
Using Reinforcement Learning to Learn Input Viewpoints
for Scene Representation

Kevin Chiang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-38
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-38.html

May 14, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Using Reinforcement Learning to Learn Input Viewpoints for Scene
Representation

by

Kevin Chiang

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Sergey Levine

Spring 2019

The thesis of Kevin Chiang, titled Using Reinforcement Learning to Learn Input Viewpoints
for Scene Representation, is approved:

Chair Date

Date

Date

University of California, Berkeley

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

5/10/2019

http://www.tcpdf.org
Pieter Abbeel
5/9/2019

Using Reinforcement Learning to Learn Input Viewpoints for Scene
Representation

Copyright 2019
by

Kevin Chiang

1

Abstract

Using Reinforcement Learning to Learn Input Viewpoints for Scene Representation

by

Kevin Chiang

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Scene representation, the process of converting visual data into efficient, accurate features,
is essential for the development of general robot intelligence. This task is drawn from human
experience, as humans generally take in a novel scene by indicating important features and
objects in the scene before planning their actions around these features. Recently, the
Generative Query Network (GQN) was developed, which takes in random viewpoints of
a scene, constructs an internal representation, and uses the representation to predict the
image from an arbitrary viewpoint of the scene. GQNs have shown that it is possible
to learn accurate representations of various scenes without human labels or prior domain
knowledge, but one limiting factor that remains is the fact that the input viewpoints are
chosen randomly. By training an agent to learn where to capture the input observations,
we can supply the GQN with more useful and unique data. We show that an agent can
learn through reinforcement learning (RL) to select input viewpoints that provide much
more useful information than random inputs, leading to better representations, and thus
more complete reconstructions, which may lead to improvements in tasks with complex
environments.

i

To my family for their continuous support.

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction 1

2 Related Work 2
2.1 Scene Representation . 2
2.2 GQN . 3
2.3 Reinforcement Learning . 5

3 Environments 6

4 Proposed Method 10
4.1 GQN Details . 12
4.2 Reinforcement Learning Agent Details . 12

5 Experiments 16
5.1 Baseline for Comparison . 16
5.2 Results . 17

6 Conclusion and Future Work 24

7 References 25

iii

List of Figures

2.1 This figure is adapted from [1]. The inputs to the representation network f are
the observations, and f outputs the scene representation r. r is passed into the
generation network g along with the query viewpoint and latent variable and
iteratively generates the predicted view. 4

3.1 Example scenes in the rooms environment. The ground truth image is the ren-
dering of the scene from the query viewpoint. 7

3.2 Distribution of the number of objects the test scenes. 8
3.3 Distribution of the type of objects in the test scenes. 8
3.4 Distribution of the color of the walls in the test scenes. 9
3.5 Distribution of the color of the floor in the test scenes. 9

4.1 The action space of the restricted camera and free camera environments. 11
4.2 The representation network f used for the GQN. This figure is adapted from [1]. 13
4.3 The generation network g used for the GQN, which is a modified version of

DRAW. This figure is adapted from [1]. 14
4.4 The reinforcement learning network and overall pipeline. The CNN takes a

64x64x3 image as input. The first convolutional layer contains 32 8 × 8 filters
with stride 4, the second layer contains 64 4 × 4 filters with stride 2, the third
layer contains 64 3× 3 filters with stride 1, and the last layer is a fully connected
layer with 512 units. This is then passed into the LSTM network, which has a
hidden state size of 128. We use the ReLU activation function. 15

5.1 Examples of the viewpoints chosen with the baseline. 16
5.2 Training curves. 18
5.3 Comparison of GQN versus GQN+RL input viewpoints and image reconstruc-

tions in the free environment. Ground truth refers to the rendered image at
the query viewpoint. GQN+RL and GQN predict are the respective models’
generated images at the query viewpoint. 20

5.4 The distribution of the difference between angles of the RL chosen viewpoints
when only 2 observations are allowed (10 degree bins) in the unrestricted envi-
ronment. The black line indicates the distribution of random observations. . . . 21

iv

5.5 The distribution of the distance between the randomly chosen viewpoints when
only 2 observations are allowed in the unrestricted environment. 22

5.6 The distribution of the distance between the RL chosen viewpoints when only 2
observations are allowed in the unrestricted environment. 23

v

List of Tables

5.1 Comparison of average reconstruction errors. 19

vi

Acknowledgments

I would first like to sincerely thank my research advisor Professor Pieter Abbeel for the op-
portunity to work in the BAIR lab and advising me during my candidacy. The fascinating
research opportunities and invaluable support and advice he provided me since my under-
graduate years have made my academic experience at UC Berkeley unforgettable. Professor
Abbeel’s insights have guided me through multiple projects, and much of what I know about
machine learning would not have been possible without him. I would also like to thank
Professor Sergey Levine for his help on my work.

