
System Design for Software Packet Processing

Sangjin Han

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2019-112
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-112.html

August 14, 2019

Copyright © 2019, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

System Design for Software Packet Processing

By

Sangjin Han

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sylvia Ratnasamy, Chair
Professor Scott Shenker

Professor Dorit Hochbaum

Summer 2019

System Design for Software Packet Processing

Copyright 2019
by

Sangjin Han

1

Abstract

System Design for Software Packet Processing

by

Sangjin Han

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Sylvia Ratnasamy, Chair

The role of software in computer networks has never been more crucial than today, with
the advent of Internet-scale services and cloud computing. The trend toward software-
based network dataplane—as in network function virtualization—requires software packet
processing to meet challenging performance requirements, such as supporting exponentially
increasing link bandwidth and microsecond-order latency. Many architectural aspects of
existing software systems for packet processing, however, are decades old and ill-suited to
today’s network I/O workloads.

In this dissertation, we explore the design space of high-performance software packet
processing systems in the context of two application domains. First, we start by discussing
the limitations of BSD Socket, which is a de-facto standard in network I/O for server ap-
plications. We quantify its performance limitations and propose a clean-slate API, called
MegaPipe, as an alternative to BSD Socket. In the second part of this dissertation, we switch
our focus to in-network software systems for network functions, such as network switches and
middleboxes. We present Berkeley Extensible Software Switch (BESS), a modular frame-
work for building extensible network functions. BESS introduces various novel techniques
to achieve high-performance software packet processing, without compromising on either
programmability or flexibility.

i

To my family, friends, and advisors who made all of this worthwhile.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Summary of Contributions . 3
1.2 Outline and Previously Published Work . 4
1.3 Research Projects Not Included in This Dissertation 5

2 Background 7
2.1 Packet Processing under Multi-Core Environments 7
2.2 Virtualization (of Everything) . 9
2.3 Network Stack Specialization . 9

3 MegaPipe: A New Programming Interface for Scalable Network I/O 11
3.1 Introduction . 11
3.2 Motivation . 12

3.2.1 Sources of Performance Inefficiency 13
3.2.2 Performance of Message-Oriented Workloads 14

3.3 Design . 17
3.3.1 Scope and Design Goals . 17
3.3.2 Completion Notification Model . 18
3.3.3 Architectural Overview . 18
3.3.4 Design Components . 19
3.3.5 Application Programming Interface 23
3.3.6 Discussion: Thread-Based Servers . 24

3.4 Implementation . 25
3.4.1 Kernel Implementation . 25
3.4.2 User-Level Library . 26

3.5 Evaluation . 27
3.5.1 Multi-Core Scalability . 27
3.5.2 Breakdown of Performance Improvement 28

Contents iii

3.5.3 Impact of Message Size . 28
3.6 Conclusion . 29

4 Applications of MegaPipe 30
4.1 Adopting Existing Server Applications . 30

4.1.1 Porting memcached . 30
4.1.2 Porting nginx . 31

4.2 Macrobenchmark: memcached . 31
4.3 Macrobenchmark: nginx . 34

5 BESS: A Modular Framework for Extensible Network Dataplane 37
5.1 Motivation . 39

5.1.1 Software-Augmented Network Interface Card 39
5.1.2 Hypervisor Virtual Switch . 41
5.1.3 Network Functions . 42

5.2 BESS Design Overview . 43
5.2.1 Design Goals . 43
5.2.2 Overall Architecture . 44
5.2.3 Modular Packet Processing Pipeline 45

5.3 Dynamic Packet Metadata . 47
5.3.1 Problem: Metadata Bloat . 47
5.3.2 Metadata Support in BESS . 48
5.3.3 Attribute-Offset Assignment . 49

5.4 Resource Scheduling for Performance Guarantees 51
5.5 Implementation Details . 53

5.5.1 Overview . 54
5.5.2 Core Dedication . 54
5.5.3 Pipeline Components . 55
5.5.4 BESS Scheduler . 56
5.5.5 Packet Buffers and Batched Packet Processing 58
5.5.6 Multi-Core Scaling . 59

5.6 Performance Evaluation . 61
5.6.1 Experimental Setup . 61
5.6.2 End-to-End Latency . 61
5.6.3 Throughput . 63
5.6.4 Application-Level Performance . 63

6 Applications of BESS 65
6.1 Case Study: Advanced NIC features . 65

6.1.1 Segmentation Offloading for Tunneled Packets 65
6.1.2 Scalable Rate Limiter . 66
6.1.3 Packet Steering for Flow Affinity . 68

Contents iv

6.1.4 Scaling Legacy Applications . 69
6.2 Research Projects Based on BESS . 70

6.2.1 E2: A Framework for NFV Applications 71
6.2.2 S6: Elastic Scaling of Stateful Network Functions 73

7 Related Work 76
7.1 MegaPipe . 76

7.1.1 Scaling with Concurrency . 76
7.1.2 Asynchronous I/O . 76
7.1.3 System Call Batching . 77
7.1.4 Kernel-Level Network Applications 77
7.1.5 Multi-Core Scalability . 77
7.1.6 Similarities in Abstraction . 78

7.2 BESS . 78
7.2.1 Click . 78
7.2.2 High-performance packet I/O . 79
7.2.3 Hardware support for virtual network I/O 79
7.2.4 Smart NICs . 79
7.2.5 Ideal hardware NIC model . 80
7.2.6 Alternative approaches . 80

8 Concluding Remarks 81

v

List of Figures

2.1 Evolution of AMD and Intel microprocessors in terms of clock frequency and
number of cores per processor (log-scaled). The raw data was obtained from
Stanford CPUDB [23]. 7

2.2 The parallel speedup of the Linux network stack, measured with a RPC-like work-
load on a 8-core server. For the experiment we generated TCP client connections,
each of which exchanges a pair of 64-byte dummy request and request. 8

3.1 Negative impact of message-oriented workload on network stack performance . . 15
3.2 MegaPipe architecture . 19
3.3 Comparison of parallel speedup . 27
3.4 Relative performance improvement with varying message size 29

4.1 Throughput of memcached with and without MegaPipe 32
4.2 50th and 99th percentile memcached latency. 33
4.3 Evaluation of nginx throughput for various workloads. 35

5.1 Growing complexity of NIC hardware . 40
5.2 BESS architecture . 44
5.3 BESS dataflow graph example . 45
5.4 Per-packet metadata support in BESS . 48
5.5 Example of scope components of metadata attribute 49
5.6 Construction of the scope graph from calculated scope components 50
5.7 Optimal coloring for the scope graph shown in Figure 5.6(b) with three colors.

In other words, for the given pipeline, three offsets are enough to accommodate
all six attributes with multiplexing. 51

5.8 An example of high-level performance policy and its class tree representation . . 52
5.9 BESS multi-core scaling strategies . 59
5.10 Round-trip latency between two application processes. 62
5.11 BESS throughput and multi-core scalability. 63

6.1 System-wide CPU usage for 1M dummy transactions per second 68
6.2 Snort tail latency with different load balancing schemes 70
6.3 Transformations of a high-level policy graph (a) into an instance graph (b, c, d). 72

List of Figures vi

6.4 Distributed shared object (DSO) space, where object distribution is done in two
layers: key and object layers. The key layer partitions the key space; each node
keeps track of the current location of every object in the key partition. The object
layer stores the actual binary of objects. The key layer provides indirect access
to objects, allowing great flexibility in object placement. 74

vii

List of Tables

3.1 List of MegaPipe API functions for userspace applications 22
3.2 Performance improvement from MegaPipe . 28

4.1 The amount of code change required for adapting applications to MegaPipe . . 30

5.1 Throughput and CPU usage of memcached in bare-metal and VM environments 64

6.1 TCP throughput and CPU usage breakdown over the VXLAN tunneling protocol 66
6.2 Accuracy comparison of packet scheduling between BESS and SENIC 67

1

Chapter 1

Introduction

Many design choices of computer networking have been centered around the end-to-end
principle [108], which can be roughly summarized as “keep the network simple, and implement
application-specific functionality in end hosts.” The principle has provided a philosophical
basis for the Internet architecture. Intermediary network nodes, such as switches and routers,
merely performed simple packet forwarding, i.e., sending datagrams from one end host to
another. More sophisticated features, such as reliable file transfer, data encryption, streaming
a live video, etc., were supposed to be implemented in end hosts. There is no denying that
this separation of roles have greatly contributed to the great success of the Internet. The
simple “core” enabled the extraordinary growth of the Internet, as diverse networks were
able to join the Internet with ease. Because of its simplicity and statelessness, in-network
packet forwarding was easy to be implemented in specialized hardware network processors,
enabling the exponential growth of Internet traffic. Beyond providing simple connectivity,
the rest—implementation of high-level services—was left to software running on the general
purpose host systems at the end. On end nodes, the flexibility and programmability of the
software on general-purpose hosts enabled innovative applications, such as World Wide Web.

While the end-to-end principle still stands up as an useful architectural guideline of
computer networking, we have seen many trends that do not strictly adhere to the principle.
In terms of where functionality should be placed, the boundary between “dumb, fast core in
hardware” versus “smart, slow edge in software" is getting blurred. For instance, commercial
ISPs are under constant pressure to provide value-added services, such as content distribution
and virus scanning, to find a new source of revenue in the highly competitive market [61].
In enterprise networks, the growing need for security and reliability require the network to
implement additional network features beyond simple packet forwarding, and hence has led
to the proliferation of network middleboxes [113]. These trends have brought sophisticated
functionality into the network. On the other hand, the advent of network virtualization and
cloud computing has placed much of packet forwarding—VMs or cloud sites—on general-
purpose servers in place of dedicated hardware appliances.

As a result, software is playing an increasingly crucial role in network dataplane architec-
ture, with its new domain (network core as well as edge) and new use case (low-level network

2

functions as well as high-level services). The rise of software packet processing1, which we
define as software-based dataplane implementation running on general-purpose processors,
can be attributed to two simple factors: necessity and feasibility.

1. Necessity: The network dataplane is desired to support new protocols, features, and
applications. Software is inherently easier to program and more flexible to adopt new
updates. In addition, virtualization decouples of logical services from the underlying
physical infrastructure, which need specialized network appliances to be replaced with
software running on general-purpose servers.

2. Feasibility: The common belief was that software is too slow to be a viable solution
for packet processing. The recent progress in software packet processing, however, has
made it as a viable approach. Improvements are from both hardware and software.
Commodity off-the-shelf servers have greatly boosted I/O capacity with various archi-
tectural improvements, such as multi-core processors, integrated memory controllers,
and high-speed peripheral bus, to name a few [26]. Combined with efficient imple-
mentations of network device drivers for low-overhead packet I/O, software packet
processing has shown potential for processing 1–100s of Gbps on a single server [24,
34, 41, 103], improving by orders of magnitude over the last decade.

Software packet processing comes with its own challenges to address. First, unlike the
common assumptions, being software does not necessarily grant rapid development and de-
ployment with new functionality. In order to introduce a new feature to legacy implemen-
tations, such as network stacks in operating system kernel, one has to deal with large and
complex existing codebase, convince “upstream” maintainers of its necessity and usefulness,
and wait for a new release and its wide-spread deployment. This whole process may easily
take several months, if not years. Second, building a high-performance software dataplane is
rather like a black art: practiced with experience, rather than principled design; and driven
by application-specific, ad-hoc techniques. There do exist specialized and streamlined dat-
apath implementations for various use cases (e.g., [24, 41, 69, 73, 104]), showing that it
is possible for software packet processing to achieve high performance. However, a ques-
tion still remains regarding whether we could achieve the same level of performance with:
i) a wider spectrum of applications, beyond specialization; and ii) mature, fully-featured
implementations, beyond streamlining.

In this dissertation, we present two systems for high-performance software packet process-
ing, MegaPipe and BESS (Berkeley Extensible Software Switch). While these two systems
focus on different layers of the network stack, they both aim to build a general-purpose
framework that a variety of applications can be built upon. MegaPipe and BESS also share
the same approach to system design; instead of extending the design of an existing system
or improve its internal implementation, we took a clean-slate approach to avoid limitations

1Here we do not limit the use of the term “packet” for network datagrams. Rather, we use it as an
umbrella term for network traffic in general, from the lower, physical/datalink layers all the way up to the
application layer in the network stack.

1.1. SUMMARY OF CONTRIBUTIONS 3

imposed by the legacy abstractions of existing systems. Many design aspects of the existing
network stacks were founded decades ago, when the (literally) millionfold increase in network
traffic volume and the diverse set of applications of today were beyond imagination. Consid-
ering the growing importance of software packet processing, we believe that it is worthwhile
to revisit its design space and explore ways to implement a high-performance dataplane,
without sacrificing programmability or extensibility.

1.1 Summary of Contributions
We start the first half of this dissertation with MegaPipe, in Chapter 3. The performance

of network servers is heavily determined by the efficiency of underlying network I/O API.
We examined BSD Socket API, the de-facto standard programming interface for network
I/O, and evaluated its impact on network server performance. The API was designed three
decades ago, when the processing power of servers were roughly a million times lower and
the scale, usage, and application of network servers were far more primitive than today.

We make two research contributions with MegaPipe. Firstly, we identify and quantify the
sources of performance inefficiency in BSD Socket API. We show that the API is suboptimal
in terms of processor usage, especially when used for the use case that we define “message-
oriented workload”. In this workload network connections have a short lifespan and carry
small messages, as with HTTP, RPC, key-value database servers, etc. Such workloads expose
three performance issues of BSD Socket API: 1) system calls are excessively invoked incurring
high kernel-user mode switch cost, 2) fie descriptor abstraction imposes high overheads for
network connections, and 3) the processor cache usage of the API is not multi-core friendly,
causing congestion of cache coherent traffic on modern processors. We conclude that the
root cause of these problems is that BSD Socket API was not designed with concurrency in
mind, in terms of both workloads (concurrent client connections) and platforms (multi-core
processors).

Secondly, we present a new network programming API for high-performance network
I/O. In contrast to many existing work by others, MegaPipe takes a clean-slate approach;
it is designed from scratch rather than extending the existing BSD Socket API, in order to
eliminate fundamental performance limiting factors imposed by its legacy abstractions. Such
limiting factors include use of file descriptors for network connections, polling-based event
handling, and excessive system call invocation for I/O operations.

We propose “channel” as the key design concept of MegaPipe, which is a per-core, bidi-
rectional pipe between the kernel space and user applications. The channel multiplexes
asynchronous I/O requests and event notifications from concurrent network connections. As
compared to the BSD Socket API, our channel-based design enables three key optimiza-
tions: 1) the channel abstracts network connections as handles, which are much lighter than
regular file descriptors; 2) requests and event notifications in the channel can be batched
transparently (thus amortizing the cost of system calls), exploiting data parallelism from in-
dependent network connections; and 3) since the channel is per-core, the system capacity can

1.2. OUTLINE AND PREVIOUSLY PUBLISHED WORK 4

scale linearly without cache contention in multi-core environments. We show that MegaPipe
can boost the performance of network servers significantly, in terms of both per-core and
aggregate throughput.

In the latter half of this dissertation we present BESS. BESS works at lower layers
of the network stack than MegaPipe, mostly on Data Link (L2) and Network (L3) layers
in the traditional OSI model. BESS is a modular framework to build dataplane for various
types of network functions, such as software-augmented network interface card (NIC), virtual
switches, and network middleboxes. BESS is designed to be not only highly programmable
and extensible, but also readily deployable as it is backward compatible with existing com-
modity off-the-shelf hardware. Its low overhead makes BESS suitable for high-performance
network function dataplane.

Heavily inspired by Click [65], BESS adopts a modular pipeline architecture based on
dataflow graph. BESS can be dynamically configured as a custom datapath at runtime, by
composing small components called “modules”. Individual modules performs some module-
specific packet processing, such as classification, forwarding, en/decapsulation, transforma-
tion, monitoring, etc. Each module can be independently extensible and configurable.

BESS itself is neither pre-configured nor hard-coded to provide particular functionality,
such as Ethernet bridging or traffic encryption. Instead, the modularity of BESS allows
external applications, or controllers, to program their own packet processing datapath by
combining modules, built-in or newly implemented. The controller can translate some high-
level, application-specific network policy into a BESS dataflow graph in a declarative manner.
For example, one can configure BESS to function as an IP router with built-in firewall
functionality. Since the datapath can be highly streamlined for specific use cases and modules
in the dataflow graph can be individually optimized, BESS is suitable for building a high-
performance network dataplane.

