Eye Gaze Tracking for Assistive Devices

Evan Finnigan

sl

i |
Al

11
.‘
;. ; :

]

Electrical Engineering and Computer Sciences
University of California at Berkeley

18

#
{¥:Y

Technical Report No. UCB/EECS-2019-79
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-79.html

May 17, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Eye Gaze Tracking for Assistive Devices

Evan Finnigan

Abstract

Many webcam based eye gaze tracking systems are intended for use where eye gaze is
limited to a computer screen. While these methods can work well for certain applications
like improving the usability of webpages, they do not work well when the when gaze tracking
is needed in non screen based tasks. In our case, we want to track the user’s gaze on a
tabletop to allow for eye control of a planar robotic device with just one webcam and
no other equipment. To allow for eye gaze tracking in this application, we need to first
find the user’s visual axis then use the visual axis to infer where the user is looking on
the tabletop. This report discusses how we can find a user’s visual axis in a way that
is flexible to the wide variety of head positions and eye rotations that are present when
a user is attempting to naturally complete tasks on a tabletop. The method used here
has three steps. First the user’s eyeball centers are located using a system that tracks
facial landmarks in 3D. Second, the user’s pupil centers are located in 2D. Third simple
projective geometry is used to find the user’s visual axis based on 3D eye location and 2D
pupil location. This method is capable of 22° error in the detected visual axis angle which
is an improvement over OpenFace, a previous good webcam based eye tracker that works
with any head orientation. Using just OpenFace, the visual axis angle error is over 28°.

Introduction

Figure 1: The device we are applying eye tracking control to.

Eye Gaze tracking has a wide variety of applications. Several applications are analyzing
where the user of a webpage is looking to improve usability, improving the immersiveness
of games by allowing users to interact with objects by looking at them and also foveated
rendering for VR goggles where only the place where the user is looking is rendered in
high resolution. Another application of gaze tracking is in designing interfaces that people
with disabilities can use. Eye controlled wheelchairs can allow people unable to use hand
controls to operate their wheelchair and eye controlled computer interfaces can allow people
with disabilities to use their computers.

The problem with gaze tracking however is that high accuracy eye tracking headsets
are expensive and even lower cost remote eye trackers do not provide the same level of
ubiquity and low cost as webcams. For this reason, it is still worthwhile to investigate how
to build systems that perform eye tracking with just a webcam and no speciality hardware.

The use case of webcam based eye tracking in this report will be tracking where a user
is looking on a table. This table (pictured in 1) has a system built into it to move the users
hand to positions on the table. The point of this system is to allow a user who cannot
move their arms to control their arm on a tabletop by looking at targets. Specifically, in
this report I will focus on finding the visual axis of a user looking at targets on the table
(targets shown in 7).

One of the challenges with detecting a user’s visual axis when they are looking at
locations on a tabletop is that the user will have use a wide variety of head orientations to
be able to naturally look at all the points on the table. Another challenging part of this
task is to make sure that gaze tracking will continue to work even if the user is looking at
an extreme angle. In other words the scenario that occurs when the user is attempting to
look as far to the left or right as possible without moving their head. These two challenges
will be a central focus of this report and the main criteria for deciding if an eye tracker is
suitable for the task.

Contributions

The main contribution of this work is to suggest a gaze direction tracking system that is
robust to all head poses and works well for the task of tracking where a user is looking on a
table. The task of looking at points on a table is somewhat unusual for webcam based eye
trackers which usually track where a user is looking on a screen. On a screen the user is
primarily looking ahead and only small gaze angles need to be tracked. Therefore, another
contribution of this work is finding where some eye trackers fail when tracking large gaze
angles and then determining a method that is more capable of tracking eye gaze at these
larger angles.

Overview of Eye-tracking Types

There are a variety of eye-trackers available, some requiring specialized equipment and
others that run on a standard webcam.