I would especially like to thank my mentor Josh Tobin for supporting me throughout
my research experience. He patiently and thoroughly taught me the fundamentals of metic-
ulous research despite his busy schedule. Josh provided me with many amazing learning
opportunities both at BAIR and at OpenAI, which I am extremely thankful for.

Finally, I would like to thank my friends and family for their support throughout my last
four years at Berkeley.

1

Chapter 1

Introduction

In the growing field of AI, designing an agent around a proposed environment is a major
starting point, guiding work in reducing error and improving performance. However in real
world scenarios, the testing environment is seldom fully captured in the training environment.
The distributional shift can lead to significant differences in the expectations of the agent and
reality, eventually causing the agent to end up in an off-policy situation and perform poorly.
Traditionally, attempts have been made to improve and expand the training dataset to
include as much information as possible with respect to the environment, but the bottleneck
is often accurately labelling the collected data, especially in complex tasks that have no
clear or easy methods to label the data. While virtual environments can generate limitless
amounts of training examples, collecting and labeling real data can be a tedious and high
cost endeavor [2-6]. Either improving simulated environments to match their real world
counterparts or collecting more real world data has a significant time and economic cost
associated, with much of the time spent on the proper labeling of data. In addition, human
mislabeling can lead to distributional errors that propagate to sub-optimal actions and poor
performance.

The GQN (Generative Query Network) [1] attempts to solve this by removing the need
for manual labeling, instead learning the latent features of the environment on its own in
an self-supervised fashion. To achieve this, the network attempts to predict the scene from
an arbitrary viewpoint, so the ground truth images are easily obtainable. Now the agent
is able to internalize a representation of the environment without requiring a traditionally
labeled dataset complemented by depth data. Furthermore, the learned representation is
found to be view-independent, so we are able to capture important properties of each scene
such as relative positions of objects and their textures, rather than potentially unimportant
and misleading subliminal patterns in the scene.

However, one shortcoming of GQNs is that their inputs are randomly selected, which leads
to the possibility that many of the images are not useful in understanding the scene and a
poor representation is constructed. Thus, we propose to add an additional module that allows
the agent to choose the input viewpoints that will maximally improve its conceptualization
of the environment.

2

Chapter 2

Related Work

2.1 Scene Representation

Scene representation embodies a variety of extremely useful computer vision tasks. Object
recognition tasks such as object detection [7-10], object segmentation [42], and object pose
estimation [43] can theoretically be solved with scene representation techniques, as under-
standing a scene necessarily requires knowing which objects are in the scene and where they
are located. Other tasks also solvable with scene representation include depth estimation
[11, 12], semantic scene completion [13], and view selection [14].

There have also been many prior works on scene representation itself. However, tradi-
tional structure from depth and motion and multi-view geometry techniques [15-20] dictate
how the 3D structure must be represented (usually as point clouds), leading to potential sub-
optimal representations of some or all of the following details: textures, objects, positions,
and lighting.

One particularly successful approach is simultaneous localization and mapping (SLAM)
[48]. The algorithm concurrently constructs a model of the environment (a map) while
estimating the state of the agent within it. The constructed map is oftentimes used as a
3D representation for aspects of interest. SLAM systems usually contain two components:
one to convert raw sensor data into estimable models, and one to perform inference on
the converted data from the first component. There are various implementations of these
two components, but many open problems continue to plague today’s SLAM algorithms,
including consistent semantic-metric fusion and ignorance, awareness, and adaptation of the
agent.

Other deep learning approaches, such as auto-encoders and density models [21-26] have
been employed on scene representation tasks, with the expectation that their compression
techniques are able to encode the 3D structure of a scene given a few viewpoints. However,
there is no incentive in these approaches to relate different views of the same scene to each
other, instead relying on subtle and unreliable patterns in textures to construct relationships.
Approaches such as viewpoint transformation networks can learn how different viewpoints

CHAPTER 2. RELATED WORK 3

relate to each other [18, 27], but they are extremely limited in scope and not generalizable.

