Proactive Secret Sharing in Dynamic Environments

Andrew Low
Deepak Krishna
Fan Zhang

Lun Wang
Yupeng Zhang
Ari Juels

Dawn Song

..
1

hl--

& i

A .I. II i W | % l: ..II. : -l
i, .“ij1lullll' ! h
i (e, St u

e
!

Electrical Engineering and Computer Sciences
University of California at Berkeley

18

Technical Report No. UCB/EECS-2019-62
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-62.html

May 17, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This project is collaborative work with Deepak Krishna, Fan Zhang, Lun
Wang, Yupeng Zhang, Ari Juels, and Dawn Song. | contributed significantly
to this project as well as a data capsules project over the course of 2018
and 2019.

| would like to thank my advisor, Dawn Song, for her guidance during my
undergraduate and graduate careers. | would also like to thank Joey
Gonzalez for his advice and teaching on systems and Al. | would also like to
thank Vern Paxson, Paul Pearce, Austin Murdock, John Kuriyan, and Deepti
Karandur for their advice and mentorship during my research journey. Lastly,
| would like to thank Rohith Krishna, Steven Sum, Kevin Lian, and all of VCG
for their unwavering support.

Proactive Secret Sharing in Dynamic Environments

by

Andrew Low

A thesis submitted in partial satisfaction of the
requirements for the degree of
Master in Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Dawn Song, Chair
Professor Joey Gonzalez

Spring 2019

Abstract

Proactive Secret Sharing in Dynamic Environments
by
Andrew Low
Master in Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Dawn Song, Chair

We introduce CHURP (CHUrn-Robust Proactive secret sharing). CHURP enables secure
secret sharing in dynamic settings, where the committee of nodes storing a secret changes
over time. Designed for blockchains, CHURP has lower communication complexity than
previous schemes: O(n) on-chain and O(n?) off-chain in the optimistic case of no node
failures.

CHURP includes several technical innovations: An efficient new proactivization scheme,
a technique (using asymmetric bivariate polynomials) for efficiently changing secret-sharing
thresholds, and a hedge against setup failures in an efficient polynomial commitment scheme.
We report on the functionality and implementation of CHURP, and present performance
improvements.

To Chin-Chai, Amy, and Michelle

Contents

Contents

1

2

Introduction

Related Work

Model and Assumptions
Effective Bivariate Zero-sharing
CHURP Protocol Overview

Protocol Details
6.1 Setup.
6.2 Optimistic Path (Opt-CHURP),

Implementation and Evaluation

7.1 Implementation
7.2 Evaluation
7.3 Comparison with Schultz’s MPSS

Bibliography

i

ii

10

13

19
19
19

28
28
28
31

32

il

Acknowledgments

This project is collaborative work with Deepak Krishna, Fan Zhang, Lun Wang, Yupeng
Zhang, Ari Juels, and Dawn Song. I contributed significantly to this project as well as a
data capsules project over the course of 2018 and 2019.

I would like to thank my advisor, Dawn Song, for her guidance during my undergraduate
and graduate careers. I would also like to thank Joey Gonzalez for his advice and teaching
on systems and Al. I would also like to thank Vern Paxson, Paul Pearce, Austin Murdock,
John Kuriyan, and Deepti Karandur for their advice and mentorship during my research
journey. Lastly, I would like to thank Rohith Krishna, Steven Sum, Kevin Lian, and all of
VCG for their unwavering support.

Chapter 1

Introduction

Secure private key storage is a fundamental challenge in blockchains and decentralized
systems. Private keys control a plethora of valuable digital assets, from cryptocurrencies to
online identities. Private key loss often leads to serious and irreversible consequences.

However, users struggle to store their private keys reliably and securely. Users often
store their keys on local devices, where they are vulnerable to phishing attacks, malware,
and device loss or failure. Bitcoin private keys are also a valuable target to malicious actors,
which incentivizes further attacks. Consequently, an estimated four million Bitcoin have
been lost forever due to lost or stolen keys [32].

Many users thus choose to store their cryptocurrency with exchanges such as Coinbase,
which holds an estimated 10% of all circulating Bitcoin [1]. However, the centralized nature
of these systems contradicts the decentralization that defines blockchain systems.

Secret sharing provides an alternative to centralized private key stores. In a secret sharing
scheme, a committee of n nodes hold shares of a secret s. One well-known implementation is
Shamir’s secret sharing scheme, in which a secret is encoded as the y-intercept of polynomial
P(z) of degree d [35]. Points along the polynomial are then distributed among the committee
nodes. An adversary must compromise at least d + 1 nodes in order to learn the secret s,
and must sabotage at least n — d nodes to render the secret unrecoverable.

Proactive secret sharing [22] provides additional security guarantees. PSS periodically
proactivizes its shares without altering the secret. Each node generates refreshed shares of
the secret s that are independent of the old shares, which are discarded. This makes the
scheme more robust; attackers must now compromise at least d + 1 nodes within the time
period in order to recover the secret.

Proactive secret sharing schemes thus allow entities to store their private keys securely
on committees, without relying on centralized systems. A number of blockchain systems [2,
8, 12, 24, 40], employ such schemes to store private keys and other critical data. However,
these systems still face an important challenge: node churn.

In permissionless blockchains such as Ethereum, nodes can join and leave arbitrarily.
In permissioned blockchains, each node must be registered with a known identity, but per-
missioned nodes can still stop communicating or drop from the protocol. Maintaining a

CHAPTER 1. INTRODUCTION 2

committee of nodes over an extended time scale is thus problematic; as nodes go offline
the committee eventually shrinks to the point where the secret is unrecoverable. Thus,
blockchain protocols for secret sharing must support dynamic committees.

Today, there are no adequate secret sharing protocols that support dynamic commit-
tees. Existing approaches focus on static committees [22, 6], assume weak or passive adver-
saries [33, 11], or incur prohibitive communication costs [38, 39, 34, 36, 29]. In this paper, we
address this critical gap by introducing a new dynamic-committee proactive secret-sharing
protocol called CHURP (CHUrn-Robust Proactivization).

CHURP Overview

The CHURP protocol enables a secret s to be stored on a dynamic committee, i.e. one in
which nodes can drop arbitrarily. CHURP operates over fixed time intervals we term epochs.
To counteract node churn, CHURP refreshes the committee periodically with new nodes
and proactivizes the secret shares of the new committee. During each epoch, a designated
committee of size n with (¢,n)-sharing of a secret s maintains the user’s secret. When the
protocol initiates a transition to a new epoch, the old committee executes a handoff protocol
to a new, randomly selected committee of size n with (¢,n)-sharing of s. CHURP is secure
against an active, adaptive adversary that compromises ¢ < n/2 nodes in each of the old and
new committees. CHURP is also able to adjust n and t between epochs.

CHURP utilizes two forms of communication: a public bulletinboard abstraction and
a direct point-to-point system. The public bulletinboard is consistent and available to all
live nodes, whereas point-to-point communication may fail at any time. Although we use a
bulletinboard abstraction to describe the CHURP protocol, in practice we expect blockchains
to fill this role.

Our main achievement in CHURP is its low communication complexity: optimistic per-
epoch communication in a blockchain setting of O(n) on-chain and O(n?) off-chain. We aim
to minimize on-chain communication complexity because it comes with the additional costs
of placing transactions on the blockchain. Cheating nodes cause pessimistic on/off-chain
communication of O(n?)/O(n?). Both off-chain costs are substantially lower compared to
other schemes.

Overall, CHURP implements a simple abstraction. It simulates a trusted, available,
third-party that stores cryptographic secrets for secure use in many applications.

Technical Challenges

CHURP addresses three major technical challenges in order to achieve its low communica-
tion complexity. The first challenge is that existing schemes [22] incur high communication
costs during proactivization, up to O(n?®) off-chain. Unlike other protocols, CHURP uti-
lizes a bivariate secret sharing scheme, which stores the secret using a bivariate polynomial
B(z,y). CHURP introduces a new proactivization protocol for bivariate shares that incurs

CHAPTER 1. INTRODUCTION 3

O(n?) off-chain cost. The protocol is based on efficient bivariate 0-sharing, which generates
a randomized bivariate polynomial B(z,y) with B(0,0) = 0 to proactivize the secret shares.

The second challenge is that during the handoff to a new committee, an adversary could
compromise ¢ nodes in the old committee and ¢ nodes in the new committee, or 2¢ nodes in to-
tal. An attacker with 2t shares would be able to break the (¢, n) secret sharing scheme. Prior
work addresses this issue with ‘blinding’” approaches with costly communication [34]. To keep
communication costs low, CHURP instead utilizes a technique called dimension-switching.
Dimension-switching utilizes an asymmetric bivariate polynomial, eg a polynomial B(z,y)
with degree t in one dimension and degree 2t in the other. Under dimension-switching,
the committee temporarily switches to (2¢,n) secret sharing during handoff to tolerate 2t
compromised shares. The scheme reverts to a (¢,n) scheme once the handoff is complete.

Finally, most PSS schemes commit to degree t polynomials using classical schemes [13,
31] that produce polynomial commits of size O(t). CHURP uses an alternative polynomial
commit proposed by Kate, Zaverucha, and Goldberg (KZG) [23] that produces polynomial
commits of constant size (O(1)). KZG commitments have been used before [3], but CHURP
introduces a KZG hedge. KZG assumes a trusted setup and a non-standard hardness as-
sumption. If these fail, CHURP remains secure - but degrades to a weaker adversarial
threshold of ¢ < n/3.

