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Abstract

Haptic Perception of Liquids Enclosed in Containers

by

Carolyn Matl (Chen)

in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

Service robots will require several important manipulation skills, including the ability to
accurately measure and pour liquids. Prior work on robotic liquid pouring has primarily
focused on visual techniques for sensing liquids, but these techniques fall short when liquids
are obscured by opaque or closed containers. This paper proposes a complementary method
for liquid perception via haptic sensing. The robot moves a container through a series of
tilting motions and observes the wrenches induced at the manipulator’s wrist by the liquid’s
shifting center of mass. That data is then analyzed with a physics-based model to estimate
the liquid’s mass and volume. In experiments, this method achieves error margins of less
than 1g and 2mL for an unknown liquid in a 600mL cylindrical container. The model can
also predict the viscosity of fluids, which can be used for classifying water, oil, and honey
with an accuracy of 98%. The estimated volume is used to precisely pour 100mL of water
with less than 4% average error. This work will be presented and published through the 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) in Macau.
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Chapter 1

Introduction and Related Work

1.1 Introduction

Perception of liquids inside closed containers has been studied for quite some time by the
transportation and aerospace industries, where estimating the volume [18] or sloshing [10]
of fuel inside a tank can be used to better control trucks or aircraft. With the advent of
service robots that can work in the kitchen, this same problem has now resurfaced at a much
smaller scale. How much milk is inside the carton? How thick is the honey inside the jar?
Answering these questions before opening a container can drastically change how a robot
might plan to pour a liquid [19, 9, 17, 34].

However, the complexity of fluid mechanics makes it difficult to accurately model and
predict the behavior of liquids, and transparent liquids present a challenge for visual sensors.
Several vision-based techniques have addressed this challenge [35, 31, 16], but these methods
either only perceive the liquid during the pouring action or do not work when the container
is opaque or occluded.

To address these challenges, this paper proposes a haptic-based method to complement
existing visual techniques. Our robot rotates a container filled with an unknown liquid to
shift the liquid’s center of mass and observes the wrenches induced at the manipulator’s wrist
during both static and dynamic states of the liquid. The method then analyzes this wrench
data with a physics-based model to estimate the liquid’s mass, volume, and viscosity. To the
best of our knowledge, this is the first paper to use robotic haptic sensing and physics-based
reasoning to completely determine these three key parameters of liquids inside containers.

The main contributions of this paper are:

• Time-domain system identification of key parameters of liquids inside containers (mass,
volume, and viscosity) using haptic data.

• A physics-based model that utilizes both the static and dynamic states of the liquid
for parameter estimation.

• A demonstration of the use of liquid parameter estimation for robotic precision pouring.
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Figure 1.1: Wrench signals at the wrist of a robotic manipulator reflect changes in the center
of mass of liquid inside a container. These signals are used to infer key properties of the
liquid such as its mass, volume, and viscosity. Rotations are applied to the container in order
to observe both static and dynamic behavior of the liquid.

1.2 Related Work

Liquid modeling and simulation

The high-dimensional and stochastic nature of fluid flow makes modeling and simulating
liquids a challenging and often computationally-demanding task. By narrowing the scope
to fluids in a container, it has been shown that basic equivalent mechanical models such as
pendulums [8] or multi-mass-spring systems [28] can be sufficiently descriptive for certain ob-
jectives. Other work has explored numerical techniques such as the Volume of Fluid method
combined with the Navier-Stokes equations to model liquid sloshing [36, 6] or particle-based
simulations for tracking liquid flow [24, 35, 32]. A recognized strength of physics-based sim-
ulations is their ability to generalize to different liquids, as only few physical parameters
such as viscosity need to be changed without the need to relearn a representative model [32].
However, the authors of [32] note that it is still an open challenge to efficiently observe such
parameters from real data, which this paper aims to address.

Active perception and system identification

Inferring model parameters from sensor data is a fundamental focus in the fields of active
perception [2] and system identification [1]. The majority of existing literature concerned
with estimating liquid properties such as volume or viscosity tackles this challenge by using
either special-purpose equipment such as multi-sensor fusion systems built in and around
aircraft fuel tanks [18, 12] or camera-based systems that require advanced vision techniques
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and processing [7, 9]. This paper proposes a method for finding these parameters by using
physics-based models on haptic data.

Interactive haptic perception of objects with internal dynamics

Liquids inside containers are part of the broad category of objects with internal dynamics.
It has been shown that for objects in this class, such as articulated objects, [15, 14], direct
interactions can allow robots to exploit the object’s kinematics and dynamics to improve
model information. These interactions can range anywhere from near-static contacts [11] to
persistent excitation [3] to derived motions optimized for information gain [30]. In partic-
ular, pairing these interactions with haptic sensing enables perception of objects that are
unobservable with vision (e.g., liquids in an opaque bottle). In [11, 4], the authors use tactile
data during a grasp of a container to distinguish between an empty or full container. A more
dynamic motion is applied in [3], in which shaking-induced vibrations are used to classify
between different container contents. The angle and frequency of shaking is algorithmically
determined to maximize information gain and to infer the viscosity of a liquid inside a con-
tainer in [30]. While [30] addresses the generation of an action in order to best perceive
viscosity, this paper uses predetermined motions informed by exploratory analysis with a
greater focus on parameter estimation.

Manipulation of liquids

Accurate liquid modeling, simulation, and perception is essential for the manipulation of
liquids. Slosh-control and pouring are two challenging robotic tasks within the realm of
liquid manipulation. Control of tanks or containers while minimizing slosh has applications
for ground vehicles, aerospace vehicles, and robotics [10, 28]. Instead of focusing on the
control of slosh, the methods in this paper utilize slosh dynamics to determine the viscosity
of a liquid. Numerous papers have also worked on the task of pouring liquids [35, 31, 33,
26, 27, 25, 16], although most rely on vision-based sensing to track liquid flow. Four works
of note [29, 33, 16, 21] perform precision pouring, i.e., pouring of specific amounts of fluid.
This paper also attempts this challenging task, but our method differs in that the haptic
signals and physics-based reasoning inform the action to take before the liquid is poured.
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Chapter 2

Problem Statement

Imagine a robotic manipulator that has a stable grasp of an opaque bottle encasing some
amount of an unknown liquid. The manipulator is allowed to perturb the bottle in order to
haptically perceive the internal dynamics of its contents. Given the wrench forces experienced
at the wrist of the manipulator, the goal of this paper is to determine the mass, volume, and
viscosity of the liquid enclosed in the container.

