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This work proposes Sentinel, a new architecture for decentralized data governance. In a world
with growing privacy concerns, it becomes increasingly necessary for data management systems
to be trust-free to end users. This paper describes and provides empirical results for enabling data
analytics over statistical databases containing sensitive data without requiring any centralized trust
and without compromising user privacy. Using smart contracts for decentralized veri�cation of
data access policies and trusted execution enclaves (TEEs) for secure computation, this architecture
describes a scalable solution for achieving this, supporting the goals of data providers and data
consumers alike.
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1. Introduction

This section provides high-level background information and the underlying context and motiva-
tion for this project.

1.1. Motivation

The ubiquity of cloud computing over the last couple of decades has fundamentally changed the
way we think about data. The power of advanced data analytics and machine learning algorithms,
when applied to “big data” has almost limitless potential in terms of the insights it can provide.
Such insights catalyze further advances in research at the frontier of almost every �eld of study,
yield signi�cant performance optimizations, and generally provide immeasurable societal value.

A large part of this paradigm shift to cloud computing has been maintaining good practices for
data governance, an organization’s means by which to ensure high quality data throughout the
data lifecycle. Data governance strives to ensure goals such as data availability, security, integrity,
and usability. However, a fundamental limitation of governance is the existence of data silos -
repositories of data that are under the jurisdiction of a single organization and unusable by entities
outside of that organization. Due to the non-transitive nature of trust, siloed data is typically
either not shared between organizations or done in a manner that violates the underlying users’
privacy, which was the case during Facebook’s infamous Cambridge Analytica scandal in 2018.

Deconstructing data silos and enabling cross-organizational data governance while still re-
specting user privacy is a lofty but worthwhile goal, one which would increase the quality of
machine learning models and data insights by nontrivial margins. By building on top of the
privacy-preserving and scalable Oasis Labs blockchain, this research project designs and proto-
types a platform for achieving this goal via decentralized data governance, one which enables
trustless privacy and empowers users to retain full control over who can see their data and how it
is used while still enabling data-driven applications to thrive.
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1.2. Overview

Smart contracts are decentralized programs which enforce conditions between mutually distrusting
parties. As a result of security assurances stemming from attributes of blockchains such as
replication of computation across multiple compute nodes, once a smart contract has been deployed
even its creator cannot undercut its correct expected execution. However, smart contracts and
blockchains in general are known for transparency of information, which is not a desired property
for data governance where compliance and regulation are extremely important.

As noted in [18], traditional cryptographic solutions such as zero-knowledge proofs [1] and
secure multiparty computation [8] require too much performance overhead to be successful in a
governance system supporting a su�cient number of users for most typical enterprise use cases.
Instead, a better solution is to use trusted execution environments (TEEs), secure hardware which
allows execution of code on untrusted remote servers using cryptographic proofs of validation
known as attestations and can be optimized signi�cantly for high-throughput tasks such as machine
learning and other analytics algorithms as shown in [13, 21].

In this work, we propose Sentinel, a data governance platform which utilizes a smart contract
ecosystem to enforce a rich set of access policies and produce audit logs for data providers,
leveraging trusted execution environments to achieve this at scale while preserving con�dentiality
and privacy. Though Sentinel is applicable generically, we will focus on medical use cases in
particular to support motivating examples in an industry where carefully regulated governance is
especially useful and important.

1.3. Contributions

In summary, the contributions from this research project are as follows:

1. A framework for decentralized data governance which guarantees regulated and auditable
data usage for data providers, and correctness and completeness of data for data consumers.

2. An analysis of typical use cases and corresponding privacy and performance analysis.

3. An evaluation of key performance metrics for standard governance operations, verifying
platform usability and scalability.
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2. Preliminaries

This chapter discusses preliminaries in several areas of focus relevant to this research project.

2.1. Smart Contracts and Blockchains

A blockchain can be imagined as a decentralized state transition system which tracks events
known as transactions (Tx) and computes each new state as a function of the current state and
most recent transaction:

Si+1 = f (Si ,Txi )

Blockchains are decentralized because state transition computations are replicated across many
compute nodes, which resolves inconsistencies from errors such as network failures, malicious
nodes, etc. in the newly computed state Si+1 via a consensus protocol. Each block in a blockchain
represents a new set of transactions that occurred since the creation of the previous block, and
possesses a header which serves as an authenticated data structure for its contents. This block
header stores (i) the hash of the previous block, (ii) creation timestamp, (iii) a consensus proof,
and (iv) the Merkle root of the tree formed from the block’s transactions. Light nodes store only
these headers, while more heavyweight full nodes opt to store the transactions used to generate
the Merkle root as well.
Smart contracts are decentralized applications built on top of a blockchain that maintain some

internal value, releasing that value only when certain constraints programmed into the contract
are satis�ed. Decisions about releasing value are once again taken by replicated computation
regulated by a consensus protocol.

Under the Ethereum paradigm [22], in order to regulate smart contract execution cost and
prevent abuse, transactions are limited by the amount of gas they have been supplied. Gas is
a measure of the number of computational steps a transaction is allowed to take before being
terminated, and so transactions must specify both a STARTGAS and GASPRICE indicating how much
value the initiating participant is willing to spend to complete it. In general, the gas required to
complete a transaction correlates strongly with the time to complete that transaction.
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Contracts and external users are both considered network participants and each are associated
with an account. Smart contracts can initiate execution of other contracts via cross-contract
function calls, and so a useful abstraction is to consider transactions as value �ow between
accounts.

2.2. Trusted Execution Environments

Trusted execution environments, otherwise known as enclaves, allow for isolated usage of sensi-
tive code and data from all other software in a system. Enclaves such as Intel SGX have become
increasingly prevalent in cloud applications, given their formal security guarantees allowing for
secure execution within an untrusted hosting application.

Enclaves are initialized with the help of the untrusted application operating system, which
allocates a portion of virtual memory within which the enclave can reside. Intel SGX does this by
storing sensitive code and data within a data structure known as the Enclave Page Cache (EPC).
SGX also includes a memory encryption engine (MEE) which encrypts and authenticates any
enclave data that is evicted to memory, ensuring integrity and freshness of anything that passes
through it.

