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i

When you work you are a flute through whose heart the whispering of the hours turns to
music.

Kahlil Gibran, The Prophet, 1923.
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Abstract

Frequency Regulation for Power System Dynamics with Variable and Low Inertia due to
Renewable Energy

by

Patricia Hidalgo-Gonzalez

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire J. Tomlin, Chair

As more non-synchronous renewable energy sources participate in power systems, the sys-
tem’s inertia decreases and becomes time dependent, challenging the ability of existing
control schemes to maintain frequency stability. System operators, research laboratories,
and academic institutes have expressed the importance to adapt to this new power system
paradigm. However, power dynamics have been modeled as time-invariant, by not modeling
the variability in the system’s inertia. To address this, this work proposes a new modeling
framework for power system dynamics to simulate a time-varying evolution of rotational
inertia coefficients in a network. Power dynamics are modeled as a hybrid system with dis-
crete modes representing different rotational inertia regimes of the network. Using this new
modeling framework for power dynamics we study a framework to design a fixed learned
controller based on datasets of optimal time-varying LQR controllers. We test the perfor-
mance of the controller in a twelve-bus system. By adding virtual inertia we can guarantee
stability of high-renewable (low-inertia) modes. The novelty of our work is to propose a
design framework for a stable controller with fixed gains for time-varying power dynamics.
This is relevant because it would be simpler to implement a proportional controller with
fixed gains compared to a time-varying control.
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Chapter 1

Introduction

1.1 Background and Motivation

In power systems, frequency will deviate from its nominal value when there is a mismatch
between electricity generation and consumption [10]. There exists a set of mechanisms
to prevent frequency excursions. The first automatic response when frequency starts to
deviate is the inertial response. This inertial response is originated from the kinetic energy
supplied to the grid by the synchronous generators. This inertia (present in rotating masses
of generators and turbines) determines the instantaneous frequency change when imbalances
of active power occur. Therefore, more inertia in the system will translate into a slower
rate of change of the frequency. As the frequency starts deviating, some generators will
respond automatically through governor response [4]. Governor response or droop control
is an automatic control proportional to the frequency deviation. After droop control starts
actuating, slower mechanisms (e.g. spinning reserves) participate to restore frequency to its
nominal value [4].

It is a crucial aspect for the operation and stability of electrical systems to maintain the
grid frequency within acceptable ranges. Nowadays, large shares of renewable energy sources
(RES) are being integrated into power systems. Several countries have set ambitious goals
for the future to provide more electricity using renewable energy [13] and/or reducing their
CO2 emissions. This global drive will steer the power system to a grid dominated by RES
[18]. In this scenario, renewable sources, such as wind and solar, are usually connected to
the grid through inverters, which decouple their rotational inertia (if existing) from the grid.

Usually, depending on the configuration of the inverters, no inertial response is delivered
to the grid. With this increasing penetration of RES, the global system inertia of the power
systems is decreasing and time-varying. This can provoke an increment in the variation of
frequency under abrupt changes in generation and demand. If no actions are taken, this can
lead to cases in which standard frequency control schemes are too slow to mitigate arising
contingencies [16].

A possible solution for this issue is to use RES inverters or large scale storage to provide
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inertia. This can be done by operating the RES or storage’s inverters as virtual inertia
(control proportional to the derivative of the frequency), that could allow large penetration
of RES without jeopardizing the system’s stability [1]. Previous work studying virtual in-
ertia can be found in the literature. In [15], a detailed survey of different virtual inertia
techniques, topologies and future directions are presented. [19] introduces the concept of
inverters that emulate the response of a synchronous machine. [12] proposes a new con-
troller to address low inertia. This work argues that virtual inertia could amplify noise in
an unbounded manner. The work from [17] discusses virtual inertia (or inertia mimicking)
by enabling inverter-connected generation units to quickly modify their power output via
Model Predictive Control (MPC), mimicking the dynamic response of conventional units.
In a similar line of work, [3] studies the effect that changes in inertia have on power system
stability, and how to best place devices providing virtual inertia. Most recently [14] studied
optimal placement of virtual inertia in different nodes of a network.

1.2 Research Gap and Outline

The work presented in this thesis is motivated by the need to better represent power system
dynamics in the presence of RES connected to the grid by inverters. To address this need,
Chapter 2 introduces a new framework to model frequency dynamics as a time-varying
system due to the variability of the inertia coefficients in a network. More specifically, we
propose to model power dynamics in a network as a Switched Affine Hybrid system where
the time-varying components are the inertia coefficients of the nodes in a grid.

The natural question that stems from facing new frequency dynamics due to the presence
of RES is how to design a controller that is easy to implement in power systems and that has
stability guarantees. Chapter 3 addresses this question by presenting a framework to learn
a fixed and stable frequency controller that is able to return the frequency to its nominal
value for any mode of the hybrid system.