BESS incorporates various novel design concepts to enable modular and flexible network
functions without compromising on performance. Pervasive batch processing of packets
boosts packet processing performance by amortizing per-packet overhead. Dynamic meta-
data allows modules to exchange per-packet metadata in a safe, efficient, and modular man-
ner. With dynamic metadata, modules can be added and evolve individually, without intro-
ducing code bloat or complexity due to functionality coupling. BESS adopts “traffic class” as
a first-class abstraction, allowing external controllers to control how processor and network
resources are shared among traffic classes. This mechanism enables various service-level ob-
jectives to be enforced, such as performance isolation, guarantee, and restriction, all of which
are crucial for supporting diverse use cases. We illustrate the details of BESS in Chapter 5.

1.2 Outline and Previously Published Work
The remainder of this dissertation is organized as follows. We introduce two systems

that incorporate various novel techniques to support high-performance packet processing at
two different layers: application-level upper layer and packet-level lower layer. Chapter 3

1.3. RESEARCH PROJECTS NOT INCLUDED IN THIS DISSERTATION 5

demonstrates MegaPipe, a new programming API for higher-layer network I/O operations at
network endpoints, and Chapter 4 describes its applications. In Chapter 5 we present BESS,
a modular framework to build lower-layer network functions running in-network. Chapter 6
introduces BESS-based research projects in which the author participated. Finally Chapter 8
concludes this dissertation and discusses suggestions for future work.

This dissertation includes previously published, co-authored material with their written
permission. The material in Chapter 3 is adopted from [42], and the material in Chapter 5
is based on [40]. Chapter 5 briefly covers work published in [88, 135].

1.3 Research Projects Not Included in This Dissertation
As part of the graduate course, the author also worked on other topics that are not covered

here, although they are broadly related to this dissertation under the common theme of high-
performance networked systems. These topics and their resulting publications are listed as
follows:

• Expressive programming abstraction for next-generation datacenters [43]:
The traditional servercentric architecture has determined the way in which the ex-
isting dataintensive computation frameworks work. Popular largescale computation
frameworks, such as MapReduce and its derivatives, rely on sequential access over
large blocks to mitigate high interserver latency. The expressiveness of this batch-
oriented programming model is limited by embarrassingly parallel operations, which
are not applicable to interactive tasks based on random accesses to dataset.
The low-latency communication in the disaggregated datacenter architecture will en-
able new kinds of applications that have never been possible in traditional datacenters.
In this work we develop and present Celias, a concurrent programming model to fully
leverage the “pool of resources” semantics and low endtoend latency of the new datacen-
ter architecture. It provides intuitive yet powerful programming abstractions for large
and complex tasks, while still providing elastic scaling and automatic fault tolerance.

• Network support for resource disaggregation [35, 39]: Datacenters have tra-
ditionally been a collection of individual servers, each of which aggregates a fixed
amount of computing, memory, storage, and network resources as an independent
physical entity. Extrapolating from recent trends, this research work envisages that
future datacenters will be architected in a drastically different manner: all computa-
tional resources within a server will be disaggregated into standalone blades, and the
datacenter network will directly interconnect them. This new architecture will enable
sustainable evolution of hardware components, high utilization of datacenter resources,
and high cost effectiveness.
The unified interconnect is the most critical piece to realize resource disaggregation. As
communication that was previously contained within a server now hits the datacenter-
wide fabric, resource disaggregation increases load on the network and makes the need

1.3. RESEARCH PROJECTS NOT INCLUDED IN THIS DISSERTATION 6

for strict performance guarantees. Our preliminary experiments with latency/band-
width requirements for popular datacenter workloads indicate that the unified fabric
might be within reach, even with current 10G/40G interconnect technologies.

• Safe and modular programming model for network functions [89]: The main
premise of NFV, moving hardware network functions to virtualized software environ-
ment, has proven more challenging than expected. We posit that the root cause of
this delay in transition is twofold. First, developing new NFs is a time-consuming
process that requires significant expertise. Developers have to rediscover and reapply
the same set of optimization techniques, to build a high-performance network function.
Today, building NFs lacks what modern data analytics frameworks (e.g., Spark [137]
and Dryad [52]) provide: high-level, customizable network processing elements that
can be used as building blocks for NFs. Second, the high overheads associated with
hardware-provided isolations, VMs and containers, hinders meeting the performance
requirements of network service providers and enterprises.

In this research project, we design and implement Netbricks, a safe and fast framework
for network functions. NetBricks is a development framework that enables rapid im-
plementation of new network functions, achieved with high-level abstractions tailored
for network function dataplane. At the same time, Netbricks is also a runtime frame-
work that allows various network functions to be safely chained, even if they are from
multiple untrusted vendors and tenants, with theoretically minimal overheads. The
key contribution of this work is the technique that we named “Zero-Copy Software Iso-
lation” (ZCSI). ZCSI provides packet and state isolation for network functions with no
performance penalty, not requiring any special isolation mechanisms from hardware.

7

Chapter 2

Background

In this chapter, we explore a few notable ongoing trends that are relevant to software
packet processing, along with their motivations, implications, and challenges.

2.1 Packet Processing under Multi-Core Environments
Microprocessor design paradigms have changed greatly over the last decades. In the past,

processor performance improvement used to be in the form of an exponential increase in clock
frequency (Figure 2.1). Software performance improved with increase in clock speed without
any extra effort on the part of the developer. The exponential increase in clock frequency
stopped in the early 2000s due to physical limits such as power consumption (and therefore

Figure 2.1: Evolution of AMD and Intel microprocessors in terms of clock frequency and
number of cores per processor (log-scaled). The raw data was obtained from Stanford
CPUDB [23].

2.1. PACKET PROCESSING UNDER MULTI-CORE ENVIRONMENTS 8

Figure 2.2: The parallel speedup of the Linux network stack, measured with a RPC-like
workload on a 8-core server. For the experiment we generated TCP client connections, each
of which exchanges a pair of 64-byte dummy request and request.

heat dissipation) and the current leakage problems. Instead, microprocessors started adopt-
ing the multi-core architecture, i.e., incorporating multiple independent processing units
(cores) in a single processor package, to provide more processing power. Now multi-core
processors have become the norm, and today typical high-end servers are equipped with two
or four processors, each of which has 4-32 cores as of today.

Any software needs to be fundamentally redesigned in order to exploit the multi-core
architecture, and software packet processing is no exception. The network stack must be
parallelized to keep pace with increase in network bandwidth, as individual cores are unlikely
to get significantly faster in the foreseeable future. The current best practice of network stack
parallelization is to duplicate the processing pipeline across cores, ensuring consistent access
to shared data structures (e.g., TCP connection states or IP forwarding table) with explicit
locks and other synchronization mechanisms [24, 133]. While implementing this scheme is
straightforward, its performance is known to be suboptimal due to inter-core synchronization
costs, such as serialization and cache coherence traffic [12].

Figure 2.2 shows the non-ideal scaling behavior of the Linux TCP/IP stack. The “Ideal”
line represents desired linear scalability, i.e., speedup by a factor of N with N cores. The
actual scaling behavior of Linux is far worse than the ideal case, showing only 2.13x speedup
with 3 cores at peak. The aggregate throughput collapses as we add more cores. This
motivating example clearly indicates that the current architecture cannot effectively exploit
multi-core processors. For optimal performance with near-linear scalability, we need to use
design principles which minimize inter-core communication in our network stack.

2.2. VIRTUALIZATION (OF EVERYTHING) 9

2.2 Virtualization (of Everything)
The basic processing unit of the current datacenter is a virtual machine (or containers, as

a lightweight form of server virtualization). With server virtualization, one physical server
can be divided into multiple, isolated virtual machines. Each virtual server acts like an
independent physical device, being capable of running its own operating system. Server
virtualization brings a few obvious advantages. First, the resource utilization of physical
resources is inherently higher than that of bare-metal servers, since multiple virtual machines
can be consolidated into one server. Second, the physical infrastructure of datacenters can
be highly homogeneous; a large array of inexpensive, commodity servers can be utilized to
run a wide range of applications under a virtualized environment. Third, in the presence
of workload fluctuation, resources can be assigned elastically by adjusting the number of
virtual servers, as physical servers and applications running on them are decoupled.

Server virtualization brings a few challenges to the network fabric of datacenters, in order
to achieve its full potential. Virtual machine instances basic network connectivity network
connectivity, which used to be solely delivered via dedicated physical network appliances.
Network virtualization achieves them by creating an abstracted view of virtual network re-
sources from the underlying network infrastructure, consisting of both hardware and software
components. This virtualized network must meet not only the requirements of traditional
networks, but also ones that are specific to virtualized environments, such as VM mobility,
multi-tenancy, and performance isolation.

Network function virtualization (NFV) takes network virtualization one step further, both
in its application domain (not only datacenters but also wide-area networks) and its scope
(advanced network functions beyond basic network connectivity). NFV aims to virtualize
a wide variety of network functions including switches and routers, as well as layer 4-7
middleboxes such as load balancers, firewalls, WAN accelerators, and VPNs, and interconnect
them to create a service chain. The transition from proprietary, purpose-built network gears
to network functions running on general-purpose computing platforms aims to enable more
open, flexible, and economical networking. From the dataplane perspective, NFV adds
significant burden to software packet processing. Server virtualization already introduces
inherent overheads over bare-metal computing (e.g., IO emulation and VM exit). In addition
to that, NFV requires not only fast packet processing in each NF, but also an efficient way
to relay packets across NFs.

2.3 Network Stack Specialization
Many recent research projects report that specialized network stacks can achieve very

high performance: an order of magnitude or two higher than the performance we can expect
from general-purpose network stacks, in terms of throughput and/or latency. Examples
include software routers [24, 41], web servers [54], DNS servers [74], and key-value stores [60,
69]. We note two common themes for achieving high performance in the design of these

2.3. NETWORK STACK SPECIALIZATION 10

specialized systems. First, they tightly couple every layer of the network stack in a monolithic
architecture: from the NIC device driver, through the (streamlined) protocol suite, up to
the application logic – which used to be a separate entity in general-purpose systems – itself.
This approach is amenable to aggressive cross-layer optimizations. Second, their dataplane
implementations bypass the operating system (and its general-purpose network stack) and
make exclusive use of hardware resources; i.e., NICs and processor cores.

The performance improvement from these specialized network stacks comes at the cost
of generality. One obvious drawback of application-specific optimizations is that they do not
readily benefit other existing (thousands of) network applications, unless we heavily modify
each application. Also, the holistic approach adopted by the specialized systems rules out
the traditional roles of operating systems in networking: regulating use of shared hardware
resources, maintaining the global view of the system, (de-)multiplexing data stream across
protocols and applications, providing stable APIs for portability, and so on. Many research
papers claim that this issue can be avoided by offloading such OS features onto NIC hardware.
However, as we will discuss in Chapter 5, it is unrealistic to assume that NIC hardware would
provide all functionality required for a variety of applications in a timely manner.

Although the reported performance of specialized network stacks is impressive, we argue
that the following question has been overlooked in the systems research community: how
much of the speedup of those systems is fundamental to the design (e.g., monolithic ar-
chitecture with cross-layer optimizations) and how much is from artifacts (e.g., suboptimal
implementation of existing general-purpose network stacks)? In other words, is it possible
to have a general-purpose network stack with the performance of specialized systems? To
answer this question, this dissertation examines 1) how and when are the individual tech-
niques developed for specialized systems are particularly effective? 2) how many of them
can be back-ported to general-purpose network stacks? 3) what would be the fundamental
trade-off between generality and performance?

11

Chapter 3

MegaPipe: A New Programming
Interface for Scalable Network I/O

3.1 Introduction
Existing network APIs on multi-core systems have difficulties scaling to high connection

rates and are inefficient for “message-oriented” workloads, by which we mean workloads with
short connections1 and/or small messages. Such message-oriented workloads include HTTP,
RPC, key-value stores with small objects (e.g., RAMCloud [86]), etc. Several research efforts
have addressed aspects of these performance problems, proposing new techniques that offer
valuable performance improvements.

However, they all innovate within the confines of the traditional socket-based networking
APIs, by either i) modifying the internal implementation but leaving the APIs untouched [20,
91, 119], or ii) adding new APIs to complement the existing APIs [10, 30, 31, 68, 134].
While these approaches have the benefit of maintaining backward compatibility for existing
applications, the need to maintain the generality of the existing API – e.g., its reliance on file
descriptors, support for blocking and nonblocking communication, asynchronous I/O, event
polling, and so forth – limits the extent to which it can be optimized for performance. In
contrast, a clean-slate redesign offers the opportunity to present an API that is specialized
for high performance network I/O.

An ideal network API must offer not only high performance but also a simple and intuitive
programming abstraction. In modern network servers, achieving high performance requires
efficient support for concurrent I/O so as to enable scaling to large numbers of connections
per thread, multiple cores, etc. The original socket API was not designed to support such
concurrency. Consequently, a number of new programming abstractions (e.g., epoll, kqueue,
etc.) have been introduced to support concurrent operation without overhauling the socket
API. Thus, even though the basic socket API is simple and easy to use, programmers face the

1We use “short connection” to refer to a connection with a small number of messages exchanged; this is
not a reference to the absolute time duration of the connection.

3.2. MOTIVATION 12

unavoidable and tedious burden of layering several abstractions for the sake of concurrency.
Once again, a clean-slate design of network APIs offers the opportunity to design a network
API from the ground up with support for concurrent I/O.

Given the central role of networking in modern applications, we posit that it is worthwhile
to explore the benefits of a clean-slate design of network APIs aimed at achieving both high
performance and ease of programming. In this chapter we present MegaPipe, a new API
for efficient, scalable network I/O. The core abstraction MegaPipe introduces is that of a
channel – a per-core, bi-directional pipe between the kernel and user space that is used
to exchange both asynchronous I/O requests and completion notifications. Using channels,
MegaPipe achieves high performance through three design contributions under the roof of a
single unified abstraction:

• Partitioned listening sockets: Instead of a single listening socket shared across
cores, MegaPipe allows applications to clone a listening socket and partition its asso-
ciated queue across cores. Such partitioning improves performance with multiple cores
while giving applications control over their use of parallelism.

• Lightweight sockets: Sockets are represented by file descriptors and hence inherit
some unnecessary file-related overheads. MegaPipe instead introduces lwsocket, a
lightweight socket abstraction that is not wrapped in file-related data structures and
thus is free from system-wide synchronization.

• System Call Batching: MegaPipe amortizes system call overheads by batching asyn-
chronous I/O requests and completion notifications within a channel.

We implemented MegaPipe in Linux and adapted two popular applications – mem-
cached [Memcached] and the nginx [123] – to use MegaPipe. In our microbenchmark tests
on an 8-core server with 64B messages, we show that MegaPipe outperforms the baseline
Linux networking stack between 29% (for long connections) and 582% (for short connec-
tions). MegaPipe improves the performance of a modified version of memcached between
15% and 320%. For a workload based on real-world HTTP traffic traces, MegaPipe improves
the performance of nginx by 75%.

The rest of the chapter is organized as follows. We expand on the limitations of existing
network stacks in §3.2, then present the design and implementation of MegaPipe in §5.2 and
§3.4, respectively. We evaluate MegaPipe with microbenchmarks and macrobenchmarks in
§3.5, and review related work in §7.1.

3.2 Motivation
Bulk transfer network I/O workloads are known to be inexpensive on modern commodity

servers; one can easily saturate a 10 Gigabit (10G) link utilizing only a single CPU core.
In contrast, we show that message-oriented network I/O workloads are very CPU-intensive

3.2. MOTIVATION 13

and may significantly degrade throughput. In this section, we discuss limitations of the
current BSD socket API (§3.2.1) and then quantify the performance with message-oriented
workloads with a series of RPC-like microbenchmark experiments (§3.2.2).

3.2.1 Sources of Performance Inefficiency

In what follows, we discuss known sources of inefficiency in the BSD socket API. Some
of these inefficiencies are general, in that they occur even in the case of a single core, while
others manifest only when scaling to multiple cores – we highlight this distinction in our
discussion.

Issues Common to Both Single-Core and Multi-Core Envronments

• File Descriptors: The POSIX standard requires that a newly allocated file descriptor
be the lowest integer not currently used by the process [124]. Finding ‘the first hole’ in
a file table is an expensive operation, particularly when the application maintains many
connections. Even worse, the search process uses an explicit per-process lock (as files
are shared within the process), limiting the scalability of multi-threaded applications.
In our socket() microbenchmark on an 8-core server, the cost of allocating a single
FD is roughly 16% greater when there are 1,000 existing sockets as compared to when
there are no existing sockets.

• System Calls: Previous work has shown that system calls are expensive and nega-
tively impact performance, both directly (mode switching) and indirectly (cache pollu-
tion) [119]. This performance overhead is exacerbated for message-oriented workloads
with small messages that result in a large number of I/O operations.