Correct resource management is possible via remote attestation, allowing remote users to
establish trust in an enclave. In Intel SGX, code residing within an enclave can request a quote
containing cryptographically signed measurements of the enclave’s initial state. These signed
measurements serve as a proof to the remote user that the enclave has been initialized correctly to
its expected state, and no untrusted code outside of the enclave can access its contents. Once this
veri�cation process is complete, the remote user can set up a secure channel with the enclave and
provision secrets and/or communicate as necessary to acquire the desired computational results.

Overall, a correctly-functioning secure enclave must be able to do both of the following:

1. Isolate itself within an untrusted host environment, with carefully regulated interaction
with the outside world.

2. Remotely attest to its own identity, providing a cryptographic proof of correct initialization
to the remote user.

These two functions are necessary in order to enable trusted computation on an untrusted platform.
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2.3. Di�erential Privacy

Di�erential privacy [3] is a constraint which formalizes and enforces the privacy of individual
entities when aggregate information is publicly published about a statistical database within which
those entities’ data is stored. The theory of di�erential privacy is developed under the assumption
that, regardless of whether or not a given entity chooses to include their personal data in any
aggregate query, the conclusions derived from that query will be identical.

We de�ne the probability simplex ∆(B) of a discrete set B to be

∆(B) =
{
x ∈ R |B | : xi ≥ 0 for all i and

|B |∑
i=1

xi = 1
}

the set of all possible probability distributions over B. A randomized algorithmM with input
space A and output space B is associated with a mappingM : A→ ∆(B). For any a ∈ A,M selects
elements each element of B with probability de�ned by the corresponding probability distribution
selected from ∆(B).

Representing databases containing sensitive information as data vectors of their histograms
x ∈ N |X | where X is the universe from which data entries are selected, we de�ne the distance
between databases as their Hamming distance:

d(x ,y) = |{i |xi , yi }| x ,y ∈ N |X |

and say x and y are neighbors if d(x ,y) = 1. A randomized algorithmM then preserves (ϵ, δ )-
di�erential privacy if for any set S of possible outputs and neighboring databases x ,y ∈ N |X |

Pr[M(x) ∈ S] ≤ eϵPr[M(y) ∈ S] + δ

Above, ϵ is de�ned as the privacy budget and controls the strength of the privacy guarantee a
given algorithm provides. The δ parameter allows for a non-zero probability that the guarantee
fails, but moving forward we will typically only consider pure di�erential privacy, the case where
δ = 0. Additionally, we de�ne the l1-sensitivity of a function as follows:

De�nition 2.3.1 (l1-sensitivity). The l1-sensitivity of a function f : N |X | → Rk is

∆f = max
x,y∈N|X|
| |x−y | |1=1

| | f (x) − f (y)| |1
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In other words, the l1-sensitivity of a function f is the impact a single individual’s presence can
have on its value for a given input database.

2.4. Machine Learning

Machine learning is a statistical technique for predictive modeling. Formally, a supervised

learning algorithm is a type of machine learning algorithm that solves the following optimization
problem:

min
θ
L(fθ (x))

where L is a loss function used to measure the accuracy of a predictive function f parametrized
by weights θ . Supervised learning solves this problem empirically, using a provided set of inputs
X1, . . . ,Xn and corresponding expected outputs y1, . . . ,yn to optimize f with respect to the
objective above. Once this process is completed, predicted outputs for new inputs can be computed
as

ŷ = fθ (X )

Supervised learning often appears in the healthcare and pharmaceuticals industry, where patient
records can be used for tasks such as predicting disease rates or determining whether a patient is
�t for a certain drug or not. However, medical records are one of the many types of data that may
come with a privacy constraint. Machine learning and di�erential privacy can come hand in hand,
as both strive towards the goal of generalizing a distribution of data without need for revealing
any individual points. If trained properly, a machine learning model contains information on all
the points in a dataset without exposing or overly relying on any single data point.

12



3. System Architecture

This section provides a thorough description of the design of the Sentinel platform.

3.1. Assumptions and Threat Model

We de�ne a network with three classes of participants:

• Data Providers: Data providers interact with the platform by uploading datasets. Their
goals may include secure data storage, monetization of proprietary data, and/or outsourcing
data analysis with policy-driven and auditable data accesses.

• Data Consumers: Data consumers interact with the platform by submitting executables
for computation over datasets of their choosing. The goal of data consumers is to derive
insights from data analytics over previously inaccessible, siloed data.

• PolicyDevelopers: Policy developers write smart contracts that encode data access policies,
which can be made publicly available for reuse by providers.

Users can identify as one, two, or all three of these roles via their interaction with Sentinel.
We assume a threat model with an honest-but-curious platform and shared external producer-
consumer database and actively malicious consumers, where providers do not trust consumers
beyond the speci�cations of the policies they choose to enforce. Furthermore, we assume users
trust their local machines and browsers but consider side channel attacks out-of-scope.
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3.2. Basic Solution

Figure 3.1.: Simple contract ecosystem

The basic interaction with the decentralized Sentinel platform is shown above. There are two
primary components:

1. Policy* contracts, uploaded by the policy developer

2. AccessManager, the interaction hub between data consumers and providers.

A standard interaction, as shown in 3.1, might happen as follows:

0. Policy developer deploys policy contract Policy0.

1. Data provider uploads key K for dataset D to the AccessManager along with a database
reference, and stores EncK (D) in the linked database.

2. Data consumer attempts to execute a program P on D.

3. AccessManager validates that the data consumer has permission to receive P(D) via Policy0.
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4. Policy0 a�rms or denies access permissions. In this example �ow, we assume an a�rma-
tion.

