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ABSTRACT 
 

When using a computational notebook, programmers tend 
to run, overwrite, and delete cells many times. These 
actions, which are core to exploratory programming, tend to 
create a long history of outputs that become fragmented and 
difficult to track. These outputs are critical to returning to 
past states when programmers make mistakes in 
implementation. They are also critical to understanding the 
evolution of a notebook which can help programmers 
improve how they code in different situations. To resolve 
this, this paper introduces the Output Archive, a thumbnail-
based output history built into Jupyter Lab that 
automatically records all outputs produced over the lifetime 
of a notebook and makes the code that produced them 
available. This paper also introduces a new class of 
grouping filters which allows users to navigate large output 
histories by clustering outputs based on similarities in their 
underlying code (similar function name, object names, 
parameters). To test the tool, a usability study was run on 
12 computational notebook users who found the Output 
Archive useful and were able to use its accompanying 
grouping filters to quickly find important outputs. 

 
 

INTRODUCTION 

 

When a programmer wants to explore a new data set, 
implement algorithms, or test different hypotheses, they use 
computational notebooks. These notebooks allow 
programmers to run individual pieces of their programs 
independently of each other. This is a critical affordance in 
exploratory programming because it saves programmers 
time and enables programmers to iterate and improve their 
code at a much quicker pace. For example, if a programmer 
has just trained multiple neural networks, instead of re-
running the entire script to change how one of the models 
was visualized, in a notebook they could just change the 
plotting code without affecting the training code. The 
specific feature that enables this affordance is the cell 
structure of computational notebooks. Each cell is a 
runnable script that enables a user to break up their program 
into modular chunks.  
 

Often, each time a programmer runs a cell, they create an 
output (table, graph, text, etc.) in order to check that their 
code is working as intended or in order to visualize some 
part of the data set for analysis. As the programmer tweaks 
and improves their code in a notebook, they quickly 
produce a “large number” of outputs that becomes 
“laborious” to sort through [1]. These past outputs produced 
are vital to tracking “which steps” in the notebook “lead to 

Jupyter’s archive: search through all past outputs generated in a notebook 
 



which results”, or to recover previous states in the notebook 
[2].  

Unfortunately, there has been a lack of useful tools that 
help computational notebook users keep track of the outputs 
they generate. Generally, notebook users resort to using 
“version control tools”, copying “scripts” and “outputs”, or 
commenting out code in order to take snapshots of the 
notebook’s state [1]. Recent work in this field, however, has 
proved more promising with the advent of output history 
extensions that enable users to explore different output 
variants [1]. These recent tools, however, only offer 
histories relevant to specific cells and fail to look at the 
relationships between outputs spread through the entire 
notebook. 

In this paper, we aim to improve how notebook output 
history is preserved, presented, and searched. We introduce 
a tool that automatically organizes and makes past outputs 
searchable. We use a thumbnail-based interface to display 
all outputs ever produced in a notebook. This tool is built 
on top of code gathering tools which associates outputs 
with the exact slice of code that produced it [9]. A slice is a 
mini-program that only contains the code that led to a 
specific output. Without slices, each output would be 
associated with the entire notebook that produced it, 
making it tedious or even impossible for the programmer to 
recover the relevant code. 

Other techniques leveraged in implementation include 
Abstract Syntax Tree (AST) node traversal, program 
parsing, and AST diffing. These techniques allow us to not 
only compare the lines of code that produced an output, but 
also break apart those individual lines to find similarities. 

This paper makes two unique contributions. The first is the 
design and implementation of the Output Archive for 
Jupyter Lab, an interface for Jupyter Notebook which is an 
open-source notebook used by millions of people [3]. This 
tool allows computational notebook users to quickly 
recover the exact slice of code that produced any past 
output. A key feature that enables quick output recovery is 
our new class of grouping filters that enables a user to 
group outputs by similarities in the code that produced 
them. For example, with our group by function name filter, 
a user can find the name of the function that produced a 
unique plot even after they overwrote the code preceding 
the plot. The unique insight powering these grouping filters 
is that users can see valid relationships between outputs 
produced across different cells, instead of just in the same 
cell which is what current tools focus on [9].  This more 
flexible definition of variants, or the different versions and 
types of outputs, and similarity in outputs allowed us to 
achieve a large dimensionality reduction that made output 
search easier 

Users looking to recover a past output merely have to click 
on a toolbar command which visualizes the outputs (text, 
tables, graphs, errors, etc.) generated and search through the 
outputs using filters.  