Eye Trackers with Specialized Hardware

Systems that require special equipment can be either head mounted such as the Tobii Pro
2 (Figure 2) glasses or remote such as the Tobii 4c (Figure 3). These devices use near-
infrared light to produce corneal glints, which are reflections of the near-infrared light off
of the cornea [1]. These devices then use the movement between the pupil and the glint
position as well as a 3D model of the eye to accurately estimate the users gaze direction.
Systems requiring specialized software are quite accurate. For the Tobii Pro 2 glasses,
Tobii claims an accuracy of 0.62 degrees for the optimal use case with gaze angle < 15°.

However this performance is reduced to 3.05° for larger gaze angles and .79° for different
lighting conditions.

Webcam Based Eyetrackers

Eye-tracking systems that do not require specialized hardware are much easier to distribute
and two such system, WebGazer and XLabs Chrome plugin, can even be embedded on a
webpage. Webgazer [3] uses an eye detector and then performs regularized linear regres-
sion to learn a relationship between the low resolution eye patch and the gaze point on the
screen. The linear model in trained with data supplied by the user clicking on calibration
points, or by the user interacting with a webpage normally and the assumption that a user
looks at the location where they are clicking. 2 and 3 show results from a commercial eye
tracker and from Webgazer respectively. While WebGazer is less accurate, it certainly still
provides usable results. In this case, it is still possible to decide which links the user is
primarily looking at. XLabs uses proprietary software and it is not publicly available how
it works.

The WebGazer system does not take head orientation into account when determining

(b) SearchGazer

Figure 2: Result from a commerical eye trackerFigure 3: Result from SearchGazer which uses
WebGazer eyetracking

gaze point and needs to be recalibrated when the user moves their head.
Another system for eye tracking that does not require specialized hardware is OpenFace [9].

OpenFace tracks the head orientation as well as visual axis for both eyes. This makes it
possible to account for different head orientations in determining where the user is looking.

Figure 4: Tobii 4c remote eye tracking bar

Figure 5: Tobii Pro 2 eye tracking glasses

OpenFace is based on a Point Distribution Model to parameterize and regularize the de-
tected face shape and a patch expert that detects the landmarks that make up the overall
face shape.

Needed Improvements

In preliminary versions of the system we used the WebGazer system to find gaze points.
This is adequate for classifying which point on the table the user is looking at. However, it
performs poorly for inferring a gaze point anywhere on the tabletop because the estimates of
gaze point inferred from the eye patches with linear regression are very noisy. Additionally
it requires that the user keep their head still.

OpenFace is superior to WebGazer because it tracks the head as well as the direction
that the eyes are looking. This makes it possible to track gaze point at any head orientation.
However OpenFace has poor eye tracking performance for large gaze angles. A possible
explanation for this is that OpenFace is based on a Point Distribution Model (PDM) that
was trained on the MPIIGaze [11] dataset. The MPIIGaze dataset only contains images of
people looking at a computer screens. The variety of visual axis angles required to look at
positions on a computer screen is far smaller than the variety of visual axis angles required
to perform tasks on a tabletop. 8 shows the distribution of gaze angles in radians. It
displays variation of less than 30 degrees of yaw to the left and right. Points that the user
could be looking at on the tabletop have variation of 60 degrees to the left and right 7.
The PDM in OpenFace both defines what variation is possible in eye landmark shapes and
regularizes the shape. This means that shapes of landmark locations that are not heavily
represented in the data the PDM is trained on will not be detected properly. This can be
seen to be a problem in 6 where the ground truth eye shape should have the iris further
to the right. The blue circle and smaller concentric circle should be around the iris and
pupil respectively. The fact that they are not properly aligned will damage the final visual
axis estimation. In order to improve upon this system, I decided to use the face tracking
features of OpenFace and investigate new ways to find gaze direction.

Figure 6: Demonstration of poor tracking at extreme angles.

30 deg

i/~

Figure 7: Gaze targets on the working table area. The user sits at the bottom middle.

1.0

0.5

-0.5

-1.0
-1.0 -0.5 0.0 0.5 1.0

Figure 8: Graph displaying the distribution of pitch and yaw angles in radians. From [11].