2.2 GQN

GQNs [1] are able to learn scene structure from a sparse set of viewpoints. The GQN is able
to produce a high level latent representation of the scene with its representation network f
and predict observations with its generation network g. DeepMind proposed this network
architecture based on the idea that visual learning in nature is seldom as well-supervised as
required for machine learning. Labeling image segmentation, classification, or even individual
pixels is unheard of. The GQN is able to learn the view-independent latent structure of each
scene with only a few input observations. DeepMind refers to this as the agent’s ability to
learn about the environment unaided, with only its own sensors.

Specifically, the GQN is trained and tested on a 3D environment i, where K images are
collected from 2D viewpoints, represented by xki and vki ; these viewpoints and the corre-
sponding images are collectively called observations oi = {(xki , vki)}k=1,...,K . The observations
are passed into f , which produces a neural scene representation r. r is able to contain the
scene structure, where each new observation improves the confidence in predicting recon-
struction images. Reconstruction is performed by querying g with any arbitrary viewpoint
vq. The generation network takes r and stochastic latent variables z (for variability in the
output) to predict the output from vq (Figure 2.1). f and g are jointly trained, with a stan-
dard variational approximation loss function, which can be decomposed into a reconstruction
likelihood term an a KL regularization term.

Formally, r = fθ(oi), g defines the probability density gθ(x|vq, r) =
∫
gθ(x, z|vq, r)dz,

and θ defines the learnable parameters.
In some basic examples, the GQN only needs to view a single image of a scene to produce

a reasonably confident representation, on par with human-level performance. The viewpoint
is selected to provide the network with the most information possible for a single view, which
allows the model to perform optimally. In cases where the scene is complex enough to require
multiple viewpoints, the viewpoints are either taken randomly or along a set interval, neither
of which usually result in optimal viewpoints.

CHAPTER 2. RELATED WORK 4

Figure 2.1: This figure is adapted from [1]. The inputs to the representation network f are
the observations, and f outputs the scene representation r. r is passed into the generation
network g along with the query viewpoint and latent variable and iteratively generates the
predicted view.

CHAPTER 2. RELATED WORK 5

2.3 Reinforcement Learning

In [28], the authors use the model-free reinforcement learning form of policy gradients, which
we deploy in our extension. Instead of the traditional Q-value-based forms like the Bellman
Equations [44], policy gradients bypass learning the predicted value of a state, instead directly
predicting optimal actions. This can be more computationally efficient for large or high
dimensional action spaces, where there are an unreasonable number of Q-values to enumerate.
A policy-focused algorithm also has the benefit over traditional Q-learning of stochasticity.
The policy can output a probability distribution over actions which allows an agent to handle
perception aliasing as well as the exploration vs. exploitation trade-off. However, policy
gradients tend to get stuck at local maxima or plateaus, unlike Q-learning. This can limit
performance or exaggerate training times depending on the requirements of the problem.

The policy gradient algorithm starts with a policy πθ(a|s) = P [a|s], where its performance
is measured by score function J(θ) = Eπθ [

∑
τ γ

iri]. Applying gradient ascent on this score
function with respect to the policy parameters θ will improve the expected discounted reward
over trajectories.

Many improved policy gradient algorithms have been developed, including ACER, DDPG,
PPO, and TRPO [36, 49-51], which attempt to improve the data efficiency and robustness
of the algorithm, or reduce the complexity of alternative algorithms.

6

Chapter 3

Environments

To test our model, we created a simulated 3D environment in MuJoCo [29] similar to the
’rooms’ environment created by DeepMind [1]. We use OpenAI Gym [30] so that an agent can
move around in each scene and capture observations from any viewpoint in our environment.

Each scene is a 7× 7 unit room with geometric shapes placed in the room. There are 7
possible objects (box, sphere, cylinder, cone, capsule, icosahedron, and triangle), of which
between 1 to 3 of them are chosen and placed uniformly randomly in the middle 3 × 3 of
the room; the yaw and dimensions of each object are also sampled uniformly randomly. It is
possible for the objects to intersect each other. The textures of each object are randomized
uniformly in HSV space, where the hue is between [0, 1], the saturation is between [0.75, 1],
and the value is always 1.