This work has been published at the IEEE Conference on Decision and Control and the
IEEE Power & Energy Society General Meeting.
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Chapter 2

Power System Dynamics as a Hybrid
System

2.1 Introduction

The work discussed in this chapter corresponds to the publication titled “Frequency Regu-
lation in Hybrid Power Dynamics with Variable and Low Inertia due to Renewable Energy”
by Patricia Hidalgo-Gonzalez, Roel Dobbe, Rodrigo Henriquez-Auba, Duncan S. Callaway
and Claire J. Tomlin [8]. We presented this publication at the 57th IEEE Conference on
Decision and Control in Miami, Florida, United States.

The body of work around virtual inertia has mostly focused on the effects on the grid and
on its optimal allocation. The frequency dynamics have been modeled as a time-invariant
system. However, when we take into account the nature of the changes of rotational inertia
in the grid, it requires a new modeling framework that represents this time dependence and
variability of the system’s inertia. Thus, the contributions of this work are the following:

• We propose a new modeling framework for power system dynamics to simulate a time-
varying evolution of rotational inertia coefficients in the network. To do this, we model
power dynamics as a hybrid system [2] where each mode corresponds to a rotational
inertia regime. At each time step of the simulation the dynamical system mode can
switch to a different rotational inertia mode in an exogenous fashion.

• We test the performance of two classical controllers from the literature (optimal closed-
loop controller from MPC and virtual inertia placement) in this new hybrid modeling
framework.

• We propose a new controller (Dynamic Inertia Placement) to more efficiently address
low and variable inertia in the grid.

We conclude that the new modeling framework we develop is necessary to design con-
trollers that address frequency regulation in power systems with high RES penetration. We
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also find that the optimal linear closed-loop controller (referred as Linear MPC in this work)
performs best in terms of cost and energy injected/absorbed to control frequency. Lastly, we
find that our proposed controller for Dynamic Inertia Placement (when modeling dynamics
with variable inertia) is more efficient in terms of cost and energy usage than the classical
Inertia Placement from the literature.

The rest of the chapter is organized as follows: Section 2.2 presents the problem formu-
lation, Section 2.3 shows simulations from a study case, and finally Section 2.4 concludes
with our main findings.

2.2 Problem Formulation

Power system dynamics as a hybrid system

We consider an electric power network modeled as a graph with N nodes and N(N − 1)/2
possible edges connecting them. The swing equation model used for this network is based
on [10], where dynamics are given by

miθ̈i + diθ̇i = pin,i −
∑
j

bij(θi − θj), i ∈ {1, ..., N} (2.1)

mi corresponds to the equivalent rotational inertia in node i, di is the droop control, pin,i
represents the power input at node i, bij is the susceptance of the transmission line between
nodes i and j, and θi is the voltage phase angle at node i. The state space representation of
the model is given by[

θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

] [
θ
ω

]
+

[
0

M−1

]
pin (2.2)

where the states correspond to the stacked vector of angles and frequencies at each node
(θ, ω) ∈ R2n, M = diag(mi) is a diagonal matrix with rotational inertia coefficients, D =
diag(di) is a diagonal matrix with droop control coefficients, pin corresponds to the power
input, and L ∈ Rn,n is the Laplacian of the network. The network Laplacian is defined as
`ij = −bij when i 6= j, and `ii =

∑
i 6=j bij+yi,s, where yi,s are all shunt admittances connected

at node i.
In the traditional paradigm of power systems, where generation has been dominated by

thermal generation, the inertia at each node mi has been considered constant. However,
in recent years, it has been observed that due to the increase in generation from RES, the
rotational inertia in the network has become lower and time-varying [16], [5]. In order to
model power dynamics taking into account the variability of inertia at each node, our work
proposes a new framework for modeling frequency dynamics. Instead of assuming equation
(2.2) as a time-invariant dynamical system, we propose to model it as a Switched Affine
hybrid system [2], where each mode will be given by a predetermined set of values of mi

at each node. The switching between the different m modes depends on the current online
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generators. In this work, the mix of online generators at each time step t is modeled as an
exogenous input. Therefore, power dynamics will be given by[

θ̇
ω̇

]
=

[
0 I

−M−1
q L −M−1

q D

] [
θ
ω

]
+

[
0

M−1
q

]
pin (2.3)

where Mq represents the inertia matrix M in the current mode q ∈ {1, ...,m}. The switching
between modes can occur from any time step t to t + 1, and it is given by a uniform
distribution with the following possible outcomes:

• No change of inertia

• Increase of inertia

• Decrease of inertia

Thus, the evolution over time of the matrix Mq is modeled as a Markov Chain. For simplicity,
for a given mode q we assume the same inertia coefficients for all nodes. Section 2.3, describes
in more detail the assumption on inertia coefficients at the nodes of the network.