The second contribution of this paper is a controlled 
usability study that explores the usability and usefulness of 
the Output Archive and its filters in navigating large output 
histories. 12 notebook users from a variety of backgrounds 
ranging from students to software engineers participated in 
an in-lab study to recover past outputs produced by a 
notebook coding session. We discovered that not only was 
the Archive useful, but the filters we developed enabled 
easier search. On top of this, we discovered a variety of 
ways programmers would like to group and search their 
outputs, which revolved around visualizing different types 
of variants. For example, one variant that participants stated 
they would like to see is grouping outputs that were 
produced by the same data set. 

 

RELATED WORK 
 

Software history, the history of code executions (logs of 
executions), has been a core focus of academic research for 
many years. Software history can help exploratory 
programmers recover from mistakes and learn more about 
their code. Unsurprisingly, over 80% of programmers find 
software history useful while developing software [4].  

In order build a history for computational notebooks, we 
studied past work in making histories for other coding 
systems. Some approaches have instrumented entire 
operating systems in order to record and visualize all past 
activities relevant to code generation (e.g. creating code, 
visiting a coding website, viewing an image) [5]. Other 
approaches have narrowed their scope by just instrumenting 
an underlying programming language like Python and 
recording all function calls and associated parameters [6].  
Most relevant to our work are tools that instrument the code 
editor to provide useful features like the ability to undo 
changes back to a previous state of code [7]. All of these 
approaches have some way of grafting tools for logging and 
displaying history onto existing coding environments and 
making the history accessible to programmers. We took 
inspiration from these approaches and decided to introduce 
an extension to computational notebooks that managed the 
logging and displaying of history.  

In order to build our notebook history, we had to figure out 
what to record. One approach in this space revolved around 
preserving an individual cell’s code history and enabling 
programmers to swap a cell with previous versions of itself 
[2]. Another tool took this same approach except dove 
deeper in the cell and recorded and presented histories of 
individual, user versioned scripts [8]. The tool which we 
built on top of, code gathering tools, also enabled users to 
see all previous versions of a cell’s code when examining 
code slices [9]. This past work informed the overall design 
our Output Archive architecture, but we deviated from their 
code-focused histories when creating our output-focused 
history because our primary goal was to help programmers 
find past important outputs.  



Paradigm 1: Single output in a cell – code that 
produced that output is last line of preceding cell 

 

Paradigm 2: Multiple Outputs in a cell.  
 

The tool our output-focused history most closely resembles 
is Verdant, which is a plugin that records history of all 
outputs produced by a specific cell in a notebook. This tool 
provides a graphical interface for navigating a specific 
cell’s past outputs [1]. While we share the same type of 
output history, we chose to present our history in a way that 
was more optimized for search. 

The primary purpose of our output history is to enable users 
to find a past output and its associated code effectively. 
This meant that we had to take a large history and provide 
different ways to filter it in order to make searching easier. 
Clustering outputs only by their common cells restricted the 
different types of filters that could be created. Past work has 
suggested that there exist types of variants that users care 
about besides outputs or code versions that originate from 
the same cell [9]. We recognized the validity in this and 
structured our Output Archive so that our default history 
view showed all outputs generated in the notebook in 
unfiltered rows and columns. 

With our unstructured, default history interface, we set out 
to explore how we could cluster the outputs in ways that 
make sense to the user. We took inspiration from other 
tools that cluster code, such as those in the education realm, 
where past attempts have successfully clustered different 
types of homework code into a navigable user interface 
[10]. In the tutorial realm, approaches have used clustering 
to make it easier to navigate a vast body of tutorials [12] 
[13]. In software engineering, tools have focused on 
clustering GitHub code in order to find usable code snippets 
using abstract syntax tree (AST) traversal [11]. The 
existence of these different approaches in different domains 
motivated us to use clustering algorithms in our grouping 
filters and to implement them with AST traversals. 
Furthermore, these approaches demonstrated that the best 
way to cluster bodies of work/code was to focus on 
clustering specific subsets of code. 

The final area we explored was how users traditionally 
found the code that produced an output. Previous attempts 
have been made at tracing a program output back to the 
code that caused it [14], or using visual effects on web 
pages to find the web code that produce it [15]. These 
attempts showed us that finding the most granular code that 
caused an output was important, so we focused on 
associating notebook outputs with the most relevant lines of 
code possible, their slices. 

