting in a total of approximately 77,700 training
images. We used 16 dimensional descriptors, RGB images, and normalization for this experiment.
Unit normalization is a technique that was suggested by the authors where the output descriptors are
normalized to the unit sphere and we confirmed to have a significant positive impact on the network
performance. We find that the network is able to generalize reasonably well to unseen classes of
objects. Sample results can be seen in Fig. 4.3. For meshes with more features, the network is
better able to match descriptors between the pairs of views of the same object. Ranking the matches
by L2 distance shows a more accurate representation of where the target object is. However, for
objects with fewer features, like the bottle, the network fails to distinguish one part of the object
from another. In the case of the bottle, the network incorrectly matches the top and bottom of the
bottle. The overall results indicate that dense object descriptors can potentially be used as a general
object descriptor. Overall, the dense object descriptors does has a potential to be used in mechanical
search, since it is able to narrow down the location of the target object inside the heap.
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Figure 4.3: Results from applying a network trained on 21 classes on unseen classes. The input to the network is an
RGB image, but the images shown are grayscale in order to show the matches between the objects, where points are
randomly sampled on the left image and matched with the pixel with the closest corresponding descriptor on the right
image.

4.5 Heap Experiments
Since the network is able to generalize decently well to unseen objects, we explore a possible
application of dense object descriptors to mechanical search [7]. In this setting, it is not necessary
for the descriptors of the same object to match exactly. Instead, we only need descriptors of an object
to match to anywhere on the same object inside a heap of other objects. Since we are aiming to use
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the dense object descriptors as a general descriptor, we cannot attempt to separate different classes
of objects in descriptor space. As a result, it is possible for different objects to have significant
overlap in descriptors. This is different from the work done in [9], where the authors have a fixed
set of classes and attempt to separate them in descriptor space. For all experiments below, we use
the network from Sec. 4.4 trained on 21 classes of objects with 16 dimensional descriptors, RGB
images, and unit normalization.

Classification Experiment
To explore how much overlap different objects have in descriptor space, we run a simple classifi-
cation experiment. Given 49 single object “heaps" and 49 target objects with 6 views, we would
like to find the corresponding target object for each heap. We find the corresponding target object
by sampling pairs of descriptors and ranking targets by the overall distance between the pairs. We
define the distance between the pairs (d1,1,d1,2) and (d2,1,d2,2) to be min(kd1,1�d2,1k2 +kd1,2�
d2,2k2,kd1,2�d2,1k2 +kd1,1�d2,2k2). This was found to have the highest success rate. However,
using 16 dimensional descriptors with unit normalization and RGB images, we observe that only
36.7% of the heaps have the correct target object in the top 4 ranking. This suggests that there is
indeed significant overlap in descriptor space between different object classes.

Figure 4.4: Classification experiment

Heatmap Experiment
Although there is significant overlap in descriptor space, we can still use the object descriptors as
a heatmap for locating a target object within a heap. Since sampling pairs of points and ranking
distance is a slow process, for this experiment we use a different filtering process. Here, we only
consider pixels in images A and B to be matching only if the best match from A to B is the best
match the other way around. Here, we only consider matches (i, j) such that the i-th descriptor in
image A has j-th descriptor in image B as the best match and vice-versa. We rank matches by the
L2 distance between the matching descriptors, so that the match with the lowest L2 distance has the
highest probability of being correctly matched. We observe the following results shown in Fig. 4.5.
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For many cases, we observe that we are able to predict reasonably the location of the target object in
the heap by using this scheme to match the object descriptors. One failure case is when the object
is nestled in the middle of heap. One possible explanation for this is that receptive field does not
encounter heaps in the training process, which could potentially be mitigated by introducing heaps
to the training process.
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Figure 4.5: Left column: Matches between a target object and a heap. The target object is shown isolated on the
left side of the image while the heap is shown on the right side of the image. Right column: Example images of the
matches colored by the overall likelihood of the matches on a linear gradient from blue to red, with red being the highest
probability of matching. Adding the color map increases the accuracy in which the network matches the target object.
A failure case is shown in the last row, where the object is nestled deeply inside the heap.
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Chapter 5

Discussion and Future Work

We explore the generalization of deep learning models on 3D objects in two subdomains: adversarial
grasp objects and object descriptors. We introduce adversarial grasp objects: objects that look
visually similar to existing objects, but decrease the predicted graspability given by a robot grasping
policy. We present three algorithms that generate adversarial grasp objects. The first is an analytic
method (“convexity-preserving rejection sampling method") that perturbs vertices on antipodal faces
while maintaining local convexity. The second (“antipodal rotation method") is a more efficient
analytic method that rotates faces directly to remove antpodal pairs. The third is a deep-learning
based method using a variation of the Cross-Entropy Method (CEM) augmented with a generative
adversarial network (GAN) to synthesize adversarial grasp objects represented by a Signed Distance
Field through more global geometric changes.

In each of the algorithms, we find that overall, the generated objects have significantly reduced
grasp quality compared to the original set of objects. We observe that the generated distribution
tend toward objects with fewer parallel surfaces. For example, the resulting distribution of the GAN
trained on the bottle prior has primarily thin bottles with both a conical upper portion instead of a
cap or stem structure, as well as a tapered main body.

We recognize that the current experiments focus on the DexNet 1.0 parallel-jaw point contact
grasping model, and in future work can explore the generation of adversarial objects for area
contacts. Replacing the point contact model with one that considers the full contact area could
counteract the outsized effect of local surface roughness. In addition, objects that are designed
to be adversarial to area contacts are more likely to be adversarial to an actual physical system
found in industry, since most grippers are able to grasp corners and edges. We can also explore
methods of incorporating adversarial grasp objects into the training process of a robot grasping
policy to improve grasping performance. We believe that training augmentation with adversarial
grasp objects could result in a grasping policy that is more robust to objects with subtle geometry.

We also further explored the generalization of dense object descriptors and its applications to
mechanical search. We found that the dense object descriptors performed well even with depth-only
data. They could also be used as general object descriptors if the networks are trained on a large
number of classes. Finally, we found that dense object descriptors are able to find a target object
within a heap by matching the descriptors between the target object and the heap, suggesting a
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potential application in mechanical search. For future work, we can experiment with training the
dense object descriptors on simulated depth images and testing on real depth images. To utilize
this in mechanical search, more architecture and training modifications can be made in the future
to encourage the network to match the target object in the heap more accurately. For example,
including clutter in the training process can potentially mitigate the the failure case mentioned in
Sec. 4.5.
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