Implementation and Experiments

We implement CHURP and evaluate it both on a single datacenter as well as on multiple
data centers across the globe. Our experiments show significant reductions in communica-
tion costs, with a 2300x reduction in off-chain communication compared to state of the art
dynamic-committee PSS schemes‘[34] on a committee of size 100.

Outline and Contributions

After introducing the functional, adversarial, and communication models in Chapter 3,
we present our main contributions:

e CHurn Robust Proactive secret sharing (CHURP): A novel dynamic committee PSS
protocol with lower communication complexity compared to state-of-the-art PSS schemes.

o Novel secret sharing techniques: We introduce a new zero-sharing protocol for effi-
cient proactivization in bivariate secret sharing settings. We also present dimension-
switching, a technique to efficiently safeguard the secret during committee handoffs.
Lastly, we also introduce a set of KZG hedges to safeguard the protocol’s correctness
in the event of failures in the KZG scheme.

e Implementation and experiments: We report on our implementation of CHURP and
present performance measurements demonstrating practicality.

We discuss related work in Chapter 2. We will release CHURP as an open-source tool.

Chapter 2
Related Work

Bivariate Polynomials

A bivariate polynomial is comprised of two variables, commonly written as B(z,y). Most
classical secret sharing schemes utilize univariate polynomials to encode and distribute
secrets. However, CHURP utilizes bivariate polynomials, which enable the dimension-
switching and efficient O-sharing techniques we introduce later. Bivariate polynomials have
been explored extensively in secret-sharing literature, to build VSS protocols [6, 14], for
secret sharing with unconditional security [36, 29], etc. Few works [33, 11], however, have
considered application to dynamic committees for secret sharing, and these have been lim-
ited to passive adversaries. CHURP’s use of dimension-switching provides security against
active, adaptive adversaries.

Zero-sharing, the technique of generating a zero-hole (P(0) = 0) polynomial, has been
used for proactive security since the work of [22]. However, prior works [33, 11, 29] have
naively extended these to the bivariate case leading to high communication costs. Instead,
CHURP applies known share re-sharing techniques [15, 10] to build an efficient bivariate
zero-sharing protocol.

KZG Polynomial Commitments

PSS schemes utilize polynomial commitments to verify the consistency of polynomials,
which are typically kept secret. Most protocols commit to secret degree-t polynomials using
classical commitment schemes that generate commitments of size O(t). However, Kate,
Zavarucha, and Goldberg [23] introduce an alternative polynomial commitment scheme which
is able to generate polynomial commitments of size O(1). This improvement is integral in
reducing the communication complexity of CHURP.

However, the constant size KZG polynomial commitments come at the expense of secu-
rity guarantees. Use of KZG requires a trusted setup as well as a non-standard hardness
assumption. CHURP adopts KZG commitments and assumes a correct setup in the op-
timistic case. However, if the setup is performed incorrectly or the KZG assumptions are

CHAPTER 2. RELATED WORK d

compromised, CHURP is able to detect this and switches to a pessimistic variant of the
protocol that is more robust to malicious actors.

Blockchain

A blockchain is a sequence of cryptographically linked records, which store various types
of information. Blockchains have been adapted for a variety of purposes, from electronic pay-
ment systems, i.e. Bitcoin [26], to systems that support smart contracts, i.e. Ethereum [5].
Each block typically includes the hash of the previous blocks, which guarantees the consis-
tency and integrity of the data stored on the blockchain. Blockchains also provide availability:
blocks are replicated across many participating nodes, ensuring that the data stored on the
blockchain is always available.

CHURP utilizes a public bulletinboard component in its protocol design. Nodes can
publish information to the bulletinboard, where it becomes available to all other nodes. We
assume that the bulletinboard is available and that the bulletinboard’s data is consistent:
all nodes that attempt to retrieve a certain record will receive the same record from the
bulletinboard. In practice, this bulletinboard abstraction is satisfied by blockchain systems,
which provide similar consistency and availability guarantees.

Proactive Secret Sharing

Proactive security, the idea of refreshing secrets to withstand compromise, was first pro-
posed by Ostrovsky and Yung [30] for multi-party computation (MPC). It was adapted for
secret sharing by Herzberg et al, whose techniques continue to be used in subsequent works,
e.g. [16, 21, 9, 25, 34, 4, 28], and in CHURP.

All the above schemes assume a synchronous network model and a computationally
bounded adversary; CHURP does too, given its blockchain setting. PSS schemes have also
been proposed in asynchronous settings [6, 39, 34] and unconditional settings [36, 29]. Nikov
and Nikova [27] provide a survey of the different techniques used in PSS schemes along with
some attacks (which CHURP addresses via its dimension-switching techniques).

Chapter 3

Model and Assumptions

In a secret-sharing scheme, a committee of nodes shares a secret s. We let C denote
the committee and denote the individual committee nodes by {C;}!_;. Each member node
C; holds a distinct share of the secret s;. CHURP periodically proactivizes shares, i.e.
changes the shares s; without reconstructing or altering the secret. CHURP is designed for
a dynamic committee, which allows member nodes to join or leave the protocol arbitrarily.
Proactivization and dynamic committees together prevent leakage of s to an adversary that
gradually compromises nodes.

Old committee New committee

LA, L v = - O

Figure 3.1: Handoff between two committees a dynamic proactive secret-sharing epoch. The
secret s remains fixed. Committees may intersect, e.g., in this example, B, = Ay and
Bg = Ag.

CHURP periodically executes a handoff protocol to proactivize the secret shares and
transfer them to a new, randomly selected committee. The new committee may intersect
the old committee. Fig. 3.1 depicts the handoff process.

CHAPTER 3. MODEL AND ASSUMPTIONS 7

Functional Model

Epoch: Time in CHURP, as in other proactive secret sharing schemes, is divided into
fixed intervals of predetermined length called epochs. During each epoch, a single designated
committee controls and maintains the secret s. For a given epoch e, we denote the committee
of that epoch as C(®), which has size N(). C(®) shares s using a (¢, N®)) threshold scheme

Handoff | Committee C{¢—1) | Handoff Committee C(¢)

Epoch e —1 Epoch e

Figure 3.2: Time is divided into fixed intervals termed epochs. Each epoch begins with
a handoff phase in which the old committee from the previous epoch C(¢~V) transfers the
secret shares to the new committee C®). This is followed by a period of normal committee
operation.

Handoff: As shown in Fig. 3.2, each epoch begins with a handoff phase in which the old
committee C'¢~Y transfers the secret to the new committee C(®) and proactivizes the secret.
Until the handoff phase is complete, the old committee controls the secret and maintains
regular operations involving s.

Churn: In the dynamic committee setting of CHURP, nodes are free to leave the protocol
at any time but can only rejoin the protocol during a handoff. Let Cj.s denote the set of
nodes that leave the protocol before handoff during epoch e — 1. Let C,j;,e denote the set
of nodes that perform the handoff during the transition to the next epoch e. We define the
churn rate a denote a bound such that |Cywe] > C™V % (1 — a). We later define a lower
bound on committee size using a.

Keys: We assume that each node in CHURP maintains a public/private key pair, and
that the public keys of all nodes are known by all other nodes. This is a common setting for
distributed secret sharing systems.

Adversarial Model

CHURP assumes an adversary A that is both active and adaptive. The adversary is
able to corrupt up to a threshold of ¢t nodes per committee, and may corrupt these nodes at
any time. Once a node is corrupted, we assume that it remains corrupted until the end of
the epoch. Note that corrupted nodes may be “released” by the adversary at the end of an
epoch and are no longer considered corrupted. Corrupted nodes are under an attacker’s full
control and can act arbitrarily.

Nodes may agree out-of-band to adjust the threshold t during the next handoff. We
term the thresholds of two consecutive epochs e — 1 and e as t._; and ., respectively. An

CHAPTER 3. MODEL AND ASSUMPTIONS 8

adversary may thus corrupt up to t._; nodes in C*~" and ¢, nodes in the C'®). The protocol
for adjusting t is presented in Appendix D. For simplicity of exposition, however, we
assume that ¢ remains fixed across epochs in the following sections.

During handoff, both C*~Y) and C'® are active. Thus, an attacker may control up to 2t
nodes during the handoff phase. Since committees may intersect, an attacker may control a
node C; that is a member of both the old and new committees. Alternatively, A may control
C; in one committee but not both, indicating fresh node corruption or node recovery.

Communication Model

Our primary goal is to minimize communication complexity in CHURP. We define two
types of communication: on-chain and off-chain. On-chain communication measures all
messages that are posted to the public bulletinboard, which is accessible by all nodes. Off-
chain communication mainly consists of direct point-to-point communication between nodes.
We optimize for on-chain complexity and off-chain complexity, in that order. We prioritize
on-chain complexity because we utilize blockchains to serve as the public bulletinboard, and
blockchains incur high costs for on-chain operations. We also consider the round complexity
of the protocol design as well.

On-Chain: Prior proactive secret sharing schemes such as MPSS [34] rely on PBFT [7]
for consensus. However, PBFT is slow and can incur high communication costs. Instead, we
assume the availability of a blockchain (or other bulletinboard abstraction) to all nodes in the
committee. The advantages of this design are twofold. First, abstracting away the consensus
layer allows for simpler, more modular, and easier-to-understand protocols. Second, it makes
sense to capitalize on the availability of blockchains today as opposed to re-engineering their
functionality.