 

 

 
 

EXPLORATORY ANALYSIS OF OUTPUTS AND 
VARIATION IN COMPUTATIONAL NOTEBOOKS 
 

Before we implemented our Output Archive, we analyzed 
the outputs of 25 notebooks from a random sample of 1000 
notebooks of the UCSD Jupyter Notebook GitHub Dataset 
which contains approximately 1.25 million Jupyter 
Notebooks [16]. We felt this was necessary because we 
wanted to base our implementation and design decisions in 
data, instead of anecdotal evidence. This data set was a 
snapshot of all available Jupyter Notebooks on GitHub as 
of July 2017. We analyzed these notebooks in order to 
answer two primary questions that would help us craft 
grouping algorithms that would make it easier find 
important outputs: 
 

Q1) How is the code that produces outputs distributed 
throughout cells? Are there usually multiple outputs per 
cell? Or only 1? 

Q2) What are the different ways a programmer might want 
to group outputs in an output archive? Do we have to look 
at the outputs themselves, or are there similarities in the 
code that produced them? 

 
How many outputs does each cell have? 

The first characteristic we noticed was that cells either 
contained multiple outputs, or a single output that was 
typically the last line of the cell. We rarely noticed single 
output cells where the output was not the last line of the 
cell. In the following images, paradigm 1 produces one 
table with the head() function. 

 

In paradigm 2, the 2 plot() functions produce separate plots. 

 

From an analysis of the 25 random notebooks, we saw that 
paradigm 1 accounted for roughly 80% of all outputs 
produced. This meant we could focus on only grouping 



Figure 10: The three parts of code that causes outputs 
 

Figure 11: 37th Image printed out in a notebook 
 

Figure 12: 38th Image printed out in a notebook 
 

Figure 13: 40th Image printed out in a notebook 
 

Figure 14: 41st Image printed out in a notebook 
 

paradigm 1 outputs (code that produced output is directly 
above the output and is the last line of the preceding cell) 
and still produce useful groupings. This was fortunate 
because we were unable to properly slice multiple outputs 
in the same cell because our slicing algorithm provided by 
code gathering tools wasn’t set up to handle that case. 
How can we group outputs together? 

The next thing we looked for in these notebooks were 
different ways to group outputs together in order to capture 
different forms of variants. These different forms of 
variants would allow us to filter huge lists of outputs into 
groupings that made finding important outputs easier.  

From the outset, we decided to capture variants by grouping 
outputs that were similar in some way. This presented a 
design challenge because it’s not immediately obvious what 
defines similarity. Outputs could be similar in their content, 
data type, or underlying data set. 

In looking at the code of these outputs, we noticed that they 
differed primarily in 3 ways: their object, function, or 
parameters (Figure 10): 

 

Taking this observation, we found many examples in the 
data set: 

 

 

 

 

 

In these two outputs, the programmer modified the 
parameters of their Image() function to produce two images 
of a table that shared similar values (Figure 11 & 12). We 
saw that examples like this, where the programmer only 
modified the parameters, object, or function, occurred at a 
high frequency, so we chose to capture similarity through a 
simple heuristic: Similar outputs might share similar code.  

While this heuristic made groupings that were 
understandable to a programmer, this definition also 
produced some groupings that were less clear: 

 

 

 

 



Although these two images have different contents, they are 
similar in data type (both are images), and they might share 
a similar purpose: displaying all the images of an image 
library (Figure 13 & 14). Ultimately, even if our heuristic 
creates groupings that are unclear or false positives, we 
were satisfied because it increased our chances of capturing 
axes of similarities that we couldn’t predict beforehand. 

We structured our grouping algorithms to capture how the 
code that causes outputs differed in objects names, function 
names, and parameter names. 

To get a sense for how often we could properly group 
outputs using the similar code heuristic, we took all the 
pairs of outputs generated by our heuristic and divided it by 
the total number of possible pairings (total number of 
permutations of outputs) in each of the 25 notebooks. We 
then averaged this percentage across all notebooks. In the 
end we found that our grouping heuristic had the capacity to 
group together 41% of all possible pairings on average in a 
notebook. This number is relatively high because many of 
the notebook in the data set were relatively short and 
created for very specific purposes (e.g. printing 5 plots that 
were related to each other). 

While many of the other possible groupings may not make 
sense, this percentage shows that there exist other 
approaches that could capture different types of variants. 
One such type of variants could be outputs that had similar 
input data, but different output code. Another type of 
variants not captured by our heuristic could be percentage 
of lines in the respective code slice that were the same. 
These cases are common enough that they could each easily 
cover over 5% of all possible pairings.  