Power input at node i, can be expressed as

pin =
(
δ + u

)
, δi ∼ N(0, 0.1) i = 1...N (2.4)

where δ is a time-varying vector whose components, δi, are disturbances at each node i
(modeled as white noise), and the vector u is the controller (power injection). Thus, equation
(2.3) can be written as [

θ̇
ω̇

]
=

[
0 I

−M−1
q L −M−1

q D

] [
θ
ω

]
+

[
0

M−1
q

] (
δ + u

) (2.5)

[
θ̇
ω̇

]
:= Aq

[
θ
ω

]
+ Bq

(
δ + u

)
(2.6)

In this hybrid formulation, the design of the optimal controller u is more complex than in
the traditional linear time-invariant (LTI) case. Recent work has shown the relevance of the
optimal placement of virtual inertia in the grid [14], which expanded on previous work that
studied the effects of rotational inertia in a network [3]. In this study we build on this work
by including the evolution over time of the rotational inertia at each node. Using receding
horizon Model Predictive Control we study three different designs for the controller u in
equation (2.5).
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Optimal frequency control for low and time-varying rotational
inertia coefficients

In order to minimize an objective function with the states and controller as variables, we
consider three possible controllers u. In addition, we take into account a constraint to
maintain the frequency ω at all time t in a predefined safe interval. The receding horizon
MPC formulation can be summarized by the following optimization problem:

min
x(t),u(t)

∫ T

t=t0

x(t)>Qx(t) + u(t)>Ru(t)dt (2.7)

s.t. x(t0) = x0 (2.8)

ẋ(t) = Aqx(t) +Bq

(
δ(t) + u(t)

)
, t ∈ (t0, T ) (2.9)

b ≤ x(t) ≤ b̄, t ∈ (t0, T ) (2.10)

δi(t) ∼ N(0, 0.1), i ∈ {1, ..., N}, t ∈ (t0, T ) (2.11)

where x is the vector of the states (θ, ω), u the controller, Q and R are symmetric positive
definite matrices, t0 the initial time, T the final time, b and b̄, lower and upper bounds for
the frequency, and x0 the initial state. As it was mentioned earlier, the hybrid modes q
transition at each time step t using a Markov Chain. We consider three designs for optimal
controllers u obtained using receding horizon MPC:

1. Linear MPC:

ui(t) unconstrained, i ∈ {1, ..., N}, t ∈ (t0, T ) (2.12)

2. Inertia Placement [14]:

ui(t) = −Miω̇i, i ∈ {1, ..., N}, t ∈ (t0, T ) (2.13)

3. Dynamic Inertia Placement:

ui(t) = −Mi(t)ω̇i, i ∈ {1, ..., N}, t ∈ (t0, T ) (2.14)

The receding horizon MPC formulation (2.7) - (2.12) is classified as a quadratic problem
with linear constraints, thus a convex problem. The receding horizon MPC formulation for
inertia placement, (2.7) - (2.11), (2.13) and (2.7) - (2.11), (2.14), are non convex problems.
To model the first formulation we use CVX [6], [7]. To model the non convex formulations
we use the parser YALMIP [11], and solved the optimization problem using an interior point
method.

In the case of the Linear MPC formulation, the controller ui(t) does not have any con-
straints imposed. Implying that the feasible set of the Linear MPC formulation and the
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feasible set of the problem given by (2.7) - (2.11) are equivalent. The Dynamic Inertia
Placement formulation introduces a new variable Mi(t). This new variable needs to be op-
timized for all nodes i at all time steps t. The controller ui(t) is constrained to be equal to
−Mi(t)ω̇i, serving as virtual inertia. The fact that the Dynamic Inertia Placement formula-
tion has an extra set of constraints on ui(t) implies that the feasible set of this problem is
contained in the feasible set of the Linear MPC formulation. Finally, the Inertia Placement
formulation, in addition to having the constraint on the structure of ui(t) as the Dynamic
Inertia Placement had, it has an additional set of constraints. This extra set of constraints
forces Mi(t) to be equal to Mi for all t. In other words, the design of the virtual inertia
controller cannot be specific to a node and time, but a fixed design over time for each node.
Thus, the Inertia Placement formulation has its feasible set contained in the feasible set of the
Dynamic Inertia Placement formulation. In summary, the Linear MPC formulation has the
largest feasible set, followed by the Dynamic Inertia Placement which has more constraints.
Finally the Inertia Placement formulation comes in third place with the most restrictive
feasible set. Due to this, we expect solutions u∗ from the Linear MPC formulation to be
best, attaining the lowest value in its objective function. We expect the Dynamic Inertia
Placement case to come in second place with a higher optimal value for its objective function
compared to the Linear MPC formulation. The formulation with the highest optimal value
of its objective function would be the Inertia Placement formulation.

One of the contributions of this work is to assess the grid’s performance when virtual
inertia is optimized over time and location (Dynamic Inertia Placement). We also com-
pare inertia placement with the Linear MPC formulation. The latter sheds light on how
the performance of frequency dynamics could improve with a more flexible controller (not
constrained to be a derivative control law as inertia placement is).

In Section 2.3 we compare these three formulations. We utilize the study case (originally
from [10]) used in some recent virtual inertia placement work [3] and [14].

2.3 Case Study: Twelve-Bus Three-Region Network

Data description

The twelve-bus three-region network used in this study has also been used in [10], [3], and
[14]. The full network was modeled, without using any simplifications (e.g. no Kron reduc-
tion of the graph). Therefore, twelve nodes were modeled with two states each (angle and
frequency). Table 2.1 shows the parameters of the network.