In our model, nodes can either post a message or retrieve any number of messages from
the blockchain. After a node posts a message to the blockchain, the message is published
within a time frame 7. We assume that blockchain access is synchronous and that published
messages are retrievable by any node. We also assume that the channel is reliable; i.e.
messages posted are not lost. Such behavior can be ensured with very high probability if
the transaction fees are high enough.

Permissionless Blockchains: While CHURP will work with permissioned blockchains, we
focus on permissionless blockchains such as Ethereum. On such chains, users pay for writes
but reads are free. We thus optimize on-chain communication by measuring the number of
on-chain writes, e.g.O(n) on-chain communication complexity means O(n) bits are written
to the chain.

Off-Chain: Nodes may also communicate directly with other nodes without use of the
blockchain via point-to-point techniques. We assume that each node is able to establish a
channel with every other node. We also assume that these channels are reliable, i.e. no
messages are dropped, and that these channels are synchronous, i.e. we establish an upper
bound on the time it takes the message to traverse the channel. We note communication

CHAPTER 3. MODEL AND ASSUMPTIONS 9

interruptions do not break CHURP. If node C;’s communication fails, the other nodes will
simply assume the node has left the protocol.

Off-chain P2P channels can be implemented in different ways depending on the deploy-
ment environment. In a decentralized setting, however, nodes are assumed to not have P2P
communication to protect from targeted attacks and anonymity compromise. In such cases,
nodes can use anonymous channels such as Tor to preserve anonymity with additional setup
cost and engineering complexity. Alternatively, off-chain channels can be implemented as an
overlay on top of existing blockchain infrastructure.

We measure off-chain communication complexity as the total number of bits transmitted
in point-to-point channels. In general, when we refer to protocols’ cost in this work, we mean
their communication complexity, on-chain or off-chain, as the case may be.

10

Chapter 4

Effective Bivariate Zero-sharing

In an ordinary (¢, n)-threshold Shamir secret sharing scheme, shares of secret s are points
on a univariate polynomial P(z) such that P(0) = s. To enable its two key techniques,
CHURP instead utilizes an asymmetric (¢, 2¢) bivariate polynomial B(z,y) with B(0,0) = s.
A share of B(x,y) is itself a univariate polynomial, given by B(z,) or B(i,y) where i is the
node index.

Proactivization schemes aim to refresh the secret shares without altering the secret. This
commonly involves generating a fresh, random polynomial with a zero valued secret, i.e.
B(0,0) = 0. We term such a polynomial a zero-hole polynomial and the generation of
this polynomial as zero-sharing. This zero-hole polynomial is added to the polynomial that
encodes the secret s, altering each of the shares but leaving the secret unchanged.

While previous approaches to proactivization involve costly O(n?) off-chain communica-
tion during zero-sharing, we introduce a new protocol that incurs O(n?) off-chain complexity.
This improvement is crucial to CHURP’s overall efficiency.

Recall that in the context of bivariate polynomials, zero-sharing involves a committee C
generating a (t,2t) random bivariate polynomial Q(z,y) such that Q(0,0) = 0. Each node
C; holds a share Q(i,y).

Prior works have naively extended zero-sharing techniques for univariate polynomials to
the bivariate case. Such approaches require each committee node C; to generate a zero-hole
bivariate polynomial @Q;(x,y), and distribute shares of Q;(z,y) to all other nodes. Each
node transmits O(n) univariate polynomials, resulting in O(n?) communication per node
and O(n3) communication total.

CHURP utilizes a new technique we call BivariateZeroShare, which incurs O(tn) off-
chain communication cost in the optimistic case. In the pessimistic case, i.e. if nodes cheat,
other protocols are invoked. Even in the pessimistic case, our techniques incur no more
communication complexity than previous schemes: O(n?) in the dynamic setting and O(n?)
in the static Herzberg setting.

BivariateZeroShare consists of two steps. First, a subset & C C of 2t+1 nodes executes a
zero-sharing subprotocol UnivariateZeroShare. At the end of this step, each node in ¢/ holds
a share s; of a univariate polynomial P(x). In the second step, each node in U encodes its

CHAPTER 4. EFFECTIVE BIVARIATE ZERO-SHARING 11

(2¢, 2t + 1)-UnivariateZeroShare

1: Input: £, set of 2¢ + 1 nodes {L4;}c12es1)

2 : Output: Each node I4; outputs a share s; = P(j) for randomly

3: generated degree-2{ polynomial P(y) with P(0) =0

4: node l4;

5 Generate a random 2{-degree polynomial P; st P;(0) =0

6: Send a point P;(#) to node U4; for each ¢ € [2f + 1]

7: Wait to receive points { P;(j) };¢ z, 1) from all other nodes

g Let P = 37, 19444y Pi, compute share P(j) = 2 ic[aean P;(4)

Figure 4.1: (2t,2t + 1) UnivariateZeroShare between 2t + 1 nodes. A zero-hole univariate
polynomial P of degree 2t is generated.

share s; in another secret-sharing layer and distributes shares of s; to the full committee.
Each committee node C; thus obtains a share (i, y) of bivariate polynomial Q(z,y).

We formally present BivariateZeroShare in Fig. 4.2. For ease of presentation, we now
describe the honest-but-curious version of the protocol. The full, adversary-resistant protocol
is described in Chapter 6.

1. Sharing P(z): BivariateZeroShare first chooses a subset & C C of 2t + 1 nodes. This
can be done by ordering all nodes by their public keys lexicographically, and choosing
the first 2¢ 4+ 1 nodes.

The nodes of U then execute the UnivariateZeroShare protocol described in Figure 3.
We note that this subprotocol is not new, it has been used for proactivization in [22].
Each node U; generates a degree-2¢t univariate zero-hole polynomial P;(z). The sum
P(zx) = Z?t:ll P;(z) is itself a degree-2t zero-hole polynomial. U, then redistributes
points on its local polynomial P;(z), enabling every node U; to reconstruct its share
si = P(i).

2. Resharing P(x): Nodes in U now reshare P(x) among all the nodes in the committee
C®), resulting in a sharing of the desired bivariate polynomial Q(z,y).

Each node U, generates a random degree-t polynomial R;(z) to encode the node’s
share of P(z), i.e. R;(0) = s;. Together, the 2¢t 4+ 1 degree-t polynomials {R;(x)}
uniquely define a degree-(t, 2t) bivariate polynomial Q(z,y) such that Q(z, j) = R;(z)
and Q(0,0) = 0.

Node U; then sends R;(i) = Q(%, j) to every other node C; in the full committee. Using
the received points, each committee member C; interpolates to compute its share - a
degree-2t polynomial Q(i,y). We note that Q(0,0) = 0 because the zero coefficients
of R;(x) are composed of shares generated during the zero-sharing step UnivariateZe-
roShare. Since each node in U/ transmits n points, the overall communication cost is

O(tn) off-chain.

CHAPTER 4. EFFECTIVE BIVARIATE ZERO-SHARING 12

BivariateZeroShare is used as a subroutine in CHURP with a few modifications. As
explained before, it can also reduce the communication complexity of Herzberg’s PSS
scheme, i.e. the static committee setting, by a factor of O(n).

(£, ri)-BivariateZeroShare

1: Input: {,n, set of nodes {Ci}icrn) (28 < n)

2. Output: Each node C; outputs a share Q(4, y) for randomly penerated degree-
©(t,2t) bivariate polynomial Q(xz, y) with Q(0,0) =0

3: Order {Ci}iz[n) based on lexicographic order of their public keys

4 ; Choose first 2¢ + 1 nodes, w.lo.g., 4 = {Cj}ierze+1)

5 Invoke (2f, 2¢ + 1)-UnivariateZeroShare among {L{; } j = 2¢41) to generate

shares {s; }je22z+1]

6: node L4;:

7 Generate a random {-degree polynomial R st R;{0) = s,

8: Send a point 12;(¢) to node C; for each i € [n]

g ; Denote the bivariate polynomial Q{x, y) where {Q(x, i) = R:,-[:r;}}je-zt_H]

10 - node C;:

11 : Wait to receive points { R, () }jejzﬂ-l] ={Q(%) }ezern)

12: Interpolate to reconstruct a 2i-degree polynomial Q(i, u)

13 Output share Q{i, y)

Figure 4.2: (t,n) BivariateZeroShare between n nodes. A zero-hole bivariate polynomial
Q(z,y) of degree (t,2t) is generated

13

Chapter 5

CHURP Protocol Overview

CHURP is a suite of tiered protocols with different tradeoffs between trust assumptions
and communication complexity. By default, CHURP attempts to execute the optimistic
path - the most efficient but also the most trusting protocol. When adversarial behavior is
detected, CHURP falls back to lower, more robust, protocol tiers. The three tiers of CHURP
and their relationship are shown in Fig. 5.1.

The top tier, Opt-CHURP, is the default protocol. It is optimistic and highly efficient: if
no node misbehaves, Opt-CHURP only incurs O(n) on-chain and O(n?) off-chain communi-
cation cost. As a design choice, Opt-CHURP does not identify faulty nodes but rather just
detects faulty behavior, upon which execution falls back to a lower-tier protocol.

The second tier is Exp-CHURP-A, the main pessimistic path of CHURP. Unlike Opt-
CHURP, Exp-CHURP-A is able to identify and expel misbehaving nodes using proofs of
correctness. Exp-CHURP-A trades performance for robustness: execution is guaranteed to
complete so long as the adversarial threshold ¢ < n/2, but the protocol incurs O(n?) on-chain
and O(n?) off-chain costs.

