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Abstract

In recent years, buildings have become a major source of global energy consumption. A signi�cant
portion of that can be attributed to the heating, ventilation, and air conditioning (HVAC) and
electric lighting systems. With the advent of new smart building technologies that can, among other
things, monitor environmental data, occupancy, and remotely control various building systems, it
becomes possible to implement intelligent systems that can alleviate these issues. In this work, we
propose a lightweight, decentralized controller that minimizes building energy consumption while
maintaining occupant comfort by integrating the aforementioned smart building technologies
with EnergyPlus simulation and programmatic building control in a model-predictive control loop.
We demonstrate its e�cacy on two real-world implementations in the CREST lab in Cory Hall and
illustrate that with a short data collection period, it is rapidly deployable and can o�er signi�cant
energy savings and presents extensions to di�erential privacy while achieving the desired comfort
objectives.
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List of Symbols

U n
k Control inputs for K timesteps across N zones
J Cost function

Pzh,t , P
z
d,t HVAC and electric lighting power consumption (W )

T z
k Temperature (oC) in zone z at timestep k

Bzk Brightness (lx) in zone z at timestep k

Szk Supply air temperature (oC) in zone z at timestep k

Lzk Dimmer level [0, 1] in zone z at timestep k

θzk Blind angle [0, 100] in zone z at timestep k

Oz
k Occupancy (N) in zone z at timestep k

Bk Solar radiation (lx) at timestep k
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1 Introduction

In 2013, the US Energy Information Administration projected that world energy consumption will
increase 56% by 2040 [1]. Buildings account for nearly 40% of global energy usage, of which 40%
and 15% are consumed by HVAC and lighting, respectively. Thus, it is of paramount importance
to optimize the energy consumption of buildings in pursuit of a more sustainable energy future.
More recently, the rapid growth of smart building technologies present valuable opportunities to
closely couple information processing and optimal control with the operation of building energy
systems [2]. These include technologies such as Building Operating System Services (BOSS), a
distributed operating system for buildings, and Building-in-Briefcase (BiB), a rapidly deployable
portable sensor platform to monitor a variety of environmental data [3, 4]. Such developments
o�er platforms on which intelligent control schemes can be deployed to optimize building energy
usage.

The use of control schemes ranging in complexity from rule-based control actions to model
predictive control for HVAC and lighting have been shown to be e�ective in reducing the energy
cost of buildings. However, the controls over di�erent building systems have remained largely
separated. There have been a few studies that explore the synergistic bene�ts of joint control
of multiple building systems, while the bene�ts have been mostly validated in simulation en-
vironments. In this work we develop a joint optimization-based control scheme for the HVAC,
electric lighting, and blind systems that is designed to be fairly lightweight and decentralized.
The objective is to develop a software platform for robust and rapid deployment of integrated
controls over di�erent building systems and demonstrate possible energy and non-energy bene�ts
of integrated control on real-world sites. We pair this system with the aforementioned BiB sensor
network to validate its e�ectiveness in optimizing energy use while maintaining occupant comfort
through a realization in the CREST lab in Cory Hall at UC Berkeley.
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2 Related Work

Extensive recent research has been conducted in intelligent control schemes for HVAC and lighting
systems. These range from simple rule-based methods to model-predictive control techniques
(such as that utilized in this study) and advanced methods that utilize deep reinforcement learning.

Early work includes simple heuristic models such as a rule-based shading design to select glazing
areas and shading properties for minimizing energy demand from HVAC and lighting systems
developed by [5]. Similarly, [6] developed rule-based free day cooling based on temperature as well
as shading control based on temperature and irradiation. While e�ective in practice, neither of
these studies utilized optimal control techniques. The authors of [7] present a stochastic receding
horizon control and energy forecasting method to minimize the expected value and variance of
primary energy consumption over a series of time windows in the control horizon. They forecasted
electricity and hot-water demand over numerous scenarios, but did not account for occupant
thermal loads. [8] introduces a stochastic model-predictive control scheme for building HVAC
systems using an analytical energy expenditure model and simple occupancy dynamics to maintain
comfort and operational constraints, and was experimentally successful in minimizing energy
cost and maintaining thermal comfort. Similar optimal control strategies for HVAC systems are
investigated in [9], which utilizes swarm intelligence to determine energy expenditure in the
various HVAC systems of interest, and [10], which investigates the use PID and LQR controllers
for this purpose. A token-based method is proposed in [11] which speci�es zone cooling needs
in terms of token requests, which are gathered by a central scheduler that allocates tokens in a
model-predictive control framework in such a way as to minimize overall energy consumption.
This method is scalable to large commercial buildings and has been shown to be e�ective when
compared to centralized strategies.