5. AccessManager provisionsK and the appropriate database reference to a TEET after correct
attestation.

6. T fetches EncK (D) from the linked database, decrypts it with K , and computes P(D).

7. T returns P(D) to AccessManager.

8. AccessManager noti�es the data provider of the attempted access, and the corresponding
result.

9. AccessManager returns the computational result to the data consumer.

This design was selected with �exible and robust updates in mind. Data providers can push
updates to the policies they want to enforce and policy developers can push version updates to
their policy contracts independently. This is particularly compelling for use cases such as HIPAA
compliance for medical data sharing. HIPAA policies are constantly subject to review and revision,
and under this model developers can easily update accordingly so long as they continue to support
the API de�ned in 3.5.

3.3. Components

The basic solution presented in the previous section, while serving as a useful abstraction for
understanding platform interaction, does not scale well to support more than a handful of users.
Since platform usability is a major goal of this project, we now present a more complete and
scalable interaction �ow in Figure 3.2. The various interacting components of Sentinel and their
delegated responsibilities are described below:

Shared Database Before a provider and consumer can interact, they must agree upon a shared
o�chain database to which encrypted data can be pushed and shared. We assume that this shared
database is honest-but-curious, but this is not stricitly necessary. It is a fairly straightforward
extension to preserve integrity in the event of a dishonest shared database by using digital
signatures, but we omit this for simplicity. By default, this o�chain database is one provisioned by
Oasis Labs.
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Policies Policies are the security protocols providers can specify to limit access to their data.
The policies can restrict access to data in a variety of di�erent ways. Examples of such are the
following:

1. Access control lists

2. Row/column �lters for data tables

3. Enforcing di�erential privacy

4. Enforcing HIPAA compliance for medical data records

These policies are implemented as separate, mutable smart contracts, and are required to have
the interface de�ned in 3.5. Each of the three functions before(), after(), and validate() each
return database links to binaries that execute at the appropriate time during policy enforcement
by TEEs. These contracts are linked to AccessManagers that enforce them via their deployment
address, and are called by TEEs to retrieve the policy bytecode.
Policy* contracts are mutable in order to allow policy updates without having to update all

AccessManagers with the new deployed address. Implementing them as separate smart contracts
rather than directly encoding policies into AccessManagers is to allow greater �exibility and reuse
as well.

AccessManager The AccessManager is a con�dential smart contract that is written and de-
ployed by the data provider. Each uploaded dataset is associated with an AccessManager, which
serves as the gateway to that dataset. Each AccessManager is deployed as a con�dential contract,
and stores the following secret state:

1. Associated data ID

2. Associated data secret key

3. Owner’s wallet address

4. Owner’s public key

5. A mapping from consumer addresses to list of policy contract addresses, as well as a default
“global” policy list to apply to all consumers

16



Upon receiving a request from a consumer, an AccessManager is responsible for generating a
return ID for the consumer from which they can fetch computational results, emitting an event to
notify o�chain scheduler to begin computation, and retrieving the associated list of policy contract
addresses to enforce.

DataRegistry Each DataRegistry is a smart contract that enables the discovery of new datasets.
Users make calls to a DataRegistry to register new datasets in a public searchable domain and
discover the datasets of others.

Compute Workers Sentinel supports o�chain compute workers, which are TEEs that run
an interpreter with a very rigid execution path. These workers are managed by a scheduler,
which has two responsibilities: (1) monitor the blockchain for speci�c events indicating that an
AccessManager is requesting an o�chain computation and (2) queue up the next available TEE to
perform the job, and forward the event data to the assigned TEE. If there are no TEEs available,
the scheduler stores the job and current block, and blocks on further blockchain parsing until one
becomes available.

O�chain TEEs obey the following execution path:

1. Retrieve event data read by the scheduler. This includes the following, encrypted with the
TEE’s public key:

• Program ID

• Program secret key

• Data ID

• Data secret key

• List of policy contract addresses

• Return ID for the consumer

• Consumer public key

• Return ID for the provider

• Provider public key

All IDs are pointers into the shared database to encrypted data.

2. Use the event data to retrieve and decrypt the program bytecode with the program secret
key and the data with the data secret key.

17



3. Query each of the policy contracts for pointers to their before(), after(), and validate()

executables, and retrieve them.

4. Perform the following execution using the TEE’s built-in interpreter:

• Run each before() function of each policy in order of how they are listed on the
decrypted data.

• Run each validate() function of each policy in order of how they are listed on the
consumer program.

• Run each after() function of each policy in order of how they are listed on the result
of applying the consumer program to the decrypted data.

• Encrypt success or failure using the provider’s public key and upload it to the
shared database at the speci�ed provider return ID.

• Encrypt the computational result and the program ID using the consumer’s public key,
append its signature, and upload it to the shared database at the speci�ed consumer
return ID.

• Notify the scheduler of completion.

Both the consumer and provider are able to audit this execution path using remote attestation
quotes to verify the code and data to verify correct TEE initialization.

18



3.4. Scalable Contract Ecosystem

Figure 3.2.: Scalable contract ecosystem

Under this architecture, a separate, AccessManager contract is deployed for each uploaded dataset
independently. Providers who wish to make their datasets searchable by consumers can register it to
a global DataRegistry contract. Policy developers, similar to the basic model, can deploy Policy*

contracts which can then be referenced by one or more AccessManagers. Collectively, these
contracts form the backbone of the contract ecosystem for decentralized interaction between
data providers and consumers, with a more comprehensive example work�ow detailed below:

0. Initialize.

• Policy developers write and deploy policy contracts.

• The data provider encrypts a dataset and uploads it to the shared database.

• The data provider writes and deploys an AccessManager contract, linking it with his
or her dataset and policies.

• The data consumer writes and compiles a program, then encrypts and uploads the
bytecode to the shared database.
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1. Publish. The data provider can, but is not required to, publish their dataset by registering
their corresponding AccessManager contract with the DataRegistry.

2. Request. The data consumer sends a con�dential contract call to the AccessManager. In
its request, it includes the program ID, program secret key, and consumer public key.

3. Process. Upon receiving a request, the AccessManager emits an event for the scheduler,
generates a return ID that points to the shared database location wher the computational
result will be written, and returns it to the consumer. The emitted event contains everything
listed in TEE section above.

4. Schedule. The scheduler, monitoring the blockchain, reads an event indicating that an
AccessManager is requesting an o�chain computation. It will schedule a TEE to perform
the job via a round-robin policy.