2.1 Simplifying Assumptions

It is assumed that the manipulator has already achieved a rigid grasp of the container,
maintaining force closure throughout the entire interaction and perception cycle. We limit
manipulator motions to rotations of the end-effector wrist joint, and to simplify processing,
wrench forces are only measured when the manipulator is not in motion. With these as-
sumptions, wrench forces at the wrist should primarily reflect the shifting center of mass of
the liquid. By observing this proxy for aggregate motion of the liquid, the physics models
proposed approach the problem macroscopically rather than at the molecular scale. The
liquid is assumed to have uniform density and be at room temperature.

Concerning the container, many assumptions were made including that it is rigid and
has a known mass and geometry. For much of the analysis in this paper, we use a cylindrical
container and approximate its geometry with a right circular cylinder parameterized by its
radius and length. While this geometric assumption enables fast analytic calculations, we
can still perform the same analysis on arbitrarily-shaped containers using mesh processing
techniques. Knowledge of the grasp point of the container, parameterized by the distance
from the bottom of the container to the center of the grasp, is also assumed. Container wall
thickness is assumed to be negligible so that the internal volume of the container can be
determined from its external geometry, which we acknowledge will induce some small error
in our analysis.
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Figure 2.1: (a) A cross-sectional diagram defining variables used to derive parameter esti-
mation formulas. (b) Top to bottom, left to right are the four cases of liquid geometry in
a cylindrical container, visualized by the mesh approximation method. (c) A diagram to
determine θ for a precise pour.

2.2 Definitions

Let the state of the system at time t be defined as xt = (ft, τt, θt), where f ∈ R3 and
τ ∈ R3 are the forces and torques along the x, y, an z axes experienced at the wrist of the
manipulator and θ ∈ [0, 2π] is the clockwise angle of rotation of the manipulator about the
z-axis from the vertical. Based on this single-axis rotation constraint, the states of interest
for the following experiments are fx, fy, and τz.

For a cylindrical container, let radius R and length L define its geometry. The robot
grasp can be anywhere along the length of the container, and the position of the gripper
center relative to the bottom face of the container is defined by the distance Lg. The wrench
FB = (fB, τB) is originally with respect to the body frame of the system, which we define
as rigidly attached to the center of the grasp with positive y pointing towards the top face
of the container. The world frame is defined for +y opposite of gravitational force, also with
its origin centered between the grasp (see Figure 2.1).

The unknown values we wish to estimate are the mass m`, volume V , and the dynamic
viscosity µ of the liquid. The total mass of the system is M = mg + mc + m`, where mg is
the known mass of the gripper and mc is the known mass of the container. Other unknown
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variables that are useful for calculations in the following section are the height of the liquid
inside the container, h, and the center of mass of the composite system x̄M = x̄g+x̄c+x̄`, both
of which are defined with respect to the world frame. We use x̄ to represent the horizontal
component of the center of mass. h is defined as the vertical distance from the lowest point
of the container to the surface of the liquid. x̄g is assumed to be 0 since it coincides with
the origin of the world frame and x̄c is assumed to be at the midpoint of the container. x̄`
is initially unknown. Figure 2.1 summarizes these definitions in a cross-sectional diagram of
the system.

2.3 Objective

This paper aims to solve for m`, V , and µ given xt for t ∈ [t0, t1]. A predetermined action is
taken by the robot, involving a rotation of θ at some velocity θ̇. To simplify analysis, t0 is
defined as the time once this action is completed, and t1 is a constant time after t0 (in these
experiments, 10 sec). The methods described in the following section are later evaluated by
comparing m`, V , and µ to ground-truth values.
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Chapter 3

Methods

Both static and dynamic signals are used to calculate m`, V , and µ given inputs fx, fy, and
τz. The changing center of mass of the liquid, x̄`, is the key to deriving these values. For the
following sections, assume the inputs are expressed with respect to the static world frame
(see Figure 2.1).

3.1 Liquid Mass

Knowing mc, the mass of the container, finding the mass of the liquid is simple. Given the
force in the positive y direction, fy, of the static world frame, then

m` = fy/g −mg −mc

where g is the gravitational constant −9.807m/s2 and mg is the measured mass of the gripper
in kg.

3.2 Liquid Volume

Given the liquid mass from Section 3.1, we can derive an expression for the torque τz as a
function of the control variable θ and the volume V , an unknown. First, we rewrite τz in
terms of the centers of mass of the attached system:

τz = fyx̄M = g(mgx̄g +mcx̄c +m`x̄`)

Because the world frame is anchored at the center of the gripper, let x̄g = 0. We can
approximate x̄c by assuming the container has a shell with a uniform density. Then, relative
to the world frame, x̄c = (L/2 − Lg) sin θ. Finally, observe that liquid takes the shape of
its container, so x̄` is a function of rotation angle θ, volume V , and container geometry.
Together, we get an expression of τz as a function of θ and V :

τz(θ) = g(mc(L/2− Lg) sin θ +m`x̄`(θ, V )) (3.1)
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Let θ represent a vector of rotation angles from a sampled discrete set Θ. This expression
allows us to perform nonlinear least squares (NLS) to estimate the parameter V . The
objective is to minimize the residuals between our measured values τz(θ) and our model-
based estimated values:

V = arg min
V

‖τz(θ)− g(mc(L/2− Lg) sin θ +m`x̄`(θ, V ))‖2
2 (3.2)

Below, we describe two different methods that can be used to define the nonlinear function
x̄`(θ, V ).

Analytic Model

Many containers can be approximated with simplified geometry (e.g. a rectangular prism
or a cylinder). For such containers, we can derive a closed-form analytic expression for
x̄`(θ, V ). Here, we define the derived equations for a circular cylinder with radius R and
length L and express x̄B` and ȳB` with respect to the body frame, shifted along the +yB by
Lg. In other words, the origin of the frame of reference lies at the center of the bottom face
of the container, with +xB extending along the radius and +yB extending along the length
of the container.

To make these calculations easier, we first compute the height of the liquid h in the
container (see Section 2.2) as a function of V and θ. Because this function is not easily
invertible, in practice we use the fact that h(θ, V ) is a monotonically-increasing function in
V and find the correct value of h via binary search.

We assume the liquid is at rest, with its surface parallel to the ground plane. Depending
on h, R, L, and θ, the liquid takes on one of four cylindrical wedge shapes (See Figure 2.1 as
illustration). Below, the four cases defining x̄`(θ, V ) collectively form a piecewise continuous
function. All formulas are defined for the range θ ∈ [0, π

2
], but through reasoning about

symmetry, the full range can be derived.