Issues Specific to Multi-Core Scaling

• VFS: In UNIX-like operating systems, network sockets are abstracted in the same way
as other file types in the kernel; the Virtual File System (VFS) [64] associates each
socket with corresponding file instance, inode, and dentry data structures. For message-
oriented workloads with short connections, where sockets are frequently opened as
new connections arrive, servers quickly become overloaded since those globally visible
objects cause system-wide synchronization cost [20]. In our microbenchmark, the VFS
overhead for socket allocation on eight cores was 4.2 times higher than the single-core
case.

• Contention on Accept Queue: As explained in previous work [20, 91], a single lis-
tening socket (with its accept() backlog queue and exclusive lock) forces CPU cores
to serialize queue access requests; this hotspot negatively impacts the performance of
both producers (kernel threads) enqueueing new connections and consumers (applica-
tion threads) accepting new connections. It also causes CPU cache contention on the
shared listening socket.

3.2. MOTIVATION 14

• Lack of Connection Affinity: In Linux, incoming packets are distributed across
CPU cores on a flow basis (hash over the 5-tuple), either by hardware (RSS [102]) or
software (RPS [45]); all receive-side processing for the flow is done on a core. On the
other hand, the transmit-side processing happens on the core at which the application
thread for the flow resides. Because of the serialization in the listening socket, an
application thread calling accept() may accept a new connection that came through
a remote core; RX/TX processing for the flow occurs on two different cores, causing
expensive cache bouncing on the TCP control block (TCB) between those cores [91].
While the per-flow redirection mechanism [50] in NICs eventually resolves this core
disparity, short connections cannot benefit since the mechanism is based on packet
sampling.

In parallel with our work, the Affinity-Accept project [91] has recently identified and
solved the first two issues, both of which are caused by the shared listening socket. We
discuss our approach (partitioning) and its differences in §3.3.4. To address other issues, we
introduce the concept of lwsocket (§3.3.4, for FD and VFS overhead) and batching (§3.3.4,
for system call overhead).

3.2.2 Performance of Message-Oriented Workloads

While it would be ideal to separate the aforementioned inefficiencies and quantify the
cost of each, tight coupling in semantics between those issues and complex dynamics of
synchronization/cache make it challenging to isolate individual costs.

Rather, we quantify their compound performance impact with a series of microbench-
marks in this work. As we noted, the inefficiencies manifest themselves primarily in workloads
that involve short connections or small-sized messages, particularly with increasing numbers
of CPU cores. Our microbenchmark tests thus focus on these problematic scenarios.

Experimental Setup

For our tests, we wrote a pair of client and server microbenchmark tools that emulate
RPC-like workloads. The client initiates a TCP connection, exchanges multiple request and
response messages with the server and then closes the connection.2 We refer to a single
request-response exchange as a transaction. Default parameters are 64B per message and 10
transactions per connection, unless otherwise stated. Each client maintains 256 concurrent
connections, and we confirmed that the client is never the bottleneck. The server creates a
single listening socket shared by eight threads, with each thread pinned to one CPU core.
Each event-driven thread is implemented with epoll [30] and the non-blocking socket API.

Although synthetic, this workload lets us focus on the low-level details of network I/O
overhead without interference from application-specific logic. We use a single server and

2In this experiment, we closed connections with RST, to avoid exhaustion of client ports caused by
lingering TIME_WAIT connections.

3.2. MOTIVATION 15

0

0.3

0.6

0.9

1.2

1.5

1.8

1 2 4 8 16 32 64 128

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)

of Transactions per Connection

Baseline Throughput MegaPipe

0

20

40

60

80

100

0

2

4

6

8

10

64 128 256 512 1K 2K 4K 8K 16K

C
PU

 U
sa

ge
 (%

)

T
hr

ou
gh

pu
t (

G
bp

s)

Message Size (B)

Baseline CPU Usage MegaPipe

0

20

40

60

80

100

0

0.3

0.6

0.9

1.2

1.5

1 2 3 4 5 6 7 8

E
ff

ic
ie

nc
y

(%
)

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)

of CPU Cores

Baseline Per-Core Efficiency MegaPipe

(a) Connection lifespan

0

0.3

0.6

0.9

1.2

1.5

1.8

1 2 4 8 16 32 64 128

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)

of Transactions per Connection

Baseline Throughput MegaPipe

0

20

40

60

80

100

0

2

4

6

8

10

64 128 256 512 1K 2K 4K 8K 16K

C
PU

 U
sa

ge
 (%

)

T
hr

ou
gh

pu
t (

G
bp

s)

Message Size (B)

Baseline CPU Usage MegaPipe

0

20

40

60

80

100

0

0.3

0.6

0.9

1.2

1.5

1 2 3 4 5 6 7 8

E
ff

ic
ie

nc
y

(%
)

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)

of CPU Cores

Baseline Per-Core Efficiency MegaPipe

(b) Message size

0

0.3

0.6

0.9

1.2

1.5

1.8

1 2 4 8 16 32 64 128

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)

of Transactions per Connection

Baseline Throughput MegaPipe

0

20

40

60

80

100

0

2

4

6

8

10

64 128 256 512 1K 2K 4K 8K 16K

C
PU

 U
sa

ge
 (%

)

T
hr

ou
gh

pu
t (

G
bp

s)

Message Size (B)

Baseline CPU Usage MegaPipe

0

20

40

60

80

100

0

0.3

0.6

0.9

1.2

1.5

1 2 3 4 5 6 7 8

E
ff

ic
ie

nc
y

(%
)

T
hr

ou
gh

pu
t (

1M
 tr

an
s/

s)

of CPU Cores

Baseline Per-Core Efficiency MegaPipe

(c) Number of cores

Figure 3.1: The negative impact in performance from each of varying factor. The default
parameters are 64B messages, 10 transactions per connection, and 8 cores.

3.2. MOTIVATION 16

three client machines, connected through a dedicated 10G Ethernet switch. All test systems
use the Linux 3.1.3 kernel and ixgbe 3.8.21 10G Ethernet device driver [49] (with interrupt
coalescing turned on). Each machine has a dual-port Intel 82599 10G NIC, 12 GB of DRAM,
and two Intel Xeon X5560 processors, each of which has four 2.80 GHz cores. We enabled
the multi-queue feature of the NICs with RSS [102] and FlowDirector [50], and assigned each
RX/TX queue to one CPU core.

In this section, we discuss the result of the experiments Figure 3.1 labeled as “Baseline.”
For comparison, we also include the results with our new API, labeled as “MegaPipe,” from
the same experiments.

Performance with Short Connections

TCP connection establishment involves a series of time-consuming steps: the 3-way hand-
shake, socket allocation, and interaction with the user-space application. For workloads with
short connections, the costs of connection establishment are not amortized by sufficient data
transfer and hence this workload serves to highlight the overhead due to costly connection
establishment.

We show how connection lifespan affects the throughput by varying the number of trans-
actions per connection in Figure 3.1(a), measured with eight CPU cores. Total throughput
is significantly lower with relatively few (1–8) transactions per connection. The cost of con-
nection establishment eventually becomes insignificant for 128+ transactions per connection,
and we observe that throughput in single-transaction connections is roughly 19 times lower
than that of long connections!

Performance with Small Messages

Small messages result in greater relative network I/O overhead in comparison to larger
messages. In fact, the per-message overhead remains roughly constant and thus, independent
of message size; in comparison with a 64B message, a 1 KiB message adds only about 2%
overhead due to the copying between user and kernel on our system, despite the large size
difference.

To measure this effect, we perform a second microbenchmark with response sizes varying
from 64B to 64KiB (varying the request size in lieu of or in addition to the response size
had almost the same effects). Figure 3.1(b) shows the measured throughput (in Gbps)
and CPU usage for various message sizes. It is clear that connections with small-sized
messages adversely affect the throughput. For small messages (≤ 1KiB) the server does not
even saturate the 10G link. For medium-sized messages (2–4KiB), the CPU utilization is
extremely high, leaving few CPU cycles for further application processing.

Performance Scaling with Multiple Cores

Ideally, throughput for a CPU-intensive system should scale linearly with CPU cores.
In reality, throughput is limited by shared hardware (e.g., cache, memory buses) and/or

3.3. DESIGN 17

software implementation (e.g., cache locality, serialization). In Figure 3.1(c), we plot the
throughput for increasing numbers of CPU cores. To constrain the number of cores, we
adjust the number of server threads and RX/TX queues of the NIC. The lines labeled
“Efficiency” represent the measured per-core throughput, normalized to the case of perfect
scaling, where N cores yield a speedup of N.

We see that throughput scales relatively well for up to four cores – the likely reason
being that, since each processor has four cores, expensive off-chip communication does not
take place up to this point. Beyond four cores, the marginal performance gain with each
additional core quickly diminishes, and with eight cores, speedup is only 4.6. Furthermore,
it is clear from the growth trend that speedup would not increase much in the presence
of additional cores. Finally, it is worth noting that the observed scaling behavior of Linux
highly depends on connection duration, further confirming the results in Figure 3.1(a). With
only one transaction per connection (instead of the default 10 used in this experiment), the
speedup with eight cores was only 1.3, while longer connections of 128 transactions yielded
a speedup of 6.7.

3.3 Design
MegaPipe is a new programming interface for high-performance network I/O that ad-

dresses the inefficiencies highlighted in the previous section and provides an easy and intuitive
approach to programming high concurrency network servers. In this section, we present the
design goals, approach, and contributions of MegaPipe.

3.3.1 Scope and Design Goals

MegaPipe aims to accelerate the performance of message-oriented workloads, where con-
nections are short and/or message sizes are small. Some possible approaches to this problem
would be to extend the BSD Socket API or to improve its internal implementation. It is hard
to achieve optimal performance with these approaches, as many optimization opportunities
can be limited by the legacy abstractions. For instance: i) sockets represented as files inherit
the overheads of files in the kernel; ii) it is difficult to aggregate BSD socket operations from
concurrent connections to amortize system call overheads. We leave optimizing the message-
oriented workloads with those dirty-slate (minimally disruptive to existing API semantics
and legacy applications) alternatives as an open problem. Instead, we take a clean-slate
approach in this work by designing a new API from scratch.

We design MegaPipe to be conceptually simple, self-contained, and applicable to existing
event-driven server applications with moderate efforts. The MegaPipe API provides a unified
interface for various I/O types, such as TCP connections, UNIX domain sockets, pipes, and
disk files, based on the completion notification model (§3.3.2) We particularly focus on the
performance of network I/O in this chapter. We introduce three key design concepts of
MegaPipe for high-performance network I/O: partitioning (§3.3.4), lwsocket (§3.3.4), and

3.3. DESIGN 18

batching (§3.3.4), for reduced per-message overheads and near-linear multi-core scalability.
In this work, we mostly focus on an efficient interface between kernel and network appli-

cations; we do not address device driver overheads, the TCP/IP stack, or application-specific
logic.

3.3.2 Completion Notification Model

The current best practice for event-driven server programming is based on the readiness
model. Applications poll the readiness of interested sockets with select/poll/epoll and
issue non-blocking I/O commands on the those sockets. The alternative is the completion
notification model. In this model, applications issue asynchronous I/O commands, and the
kernel notifies the applications when the commands are complete. This model has rarely been
used for network servers in practice, though, mainly because of the lack of socket-specific
operations such as accept/connect/shutdown (e.g., POSIX AIO [124]) or poor mechanisms
for notification delivery (e.g., SIGIO signals).

MegaPipe adopts the completion notification model over the readiness model for three
reasons. First, it allows transparent batching of I/O commands and their notifications.
Batching of non-blocking I/O commands in the readiness model is very difficult without the
explicit assistance from applications. Second, it is compatible with not only sockets but
also disk files, allowing a unified interface for any type of I/O. Lastly, it greatly simplifies
the complexity of I/O multiplexing. Since the kernel controls the rate of I/O with comple-
tion events, applications can blindly issue I/O operations without tracking the readiness of
sockets.

3.3.3 Architectural Overview

MegaPipe involves both a user-space library and Linux kernel modifications. Figure 3.2
illustrates the architecture and highlights key abstractions of the MegaPipe design. The
left side of the figure shows how a multi-threaded application interacts with the kernel via
MegaPipe channels. With MegaPipe, an application thread running on each core opens
a separate channel for communication between the kernel and user-space. The application
thread registers a handle (socket or other file type) to the channel, and each channel multi-
plexes its own set of handles for their asynchronous I/O requests and completion notification
events.

When a listening socket is registered, MegaPipe internally spawns an independent accept
queue for the channel, which is responsible for incoming connections to the core. In this way,
the listening socket is not shared by all threads, but partitioned (§3.3.4) to avoid serialization
and remote cache access.

A handle can be either a regular file descriptor or a lightweight socket, lwsocket (§3.3.4).
lwsocket provides a direct shortcut to the TCB in the kernel, to avoid the VFS overhead of
traditional sockets; thus lwsockets are only visible within the associated channel.

3.3. DESIGN 19

Core 1

Kernel

User …

…

Core N
Channel instance

File
handles

lwsocket
handles

Pending
completion

events

VFS

TCP/IP

MegaPipe user-level library
Application thread

Batched
async I/O
commands

Batched
completion

events

…
C

ha
nn

el

Figure 3.2: MegaPipe architecture

Each channel is composed of two message streams: a request stream and a completion
stream. User-level applications issue asynchronous I/O requests to the kernel via the request
stream. Once the asynchronous I/O request is done, the completion notification of the
request is delivered to user-space via the completion stream. This process is done in a
batched (§3.3.4) manner, to minimize the context switch between user and kernel. The
MegaPipe user-level library is fully responsible for transparent batching; MegaPipe does not
need to be aware of batching.

3.3.4 Design Components

Listening Socket Partitioning

As discussed in §3.2.1, the shared listening socket causes two issues in the multi-core
context: i) contention on the accept queue and ii) cache bouncing between RX and TX cores
for a flow. Affinity-Accept [91] proposes two key ideas to solve these issues. First, a listening
socket has per-core accept queues instead of the shared one. Second, application threads
that call accept() prioritize their local accept queue. In this way, connection establishment
becomes completely parallelizable and independent, and all the connection establishment,
data transfer, and application logic for a flow are contained in the same core.

In MegaPipe, we achieve essentially the same goals but with a more controlled approach.
When an application thread associates a listening socket to a channel, MegaPipe spawns a

3.3. DESIGN 20

separate listening socket. The new listening socket has its own accept queue which is only
responsible for connections established on a particular subset of cores that are explicitly
specified by an optional cpu_mask parameter. After a shared listening socket is registered to
MegaPipe channels with disjoint cpu_mask parameters, all channels (and thus cores) have
completely partitioned backlog queues. Upon receipt of an incoming TCP handshaking
packet, which is distributed across cores either by RSS [102] or RPS [45], the kernel finds a
“local” accept queue among the partitioned set, whose cpu_mask includes the current core.
On the application side, an application thread accepts pending connections from its local
queue. In this way, cores no longer contend for the shared accept queue, and connection
establishment is vertically partitioned (from the TCP/IP stack up to the application layer).

We briefly discuss the main difference between our technique and that of Affinity-Accept.
Our technique requires user-level applications to partition a listening socket explicitly, rather
than transparently. The downside is that legacy applications do not benefit. However,
explicit partitioning provides more flexibility for user applications (e.g., to forgo partitioning
for single-thread applications, to establish one accept queue for each physical core in SMT
systems [127], etc.) Our approach follows the design philosophy of the Corey operating
system, in a way that “applications should control sharing” [19].

Partitioning of a listening socket may cause potential load imbalance between cores [91].
Affinity-Accept handles two types of load imbalance. For short-term load imbalance, a non-
busy core running accept() may steal a connection from the remote accept queue on a busy
CPU core. For long-term load imbalance, the flow group migration mechanism lets the NIC
to distribute more flows to non-busy cores. While the current implementation of MegaPipe
does not support load balancing of incoming connections between cores, the techniques
made in Affinity-Accept are complementary to MegaPipe. We leave the implementation and
evaluation of connection load balancing as future work.

lwsocket: Lightweight Socket

accept()ing an established connection is an expensive process in the context of the VFS
layer. In Unix-like operating systems, many different types of open files (disk files, sockets,
pipes, devices, etc.) are identified by a file descriptor. A file descriptor is an integer identifier
used as an indirect reference to an opened file instance, which maintains the status (e.g.,
access mode, offset, and flags such as O_DIRECT and O_SYNC) of the opened file. Multiple
file instances may point to the same inode, which represents a unique, permanent file object.
An inode points to an actual type-specific kernel object, such as TCB.

These layers of abstraction offer clear advantages. The kernel can seamlessly support
various file systems and file types, while retaining a unified interface (e.g., read() and
write()) to user-level applications. The CPU overhead that comes with the abstraction is
tolerable for regular disk files, as file I/O is typically bound by low disk bandwidth or high
seek latency. For network sockets, however, we claim that these layers of abstraction could
be overkill for the following reasons:

1. Sockets are rarely shared. For disk files, it is common that multiple processes share the

3.3. DESIGN 21

same open file or independently open the same permanent file. The layer of indirection
that file objects offer between the file table and inodes is useful in such cases. In
contrast, since network sockets are rarely shared by multiple processes (HTTP socket
redirected to a CGI process is such an exception) and not opened multiple times, this
indirection is typically unnecessary.