We ultimately chose to implement only a subset of the 
grouping algorithms we came up because they didn’t appear 
with enough frequency. Another reason is that we didn’t 
want to overwhelm the user with too many grouping filters. 

 
DESIGN MOTIVATIONS 
 

The initial motivation to build an Output Archive stemmed 
primarily from a study of past work done in this space 
[1][2][9]. In each of these studies, users consistently 
expressed desire for some sort of version control for 
computational notebooks. Those users also expressed an 
interest in having features that allow them to recall how 
something was produced in a way that current versioning 
tools don’t catch. We outline in this section the specific 
motivations behind various design decisions. 

Group outputs based on the data transformations that 
produced them, not the cell they come from. We wanted 
some way to achieve dimensionality reduction from the 
unfiltered view in order to make search easier. Past work in 
this space has explored grouping outputs by the cell they 
were generated in, but we analyzed a 25 notebooks at 

random in the UCSD Jupyter notebook dataset and found 
that outputs generated in different cells shared many 
similarities and variants that would make sense to a user if 
clustered together [16]. Ultimately, we felt that grouping 
based on underlying code and not location in a notebook 
would achieve groupings that could capture different types 
of variants, especially considering cells can get overwritten. 

Guide exploration with output thumbnails, not code. Faced 
with the reality that notebooks users generate a plethora of 
outputs during their coding sessions, we required a 
condensed way to display all the outputs in an unfiltered, 
top-level view. One alternative we considered was just 
listing the code that caused each output in a table view. 
From our body of research, we discovered that 
programmers generally look at outputs, changelogs, and 
source code when they are navigating an overabundance of 
code [18]. This inspired us to try out the visual output 
approach as an alternative to the source code and changelog 
approach. 
 
INTERACTING WITH THE OUTPUT ARCHIVE 

 

In order to understand the user experience of the Output 
Archive, we will walk through a short scenario using 
Jupyter Lab. Our scenario is centered around a programmer 
named Abe who is working with an IMDB movie ratings 
data set. His goal is to understand different characteristics 
about popular and unpopular movies, like their genre, 
duration, and ratings. Over the course of a few hours Abe 
generates hundreds of different outputs from dozens of 
different cells. These outputs include text, errors, tables, 
and images.  

At some point in the present, Abe tries to recall an output 
that he previously produced which counted the number of 
PG-13 movies in his dataset. He’s long since overwritten 
the initial cell that produced this output and he only vaguely 
remembers pieces of the code he used to generate that 
output. He anticipates the result will be hard to reproduce. 
Eager to retrace his steps, he turns to the Output Archive for 
help. 
 
Opening up the Archive and an initial scan of outputs 

Abe clicks on View Archive in the plugin toolbar on 
Jupyter Lab (Figure 1). A separate notebook tab, labeled 
“archive”, appears and he is met with an unfiltered archive 
that contains all outputs ever produced in his notebook, 
even if the kernel was restarted at any point (Figure 2). 



Figure 3. Clicking on a thumbnail 
 

Figure 4. Clicking on type filters 
 

 
 
 

He scrolls through to see if any of the output thumbnails are 
immediately obvious to his task at hand. He notices that 
these output thumbnails are scaled down so that many of 
them fit on his large desktop monitor.  

 
 

He also notices that the outputs are listed in reverse 
chronological order so that he can access the most recently 
generated cells more easily than the older cells. He clicks 
on a few of the outputs to get greater detail about the exact 
lines of code that caused the selected output (Figure 3). 
Upon clicking on an output, a full-size scrollable version of 
the output and the ordered subset of code that produce it 
appears. 

 

He notices that he could export this code to a new notebook 
if he wanted to recreate the output. After doing this a few 
times with different outputs, he remembers that he’s 
looking for some sort of text output. 
Trying the first few type filters 

Abe notices the type filters at the top of the Output Archive. 
He clicks on the type filter and sees that he can select table, 
error, text, and image (Figure 4). 

 

He clicks on error because he wants to see how many he’s 
produced over his coding sessions and his Archive narrows 
down to 15 errors (Figure 5). Abe realizes that this view 
could be useful if he ever runs into an error and wants to 
remember how he dealt with it in the past. 
 

Figure 1. Plugin toolbar on Jupyter Lab 
 

Figure 2. Initial archive view 
 

Filters 

Thumbnails 

Expanded 
Thumbnail 

Code that produced 
output 



Figure 5. Clicking on type filter: error 
 

Figure 6. Clicking on type filter: text 
 

Figure 7. Clicking on group_by filter 
 

Figure 8. Clicking on group_by filter: function 
 

Figure 9. Export code to new notebook 
 

 

Abe, remembering that he’s looking for a text output, uses 
the type filter to narrow down his selection to just 
thumbnails that show text outputs (Figure 6). 
Unfortunately, he realizes that he’s still dealing with over 
70 different outputs.  
 