In addition, numerous studies have used more recent deep reinforcement-learning techniques
to optimally control HVAC systems, including [12] which formulated control actions as a Markov-
decision process and used an EnergyPlus building model for o�ine training and validation. It
proved to be e�ective in maintaining thermal comfort while achieving energy cost savings. Simi-
larly, [13, 14] also used deep reinforcement learning to achieve signi�cant energy savings for HVAC
and hot water heaters, respectively. Furthermore, as in some of the aforementioned studies, [15, 16]
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use the EnergyPlus simulation tool to develop a model-predictive control system for HVAC systems
and demonstrably reduce energy expenditure compared to baseline approaches. These studies
thus validate the e�ectiveness of using EnergyPlus in a model-predictive control scheme but do
not integrate lighting and shading systems. Moreover, some do not experimentally validate the
methods in real-world spaces. A more comprehensive study of integrated control of all of the afore-
mentioned systems (HVAC, electric lighting, and shading) was conducted by [17], who developed a
rigorous model-predictive optimization. They modeled interactions of these building functions to
minimize the total daily energy cost. They also recognized the computational intractability of such
an optimization and further proposed a system based on stochastic dynamic programming and the
rollout technique to simplify the optimization of the HVAC and electric lighting by using heuristics
to control blinds and natural ventilation. Their system saved computation time and o�ered energy
cost advantages over baseline methods. However, it was done entirely using simulations with the
DeST building software.

As we can see, there has been extensive research in the individual optimal control of building
HVAC, electric lighting, and blind systems, but limited study as to the feasibility and e�ectiveness of
a joint controller over all of these systems. In this work we present such a system that utilizes joint
control while also incorporating the aforementioned techniques such as EnergyPlus simulation in
a model-predictive control loop.
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3 Methodology

There are several key components of the described system, including a collection of brightness
and temperature dynamics models for the sub-areas of interest, an occupancy detection mech-
anism, an EnergyPlus model of the space that accurately captures the energy consumed by the
aforementioned systems, and a model-predictive controller to solve an optimization problem to
obtain the HVAC and lighting control actions required.

3.1 Model-Predictive Controller

Given a cost function J and a set of control inputs U 1:N
1:K = {U

n
k |k = 1, . . . ,K ,n = 1, . . . ,N } for K

timesteps across N zones as described in [18], the general formulation of the optimization problem
for a model-predictive controller is given by

min
U 1:N
1:K

N∑
n=1

Jn

subject to a set of inequality and/or equality constraints on U .
Speci�cally, in order to design an MPC to control the HVAC, electric lighting, and blind systems in

the lab, the area must be divided into zones, each with their respective temperature and brightness
models. Additionally, an energy cost function must be developed for the optimization problem at
hand. The total energy cost from time t = 1, . . . ,T from zones z = 1, . . . ,Z can be given as:

JT =
Z∑
z=1

T∑
t=1

Pzh,t + P
z
d,t∆t

Where Pzh,t corresponds to the HVAC power and Pzd,t corresponds to the power consumed by
the dimmer-controlled electric lighting system in that zone. We assume the energy consumed by
the blinds controller to be negligible. We minimize the above cost with respect to the supply air
temperature and mass �ow rate (using the zone setpoint as a proxy), electric lighting dimming
level, and blind levels for each zone at each interval. In this implementation, the optimization
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problem is solved for 15 minute timesteps over 4 hours (to obtain 16 control actions), and the �rst
one is applied.