Opt-CHURP —
(t <n/2)

, 4
A
Exp-CHURP-A
(t < nf2)

Exp-CHURP-B
(t < n/3)

Trusted-setup failure - - --» Fault detected

Figure 5.1: CHURP Protocol tiers. Opt-CHURP is the default protocol of CHURP. Exp-
CHURP-A and Exp-CHURP-B are run only if a fault occurs in Opt-CHURP

CHAPTER 5. CHURP PROTOCOL OVERVIEW 14

Protocol On-chain, Off-chain Threshold Optimistic
Opt-CHURP O(n),O0(n?) t<n/2 Yes
Exp-CHURP-A O(n?),0(n?) t<n/2 No
Exp-CHURP-B O(n?),0(n?) t<n/3 No
Opt-Schultz-MPSS O(n), O(n*) t<n/3 Yes
Schultz-MPSS O(n?),0(n") t<n/3 No

Table 5.1: On-chain cost and Off-chain costs of all protocols for the dynamic setting. An
optimistic protocol ends successfully only if no faulty behavior is detected.

Both Opt-CHURP and Exp-CHURP-A utilize KZG constant-size polynomial commit-
ments to achieve ¢t < n/2. However, the KZG scheme requires a trusted setup to generate
public keys with a trapdoor. The trapdoor must be destroyed after setup; otherwise sound-
ness is lost. KZG introduces the only trusted setup required in CHURP, and thus represents
its main protocol-level vulnerability. KZG also relies on the non-standard t-Strong Diffie-
Hellman hardness assumption.

To hedge against soundness failure in KZG (either through a falsified trust assumption
or a compromised trust setup), we introduce an additional verification step (StateVerif) to
check KZG soundness. StateVerif can be executed at the end of both Opt-CHURP and
Exp-CHURP-A. StateVerif is also efficient, incurring O(n) on-chain complexity.

If StateVerif detects that KZG has been compromised, it triggers the third tier protocol,
Exp-CHURP-B. Exp-CHURP-B does not use KZG commitments and has the same cost
as Exp-CHURP-A, namely O(n?) on-chain and O(n?) off-chain. However, Exp-CHURP-B
tolerates a lower adversarial threshold, ¢ < n/3. The details of StateVerif are presented in
Chapter 6.

In summary, the three tiers of CHURP are:

1. Opt-CHURP: The default protocol of CHURP. It incurs O(n) on-chain and O(n?)

off-chain communication complexity under the optimal resilience bound t < n/2

2. Exp-CHURP-A: Invoked if Opt-CHURP fails. It incurs O(n?) on-chain and O(n?)

off-chain communication complexity under the optimal resilience bound t < n/2

3. Exp-CHURP-B: Invoked if a soundness breach is detected in KZG by StateVerif. It
incurs the same cost as Exp-CHURP-A, but under the resilience bound ¢ < n/3.

Dimension-Switching

CHURP uses an bivariate polynomial B(x,y) of asymmetric degree-(t,2t). By this, we
mean that it is degree-t in x and degree-2t in y. The secret is stored within B at B(0,0) = s.
This structure enables the dimension-switching technique in CHURP. Nodes can switch
between sharing in the degree-t dimension of B(z,y) and the degree-2¢ dimension. The result

CHAPTER 5. CHURP PROTOCOL OVERVIEW 15

is a change from (¢, n) sharing to (2¢, n) sharing, or vice versa. Dimension-switching provides
an efficient way to address a key challenge during committee handover. During a handover,
an adversary could potentially control 2t nodes, necessitating a (2t,n) sharing scheme. In
between handovers, however, we opt for the more efficient (¢, 2t) sharing scheme.

Notation and Invariants

We now review the notation and invariants used to explain CHURP. Notation is summa-
rized in Table 5.2

¢ KZG Commitments: As discussed earlier, KZG commitments allow a prover to
commit to a polynomial P(x) and later prove correct evaluation P(i) to a verifier.
Further details can be found in [23]

e CHURP Invariants: We say the system arrives at a steady state after completing a
successful handoff. The following invariants stipulate the desired properties of a steady
state. We use invariants to explain the protocol and reason about its security.

1. Inv-Secret: The secret s is the same across handoffs.

2. Inv-State: Each node C; holds a full share B(i,y) and a proof to the correctness
thereof. Specifically, the full share B(i,y) is a degree-2¢t polynomial, and can

be represented by 2t + 1 points {B(z,])}?tjll The proof is a set of witnesses
2t+1

{WB(%'J) }jzl '

3. Inv-Comm: KZG commitments to reduced shares ({ B(z,7)}
to all nodes.

2t+1

j—1) are available

The first invariant Inv-Secret ensures the secret remains unchanged, a core-functionality
of CHURP. Inv-Comm and Inv-State ensure the correctness of the protocol. For example,
during the Share Reduction phase of the handoff, nodes in the old and new committee
switch their dimension of sharing, from full shares to reduced shares. Using the commitments
(specified by Inv-Comm) and the witnesses (specified by Inv-State), new committee members
can verify the correctness of the reduced shares, and thus the correctness of dimension-
switching.

Note that to realize Inv-Comm, hashes of the KZG polynomial commitments are stored
on-chain for consensus while the actual commitments are transmitted off-chain between
nodes.

Overview

We now present an overview of the optimistic execution of CHURP. We illustrate the
details of the optimistic and pessimistic paths in the next chapter.

CHAPTER 5. CHURP PROTOCOL OVERVIEW 16

Notation Description
cle= ¢l Old, New committee
B(x,y) Bivariate polynomial used to share the secret
(t, k) Degree of (x,y) terms in B

RSi(x) = B(x,i) Reduced share held by C;
FS;(y) = B(i,y) Full share held by C;’s

CB(a,j) KZG commitment to B(z, j)

Whi) Witness to evaluation of B(x,j) at

Qz,y) Bivariate proactivization polynomial
u’ Subset of nodes chosen to participate in handoff
A Lagrange coefficients

Table 5.2: Notation

At the end of a given epoch e — 1, before a handoff occurs, the current committee (¢
is in what we term a steady state. Specifically, the committee C‘*~") holds a (¢, n)-sharing of
the secret s = B(0,0). This sharing uses the degree-t dimension of B(z,y), as noted above.
Node C’i(efl) holds share s; = B(i,y) and can compute B(x,0) for = i. The shares s; are
actually a share of (¢, n)-sharing of B(0,0). We refer to these shares in steady state as full
shares.

During the handoff in epoch e, nodes in the old and new committees C*~') and C(©
switch their sharing of s to the degree-2t dimension of B(x,y), resulting in what we term
reduced shares.

Formally, node C§ holds reduced share s; = B(z, j), and can compute B(0,y) for y = j.
Thus, s; is a share in a (2¢, n)-sharing of B(0,0). The shares s; have reduced power in the
sense that 2t + 1 shares (as opposed to ¢ + 1 shares in steady state) are required to recover
the secret s. Thus, during handoff an adversary cannot reconstruct the secret even if the
adversary controls ¢ nodes across C(¢~Y) and C'®.

After share reduction, the polynomial B(z,y) is proactivized. A zero-hole bivariate
polynomial Q(z,y) is generated such that Q(0,0) = 0 using the BivariateZeroShare protocol
described above. Q(z,y) is then added to B(z,y), resulting in a new polynomial B'(x,y).
Nodes update their reduced shares accordingly. Because Q(z,y) is zero-hole, the secret s
remains unchanged, i.e. s = B'(0,0).

Shares of B'(x,y) are now independent of those for B(z,y), which were held by the old
committee. This makes it safe to perform full share distribution, i.e. to switch to the degree-
t dimension of B'(z,y). This involves distributing full shares to the new committee C®.
The handoff completes with the new committee C'® holding (¢, n)-sharing of a secret s using

B'(z,y).

CHAPTER 5. CHURP PROTOCOL OVERVIEW 17

To summarize, the three phases of the CHURP handoff are:

1. Share reduction: A switch is made from the degree-t dimension of B(z,y) to the
degree-2¢ dimension. As a result, each node in the new committee C'¢ obtains a reduced
share B(z, j).

2. Proactivization: The new committee generates a zero-hole polynomial Q(z,y), and
each node Cf obtains a reduced share Q(r,j). Each node C¥ updates its share to
obtain a reduced share of the proactivized polynomial, B'(x,j) = B(x,j) + Q(z, j).
Proactivization ensures that new committee shares are independent of those held by
the old committee.

3. Full share distribution: Full shares B'(i,y) are generated from the reduced shares
{B'(z,1)}, switching from the degree-2¢ dimension back to the degree-t dimension of
B'(z,y). The protocol thus returns to its steady state.

Note that during handoff, the old committee C*~Y can still perform operations using
s, even if some nodes have left the protocol. Thus, there is no operational discontinuity of
CHURP.

Share
Epoch e-1 Proactivization Full Share

Reduction Distribution

|
[L (I ||

Ounm O NV

N
Oumn - Q O
Gun € Y

Handoff

Figure 5.2: An example of the handoff protocol. Curves denote univariate polynomials
(reduced shares), while squares denote points on these polynomials.