The positive definite matrices Q and R from the objective function in problem (2.7) that
we use in the case study are the identities. With this selection we are equally penalizing
frequency deviations from zero and energy injection/absorption from the controller. This
assumption can be changed to, for example, represent the real economic cost to the grid that
frequency deviations and energy injection/absorption from the controller represent. This in
itself is an open research question.
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Table 2.1: Parameters for the twelve-bus three-region case study [10], [3].

Parameter Value

Transformer reactance 0.15 p.u.
Line impedance (0.0001 + 0.001j) p.u./km

Base voltage 230 kV
Base power 100 MVA

Droop control 1.5 %/%

10

25 km10 km110 km10 km25 km

12

11 9

25 km

1

2

3
4 8

7

5

6

719 MW
133 MVar

350 MW
69 MVar

1000 MW
100 MVar

567 MW
100 MVar

1050 MW
284 MVar

611 MW
164 MVar

700 MW
293 MVar

700 MW
208 MVar

1570 MW400 MW

200 M
V

ar

350 M
V

ar

110 km
11

0 
km 490 MW

Figure 2.1: Case study: Twelve-bus three-region network from [10], [14], and [3].

As it was discussed in Section 2.2, the inertia matrix M is modeled as a diagonal ma-
trix diag(mi), whose elements mi correspond to the rotational inertia at the bus i. We
assume the same rotational inertia in all buses for a given time step t (mi(t) = m(t) for
all i). This implies a similar fraction of renewable energy generation for all nodes, which
is common in large networks. However, this assumption can be easily extended. In this
work, we model the variability of the rotational inertia in the system as a hybrid system
switching modes as the inertia changes. Each mode of the hybrid system is given by one
value of inertia. For the study case we predefined possible inertia values for the system:
{0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 5, 9}. The average of this set of possible inertia values is 2.8 sec-
onds, which is equivalent to having 28 percent of thermal generation (10 s of inertia) and
72 percent of RES with zero inertia. Each simulation starts with 2 seconds of inertia, and
from there- based on a uniform distribution draw- the inertia (hybrid mode) of the system
at time t+1 will remain the same, increase, or decrease (Markov Chain with 1/3 probability
for each possible mode transition). This process is repeated until each time step t in the
time horizon T has assigned a rotational inertia mode.

The safety bounds for frequency are ±0.1 Hz (b and b̄ in equation (2.10)).

Results

Each receding horizon MPC formulation is run for eight time steps (T ) and 100 possible
realizations (or scenarios) from the Markov Chain of the rotational inertia matrix Mq. Thus,
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Table 2.2: Summary: mean and standard deviation of objective function J∗, optimal control
u∗, and frequency ω.

Moments
Linear
MPC

Inertia
Placement

Dynamic
Inertia
Placement

µ(J∗) 0.17 0.92 0.24
σ(J∗) 0.07 1.66 0.30

µ(u∗) p.u. -0.004 -0.018 -0.005
σ(u∗) p.u. 0.13 0.29 0.15
µ(ω) mHz -0.34 0.93 8.10
σ(ω) Hz 0.07 0.04 0.05

for each formulation we obtain an optimal value of the objective function at each time step
and each scenario (i.e. 800 values). The number of nodes, N , is 11 because node 11 and 12
are the same (refer to Fig. 2.1). We also obtain N control actions (one per node) for each
time step and for each scenario (i.e. 8800 values), and N frequency measurements for each
time step and for each scenario (i.e. 8800 values). Using these sets of results we calculate
moments and show histograms for the three formulations in order to compare them.

Table 2.2 shows the mean and standard deviation of the set of optimal values of the
objective function (J∗) at all times t and all scenarios for the three formulations. The same
moments are shown for optimal control (u∗) and frequency (ω) for the three optimization
problems. As discussed in Section 2.2, the Linear MPC formulation shows the lowest average
and standard deviation values in its objective function compared to the other two formu-
lations. The average of the objective function for the Linear MPC is 0.17 cost units, and
its standard deviation 0.07. In the case of the average, it corresponds to 18 percent of the
average in the Inertia Placement formulation and 71 percent of the average in the Dynamic
Inertia Placement case. This result can be interpreted as the Inertia Placement formulation
resulting in non zero frequency deviations and non zero control actions 82 percent more of
the time compared to the Linear MPC formulation (on average). This result sheds light on
the suboptimality of the virtual (dynamic and static) inertia controllers compared to the
closed-loop formulation (Linear MPC). Thus, there is an incentive to continue designing
controllers that try to address low and variable inertia coefficients in the grid.

Another relevant result is the fact that our proposed Dynamic Inertia Placement formula-
tion provides better performance than the Inertia Placement formulation in terms of average
cost and energy usage in the controller u∗. This is expected as well because we provide more
flexibility for the controller to inject/absorb energy depending on not only the node, but also
on the time step. The average objective value in the Dynamic Inertia Placement formulation
is 39 percent of the average optimal value of the objective function in the Inertia Placement
case.

Fig. 2.2 and 2.3 show histograms of the optimal controllers u∗ for the Inertia Placement
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Figure 2.2: Inertia Placement: Histogram of optimal controller u∗ at all nodes, all time steps,
and all scenarios.