We obtain the optimal control actions for the above systems subject to the following constraints
on thermal comfort, visual comfort, and physical limitations of the systems of interest:

Tmin,occ ≤ T
z
k ≤ Tmax,occ Occupied

Tmin,empty ≤ T
z
k ≤ Tmax,empty Unoccupied

Bmin,occ ≤ Bzk Occupied

3.2 Temperature and Brightness Models

We must also develop dynamics models for the temperature and brightness in the zones, with
dimmer level L, blind angle θ , occupancy O , supply air temperature S and external solar radiation
W :

T z
k+1 = f (T 1

k , . . . ,T
Z
k , S

z
k ,L

z
k ,θ

z
k ,O

z
k )

and

Bzk+1 = д(W
z
k ,L

1:z
k ,θ

1:z
k )

In the experimental implementations below, the models were constructed by �tting linear and
multi-layer perceptron models to environmental data that was collected over the course of 2-3
days under varying temperature, brightness, and weather conditions.
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4 Experimental Implementation

4.1 CREST Conference Room (HVAC Only with
Privacy-Preservation)

Located in the center of the CREST space is a conference room that lends itself to the implemen-
tation of a simpli�ed version of the MPC described above. The objectives behind this particular
implementation were to improve the energy e�ciency of the CREST conference room, maintain
thermal comfort, and validate the privacy mechanism described in [18] using a real-world testbed.
This privacy preservation architecture distorts the occupancy such that individual occupant infor-
mation is hidden while maintaining a control performance guarantee regarding HVAC performance
and comfort.

The model-predictive controller used in this implementation focused solely on optimizing
the room temperature for energy cost while maintaining comfort. Thus, a simpli�ed energy
consumption proxy was used based on the idea that the energy used to heat or cool the room
was proportional to the di�erence between the desired supply air temperature and the outdoor
temperature (which is heated or cooled to produce the supply air temperature:

JT =
T∑
t=1
|Tsupply,t −Toutside,t |

4.1.1 Temperature Model

In order to implement this system, a temperature model was developed by collecting temperature
dynamics in the conference room over the course of several hours with varying levels of occupancy
(thus capturing the impact of occupancy on the temperature in the room). The temperature at the
next time-step was modeled as a linear function of the current temperature, the temperature of
the area of the CREST lab outside of the conference room, the supply air temperature, and the
occupancy of the room.

Tk+1 = f (Tk ,Tk,external , Sk ,O
z
k )
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Figure 4.1: Conference Room Temperature Model
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4.1.2 Occupancy Detection and Privacy Preservation

In order to accurately collect the occupancy of the conference room in real time, an occupancy
counting module was built using 2 laser diode/light dependent resistor pairs. If an occupant breaks
one beam before another, it indicates that they have travelled in one direction in relation to the
room which can be interpreted as entering or exiting the room.

As mentioned earlier, the occupancy of the room was masked to preserve occupant privacy
while also maintaining HVAC performance. In order to do so, the optimization problem was
solved several times using several occupancies in the neighborhood of the true occupancy. A set
was constructed of those false occupancies that resulted in a control action within a 1 degree
tolerance of that of the true occupancy. One occupancy was selected from this “equivalence” set
and reported to the controller to use to determine the optimal control action. This method used
the key concepts described in [18] but was also computationally tractable to use in this practical
physical implementation. It is important to note that in true privacy preservation, we want to stem
the use of the true occupancy as early as possible (ideally, at the sensor itself). This implementation
assumes that there is a safe place to perform the computations described earlier, which is a decision
to be made as part of using a privacy-masking scheme.