2. Sockets are ephemeral. Unlike permanent disk-backed files, the lifetime of network
sockets ends when they are closed. Every time a new connection is established or
torn down, its FD, file instance, inode, and dentry are newly allocated and freed. In
contrast to disk files whose inode and dentry objects are cached [64], socket inode and
dentry cannot benefit from caching since sockets are ephemeral. The cost of frequent
(de)allocation of those objects is exacerbated on multi-core systems since the kernel
maintains the inode and dentry as globally visible data structures [20].

To address these issues, we propose lightweight sockets – lwsocket. Unlike regular files,
a lwsocket is identified by an arbitrary integer within the channel, not the lowest possible
integer within the process. The lwsocket is a common-case optimization for network con-
nections; it does not create a corresponding file instance, inode, or dentry, but provides a
straight shortcut to the TCB in the kernel. A lwsocket is only locally visible within the
associated MegaPipe channel, which avoids global synchronization between cores.

In MegaPipe, applications can choose whether to fetch a new connection as a regular
socket or as a lwsocket. Since a lwsocket is associated with a specific channel, one cannot
use it with other channels or for general system calls, such as sendmsg(). In cases where
applications need the full generality of file descriptors, MegaPipe provides a fall-back API
function to convert a lwsocket into a regular file descriptor.

System Call Batching

Recent research efforts report that system calls are expensive not only due to the cost of
mode switching, but also because of the negative effect on cache locality in both user and
kernel space [119]. To amortize system call costs, MegaPipe batches multiple I/O requests
and their completion notifications into a single system call. The key observation here is that
batching can exploit connection-level parallelism, extracting multiple independent requests
and notifications from concurrent connections.

Batching is transparently done by the MegaPipe user-level library for both directions
user → kernel and kernel → user. Application programmers need not be aware of batching.
Instead, application threads issue one request at a time, and the user-level library accumu-
lates them. When i) the number of accumulated requests reaches the batching threshold,
ii) there are not any more pending completion events from the kernel, or iii) the applica-
tion explicitly asks to flush, then the collected requests are flushed to the kernel in a batch
through the channel. Similarly, application threads dispatch a completion notification from
the user-level library one by one. When the user-level library has no more completion noti-
fications to feed the application thread, it fetches multiple pending notifications from kernel

3.3. DESIGN 22

Function Parameters Description

mp_create() Create a new MegaPipe channel instance.

mp_destroy() channel Close a MegaPipe channel instance and clean up associated
resources.

mp_register() channel, fd,
cookie,
cpu_mask

Create a MegaPipe handle for the specified file descriptor
(either regular or lightweight) in the given channel. If a
given file descriptor is a listening socket, an optional CPU
mask parameter can be used to designate the set of CPU
cores which will respond to incoming connections for that
handle.

mp_unregister() handle Remove the target handle from the channel. All pending
completion notifications for the handle are canceled.

mp_accept() handle,
count,
is_lwsocket

Accept one or more new connections from a given listening
handle asynchronously. The application specifies whether
to accept a connection as a regular socket or a lwsocket.
The completion event will report a new FD/lwsocket and
the number of pending connections in the accept queue.

mp_read()
mp_write()

handle, buf,
size

Issue an asynchronous I/O request. The completion event
will report the number of bytes actually read/written.

mp_writev() handle, iovec,
iovcnt

Issue an asynchronous, vectored write with multiple buffers
(“gather output”)

mp_close() handle Close the connection (if still connected) and free up the
handle.

mp_disconnect() handle Close the connection in a similar manner to shutdown(). It
does not deallocate or unregister the handle.

mp_close() handle Close the connection if necessary, and free up the handle.

mp_flush() channel For the given channel, push any pending asynchronous I/O
commands to the kernel immediately, rather than waiting
for automatic flush events.

mp_dispatch() channel,
timeout

Poll for a single completion notification from the given chan-
nel. If there is no pending notification event, the call blocks
until the specified timer expires. The timeout can be 0 (non-
blocking) or -1 (indefinite blocking)

Table 3.1: List of MegaPipe API functions for userspace applications. All I/O functions are
enqueued in the channel—instead of individually invoking a system call—and are deliviered
to kernel in a batch.

3.3. DESIGN 23

in a batch. We set the default batching threshold to 32 (adjustable), as we found that the
marginal performance gain beyond that point is negligible.

One potential concern is that batching may affect the latency of network servers since
I/O requests are queued. However, batching happens only when the server is overloaded, so
it does not affect latency when underloaded. Even if the server is overloaded, the additional
latency should be minimal because the batch threshold is fairly small, compared to the large
queues (thousands of packets) of modern NICs[50].

3.3.5 Application Programming Interface

The MegaPipe user-level library provides a set of API functions to hide the complexity
of batching and the internal implementation details. Table 3.1 presents a partial list of
MegaPipe API functions. Due to lack of space, we highlight some interesting aspects of
some functions rather than enumerating all of them.

The application associates a handle (either a regular file descriptor or a lwsocket) with
the specified channel with mp_register(). All further I/O commands and completion noti-
fications for the registered handle are done through only the associated channel. A cookie,
an opaque pointer for developer use, is also passed to the kernel with handle registration.
This cookie is attached in the completion events for the handle, so the application can easily
identify which handle fired each event. The application calls mp_unregister() to end the
membership. Once unregistered, the application can continue to use the regular FD with
general system calls. In contrast, lwsockets are immediately deallocated from the kernel
memory.

When a listening TCP socket is registered with the cpu_mask parameter, MegaPipe
internally spawns an accept queue for incoming connections on the specified set of CPU
cores. The original listening socket (now responsible for the remaining CPU cores) can be
registered to other MegaPipe channels with a disjoint set of cores – so each thread can have
a completely partitioned view of the listening socket.

mp_read() and mp_write() issue asynchronous I/O commands. The application should
not use the provided buffer for any other purpose until the completion event, as the ownership
of the buffer has been delegated to the kernel, like in other asynchronous I/O APIs. The
completion notification is fired when the I/O is actually completed, i.e., all data has been
copied from the receive queue for read or copied to the send queue for write. In adapting
nginx and memcached, we found that vectored I/O operations (multiple buffers for a single
I/O operation) are helpful for optimal performance. For example, the unmodified version of
nginx invokes the writev() system call to transmit separate buffers for a HTTP header and
body at once. MegaPipe supports the counterpart, mp_writev(), to avoid issuing multiple
mp_write() calls or aggregating scattered buffers into one contiguous buffer.

mp_dispatch() returns one completion event as a struct mp_event. This data structure
contains: i) a completed command type (e.g., read/write/accept/etc.), ii) a cookie, iii) a
result field that indicates success or failure (such as broken pipe or connection reset) with
the corresponding errno value, and iv) a union of command-specific return values.

3.3. DESIGN 24

ch = mp_create ()
handle = mp_register(ch, listen_sd , mask=0x01)
mp_accept(handle)

while true:
ev = mp_dispatch(ch)
conn = ev.cookie
if ev.cmd == ACCEPT:

mp_accept(conn.handle)
conn = new Connection ()
conn.handle = mp_register(ch, ev.fd, cookie=conn)
mp_read(conn.handle , conn.buf , READSIZE)

elif ev.cmd == READ:
mp_write(conn.handle , conn.buf , ev.size)

elif ev.cmd == WRITE:
mp_read(conn.handle , conn.buf , READSIZE)

elif ev.cmd == DISCONNECT:
mp_unregister(ch, conn.handle)
delete conn

Listing 3.1: Pseudocode for ping-pong server event loop

Listing 3.1 presents simplified pseudocode of a ping-pong server to illustrate how ap-
plications use MegaPipe. An application thread initially creates a MegaPipe channel and
registers a listening socket (listen_sd in this example) with cpu_mask 0x01 (first bit is
set) which means that the handle is only interested in new connections established on the
first core (core 0). The application then invokes mp_accept() and is ready to accept new
connections. The body of the event loop is fairly simple; given an event, the server performs
any appropriate tasks (barely anything in this ping-pong example) and then fires new I/O
operations.

Currently MegaPipe provides only I/O-related functionality. We note that this asyn-
chronous communication between kernel and user applications can be applied to other types
of system calls as well. For example, we could invoke the futex() system call, which is not
related to file operations, to grab a lock asynchronously. One natural approach to support
general system calls in MegaPipe would be having a new API function mp_syscall(syscall
number, arg1, ...).

3.3.6 Discussion: Thread-Based Servers

The MegaPipe design naturally fits event-driven servers based on callback or event-loop
mechanisms, for example, Flash [87] and SEDA [132]. We mostly focus on event-driven
servers in this work. On the other hand, MegaPipe is also applicable to thread-based servers,

3.4. IMPLEMENTATION 25

by having one channel for each thread, thus each connection. In this case the application
cannot take advantage of batching (§3.3.4), since batching exploits the parallelism of in-
dependent connections that are multiplexed through a channel. However, the application
still can benefit from partitioning (§3.3.4) and lwsocket (§3.3.4) for better scalability on
multi-core servers.

There is an interesting spectrum between pure event-driven servers and pure thread-
based servers. Some frameworks expose thread-like environments to user applications to
retain the advantages of thread-based architectures, while looking like event-driven servers
to the kernel to avoid the overhead of threading. Such functionality is implemented in
various ways: lightweight user-level threading [13, 29], closures or coroutines [17, 67, 85],
and language runtime [7]. Those frameworks intercept I/O calls issued by user threads to
keep the kernel thread from blocking, and manage the outstanding I/O requests with polling
mechanisms, such as epoll. These frameworks can leverage MegaPipe for higher network
I/O performance without requiring modifications to applications themselves. We leave the
evaluation of effectiveness of MegaPipe for these frameworks as future work.

3.4 Implementation
This section describes how we implemented MegaPipe in the Linux kernel and the as-

sociated user-level library. As briefly described in §3.3.3, MegaPipe consists of two parts:
the kernel module and the user-level library. In this section, we denote them by MP-K and
MP-L, respectively, for clear distinction between the two.

3.4.1 Kernel Implementation

MP-K interacts with MP-L through a special device, /dev/megapipe. MP-L opens this
file to create a channel, and invokes ioctl() system calls on the file to issue I/O requests
and dispatch completion notifications for that channel.

MP-K maintains a set of handles for both regular FDs and lwsockets in a red-black
tree3 for each channel. Unlike a per-process file table, each channel is only accessed by one
thread, avoiding data sharing between threads (thus cores). MP-K identifies a handle by an
integer unique to the owning channel. For regular FDs, the existing integer value is used
as an identifier, but for lwsockets, an integer of 230 or higher value is issued to distinguish
lwsockets from regular FDs. This range is used since it is unlikely to conflict with regular
FD numbers, as the POSIX standard allocates the lowest unused integer for FDs[124].

MP-K currently supports the following file types: sockets, pipes, FIFOs, signals (via
signalfd), and timers (via timerfd). MP-K handles asynchronous I/O requests differ-
ently depending on the file type. For sockets (such as TCP, UDP, and UNIX domain),
MegaPipe utilizes the native callback interface, which fires upon state changes, supported

3It was mainly for ease of implementation, as Linux provides the template of red-black trees. We have
not yet evaluated alternatives, such as a hash table, which supports O(1) lookup rather than O(logN).

3.4. IMPLEMENTATION 26

by kernel sockets for optimal performance. For other file types, MP-K internally emulates
asynchronous I/O with epoll and non-blocking VFS operations within kernel. MP-K cur-
rently does not support disk files, since the Linux file system does not natively support asyn-
chronous or non-blocking disk I/O, unlike other modern operating systems. One approach
to work around this issue is to adopt a lightweight technique presented in FlexSC [119] to
emulate asynchronous I/O. When a disk I/O operation is about to block, MP-K can spawn
a new thread on demand while the current thread continues.

Upon receiving batched I/O commands from MP-L through a channel, MP-K first ex-
amines if each request can be processed immediately (e.g., there is pending data in the TCP
receive queue, or there is free space in the TCP send queue). If so, MP-K processes the
request and issues a completion notification immediately, without incurring the callback reg-
istration or epoll overhead. This idea of opportunistic shortcut is adopted from LAIO [27],
where the authors claim that the 73–86% of I/O operations are readily available. For I/O
commands that are not readily available, MP-K needs some bookkeeping; it registers a call-
back to the socket or declares an epoll interest for other file types. When MP-K is notified
that the I/O operation has become ready, it processes the operation.

MP-K enqueues I/O completion notifications in the per-channel event queue. Those
notifications are dispatched in a batch upon the request of MP-L. Each handle maintains a
linked list to its pending notification events, so that they can be easily removed when the
handle is unregistered (and thus not of interest anymore).

We implemented MP-K in the Linux 3.1.3 kernel with 2,200 lines of code in total. The
majority was implemented as a Linux kernel module, such that the module can be used for
other Linux kernel versions as well. However, we did have to make three minor modifications
(about 400 lines of code of the 2,200) to the Linux kernel itself, due to the following issues:
(i) we modified epoll to expose its API to not only user space but also to MP-K; (ii)
we modified the Linux kernel to allow multiple sockets (partitioned) to listen on the same
address/port concurrently, which traditionally is not allowed; and (iii) we also enhanced
the socket lookup process for incoming TCP handshake packets to consider cpu_mask when
choosing a destination listening socket among a partitioned set.

3.4.2 User-Level Library

MP-L is essentially a simple wrapper of the kernel module, and it is written in about
400 lines of code. MP-L performs two main roles: i) it transparently provides batching for
asynchronous I/O requests and their completion notifications, ii) it performs communication
with MP-K via the ioctl() system call.

The current implementation uses copying to transfer commands (24B for each) and
notifications (40B for each) between MP-L and MP-K. This copy overhead, roughly 3–5% of
total CPU cycles (depending on workloads) in our evaluation, can be eliminated with virtual
memory mapping for the command/notification queues, as introduced in Mach Port [2]. We
leave the implementation and evaluation of this idea as future work.

3.5. EVALUATION 27

1
2
4

8

16
32
64

128

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Pa
ra

lle
l S

pe
ed

up

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Number of CPU cores

(a) Baseline (b) MegaPipe

Figure 3.3: Comparison of parallel speedup for varying numbers of transactions per connec-
tion (labeled) over a range of CPU cores (x-axis) with 64B messages.

3.5 Evaluation
We evaluated the performance gains yielded by MegaPipe both through a collection of

microbenchmarks, akin to those presented in §3.2.2. Unless otherwise noted, all benchmarks
were completed with the same experimental setup (same software versions and hardware
platforms as described in §3.2.2.

The purpose of the microbenchmark results is three-fold. First, utilization of the same
benchmark strategy as in §3.2 allows for direct evaluation of the low-level limitations we
previously highlighted. Figure 3.1 shows the performance of MegaPipe measured for the same
experiments. Second, these microbenchmarks give us the opportunity to measure an upper-
bound on performance, as the minimal benchmark program effectively rules out any complex
effects from application-specific behaviors. Third, microbenchmarks allow us to illuminate
the performance contributions of each of MegaPipe’s individual design components.

3.5.1 Multi-Core Scalability

We begin with the impact of MegaPipe on multi-core scalability. Figure 3.3 provides a
side-by-side comparison of parallel speedup (compared to the single core case of each) for a
variety of transaction lengths. The baseline case on the left clearly shows that the scalability
highly depends on the length of connections. For short connections, the throughput stag-
nates as core count grows due to the serialization at the shared accept queue, then suddenly
collapses with more cores. We attribute the performance collapse to increased cache con-
gestion and non-scalable locks [21]; note that the connection establishment process happens
more frequently with short flows in our test, increasing the level of contention.

3.5. EVALUATION 28

Number of transactions per connection
1 2 4 8 16 32 64 128

+P 211.6 207.5 181.3 83.5 38.9 29.5 17.2 8.8
P +B 18.8 22.8 72.4 44.6 31.8 30.4 27.3 19.8

PB +L 352.1 230.5 79.3 22.0 9.7 2.9 0.4 0.1
Total 582.4 460.8 333.1 150.1 80.4 62.8 45.0 28.7

Table 3.2: Accumulation of throughput improvement (%) over baseline, from three contri-
butions of MegaPipe.

In contrast, the throughput of MegaPipe scales almost linearly regardless of connection
length, showing speedup of 6.4 (for single-transaction connections) or higher. This improved
scaling behavior of MegaPipe is mostly from the multi-core related optimizations techniques,
namely partitioning and lwsocket. We observed similar speedup without batching, which
enhances per-core throughput.