Related Work

CNN Based Method on a Large Dataset

Zhang et al. [10] presents a method to learn to predict gaze direction with a CNN. They
collected 213,659 images and corresponding gaze targets from users’ regular laptop use.
These images then go through a normalization procedure where the eye patches are ex-
tracted and warped so that the eyeball center is in the center of the extracted image and
the rotation caused by different head angles is removed. The gaze vector from the eyeball
to the gaze target is also rotated to bring it into the normalized camera frame. Then, a
CNN is trained to regress from normalized eye patch images to gaze vectors. This method
obtains errors of less than 15 degrees for visual angle tracking.

Latent Space Gaussian Process Gaze-Tracking

Wu et al. [6] presents a way to track gaze using Gaussian Processes, particularly a GP-
LVM (Gaussian Process Latent Variable Model) [2]. A GPLVM is a method of nonlinear
dimensionality. The method presented in [6] starts by using calibration images to build a
2-dimensional latent feature space using GP-LVM. Quite impressively, the latent variable
space has semantic meaning where the axis represent the pitch and yaw of the gaze vector
(Figure 6).

To detect where a user is looking they first find the nearest neighbors of the user’s
newly detected eye patch in the 2-dimensional latent space. The initial estimate of where

Figure 9: Visualization of latent space created by GPLVM and corresponding generated eye
patches. From [6]]

the user is looking on the screen is the average gaze point of the neighbors. As GPLVM
is a generative model, it is possible to generate an eye patch that would match a certain
gaze point. Using this generated eye patch the gaze estimate is then improved by solving
an optimization problem to maximize the normalized cross correlation between the user’s
detected eye patch and the generated eye patch.

This method is interesting because it is uses an unsupervised learning technique and
is therefore less dependent on available labeled datasets that may provide a wide enough
variety of eye types and gaze directions.

A Hierarchical Generative Model for Eye Image Synthesis and Eye Gaze Esti-
mation

A more modern semi-supervised approach is presented in [5]. The authors of [5] use a two
step procedure that first converts eye images to 2D eye shape using a biderectional GAN
then converts eye shape to gaze direction using a hierarchical generative shape model
(HGSM) which the authors introduce. The HGSM is a probabilistic model trained on
the Unity Eyes dataset [7] and is called hierarchical because it first determines the user’s
personal eye parameters then uses a user agnostic model to determine gaze direction.

Figure 10: Examples of eyes from the Unity Eyes dataset. These are computer generated eye
patch images, which is convenient because the gaze angle is already known and the eyes do not
need to be labeled.

Pupil Center Tracking by Means of Gradients

In contrast to the previous methods, the method presented in [4] does not use learning.
Instead, their method solves an optimization problem to maximize the alignment between
a displacement vector from the proposed pupil center to each point in the image and the
image gradient at each point. This optimization problem is given mathematically as

N
* l T, \2
¢t = arginax{N;@ 9) } 1)

xr, —C 3
d; T Vi lgill2 =1 (2)

||z — |2

where the d; is a displacement vector from ¢ to point ¢ and g; is the gradient at point
1. The eye patch is small enough so that all of the pixels in the eye patch can be checked
and the optimal ¢ found. The idea behind this algorithm is that the point ¢* from the
optimization problem 1 will be at the center of the most prominent circle. This is because
the displacement vector from the center of a circle to any point on the edge of the circle
is aligned with the gradient at the point on the edge of the circle. 11 shows aligned and
non-aligned gradient and displacement vectors.

c-\gi C'\d,-

x, \ g x,-..\ g

Figure 11: Examples of un-aligned and aligned pupil center and iris edge gradient vectors (left
and right respectiveley).