 

 
70 Outputs is ultimately too many to parse through 
individually, especially since they were all produced for 
different purposes. After exploring some more, he gets a 
feel for how some of his older output code was structured. 
He then realizes that he used some sort of count function to 
produce his text output.  
 
Using grouping filters to group by code 
 
Abe decides to use the group by function name filter in 
conjunction with the text filter (Figure 7). 
 

 

Abe scrolls down to find a function called value_counts() 
(Figure 8). 
 

 

After scrolling horizontally for a moment, he sees a tally of 
the number of films that have specific ratings. He’s arrived 
at his output and decides to replicate this exact slice of code 
so he can do further manipulations on the data set. He 
exports it to a new notebook (Figure 9). 
 

 

 

IMPLEMENTATION 
 

The Output Archive was built on top of code gathering 
tools, an existing plugin for Jupyter Lab [9]. The code 
gathering tools provided a convenient way to associate each 
output with its associated slice of code. The Output Archive 
was implemented with roughly 1,000 lines of TypeScript 
code. This code covered both tweaks to the program 
analysis code and the user interface implementation. 
Persistent History 



Figure 15: Cells grouped together by function name 
value_counts() 

 

Figure 16: Cells grouped together by object name, 
movies.describe() 

 

Figure 17: Cells grouped together by parameter name,  
kind=“box” 

The code gathering tools extension provided an execution 
log of all cells. These cells contained various pieces of 
information like id, text, and outputs. Each time a cell is run 
in a notebook, it is stored in code gathering tool’s execution 
log.  

One of the initial challenges we faced was creating a 
persistent history that exists after a user leaves Jupyter Lab. 
Wanting to avoid introducing an external storage 
repository, we discovered that Jupyter Lab maintains a 
metadata associated with each notebook that persists 
between individual sessions. This implementation decision 
makes notebooks more shareable because the history is 
preserved in the metadata, and it allows someone to open 
up a notebook years after its creation and still have access 
to all the outputs produced and the code that produced 
them. To take advantage of this feature, we implemented a 
serialization of a notebook’s entire execution log (execution 
time, code, output) on save, and deserialization of it on 
open. Another obstacle we faced in making a persistent 
history was the fact that Jupyter notebook changes the ID of 
cells on different kernel sessions. To solve this, we had to 
create a persistent ID stored in the metadata of a cell that 
would stay constant even if the default cell ID changed. 
Visualization 

The front end is implemented as a Widget, a building block 
UI element of Jupyter Lab. The frontend was developed 
with large laptops and desktop displays in mind and utilizes 
different jQuery events to handle the filtering and clicking 
features. The filters function primarily based on a class 
tagging system. As each widget is generated, it’s pre-tagged 
with a type of output (table, image, text, etc), and a specific 
type of grouping. As a user clicks on different filters, the UI 
hides all elements that don’t have the specified class. This  

provides a large performance gain while using the Output 
Archive because the grouping filters don’t need to run 
every time a user clicks on them. There is a setup cost of 1-
5s in order to properly load and sort all of the different 
outputs. This cost occurs only when archive is initially 
loaded. (this could easily be folded into the initialization of 
the notebook itself and can be unnoticeable to the user. 
Grouping Filters 

In order to develop our grouping algorithm, we analyzed 25 
random notebooks from the UCSD Jupyter notebook 
dataset and discovered two primary output paradigms (refer 
to Paradigm 1 and Paradigm 2 images in Exploratory 
Analysis section) [16].  

We ultimately chose to target outputs that fell into 
Paradigm 1 (code that produced an output was in the last 
line of the preceding cell, and the output was the only 
output produced by the preceding cell). In order to compare 
the code that produced outputs with one another, we had to 
compare their ASTs. 

We developed three grouping algorithms for objects, 
function names, and parameters that traversed their AST 
and then fed an inner node into a tree diffing algorithm 
called Zhang-Shasha [18]. More specifically, each grouping 
algorithm performs an equality check on only one part of 
the code. In order to effectively work with Zhang-Shasha, 
we had to convert our ASTs into an appropriate format. 
This required us to modify code gathering tool’s underlying 
parser to insert parseable labels into each node. This 
approach allowed us to generate clusters based on equal 
object names/chains of object transformations, equal 
function names, and equal parameter names (Figure 15-17). 