Figure 2.3: Dynamic Inertia Placement: Histogram of optimal controller u∗ at all nodes, all
time steps, and all scenarios.
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formulations. Statistics in Table 2.2 show that the optimal controller for the Linear MPC
formulation case uses less energy on average to maintain the frequency within the allowed
bounds. Its maximum injection/absorption is between ±0.3 p.u. (not shown in Table 2.2).
The optimal injection from the Inertia Placement formulation ranges between −2.6 and 2.8
p.u. to maintain the same safety bounds for the frequency. The control range from the
Dynamic Inertia Placement is smaller (−1.2 and 1.4 p.u.) compared to the spread observed
in the energy absorbed/injected by the Inertia Placement controller. Therefore, it shows a
more efficient frequency control design.

Figure 2.4: Inertia Placement: Histogram of optimal cost J∗ at all time steps and all sce-
narios.

Figure 2.5: Dynamic Inertia Placement: Histogram of optimal cost J∗ at all time steps and
all scenarios.
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Fig. 2.4 and 2.5 show histograms of optimal costs for the Inertia Placement formulations.
The moments in Table 2.2 show that the optimal values for the Linear MPC formulation
are concentrated around zero. However, the Inertia Placement formulations show more
spread, reaching extreme costs of 15 units (Inertia Placement) and 4.3 units (Dynamic Inertia
Placement). The distribution of the costs for the Dynamic Inertia Placement controller is
more skewed and its tail does not reach as high of values (Fig. 2.5) compared to the tale of
the cost distribution in the Inertia Placement design (Fig. 2.4).

2.4 Conclusions

We propose a new modeling framework for power systems dynamics that captures the vari-
ability of rotational inertia over time. Our proposed model is a Switched Affine hybrid
system, whose modes change based on the change of inertia in the nodes. The transition
from one mode to another is determined by a Markov Chain at each time step of the simula-
tion. With this new framework, we test two standard frequency control designs and propose a
third design: Linear MPC, Inertia Placement, and Dynamic Inertia Placement. As expected,
the Linear MPC formulation is better in terms of cost and energy injection/absorption to
control frequency. This finding encourages researchers to continue designing controllers in
order to attain such optimality without having to optimize in real time (closed-loop MPC).

Another relevant finding is the fact that the Dynamic Inertia Placement proves to be
more efficient in terms of cost and energy usage of the controller compared to the classical
Inertia Placement case. This finding sheds light on the importance of modeling dynamics
over time assuming temporal variability in the system’s inertia. Additionally, it highlights
the importance of designing a more flexible controller that would adapt over time. For future
work we plan to study stability of the hybrid system and design a controller that is more
efficient in terms of energy usage than the current virtual inertia schemes. We also plan to
characterize the disturbances at each node of the network and to model the switching of
modes of the hybrid system with data-driven approaches.
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Chapter 3

Frequency Regulation using
Data-Driven Control

3.1 Introduction

The work in this chapter corresponds to the publication titled “Frequency Regulation using
Data-Driven Controllers in Power Grids with Variable Inertia due to Renewable Energy”
by Patricia Hidalgo-Gonzalez, Rodrigo Henriquez-Auba, Duncan S. Callaway and Claire J.
Tomlin [9]. We presented this work at the 2019 IEEE Power & Energy Society General
Meeting in Atlanta, Georgia, United States.

Our earlier work [8], introduces a new modeling framework for power system dynamics
to simulate a time-varying evolution of rotational inertia coefficients in the network. To do
this, power dynamics are modeled as a hybrid system in which each mode corresponds to
a rotational inertia regime. The novelty of this work is the design of a fixed and stable
frequency controller under a paradigm of time-varying inertia. We choose a fixed controller
because it is simpler to implement (compared to a time dependent controller) given the
existing droop control in the grid. In addition, the controller we propose does not require
information about the current hybrid mode of the system or its uncertainty. Thus, our
contributions are the following:

• In the time-varying framework for power dynamics, we design a controller with fixed
gains, proportional to the system’s states (angles and frequencies). We design the
controller by learning its parameters from the optimal control solution of a hybrid
systems linear-quadratic regulator (LQR) formulation of power dynamics.

• For each mode of the hybrid system, we test the performance of the learned controller
against the optimal time-varying controller from the LQR formulation.

• We add virtual inertia control (linear on the derivative of the frequency) to guarantee
stability for all modes of the hybrid system when using the learned controller.
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We conclude that for the hybrid power dynamics formulation it is possible to design,
through learning, a static frequency controller proportional to the system’s states that per-
forms similarly to the optimal time-varying controller from LQR. It is possible to guarantee
stability for the hybrid system when we add virtual inertia to the learned control.

The rest of the chapter is organized as follows: Section 3.2 presents the problem formu-
lation, Section 3.3 analyses stability of the hybrid system and shows the performance of the
controller in different settings, and finally Section 3.4 concludes with our main findings.