3.5.2 Breakdown of Performance Improvement

In Table 3.2, we present the incremental improvements (in percent over baseline) that
Partitioning (P), Batching (B), and lwsocket (L) contribute to overall throughput, by accu-
mulating each technique in that order. In this experiment, we used all eight cores, with 64B
messages (1KiB messages yielded similar results). Both partitioning and lwsocket signifi-
cantly improve the throughput of short connections, and their performance gain diminishes
for longer connections since the both techniques act only at the connection establishment
stage. For longer connections (not shown in the table), the gain from batching converged
around 15%. Note that the case with partitioning alone (+P in the table) can be seen as
sockets with Affinity-Accept [91], as the both address the shared accept queue and connection
affinity issues. lwsocket further contributes the performance of short connections, helping to
achieve near-linear scalability as shown in Figure 3.3(b).

3.5.3 Impact of Message Size

Lastly, we examine how the improvement changes by varying message sizes. Figure 3.4
depicts the relative throughput improvement, measured with 10-transaction connections.
For the single-core case, where the improvement comes mostly from batching, MegaPipe
outperforms the baseline case by 15–33%, showing higher effectiveness for small (≤ 1KiB)
messages. The improvement goes higher as we have five or more cores, since the baseline
case experiences more expensive off-chip cache and remote memory access, while MegaPipe
effectively mitigates them with partitioning and lwsocket. The degradation of relative im-
provement from large messages with many cores reflects that the server was able to saturate
the 10G link. MegaPipe saturated the link with seven, five, and three cores for 1, 2, and

3.6. CONCLUSION 29

64 B
256 B
512 B

1 KiB

2 KiB
4 KiB

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t (
%

)

of CPU Cores

Figure 3.4: Relative performance improvement for varying message sizes over a range of
CPU cores.

4KiB messages, respectively. The baseline Linux saturated the link with seven and three
cores for 2 and 4KiB messages, respectively.

3.6 Conclusion
Message-oriented network workloads, where connections are short and/or message sizes

are small, are CPU-intensive and scale poorly on multi-core systems with the BSD Socket
API. In this chapter, we introduced MegaPipe, a new programming interface for high-
performance networking I/O. MegaPipe exploits many performance optimization opportuni-
ties that were previously hindered by existing network API semantics, while being still simple
and applicable to existing event-driven servers with moderate efforts. Evaluation through
microbenchmarks, memcached, and nginx showed significant improvements, in terms of both
single-core performance and parallel speedup on an eight-core system.

30

Chapter 4

Applications of MegaPipe

4.1 Adopting Existing Server Applications
To verify the applicability of MegaPipe, we adapted two popular event-driven servers,

memcached 1.4.13 [77] (an in-memory key-value store) and nginx 1.0.15 [123] (a web server),
to verify the applicability of MegaPipe. As quantitatively indicated in Table 4.1, the code
changes required to use MegaPipe were manageable, on the order of hundreds of lines of code.
However, these two applications presented different levels of effort during the adaptation
process. We briefly introduce our experiences here, and show the performance benefits in
Section 3.5.

Application Total Changed
memcached 9,442 602 (6.4%)
nginx 86,774 447 (0.5%)

Table 4.1: Lines of code for application adaptations

4.1.1 Porting memcached

memcached uses the libevent [75] framework which is based on the readiness model (e.g.,
epoll on Linux). The server consists of a main thread and a collection of worker threads.
The main thread accepts new client connections and distributes them among the worker
threads. The worker threads run event loops which dispatch events for client connections.

Modifying memcached to use MegaPipe in place of libevent involved three steps:

1. Decoupling from libevent: We began by removing libevent-specific data structures
from memcached. We also made the drop-in replacement of mp_dispatch() for the
libevent event dispatch loop.

4.2. MACROBENCHMARK: MEMCACHED 31

2. Parallelizing accept: Rather than having a single thread that accepts all new con-
nections, we modified worker threads to accept connections in parallel by partitioning
the shared listening socket.

3. State machine adjustment: Finally, we replaced calls to read() with mp_read()
and calls to sendmsg() with mp_writev(). Due to the semantic gap between the
readiness model and the completion notification model, each state of the memcached
state machine that invokes a MegaPipe function was split into two states: actions
prior to a MegaPipe function call, and actions that follow the MegaPipe function call
and depend on its result. We believe this additional overhead could be eliminated if
memcached did not have the strong assumption of the readiness model.

In addition, we pinned each worker thread to a CPU core for the MegaPipe adaptation,
which is considered a best practice and is necessary for MegaPipe. We made the same
modification to stock memcached for a fair comparison.

4.1.2 Porting nginx

Compared to memcached, nginx modifications were much more straightforward due to
three reasons: i) the custom event-driven I/O of nginx does not use an external I/O frame-
work that has a strong assumption of the readiness model, such as libevent [75]; ii) nginx
was designed to support not only the readiness model (by default with epoll in Linux), but
also the completion notification model (for POSIX AIO [124] and signal-based AIO), which
nicely fits with MegaPipe; and iii) all worker processes already accept new connections in
parallel, but from the shared listening socket.

nginx has an extensible event module architecture, which enables easy replacement for its
underlying event-driven mechanisms. Under this architecture, we implemented a MegaPipe
event module and registered mp_read() and mp_writev() as the actual I/O functions. We
also adapted the worker threads to accept new connections from the partitioned listening
socket.

4.2 Macrobenchmark: memcached
We perform application-level macrobenchmarks of memcached, comparing the baseline

performance to that of memcached adapted for MegaPipe as previously described. For
baseline measurements, we used a patched1 version of the stock memcached 1.4.13 release.

We used the memaslap [3] tool from libmemcached 1.0.6 to perform the benchmarks. We
patched memaslap to accept a parameter designating the maximum number of requests to
issue for a given TCP connection (upon which it closes the connection and reconnects to the
server). Note that the typical usage of memcached is to use persistent connections to servers

1We discovered a performance bug in the stock memcached release as a consequence of unfairness towards
servicing new connections, and we corrected this fairness bug.

4.2. MACROBENCHMARK: MEMCACHED 32

Improvement
Improv.-FL

 MegaPipe MegaPipe-FL
 Baseline Baseline-FL

0

50

100

150

200

250

300

350

0

150

300

450

600

750

900

1050

1 2 4 8 16 32 64 128 256 ∞

Im
pr

ov
em

en
t (

%
)

Th
ro

ug
hp

ut
 (1

k
re

qu
es

ts
/s

)

Number of Requests per Connection

Figure 4.1: memcached throughput comparison with eight cores, by varying the number of
requests per connection. ∞ indicates persistent connections. Lines with “X” markers (-FL)
represent fine-grained-lock-only versions.

or UDP sockets, so the performance result from short connections may not be representative
of memcached; rather, it should be interpreted as what-if scenarios for event-driven server
applications with non-persistent connections.

The key-value workload used during our tests is the default memaslap workload: 64B
keys, 1KiB values, and a get/set ratio of 9:1. For these benchmarks, each of three client
machines established 256 concurrent connections to the server. On the server side, we set
the memory size to 4GiB. We also set the initial hash table size to 222 (enough for 4GiB
memory with 1KiB objects), so that the server would not exhibit performance fluctuations
due to dynamic hash table expansion during the experiments.

Figure 4.1 compares the throughput between the baseline and MegaPipe versions of mem-
cached (we discuss the “-FL” versions below), measured with all eight cores. We can see that
MegaPipe greatly improves the throughput for short connections, mostly due to partitioning
and lwsocket as we confirmed with the microbenchmark. However, the improvement quickly
diminishes for longer connections, and for persistent connections, MegaPipe does not improve
the throughput at all. Since the MegaPipe case shows about 16% higher throughput for the
single-core case (not shown in the graph), it is clear that there is a performance-limiting
bottleneck for the multi-core case. Profiling reveals that spin-lock contention takes roughly
50% of CPU cycles of the eight cores, highly limiting the scalability.

In memcached, normal get/set operations involve two locks: item_locks and a global
lock cache_lock. The fine-grained item_locks (the number is dynamic, 8,192 locks on eight

4.2. MACROBENCHMARK: MEMCACHED 33

0

500

1000

1500

2000

2500

3000

3500

0 256 512 768 1024 1280 1536

La
te

nc
y

(µ
s)

of Concurrent Client Connections

Baseline-FL 99%
MegaPipe-FL 99%
Baseline-FL 50%
MegaPipe-FL 50%

Figure 4.2: 50th and 99th percentile memcached latency.

cores) keep the consistency of the object store from concurrent accesses by worker threads.
On the other hand, the global cache_lock ensures that the hash table expansion process
by the maintenance thread does not interfere with worker threads. While this global lock is
inherently not scalable, it is unnecessary for our experiments since we configured the hash
table expansion to not happen by giving a sufficiently large initial size.

We conducted experiments to see what would happen if we rule out the global lock, thus
relying on the fine-grained locks (item_locks) only. We provide the results (with the suffix
“-FL”) also in Figure 4.1. Without the global lock, the both MegaPipe and baseline cases
perform much better for long or persistent connections. For the persistent connection case,
batching improved the throughput by 15% (note that only batching among techniques in
§5.2 affects the performance of persistent connections). We can conclude two things from
these experiments. First, MegaPipe improves the throughput of applications with short
flows, and the improvement is fairly insensitive to the scalability of applications themselves.
Second, MegaPipe might not be effective for poorly scalable applications, especially with
long connections.

Lastly, we discuss howMegaPipe affects the latency of memcached. One potential concern
with latency is that MegaPipe may add additional delay due to batching of I/O commands
and notification events. To study the impact of MegaPipe on latency, we measured median
and tail (99th percentile) latency observed by the clients, with varying numbers of persistent
connections, and plotted these results in Figure 4.2. The results show that MegaPipe does
not adversely affect the median latency. Interestingly, for the tail latency, MegaPipe slightly
increases it with low concurrency (between 72–264) but greatly reduces it with high concur-
rency (≥ 768). We do not fully understand these tail behaviors yet. One likely explanation

4.3. MACROBENCHMARK: NGINX 34

for the latter is that batching becomes more effective with high concurrency; since that
batching exploits parallelism from independent connections, high concurrency yields larger
batch sizes.

We conduct all experiments with the interrupt coalescing feature of the NIC. We briefly
describe the impact of disabling it, to investigate if MegaPipe favorably or adversely interfere
with interrupt coalescing. When disabled, the server yielded up to 50µs (median) and 200µs
(tail) lower latency with low concurrency (thus underloaded). On the other hand, beyond
near saturation point, disabling interrupt coalescing incurred significantly higher latency
due to about 30% maximum throughput degradation, which causes high queueing delay. We
observed these behaviors for both MegaPipe and baseline; we could not find any MegaPipe-
specific behavior with interrupt coalescing in our experiments.

4.3 Macrobenchmark: nginx
Unlike memcached, the architecture of nginx is highly scalable on multi-core servers. Each

worker process has an independent address space, and nothing is shared by the workers, so
the performance-critical path is completely lockless. The only potential factor that limits
scalability is the interface between the kernel and user, and we examine how MegaPipe
improves the performance of nginx with such characteristics.

For the nginx HTTP benchmark, we conduct experiments with three workloads with
static content, namely SpecWeb, Yahoo, and Yahoo/2. For all workloads, we configured
nginx to serve files from memory rather than disks, to avoid disks being a bottleneck. We
used weighttp2 as a workload generator, and we modified it to support variable number of
requests per connection.

1. SpecWeb: We test the same HTTP workload used in Affinity-Accept [91]. In this
workload, each client connection initiates six HTTP requests. The content size ranges
from 30 to 5,670B (704B on average), which is adopted from the static file set of
SpecWeb 2009 Support Workload [121].

2. Yahoo: We used the HTTP trace collected from the Yahoo! CDN [32]. In this
workload, the number of HTTP requests per connection ranges between 1 and 1,597.
The distribution is heavily skewed towards short connections (98% of connections have
ten or less requests, 2.3 on average), following the Zipf-like distribution. Content sizes
range between 1B and 253MiB (12.5KiB on average). HTTP responses larger than
60KiB contribute roughly 50% of the total traffic.

3. Yahoo/2: Due to the large object size of the Yahoo workload, MegaPipe with only
five cores saturates the two 10G links we used. For the Yahoo/2 workload, we change
the size of all files by half, to avoid the link bottleneck and observe the multi-core
scalability behavior more clearly.

2http://redmine.lighttpd.net/projects/weighttp/wiki

http://redmine.lighttpd.net/projects/weighttp/wiki

4.3. MACROBENCHMARK: NGINX 35

0

20

40

60

80

100

0

0.6

1.2

1.8

2.4

3

3.6

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (G

bp
s)

of CPU Cores

MegaPipe
Baseline

0

20

40

60

80

100

0

4

8

12

16

20

1 2 3 4 5 6 7 8
of CPU Cores

0

20

40

60

80

100

0

4

8

12

16

20

1 2 3 4 5 6 7 8

Im
pr

ov
em

en
t (

%
)

of CPU Cores

Improvement

(a) SpecWeb

0

20

40

60

80

100

0

0.6

1.2

1.8

2.4

3

3.6

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (G

bp
s)

of CPU Cores

MegaPipe
Baseline

0

20

40

60

80

100

0

4

8

12

16

20

1 2 3 4 5 6 7 8
of CPU Cores

0

20

40

60

80

100

0

4

8

12

16

20

1 2 3 4 5 6 7 8

Im
pr

ov
em

en
t (

%
)

of CPU Cores

Improvement

(b) Yahoo

0

20

40

60

80

100

0

0.6

1.2

1.8

2.4

3

3.6

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (G

bp
s)

of CPU Cores

MegaPipe
Baseline

0

20

40

60

80

100

0

4

8

12

16

20

1 2 3 4 5 6 7 8
of CPU Cores

0

20

40

60

80

100

0

4

8

12

16

20

1 2 3 4 5 6 7 8

Im
pr

ov
em

en
t (

%
)

of CPU Cores

Improvement

(c) Yahoo/2

Figure 4.3: Evaluation of nginx throughput for various workloads.

4.3. MACROBENCHMARK: NGINX 36

Web servers can be seen as one of the most promising applications of MegaPipe, since
typical HTTP connections are short and carry small messages [32]. We present the measure-
ment result in Figure 4.3 for each workload. For all three workloads, MegaPipe significantly
improves the performance of both single-core and multi-core cases. MegaPipe with the
Yahoo/2 workload, for instance, improves the performance by 47% (single core) and 75%
(eight cores), with a better parallel speedup (from 5.4 to 6.5) with eight cores. The small
difference of improvement between the Yahoo and Yahoo/2 cases, both of which have the
same connection length, shows that MegaPipe is more beneficial with small message sizes.

37

Chapter 5

BESS: A Modular Framework for
Extensible Network Dataplane

One of the prominent trends in computer networking is the increasing role of software
in network dataplane. In the previous chapter we discussed the traditional, predominant
use: socket-level server applications running on network endpoints. In addition to this,
there are a growing number of packet-level in-network applications, in the form of network
dataplane software running on commercial-off-the-shelf (COTS) servers. As compared to
custom solutions based on specialized hardware appliances powered by specialized ASIC and
FGPA, software running on general-purpose hardware provides clear advantages. Software-
based dataplane is more accessible (less prone to vendor lock-in) and flexible (easier to
embrace experimental features and future changes).

These accessibility and flexibility of software dataplane had been outweighed by its seem-
ingly inherent disadvantage compared to hardware solutions; software is too slow to meet the
performance requirements of today’s network workloads. Software was simply not a practical
alternative for processing millions of packets per second at the microsecond timescale. What
should give us pause, however, is the mounting evidence that the performance gap between
hardware and software network dataplane is significantly getting smaller than previously
believed. Recent progress in software network dataplane has been largely driven by two
enablers: architectural improvements in general-purpose server on hardware [pcie, 24, 25]
and the advent of kernel-bypassing packet I/O on software [41, 48, 103].

In this chapter we introduce BESS, short for Berkeley Extensible Software Switch, which
is a programmable platform for network dataplane implementation. We designed BESS with
the following three packet-oriented dataplane applications in mind, as its major use cases:

• NIC augmentation: this application refers to software implementation of advanced
packet processing features that used to be implemented in the ASIC of network in-
terface cards (NICs). Such NIC features include packet scheduling, segmentation/re-
assembly, classificaton, hardware slicing, etc. These features essentially "offload" the
burden of the OS network stack, which is known to be notoriously slow and inefficient.

38

Recently, however, more and more hardware NIC features are now being implemented
back in software, due to the various reasons as discussed in the following section.

• Virtual switching: virtual switching is a crucial component to implement server vir-
tualization. Virtual switches are typically implemented at the hypervisor, providing
network access to virtual machines (VMs). In addition to the basic connectivity, vir-
tual switches are also responsible for additional features, for example, access control,
migration support, tunneling, etc.