 

 

 

 

 

 

 

 

 
IN-LAB USABILITY STUDY 
 

We designed a 30 minute, in-lab usability study designed to 
understand how users interact with the Output Archive. We 
ran one pilot study with two users to determine the basic 
comprehensibility and usability of the tool. From these 
users we discovered that they understood the premise of the 
tool relatively quickly, so we focused our in-lab usability 
study primarily on search and utility of the archive. Our 



study was designed to answer the following research 
questions: 

RQ1. Does filtering by type and grouping code in different 
ways help programmers find important outputs amidst an 
abundance of past outputs? In what situations does 
grouping by variants help? What other types of variants 
would be useful to group by? 

RQ2. Do users find the Output Archive useful? How would 
an Output Archive have helped them in their past coding 
experiences? Would they use an archive in the future? 

We selected 12 participants with coding and computational 
notebook experience from individuals that the researchers 
previously knew. This was a convenience sample of 
participants; however, we took precautions to mitigate bias 
present from selecting the convenience sample by recruiting 
participants from a variety of places (industry, research, 
undergrad) and informing the participants that the facilitator 
was evaluating the system, but had not created it. Five 
participants were professional programmers, and seven 
were students (2 female, 10 male). The median experience 
in programming on a Likert Scale was 3-5 years and the 
average age was 21.75 years old. The majority of our 
participants (8/12) used computational notebook at least on 
a monthly basis (4 Daily, 2 Weekly, 2 Monthly, 4 Yearly). 
All participants were offered a $20 Amazon gift card as 
compensation for the time. 
Tasks 

Participants began the study by signing a consent form. The 
study centered around identifying different outputs in a pre-
made notebook. This notebook was 50 cells long and had 
generated 150 different outputs. Participants were told that 
this was a notebook they had generated over a long coding 
session that primarily dealt with visualizing and analyzing 
an IMDB movie ratings data-set. They were then given 4 
tasks, each with an explanation of why they needed to find 
a specific output. These tasks were inspired by the tasks 
proposed in the Verdant’s usability study, which also 
focused on evaluating computational notebook histories [1].  
The 4 tasks, with background information shortened, were 
the following questions: 

1. What are the different ways you visualized movie 
durations? 

2. You’ve run into an error while trying to make a 
Kernel Density (KDE) plot to visualize movie 
ratings. You previously ran into this error when 
trying to visualize movie genres. Figure out why 
that previous error occurred. 

3. You remember you printed out all the movies that 
have a runtime of over 3 hours and 20 minutes. 
Name a movie with that runtime. 

4. You’re coding and you print out an empty graph. 
You remember you previously printed out some 
empty graphs. Figure out what parameters caused 
those empty graphs previously. 

Each participant was timed, and the number of clicks on 
each feature (type filter, widget, size filter, grouping filter) 
in the archive was recorded. In order to get a control for the 
efficacy of our filters, we only enabled filters for two of the 
4 tasks (either task 1 and 2 or task 3 and 4). 6 participants 
were given the study where tasks 1 and 2 had no filters and 
the other six were given task 3 and 4 with no filters.  

Before all 4 tasks, participants followed a small tutorial on 
how the archive worked. This primarily entailed clicking on 
different outputs with only context being to familiarize 
themselves with the available affordances. Before the 
filtered tasks, participants were given a tutorial on how the 
different filters worked. After each task, the user filled out a 
survey that asked three questions about the difficulty of the 
task and the usefulness of the different archive features in 
accomplishing the task.  

After all four tasks were complete, the users were asked a 
series of 4 open-ended questions. 3 questions focused on 
the comprehensibility of the grouping filters. The final 
question was an open-ended question about the usefulness 
of the Output Archive. After these questions, the users 
filled out a demographic survey. 

Each participant was given the same 13-inch MacBook Pro 
with the archive preloaded onto it. This MacBook was 
connected to a 1920x1080 monitor in which they had the 
archive opened up in one tab, and the survey opened in 
another. The study was performed with the Output Archive 
open on the desktop monitor. The MacBook screen showed 
the console logs associated with the browser. 

During and directly after each task, 4 primary measures 
were taken to gauge the efficacy and usefulness of various 
features. These measurements were the time it took to 
complete the task, perceived difficulty of the task, number 
features clicked in order to accomplish task, and perceived 
usefulness of features. For all 4 tasks, we changed whether 
or not the participant had access to filters. This involved 
counterbalancing the order of the interfaces while the 
question order remained the same. This was done to reduce 
the effect of which interface affected the participant’s 
preferences and task performance. The intended goal of this 
was to learn more about the efficacy of filters in the archive 
to aid search. 
 