An Example

In Fig. 5.2, we show a simple example of the handoff protocol, assuming all nodes are
honest. The old committee consists of three nodes C¢~V = Ay, A, A;. Aj leaves at the end
of the epoch, and a new node Aj joins. The new committee is thus C° = A;, Ay, A;. The
underlying polynomial B(z,y) is thus of degree (1,2). Node A;’s share is B(i,y) or three
points: B(i, 1), B(i,2), and B(i,3). The figure depicts all three phases of the handoff, as
follows:

CHAPTER 5. CHURP PROTOCOL OVERVIEW 18

e Share Reduction: To start the handoff, each node in the new committee constructs
its reduced share B(z, j) from points received from the old committee. As shown, Aj
receives points B(1,3) and B(2,3) from A; and A, respectively, from which B(x, 3)
can be constructed. Similarly, A; and Ay construct B(x,1) and B(z,2) respectively.

e Proactivization: Having reconstructed the reduced shares { B(x, j)};, nodes in the
new committee collectively generate a zero-hole bivariate polynomial Q(x,y) of degree-
(t,2t), with the constraint that each node j only learns Q(z, 7). Reduced shares are
updated as B'(z,y) = B(z,y) + Q(z,y).

e Full Share Distribution: Nodes in the new committee get their updated full shares
from the updated reduced shares. In A;’s case, A; knows B’(z, 1) and sends B’(2,1) to
Ay and B'(3,1) to node A;. Other nodes do the same. Hence, A; receives B'(1,2) and
B'(1,3) from As and Aj, respectively. A; now has the necessary three points B'(1, j)
for j C{1,2,3} to interpolate and recover its full share B'(1,y)

19

Chapter 6

Protocol Details

We now present the protocol details of the optimistic and pessimistic paths of CHURP.

6.1 Setup

The setup phase of CHURP executes once and sets the system to a proper initial steady
state. To start, an initial committee Cj is selected. Cy performs the KZG setup the secret is
shared among members of Cj. Using their shares, members of Cjy can generate commitments
to install the three invariants.

The setup of KZG can be performed by a trusted party or a committee assuming at least
one party is honest. The secret to be managed by CHURP can be generated by a trusted
party or in a distributed fashion, e.g., [17]. We leave committee selection out-of-scope for
this paper. Readers can refer to [18] for a discussion.

6.2 Optimistic Path (Opt-CHURP)

As described above, Opt-CHURP transfers shares of some secret s from an old committee
C = C*V to a new committee ¢’ = C©. CHURP supports both committee size and
threshold changes, eg from (n,t) to (n/,t') in any epoch. For ease of exposition here, we
allow n to change across epochs but assume a constant threshold ¢.

Opt-CHURP consists of three phases: Opt-ShareReduce, Opt-Proactivize, and Opt-
ShareDistribution. The first phase, Opt-ShareReduce, performs dimension-switching to tol-
erate an adversary capable of corrupting 2¢ nodes across the old and new committees. When
Opt-ShareReduce completes, nodes in the new committee hold the reduced shares. The
second phase, Opt-Proactivize, proactivizes the reduced shares so that they are independent
of the old shares. The last phase, Opt-ShareDistribution, reverses the dimension-switching
and restores the full-shares to the new committee, thus returning to steady state.

At the beginning of Opt-CHURP, each node in C’ requests the set of KZG commitments
from any node in C, eg, C';. Recall that by the invariant Inv-Comm, each node in C' holds

CHAPTER 6. PROTOCOL DETAILS 20

the KZG commitments to the current reduced shares, {C’B(w) }jt:ll, while the corresponding
hashes are on-chain. The received commitments are verified using the on-chain hashes.
Optimistically, each node in C” receives the correct set of commitments. If a node receives

corrupt ones, we switch to the pessimistic path Exp-CHURP-A where the commitments are
published on-chain. The phases of Opt-CHURP are as follows:

Share Reduction (Opt-ShareReduce)

The protocol starts by choosing a subset U’ C C” of 2t + 1 members (possible because
C" > 2t). The nodes in U’ are denoted {U/ }?jl Some members of the old committee may
have left the protocol at this point. Let Cy;,. € C denote the subset of nodes that are
present. Without loss of generality let this subset be {C; }ﬁ“l““'.

By the invariant Inv-State, each live node C; in the old committee holds a full share
B(i,y). Each node C; distributes points on its full share to members of U’, allowing the
computation of reduced shares B(x, j). This makes the dimension-switch from the degree-t
dimension of B(x,y) to the degree-2¢ dimension.

Specifically, C; sends B(i,j) to U;, which interpolates the received points to recover
B(z,7). Note that in the optimistic path we require all 2¢ 4+ 1 nodes to participate. If any
adversarial nodes fail to do so, we fall back to the pessimistic path.

The received points are accompanied by witnesses allowing for verification using the KZG
commitments received previously. Since ¢+ 1 correct points are sufficient to reconstruct the
reduced share and our adversarial threshold is ¢ < n/2, we need at least n = 2t + 1 points
(|Cutive] > 2t) to guarantee liveness. The size of Cyjpe is governed by the bounded churn
rate a, i.e. |Cyve] >=|C| * (1 — a). Thus the condition for liveness, |Cyive| > 2t, places a
lower bound on the committee size, |C] * (1 —a) > 2t, or |C| > .

The protocol Opt-ShareReduce is formally specified in Fig. 6.1. At the end of Opt-
ShareReduce, dimension-switching is complete and each node U has a reduced share B(z, j).

Communication Complezity: Each node in U’ receives O(n) points, so Opt-ShareReduce
incurs O(nt) off-chain cost.

Proactivization (Opt-Proactivize)

In this phase, U’ proactivizes the bivariate polynomial B(z,y) to generate new shares
independent of the old ones held by members of C. The polynomial B(z,y) is updated
using a random zero-hole bivariate polynomial Q(z,y), i.e. Q(0,0) = 0. The result is an
updated polynomial B'(z,y) = B(x,y) + Q(x,y). Since Q(z,y) is zero-hole, the secret
remains unchanged, preserving the invariant Inv-Secret.

We achieve this by adapting the BivariateZeroShare technique described in Chapter 4
to handle active adversaries. Recall that BivariateZeroShare consists of two steps. First, a
univariate zero-sharing subroutine generates shares of the number 0. These shares are then
shared in a second step, resulting in a sharing of zero-hole Q(x,y) among C".

CHAPTER 6. PROTOCOL DETAILS 21

Opt-ShareReduce

1: Public Inpl.lt:{G’B:ﬂ,:j]}jr:_[zh_l:

Input: Set of nodes {C; }{E[R] where each node C; is given
{B(i,5), Wai 5 }_fe'2:+1]‘ Set of nodes {C}} i, st.n' > 2641
Output: Vj € [2¢ 4 1], node C; output Bz, j)

4 ; Order { C;} based on lexicographic order of their public keys

5: Choose the first 2¢ 4 1 nodes, denoted as U, wlo.g, U’ = {C}}jciae41]

6 : node C;:
7: Vi € [2¢+1], send a point and witness { B(4, j), Wig(; ;) } to L{; off-chain

g . node I,a’;:

9: Wait and receive n points and witnesses, { B(i, 7), Wgi i }i&'[n]
10 : Wi € [n], invoke VerifyEval(C'g(. 4y, 4. B4, 5), Wai i)

11: Interpolate any ¢ + 1 verified points to construct Bz, 5)

Figure 6.1: Opt-ShareReduce between the committees C' and C’

By the end of the previous phase (ShareReduction), each node UJ’. C U’ holds a reduced
share B(x,j). By the end of the current phase, we update these reduced shares with the
shares Q)(z, j) generated from Q(z,vy).

The protocol starts by invoking the zero-sharing subroutine UnivariateZeroShare intro-
duced previously, which is the first step of BivariateZeroShare. Specifically, (2¢,2t + 1)-
UnivariateZeroShare is run among U’ to generate shares s; at each Uj. To handle active
adversaries, UJ’- sends a commitment to the share, g%, to all other nodes in U’ (where ¢ is a
publicly known generator). Lagrange coefficients {A?t}j can be precomputed to interpolate
and verify if the shares form a 0-sharing, i.e. th:ll)\?t
all nodes check the following:

s; = 0. Translating to commitments,

2t+1

[T =1. (6.1)

j=1

Then, U; generates a random degree-t univariate polynomial R;(x) that encodes the
node’s share s;, i.e. R;(0) = s;. Together, the 2¢+ 1 polynomials uniquely define a zero-hole
bivariate polynomial Q(x,y) such that {Q(x,j) = R;(x)}7". Each node U} then updates
its reduced share with R;(z), i.e. B'(z,j) = B(z,j) + R;(z). Points on B'(z,j) are then
distributed to the entire committee C” in the next phase of Opt-CHURP.

Each U} sends constant-size information to other nodes off-chain enabling verification of
the above step. Let Z;(z) = R;(z) — s; denote a zero-hole polynomial, the commitment to
Zj(r), Cz,;, and a witness to the evaluation at zero are distributed enabling verification of the
statement: Z;(0) = 0; equivalent to R;(0) = s;. The commitment to the updated reduced
share B'(x, j) is also distributed. Since the B'(x,j) = B(x,j) + Z; + s;, the homomorphic

CHAPTER 6. PROTOCOL DETAILS 22

property of the commitment scheme allows other nodes to verify if Cp/(, j) = Cp(e,j*Cz,*C;,
where C,; = g% and the other two commitments were received previously.

In total, each U} generates the following set of commitment and witness information
during Opt-Proactivize, { 9°,Cz;, Wz,0), CB(a,) } While this set is transmitted off-chain
to all nodes in the full committee C’, a hash of it is published on-chain. The received
commitments can then be verified using the published hash, thereby ensuring that everyone
receives the same commitments. Note that the set of commitments is sent to C” instead of
just the subset U’ to preserve the invariant Inv-Comm, i.e. ensure that all nodes hold KZG
commitments to the updated reduced shares.