The wall texture is sampled from 5 different options: red, green, cerise, orange, and
yellow. The floor texture is sampled from 3 different options: yellow, blue, and white. A
light is set 15 units above the floor, and the xy position is sampled uniformly in a 8 × 8
square centered at the center of the room.

We render the observation images with MuJoCo’s default OpenGL renderer, and exam-
ples are shown in Figure 3.1. We experiment with two different versions of our environment.
In the simpler environment, we restrict all viewpoints to be some point in a circle of radius
2.5 units centered at the center of the room, pointing towards the center of the room. The
agent picks a location on the edge of this circle by sampling between [0, 1) and mapping this
to an angle around the circle from a fixed point and pointing the camera towards the center
of the circle. This ensures that all observations are pointing towards the objects in each
scene. In the regular environment, we remove this restriction, allowing the agent to pick
any viewpoint and any angle. The agent picks two points within the room; the first point
determines the agent’s position, and the second point determines which direction the agent
faces.

We sample 200,000 scenes each time for training. Each scene contains K observations,
which is a random integer between [1, 5], and a query image, which is used as the ground
truth image. We also sampled and saved 20,000 scenes to be used as a test set across all
experiments. Figures 3.2, 3.3, 3.4, and 3.5 reveal statistics of the test dataset.

CHAPTER 3. ENVIRONMENTS 7

Figure 3.1: Example scenes in the rooms environment. The ground truth image is the
rendering of the scene from the query viewpoint.

CHAPTER 3. ENVIRONMENTS 8

Figure 3.2: Distribution of the number of objects the test scenes.

Figure 3.3: Distribution of the type of objects in the test scenes.

CHAPTER 3. ENVIRONMENTS 9

Figure 3.4: Distribution of the color of the walls in the test scenes.

Figure 3.5: Distribution of the color of the floor in the test scenes.

10

Chapter 4

Proposed Method

We propose a two-part network (which we may refer to as GQN+RL). The first part of
the network contains the reinforcement learning algorithm that learns which viewpoints to
observe in a given scene, and the second part of the network contains the representation and
generation algorithms that produces a representation and renders the predicted image from
a randomly selected query viewpoint.

Given a scene, we use a RL agent to propose the next viewpoint and corresponding image
that should be passed into the GQN. Posed as a reinforcement learning problem, we let the
states s ∈ S be the raw RGB images to be passed into the GQN and the number of images
remaining that can be observed, and the actions a ∈ A be the viewpoint that the next RGB
image is taken from. As depicted in Figure 4.1, in the restricted environment, a is real
value α between [0, 1), and in the unrestricted environment, a is 4 real values, each between
[−3.5, 3.5], corresponding to the xy location (x1, y1) of the agent and the xy location (x2, y2)
where the agent should be pointing towards. These actions can then be transformed into
the appropriate viewpoints v. The reward is 0 until we collect all K observations, in which
case the reward is a function of the GQN loss.

From the viewpoint of the reinforcement learning module, the GQN is a black-box algo-
rithm that outputs a reward when given inputs {oki }k=1,...,K . The other module, the GQN,
views the agent in a similar fashion: the agent is simply a black box algorithm that generates
input images of a scene and the query.

CHAPTER 4. PROPOSED METHOD 11

Figure 4.1: The action space of the restricted camera and free camera environments.

CHAPTER 4. PROPOSED METHOD 12

4.1 GQN Details

We generally followed the implementation details in [1], with a few modifications to com-
pensate for a significantly lower amount of compute and smaller training datasets. The rep-
resentation architecture follows the ’tower’ convolutional representation architecture (Figure
4.2), as it learns the fastest among all of the variations tested, though many other variations
could have been deployed. The generation architecture is modelled after the DRAW net-
work [45] (Figure 4.3), which defines the distribution gθ(x|vq, r) that the images are sampled
from in an iterative fashion. We found that 8 generation iterations to be a good trade-off
between speed and accuracy. One note we make is that the choice of generation architecture
is extremely flexible; alternatives such as generative adversarial networks (GANs) [31, 32]
or auto-regressive models [33] could have been used for the generation architecture. We use
the ADAM optimizer [46] with a learning rate of 5 ∗ 10−5.