3.2 Problem Formulation

Power grid dynamics as a hybrid system

We consider an electric power grid modeled as a graph with n nodes and n(n−1)/2 possible
edges connecting them. The swing equation model, based on the direct current approxima-
tion [14], used for the network is given by

miθ̈i + diθ̇i = pin,i −
∑
j∈Ni

bij(θi − θj), i ∈ {1, . . . , N} (3.1)

where mi corresponds to the equivalent rotational inertia in node i, di is the droop control,
pin,i represents power mismatch at node i, Ni is set of nodes connected by an edge to node
i, bij is the susceptance of the transmission line between nodes i and j, and θi is the voltage
phase angle at node i. The state space representation of the model can be written as[

θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

] [
θ
ω

]
+

[
0

M−1

]
pin (3.2)

where the states correspond to the stacked vector of angles and frequencies at each node
(θ>, ω>)> ∈ R2n, M = diag(mi) is a diagonal matrix with rotational inertia coefficients,
D = diag(di) is a diagonal matrix with droop control coefficients, I is the n × n identity
matrix, pin corresponds to the power input, and L ∈ Rn,n is the Laplacian of the network.
The network Laplacian is defined as `ij = −bij when i 6= j, and `ii =

∑
j∈Ni

bij.
Thermal generators are predominant in the traditional paradigm of power systems. In

this setting, the equivalent inertia can be considered as constant over time. However, due
to the increasing penetration of RES, the equivalent rotational inertia has become lower
and time-varying [16, 5]. This work uses the modeling framework first introduced in [8] to
represent the time dependence in inertia at each node. Frequency dynamics are modeled as
a Switched-Affine hybrid system [2], where each mode has a predetermined set of values of
equivalent inertia mi at each node [8]. The evolution of the inertia on the system depends on
the current online generators and the connected power electronics converter. In this work,
the inertia at each time step t evolves as an exogenous input over different modes. Thus,
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the power dynamics are given by[
θ̇
ω̇

]
=

[
0 I

−M−1
q(t)L −M−1

q(t)D

]
︸ ︷︷ ︸

Âq(t)

[
θ
ω

]
+

[
0

M−1
q(t)

]
︸ ︷︷ ︸
B̂q(t)

pin (3.3)

where Mq(t) represents the inertia matrix in the mode q(t) ∈ {1, . . . ,m}. Using a zero-order
hold discretization with time step Ts, we obtain the discretized time-varying dynamics

xt+1 = Aq(t)xt +Bq(t)ut (3.4)

where xt is the stacked vector of discretized angles and frequencies, (θ>t , ω
>
t )>, ut is the control

action by generators and converters, Aq(t) = exp(Âq(t)Ts) and Bq(t) =
∫ Ts
0

exp(Âq(t)τ)B̂q(t)dτ
.

In this work, the switching between modes occurs between each time step, and it is
given by a uniform distribution with the following possible outcomes: no change of inertia,
increase of inertia, or decrease of inertia. For simplicity, for a given mode q we assume the
same inertia coefficient for all nodes Mq = mqIn×n. Using an LQR formulation we study
the problem of returning to a steady-state configuration xss, assuming a perturbed initial
condition x0 6= xss due to a contingency.

Optimal frequency control for low and time-varying rotational
inertia coefficients

To minimize an objective function where the states and controllers are decision variables we
consider the LQR formulation

min
x,u

T∑
t=0

x>t Qxt + u>t Rut

s.t. x0 = x(0)

xt+1 = Aq(t)xt +Bq(t)ut, t ∈ {0, T − 1}

(3.5)

where Q is a positive semidefinite matrix, R is a positive definite matrix, and x(0) is the initial
state. Depending on the modeling goal, matrices Q and R can be modified to promote a
specific behavior. The optimal solution of (3.5) for a fixed mode q in the entire time horizon
(i.e. a linear time-invariant system) and with T → ∞, can be found via the discrete time
algebraic Ricatti equation [2]:

Pq = A>q PqAq − A>q PqBq(R +B>q PqBq)
−1B>PqAq +Q

Kq = (R +B>q PqBq)
−1B>q PqAq (3.6)

ut = −Kqxt
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For a hybrid system with time-varying inertia, (3.5) is a Quadratic Programming problem
that can be solved directly, using for example CVX [6]. We use the solution of (3.5) as a
benchmark of an optimal controller for our problem.

Data-driven based controller

In the presented framework of variable inertia we are interested in learning a time-invariant
controller of the form ut = −KLxt where KL is a constant matrix. The training dataset
(x(k),u(k)) we use comes from the optimal solution to (3.5) under different scenarios k =
{1, . . . , K}. The learning algorithm we use is least-squares:

min
KL

K∑
k=1

T∑
t=1

∣∣∣∣∣∣u(k)t −KLx
(k)
t

∣∣∣∣∣∣2
2

(3.7)

It is interesting to notice that when we solve (3.5) for a single mode q (in the entire time
horizon) and a sufficiently long time horizon T , least-squares returns the analytical solution
Kq from the LQR problem (3.6). This is because the optimal controller from (3.5) is linear
on the states, and with sufficient training data (x(k),u(k)), (3.7) is a convex optimization
program that achieves Kq, and hence the optimal value is equal to zero.