Method

The method proposed here has three steps. First an eye patch is located for the eye we
are finding the gaze axis for using OpenFace. Then the pupil center is localized in the
found eye patch using the algorithm from [4]. Finally an unprojection of the pupils centers
and eyeball geometry are used to find the gaze axis. This last step is a commonly used
way to infer gaze direction from 2D pupil locations and 3D eye geometry. This method
only assumes that the pupil is visible to be tracked and is not occluded by any structures
such as frames on glasses. Both eyes need to be visible. The method does not make any
assumptions on head pose or require that the user maintain the same head pose throughout
tracking.

Eye Patch Localization

The OpenFace toolkit [9] provides a stable estimate of the eye patch location that is flexible
to a wide variety of head orientations. This is in contrast to the pupil tracking performance
of OpenFace that uses the same algorithm but has low performance because it was trained
on a dataset with a limited variety of eye gaze angles.

OpenFace is based on Convolutional Experts Constrained Local Model (CE-CLM)
which is described in Zadeh et al. [8]. CE-CLM has a CNN based patch expert com-
ponent and a Point Distribution Model (PDM) component. The patch expert component
finds a distribution of probabilities for the location of each landmark in the vicinity of
the current estimated position of the landmark. Then, the parameters of the PDM are
optimized taking into account the responses of the patch experts as well as the probability
of landmarks being in a certain orientation in relation to each other.

After facial landmarks are found with CE-CLM, the eye patch for each eye can be
extracted by finding a bounding box around the eye landmarks.

10

Pupil Localization

Pupil localization is achieved by using the last method presented in the Related Work
section, pupil center tracking by means of gradients. This algorithm is applied to the eye
patch found by the CE-CLM algorithm. This method was chosen for its simplicity and the
fact that unlike learning based methods it is less sensitive to changes in lighting and users
not well represented in the training set.

3D Geometry to find Gaze Axis

Once a pupil center and eye landmarks have been obtained the visual axis vector can be
found. First, the pupil center is unprojected. This consists of rewriting the 2 dimensional
pupil center location in homogenous coordinates as & = [z, yp, 1] where x;, and y,, are the
coordinates of the pupil center in the image.

Tp fz 0 co| [Xp
=10 fy & Yy (3)
1 0o 0 1]|2z,

Equation 3 is the perspective projection formula relating and p = [X,,Y}, Z,|, the
position of the pupil in 3D space. s is a scaling factor, therefore at this point only the
direction towards the pupil from the camera is known. To proceed, the intersection of the
ray starting at the origin of the camera coordinate system and pointing in the direction
of £ and a sphere centered at the center of the eyeball, e of radius 12 mm is found. This
is the estimate for p the pupil center in 3D space. The center of the eyeball can be found
as the average of the 3D face landmarks corresponding to the eye corners (lateral canthus
and medial canthus). A sphere of radius 12mm is used because the average human eyeball
has a radius of 12mm. Finally, the gaze vector g is determined as g = e — p.

Figure 12: Diagram of the method of finding gaze vector g from p and e

This method exploits the spherical symmetry of the eyeball to remove the dependence
of the estimated gaze vector on the orientation of the head.

11

Results

10 experiments of looking at the top 5 targets (6, 7, 8, 9, 10) on the table were run to
demonstrate that the method proposed in this report can improve accuracy for large gaze
angles. The method in this report increases the accuracy especially at large gaze angles,
however the precision is decreased.

Accuracies (over 10 trials)
Method Head Pose Fixed || Yaw Error (de- | Pitch Error (de- | Total Error (de-
grees) grees) grees)
Original Method | no 28.64 2.641 28.76
Augmented no 21.82 4.179 22.21
Method
Original Method | yes 31.16 2.52 31.26
Augmented yes 23.52 4.06 23.87
Method

The data from which these accuracies are generated is taken with the user looking at
each of the targets on the outer row of the table. The user is seated at the center of the
arc of targets. The angles recorded should ideally be —60°, —30°, 0°, 30°, 60°.

These results show that the augmented method presented in this report can slightly
but noticeably reduces the error for the yaw angle. The error for the pitch angle increases
because the new eye gaze estimate is less stable than the original method. The important
factor however is that the augmented method does allow a broader range of gaze angles to
be tracked.