4.2 Reinforcement Learning Agent Details

As shown in detail in Figure 4.4, we use a CNN-LSTM network to train our RL agent [34,
35]. We input a 64 × 64 RGB image xk into the convolutional neural network and feed
its output and the number of observations made so far into a LSTM network. The LSTM
outputs the next action, which defines the next viewpoint vk+1. vk+1 can then be used to
render the corresponding RGB image xk + 1. As mentioned above, the reward is 0 if the
number of observations collected so far k′ < K. If k′ = K, then the reward is the negative
loss of the GQN (negative ELBO). We use PPO [36] to train our agent due to its ease of use
and good performance. We set the clipping parameter to 0.2. We use the ADAM optimizer
with a learning rate of 5 ∗ 10−4.

CHAPTER 4. PROPOSED METHOD 13

Figure 4.2: The representation network f used for the GQN. This figure is adapted from [1].

CHAPTER 4. PROPOSED METHOD 14

Figure 4.3: The generation network g used for the GQN, which is a modified version of
DRAW. This figure is adapted from [1].

CHAPTER 4. PROPOSED METHOD 15

Figure 4.4: The reinforcement learning network and overall pipeline. The CNN takes a
64x64x3 image as input. The first convolutional layer contains 32 8× 8 filters with stride 4,
the second layer contains 64 4×4 filters with stride 2, the third layer contains 64 3×3 filters
with stride 1, and the last layer is a fully connected layer with 512 units. This is then passed
into the LSTM network, which has a hidden state size of 128. We use the ReLU activation
function.

16

Chapter 5

Experiments

5.1 Baseline for Comparison

We can view the original GQN model as an agent that does not learn how to improve its
observations, since all viewpoints are chosen randomly. Since we expect the best course of
action is to gain as much information from each subsequent observation, we infer that a very
good (but not necessarily optimal) strategy is to sample all the viewpoints from the restricted
environment uniformly. As visually shown in Figure 5.1, we use the restricted environment
to pick viewpoints pointing towards the center of the scene that are evenly spread around
the circumference of the circle.

Figure 5.1: Examples of the viewpoints chosen with the baseline.

CHAPTER 5. EXPERIMENTS 17

5.2 Results

After training, we tested each model on the test scenes, and compared the predicted images
to the ground truth images corresponding to the query viewpoint, using a per-pixel L2
reconstruction error as the evaluation metric. The training curves of each variation are
plotted in Figure 5.2, and the reconstruction results are reported in Table 5.1. Figure 5.3
shows some visual comparisons in example scenes between the GQN and the GQN+RL
models in the free environment.

We note that in the restricted environment, the freedom to pick the input observations
did not significantly improve the accuracy of the generated images. This is somewhat to
be expected, since random observations in the restricted environment are always pointing
toward the objects, so there are very few ’bad’ or redundant observations. However, in
the unrestricted environment, the GQN with random inputs was unable to learn a useful
representation, leading to a non-decreasing loss curve and a relatively high reconstruction
error. This inability to learn a good representation seems to be caused by the fact that many
of the random inputs did not reveal any useful information, likely due to the revelation that
many observations were pointed towards the walls of the scene, rather than the objects.
However, when we add the ability to pick the inputs, the model is able to generate images
on par with those generated in the restricted environment, which suggests that the agent
learned to choose observations that pointed towards areas of interest, namely the parts of
the room where the objects were.

When only given 2 observations for each scene in the unrestricted environment, we are
able to analyze some of the statistical differences between the chosen input viewpoints.
Figure 5.4 shows the distribution of the difference of the viewpoint angles between the
GQN+RL and the expected distribution of randomly choosing inputs. We see that GQN+RL
picks viewpoints that face in opposite directions, as the chosen inputs are usually always on
opposite sides of the scene in order to capture the most information in 2 observations.
Figures 5.5 and 5.6 show the distances between the viewpoints for GQN and GQN+RL,
respectively. GQN+RL effectively avoids capturing observations that are too close together
and thus redundant. Instead, it spreads the observations apart when compared to the model
with randomly chosen inputs, allowing GQN+RL to learn more about the scene and capture
more important features of each room.