1. The bottom face is covered, but the top face is dry: This case occurs when 2R sin θ <
L cos θ and h ∈ [2R sin θ, L cos θ]. Then:

V = πR2(
h

cos θ
)− 2R tan θ) + πR3 tan θ

x̄B` =
πR4

4V
tan θ

ȳB` =
1

V
((R tan θ

+
h

cos θ
− 2R tan θ)2(

1

2
πR2) + (tan2 θ)(

1

8
πR4))

2. The bottom face is partially covered and the top face is dry: This case occurs when
h ∈ [0, a] for a = min[L cos θ, 2R sin θ]. We define the following variables to simplify
our expression. Let α = R− h

sin θ
and β =

√
R2 − α2. Then:
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V = tan θ(
2β3

3
− α(

πR2

2
− αβ −R2 arctan

α

β
))

x̄B` =
1

V
tan θ(

1

4
(
πR4

2
− αβ(2α2 −R2)

−R4 arctan(
α

β
))− 2αβ3

3
)

ȳB` =
tan2 θ

V
(
α2

2
(
πR2

2
− αβ −R2 arctan

α

β
)

+
1

8
(
πR4

2
− αβ(2α2 −R2)−R4 arctan(

α

β
))− 2αβ3

3
)

3. The bottom face is covered and the top face is partially covered: This case occurs when
h ∈ [a, cos θ(L + 2R tan θ)] for a = max[L cos θ, 2R sin θ]. The resulting cylindrical
wedge is simply a volumetric difference of case (1) and (2). To be precise, let Vi(·),
x̄B` i(·), and ȳB` i(·) represent the volume and center of mass formulas for case (i) as
functions of height (·), with θ implied. Let h1 = h and h2 = h− L cos θ. Then:

V3 = V1(h1)− V2(h2)

x̄B` 3 =
x̄B` 1(h1)V1(h1)− x̄B` 2(h2)V2(h2)

V1(h1)− V2(h2)

ȳB` 3 =
ȳB` 1(h1)V1(h1)− (ȳB` 2(h2) + L)V2(h2)

V1(h1)− V2(h2)

4. The bottom and top faces are both partially covered: This case occurs when L cos θ <
2R sin θ and h ∈ [L cos θ, 2R sin θ]. The resulting cylindrical wedge is a volumetric
difference of two wedges of case (2):

V4 = V2(h1)− V2(h2)

x̄B` 4 =
x̄B` 2(h1)V2(h1)− x̄B` 2(h2)V2(h2)

V2(h1)− V2(h2)

ȳB` 4 =
ȳB` 2(h1)V2(h1)− (ȳB` 2(h2) + L)V2(h2)

V2(h1)− V2(h2)

As shown, there is not a clean formulation for an expression that maps V to h. Instead,
because V (·) is a monotonically increasing function with respect to the variable h, h can be
found via binary search for the volume V . After this computation, x̄B` and ȳB` are transformed
into the world frame.
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Mesh Approximation

When a container has more complicated features such as in Figure 4.1, solving for closed-
form expressions for volume and center of mass becomes much more challenging. For such
containers, we provide an alternative method using polyhedral mass property calculations
on mesh approximations [5, 23].

Similar to the method used in [33] and described in [37], we can bisect the container’s
mesh with a horizontal plane at different heights h and solidify the part of the mesh in the
lower halfspace to approximate the shape of the liquid in the container at height h. As in the
analytic method, we compute h for a given V by using binary search. The center of mass of
the resulting solid is computed using methods described in [23] and implemented in [5]. The
analytic and computational mesh methods were verified to produce the same approximate
values.

3.3 Liquid Viscosity

In contrast with prior sections, viscosity calculations exploit the dynamic modes of the liquid.
In particular, we aim to induce either sloshing within the container or laminar flow down
its side. For low-viscosity fluids like water, viscosity can be determined by observing the
decaying oscillations of the forces caused by the sloshing. For highly-viscous fluids such as
honey, the damped response of the forces can be used to approximate viscous fluid flow.

Slosh-induced forces and torques are caused by the shifting center of mass of the liquid
inside the container. The slosh mode that dominates the force profile is the fundamental an-
tisymmetric wave, which is characterized by a slosh wave peaking at one end of the container
and sinking at the other [8]. In a stationary tank, slosh oscillation decays reflect energy dis-
sipation due to viscous stresses within and at the boundary of the liquid [8]. Several works
studying sloshing in a tank have empirically shown that the decay rate of the oscillations
is solely a function of tank geometry, fill level, and liquid viscosity. Specifically, [8, 22, 13]
define the following. Let ∆ = peak amplitude of oscillation

peak amplitude of oscillation one cycle later
be the logarithmic decrement

of the decaying oscillation. The damping ratio is then defined by:

γ =
∆√

2π2 + ∆2
(3.3)

For an upright circular cylindrical tank, the damping ratio of the first symmetric mode is
given by:

γ = 0.79

√
ν

R3/2g1/2
[1 +

0.318

sinh 1.84h/R
(

1− (h/R)

cosh 1.84h/R
+ 1)] (3.4)

where ν is the kinematic viscosity of the liquid, R is the radius of the tank, and h is the
fill-level of the tank.

For a container with a different geometry, [13] provides a table of constants C1 and n1

corresponding to the characteristic dimension d and the following relation: γ = C1( ν
d3/2
√
g
)n1
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This paper thus aims to induce oscillations for cylindrical containers in the upright po-
sition. The input motion we chose is a single impulse rotation from θ = π/2 to θ = 0. With
γ calculated using Equation 3.3 and h calculated using techniques described in Section 3.2,
the viscosity can be calculated by rearranging Equation 3.4:

ν = γ2
√
R3g[0.79(1 +

0.318

sinh 1.84h/R
(

1− (h/R)

cosh 1.84h/R
+ 1))]−2 (3.5)

To get the dynamic viscosity, µ, we multiply ν by the inferred density of the liquid ρ.
For highly-viscous fluids like honey, the response is over-damped, meaning no oscillations

will occur in the wrench profile. For this case, we estimate the dynamic viscosity µ by
approximating the flow once the container is tilted from θ = π/2 to θ = 0 as a free surface
flow on an inclined plane. [20] defines the mass flux per unit length Q as

Q =
ρg cos θh3

2

2µ
(3.6)

where θ = 0, ρ is the density of the liquid, and h2 is the thickness of the liquid. We assume
h2 to equal the height of the liquid at steady state when the container is tilted horizontally
(θ = π/2). Q can be approximated by ∆m`

trA
where tr is the 10 to 90% rise time of the damped

torque response and A = R2

2
(α − sinα), α = 2 arccos (R−h

R
) is the cross-sectional area of the

liquid flow sliced parallel to the ground plane. Letting h be the steady state height of the
liquid when the container is tilted at θ = 0, we can approximate ∆m` by the mass quantity
estimated to move during fluid flow induced by the rotation, or ∆m` = m`(

V−Ah
V

). Finally,
rearranging Equation 3.6, we get:

µ =
ρg cos θh3

2

2Q

3.4 Pouring

Building on the concepts discussed above, we investigate a simple control scheme to pour a
specific volume of liquid. Using estimation of the volume V , we can determine a rotation
angle θ to pour a specified volume from the container.