• Network function implementation: network function (NF) is an in-network entity per-
forming packet processing. For example, switches and routers are network functions
that provide network connectivity for end hosts. Network functions also include net-
work “middleboxes”, which provides more advanced functionality—or services—beyond
simple packet forwarding [113], including firewall, proxy, virtual private network, etc.,
to name a few. While most network services have been implemented as proprietary
physical appliances, the recent advent of network function virtualization (NFV) advo-
cates NFs implemented in software, running on fully virtualized infrastructure.

While these applications differ from each other in terms of context and motivation, they
still share very similar design goals and challenges. For instance, all of them need to im-
plement a mechanism to provide some level of fairness (or inversely, differentiation) and
performance isolation among “entities”, whose meaning may depend on the applcation do-
mains, e.g., i) individual TCP/UDP connections for NIC augmentation, ii) VMs for virtual
switching, and iii) service subscribers for network functions. BESS provides a programmable
platform for various types of network dataplane implementations. With BESS, dataplane
developers can focus on the application-specific logic, rather than merely reinventing the
wheel to implement common features with a large amount of boiler-plate code.

The BESS project initially focused on the particular appliation: software augmentation
of NIC hardware, the first in the above list, hence with its former name, SoftNIC. During
the development of our NFV system, E2 [88], we realized that BESS can be useful as a
general-purpose dataplane framework beyond NIC augmentation. We have focused most
of our BESS development efforts on supporting various dataplane features desired for E2,
including: load balancing across virtual NF instances, tracking affinity between flows and
instances, classifying packets for service chaining, etc., all in a distributed fashion. Since it
is unlikely that such mechanisms are readily available in any existing vswitches, rather what
is more important for us was the ability to accommodate new features easily and quickly. In
addition to extensibility, performance was another indispensable goal for us, given that NFV
systems should be able to handle large traffic aggregates within a sub-millisecond latency
budget. Note that each packet may require multiple—even up to tens of—traverses over
vswitches; the per-packet processing overhead of a vswitch must be minimal.

Besides BESS, we examined several existing vswitch implementations, and unfortunately
none of them did not meet the both extensibility and performance requirements. Extend-
ing the Linux network stack was our first consideration, due to its maturity and universal

5.1. MOTIVATION 39

availability. However, its monolithic design forced a new feature to be tightly coupled to the
rest of network stack, or even non-network subsystems in Linux kernel. Its infamous low
performance—typically an order or magnitude slower than recent “kernel-bypass” solutions—
was another deal breaker. There are a number of alternative vswitch implementations [94,
104, 130], but their forwarding logic is hard-coded with a limited means of programmability.
For example, the datapath of Open vSwitch [94] is based on the OpenFlow match-action
tables – any features that deviate from the semantics (e.g., “temporarily buffer out-of-order
TCP packets for a short time”) would require heavy modifications to its software architecture
(i.e., tracking and arithmetic operations on TCP connection state, for the given example).

BESS is different from other existing software-based network functions in that it aims to
provide a programmable framework, rather than an implementation of a specific forwarding
logic. The datapath of BESS is composed in a declarative manner, as a data-flow graph of
modules. Packets “flow” over the graph, and each module along the path performs module-
specific operations, such as packet classification, filtering, encapsulation, and so on. An
external controller can (incrementally) update the graph and configure individual modules,
to construct a custom dataplane functionality.

This data-flow approach of BESS is heavily inspired by the Click modular router [65],
while we both extend and simplify its design and implementation choices (§5.2). In particular,
this paper details two major updates to the classic Click design. First, BESS introduces
dynamic per-packet metedata attributes, which replace the static, inefficient, and error-prone
notion of “annotations” in Click (§5.3). This feature eliminates the implicit compile-time
dependency between modules, thus allowing better modularity. Second, BESS incorporates
a resource-aware scheduler, which enables flexible scheduling policies (§5.4). The scheduler
delivers fine-grained control over shared resources, such as processor time and link bandwidth,
across tenants, VMs, applications, or flows.

5.1 Motivation

5.1.1 Software-Augmented Network Interface Card

The list of features that need to be supported by NICs has grown rapidly: new appli-
cations appear with new requirements; new protocols emerge and evolve; and there is no
shortage of new ideas on system/network architectures that require new NIC features (e.g.,
[4, 55, 82, 93, 96, 100]). Unfortunately, NIC hardware is not a silver bullet, as many issues
arise due to the inherent inflexibility of hardware.

1. NICs may not support all desired features. Due to the slow development cycle (typically
years), there often exists a demand-availability gap—a disparity between user demands
for NIC features and their actual availability in products. For example, even minor
updates (e.g., do not duplicate the TCP CWR flag across all segments when using
TSO, to avoid interference with congestion control algorithms [22, 101]) that can be

5.1. MOTIVATION 40

1,000

10,000

100,000

10M 100M 1G 10G >10G

L
oC

 o
f N

IC
 d

ev
ic

e
dr

iv
er

s

Figure 5.1: Growing complexity of NIC hardware, indirectly measured with the lines of
device driver code in Linux 3.19.

implemented by changing a few lines of code when implemented in software, often
requires a full hardware revision.

2. Once a feature is hardwired in the NIC, it is almost impossible to control its fine-grained
behavior, often rendering the feature useless. For example, in the case of protocol
offloading (e.g., checksum offload and TSO/LRO), tunneled packets (e.g., VXLAN)
cannot take advantage of unless the NIC understands the encapsulation format [66],
even though hardware essentially has the logic for protocol offloading built-in. Lack
of fine-grain control also makes it difficult to combine features to achieve the end
goal. For example, although SR-IOV provides better performance and isolation with
hypervisor bypass, it cannot be used by cloud providers unless it supports additional
features to enforce traffic policies such as security/QoS rules, advanced switching, and
VM mobility support [96].

3. NIC hardware has resource restrictions, e.g., the number of rate limiters, flow table
size, and packet buffers, limiting its applicability. As a result, several systems [42, 60,
69, 92] have resorted to software work around the resource issue.

We argue that these issues will persist or even worsen in the future. Figure 5.1 presents
the number of lines of code for NIC device drivers as an indirect index of NIC hardware
complexity. The trends over the NIC generations show that the complexity has grown
tremendously; e.g., the driver for a high-end NIC (> 10GbE) on average contains 6.8×
more code than that of a 1GbE NIC driver. This ever increasing hardware complexity has
led to an increase in the time and cost for designing and verifying new NIC hardware.

5.1. MOTIVATION 41

BESS presents a new approach to extending NIC functionality; its adds a software shim
layer between the NIC hardware and the network stack, so it can augment NIC features with
software. It enables high-performance packet processing in software, while taking advantage
of hardware features. By design, it supports high performance, extensibility, modular design,
and backwards compatibility with existing software.

5.1.2 Hypervisor Virtual Switch

Virtual switch, or vswitch, is a key software component in datacenter computing. It
provides network connectivity to virtualized compute resources, acting as the main network
gateway to a physical host. The traditional role of vswitch was mere packet forwarding;
i.e., simple bridging for VMs to the physical network. Today vswitches now host advanced
features, such as monitoring, access control, traffic shaping, and network virtualization to
name a few. The control/management plane of vswitch takes high-level network policies
regarding such features and enforce them by configuring the data plane on individual hosts.
From the data plane of vswitch, which is the main focus of this paper, we want two desirable,
but often conflicting properties: extensibility and performance.

The need for extensibility comes from the fact that not only the use cases of vswitch,
but also their environments and requirements keep diverging: e.g., multi-tenant datacenters,
hybrid clouds, network function virtualization (NFV), and container-based virtualization
systems. The environments and requirements of such use cases typically require various fea-
tures in the data plane: new protocols, addressing and forwarding schemes, packet schedul-
ing mechanisms, etc. Unfortunately—unlike the common assumptions—being written in
software does not necessarily grant rapid updates with new functionality [112]. Even for
open-source vswitches, in order to add a small feature, one has to deal with large and com-
plex existing codebase, convince “upstream” maintainers of its necessity and usefulness, and
wait for a new release and its wide-spread deployment. This whole process may take several
months, if not years.

On the other hand, we want vswitch to process high bandwidth traffic at low latency
with minimal CPU usage, so that the remaining compute resource can be used for the
actual application logic. Unfortunately, the data plane performance tends to degrade as a
vswitch gets sophisticated and incorporates more features, even if only a few of them are
actually used. Performance optimization becomes difficult due to increased code/memory
footprint and inter-dependency among features. Some systems avoid the “feature-bloat” issue
with specialized and streamlined datapath implementations for specific vswitch use cases.
While such systems show the feasibility of high-performance vswitches, the question remains
whether we can achieve the same level of performance with a wider spectrum of vswitch use
cases.

5.1. MOTIVATION 42

5.1.3 Network Functions

Network functions, including switches, routers and network middleboxes, provide net-
work connectivity and value-added services to end hosts. For typical network functions
implemented in software, most of its dataplane functionality – at least for packet-level ser-
vices – tended to be embedded in the network stack of operating system kernel. However,
in modern systems, key networking functions are scattered across the NIC, hypervisor, OS
kernel, and user applications. This trend has been largely driven by the rise of cloud ser-
vices. These services face stringent performance demands but kernel network stacks are
notoriously slow and inefficient and this has led to many networking functions being “of-
floaded” to the NIC hardware [81]. Similarly, multi-tenancy requires safe communication
between VMs which has led to hypervisors taking on a range of functions for traffic classi-
fication, shaping, access control, switching, and so forth. Moreover, new application needs
have led to a growing set of networking protocols and features implemented in one or more
locations (OS, NIC, hypervisor). Further complicating this picture is the recent emergence
of specialized network facilities such as DPDK, netmap, and SRIOV: these systems address
specific problems (e.g., packet I/O overhead, NIC slicing) or application contexts (e.g., NFV,
network virtualization, and middlebox functionality) but their role with respect to legacy
components remains unclear.

The problem is that the above evolution has taken place in a piecemeal manner, instead of
being driven by an overarching coherent architecture for software network dataplane imple-
mentation. As we elaborate on in this chapter, this has resulted in: (i) mounting complexity,
(ii) poor extensibility and, (iii) sub-optimal performance.

At a high level, the complexity comes from functions being scattered across disparate
system components with no unified architecture to guide how network functions should be
implemented, configured or controlled. The lack of a coherent architecture also leads to
complex interactions between components that can be hard to diagnose or resolve.

The poor extensibility of existing implementations comes from the fact that functions
implemented in NIC hardware are inherently less flexible and slower to evolve than software
but, at the same time, software network functions that live in the kernel have also proven
hard to evolve due to the complexity of kernel code.

Finally, the combination of complexity and poor extensibility has limited our ability to
optimize the performance of legacy kernel network stacks and hypervisors. For example, nu-
merous studies have used specialized network stacks to demonstrate the feasibility of achiev-
ing high performance traffic processing in software—e.g., [73] reports a 10-fold throughput
improvement over typical kernel implementations—but these performance levels remain out
of reach for commodity network stacks. A key issue here is that every network function dat-
aplane is implemented from scratch without a common platform. This issue fundamentally
constrains out ability to maximize reusability of dataplane “commonalities”; Best practices in
design and implementation of software packet processing developed for one network function
are not easily applicable to another.

5.2. BESS DESIGN OVERVIEW 43

5.2 BESS Design Overview
BESS is a programmable platform that allows external applications (controllers) to build

a custom network dataplane, or pipeline. The pipeline is constructed in a declarative manner,
being built as a dataflow graph of modules. Modules in the graph process perform module-
specific operations on packets and pass them to next modules. The external controller
programs the pipeline by deciding: what modules to use, how to configure individual modes,
and how to interconnect them in the graph.

This section provides a high-level brief of BESS design. We set three main design goals
(§5.2.1) and then provide details on the overall architecture (§5.2.2), the packet processing
pipeline (§5.2.3), and the scheduler used for resource allocation (§5.4). In this section we
only describe the design aspects of BESS, deferring implementation details on performance
to §5.5.

5.2.1 Design Goals

1. Programmability and Extensibility: BESS must allow controllers to configure function-
ality to support a diverse set of uses. In particular, users should be able to compose
and configure datapath functionality as required, and BESS should make it easy to
add support for new protocols and services. Moreover, this additional effort should be
reusable in a wide variety of usage scenarios. Clean separation between control and
dataplane is also desired, so that an external controller can dynamically reconfigure
the data path to implement user policies.

2. Resource scheduling as a first-class design component: Due to its inherent parallelism,
hardware ASICs is in a better position to implement policies regarding resource al-
location of link bandwidth, e.g., “limit the bandwidth usage for this traffic class to
3Gbps” or “enforce max-min fairness across all flows.” BESS should provide flexible
mechanisms to support a variety of policies on application-level performance. However,
implementing these policies in software imposes a unique challenge for BESS—the pro-
cessor1 itself is a limited resource and must be properly scheduled to process traffic
spanning multiple links, users, and applications.

3. Pay only for what you use: Finally, using BESS should not imply any unnecessary
performance overheads. The cost of abstraction must be minimal, so that the per-
formance would be comparable to the bare implementation of the same functionality
without BESS would have exhibited.

5.2. BESS DESIGN OVERVIEW 44

 Driver

Net. stack

Legacy apps

Controller

Native app

Legacy apps Native app

Host kernel

VM kernel

HW NIC

 Driver

Net. stack

HW NIC

“vports”

“pports”

Figure 5.2: BESS architecture

5.2.2 Overall Architecture

Figure 5.2 shows the overall system architecture of BESS. The packet processing pipeline
is represented as a dataflow (multi)graph that consists of modules, each of which implements
a NIC feature. Ports act as sources and sinks for this pipeline. Packets received at a port flow
through the pipeline to another port. Each module in the pipeline performs module-specific
operations on packets. Our dataflow approach is heavily inspired by Click [65], although we
both simplify and extend Click’s design choices for BESS (§7.1).

BESS’s dataflow graph supports two types of ports. (i) Virtual ports (vports) are the
interface between BESS and upper-layer software. A vport connects BESS to a peer ; a peer
can either be the BESS device driver (which is used to support legacy applications relying
on the kernel’s TCP/IP stack) or a BESS-aware application that bypasses the kernel. A
peer can reside either in the host2, or in a VM. (ii) Physical ports (pports) are the interface
between BESS and the NIC hardware (and are hence not exposed to peers). Each pport
exposes a set of primitives that are natively implemented in its NIC hardware (e.g., checksum
offloading for specific protocols).

A vport pretends to be an ideal NIC port that supports all features required by its peer.
The modules in the packet processing pipeline are responsible for actually implementing the
features, either in software, by offloading to hardware, or with combination of both. BESS
thus abstracts away the limitations of the underlying NIC hardware from peers, effectively
providing a hardware abstraction layer (HAL) for NICs. BESS both allows for rapid pro-
totyping of new NIC functionality in software, and is also useful in cases where hardware
provides incomplete functionality (e.g., by providing software implementation that allow a

1We only manage processor time used within the BESS dataplane; the processor time used by external
applications themselves is out of BESS’s control.

2We use the loosely defined term “host” to refer to a hypervisor, a Dom0, a root container, or a bare-metal
system, to embrace various virtualization scenarios.

5.2. BESS DESIGN OVERVIEW 45

vport_inc parser switch TSO checksum pport_out

inc_port
csum_sw

Peer

inc_port
csum_sw
hdr_info

csum_sw
hdr_info
out_port

csum_sw
hdr_info
out_port

csum_hw

HW NIC

Per-packet
metadata

vport pport

Figure 5.3: A pipeline example with parser, switch, TSO, and checksum offloading modules.
Metadata evolves as a packet traverses the pipeline.

feature to be used with a new protocol) or insufficient capacity (e.g., by using both software
and hardware flow tables).

BESS provides a control channel that allows for a clean separation between the con-
trol and data plane. An explicit control channel allows an external controller to dictate
data path policy, while BESS itself focuses on providing data-plane mechanisms for this
policy. The control channel supports three types of operations: (1) updating the data path
(e.g., adding/removing modules or ports), (2) configuring resource allocations (e.g., limiting
CPU/bandwidth usages for applications), (3) managing individual modules (e.g., updat-
ing flow tables or collecting statistics). In this chapter we solely focus on the design and
implementation of BESS, rather than the external controller.

5.2.3 Modular Packet Processing Pipeline

The BESS pipeline is composed of modules, each of which implements a NIC feature. An
implementation of a module defines several handlers, including ones for processing packets
and timer events. Each module instance may contain some internal state, and these instances
are the nodes in BESS’s data flow graph that specifies the order in which modules process
packets (Figure 5.3). When a node has multiple outgoing edges (e.g., classification modules),
the module decides which of the edges a packet is sent out.