5. Compute. Upon being queued by the scheduler, the assigned TEE performs the execution
path described above, retrieving and decrypting the appropriate data, consumer code, and
policies and performing the appropriate computation. The result(s) are encrypted with the
consumer public key, signed by the TEE and is stored in the shared dataset at the consumer
return ID generated in step 3.

6. Retrieve. The consumer monitors the shared database until the computational result is
written, then they can decrypt it with their secret key and verify that it was written by a
TEE.

7. Audit. The provider can query the blockchain to retrieve audit logs of accesses to their
datasets.

These design choices were made with current limitations of smart contracts in mind. Due to
expensive gas costs that scale infeasibly with contract state complexity, minimizing the number of
computational steps required in each state update to a contract is of utmost importance. Hence
each AccessManager is responsible only for storing a single key and a mapping from user identities
to policies. This contrasts with the basic solution in Section 3.2, where a single AccessManager is
responsible for managing keys for multiple datasets and so does not scale to support more than a
handful of users and datasets.
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3.5. Governance APIs

In this section, we denote the governance APIs by which data producers and consumers interact
with the contract ecosystem more concretely. The API for interacting with the AccessManager is
described below:

// API for provider interaction , can only be called by the AM creator

/// Creates a new `AccessManager ` with a pointer to data , and a key.

fn new(&mut self , data_id: String , data_key: String , pub_key: String) ->

Result <Self >;

/// Suicides the given AccessManager

fn delete (&mut self) -> bool;

/// Registers/unregisters the provided policy to each of the provided users.

/// If the list of users is empty , the policy is applied globally.

fn register_policy (&mut self , policy: Address , user: Address) -> bool;

fn unregister_policy (&mut self , policy: Address , users: Address) -> bool;

// API for consumer interaction

/// Attempts to run a program on the data managed by this AM.

/// Returns a handle to a resource that contains the results on completion.

/// This handle is a null value if the sender () is not whitelisted for this

dataset.

fn execute (&mut self , program_id: String) -> Result <String >;

Each dataset has an AccessManager which can only be deleted by the data owner, and only the
owner can add or remove policies to enforce for any other user. AccessManagers also have an
associated trusted enclave with which they attest before o�oading decryption keys, executables,
policies, etc. Finally, each AccessManager supports cross-contract calls to request provisioning of
policies enforced for any whitelisted consumers to the appropriate TEE before performing any
given consumers’ requested computation. These policy contracts support the following API:

/// Creates a new `Policy ` with a list of users to apply to.

/// The parameters are pointers to Wasm binaries stored in a database.

fn new(&mut self , before_id: String , after_id: String , validate_id: String)

-> Result <Self >;

// API for policy developer interaction

/// Update the stored policy. Can only be done by policy developer.

fn update_validate_bytecode (&mut self , new_program_id: String) -> bool;

fn update_before_bytecode (&mut self , new_program_id: String) -> bool;
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fn update_after_bytecode (&mut self , new_program_id: String) -> bool;

// API for TEE interaction.

/// Calls to any of these functions returns a handle to the shared database

/// location containing Wasm binary for the corresponding function.

fn validate (&mut self) -> Result <String >;

fn before (&mut self) -> Result <String >;

fn after(&mut self) -> Result <String >;

Once an access policy is provisioned to a trusted compute worker and the dataset is loaded
and decrypted, the policy is applied via the functions implemented in the policy API, which as
described must be implemented by the policy developer in any Policy* contract.

1. before() - A function applied before program execution. A policy acts on dataset D to
produce D ′ = before(D). For example, P might be a machine learning algorithm and
before() might be a �lter that removes attributes from a dataset prior to training.

2. after() - A function applied after program execution. A policy acts on P(D ′) to produce
after(P(D ′)) which is then received by the consumer. For example, P might be a SQL query
and after() might be a function that adds random noise to the query result to make it
di�erentially private.

3. program() - A function applied to programs themselves. A policy computes program(P),
which returns true if the program is allowable to execute over D and false otherwise. For
example, P might be a SQL query that uses the GROUP BY keyword, but the referenced policy
blacklists SQL queries containing GROUP BY.

In summary, the TEE’s responsibility consists of two distinct steps: (1) validating assert(program(P))
is true and (2) computing after(P(before(D))) and returning the result to the calling consumer.
The generality of the governance API is intentional; with such loose speci�cations policy contracts
implemented by developers will be exceedingly use-case driven and insightful patterns will arise
organically.
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4. Privacy

In this section, we motivate the medical data collaboration use case by providing an analysis
for building a privacy-preserving Policy* contract. We discuss relevant and typical privacy-
preserving database queries for policies involving di�erential privacy for n mutually untrusting
medical data providers who wish to collaborate for their complementary bene�t using Sentinel.
More formally, we consider providers with datasets x1, . . . ,xn ∈ N |X | and corresponding privacy
budgets ϵ1, . . . , ϵn , and analyze typical classes of medical queries over an aggregate database
x =

n⋃
i=1

xi which satisfy each of the individual privacy budgets.

4.1. Histogram �eries

Histogram queries are counting queries that retrieve the counts in each cell after a partitioning of
the database. In particular, we consider the problem of �nding the most common medical condition

amongst patients aggregated from multiple databases.
Standard histogram queries can be made (ϵ, 0)-di�erentially private via the Laplace mecha-

nism.

De�nition 4.1.1 (The Laplace Mechanism). Given any function f : N |X | → Rk the Laplace
mechanism is de�ned as

MLAP (x , f (·), ϵ) = f (x) + (Y1, . . . ,Yk )

where each Yi are i.i.d. variables drawn from the Laplace distribution, Yi ∼ Lap(∆f /ϵ).

The Laplace distribution is known to preserve (ϵ, 0)-di�erential privacy as desired, a fact which
is shown in A.1.