We also note that we achieve very similar reconstruction errors to the uniform baseline
model, which indicates that our agent selects input observations that generally capture
information from a variety of views for each scene. As opposed to the baseline, our model is
able to adapt if the objects are not placed near the center of the scene or the scene contains
various occlusions, in which case our model would capture more useful observations and
learn a better scene representation.

CHAPTER 5. EXPERIMENTS 18

Figure 5.2: Training curves.

CHAPTER 5. EXPERIMENTS 19

Table 5.1: Comparison of average reconstruction errors.

Experiment

Model Environment L2 Reconstruction Error (×10−3)

GQN + Baseline Restricted/Free 1.797

GQN Restricted 2.073
GQN + RL Restricted 1.843

GQN Free 41.906
GQN + RL Free 1.988

CHAPTER 5. EXPERIMENTS 20

Figure 5.3: Comparison of GQN versus GQN+RL input viewpoints and image reconstruc-
tions in the free environment. Ground truth refers to the rendered image at the query
viewpoint. GQN+RL and GQN predict are the respective models’ generated images at the
query viewpoint.

CHAPTER 5. EXPERIMENTS 21

Figure 5.4: The distribution of the difference between angles of the RL chosen viewpoints
when only 2 observations are allowed (10 degree bins) in the unrestricted environment. The
black line indicates the distribution of random observations.

CHAPTER 5. EXPERIMENTS 22

Figure 5.5: The distribution of the distance between the randomly chosen viewpoints when
only 2 observations are allowed in the unrestricted environment.

CHAPTER 5. EXPERIMENTS 23

Figure 5.6: The distribution of the distance between the RL chosen viewpoints when only 2
observations are allowed in the unrestricted environment.

24

Chapter 6

Conclusion and Future Work

In this work, we have extended the GQN framework to allow an agent to pick the input
observations rather than rely on random observations. Without losing any of the attrac-
tive properties that GQN offers, such as view-independent representations or flexibility in
generation architectures, we are able to improve the reconstruction of complex scenes by
training an agent to navigate through the environment and select observations that offer
more information not captured by the previous observations. The vast improvement to our
restriction-free environment suggests that our extension can be employed to improve the rep-
resentations learned in highly complex environments, such as GTA V and Minecraft; learning
representations in dynamic environments that change over time could also be explored.

While we have shown promising results with our extended framework, we can further
improve the model by using a reinforcement learning algorithm that is more parallelizable,
so that we can take advantage of the exponential increases in compute power. More complex
networks can also be substituted in and experimented with in order to achieve better rep-
resentations. In addition, we can also work on removing a simplifying assumption that the
agent can sample any viewpoint that it wants, and penalize observation viewpoints that take
a long time for the agent to reach. We can also build or adapt more complex environments
such as self-driving simulators in order to test the GQN+RL model’s ability to learn good
scene representations in very dense and variable environments.

We believe that many problems in complex environments can only be effectively solved
when our models are able to identify the most important features of the environment, in
which scene representation and our extension to the GQN framework is a major step towards
this goal.

25

Chapter 7

References

[1] S. M. A. Eslami, et al. Neural Scene Representation and Rendering. In Science, 2018.

[2] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lpez, and V. Koltun. CARLA: An open urban driving
simulator, In CoRL, 2017.

[3] M. Martinez, C. Sitawarin, K. Finch, L. Meincke, A. Yablonski, and A. L. Kornhauser. Beyond
Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self Driving Cars.
preprint arXiv:1712.01397, 2017.

[4] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and R. Cipolla. Scenenet: Understand-
ing real world indoor scenes with synthetic data, in CVPR, 2016.

[5] S. Song, S. Lichtenberg, and J. Xiao. SUN RGB-D: A RGB-D Scene Understanding Benchmark
Suite. In CVPR, 2015.

[6] A. Chang, et al. ShapeNet: An Information-Rich 3D Model Repository. preprint arXiv:1512.03012,
2015.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In CVPR, 2014.

[8] R. Girshick. Fast R-CNN. In ICCV, 2015.

[9] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. In NIPS, 2015.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: unified, real-time
object detection. In CVPR, 2016.

[11] L. He, G. Wang, and Z. Hu. Learning Depth from Single Images with Deep Neural Network
Embedding Focal Length. preprint arXiv:1803.10039, 2018.

[12] J. bontar, and Y. LeCun. Stereo Matching by Training a Convolutional Neural Network to
Compare Image Patches. In JMLR, 2016.