The verification mechanisms used in this protocol are sufficient to detect any faulty
behavior, but do not identify the offending nodes. Thus, the adversary can disrupt the
protocol without revealing his/her nodes. For example, it could send corrupt commitments
to nodes selectively. Although the published hash reveals this, a verifiable accusation cannot
be made since the commitments were sent off-chain. Another example would be a corrupt
node sending points from a non-zero-hole polynomial in the UnivariateZeroShare protocol.
Again, we detect such a fault but cannot identify which nodes are faulty. Therefore, detection
of a fault simply leads to a switch to the pessimistic path, Exp-CHURP-A. While Exp-
CHURP-A is capable of identifying misbehaving nodes, note that we do not retroactively
identify the faulty nodes from Opt-CHURP.

The protocol Opt-Proactivize is formally specified in Fig. 6.2. By the end of this, if
no faults are detected, each UJ/. holds the updated reduced shares B’(z,7). The invariants
Inv-Secret and Inv-Comm hold as s = B’(0,0) and all of C’ hold the KZG commitments
respectively. In the next phase, we preserve the other invariant Inv-State.

Communication complexity: Each node in U’ publishes a hash on-chain and transmits
O(t) data off-chain. Hence, Opt-Proactivize incurs O(t) on-chain and O(t?) off-chain cost.

Full Share Distribution (Opt-ShareDist)

In the final phase, full shares are distributed to all members of the new committee, thus
preserving the Inv-State invariant. A successful completion of this phase marks the end of
the handoff.

By the end of the previous phase, each node U]’ in the chosen subset of nodes U’ holds
a new reduced share B'(z, j). Now, U} distributes points on B'(z, j), allowing computation
of full shares B'(i,y) by each member of the new committee C!. This makes the dimension-
switch from the degree-2¢ dimension of B’(z,y) to the degree-t dimension. Specifically, each
Cj receives 2t 4 1 points {B'(i, j)};2,', which can be interpolated to recover the full share
B'(i,y). This is made verifiable by sending a witness along with the points.

Since the point distribution is off-chain, a faulty node can send corrupt points without
getting identified. Similar to the previous phase, when adversarial behavior is detected
CHURP switches to the pessimistic Exp-CHURP-A.

The protocol Opt-ShareDist is formally specified in Fig. 6.3. If all nodes receive cor-
rect points, the optimistic path concludes successfully. The remaining invariant Inv-State

CHAPTER 6. PROTOCOL DETAILS

is fulfilled as each node in C’ receives a full share, and hence the system returns to the
steady state. After a successful completion of CHURP, we require that members of the old
committee C' delete their old full shares and members of U’ delete their new reduced shares.

Communication complexity: Each node in C” receives 2t + 1 points, thus Opt-Sharedist

incurs O(nt) off-chain cost.

12 ;

13

14 ;

15:

16 :

17 ;
18 :

Opt-Proactivize
Public Input: { C'n, 5 }jej2z+1]
Input: Set of nodes {C{};.,+- Let U’ = {C}},c2¢41), each node L4] is
given B(z, j)
Output: I{; outputs success and B'(z, j) for a degree-(t, 2t) bivariate
polynomial B'(z, y) with B'(0,0) = B(0,0) (or) fail

Public Output: {Gﬁxfr’j) }je [2t41]

Invoke (2f, 2¢ + 1)-UnivariateZeroShare among the nodes -[Uj }icrzer) to

generate shares {s; }je (2¢£1]

node 14;:

Generate random t-degree polynomial 2; (x) such that B;(0) = s
Denote the bivariate polynomial ¢ (x, y) where {Q{(z, j) = R;(x) }je'2z+1l
Denote the bivariate polynomial B (z,y) = B(z,y) + Q(z, y)
node 14;:

Compute B'(x,j) = Bz, j) + Q(z.j) and Z;(x) = R;(z) — s,

Send {g”:‘ : C"zj . WZ;;(E'] . GB-‘(r,j)} off-chain to all nodes in C’, where
Cz; = Commit{Z;); sz oy = CreateWitness(Z;,0); Crrin iy =
Commit{ B’ (z, §))

Publish hash of the commitments on-chain H; =
H(g"i ||Czj ||sz(n)||cg*(m,j3}

node C;:

'y € [2f + 1], retrieve on-chain hash H;, also receive
{4 .C2,; . W2,(0), Ct (z.5) } offchain

Wi e [2t + 1), if H; # H(g™ 1Cz; [IWz; () [|Crr (e, 5)) of
Verinyua][sz ,0,0, sz(n):' # Trueor Cgr iy iy # Cr(e,y) X Cz; X
g7, output fail

2t

Using Lagrange coefficients in Eq. (1), if 1‘[?:11 (g%)*7 # 1 output £aill

node U;:

Qutput success and B’ (x,)

Figure 6.2: Opt-Proactivize updates the reduced shares

CHAPTER 6. PROTOCOL DETAILS 24

Opt-ShareDist
: Public Input: § C' -
1 ic Inpu { BJ[E’J’}jejzwl]
Input: Set of nodes {C;}iz[ns)- Let U’ = {C}}erze+1), each node L4 is
given B'(z, §)
3: Output: Vi € [n'], C! outputs success and B (4, y) (or) fail

4 : node M}:

5. i € [n'], send a point and witness off-chain {B’[Lj’}. Wi } to C!
" where W"“B“_J.] = CreateWitness(B'(x, j),1)

6: node C;:

£

: Wait and receive points and witnesses {B’ i, 50, Wi, . }
7 po (5): Wa.5) JE[2t+1)

Vj € [2t + 1], invoke VerifyEval(C'pr(, jy,4, B (4, 5), Wg(; ;)
9 If all 2¢£ + 1 points are correct, interpolate to construct B’ (4, y)
10: Output success and the full share B'(%, y)
11: In all other cases, output fail

Figure 6.3: Opt-ShareDist uses the updated reduced shares to distribute full shares in C’

Communication and Security

Each of the three phases in Opt-CHURP incur no more than O(n) on-chain and O(n?)
off-chain cost assuming O(t) = O(n). In terms of round complexity, it completes three
rounds (one for each phase) that does not depend on the committee size. The details of
CHURP’s pessimistic paths are discussed in the next section. Table 5.1 compares the on-
chain and off-chain costs of the three paths of CHURP and Schultz-MPSS [34], the latter
will be explained in more detail in Chapter 7.

The adversary can learn at most 2t reduced shares and ¢ full shares of B¢(z,y) for a given
epoch e. Before Opt-CHURP ends, the adversary learns ¢ full shares and ¢ reduced shares
of epoch e from t corrupted nodes in C®. In the subsequent handoff between committees
C® and C,,,, the adversary learns at most another ¢ reduced shares for epoch e, during the
dimension-switch of the Opt-ShareReduce phase, leading to a total worst-case leakage of 2t
reduced shares and ¢ full shares of B¢(x,y). It can be shown that the above leakage is not
enough to compute B¢(z,y). Since the shares are proactivized in the handoff, subsequent
corruptions do not leak any more information about B¢(z,y).

Exp-CHURP-A

This path is invoked when adversarial behavior is detected in Opt-CHURP. The first
phase of Exp-CHURP-A is the same as Opt-ShareReduce, and is not re-executed if Opt-
ShareReduce ends successfully.

In Exp-Proactivize, we use a different zero-sharing protocol, allowing honest parties to

CHAPTER 6. PROTOCOL DETAILS 25

avoid re-execution of the protocol in case of corruption - they can simply discard the shares
generated by adversarial nodes. Messages are encrypted under the receiver’s public key and
posted on-chain, so that misbehaving nodes can be identified in case of corruption.

If any adversary in U’ is expelled in this phase, we ask members in the old committee
to publish the shares and witnesses sent to adversarial nodes during Opt-ShareReduce on
the chain. In this way, all honest parties have access to the reduced shares that belong to
adversarial nodes, which allows them to reconstruct the full shares in the next phase.

In Exp-ShareDist, to allow identification of malicious nodes, members post all messages
on-chain in contrast to the optimistic path. Exp-Proactivize and Exp-ShareDist are pre-
sented in Fig. 6.4 and Fig. 6.5. The overall on-chain and off-chain complexities of Exp-
CHURP-A are O(n?) and O(n?), respectively.

Exp-Proactivize
1: Public Input: {C'z. 5 }jejzz+1]

2: Input: Set of 2¢ + 1 nodes {U}};c(2¢+1)- Each node U] is given B(z, j)

Output: M_'; outputs B'(z, §) for a degree-{¢, 2t} bivariate polynomial
B'(z,y) with B'(0,0) = B(0, 0)

4 Public Output: { Cpr(,. ;) }

jel2t+1]
5: node U]
6: Generate {s:; } .5,) that form a O-sharing ie., Zf:‘il)\?‘5” = 0.
7. Publish {g°%7 } 21204017, {Encpkj [$i5]}jer2e41) and zk proofs of corrects
" ness of the encryptions on-chain.
f.
8 - node 4 't
9 Decrypt {Encpkj. [8:7]} from node i and verify s;; using g“¢ on-chain.
10 : node E'.&‘_';:
11 - Iflan}' adversarial node 7 is detected in step 9, add it to M;’_wm}]mdr and
publish &;.
12: Sets; =3 icunau Sij-
eoarrupted
13 Execute step 7-9, 11-12 of Opt-Proactivize in Figure 6, with messages posted

on the chain in step 12.
14: node C]

15 : Execute step 16 of Opt-Proactivize in Figure . If it outputs £ail, add j to

U pteq- Nodes in 14" discard shares by executing step 12 again.
16 : node C;:
17 For all malicious nodes j detected in step 9 and 15, publish point and witness

{B(i, j), w; ; } on-chain.