We assume a stressed case in which the equivalent inertia can change rapidly over time.
Thus, inertia is allowed to change over time steps in each scenario. However, an equivalent
training set can be generated by fixing the mode q at each scenario k, and only changing
the mode between different scenarios. Each scenario in this training set would represent, for
instance, a different hour of the year. During an hour, inertia could be considered fixed, and
a different optimal controller would be obtained for each scenario.

Incorporating virtual inertia in the system

Depending on how we generate the training set (x(k),u(k)), the controller we propose may
not be stable in modes where the inertia is too low. The learned controller may not be fast
enough to compensate the rate of change of the frequency. As an alternative, a controller that
depends on the derivative of the frequency, KVω̇, can be used as a virtual inertia resource
for the system. Indeed, consider the fixed inertia continuous time system and assume a
controller of the form

u = −KL(θ>, ω>)> −KVω̇ = −KLx− K̃Vẋ (3.8)

where K̃V = [0 KV], then:

ẋ =

[
0 I

−M−1L −M−1D

]
x−

[
0

M−1

]
(KLx+ K̃Vẋ)
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Table 3.1: Parameters for the twelve-bus three-region case study [3], [8] and [10].

Parameter Value

Transformer reactance 0.15 p.u.
Line impedance (0.0001 + 0.001j) p.u./km

Base voltage 230 kV
Base power 100 MVA

Droop control 1.5 %/%

Rearranging terms the system can be written

ẋ = (I + B̂K̃V )−1(Â− B̂KL)x

=

[
0 I

−M̃−1(L+KL,θ) −M̃−1(D +KL,ω)

]
x

where M̃ = M(I+M−1KV) = M+KV provides a new system wide equivalent inertia due to
the virtual inertia controller KV. To determine a proper KV we develop a heuristic using a
bisection method. We assume KV of the form KV = kvIn×n. Iterating over kv, and assuming
that ẋ in the right hand side of the discretized system can be approximated by [xt−xt−1]T−1s ,
we modify kv until the discretized closed loop system for the low inertia modes has all its
eigenvalues inside the unit circle, making it stable.

3.3 Simulations and Results

Data description

Using MATLAB R© we modeled a twelve-bus three-region network that has also been used
in [3], [14], [8] and [10]. Each node has two states (angle and frequency). Table 3.1 shows
the parameters of the network.
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Figure 3.1: Case study: Twelve-bus three-region network from [3], [14], [8] and [10].
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We assume the same rotational inertia in all buses for a given time step t (mi(t) = m(t)
for all i). This implies a similar fraction of renewable energy generation for all nodes, but
this assumption can be easily extended. Each mode of the hybrid system is given by one
value of inertia. For the study case we predefined possible inertia values for the system:
mq ∈ {0.2, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 5, 9}. The average of this set of possible inertia values is
2.8 seconds, which is equivalent to having 28 percent of thermal generation (10 s of inertia)
and 72 percent of RES with zero inertia. Each simulation starts with 2 seconds of inertia
(mode q5), and from there– based on a uniform distribution draw– the inertia (hybrid mode)
of the system at time t+1 will remain the same, increase, or decrease. In our simulations we
only allow the possibility to change modes every 1, 4 or 10 time steps. For all the simulations
we use a time step of Ts = 0.01s. We generate K = 400 scenarios of 7 seconds each (T = 700).
The initial conditions we use in (3.5) are randomly drawn from a normal distribution with
zero mean and unitary variance. The training set we use to learn the controller KL using
(3.7) are the optimal solutions (x(k),u(k)) from (3.5).

Stability analysis

The design of the controller KL through learning provides a stable closed loop system Aq −
BqKL for every mode except for q1. To correct this issue we use an approximated virtual
inertia controller K̃V(xt − xt−1)T−1s with K̃V = [0 KV]. The new dynamics can be written
as:

xt+1 = Aqxt +Bq[−KLx+ T−1s K̃V(xt − xt−1)]
= [Aq −Bq(KL − T−1s K̃V)]xt − T−1s BqK̃Vxt−1

Augmenting the states as zt+1 = (x>t , x
>
t+1)

>, our new system can be written as:

zt+1 =

[
02n×2n I2n×2n

−T−1s BqK̃V Aq −Bq(KL − T−1s K̃V )

]
zt (3.9)

For the learned controller, adding a virtual controller of the form KV = 0.15In×n results in
eigenvalues of the augmented system for mode q1 inside the unitary circle. This is depicted
in Figure 3.2, where it can be observed that there are two modes that are unstable for the
closed loop system only using the learned controller (in red). When we incorporate the
virtual inertia controller all modes are stable (in blue).

Controllers’ comparison for fixed inertia

For each mode q, we compare the performance of the learned controller KL and the learned
controller with virtual inertia, KL + VI, against the optimal controller from the LQR for-
mulation. Table 3.2 shows peaks (`∞ norm), `2 and `1 norms for frequency deviations f
and control inputs u, and objective function values J for the different controllers under dif-
ferent inertia modes (columns). The values in table 3.2 represent increases in percentage
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Figure 3.2: Eigenvalue placement for the closed loop system in mode q1 using the learned
controller KL (crosses) and adding virtual inertia control KL + VI (circles).

with respect to the metrics for the LQR controller. The learned controller is unstable in
the critical inertia regime (q1, lowest inertia). When adding virtual inertia, the controller
becomes stable. The objective values for the data-driven controllers are greater than for the
LQR. This is intuitive because the learned controllers have fixed parameters over time while
the LQR changes its parameters for each mode. The `2 norm for the frequency is in general
smaller for the learned controllers than for the LQR controllers. On the other hand, the `2
norm of the control action is higher than in the LQR case.