Since addition of a new user can change the count in exactly one histogram cell by exactly 1
for any given query, applying the Laplace mechanism with l1-sensitivity 1 ensures that the query
is (ϵ, 0)-di�erentially private. However, solving the most common medical condition problem
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form medical conditions while enforcing (ϵ, 0)-di�erential privacy has the potential to be highly
sensitive and require a high privacy budget, as patients can have several medical conditions and
so removal of a single one can change the counts in several of the m needed histogram queries.
We now show that with our n database construction, selecting ϵ = max(ϵ1, . . . , ϵn) we can achieve
(ϵ, 0)-di�erential privacy by applying the Laplace mechanism with the very reasonable sensitivity
∆f = 1 to each query. Referencing [3] heavily, we can make and prove the following claim:

Claim. Adding noise sampled from Lap(1/ϵ) to each count and returning the index of the largest

count is (ϵ, 0)-di�erentially private in aggregate.

Proof. Let D ′ be a database, and D = D ′ ∪ {a}. Let c and c ′ denote the vectors of histogram counts
when the databases under consideration are D and D ′, respectively. We keep the following two
properties in mind:

• Monotonicity of Counts. For all j ∈ [m], c j ≥ c ′j .

• Lipschitz Property. For all j ∈ [m], 1 + c ′j ≥ c j .

Fixing any i ∈ [m] we now bound the ratio of the probabilities that i is selected with D and with
D ′ both from above and below. Let r−i represent a draw from [Lap(1/ϵ)]m−1, which is used to add
noise to all counts but the ith histogram cell. De�ning Pr[i |ξ ] as the probability that the condition
at index i is selected as the most common condition, conditioned on xi , we now argue the privacy
properties of each r−i independently.

Let’s �rst argue that Pr[i |D, r−i ] ≤ eϵPr[i |D ′, r−i ]. De�ne

r ∗ = min
ri

: ci + ri > c j + r j ∀j , i

Since we’ve �xed r−i , i will be output as the most common medical condition in database D if
and only if ri ≥ r ∗. We have that ∀ 1 ≤ j , i ≤ m:

ci + r
∗ > c j + r j

=⇒ (1 + c ′i ) + r ∗ ≥ ci + r
∗ > c j + r j ≥ c ′j + r j

=⇒ c ′i + (r ∗ + 1) > c ′j + r j
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Hence, if ri ≥ r ∗+1, then the ith count will be maximized with databaseD ′ and noise vector (ri , r−i ).
We can now complete the proof of the forward direction as follows, where each ri ∼ Lap(1/ϵ)
below.

Pr[ri ≥ 1 + r ∗] ≥ e−ϵPr[ri ≥ r ∗] = e−ϵPr[i |D, r−i ]

=⇒ Pr[i |D ′, r−i ] ≥ Pr[ri ≥ 1 + r ∗] ≥ e−ϵPr[ri ≥ r ∗] = e−ϵPr[i |D, r−i ]

We conclude that Pr[i |D, r−i ] ≤ eϵPr[i |D ′, r−i ] as desired.

The reverse direction can be shown in a similar manner, and so we argue that Pr[i |D ′, r−i ] ≤
eϵPr[i |D, r−i ], de�ning

r ∗ = min
ri

: c ′i + ri > c ′j + r j ∀j , i
Again, now that we have �xed r−i , i will be output as the most common medical condition in
database D ′ if and only if ri ≥ r ∗. We have that ∀ 1 ≤ j , i ≤ m:

c ′i + r
∗ > c ′j + r j

=⇒ 1 + c ′i + r ∗ > 1 + c ′j + r j
=⇒ c ′i + (r ∗ + 1) > (1 + c ′j ) + r j

=⇒ ci + (r ∗ + 1) ≥ c ′i + (r ∗ + 1) > (1 + c ′j ) + r j ≥ c j + r j

which allows us to conclude that when ri ≥ r ∗ + 1 the maximum count medical condition will be
selected as the one at index i when we have database D with noise vector (ri , r−i ). Hence we see
that

Pr[i |D, r−i ] ≥ Pr[ri ≥ r ∗ + 1] ≥ e−ϵPr[ri ≥ r ∗] = e−ϵPr[i |D ′, r−i ]

We conclude that Pr[i |D ′, r−i ] ≤ eϵPr[i |D, r−i ] as desired, and since we selected ϵ as the maximum
of all individual privacy constraints, each individual database’s privacy budget is respected. �

4.2. Utility �eries

Utility queries are queries where, unlike counting queries, a utility function is applied to outputs
and a small amount of noise over the resultant computed quantity can signi�cantly change its
utility. Notably, these queries consist of situations where the output space consists of an arbitrary

25



range rather than N as with counting queries. Speci�cally, we consider the problem of optimal

dosage pricing, the best price at which to sell a pharmaceutical drug to maximize revenue.
Standard utility queries can be made (ϵ, 0)-di�erentially private via the exponential mecha-

nism.

De�nition 4.2.1 (The Exponential Mechanism). Given any arbitrary range R and utility function
u : N |X | × R → Rk the exponential mechanism is de�ned as

MEXP (x ,u(·, ·),R)

where each r ∈ R is selected with probability proportional to exp( ϵu(x,r )2∆u ). ∆u represents the
sensitivity of utility function u, de�ned as follows:

∆u = max
r ∈R

max
x,y : | |x−y | |1≤1

|u(x , r ) − u(y, r )|

We consider now that each of our databases xi consists of tuples (di j ,pi j ) the required dosage
for each user and the maximum price they are willing to pay per unit (i.e. milligram) for a given
drug. Naturally, the higher the price, the fewer users will buy it, but the lower the price, the lower
the pro�t margins; thus, optimal pricing is important. Selecting ϵ = min(ϵ1, . . . , ϵn) we prove that
we can determine a “good” dosage price with high probability, where good is determined in terms
of the highest-utility price:

OPTu (x) = max
r ∈R

u(x , r )

Under the exponential mechanism, the utility of the output price can di�er from OPTu (x) by no
more than an additive factor ofO((∆u)/ϵ) log |R |). Referencing [3] heavily, we make the following
claim:

Claim. Fixing a database x and let ϵ = min (ϵ1, . . . , ϵn). Then:

Pr

[
u(ME (x ,u,R)) ≤ OPTu (x) −

2∆u
ϵ

(
ln |R | + t

)]
≤ e−t
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Proof. Let ROPT = {r ∈ R : u(x , r ) = OPTu (x)}, the set of elements of R which attain the optimal
utility score OPTu (x). Then, we can observe that:

Pr[u(MEXP (u,x ,R) ≤ c)] ≤ |R| exp(ϵc/2∆u)
|ROPT | exp(ϵOPTu (x)/2∆u)

=
|R |
|ROPT |

exp
(
ϵ(c − OPTu (x))

2∆u

)
≤ |R| exp

(
ϵ(c − OPTu (x))

2∆u

)
The �rst step above follows from noting that each r ∈ R has, by de�nition, unnormalized

probability mass bounded by exp(ϵc/2∆u) when u(x , r ) ≤ c . This bounds the total probability of
elements with utility not equal to OPTu (x) from above by |R | exp(ϵc/2∆u). The �nal step comes
from observing that |ROPT | ≥ 1 and so exp(ϵOPTu (x)/2∆u).

This allows us to show the desired bound:

Pr
[
u(MEXP (x ,u,R)) ≤ OPTu (x) −

2∆u
ϵ
(ln |R | + t)

]
≤ e−t

with appropriate selection of c . Using our de�nition of ϵ , we have:

OPTu (x) −
2∆u
ϵ
(ln |R | + t) ≥ OPTu (x) −

2∆u
ϵi
(ln |R | + t) ∀i ∈ [n]

and so

Pr
[
u(MEXPE(x ,u,R)) ≤ OPTu (x) −

2∆u
ϵi
(ln(|R|) + t)

]
≤ Pr

[
u(MEXP (x ,u,R)) ≤ OPTu (x) −

2∆u
ϵ
(ln(|R|) + t)

]
≤ e−t

Hence, the desired privacy budget requirements for each of the n databases is met if we set
ϵ = min ϵi ∀i ∈ [n]. �

4.3. Composition

In the previous two sections, we have discussed use cases for aggregating datasets while respecting
privacy budgets of each dataset independently. It is also important to consider a second means for
aggregation: composition. Composition refers to making several independent queries to a single

27



dataset in sequence, and a standard goal is to prevent the aggregate information gained from the
union of all queries to violate the desired privacy constraints. This is handled gracefully by the rule
“the ϵs and δs add” [3] - the net privacy budget used by a sequence of queries is simply the sum
of the individual ϵs and δs of the queries. Hence a Policy* contract enforcing (ϵ,δ )-di�erential
privacy can simply track this net privacy budget and simply refuse to answer any additional
queries once it has been exceeded. In fact, chaining queries together can be optimized further to
be frugal with expending privacy budget via the strong composition theorem:

Theorem 1 (Strong Composition Theorem). For every ϵ, δ , δ ′ > 0, and k ∈ N, the class of
(ϵ,δ )-di�erentially private mechanisms is (ϵ ′,kδ + δ ′)-di�erentially private under k-fold adaptive
composition, for

ϵ ′ =
√
2k ln(1/δ ′) · ϵ + k · ϵϵ0

where ϵ0 = eϵ − 1

which is derived and proven in [4].
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5. Implementation & Usability

This section provides relevant implementation details and performance optimizations required to
construct the proposed system architecture in a usable manner.

5.1. WebAssembly and Contract Kit

WebAssembly (abbreviated Wasm) is a binary instruction format which is a target for compiling
high-level languages, which for our implementation refers to Rust. Wasm is practical because it
tries to match CPU semantics rather than language semantics, and so languages that compile to
Wasm tend to avoid the lack of tooling and support that plagues many Ethereum Virtual Machine
(EVM) compatible languages such as Solidity.

Wasm makes it possible to develop con�dential contracts, smart contracts with private state,
in Rust within Oasis Labs’ contract-kit framework, a Docker image that makes it easy to test
and deploy these contracts. When compared to Solidity, using Rust enables policy developers
almost unbounded �exibility for the richness of policies they can implement and make available
to data providers.

For conducting blockchain transactions, we utilize web3c, Oasis Labs’ wrapper around web3 (the
Ethereum Javascript API). While standard blockchain transactions are transparently visible publicly,
web3c transactions are end-to-end encrypted allowing secure communication with contracts via
the underlying RPC calls.

5.2. Oasis Developer Dashboard

Each action taken through Sentinel requires making one or more blockchain transactions with
the contract ecosystem, and each of these transactions requires Oasis DEV tokens to complete.
The Oasis Developer Dashboard is a developer tool used to facilitate smart contract management
and deployment. It is used to deploy contracts within our data governance contract ecosystem,
and provides two critical functions that are important for usability:
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• User Activity Analytics - The Developer Dashboard registers users to contracts with which
they have interacted, and tracks how many tokens have been interacting with the contract
ecosystem.

• Autofunding - The Developer Dashboard periodically checks the number of tokens possessed
by each active user’s account and funds it up to 1 DEV each day if they are signi�cantly
below this limit.

Together, these two functions ensure that users always have su�cient funds required for interaction
with the Sentinel platform for a seamless user experience.

5.3. So� Wallets

The current standard for executing transactions on the Ethereum blockchain is via Metamask, a
secure identity vault which provides a user interface for both managing your identities across
di�erent websites and signing transactions for you. However, executing transactions in this manner
makes building Sentinel infeasible, as it requires an unrealistic number of clicks to function as a
usable web application.

Instead, Sentinel utilizes soft wallets - wallets generated for users upon initial login to the
platform, stored and managed entirely client-side in users’ browsers, and automatically funded
periodically by Oasis Labs. Any interactions with the platform taken by a user are authorized via
transactions initiated via their soft wallets under-the-hood and entirely abstracted away, so that
the application looks and feels like a traditional data sharing application (i.e. Google Drive).