Figure 6.4: Exp-Proactivize protocol

CHAPTER 6. PROTOCOL DETAILS 26

Exp-ShareDist

1: Public Input:{cﬂf(r,ﬁ jel2i41]

Input: Set of nodes {C;},.,/. Let U’ = {C}} (2041, each node L] is
given B'(z, j)

3: Output: ¥i € [n'], C! outputs B'(1, y)

4 . node E‘A'_';

Wi € [n'], publish Encpg, {B'[i,j]},gﬂaf"'ﬂ,w;,j on-chain, where
. = CreateWitness(B'(x, j),4). Also publish zk proofs of correctness

w;
of Lﬁe encryption.

6: node C:

.

7: Decrypt the message on-chain to get {B'(i,j],wi_j } St
: Jje|dt+1]

g, VI EUNUL . pieq invoke VerifyEval(Cpr (s 5y, 4 B (4, 5), w] ;).
" If any of the checks fail, add j to Ifl‘;_m,mmed

9: node C;:

10 : Publish B(i, j), w; ; for any new adversarial node j detected above.

11: node L)

12 : Publish s;; for any new adversarial node j detected above and discard shares
" by executing step 12 in Fig. 17.

13: node C.:

14 - W. S U;mww}_md, validate their I:E:dllt:f.':d _sha.res posted by the old committed

by Vi € [n], VerifyEval(C'g . ;. % B(i,), wi ;).
15 - L= U;wmpmd Interpolate any ¢ + 1 verified points to construct Bz, j)

Set Brtzh?) = BE"'—"L?:I + Z{E.'zr:mest. Hig
16 : Interpolate all B'(4, 7) for § € [2¢ + 1] to construct B’ (4, y)
17: Output the full share B'(i, y)

Figure 6.5: Exp-ShareDist protocol

State Verification (StateVerif)

Both Opt-CHURP and Exp-CHURP-A use the KZG commitment scheme, which requires
a trusted setup phase and its security relies on the t~-SDH assumption. In this section, we
devise a hedge against these - a verification phase, StateVerif, that relies only on discrete log
assumptions.

Recall that by the end of Opt-CHURP or Exp-CHURP-A, each member C! in the new
committee holds a full share. StateVerif further checks that the invariants given in Chapter 5
still hold. Specifically, we check Inv-Secret: the secret is unchanged, Inv-State: these full
shares form a (t,2t) bivariate polynomial.

StateVerif can fail for two reasons: either the commitments are computed incorrectly
by adversarial nodes, or the assumptions in the KZG scheme fail. If the commitments
are computed incorrectly, CHURP switches to the pessimistic Exp-CHURP-A. Otherwise, it
implies a failure of the assumptions in the KZG scheme. In this case, we switch to a different

CHAPTER 6. PROTOCOL DETAILS 27

pessimistic path Exp-CHURP-B.

Exp-CHURP-B

This pessimistic path is taken only after a detection of a breach in the underlying as-
sumptions of the KZG scheme.

In this path, we use relatively expensive polynomial commitments (Pedersen commit-
ments) instead of KZG and support a lower threshold on the number of adversarial nodes
t < n/3. In the share reduction phase, since n > 3t, we rely on the error correcting mecha-
nisms of Reed-Solomon codes to construct reduced shares, instead of the verification of the
KZG scheme. In the proactivization phase and full share distribution phase, we replace the
KZG commitments and verification with the Pedersen commitments (step 13 in Fig. 6.4 and
steps 5, 8, 12 in Fig. 6.5). Exp-CHURP-B incurs O(n?) on-chain cost and O(n?) off-chain
cost, assuming t < n/3.

28

Chapter 7

Implementation and Evaluation

7.1 Implementation

We implemented Opt-CHURP in about 2,100 lines of Go code. Our implementation uses
the GNU Multiprecision Library [19] and the Pairing-Based Cryptography Library [37] for
cryptographic primitives, and gRPC [20] for network infrastructure. We plan to open-source
our code for CHURP in the near future.

For polynomial arithmetic, we used the polynomial ring F,[x] for a 256-bit prime p. For
the KZG commitment scheme, we used a type A pairing on an elliptic curve y? = 23 + x
over [, for a 512-bit q. The order of the EC group is also p. We use SHA256 for hashing.

CHURP can be deployed on both permissioned and permissionless blockchains. To ab-
stract away the specific choice, we simulate one using a trusted node. Note that when
deployed in the wild, writing to the blockchain would incur an additional constant latency.

7.2 Evaluation

In our evaluation, experiments are run in a distributed network of up to 1000 EC2
cb5.large instances, each with 2 vCPU and 4GB of memory. Each instance acts as a node in
the committee and the handoff protocol is executed assuming a static committee. All experi-
ments are averaged over 1000 epochs, ie, 1000 invocations of Opt-CHURP. We measure three
metrics for each epoch of the protocol: the latency (total execution time), the on-chain com-
munication complexity (total bytes written to the bulletinboard /blockchain /trusted node),
and the off-chain communication complexity (total bytes transmitted between all nodes).
The evaluation results are presented below.

Latency

In the first set of experiments, all EC2 instances belong to the same region, also referred
to as the LAN setting. This setting is useful to understand the time spent in computation.

CHAPTER 7. IMPLEMENTATION AND EVALUATION 29

Fig. 7.1 shows the latency of Opt-CHURP. The experimental results show a quadratic in-
crease in consistent with the O(n?) asymptotic computational complexity of Opt-CHURP
and suggests a low constant, eg, for a committee of size 1001 the total protocol execution
time is only about 3 minutes. (Fig. 7.2). As noted before, this does not include the additional
latency for on-chain writes. Note that Opt-CHURP involves only 1 on-chain write per node
which happens at the end of Opt-Proactivize, and in Ethereum currently each write takes
about 15 seconds. Fig. 7.2 also shows that among the three phases, Opt-ShareDist dominates
the execution time due to the relatively expensive O(n) calls to KZG’s CreateWitness per
node. (CreateWitness involves O(n) group element exponentiation, thus a total of O(n?)
computation).

In the second set of experiments, we select EC2 instances across multiple regions in the
US, Canada, South America, Asia, and Europe, also referred to as the WAN setting. In
this setting the network latency is relatively unstable, although even in the worst case it is
still sub-second. Hence, during a handoff of Opt-CHURP in the WAN setting, we expect a
constant increase in the latency over the LAN setting. Moreover, we expect this constant to
be relatively small compared to the time spent in computation. We validate our hypothesis
- for a committee of size 100, the WAN latency is 4.54 seconds while the LAN latency is 2.92
seconds (Fig. 7.1) i.e. the additional time spent in network latency is around 1.6 seconds
and constant across the different committee sizes as expected. Note that we were unable
to execute experiments in the WAN setting for committee sizes beyond 100 due to scaling
limitations in the Amazon infrastructure.

On-chain communication complexity

Opt-CHURP incurs a linear on-chain communication complexity - n hashes, i.e. 32n
bytes, are written to the blockchain in each handoff.

Off-chain communication complexity

Fig. 7.3 compares the off-chain complexity for different committee sizes for Opt-CHURP
and Schultz-MPSS [34], we discuss the comparison in the following section. The experimental
performance numbers are consistent with the expected O(n?) asymptotic complexity.

The off-chain data transmitted per node includes: 2n (polynomial point, witness) pairs in
the share reduction and the share distribution phase, and n elements of F}, in the proactiviza-
tion phase; each node also sends 1 commitment to share, 3 commitments to polynomials,
and 1 witness. With the aforementioned parameters, a commitment to a t-degree poly-
nomial is of size 65B bytes (with compression) and points on polynomial are of size 32B.
For example, for ¢ = 50 and n = 101, the off-chain complexity of Opt-CHURP is about
226n? + 325n = 2.3MB. In Fig. 7.3, the expected curve is slightly below the observed data
points because of trivial header messages unaccounted for in the above calculations.

CHAPTER 7. IMPLEMENTATION AND EVALUATION

Latency (sec)

6 1 l |
O Opt-ShareReduce

4 H O Opt-Proactivize _
0 Opt-ShareDist

z-E.EaEEEBQQ iy

T T I
20 40 60

Nodes

20

100

30

Figure 7.1: Opt-CHURP latency for the LAN and WAN setting with committee sizes 11-101,

in increments of 10. The left bar is LAN latency and the right bar is WAN latency.

Latency (sec)

200

150

100

| | |
g Opt-ShareReduce I
10 Opt-Proactivize |
g Opt-ShareDist h
| - = [D U D =
T T T
200 400 600 200 1,000

Nodes

Figure 7.2: Opt-CHURP latency for the LAN setting with committee size 101-1001, in

increments of 100

Off-chain comm. comp. (Mbytes)

1[]8 -

@ Opt-Schultz-MPSS [

3 L
10 o °
Q

102 1 1 I

© Opt-CHURP _

0 200 400 600
Nodes

800

1,000

Figure 7.3: Off-chain communication complexity for Opt-CHURP and Schultz-MPSS, with
log-scale y-axis. Points show experimental results; expected polynomial curves (respectively
quadratic and quartic) are also shown.