Referencing Figure 2.1, let V be the starting volume, Vd be the desired poured volume,
and Vf (·) be the final volume of the liquid in the container, corresponding to height (·). We
assume that the liquid flow is laminar and that, at the optimal angle θ, Vd is the volume of
the liquid above the horizontal plane intersecting the bottom-most point of the container’s
top face if the container were closed. The objective then is to solve for θ:

θ = arg min
θ∈[0,π/2]

‖Vd − (V − Vf (L cos θ))‖2
2 (3.7)

Because Vf monotonically decreases as θ → π/2, a binary search is used to find θ. The pouring
experiments only use cylindrical containers, but it is possible to pour from containers of more
complicated geometry by using the mesh-approximation method described in section 3.2.
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Chapter 4

Experimental Setup

4.1 Hardware system

All the experiments in this paper use a Universal Robot UR5 (5 kg payload) robotic arm.
While the UR5 has 6 degrees of freedom, for simplicity, the experiments only rotate the
6th joint, or wrist 3, to move the container. An ATI Axia80 EtherNet Force/Torque (F/T)
sensor is attached at the end-effector. The six-axis sensor has a 7812 Hz output frequency
rate and coincides with the body frame depicted in Figure 2.1. Attached to the F/T sensor
is a 3D-printed mechanically-adjusted parallel-jaw gripper. High durability grip tape in the
inside of the gripper ensures minimal slippage.

Different types of liquids and cylindrical containers were tested during experimentation,
illustrated in Figure 4.1. The different liquids were chosen to represent a range of viscous
materials found in a typical kitchen. Different sized and massed cylindrical bottles were used
to test their effect on parameter estimation.

4.2 Signal processing

The time-series F/T sensor data and UR5 joint data are recorded asynchronously. These are
then aligned using system time stamps, down-sampled using a Finite Impulse Response filter,
and interpolated so that the F/T and joint position sensors are sampled at the same point
in time. F/T sensor offsets measured during a calibration phase are subtracted from the
interpolated and down-sampled F/T data. Using the joint position data, a transformation
is applied to the six-axis F/T data to convert the wrench from the body frame FB to the
static world frame FW . Finally, a 1D Gaussian filter with σ = 5 is applied to all six axes to
denoise the data.
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Figure 4.1: From left to right: 48oz Nalgene water bottle used in exploratory analysis, 3
large cylindrical containers used in viscosity estimations, 3 small cylindrical containers used
in all experiments, and isopropyl alcohol, coconut milk, canola oil, evaporated milk, mango
juice, dish soap, syrup, and honey, arranged in order of approximately increasing viscosity.

4.3 Exploratory analysis

Prior to experimentation, we performed exploratory analysis on preliminary data. Our
first exploration involved filling the 1.5L Nalgene with water to 375mL and 750mL and
rotating it at 19 different angles evenly spaced by 10 deg, θ ∈ [0, 180] deg. Three different
grasp locations were tested – at Lg = 1/4L, 1/2L, and 3/4L. The resulting data, depicted in
Figure 4.2, demonstrates the repeatability of the F/T data and confirmed that τz alone was
sufficiently informative to infer volume. The rest of the experiments use a grasp at Lg = 3/4L
in order to maintain greater stability during pouring. Furthermore, from Figure 4.2, it can
be seen that this grasp position has a greater torque response for lower rotation angles,
meaning less motion is necessary to extract approximately the same amount of information.

Finally, to ensure that Equation 3.2 could be optimized, we performed a grid search over
the variable V . As shown in Figure 4.2, the objective appeared to be convex, so NLS should
produce good estimates of the true solutions.
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Figure 4.2: (top): Torques measured during a rotation of a half and quarter full Nalgene.
Open points represent measured data, and lines represent the predicted torques, demonstrat-
ing that our model matches measurements well for different grasp positions and volumes.
(bottom): Graph of the residual error between measurements and predictions over the vari-
able V . The convexity of the residual informs us that there should be a global minimum
solution.
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Chapter 5

Results and Discussion

Predetermined actions are applied to various liquid/container combinations and the accuracy
of mass, volume, and viscosity estimations are evaluated below. Note that the mass and
volume can be calculated from the same motion. Both calculations assume the liquid is
in a static state, so a slow rotation from 0 to 180 deg, stopping at intervals of 10 deg, is
applied for these estimations. In contrast, the viscosity estimations rely on observing the
dynamic modes of the liquids, so a fast rotation from 90 to 0 deg is applied. Finally, for
precision pouring, the applied rotation is computed using the estimated volume. Please see
the accompanying video for visualizations of the following experiments.

5.1 Liquid Mass Estimation

We begin with liquid mass estimation by conducting a sensitivity experiment with varying
fill-levels of a container. The small cylindrical container depicted in Figure 4.1 is used, which
has an external radius and length of 35 and 172 mm, respectively, with a total measured
capacity of 662mL. We sampled 13 fill-levels of water, evenly spaced from 0 to 100 percent
full, and measured the ground-truth mass. For each fill-level, we performed five iterations of
rotating the container from θ = 0 to 180 deg, stopping every 10 deg to let the liquid settle.
fy is calculated for each instance by averaging over the transformed fWy s throughout the
entire motion. As shown in grey in the top-left plot of Figure 5.1, there is a gradual increase
in the error of our mass estimate as the fill-level increases. This error could be attributed
to a miscalibrated conversion from strain-gauge measurements to forces. Because the error
appears to grow linearly with an increased mass, we fit a linear regressor to ”re-calibrate”
measured fy forces. In the same figure in blue, we see that this re-calibration helps center
the error of the mass estimation at an average error of -0.23g with a 95% confidence interval
of ±0.73g.
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Figure 5.1: Error of mass and volume estimations. Blue curves represent adjustments of fy
measurements and corrections to reflect a better estimate of internal container geometry.

5.2 Liquid Volume Estimation

The same motion is used for liquid volume estimation. With the data from Section 5.1, we
can observe the empirical error on our estimation of volume for different fill-levels of the small
cylindrical container. The sampled measurements of τZ at different values of θ along with
our estimate of ml allow us to search for a volume V that minimizes the error between the
measurements and our calculated τZ curve using Equation 3.1. Our first attempt resulted in
a large average error, aggregated across all fill-levels, of 87 ± 53mL. However, a closer look
revealed that this large error was due to the edge case of ml = 0, for which the objective
was not convex. Because we use the shifting center of mass to determine V , there is no way
of discerning an empty container from a full container. Thus, our optimization consistently
estimated V = LπR2 when θ = 0. However, knowledge of the container mass disambiguates
the value of ml, so we can bias the estimator to assume V = 0 if ml = 0.