4.1.3 Results

Figure 4.2 summarizes the results of the implementation described above in the CREST conference
room. These experiments were conducted over the course of two days- the �rst day reported the
true occupancy to the controller, and the second day reported the masked occupancy. The second
row of graphs illustrates the true occupancy, masked occupancy, and the size of the equivalence
set (note that this set is not in fact an occupancy but rather the number of possible values to
report to the controller; since the true occupancy of the room is limited and on the same scale
as size of the set, we include them on the same graph for visualization). The last row of graphs
demonstrates the resulting thermal comfort levels and real room temperature over the course of
the experimentation periods. As we can see, using the true occupancy resulted in the controller
successfully maintaining thermal comfort (note that the thermal constraints are illustrated by
the dashed lines). Signi�cantly, the masked occupancy experiment was also successful in this
objective.
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Figure 4.2: Conference Room Controller Results
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Figure 4.3: CREST Floor Plan

4.2 CREST lab implementation

Figure 4.3 is a diagram of the Center for Research in Energy Systems Transformation (CREST)
�oor-plan. The space is equipped with two HVAC units, eight electric lighting units, and three
large windows with controllable blinds. As we can see, there are 6 desk areas in an L-shape, each
capable of seating four researchers. To cover this area there is a Sensortag network described in
[4] collecting a wide array of environmental data including temperature and brightness.

4.2.1 MPC Design

The design of the model-predictive controller in this implementation is similar to that of the one
used in the above conference room experiment, with some key di�erences. The control actionU t is
composed of the supply air temperatures for the north and west zones StZ ∈ [0, 100

oF ], the electric
lighting levels for each of the 8 lighting units Ltu ∈ [0, 1], and shade levels for the 3 controllable
shades θ ts ∈ [0, 100]. Every 15 minutes, the MPC attempts to solve for 16 such control actions to be
applied every 15 minutes over a horizon of 4 hours. Over this entire 4 hour period, the constraints
on the temperatures of each zone are given by the following to ensure thermal comfort, and the
constraints on the brightness in each zone are also enforced to ensure visual comfort. The MPC
uses the temperature models of each zone (mentioned above and described below) to forecast the
result of applying these control actions.

14



24oC ≤ T z
k ≤ 26oC Occupied

23oC ≤ T z
k ≤ 27oC Unoccupied

150lx ≤ Bzk Occupied

In addition, there are bounds on the maximum and minimum allowable supply air temperatures
(30oC and 10oC respectively).

4.2.2 EnergyPlus Model

As mentioned earlier, an integral part of the model-predictive control loop is the cost function,
which captures the energy consumed by the HVAC system and electric lighting. Two options
emerge when considering how to measure the energy consumption of these systems- a physical
metering system, or a model that accurately captures the interactions of the various systems
and loads in a space. It would be relatively straightforward to install a meter to measure electric
lighting consumption. However, since the CREST lab is part of a larger building, it is di�cult
and expensive to directly measure HVAC energy consumption as this would involve installing
sensors within the building’s system to determine how much of the heating and cooling costs are
due to the space at hand. Therefore, we chose to utilize the Department of Energy’s EnergyPlus
program- a building energy simulation program that allows for the construction and simulation
of custom buildings and spaces. As mentioned earlier, the use of EnergyPlus is well validated in
related works on optimal control of building HVAC systems.

The objective function is given by an EnergyPlus model rather than a temperature di�erence
proxy as described above. With two HVAC zones and several electric lighting regions it is an
inherently more complex area and thus EnergyPlus o�ers a �exible and representative (to be
discussed) model of the energy consumption of the space. The EnergyPlus model for the CREST
lab involves constructing a model that mimics the physical space illustrated in Figure 4.3 below.
There are eight independently controlled overhead electric lighting systems above the desk areas.
Additionally, In order to model the HVAC system, we use the Ideal Loads Air System in EnergyPlus
since it is not connected to a central air system and instead supplies heating or cooling to a zone
to meet the load. These two controllable HVAC zones are modeled as ideal VAV terminal units
with variable supply temperature and humidity on the North and West areas of the lab. As seen in
Figure 4.3, desk areas 1 and 2 belong to the North zone, areas 4, 5, and 6 to the West zone, and area
3 is on the boundary between the two. The zones freely mix in the open desk area in the lab. The
model of the lab also includes the 3 large windows controllable with blind systems and is updated
with the most recent occupancy measurements during simulation, as these add loads to the HVAC
system that must be accounted for when computing the energy costs.
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The input to the EnergyPlus model is then given as (St :t+16Z ,Lt :t+16u ,θ t :t+16s ), and the values for
the setpoints, lighting levels, and shade levels are �lled into the compact schedules for each HVAC
and lighting zone.