[13] S. Song, et al. Semantic Scene Completion from a Single Depth Image. preprint arXiv:1611.08974,
2016.

[14] J. Gurin, et al. Semantically Meaningful View Selection. In IROS, 2018.

CHAPTER 7. REFERENCES 26

[15] Z. Wu, et al. 3D ShapeNets: a deep representation for volumetric shapes. In CVPR, 2015.

[16] J. Wu, C. Zhang, T. Xue, W. Freeman, and J. Tenenbaum. Learning a probabilistic latent
space of object shapes via 3D generative-adversarial modeling. In NIPS, 2016.

[17] D. J. Rezende, et al. Unsupervised learning of 3D structure from images. In NIPS, 2016.

[18] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective transformer nets: learning
single-view 3D object reconstruction without 3D supervision. In NIPS, 2016.

[19] M. Pollefeys, et al. Visual modeling with a hand-held camera. In IJCV, 2004.

[20] Y. Zhang, W. Xu, Y. Tong, and K. Zhou. Online structure analysis for real-time indoor scene
reconstruction. In ACM Transactions on Graphics, 2015.

[21] D. P. Kingma, and M. Welling. Auto-Encoding variational Bayes. In ICLR, 2013.

[22] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic back-propagation and variational
inference in deep latent Gaussian models. In ICML, 2014.

[23] I. Goodfellow, et al. Generative adversarial nets. In NIPS, 2014.

[24] K. Gregor, F. Besse, D. J. Rezende, I. Danihelka, and D. Wierstra. Towards conceptual
compression. In NIPS, 2016.

[25] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust
features with denoising autoencoders. In ICML, 2008.

[26] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel. The Helmholtz machine. In Neu. comp.,
1995.

[27] J. Flynn, I. Neulander, J. Philbin, and N. Snavely. DeepStereo: Learning to predict new views
from the worlds imagery. In CVPR, 2016.

[28] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In NIPS, 2000.

[29] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: a physics engine for model-based control. In
IROS, 2012.

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. preprint arXiv:1606.01540, 2016.

[31] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved
quality, stability, and variation. preprint arXiv:1710.10196, 2017.

[32] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. preprint arXiv:1701.07875, 2017.

[33] A. v. d. Oord, et al. Conditional image generation with PixelCNN Decoders. In NIPS, 2016.

[34] S. Hochreiter, and J. Schmidhuber. Long short-term memory. In Neural Comput., 1997.

[35] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional
neural networks. In IPS, 2012.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. preprint arXiv:1707.06347, 2017.

CHAPTER 7. REFERENCES 27

[37] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration
in continuous action spaces. preprint arXiv:1801.08757, 2018.

[38] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. Learning to Communicate with
Deep Multi-Agent Reinforcement Learning. In NIPS, 2016.

[39] A. Tampuu, et al. Multiagent Cooperation and Competition with Deep Reinforcement Learn-
ing. In PLoS ONE, 2017.

[40] J. K. Gupta, M. Egorov, and M. Kochenderfer. Cooperative Multi-Agent Control Using Deep
Reinforcement Learning. In AAMAS, 2017.

[41] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In NIPS, 2017.

[42] K. He, G. Gkioxari, P. Dollr, and R. Girshick. Mask R-CNN. preprint arXiv:1703.06870, 2017.

[43] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. PoseCNN: A Convolutional Neural Network
for 6D Object Pose Estimation in Cluttered Scenes. In RSS, 2018.

[44] R. Bellman. The theory of dynamic programming. In Bulletin of the American Mathematical
Society, 1954.

[45] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and D. Wierstra. DRAW: A Recurrent Neural
Network For Image Generation. In PMLR, 2015.

[46] D. P. Kingma, and J. Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

[47] Q. Zhang, and S. Zhu. Visual Interpretability for Deep Learning: A Survey. preprint arXiv:1802.00614
, 2018.

[48] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. Leonard.
Past, present, and future of simultaneous localization and mapping: Toward the robust-perception
age. In IEEE Transactions on Robotics, 2016.

[49] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In IROS, 2015.

[50] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample
efficient actor-critic with experience replay. preprint arXiv:1611.01224, 2016.

[51] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. preprint arXiv:1509.02971, 2015.