From Figure 5.1, we see that, with this bias, volume estimation performs with an error of
21.46± 3.28mL. Notice that our calculations tend to overestimate the actual liquid volume,
as expected since we assume internal container geometry is equivalent to external geometry.
If we reason about the geometry of the container’s cavity, e.g., walls could be 1mm thick,
then we see that this lowers the 95% confidence interval of the error to −0.65 ± 0.83mL.
All 65 estimates of volume were within 13mL of error. Lower volume estimates tended to
have greater variance, perhaps due to higher sensitivity to sensor noise. Note that while we
tested mass and volume estimation on water, the physics-based calculations will work for
any liquid as long as measurements are recorded when the liquid is in steady state.

Using NLS optimization allows for an efficient search of the volume estimate, but to
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verify that it indeed is finding the global minimum of the objective function, we evaluated
the objective with a fine grid search over all possible volumes. Taking the global minimum
solution found via grid search, the error in the volume estimate was essentially equivalent to
that of using the more efficient NLS method, at a 95% confidence of −0.62 ± 0.82mL. The
error-per-fill-level graph is visually identical to the one produced via NLS so it is omitted
from Figure 5.1.

Finally, we tested liquid volume estimation using the mesh approximation method. A
half-gallon milk carton (total capacity equivalent to about 1.9L) was measured and modeled
as a 3D mesh. The milk carton was filled to 250mL, 500mL, and 750mL with water, and five
iterations of tilts and measurements were performed per each fill level. Using the 3D mesh
of the milk carton, the 95% confidence error margin of the volume estimation optimization
was 1.69± 24.69mL.

5.3 Liquid Viscosity Estimation

We apply a different motion to the container here in order to observe the liquid in its
dynamic mode. Instead of a slow rotation, we use a fast rotation from θ = 90 to 0 deg to
act as an impulse to the system. The dynamics can be observed via both fWx and τWz . If
the resulting signals contain oscillations, the algorithm calculates µ via the slosh-dynamics
analysis described in Section 3.3. Otherwise, the overdamped response is used to calculate
µ via the fluid-flow equation (3.6). We tested this method of viscosity estimation on nine
different liquids – water, oil, honey, isopropryl alcohol, coconut milk, evaporated milk, mango
juice, dish soap, and syrup. Each liquid was poured into the small cylindrical container at
137, 292, and 442 mL and a series of five impulse rotations were applied in each scenario. To
test the method’s sensitivity to varying geometries, we also perform five impulse rotations to
636.11 mL of water, oil, and honey, each in a larger cylindrical container depicted in Figure
4.1.

As illustrated in Figure 5.2, while the variance of the viscosity estimates is high (note,
however, on a log scale), the method manages to capture relative viscosity differences between
the liquids. In fact, using the predicted viscosities of data from volumes of 292, 442, and 636
mL, a linear SVM classifier with 5-fold cross-validation is able to distinguish between the
four lowest viscosity liquids at an accuracy of 78 ± 11% and between water, oil, and honey
with an accuracy of 98 ± 10%. These predictions improve if we narrow the training set to
larger quantities of volume. This suggests that Equations 3.4 and 3.6 serve as reasonable
parameterizations of the haptic signal τz. Furthermore, the method generalizes well to data
captured using the larger container. For instance, estimates of the 636 mL of honey had an
error of 0.197± 0.096 Pa·s when honey’s true viscosity is approximately 10Pa·s.

The predominant limitations of the reported method that likely contributed to the wide
variance in viscosity estimations are low signal-to-noise ratios (SNR)s of the haptic data as
well as imperfect models. Many of the signals collected using the small container had low
SNRs, often detecting one or two peaks before the signal was obscured by sensor noise. In
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contrast, with the larger container and quantity of liquid, the changes in the liquid center of
mass were much clearer, as evidenced in signals shown in Figure 5.2. Subsequently, viscosity
estimates made from larger containers tended to have a lower variance than those made
based on observations with the smaller container. To combat this issue, a more dynamic-
sensitive tactile or haptic sensor could be used, paired with an intelligent selection of shaking
motions to improve SNR, similar to the active learning framework demonstrated in [30]. As
expected, the models used to estimate viscosity were imperfect. For example, the clustering
of the estimates of honey are illustrative of the sensitivity of the proposed model to changes
in geometry and volume. A better model is needed to overcome these sensitivities.

5.4 An Application Demonstration: Pouring

To demonstrate the applicability of the methods described in this paper, we attempt to
pour a specific amount of liquid given estimations of liquid volume. In contrast with other
precision-pouring papers, this paper pre-computes an open-loop control strategy (specifically,
the rotation angle θ) based on the estimated volume. While the proposed control scheme
is not very sophisticated, it achieves reasonable effectiveness in this challenging task using
only the haptically-estimated volume. Furthermore, this pre-computed rotation angle can
act as a guide when paired with closed-loop control schemes, which can serve to dynamically
fine-tune or adjust the angle.

We begin by characterizing the robot’s pouring precision. Using Equation 3.7 and perfect
knowledge of the liquid volume, we attempt to precisely pour a quarter, half, and three-
quarters of 200, 400, and 500 mL of water from the small cylindrical container, with 5 trials
for each case. At first, all attempted pours were approximately 50mL below the desired
poured volume. After observing a few pours, it was evident that there were two factors
contributing to this experimental error. The first is that there was a lip to the cylindrical
container, where the radius of the open top was actually significantly smaller than the
external radius. To fix this error, we assume that computer vision techniques can be used
to estimate the internal radius, wall thickness, and lip dimensions of the container. This is
a reasonable assumption as the lid would be off, exposing the true internal geometry of the
container. The second factor contributing to error was the surface tension of the water. It
was so strong that water would bunch up at almost 5mm above the bottom-most point of the
lip, contributing to a significant difference between our model prediction and experimental
results. To combat this, we added a term to represent the added height required due to water
tension. With these changes, our robot became very precise and repeatable. Under perfect
knowledge, the robot operates with an error of at most ±5 mL poured, with an average error
of 1.55± 1.60 mL.

We then attempted to precisely pour 100 mL from 200, 300, 400, and 500 mL of water
based on the estimated volume of the water, with 5 trials for each case. Here, we make
no assumption of the density of the liquid and only base our calculations off of estimates
of V . As before, we found that the precision of pouring was incredibly sensitive to the a
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priori knowledge determining the container geometry. With knowledge of internal container
geometry, the original volume estimated is more accurate (5.09±2.59mL) which subsequently
allows for a more precise pour. For a 100 mL pour over 20 trials, the robot achieved an
average error of 1.80± 2.04mL, where the largest error poured was +9mL. These results are
comparable to related work that uses visual reasoning to precisely pour liquids. Finally, we
attempted to pour oil and honey, but these both caused a giant mess and so we decided to
postpone those experiments for the time being. However, a reasonable next step would be
to incorporate estimated viscosity data for different liquids to guide the speed at which the
pour is performed for minimal sloshing and maximal efficiency.