A key advantage of using EnergyPlus to model the space is the ability to avoid installing
expensive metering equipment for the HVAC system; however, we must ensure that the energy
expenditure values given by the model are a reasonable proxy for the real costs. Prior to closer
veri�cation, the EnergyPlus predictions for the temperature dynamics of the space were wildly
inaccurate. However, upon testing several parameters of the HVAC model used, it was found that
setting the maximum heating supply air temperature (30oC), the minimum cooling supply air
temperature (10oC), and the maximum heating/cooling air�ow rate (to 0.377m3/s) were the most
e�ective in bringing the predicted EnergyPlus temperature dynamics closer to those of the actual
space (as opposed to using the default values for the supply air temperatures and setting no limit
upon the air�ow rate). This can be seen in Figure 4.4. Even with the adjustments to the EnergyPlus
model to more closely mimic the HVAC system parameters, the transitions in temperature are
quite sharp in response to control inputs. It may be possible to smoothen this behaviour, but could
come at the expense of setting HVAC parameters that are too di�erent from the real settings such
that the energy calculations are no longer representative.

4.2.3 Temperature and Brightness Models

In order to model the temperature dynamics of the CREST lab, similar data collection meth-
ods as described for the conference room were utilized. A range of setpoints were tested for
both the north zone and the west zone, as well as a range of lighting levels for all eight of the
overhead electric lighting units. Thus, the temperature dynamics of each zone are given by
T z
k+1 = f (T 1

k , . . . ,T
6
k , S

z
k ,L

z
k ,θ

z
k ,O

z
k ) where f is a linear function.

In addition, the lighting data collection was undertaken at di�erent times of the day with varying
levels of window shading in order to construct a more complete model of the illumination of the
space. The brightness of each zone is given by Bzk+1 = д(Wk ,L

1:8
k ,θ

1:3
k ) where д is a multi-layer

perceptron; Figure 4.5 are predictions versus real measurements of the brightness in two zones
over the course of several hours.
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Figure 4.4: EnergyPlus Temperature Simulation
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(a) Desk Area 1

(b) Desk Area 2

Figure 4.5: Brightness Model Examples
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5 Results

Experiments to verify the e�cacy of the model-predictive controller were conducted using two
strategies. The CREST lab itself implements a simple baseline strategy that controls the HVAC,
lights, and blinds. It is a rule-based approach that sets the setpoint to the desired value, raises or
lowers the shades depending on the time of day, and always fully utilizes the electric lighting. The
second set of experiments uses the MPC setup described earlier. Both experiments were conducted
over periods of about 4 hours at similar times of the day during weekdays. As given in the legend,
the orange dashed line represents the upper comfort range of the brightness/temperature as given
above, and the green line is the corresponding lower comfort range. As the desk area becomes
occupied or unoccupied, the constraints on the temperature and brightness for the MPC change
accordingly.

5.1 Energy Expenditure

For the control actions (supply air temperature, electric lighting levels, blind levels) given by
both of the strategies above, Figure 5.1 summarizes the total energy expenditure (kJ) over each
experimentation period.

5.2 Luminescence

Figure 5.2 presents the results of the brightness levels in the space using the optimal controller as
compared to the baseline controller.

5.3 Temperature

Figure 5.3 presents the results of the temperature levels in the space using the optimal controller
as compared to the baseline controller, and also gives the model predictions for the temperature.
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(a) HVAC Energy Expenditure

(b) Lighting Energy Expenditure

Figure 5.1: Experimental Energy Expenditures over 4 Hour Experimentation Period
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(a) Desk Area 1 Baseline (b) Desk Area 1 Controller

(c) Desk Area 2 Baseline (d) Desk Area 2 Controller

(e) Desk Area 3 Baseline (f) Desk Area 3 Controller

Figure 5.2: Brightness Controller versus Baseline Strategy
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(a) Desk Area 4 Baseline (b) Desk Area 4 Controller