Controllers’ comparison for time-varying inertia

We evaluate the performance of different controllers in a simulation of the hybrid system
switching among different inertia modes. We assume that the system starts in mode q2 =
0.5s, and possible transitions of inertia can occur every 4 time steps. Figure 3.3 depicts
the evolution of frequency deviation in node 1, under 5 different controllers for an initial
condition f0 = −0.15 Hz at every node. The controllers we use are the following: In blue,
the frequency is controlled using the learned controller KL. In red, we show the learned
and virtual inertia controller KL + VI (ensure stability). Similarly, cyan depicts a controller
that uses KL and virtual inertia only when the system is in the unstable mode q1. In black
and green we use the optimal controllers Kq obtained from (3.6) for modes q3 = 1s and
q8 = 5s, respectively. Around 4 seconds of the simulation, the system enters mode q1 for
around 0.4 seconds. This provokes an instability for controllers K8 and KL. After leaving the
unstable mode the frequency is stabilized again. The other controllers are able to maintain
stability in all the modes. In addition, key differences can be observed at the beginning of
the simulation. Controller K3 shows the highest overshoot of the simulation, while controller
KL + VI (in red) is the fastest to peak due to the usage of the derivative of the frequency.
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Table 3.2: Comparison of learned controller (KL) and learned controller with virtual inertia
(KL + VI) against optimal control from LQR under different inertia modes. Units are in
percentages (%).

Metric q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

||fKL
||∞ Unstable −21.1 −10.4 −5.4 −1.1 2.6 5.9 8.8 11.9 14.4

||fKL+VI||∞ 106.7 −16.1 −8.8 −4.3 −0.2 3.5 6.5 9.5 12.4 14.4

||fKL
||2 Unstable −9.0 −7.1 −5.5 −3.9 −2.5 −1.1 0.2 3.7 11.2

||fKL+VI||2 -7.2 -8.9 -7.4 -5.8 -4.3 -2.9 -1.5 -0.3 3.2 10.9

||uKL
||∞ Unstable 3.2 −2.7 −5.9 −8.2 −10.2 −11.9 −13.3 −17.1 −15.2

||uKL+VI||∞ 87.9 3.2 −2.7 −5.9 −8.2 −10.2 −11.9 −13.3 −17.1 −15.2

||uKL
||1 Unstable 13.3 6.2 2.5 −0.3 −2.7 −4.7 −6.5 −11.0 −19.7

||uKL+VI||1 78.1 19.0 8.6 4.2 1.1 −1.4 −3.6 −5.5 −10.2 −19.1

||uKL
||2 Unstable 12.2 6.0 4.6 4.4 4.6 4.9 5.3 6.5 9.2

||uKL+VI||2 45.2 16.4 8.7 6.6 5.9 5.8 5.9 6.1 7.1 9.4

JKL
Unstable 29.8 39.9 49.2 57.8 65.7 73.2 80.2 98.9 138.1

JKL+VI 39.1 31.6 40.2 49.0 57.4 65.3 72.6 79.5 98.1 137.3

Finally, the frequency for the first and third case (in blue and cyan) are almost identical
except when the system is in the mode q1. This shows that if we can detect when the system
is in critical modes, we can apply virtual inertia control only when it is necessary to obtain
a better performance.

3.4 Conclusions

In this work we propose a new framework for obtaining a constant data-driven controller
for uncertain and time-varying power system dynamics. This is relevant because it can
be intractable to solve frequency dynamics in real time (time-varying LQR) in large power
networks. In addition, time-varying controllers, as the one from LQR, rely in the ability
to predict or identify the current mode of the hybrid system. Finally, given the existing
infrastructure and droop control, it would be simpler to implement a proportional controller
with fixed gains compared to a time-varying control.

We use a switched affine hybrid system, where its modes change based on the changes of
inertia in the system [8], we find optimal controllers using an LQR formulation. We use the
solution (x, u) from the LQR as a dataset to train a fixed controller. We test our learned
controller in different modes against optimal controllers. Results show that our learned
controller can be used to obtain a similar performance as the optimal LQR controllers in
the different modes. Finally, we show that adding a virtual inertia controller can stabilize
the system for low inertia modes. This highlights the importance of using more flexible
controllers when considering temporal variability in the system dynamics. For future work
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Figure 3.3: Frequency deviations for node 1 for 5 different controllers from a hybrid system
simulation.

we plan to explore the performance of our controller with AC power flow, voltage dynamics,
machine dynamics and power electronics (inverters) approximate dynamics. We will also
compare our proposed controller with a robust controller. We also plan to study different
learning algorithms with new features to test the efficiency of the learned controller, in
particular promoting sparsity and information requirements using LASSO or Block Sparse
Regression.
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