Often in-band communication between modules is desirable for performance and mod-
ularity. For example, a parser module performs header parsing and annotates the packet
with the result as metadata, so that downstream modules can reuse this information. Along
the pipeline, each packet carries its metadata fields abstracted as a list of key-value pairs.
Modules specify which metadata fields they require as input and the fields they produce.
Explicitly declaring metadata fields is useful in two ways. First, if a module in the pipeline
requires a field that is not provided by any upstream modules, BESS can easily raise a con-
figuration error. Second, any unused metadata field need not be preserved, and BESS can
reduce the total amount of space required per-packet. Note that this optimization can be
performed at configuration time and does not incur any runtime overhead.

5.2. BESS DESIGN OVERVIEW 46

Pipeline Example

We walk through a simple example to illustrate how packets are processed with metadata.
In Figure 5.3, the tables on the edges show packet metadata at the point when a packet
traverses the edge. The dotted arrows represent the input/output metadata fields for each
module. The user configures the BESS pipeline so that transmitted packets are processed by
(i) a switching service, (ii) TCP segmentation offload (TSO), and (iii) checksum offloading.
The NIC in this example has no TSO functionality, and only supports checksum offloading
for TCP/IPv4 packets. Nevertheless, the vport appears as a fully featured NIC to the peer,
and provides both TSO and protocol-agnostic checksumming.

When the peer sends packets to the vport, each packet is annotated with its desired
offloading behavior. For example, an annotation indicating that a packet requires checksum
offloading is of the form “calculate checksum over byte range X using algorithm Y, and
update the field at offset Z.” The packet data and its annotations are packaged as a packet
descriptor and pushed into the vport queue. In contrast to hardware NICs, the size and
format of the descriptor are flexible and can change depending on the features exposed by
the vport. Packet processing proceeds as follows.

1. vport_inc pulls a packet descriptor, creates a BESS packet buffer with the packet
data, and adds metadata fields for the input port ID (inc_port) and checksum of-
floading description (csum_sw).

2. parser inspects the packet’s L2–L4 header and records the results in hdr_info.

3. switch updates the MAC table using inc_port and hdr_info. Then it uses the
destination address to determine the output edge along which the packet is sent. In
this example the chosen edge goes to the TSO module.

4. TSO begins by checking whether the packet is a TCP packet larger than the MTU
of out_port3. If so, the module segments the packet into multiple MTU-sized packets
(and all metadata fields are copied), and updates csum_sw appropriately for each.

5. checksum uses csum_sw and hdr_info to determine if checksum calculation is re-
quired, and further if this needs to be done in software. When checksum computation
can be carried out by the NIC containing out_port, the module simply sets csum_hw
to “on”, otherwise the module computes the checksum in software.

6. pport_out sends the packet to the NIC, with a flag indicating whether the hardware
should compute the checksum, in the hardware-specific packet descriptor format.

3While in this dataflow graph the output port can be “inferred”, explicit use of out_port allows greater
flexibility: e.g., allowing us to separate classification (which determines the out_port) from splitting (which
diverts the packet flow in the pipeline).

5.3. DYNAMIC PACKET METADATA 47

This example highlights how BESS modules can flexibly implement NIC features and
opportunistically offload computation to hardware. For ease of exposition we have only
described the transmission path, the receive path is implemented similarly. Also, note a
packet does not always need to flow between a vport and a pport: e.g., virtual switching
(between vports) [94] or multi-hop routing (between pports) [1].

5.3 Dynamic Packet Metadata
Packet metadata refers to any per-packet information conveyed with the packet data

itself. Despite its integral role in software packet processing, usage of packet metadata in
existing NFs is inefficient and inextensible. This section reviews the issues around packet
metadata and describe how BESS solve the issues with dynamic attribute-offset assignment.

5.3.1 Problem: Metadata Bloat

Any packet processing software, including vswitches, defines a set of per-packet metadata
attributes (or fields). Some of them convey essential information of a packet, thus used by
all modules and the BESS runtime. Packet length, memory address, headroom and tailroom
sizes, and reference counter are such examples. Some other attributes are rather optional
and module-specific; they contain either contextual (e.g., input port ID, timestamp, etc.) or
cached (e.g., checksum status, protocol and position of headers, etc.) information. Metadata
attributes are typically represented as struct or class member fields, such as struct sk_buff
in Linux and struct mbuf in BSD.

The set of metadata attributes tends to grow fast, as a network stack gets sophisticated
and supports new features and protocols. For example, The network stack of Linux kernel
version 4.2 stores 90 attributes per packet4, which take 552 bytes spanning across 9 CPU
cache lines (an order of magnitude larger than the payload of small-sized packets). This large
per-packet footprint significantly hurts performance [41, 94]; it increases pressure on CPU
cache and consumes more cycles for packet initialization with zeroes or attribute-specific
initial values. This is wasteful given that only a few attributes would be actually used
during the lifetime of each packet.

Click works around this metadata bloat issue by multiplexing multiple attributes (“an-
notations” in Click) in a per-packet scratchpad, 48-byte wide on its current implementation.
The scratchpad space is statically partitioned for attributes. For example, an upstream el-
ement X stores 2-byte data at offset 16 for attribute ‘foo’, and a downstream element Y
reads it from the offset for ‘foo’. This approach can mitigate the growth of the metadata,
yet introducing new issues:

1. Dependency: All modules using ‘foo’ must (implicitly) agree that it resides at fixed
offset 16, at compile time.

4in sk_buff and skb_shared_info.

5.3. DYNAMIC PACKET METADATA 48

m1 m2 m3

foo
bar

ID attr op

1 foo W

2 bar W

m4 m5

ID attr op

1 foo R

ID attr op

1 bar R

2 baz W

3 qux W

ID attr op

1 foo W

2 baz R

ID attr op

1 foo R

foo ...

bar ...

foo ...

bar ...

baz ...

bar ...

baz ...

foo ...

- -

foo ...

(a)

(b)

baz
qux

ID pos

1 0

2 4

(c) ID pos

1 0

ID pos

1 4

2 0

3 N/A

ID pos

1 4

2 0

ID pos

1 4

Figure 5.4: Per-packet metadata support in BESS

2. Aliasing: Some modules might happen to use the same data location to store a different
attribute. They must not appear between X and Y otherwise may write over ‘foo’.

3. Misconfiguration: Some control flow paths to Y may not initialize ‘foo’. Y will read a
garbage value for the attribute.

Because how modules utilize the scratchpad space is not visible to Click runtime, avoid-
ing these issues is the sole responsibility of configuration writers (operators or external con-
trollers, not module developers). Data-flow graph validation regarding metadata use is
error-prone and must be done at the source-code level, thus at compile time. To avoid this
issue one has to sacrifice modularity; i.e., writing one big, monolithic module rather than
combining smaller, reusable modules with metadata.

5.3.2 Metadata Support in BESS

BESS solves the metadata bloat issue by making metadata an first-class abstraction. As
shown in Figure 5.4(a), each module is required to specify the list of metadata attributes to
be used and their size and access mode (e.g., I read ‘foo’ and write ‘bar’ and ‘baz’). Attributes
are identified by an opaque string; there is no need for global agreement on numeric identifiers
of attributes. Since the metadata usage of modules is now visible, BESS runtime can easily

5.3. DYNAMIC PACKET METADATA 49

21

43

5 6 8 9

12 13

7
10 11

w: A w: B

w: B w: A

r: A
w: C

w: D r: B, D

r: D
w: D

w: E, F

r: E

r: C, F
w: A r: A

Figure 5.5: Two scope components of attribute A. “r” denotes that the corresponding module
reads the specified attributes, and “w” is for writes.

check if there is any configuration error whenever the datapath is updated. For example,
if not all paths to a module provide every required attribute, BESS warns that the module
may read uninitialized values.

At the abstract level, every packet carries the value of metadata attributes in a table.
The table contains a different set of attributes at each module, as depicted in Figure 5.4(b).
Modules look up the per-packet table to access metadata attributes. Metadata access must
be efficient, since it is a very frequent per-packet operation. Naive approaches, such as
performing string matching on attribute names stored in the table, would be too costly in
terms of both time and space.

For fast metadata access, BESS provides modules with an indirection array to locate
metadata attributes (Figure 5.4(c)). The index is attribute ID, which is sequentially assigned
within each module. The index of the array is an attribute ID, sequentially assigned within a
module. The array stores the position of attributes, as a byte offset in the dynamic metadata
section (currently 96 bytes) of each packet buffer. To access an attribute, a module first
fetches the byte offset with the attribute ID and in turn accesses the data in the dynamic
metadata section. Since the cost of the former part can be amortized over multiple packets,
the performance cost of this indirect access is minimal.

5.3.3 Attribute-Offset Assignment

Whenever the module graph topology changes, BESS (re)assigns attribute-offset map-
pings for each module. BESS runtime must ensure that attributes do not overlap in the
metadata section for correctness. At the same time, BESS runtime is also responsible for
efficient use of the limited per-packet space, to accommodate a large number of metadata
attributes while minimizing CPU cache footprint.

In order to meet the requirements, BESS employs an assignment strategy based on two
observations about Click’s use of metadata attributes [65]. First, although Click has hundreds
of modules, but only a few of them are actually used for a particular configuration. Therefore

5.3. DYNAMIC PACKET METADATA 50

21

43

5 6 8 9

12 13

7
10 11

w: A w: B

w: B w: A

r: A
w: C

w: D r: B, D

r: D
w: D

w: E, F

r: E

r: C, F
w: A r: A

(a) Scope components of all attributes.

A

A’

B

C

D E

F

(b) Scope graph constructed from the above. Each vertex corresponds to a scope
component of an attribute, with the same color. Edges indicate overlaps in lifetime
between two scope components.

Figure 5.6: Construction of the scope graph from calculated scope components. Best viewed
in color.

we can multiplex attributes for the same offset, as long as it is safe to do so. Second, lifespan
of each attribute can be quite short, allowing even more multiplexing. Attributes need space
only for their lifetime, so after use we can reclaim the space to minimize the table size.

For simplicity, suppose that all attributes are 1 byte in size for now. The offset assignment
starts with finding the lifetime of every metadata attribute. In the dataflow graph we define
the lifetime of an attribute as its “scope component”. Here, the scope component of an
attribute is the maximal connected component(s) in which every module must share the same
offset for the attribute. In the graph shown in Figure 5.5, for example, modules {1, 2, 4, 5}
forms a scope component of A. Module 3 is not part of the component since it is out of the
lifetime of attribute A. Note that there is another scope component of attribute A, {10, 11}.
This is a separate scope component of A because its value is newly (over)written by module
10, since the offset of A in the upstream modules do not matter. From the definition of
scope component, we can easily deduce the following rules for given two different scope
components, regardless of whether they are for the same attribute or not:

1. If they are overlapping, we must give them different offsets.

5.4. RESOURCE SCHEDULING FOR PERFORMANCE GUARANTEES 51

A

A’

B

C

D E

F

Figure 5.7: Optimal coloring for the scope graph shown in Figure 5.6(b) with three colors. In
other words, for the given pipeline, three offsets are enough to accommodate all six attributes
with multiplexing.

2. If they are disjoint, we may give them the same offset.

It is not difficult to see that these rules resemble the graph coloring problem, where
adjacent vertices of a graph must be of different colors. To reduce attribute-offset assignment
into graph coloring, we first construct a “scope graph” from the calculated scope components,
as depicted in Figure 5.6. In the scope graph, each vertex corresponds to a scope component,
and each edge represents if its two corresponding scope components overlap with each other.
By definition, adjacent nodes mean that these two attributes are active at a given time, thus
must have distinct offsets. From graph coloring on the scope graph, a color is 1-to-1 mapped
to an offset, as we assumed all attributes are 1 byte. Figure 5.7 shows an optimal—i.e., with
the minimum number of colors—way to color the graph, where 3 colors/offsets are used for
6 attributes.

We note two practical issues arising here. First, the optimization version of graph coloring
is an NP-hard problem; as the size of pipeline grows, calculating an optimal solution becomes
intractable quickly. Second, unlike the assumption we made, each attribute may have an
arbitrary size in general. It makes the problem a generalized version of graph coloring, as
a vertex color is now defined as an offset range rather than a single number, and an edge
represents overlapping offset ranges. In other words, this offset assignment problem is at
least as difficult as graph coloring. Since finding an optimal solution is infeasible, BESS
utilizes a heuristic with greedy coloring for offset assignment. In our experience, greedy
coloring mostly gives us near-optimal solutions; we suspect that it is due to the nature of
typical dataflow graph topology.

5.4 Resource Scheduling for Performance Guarantees
In contrast to NIC hardware, which is inherently parallel at the gate level, BESS needs a

scheduler to decide what packet and module get to use the processor. For example, a simple

5.4. RESOURCE SCHEDULING FOR PERFORMANCE GUARANTEES 52

vport vport

VM1

C1 C2 C3 C4

…

…

C1

VM1 VM2

C2 C3 C4

VM2

C1, C3: high priority, 1 Gbps
C2, C4: low priority, no limit
Per VM: 5 Gbps limit

(a) Example policy (b) Class tree

root

Figure 5.8: An example of high-level performance policy with four traffic classes C1–C4, and
its corresponding class tree representation. Each circle is either a class (leaf) or a class group
(non-leaf). VM1 and VM2 have the same priority (within the same box).

form of scheduling5 would involve using weighted round-robin scheduling to pick an input
port, fetching a packet from this port and then processing it until it is sent out another port.
This scheme is used by many software packet processing systems [41, 63, 65, 94, 104] for its
simplicity. However, its crude form of fairness—the same number of packets across input
ports—may not achieve the operator’s desired policy for applications-level performance.

The ultimate goal of the BESS scheduler is to allow the operator to specify and enforce
policies for applications. Instead of mandating a single policy (e.g., priority scheduling) that
must be used in all deployment scenarios, BESS provides a set of flexible mechanisms that
can be easily composed to implement a broad set of high-level policies. The scheduler makes
policy-compliant allocations of processor and bandwidth resources using the mechanisms.

Consider a typical policy example, as presented in Figure 5.8(a). In this example, each
VM gets a fair share of bandwidth up to 5Gbps. Each VM has two types of traffic: interactive
traffic (C1 and C3) and background traffic (C2 and C4). The interactive traffic has higher
priority but is limited to 1Gbps per VM. Note that the policy includes: (i) fair sharing
between VMs, (ii) rate limiting for each VM and its interactive traffic, (iii) fixed priorities
between the traffic types, and (iv) hierarchical composition of the above. The design of
BESS scheduler is centered around these four primitives to capture common policy patterns.

The scheduling unit of BESS data path execution is a traffic class, each of whose defi-
nition is flexible and not dictated by BESS. Possible class definitions include: input/output

5 Software packet processing frameworks require two complementary types of scheduling: (i) packet
scheduling, where a functional module (e.g., PrioSched element in Click [65]) selects the next packet to
process; and (ii) CPU scheduling, where the framework determines when and how often each module is
executed (i.e., gets processor time). For the former, we discuss how our approach differs from Click’s in §7.1.
In this section, we focus on the latter, as it has received less attention from the research community.

5.5. IMPLEMENTATION DETAILS 53

port, VM, tenant, protocol, L7 application, VLAN tag, IP prefix, and so on. The operator
determines the scheduling discipline for traffic classes: e.g., “C1 has higher priority than C2”
by setting appropriate scheduling parameters.

In BESS, every packet is mapped to one (and only one) of the traffic classes at any given
time. The initial mapping of a packet to a class is “given” to BESS. A port consists of a
set of input queues, each of which is mapped to a traffic class. Effectively, the peer (for a
vport) or the hardware NIC (for a pport) declares the initial class of each packet by pushing
the packet into its corresponding queue. The class of a packet may change on the fly; in the
dataflow graph, the operator can specify transformer edges, which can associate a new class to
packets that flow along the edge. Each transformer edge has a map classold→classnew. Class
transformation is useful in cases where packet classes cannot be predetermined externally:
e.g., (i) a hardware NIC has limited classification capability for incoming packets, or (ii)
traffic classes are defined as output ports or input/output port pairs, so the class of a packet
is logically unknown (thus a “unspecified” class) until its output port has been determined
by a switch/classifier module.

Scheduling parameters are specified as a class tree, which is a hierarchical structure of
traffic classes. For example, Figure 5.8(b) shows the class tree for the previous policy. The
scheduler starts by examining the children of root and proceeds recursively until it finds
an eligible leaf. First, assuming neither has exceeded its 5Gbps limit, the scheduler chooses
between VM1 and VM2 (they both have the same priority), using a weighted fair queuing
mechanism. Without loss of generality, let us assume that VM1 is chosen. Since C1 has
higher priority than C2, the scheduler will pick C1, unless it has exceeded its 1Gbps limit
or no packet is pending. Packet processing for C1 begins by dequeuing a packet from one
of its input queues. BESS measures processor time and bandwidth usage during packet
processing. Usage accounting is again recursively done for C1, VM1, and root. We generalize
this scheduling scheme and provide implementation details in §5.5.4.