RESULTS 
 

In this section, we refer to the 12 participants with the 
pseudonyms P1-P12. 
Are the filters helpful in finding important outputs? 

Timing 

Filters allowed participants to accomplish their tasks at 
faster speeds to the non-filtered tasks, though the result is 
not statistically significant (P = .08544, U = 204, Using 



Mann Whitney U Test). Although the distributions of the 
timing data were similar, the timing data did informally 
trend towards suggesting that filters provided some speed 
up in certain tasks.  

In tasks where the desired outputs were spread throughout 
the archive (Tasks 1 and 4), the filters appeared to provide 
on average a 62.5% speed up in search time. In tasks where 
the desired outputs were clustered together, towards to the 
top of the archive, or were visually easy to spot, the 
presence of filters provided a 49% slowdown (Tasks 2 and 
3). Although these measurements aren’t definitive in 
showing the efficacy of filters, they do provide a sense of 
which way the data leaned. Another interesting note is that 
8/12 participants accomplished the filtered tasks faster on 
average than the no-filter tasks.  

These informal differences could be attributed to a few 
reasons. In the absence of filters, users quickly realized that 
they had to perform an exhaustive search of all relevant 
thumbnails in the archive in order to find the answer. In 
Tasks 2 and 3, those outputs were towards the upper half of 
the archive. In Tasks 1 and 4, the outputs desired were at 
the top of the archive and at the bottom of the archive, so 
users had to perform an exhaustive search.  

Ultimately although the data suggests filters provided a 
speed up, it’s not a pronounced enough effect to be 
statistically conclusive. 

Perceived Difficulty 

Although users had differing performance times based on 
the existence of filters and the order of activities, they 
always found tasks more difficult or as difficult when filters 
weren’t available. To measure this, we took their responses 
to “How difficult was the given task” that they filled out 
after each activity and assigned each rating from (Hard to 
Easy) a score from 1 to 5. We then added those scores up 
and created a perceived easiness rating. Tasks 1 and 4 were 
perceived to be much easier when filters were around, and 
tasks 2 and 3 were perceived to be only slightly easier when 
filters were around. This suggests that the presence of filters 
caused people to rate tasks as easier even when they didn’t 
use them or even when the task was harder for them to 
accomplish. This conclusion mirrors many of the comments 
that participants had during the study when they were asked 
to do tasks without filters. P2 stated once they realized they 
had to click through the entire Archive to find the result, 
“Do I really have to?”. Multiple other participants 
expressed verbal frustration mirroring P2’s sentiment when 
searching without filters. 

Number of Features Clicked 

The numbers of features clicked measured the number of 
thumbnail clicks and filter clicks. The number of features 
clicked loosely follows the timing measurements. Taken in 
aggregate, the presence of filters decreased the number of 
features clicked by 14% in order to arrive to the find the 
final answer. 

Usefulness of Features 

When participants didn’t have access to filters, they found 
the thumbnail and code visualization (code snippet that 
appears when you click on a thumbnail on the right side of 
the page) most useful for accomplishing a given task. When 
participants did have access to the filters, the vast majority 
found the grouping filters useful, with only 3 specific 
instances of ratings less than somewhat useful. Participants 
found that filtering by the type of output (table, text, image, 
error) was useful for all tasks except for the third task. This 
suggests that the presence of filters for all tasks provided 
utility. The results of the usefulness measurements are 
shown listed in Figure 17. 

Analysis of Grouping Filters 

In general, while participants were able to successful use 
the grouping filters to find important outputs, they faced 
challenges understanding exactly what the rules were 
grouping outputs together. When asked what they thought a 
grouping filter (object, function, parameter) did, 
participants offered alternate wordings that they felt better 
represented the functionality of the grouping filters. For 
example, many participants thought that the group by  

 

 

  



Figure 17: Likert scores for feature usefulness during 
tasks. Important note: For each task, 6 participants 

didn’t have access to filters.  
 

 

  

 

 

parameter function grouped on functions and parameters. 
As P8 puts it, the group by parameter should be more 
“granular than function”, implying that they expected group 
by parameters to share similarities with group by functions. 