5.5 Discussion and Future Work

In this paper, we show that physics-based analysis of haptic signals can achieve high pre-
cision estimation of the mass and volume of liquids in a cylindrical container and provide
a framework for estimating fluid viscosity. To demonstrate the efficacy of these methods,
we performed precise pouring of water where the estimated volume determined the rota-
tion angle θ. In future work, we plan to incorporate real-time haptic and visual control to
improve precision during pouring. Furthermore, we hope to improve the precision of our vis-
cosity estimates by combining better physics-based parameterization with active perception
to optimize for motions to induce higher SNRs of the haptic data. More accurate viscosity
measurements could then be used to inform a control strategy to quickly pour viscous fluids
with minimal sloshing [34]. Finally, we would like to extend this work to haptic perception
and control of granular materials and more non-newtonian fluids in containers.
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Figure 5.2: (top) Real fy and τz data (filtered and smoothed) after a 90→ 0 deg rotation of
water, oil, and honey in the large containers. Detected peaks and rise times used in viscosity
calculations are shown. (bottom) Viscosity predictions for the 9 different liquids, arranged
from top to bottom with increasing true viscosities. True values of five liquids are denoted
by red. Black circles mark the averages of the estimated viscosities per liquid. Note, for
illustrative purposes, viscosity estimates are shown on a log scale.
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Appendix A

Derivations

A.1 Liquid Mass

Given the force oriented in the positive y direction, fy, of the static world frame, which aligns
with the negative of the gravitational force vector, then fy is due to the collective mass of
the end-effector attachment, i.e., the mass of the container mc, the mass of the gripper mg,
and the mass of the contained liquid, m`. We want to find m`, and all other quantities are
known, so:

fy = g(mc +mg +m`)
fy/g −mg −mc = m`

A.2 Liquid Volume

Here, we derive the piecewise continuous equations that define the analytic model of liquid
volume in a circular cylindrical container. First, we rewrite the torque τz about the wrist of
the robot in terms of the centers of mass of the attached system (see Figure A.1):

τz = fyx̄M

= g(mg +mc +m`)
mgx̄g +mcx̄c +m`x̄`

mg +mc +m`

= g(mgx̄g +mcx̄c +m`x̄`)

As depicted in Figure A.1, the world frame is anchored at the center of the gripper. Thus,
x̄g = 0. Since we assume that the container has a shell with a uniform density, then relative
to the world frame, x̄c = (L/2 − Lg) sin θ. Note that x̄` will be a function of the rotation
angle θ, the volume V , and the container geometry. Thus, we get an expression of τz as a
function of θ and V :
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Figure A.1: A cross-sectional diagram defining variables used to derive liquid volume cal-
culations. Example locations of center of masses of the container, gripper, and liquid are
illustrated.

τz(θ) = g(mg ∗ 0 +mc ∗ ((L/2− Lg) sin θ) +m` ∗ x̄`(θ, V ))

= g(mc((L/2− Lg) sin θ) +m`x̄`(θ, V ))

Finding V becomes an optimization problem, where we want to minimize the residu-
als between the measured torques at different rotation angles τz(θ) and our model-based
estimated values:

V = arg min
V

‖τz(θ)− g(mc(L/2− Lg) sin θ +m`x̄`(θ, V ))‖2
2

Below, we show full derivations of how we define the piecewise nonlinear function x̄`(θ, V ).
All calculations of x̄B∗` and ȳB∗` are made with respect to a shifted body frame B∗, where
the origin is centered at the bottom face of the cylindrical container (see Figure A.2). To
transform the center of mass coordinates to world coordinates, the following transformation
is applied:
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Figure A.2: An illustration of the shifted body frame B∗, with respect to which the center
of mass equations x̄B∗` and ȳB∗` are initially defined. x̄`(θ, V ) is defined with respect to the
world frame, so a transformation is necessary once x̄B∗` and ȳB∗` are computed.

x̄W`ȳW`
1

 =

cos−θ − sin−θ Lg sin(−θ)
sin−θ cos−θ −Lg cos−θ

0 0 1

x̄B∗`ȳB∗`
1


and since we restrict the following definitions to θ ∈ [0, π

2
] (symmetric reasoning leads to the

derivation of the full range for theta), we can rewrite the transformation as:x̄W`ȳW`
1

 =

 cos θ sin θ −Lg sin θ
− sin θ cos θ −Lg cos θ

0 0 1

x̄B∗`ȳB∗`
1


Thus, we can calculate the expression x̄`(θ, V ) used in the optimization for V , which is

equivalent to x̄W` :

x̄`(θ, V ) = x̄B∗` cos θ + ȳB∗` sin θ − Lg sin θ
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Figure A.3: Diagram depicting Case 1 for liquid center of mass and volume calculations.

Case 1: Bottom end covered, top end dry

Finding the bounds for h

This case occurs when htop > hbottom and h is within the bounds hbottom and htop. Geometric
reasoning finds that hbottom = 2R sin θ and htop = L cos θ. Thus, we have the case condition
that L cos θ > 2R sin θ and h ∈ [2R sin θ, L cos θ].

Finding the expression for V

A simple way to find the expression for V for this specific case is by breaking the liquid
volume into two parts, corresponding to the two values h1 and h2, denoted in Figure A.3.

We first find h2 with respect to known values R and θ:

tan θ =
h2

2R
2R tan θ = h2
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We can write h1 in terms of h, R, and θ:

cos θ =
h

h1 + h2

h1 cos θ + h2 cos θ = h

h1 cos θ = h− h2 cos θ

h1 =
h

cos θ
− h2

h1 =
h

cos θ
− 2R tan θ

Then the volumes corresponding to h1 and h2 are simply πR2h1 and 1
2
πR2h2. In terms

of h, R, and θ, the combined volume can be expressed as such:

V = πR2(
h

cos θ
− 2R tan θ) + πR3 tan θ

Finding expressions for the center of mass coordinates

Calculated with respect to a shifted body frame, with the origin centered at the red ring in
Figure A.3, we solve the following integrals:

x̄B∗` =
1

M

∫ ∫ ∫
xρdV =

1

M

(
M

V

)∫ R

−R

∫ √R2−x2

−
√
R2−x2

∫ (R+x) tan θ+h1

0

xdydzdx

=
1

V

[∫ R

−R

∫ √R2−x2

−
√
R2−x2

(R + x) tan θxdzdx+

∫ R

−R

∫ √R2−x2

−
√
R2−x2

h1xdzdx

]