Additionally, whether the head is free to move or must remain strictly in a forward
facing pose does not have a large effect on the accuracy of the system.

Discussion

While the method proposed in this paper provides some improvement over the original
method (OpenFace) that finds eye landmarks to track gaze direction, it is still not particu-
larly accurate. The error is still above 20° which is substantial compared to the 120° range
of possible locations to look at on the table. A big contributing factor is that computing
the gaze vector based on the 2D pupil location and 3D eyeball center is heavily reliant on
the 3D eyeball center location being correct. A next step to improve accuracy would be
to remove the reliance of the gaze vector direction from the location of the eyeball center.
Head mounted eye trackers detect gaze direction by performing polynomial regression on
the location of the pupil, but head mounted eye trackers only need to deal with eye images
in one orientation. If this method could be generalized to predict gaze direction based on
pupil location within an eye patch it could greatly improve the accuracy of the system.

12

P
e

@ —25 o ®
g [[° % ¢

—30 A L
< ooq ¢ s s *
p= ® | e - Qe o

@ t'i' o
@
—40 | | |] :‘ |. V_. |
—60 —40 —20 0 20 40 60
yaw angle

—20

-25 1 |
b}
: * 3
=
- —30 A
2
=1 —35 -

_4(] T T T T T

—60 —40 —20 0 20 40 60
yaw angle

Figure 13: Eye gaze yaw vs. pitch generated by looking at the outer row of targets (one trial).
Given where the user is sitting, the clusters should all have pitch angle —30° and the yaw angles
should be —60°, —30°, 0°, 30° and 60°. Augmented method (top) and original method (bottom).
The augmented method has higher accuracy which allows gaze tracking on a broader area of the
table but has lower precision.

13

Figure 14: Failure cases of the original method that the augmented method is more successful at.
White and green circles are for augmented and original methods respectively.

References

1]

2]

3]

[4]

[5]

[6]

7]

8]

Anuradha Kar and Peter M. Corcoran. A review and analysis of eye-gaze estima-
tion systems, algorithms and performance evaluation methods in consumer platforms.
IEEE Access, 5:16495-16519, 2017.

Neil D. Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. In Proceedings of the 16th International Conference on Neural In-
formation Processing Systems, NIPS’03, pages 329-336, Cambridge, MA, USA, 2003.
MIT Press.

Alexandra Papoutsaki, Patsorn Sangkloy, James Laskey, Nediyana Daskalova, Jeff
Huang, and James Hays. Webgazer: Scalable webcam eye tracking using user inter-
actions. 07 2016.

Fabian Timm and Erhardt Barth. Accurate eye centre localisation by means of gra-
dients. pages 125-130, 01 2011.

Kang Wang, Rui Zhao, and Qiang Ji. A hierarchical generative model for eye image
synthesis and eye gaze estimation. In Proceedings of the IEEE Conference on Computer
Viston and Pattern Recognition, pages 440-448, 2018.

Nicolai Wojke, Jens Hedrich, and Detlev Droege. Latent space gaussian process gaze-
tracking. OGRW2014, page 144.

Erroll Wood, Tadas Baltrusaitis, Louis-Philippe Morency, Peter Robinson, and An-
dreas Bulling. Learning an appearance-based gaze estimator from one million synthe-
sised images. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking
Research and Applications, pages 131-138, 2016.

A. Zadeh, T. Baltruaitis, and L. Morency. Convolutional experts constrained local
model for facial landmark detection. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 2051-2059, July 2017.

14

[9]

A. Zadeh, Y. C. Lim, T. Baltruaitis, and L. Morency. Convolutional experts con-
strained local model for 3d facial landmark detection. In 2017 IEEE International
Conference on Computer Vision Workshops (ICCVW), pages 2519-2528, Oct 2017.

X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Appearance-based gaze estimation
in the wild. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4511-4520, June 2015.

Xucong Zhang, Yusuke Sugano, Mario Fritz, and Andreas Bulling. Appearance-based
gaze estimation in the wild. In Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2015.

15