Soft wallets are created via web3c by generating new Ethereum accounts, which are then
registered to relevant contracts within the contract ecosystem via the Developer Dashboard, and
after which they will automatically and regularly receiving funding in the form of Oasis DEV
tokens to interact with Sentinel. The generated account’s private key is stored and persisted via
the user’s browser localStorage, a persistent key-value store unique for each webpage origin,
and is used to unlock the corresponding soft wallet each time the user logs in.
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6. Evaluation

In this section, we validate the performance and usability of Sentinel.

6.1. Experimental Setup

We evaluate Sentinel in two distinct ways: measuring end-to-end latency and costs for speci�c
operations from our governance API, and by evaluating the utility and quality of de-siloed data
constrained by access policies through Sentinel for running a simple machine learning pipeline.
End-to-end latency is measured for a user using a standard 2.9 GHz Intel Core i7 processor to
interact with our platform. For the latter, we train a simple multi-layered perceptron (MLP) both
using siloed datasets and also with Sentinel using aggregated datasets with speci�ed access
policies. These metrics are computed using a proof-of-concept that implements the basic solution
presented in 3.2, and validating that the platform is still satisfactorily usable. This bodes well, as
usability can only increase with the scalable contract ecosystem and other optimizations.

6.2. End-to-end Latency

We measure and tabulate gas costs for basic data governance operations. These costs are �xed and
deterministic given operation parameters and internal contract state, since they are a function of
the number of computational steps taken.
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Figure 6.1.: Gas costs for basic governance operations

Notably, the gas costs are quite close in both the con�dential and non-con�dential cases, with the
di�erence resulting from overhead associated with encryption of con�dential state. Additionally,
we measure the end-to-end latency of performing these operations, both in the con�dential and
non-con�dential cases.

Table 6.1.: End-to-End Operation Latency

Operation Non-con�dential Contract Con�dential Contract

Create project 2647ms 5200ms

Delete project 2594ms 5135ms

Create dataset 2562ms 4531ms

Delete dataset 3498ms 6218ms

Add policy 2594ms 5305ms

Remove policy 2994ms 6475ms

Successful data access 3495ms 5541ms

Failed data access 4161ms 6638ms

Fetch audit log 1525ms 9111ms

Overall, transactions on the Ethereum blockchain take 15 seconds on average, and so these
margins all signi�cantly outperform those metrics. Indeed, even in the considerably slower
con�dential case the time for operations is better than this by a factor of nearly 3. All of these
presented latencies are reasonable for an end user and with su�cient usage of “optimistic updates”
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and other UI tricks we are able to construct a highly-usable governance application backed by the
Oasis blockchain.

6.3. Performance

Figure 6.2.: Training performance on UCI Heart Disease dataset

To validate the utility of de-siloed data under various regulations and access policies, we train a
simple multi-layer perceptron for binary classi�cation under a spectrum of constraints via the
UCI Heart Disease dataset, which contains information such as the age, sex, cholesterol, heart rate,
etc. for a set of patients. This dataset is divided into 3 randomly selected partitions and assigned
to each of 3 data providers, who have the following (typical) access policies for the patients whose
data they are in charge of managing:

1. Provider 1: Provider 1 has decided that 50% of their patients’ data cannot be made available
to the other data providers.
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2. Provider 2: Provider 2 has decided not to make their patients below the age of 50 and with a
cholesterol level above 300 mg/dL visible to the other providers.

3. Provider 3: Provider 3 has opted to hide their patients’ age, sex, and maximum heart rate.

We consider scenarios where each provider only trains using only their siloed data, as well as
in aggregation with policy-constrained datasets via Sentinel. Additionally, we consider the case
of an external analyst, who has access only to policy-constrained datasets. Any missing values in
the aggregate dataset for each case are speci�ed using a simple mean imputer, without any special
optimizations. The performance evaluation via learning curves of cross-validation accuracy for
each setup can be seen in Figure 6.2, each of which are compared to the baseline learning curve
derived from training over the entire UCI Heart Disease dataset without restriction. These plots
are generated using results aggregated over 100 iterations of cross-validation, with 20% of data
selected at random used as a validation set.

Notably, this validates conservation of data quality in typical platform uses cases. Even with
considerably restrictive and robust access policies, training via Sentinel yields performance that
mirrors the baseline while training via siloed data alone yields signi�cantly lower cross-validation
scores.
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7. Related Work and Future Direction

There are several future directions for further development of Sentinel, both in terms of perfor-
mance optimization and policy aggregation.

This work draws upon and extends ideas initially described in [12, 18]. [12] describes a data
marketplace wherein provider/consumer interactions occur via a framework similar to the proposed
contract ecosystem, but where payment for data usage is the primary enforced policy. It describes
data economics as a vehicle for an organic, empirical evaluation of “good quality” data. It would be
an interesting case study to investigate similar use-case driven policy formalism and community
standards.

Prior work in [6] proposes an e�cient system for veri�able time-window queries and subscription

queries rooted in extending blockchain block headers to support an authenticated data structure for
veri�cation. Using skip-lists for building an inter-block index and Jaccard similarity for building
an intra-block index, the authors of [6] achieve a performant blockchain for the types of queries
described. These ideas are very applicable to improve performance of the audit logging by data
providers and/or supporting a noti�cation system via subscription queries on Sentinel.

Another future avenue for work is with policy commutativity and hierarchy. When multiple
policies are applied to a consumer accessing a dataset, in which order should the respective
before() ( or after(), or validate()) functions of the two policies be applied? Similarly, if the
computational result of a data access is itself stored as a new dataset, is it necessary to enforce
any “residual” policies over the outputs before allowing additional parties to perform any further
computation? These are largely still open questions. [11] has made progress towards addressing
concerns about hierarchical policies for the case of di�erential privacy, de�ning a formal type
system for automatically evaluating the di�erential privacy of composable programs such as
machine learning algorithms.