=
1

V

[
2(R tan θ + h1)

∫ R

−R
x
√
R2 − x2dx+ 2 tan θ

∫ R

−R
x2
√
R2 − x2dx

]
=

1

V

[
2(R tan θ + h1)(−1

3
(�����
R2 − x2)

3/2

∣∣∣∣R
−R

)

+2 tan θ(
1

8
(x
√

�����
R2 − x2(2x2 −R2) +R4 arctan

x√
�����
R2 − x2

))

∣∣∣∣R
−R

]

=
1

V

[
2 tan θ

1

8
(R4π

2
−−R4π

2
)

]
=

1

4V
πR4 tan θ
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ȳB∗` =
1

M

∫ ∫ ∫
yρdV =

1

M

(
M

V

)∫ R

−R

∫ √R2−x2

−
√
R2−x2

∫ (R+x) tan θ+h1

0

ydydzdx

=
1

V

1

2

∫ R

−R

∫ √R2−x2

−
√
R2−x2

((R + x) tan θ + h1)2dzdx

=
1

V

[∫ R

−R
((R + x)2 tan2 θ + 2(R + x)h1 tan θ + h2

1)
√
R2 − x2dx

]
=

1

V

[
(R2 tan2 θ + 2Rh1 tan θ + h2

1)

∫ R

−R

√
R2 − x2dx

+ (2R tan2 θ + 2h1 tan θ)

∫ R

−R
x
√
R2 − x2dx+ (tan2 θ)

∫ R

−R
x2
√
R2 − x2dx

]
=

1

V

[
(R tan θ + h1)2(

1

2
(x
√

�����
R2 − x2 +R2 arctan

x√
�����
R2 − x2

)

∣∣∣∣R
−R

)

+(2R tan2 θ + 2h1 tan θ)(−1

3
(�����
R2 − x2)

3/2

∣∣∣∣R
−R

) + tan2 θ
R4

8
arctan

x√
�����
R2 − x2

∣∣∣∣R
−R

]

=
1

V

[
(R tan θ + h1)2πR

2

2
+ tan2 θ

πR4

8

]
=

1

V

[
(R tan θ +

h

cos θ
− 2R tan θ)2πR

2

2
+ tan2 θ

πR4

8

]

Case 2: Bottom end partially covered, top end dry

Finding the bounds for h

The bounds for h that define this case depend on the comparison between htop = L cos θ and
hbottom = 2R sin θ. This case occurs when h ∈ [0, a] for a = min[L cos θ, 2R sin θ]
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Figure A.4: Diagrams depicting Case 2 for liquid center of mass and volume calculations.
(Left) for htop > hbottom. (Right) for htop < hbottom.

Finding the expression for V

To simplify our expressions, we define the following variables. Let α = R − h
sin θ

and β =√
R2 − α2. To find an expression for V , we evaluate the following integral:

V =

∫ R

R− h
sin θ

∫ √R2−x2

−
√
R2−x2

∫ tan θ(x−R+ h
sin θ

)

0

dydzdx

=

∫ R

R− h
sin θ

2 tan θ(x−R +
h

sin θ
)
√
R2 − x2dx (let R− h

sin θ
= α)

= −2α tan θ

∫ R

α

√
R2 − x2dx+ 2 tan θ

∫ R

α

x
√
R2 − x2dx

= −2α tan θ

[
1

2
(x
√
R2 − x2 +R2 arctan

x√
R2 − x2

)

∣∣∣∣R
α

]
− 2

3
tan θ

[
(R2 − x2)

3/2

∣∣∣∣R
α

]
= −α tan θ(

π

2
R2 − α

√
R2 − α2 −R2 arctan

α√
R2 − α2

) +
2

3
tan θ(R2 − α2)

3/2

(and letting β =
√
R2 − α2)

= tan θ(
2β3

3
− α(

πR2

2
− αβ −R2 arctan

α

β
))

Finding expressions for the center of mass coordinates

When finding the expressions for the center of mass coordinates, we again use the simplifying
variables α = R− h

sin θ
and β =

√
R2 − α2. We evaluate the following integrals:
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x̄B∗` =
1

M

(
M

V

)∫ R

α

∫ √R2−x2

−
√
R2−x2

∫ tan θ(x−α)

0

xdydzdx

=
1

V

[∫ R

α

x tan θ(x− α)2
√
R2 − x2dx

]
=

1

V

[
−2α tan θ

∫ R

α

x
√
R2 − x2dx+ 2 tan θ

∫ R

α

x2
√
R2 − x2dx

]
=

1

V

[
2

3
α tan θ(R2 − x2)

3/2

∣∣∣∣R
α

+
1

4
tan θ(x

√
R2 − x2(2x2 −R2) +R4 arctan

x√
R2 − x2

)

∣∣∣∣R
α

]

=
1

V

[
−2

3
α tan θ(R2 − α2)

3/2 +
1

4
tan θ(

π

2
R4 − α

√
R2 − α2(2α2 −R2)−R4 arctan

α√
R2 − α2

)

]
=

1

V
tan θ

[
−2

3
αβ3 +

1

4
(
π

2
R4 − αβ(2α2 −R2)−R4 arctan

α

β
)

]

ȳB∗` =
1

M

(
M

V

)∫ R

α

∫ √R2−x2

−
√
R2−x2

∫ tan θ(x−α)

0
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=
1

V
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α

tan2 θ(x− α)2
√
R2 − x2dx

=
1

V

∫ R

α
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√
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=
1
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[
tan2 θα2
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α

√
R2 − x2dx− 2 tan2 θα

∫ R

α

x
√
R2 − x2dx+ tan2 θ

∫ R

α

x2
√
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]
=

1

V
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1

2
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√
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x√
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)
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α

+
2

3
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α

+
1
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α
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=
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[
1

2
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π

2
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α√
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)− 2
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8
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=
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α
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3
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1
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(
π

2
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α
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Figure A.5: Diagrams depicting Case 3 for liquid center of mass and volume calculations.
(Left) for htop > hbottom. (Right) for htop < hbottom. Red triangles correspond to volume (case
2) with height h− L cos θ to be subtracted from volume (case 1) with height h.

Case 3

Finding the bounds for h

For this specific case, the bounds for h again rely on a comparison between htop = L cos θ and
hbottom = 2R sin θ. This case occurs when h ∈ [α,L cos θ+2R sin θ] for α = max[L cos θ, 2R sin θ].