Group by function name was the easiest to understand, but 
difficult to use because many users weren’t familiar with 
the types of functions used in Pandas. One participant stated 
that they would “be able to better know what the function 
groupings would exist if they knew how to use pandas” 
(P3). This led to users having to scroll down with the 
grouping filter applied in order to understand the full range 
of function names. Other users coped with this 
unfamiliarity by using the command-F within page search 
tool to find keywords in the actual thumbnails. One user 
stated that they wanted “the function signature to be 
included” (referring to function definition and explanatory 
comments) at the top of each grouped section because they 
weren’t familiar with what the functions did (P5). 

Group by Object was confusing because of a coding 
practice in pandas to chain accessor methods and properties 
in order to create sub objects before the final function call. 
P5 pointed out that they wouldn’t have expected an object 
to be something that “has a member function called”. No 
participant predicted that the group by object filter would 
do this. Some participants wanted to see an object tree 
showing how the parent objects and its sub-objects were 
related. Furthermore, some users wanted the group by 
object to not be mutually exclusive in its groupings (e.g. all 
outputs with the movies object would go in the same group, 
then it would narrow down as the following groupings were 
proposed like movies.columns). 

Group by Parameters generally seemed to be the least 
useful filter primarily because users didn’t really 
understand the situations where they would care about 
grouping on just parameters, without the function names the 
same. As P2 put it, the group by parameter “seems largely 
redundant with the group by function”. The most important 
feedback on this filter was that it would be more useful if it 
grouped by function name and parameters. 

Overall although users recognized the utility of the 
grouping filters, many aspects of the filters need to be better 
communicated. 
Is the Output Archive useful? 

11/12 participants stated that this tool would have been 
useful for them in their past computational notebook usage. 
5 participants were so excited about it they asked when the 
Output Archive as a whole was going to launch. P4 stated 
that, “this tool is very useful if you don’t have great coding 
practices. A lot of people don’t have great coding 
practices...which is why this is very useful”. The coding 
practices P4 was referring to are keeping an immaculate, 
append only notebook where all outputs are organized and 
preserved (no deleting, or overwriting cells).  

A few participants explained that they resorted to 
homebrewed version control methods while using 
notebooks in the past. These methods included keeping 
separate notebooks for different approaches or copying and 
pasting results into an external text editor. P6 stated that 
they “stopped using computational notebooks in the past 
because he kept overwriting previous states and got 
frustrated”. Nearly all of the participants mentioned that 
recovering past states had utility and was something they 
wanted. Many of the participants used notebooks for 
classwork in the past and lamented that many times they 
ruined their notebook by making mistakes and were unable 
to return to versions of the notebook or cell that worked. 
This feedback from participants confirmed that Output 
Archives should be a mainstay feature of computational 
notebooks. 
Design motivations revisited 

The usability study validated the choice to make the 
notebook visually driven based on the fact that participants 



found the thumbnail visualization feature useful in nearly 
every task they were given, with or without filters. The 
grouping filters provided measurable utility to the end user, 
even despite the difficulties in education. 
Conclusions 

The usability study with 12 programmers confirmed that 
output histories for computational notebooks are useful and 
that our new grouping filters can help a programmer find a 
specific output among an overabundance of outputs. 

 

LIMITATIONS 
 

This study and tool had two primary limitations. The first 
limitation was that our participants didn’t write the code 
that produced the outputs in the usability study. This led to 
an unrealistic testing environment where users had to figure 
out the relationship between outputs and code without much 
context. It’s important to note however, this situation could 
mirror a programmer coming back to their own notebook 
months after making it. The other primary limitation of this 
tool lies in the fact that the underlying slicing algorithm 
didn’t slice the immediate cell that produced the output. For 
example, if a cell had multiple outputs, each output would 
include that cell in their slice, even if everything in slice, 
sans the cell, was different. This prevented us from 
generalizing the algorithm to 20% of output cases.  

 

FUTURE WORK 
 

The following outlines areas for future improvements to the 
Output Archive. 

 
More Grouping Filters 

The current grouping filters only captures a subset of 
possible variants in a notebook. Other types of grouping 
filters could capture important qualities about the code 
associated with outputs. These other types of filters could 
include filtering by loaded in data source, slice similarity, 
or cell location. 
Notebook-First Code or Output Search 

A programmer with intimate knowledge of their notebook 
and the code inside it may not want to go to the Output 
Archive to recover an output. For example, if a programmer 
knew that they were looking for a specific function, instead 
of going to the Output Archive and clicking the group by 
function filter, they may just want to click on an instance of 
that function in their own notebook to bring up the relevant 
histories. An area for future work is to integrate the Output 
Archive directly into a working notebook instead of as a 
separate tab.  
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