(c) Desk Area 5 Baseline (d) Desk Area 5 Controller

(e) Desk Area 6 Baseline (f) Desk Area 6 Controller

Figure 5.2: Brightness Controller versus Baseline Strategy (cont.)
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(a) Desk Area 1 Baseline (b) Desk Area 1 Controller

(c) Desk Area 2 Baseline (d) Desk Area 2 Controller

(e) Desk Area 3 Baseline (f) Desk Area 3 Controller

Figure 5.3: Temperature Controller versus Baseline Strategy
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(a) Desk Area 4 Baseline (b) Desk Area 4 Controller

(c) Desk Area 5 Baseline (d) Desk Area 5 Controller

(e) Desk Area 6 Baseline (f) Desk Area 6 Controller

Figure 5.3: Temperature Controller versus Baseline Strategy (cont.)
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6 Discussion and Future Work

Upon inspection of the experimental results above, we can see that the model-predictive controller
is quite e�ective in maintaining thermal and visual comfort while minimizing overall energy
expenditure.

The baseline strategy was e�ective in maintaining the luminescence within the comfort range-
its primary strategy was a rule-based control of the shades with little control of the electric
lighting levels. It was able to maintain the comfort levels of brightness 89.8% of the time during
the experimentation period. The model-predictive controller was also e�ective but did not o�er
much of an advantage over the baseline from the standpoint of enforcing brightness constraints.
It maintained the comfort levels of brightness 81.2% of the time during the experimentation
period (it did o�er signi�cant energy consumption savings to be discussed further). However,
the baseline strategy for the HVAC system was quite ine�ective in maintaining the temperature
within the comfort ranges. It essentially �xed a setpoint without regard for occupancy, solar
radiation, and other signi�cant factors, resulting in an environment that did not align with the
varying temperature constraints. This resulted in the baseline strategy maintaining thermal
comfort levels for just 9.9% of the time during the experimentation period. The model-predictive
controller was much more e�ective in this regard. Thermal comfort was maintained for 82.4% of
the experimentation period and the temperature was always within the comfort zone for nearly
all of the desk areas except for desk area 1 (likely due to the mixing of the two di�erent HVAC
zones at this area which resulted in one system overpowering the other).

A very interesting result is that the model-predictive controller was quite e�ective from an
energy conservation standpoint. This is primarily due to the savings o�ered by the optimal lighting
strategy. While the baseline strategy maintained visual comfort, it did not take full advantage
of the free day-lighting o�ered by the 3 large windows and instead controlled the blinds on a
set schedule. The model predictive controller was able to turn o� several of the eight available
overhead lights during much of the experimentation period, instead opting to raise the blinds to
achieve the same lighting levels. Paired with the fact that the temperature models for each zone
accounted for solar radiation from the windows and potentially o�ered some mild advantages in
HVAC savings, the energy consumption reduction from using signi�cantly fewer of the overhead
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lights in favor of day-lighting resulted in much lower overall expenditure over the experimentation
period.

There are several interesting extensions to this work with regards to predicting occupancy
patterns, utilizing occupant preferences, and privacy. A reinforcement learning approach to learn
the preferred thermal and brightness ranges for the occupants of the space could be helpful in
personalizing the environment and improving comfort. Additionally, there has been extensive
work in predicting occupancy trends and incorporating this into the model-predictive control
loop that could improve its e�cacy. Moreover, while we used the privacy-preserving occupancy
scheme in the conference room, we did not do so for the larger lab implementation. Since the
latter uses signi�cantly more occupancy information it could bene�t from the scheme described
and implemented earlier.

In this work we present a lightweight and �exible model-predictive control scheme to jointly
control the HVAC, electric lighting, and blinds system in a space to make it more energy e�cient. By
combining these di�erent systems into one optimization problem we were able to achieve improved
thermal and visual comfort while decreasing energy consumption in a real-world implementation.
This work can serve as a platform for future research in enabling robust and e�ective retro�ts
towards the development of smart and energy-e�cient buildings.
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