Finding the expression for V

The resulting cylindrical wedge of this specific case can be simply calculated as the volumetric
difference of a Case 1 wedge with height h1 = h and a Case 2 wedge with height h2 =
h − L cos θ. A cross-section of the Case 2 wedge is depicted in red in Figure A.5. If we let
Vi(·) denote the volume formula for case (i) as a function of height (·), then the volume of
the cylindrical wedge can be calculated as:

V3(h) = V1(h1)− V2(h2)

Finding the expressions for the center of mass coordinates

Additionally, let x̄B` i(·) and ȳB` i(·) denote the center of mass formulas for case (i) as functions
of height (·). Note that, since the centers of mass are calculated in reference to the shifted
body frame, with the origin centered at the red dot in Figure A.5, the values for ȳB` 2(·) will
be shifted by the length of the container, L. The center of mass coordinates, with respect
to the shifted body frame, are thus calculated as such:

x̄B` 3 =
x̄B` 1(h1)V1(h1)− x̄B` 2(h2)V2(h2)

V1(h1)− V2(h2)
, ȳB` 3 =

ȳB` 1(h1)V1(h1)− (ȳB` 2(h2) + L)V2(h2)

V1(h1)− V2(h2)
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Figure A.6: Diagram depicting Case 4 for liquid center of mass and volume calculations.
Red triangle corresponds to volume (case 2) with height h − L cos θ to be subtracted from
volume (case 2) with height h.

Case 4

Finding the bounds for h

This specific case only occurs when L cos θ < 2R sin θ and h ∈ [L cos θ, 2R sin θ].

Finding the expression for V

The resulting cylindrical wedge of this specific case can be simply calculated as the volumetric
difference of a Case 2 wedge with height h1 = h and a Case 2 wedge with height h2 =
h−L cos θ. A cross-section of the subtracted Case 2 wedge is depicted in red in Figure A.5.
As before, let Vi(·) denote the volume formula for case (i) as a function of height (·). The
volume of the cylindrical wedge can be calculated as:

V4(h) = V2(h1)− V2(h2)

Finding the expressions for the center of mass coordinates

As before, let x̄B` i(·) and ȳB` i(·) denote the center of mass formulas for case (i) as functions
of height (·). Note that, since the centers of mass are calculated in reference to the shifted
body frame, with the origin centered at the red dot in Figure A.5, the values for ȳB` 2(·) will
be shifted by the length of the container, L. The center of mass coordinates, with respect
to the shifted body frame, are thus calculated as such:

x̄B` 4 =
x̄B` 2(h1)V2(h1)− x̄B` 2(h2)V2(h2)

V2(h1)− V2(h2)
, ȳB` 4 =

ȳB` 2(h1)V2(h1)− (ȳB` 2(h2) + L)V2(h2)

V2(h1)− V2(h2)
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A.3 Liquid Viscosity

Low-viscous fluids

By inducing sloshing and observing the slosh-induced forces and torques caused by the
shifting center of mass of the ever-evolving liquid volume, we can estimate the viscosity of
the liquid. A decaying oscillatory wave in either force or torque can be used to estimate
this value. As noted in Section 3.3, the authors of [8, 22, 13] define the following empirical
model. Let

∆ =
peak amplitude of oscillation

peak amplitude of oscillation one cycle later

be the logarithmic decrement of the decaying oscillation. The damping ratio is then defined
by:

γ =
∆√

2π2 + ∆2

For an upright circular cylindrical tank, the damping ratio of the first symmetric mode is
given by:

γ = 0.79

√
ν

R3/2g1/2

[
1 +

0.318

sinh 1.84h/R

(
1− (h/R)

cosh 1.84h/R
+ 1

)]
where ν is the kinematic viscosity of the liquid, R is the radius of the tank, and h is the
fill-level of the tank. We want an expression for dynamic viscosity, µ = νρ. Thus, we first
rearrange the above equation.

γ = 0.79

√
ν

R3/2g1/2

[
1 +

0.318

sinh 1.84h/R

(
1− (h/R)

cosh 1.84h/R
+ 1

)]
γ2 =

ν

R3/2g1/2
0.792

[
1 +

0.318

sinh 1.84h/R

(
1− (h/R)

cosh 1.84h/R
+ 1

)]2

ν = γ2
√
R3g

[
0.79

(
1 +

0.318

sinh 1.84h/R

(
1− (h/R)

cosh 1.84h/R
+ 1

))]−2

Plugging in the expression for γ and multiplying by ρ, the density of the liquid, we get an
expression for the dynamic viscosity µ:

µ = ρ

(
∆√

2π2 + ∆2

)2√
R3g

[
0.79

(
1 +

0.318

sinh 1.84h/R

(
1− (h/R)

cosh 1.84h/R
+ 1

))]−2

High-viscous fluids

Instead of observing sloshing dynamics, the viscosity for high-viscous fluids can be estimated
by measuring the rise-time of the overdamped torque response induced by rotating the
container. Specifically, the approximate time it takes for the liquid to settle from and to the
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Figure A.7: (Left): Cross-section of liquid flow; (Middle): Highlighted regions (red+grey)
are to denote where liquid is present immediately after the rotation of the container. Liquid
flows through the cross-sectional area illustrated on the left. (Right): Highlighted regions
(red+grey) are to denote where liquid is present after reaching steady state. The red regions
are to illustrate the change in location of mass before and after liquid flow.

states illustrated in the middle and right diagrams of Figure A.7 can be used to calculate
mass flux, which relates to dynamic viscosity µ.

Mass flux Q can be approximated by ∆m`
trA

, where tr is the measured 10-90% rise time of
the damped torque response, ∆m` is the change in mass over that time tr (corresponding
to the red region in Figure A.7, and A is the cross-sectional area through which the mass
flows. As shown in Figure A.7, A is the circular segment with height h2. The formula for
this cross-sectional area is given by: A = R2

2
(α − sinα), where α = 2 arccos R−h2

R
. With an

estimated volume V , h2 can be found by searching for the height of the liquid at steady
state when the container is tilted by 90 deg. Finally, letting h be the height of the liquid
at steady state when the container is tilted by 0 deg, shown on the right in Figure A.7, we
can approximate ∆m` by the mass quantity estimated to move during fluid flow induced
by the rotation. This corresponds to the mass of the region highlighted in red. We can
find ∆m` by multiplying the total mass of the liquid, l, by the ratio of liquid volume that
changes location before and after fluid flow. The volume of the red region can be calculated
as: V − Ah. Thus, ∆m` = m`(

V−Ah
V

).

For a free surface flow on an inclined plane, mass flux is defined as: Q =
ρg cos θh32

2µ
. Thus,

we can rearrange this equation to find µ: µ =
ρg cos θh32

2Q . Plugging in our approximation of Q
and θ = 0, we get:

µ =
ρgh3

2V trA

2m`(V − Ah)
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