Finally, it would be interesting to evaluate TEEs in GPUs for applications such as machine
learning rather than TEEs in CPUs, which are the current industry standard. [21] proposes an
architecture for implementing exactly this in o�-the-shelf NVIDIA GPUs, and [13] describes a
similar idea using FPGA accelerators.
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8. Conclusion

In this paper, we have proposed and studied Sentinel, a novel architecture for fully-decentralized
data governance. This architecture achieves decentralization via a robust contract ecosystem
on the Oasis blockchain and achieves high-throughput performance and usability via trusted
execution environments. We have motivated this design with applications in healthcare and
analyzed relevant example policies such as those that enforce di�erential privacy while querying
over data in aggregate. Medical data sharing has traditionally been siloed and severely limited
by factors such as data privacy and HIPAA compliance, even though collaboration unequivocally
results in more accurate machine learning algorithms and more insightful data analytics.

This project is only the beginning, and we hope that it serves as a case study for more widespread
adoption of such a platform. The social utility it has the potential to unlock is unbounded.

There are many more directions for further exploration that are promising. Deeper investigation
into formalism for policy de�nition, in particular for policy aggregation and commutativity analysis
such as in [7, 11] are areas of study that will increase the richness and robustness of Sentinel’s
computational support. Better optimization for state storage and access logging similar to [6] is
another direction for exploration, as is increasing TEE support from CPU to GPU-based, such as
in [13, 21], for optimizing performance for machine learning and other computationally intense
applications.

Interested parties should reach out and email ennsharma@berkeley.edu to collaborate or
request a demo.
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A. Theorems & Lemmas

Here we show that applying the Laplace and exponential mechanisms to certain classes of functions
preserves (ϵ, 0)-di�erential privacy, originally from [3].

A.1. The Laplace Mechanism

Theorem 2. The Laplace mechanism preserves (ϵ, 0)-di�erential privacy.

Proof. Let x ,y ∈ N |X | be such that | |x − y | |1 ≤ 1, and de�ne f : N |X | → Rk . Let px and py denote
the probability density functions ofMLAP (x , f , ϵ) andMLAP (y, f , ϵ), respectively. Comparing
the two at an arbitrary point z ∈ Rk , we can derive

px (z)
py (z)

=

k∏
i=1

(
exp(− ϵ |f (x )i−zi |∆f )

exp(− ϵ |f (y)i−zi |∆f )

)
=

k∏
i=1

exp
(
ϵ(| f (y)i − zi | − | f (x)i − zi |)

∆f

)
≤

k∏
i=1

exp
(
ϵ | f (x)i − f (y)i |

∆f

)
= exp

(
ϵ · | | f (x) − f (y)| |1

∆f

)
≤ exp(ϵ)

Above, the �rst inequality is simply an application of the triangle inequality, and the last inequality
stems directly from the de�nition of sensitivity and our given that x and y are neighboring
databases. By symmetry, it follows that py (z)

px (z) ≥ exp(−ϵ). �

A.2. The Exponential Mechanism

Theorem 3. The exponential mechanism preserves (ϵ, 0)-di�erential privacy.
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Proof. Let x ,y ∈ N |X | be such that | |x − y | |1 ≤ 1. De�ne a range R representing the output space
of the exponential mechanism and a given utility function which maps from database/output pairs
to utility scores u : N |X | × R → R. Let px and py denote the probability density functions of
MEXP (x ,u,R) andMEXP (y,u,R), respectively. Comparing the two at an arbitrary point r ∈ R
we can derive

px (r )
py (r )

=

(
exp( ϵu(x,r )2∆u )∑

r ′∈R exp(
ϵu(x,r ′)

2∆u )

)
(

exp( ϵu(y,r )2∆u )∑
r ′∈R exp(

ϵu(y,r ′)
2∆u )

)
=

(
exp( ϵu(x,r )2∆u )

exp( ϵu(y,r )2∆u )

)
·
(∑

r ′∈R exp(
ϵu(y,r )
2∆u )∑

r ′∈R exp( ϵu(x,r )2∆u )

)
= exp

(
ϵ(u(x , r ′) − u(y, r ′))

2∆u

)
·
(∑

r ′∈R exp(
ϵu(y,r )
2∆u )∑

r ′∈R exp( ϵu(x,r )2∆u )

)
≤ exp

(
ϵ

2

)
· exp

(
ϵ

2

)
·
(∑

r ′∈R exp( ϵu(x,r )2∆u )∑
r ′∈R exp( ϵu(x,r )2∆u )

)
= exp(ϵ)

By symmetry, it follows that py (r )
px (r ) ≥ exp(−ϵ). �
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B. User Interface

This section gives a face to Sentinel, and showcases several user �ows by which providers and
consumers can interact with the platform. Providers and consumers alike are initially met with a
login page, where they can enter an email address and have a soft wallet (described in section 5.3)
generated for them.

Figure B.1.: Login page and wallet generation

Provider provider@oasislabs.com has now successfully logged into Sentinel, and is taken
to a landing page, where they can create new collaborative projects.
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Figure B.2.: Create a collaborative project

The provider now needs some datasets to add to this project, which they can do by visiting the
Datasets tab and uploading one. Here, the provider uploads heart.csv - the UCI Heart Disease
Dataset. They can open and view the dataset directly through Sentinel, as shown below.
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Figure B.3.: Upload and view a dataset

The provider can share their dataset with another user, consumer consumer@oasislabs.com.
We have implemented some stock range and string match policies for providers to use, and here
the provider applies 2 range policies that together act to support Provider 2’s policy from section
6.3. Speci�cally, patients with a cholesterol level above 300 mg/dL and with an age less than 50 are
not made visible to the consumer.
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Figure B.4.: Share a dataset with enforce policies

Consumer consumer@oasislabs.com can now view heart.csv in their Shared Datasets tab.
However, the only rows of the table returned to them are those where the policy has been enforced.
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Figure B.5.: View a shared dataset as a consumer

The provider provider@oasislabs.com can now visit the management console for their
heart.csv dataset, and view an audit log of interactions with their dataset. Below, they see
their access to the dataset, the consumer’s successful access to the dataset, and a failed access after
access revocation.
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Figure B.6.: Audit a dataset

Finally, the provider can upload a second dataset and add them both to their created project
Healthcare Collaboration. Audit logs for all added datasets can be viewed in aggregate and
other permissioned users can link their policy-protected datasets.
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Figure B.7.: Collaborative data sharing
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