CHAPTER 7. IMPLEMENTATION AND EVALUATION 31

7.3 Comparison with Schultz’s MPSS

The Mobile Proactive Secret Sharing (MPSS) protocol of Schultz et al [34], referred to
as Schultz-MPSS hereafter, achieves the similar goal as CHURP in asynchronous settings,
assuming ¢ < n/3. Compared to [34], Opt-CHURP achieves an O(n?) improvement for off-
chain communication complexity. To evaluate the concrete performance improvement, we
also implemented the optimistic path of Schultz-MPSS and evaluated the communication
complexity empirically.

Asymptotic improvement: Schultz-MPSS extends the usage of expensive blinding
polynomials introduced by Herzberg et al [22] to enable a dynamic committee membership.
We recall briefly that the asymptotic complexity of Schultz-MPSS and refer readers to [34]
for details. Each node in the old committee generates a proposal of size O(n?) and sends
it to other nodes, resulting in an O(n*) off-chain communication complexity. Each node
then validates the proposals and reaches consensus on the set of proposals to use by sending
O(n) accusations to the primary, incurring a O(n?) on-chain communication complexity.
In the optimistic case where no accusation is sent - labelled as Opt-Schultz-MPSS - the
consensus publishes O(n) hashes of proposals on-chain and thus only incurs O(n) on-chain
communication complexity.

Table 5.1 compares the asymptotic communication complexity of Schultz-MPSS and
CHURP. Opt-Schultz-MPSS has the same on-chain complexity as CHURP, but is O(n?)
more expensive for off-chain communication.

Performance evaluation: We implemented the optimistic path of Schultz-MPSS (Sec-
tion 5 of [34]) in about 3100 lines of Go code. To adapt Schultz-MPSS to the blockchain
setting, we replace the BFT component of Schultz-MPSS with a trusted node. Fig. 7.3
compares the off-chain communication complexity of Opt-Schultz-MPSS and Opt-CHURP.

For practical considerations, our experiments show that Opt-CHURP can incur orders of
magnitude less (off-chain) communication complexity than Opt-Schultz-MPSS. For example,
for a committee of size 100, the off-chain communication complexity of Opt-Schultz-MPSS
is 53.667n* ~ 5.3GB, whereas that for Opt-CHURP is only 2.3MB, a 2300x improvement.
Since Schultz-MPSS incurs excessive (GB) off-chain cost, we do not run it for committee
sizes beyond 100.

32

Bibliography

Brian Armstrong. Coinbase is not a wallet. https://blog.coinbase.com/coinbase-
is-not-a-wallet-b5b9293cale7. Feb. 25, 2018. (Visited on 02/25/2016).

Avi Asayag et al. Heliz: a scalable and fair consensus algorithm. Tech. rep. Technical
report, Orbs Research, 2018.

Michael Backes, Aniket Kate, and Arpita Patra. “Computational verifiable secret shar-
ing revisited”. In: International Conference on the Theory and Application of Cryptol-
ogy and Information Security. 2011.

Kevin D Bowers, Ari Juels, and Alina Oprea. “HAIL: A high-availability and integrity
layer for cloud storage”. In: the 16th ACM conference on Computer and communica-
tions security. 2009.

Vitalik Buterin. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Cryptography Mailing list at hitps://metzdowd.com (Aug. 2013).

Christian Cachin et al. “Asynchronous verifiable secret sharing and proactive cryp-
tosystems”. In: 9th ACM conference on Computer and communications security. 2002.

Miguel Castro and Barbara Liskov. “Practical Byzantine fault tolerance and proactive
recovery”. In: ACM Transactions on Computer Systems (2002).

Raymond Cheng et al. “Ekiden: A Platform for Confidentiality-Preserving, Trustwor-
thy, and Performant Smart Contract Execution”. In: arXiv preprint arXw:1804.05141
(2018).

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A secure and optimally
efficient multi-authority election scheme”. In: Furopean transactions on Telecommuni-
cations (1997).

Yvo Desmedt and Sushil Jajodia. Redistributing secret shares to new access structures
and its applications. Tech. rep. Technical Report ISSE TR-97-01, George Mason Uni-
versity, 1997.

Shlomi Dolev et al. “Swarming secrets”. In: Allerton Conference on Communication,
Control, and Computing. 2009.

Michael Egorov, MacLane Wilkison, and David Nunez. “Nucypher KMS: decentralized
key management system”. In: arXiv preprint arXiv:1707.06140 (2017).

https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7

BIBLIOGRAPHY 33

[13] Paul Feldman. “A practical scheme for non-interactive verifiable secret sharing”. In:
Foundations of Computer Science, 1987., 28th Annual Symposium on. 1987.

[14] Pesech Feldman and Silvio Micali. “An optimal probabilistic protocol for synchronous
Byzantine agreement”. In: SIAM Journal on Computing (1997).

[15] Yair Frankel et al. “Optimal-resilience proactive public-key cryptosystems”. In: 38th
Annual Symposium on Foundations of Computer Science. 1997.

[16] Rosario Gennaro et al. “Robust threshold DSS signatures”. In: International Confer-
ence on the Theory and Applications of Cryptographic Techniques. 1996.

[17] Rosario Gennaro et al. “Secure distributed key generation for discrete-log based cryp-
tosystems”. In: Advances in Cryptology - EUROCRYPT. 1999.

[18] Yossi Gilad et al. “Algorand: Scaling Byzantine Agreements for Cryptocurrencies”. In:
the 26th Symposium on Operating Systems Principles. 2017.

[19] Go language interface to GMP - GNU Multiprecision Library (golang). https://
github.com/ncw/gmp. (Accessed on 11/14/2018).

[20] gRPC: A high performance, open-source universal RPC' framework. https://grpc.
io/. (Accessed on 11/22/2018).

[21] Amir Herzberg et al. “Proactive public key and signature systems”. In: the 4th ACM
conference on Computer and communications security. 1997.

[22] Amir Herzberg et al. “Proactive secret sharing or: How to cope with perpetual leakage”.
In: Annual International Cryptology Conference. 1995.

[23] Aniket Kate, Gregory M Zaverucha, and Tan Goldberg. “Constant-size commitments
to polynomials and their applications”. In: Advances in Cryptology - ASIACRYPT.
2010.

[24] Eleftherios Kokoris-Kogias et al. CALYPSO: Auditable Sharing of Private Data over
Blockchains. Cryptology ePrint Archive. 2018.

[25] Haiyun Luo et al. “Self-Securing Ad Hoc Wireless Networks”. In: International Sym-
posium on Computers and Communications. 2002.

[26] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: Cryptogra-
phy Mailing list at https://metzdowd.com (Mar. 2009).

[27] Ventzislav Nikov and Svetla Nikova. “On proactive secret sharing schemes”. In: Inter-
national Workshop on Selected Areas in Cryptography. 2004.

Y

28] Mehrdad Nojoumian and Douglas R Stinson. “On dealer-free dynamic threshold schemes.’
In: Adv. in Math. of Comm. (2013).

[29] Mehrdad Nojoumian, Douglas R Stinson, and Morgan Grainger. “Unconditionally se-
cure social secret sharing scheme”. In: IET information security (2010).

[30] Rafail Ostrovsky and Moti Yung. “How to withstand mobile virus attacks”. In: ACM
symposium on Principles of distributed computing. 1991.

https://github.com/ncw/gmp
https://github.com/ncw/gmp
https://grpc.io/
https://grpc.io/

BIBLIOGRAPHY 34

[31]

[32]

[33]

Torben Pryds Pedersen. “Non-interactive and information-theoretic secure verifiable
secret sharing”. In: Annual International Cryptology Conference. 1991.

Jeff John Roberts and Nicolas Rapp. Fxclusive: Nearly 4 Million Bitcoins Lost Forever,
New Study Says. en. Nov. 2017. URL: http://fortune.com/2017/11/25/1lost~
bitcoins/ (visited on 05/08/2018).

Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi. “Efficient node admission for short-
lived mobile ad hoc networks”. In: 15th IEEFE International Conference on Network
Protocols. 2005.

David A Schultz, Barbara Liskov, and Moses Liskov. “Mobile proactive secret sharing”.
In: ACM symposium on Principles of distributed computing. 2008.

Adi Shamir. “How to share a secret”. In: Communications of the ACM (1979).

Douglas R Stinson and Ruizhong Wei. “Unconditionally secure proactive secret sharing
scheme with combinatorial structures”. In: International Workshop on Selected Areas
in Cryptography. 1999.

The PBC Go Wrapper. https://github.com/Nik-U/pbc. (Accessed on 11/14/2018).
Theodore M Wong, Chenxi Wang, and Jeannette M Wing. “Verifiable secret redistri-

bution for archive systems”. In: the first International Security in Storage Workshop.
2002.

Lidong Zhou, Fred B Schneider, and Robbert Van Renesse. “APSS: Proactive secret
sharing in asynchronous systems”. In: ACM transactions on information and system

security (TISSEC) (2005).

Guy Zyskind, Oz Nathan, et al. “Decentralizing privacy: Using blockchain to protect
personal data”. In: Security and Privacy Workshops. 2015.

http://fortune.com/2017/11/25/lost-bitcoins/
http://fortune.com/2017/11/25/lost-bitcoins/
https://github.com/Nik-U/pbc

	Contents
	Introduction
	Related Work
	Model and Assumptions
	Effective Bivariate Zero-sharing
	CHURP Protocol Overview
	Protocol Details
	Setup
	Optimistic Path (Opt-CHURP)

	Implementation and Evaluation
	Implementation
	Evaluation
	Comparison with Schultz's MPSS

	Bibliography