The operator specify policies by providing a class tree, as shown in Figure 5.8(b). It is
straightforward to translate the example policy into the corresponding class tree. For more
complex policies, manual translation might be harder. In this case, an external controller
would be required to compile a policy specified in a high-level language into BESS config-
uration (a dataflow graph and its class tree). Designing and implementing such a language
and a compiler are left to future work. The controller is also responsible for performing
admission control, which ensures that the number of applications using BESS does not ex-
ceed the available resources. Admission control can also be used in conjunction with priority
scheduling to guarantee minimum bandwidth and processor allocations for applications.

5.5 Implementation Details
10/40G Ethernet has become the norm for datacenter servers and NFV applications.

In order to keep up with such high-speed links, BESS needs to process (tens of) millions
of packets per second with minimal packet processing overheads. Latency is also critical;

5.5. IMPLEMENTATION DETAILS 54

recent advances in network hardware (e.g., [33]) and protocol design (e.g., [5]) have al-
lowed microsecond-scale in-network latency, effectively shifting the bottleneck to end-host
software [106]. BESS should therefore incur minimal processing delay and jitter.

Meeting both these performance requirements and our design goals is challenging. In this
section, we describe the implementation details of BESS, with emphasis on its performance-
related aspects.

5.5.1 Overview

As of today, BESS is implemented in 34k lines of C++ code, running with unmodified
Linux and QEMU/KVM. We expect supporting other operating systems or virtualization
platforms would be straightforward. To simplify development for us and module developers,
BESS runs as a user-mode program on the host. This has performance implications; in our
system, the minimum cost of a user-user (between an application process and BESS) context
switch is 3µs, while it is only 0.1µs for a user-kernel mode switch. BESS uses one or more
dedicated cores to eliminate the costs of context switching, as explained below. Interfacing
with physical and virtual ports is done with DPDK [48]

BESS runs separate control threads alongside worker threads. The control threads com-
municates with external controllers via gRPC [38]. Any programming languages can be
used to write a controller if only it has a gRPC client library. Some controller commands
require synchronization across worker threads for consistent updates (e.g., modifying the
dataflow graph). If so, the control thread sets a barrier that blocks all worker threads until
the command completes. BESS supports two types of commands: commands to the BESS
framework itself (e.g., create a new worker thread) and commands to individual modules
(e.g., add a static ARP entry). For the latter, BESS merely relays them as opaque messages
to the destined module.

5.5.2 Core Dedication

BESS runs on a small number of dedicated cores—as will be shown later, one core is
enough for typical workloads—for predictable, high performance. The alternative, running
BESS threads on the same cores as applications (thus on every core) is not viable for us.
Since BESS is a user-mode program, OS process scheduling can unexpectedly introduce up
to several milliseconds of delay under high load. This level of jitter would not allow us to
provide (sub)microsecond-scale latency overhead.

We dedicate cores by setting core affinity for BESS worker threads and prevent the host
kernel from scheduling other system tasks on BESS cores with the isolcpus Linux kernel
parameter. In addition to reducing jitter, core dedication has three additional benefits for
BESS: (i) context switching costs are eliminated; (ii) processor cache is better utilized; (iii)
inter-core synchronization among BESS threads is cheap as it involves only a few cores.

Core dedication allows us to make another optimization: we can utilize busy-wait polling
instead of interrupts, to reduce latency further. A recent study reports 5–75 µs latency

5.5. IMPLEMENTATION DETAILS 55

overheads per interrupt, depending on the processor power management states at the mo-
ment [33]. In contrast, with busy-wait polling, the current BESS implementation takes less
than 0.02µs for a vport and 0.03 µs for a pport to react to a new packet. Polling leads to a
small increase in power consumption when the system is idle: our system roughly consumes
an additional 3–5 watts per idle-looping core.

We do not dedicate a core to the control thread, since control-plane operations are rela-
tively latency-insensitive. The control thread performs blocking operations on sockets, thus
consuming no CPU cycles when idle.

5.5.3 Pipeline Components

Physical Ports (pports)

We build on the Intel Data Plane Development Kit (DPDK) 17.11 [48] library for high-
performance packet I/O. We chose DPDK over other alternatives [34, 41, 103] for two reasons:
(i) it exposes hardware NIC features besides raw packet I/O; and (ii) it allows direct access
to the NIC hardware without any kernel intervention on the critical path.

Each pport is associated with two module instances. pport_out sends packets to the
hardware NIC after translating packet metadata into hardware-specific offloading primitives.
BESS provides an interface for feature modules to discover the capabilities of each pport, so
that modules can make decision about whether a feature can be partially or fully offloaded to
hardware. pport_in receives incoming packets and translates their hardware-offload results
into metadata that can be used by other modules.

Virtual Ports (vports)

A vport has a set of RX and TX queues. Each queue contains two one-way ring buffers;
one for transmitting packet buffers and the other for receiving completion notification (so
that the sender can reclaim the packet buffers). The ring buffers provide lock-free operations
for multiple consumer/producer cores [79], to minimize inter-core communication overheads.
A vport’s ring buffers are allocated in a single contiguous memory region that is shared
between BESS and the peer. Memory sharing is done using mmap() for host peers and
IVSHMEM [71] for VM guest peers. When no interrupts are involved, communication via
shared memory allows BESS to provide VM peers and host peers similar performance for
packet exchange.

For conventional TCP/IP applications, we implement a device driver as a Linux kernel
module that can be used by either hosts or guests. We expect that porting this device driver
to other operating systems will be straightforward. The driver exposes a vport as a regular
Ethernet adapter to the kernel. No modifications are required in the kernel network stack
and applications. Our implementation is similar to virtio [107], but we support not only
guest VMs but also the host network stack.

For kernel-bypass applications that implement their own specialized/streamlined network
stack (e.g., [14, 54, 73, 93]), we provide a user-level library that allows applications to directly

5.5. IMPLEMENTATION DETAILS 56

access vport queues, supporting zero copy if desired. In contrast, vport peering with the
kernel device driver requires copying the packet data; providing zero-copy support for the
kernel would require non-trivial kernel modifications, which are beyond the scope of this
work.

When packets are transmitted from BESS to a peer, BESS notifies the peer via inter-
core interrupts. This notification is not necessary when a peer sends packet because BESS
performs polling. The peer can disable interrupts temporarily (to avoid receive livelock [83])
or permanently (for pure polling [24]).

NIC Feature Modules

To test and evaluate the effectiveness of our framework, we implemented a number of
NIC features that are commonly used in datacenter servers: checksum offloading, TCP seg-
mentation/reassembly and VXLAN tunneling (§6.1.1), rate limiter (§6.1.2), flow steering
(§6.1.3), stateless/stateful load balancer (§6.1.4), time stamping, IP forwarding, link aggre-
gation, and switching. Our switch module implements a simplified OpenFlow [76] switch on
top of MAC-learning Ethernet bridging.

5.5.4 BESS Scheduler

The basic unit of scheduling in BESS is a traffic class (§5.4). Each class is associated
with a set of queues (§5.5.6) and a per-core timer. Packets belonging to the class are
enqueued on one of these queues before processing. The per-core timer is used to schedule
deferred processing that can be used for a variety of purposes, e.g., flushing reassembled TCP
packets (LRO), interrupt coalescing, periodically querying hardware performance counter,
scheduling packet transmission, etc. The scheduler is responsible for selecting the next class
and initiating processing for this class.

BESS scheduling parameters are provided to the scheduler as a class tree (§5.4). A class
tree is a hierarchical tree, whose leaves map to individual traffic classes while non-leaf nodes
represent class groups. Each class group is a recursive combination of classes or other class
groups. The scheduling discipline for each node in the class tree is specified in terms of a
5-tuple 〈priority, limitbw, limitcpu, share, share_type〉, where each element specifies:

• priority: strict priority among its all siblings

• limitbw: limit on the throughput (bits/s)

• limitcpu: limit on processor time (cycles/s)

• share: share relative to its siblings with the same priority

• share_type: the type of proportional share: bits or cycles

The BESS scheduling loop proceeds in three steps:

5.5. IMPLEMENTATION DETAILS 57

Algorithm 1: Recursively traverse class tree to pick the next traffic class to service.
1 Node Pick(n)
2 if n is leaf then
3 return n ; // We found a traffic class.
4 else
5 maxp← max(n.children.priority);
6 group← n.children.filter(
7 priority = maxp);
8 next←StrideScheduler (group);
9 return Pick (next);

1. Pick next class. The scheduler chooses the next class to service by recursively travers-
ing the class tree starting at the root by calling the pick function (Algorithm 1) on
the tree root. Given a node n, the pick function first checks (line 2) whether n is a
leaf node (i.e., a traffic class) in which case pick returns n. If n is not a leaf (and
is thus a class group), pick find the highest priority level among n’s children (maxp,
line 5) and then finds the subset of its children assigned this priority (group, line 6).
Finally, it uses stride scheduling [131] to select a child (next) from this subset (line 8)
and returns the result of calling itself recursively on next (line 9).

2. Servicing the class. Once pick has returned a class c to the scheduler, the scheduler
checks if c has any pending timer events. If so, the scheduler runs the deferred process-
ing associated with the timer. If no timer events are pending, the scheduler dequeues
a batch of packets (§5.5.5) from one of the classes queues (we use round-robin schedul-
ing between queues belonging to the same class) and calls the receive handler for the
first module—a port module or a module next to a transformer edge—in the packet
processing pipeline (§5.2.3) for c. Packet processing continues until all packets in the
batch have been either enqueued or dropped. Note that within a class, we handle all
pending timer events before processing any packets, i.e., timer events are processed at
a higher priority, so that we can get high-accuracy for packet transmission scheduling,
as shown in §6.1.2.

3. Account for resource usage. Once control returns to the scheduler, it updates the
class tree to account for resources (both processor and bandwidth) used in processing
class c. This accounting is done with the class c and all of its parents up to the root
of the class tree. During this update, the scheduler also temporarily prunes the tree
of any nodes that have exceeded their resource limits. This pruning (and grafting) is
done with the token bucket algorithm.

As stated in §5.4, sometimes assigning a packet to the correct class might require BESS
to execute one or more classification modules before sending a packet out a transformer edge.

5.5. IMPLEMENTATION DETAILS 58

For accurate resource accounting in this case, BESS associates an implicit queue with each
transformer edge so that packets whose class has been changed are enqueued and wait for
the new class to be scheduled before further processing.

5.5.5 Packet Buffers and Batched Packet Processing

Packet Buffer

BESS extends the DPDK’s packet buffer structure (rte_mbuf) [48] by reserving an area
in each buffer to store metadata. We rely heavily on scattered packet buffers (i.e., non-
contiguous packet data) to avoid packet copy, for operations such as segmentation/reass-
membly offloading and switch broadcasting.

Per-Packet Metadata

A naive implementation of metadata (§5.2.3), e.g., using a hashmap of string→value,
can have significant performance penalty, as in BESS tens of modules may process tens of
millions of packets per second. To avoid the performance penalty, previous software packet
processing systems use either a static set of metadata fields as struct fields (e.g., BSD
mbuf [80]) or per-packet scratchpad where all modules have to agree on how each byte
should be partitioned and reused (e.g., Click [65]). Both approaches are not only inefficient
in space (thus increasing CPU cache pressure) and inextensible, but also are error-prone.

BESS takes advantage of the explicit declaration of metadata fields by each module
(§5.3). Since all fields are known ahead of time, offsets for metadata fields in a pipeline
can be precomputed, and BESS provides the offsets to every module during the pipeline
(re)configuration phase. Subsequently, modules can access a metadata field by reading from
its corresponding offset from the packet buffer. In the current implementation BESS reserves
a 96-byte scratchpad for each packet to accommodate metadata fields.

Pervasive Batching

Packets in BESS are processed in batches, i.e., packet I/O from/to ports is done in
batches, and packet processing modules operate on batches of packets, rather than individual
packets. Batching is a well-known technique for improving code/data locality and amortizing
overheads in software packet processing [14, 24, 41, 62, 103]. Specifically, batching amortizes
the cost of (i) remote cache access for vports, (ii) hardware access over the PCIe bus for
pports, and (iii) virtual function calls for module execution. BESS uses a dynamic batch
size that is adaptively varied to minimize the impact on latency as in IX [14]: the batch
size grows (to a cap) only when BESS is overloaded and there is queue buildup for incoming
packets.

When combined with the modular pipeline of BESS, batch processing provides additional
performance benefits. Since the processing of a packet batch is naturally “staged” across
modules, cache miss or register dependency stalls during processing one packet can be likely

5.5. IMPLEMENTATION DETAILS 59

HW NIC

P

A B
A B

V

(a) Pipeline scaling (duplication and chaining)

(c) vport scaling (b) pport scaling

module

V vport

pport P
core
queue

Upper-layer software
P

A B

V

Figure 5.9: BESS multi-core scaling strategies. The example assumes two BESS cores and
four cores for the upper-layer software.

hidden by processing another packet in the batch on an out-of-order execution processor [58].
It also reduces the cost of virtual function call.

A packet batch is simply represented as an array of packet buffer pointers. When packets
in a batch need to take different paths in the pipeline (e.g., classifier or switch), the module
can simply split the batch by moving pointers from one array to another without incurring
significant overheads.

In case there are many branches in the pipeline, there might be a number of batches due
to branching, each holding only a few packets. In terms of performance small batches are
suboptimal, since amortization of per-packet cost becomes much less effective. To mitigate
this issue, BESS scheduler tries to combine multiple small batches into one large batch at
every input gate of modules. For maximum effectiveness, modules are scheduled in the
topological order of the dataflow graph, i.e., , a module is scheduled only after all of its
upstream modules have been scheduled, in order to combine as many batches as possible.

5.5.6 Multi-Core Scaling

While BESS running on a single core often provides enough horse power to drive the
common network workload of a datacenter server (a 40G link or higher with a typical packet
size distribution, see §5.6.3), BESS can scale on multiple cores to sustain more challenging
workloads. Here we consider three aspects of multi-core scalablity: individual modules,
whole pipeline, NIC ports, and scheduler.

5.5. IMPLEMENTATION DETAILS 60

Modules

BESS module classes can explicitly declare if its implementation is thread-safe. If not,
BESS conservatively assumes that it is unsafe to run on multiple threads. Whenever the
pipeline is updated, BESS runs a constraint checker, which checks if thread-unsafe modules
may possibly be accessed by multiple worker threads. When it happens—it typically implies
a logic error in the external controller—BESS rejects the pipeline change. Alternatively, it
would be possible to automatically apply a spin-lock for such thread-unsafe modules. We
are adding this feature to the current implementation.

BESS does not dictate what strategy a module class should take for thread safety. Many
modules have taken different approaches to thread safety and/or linear performance scalabil-
ity, including locks, atomic variables, lock-less algorithms, and Transactional Memory [126].

Pipeline

In order to run a logical pipeline on multiple cores, we need to decide which part of the
dataflow graph should be run by which worker thread(s). Figure 5.9(a) illustrates how it
can be done. BESS provides two means to scale the packet processing pipeline. One scheme
is duplication, each core runs the identical pipeline of modules in parallel. One can either
replicate the modules or have multiple worker threads run on the same module instances.
This approach is very well suitable for stateless modules in particular, since embarrassingly
parallel operations scale well with multiple threads.

The other scheme is chaining, where the pipeline is partitioned with a queue module.
The queue is used for one worker thread to hand over packets to another worker. This
scheme is often used when thread-unsafe modules are not easily parallelizable. In terms of
performance, this scheme yields lower throughput because of two reasons: i) packets cross
core boundaries, increasing cache coherence traffic, and ii) load may be imbalanced (e.g.,
in Figure 5.9(a), module A takes more cycles to process a packet than B, thus leaving B
underutilized).

One scheme is not always better than the other, as their applicability and resulting
performance highly depend on various factors: cache usage of modules, synchronization
overhead, number of BESS cores, etc. BESS does not try to optimize pipeline scaling on
behalf of the external controller. Rather, BESS simply provides mechanisms to configure
the pipeline for duplication and chaining so that external controller can choose a policy to
balance between performance, service-level objectives, and complexity. One can also try a
hybrid of the both schemes. For example, in our NFV research system [88], we chained “I/O”
and “processing” in the pipeline, where each of them consists a group of worker threads with
duplication.

NIC ports

When a pport is duplicated across cores, BESS leverages the multi-queue functionality of
the hardware NIC as shown in Figure 5.9(b). Each BESS core runs its own RX/TX queue

5.6. PERFORMANCE EVALUATION 61

pair, without incurring any cache coherence traffic among BESS cores. Similarly, BESS
creates multiple queue pairs for a vport so that the peer, the other endpoint of the virtual
link, itself can linearly scale. By partitioning the incoming (from the viewpoint of BESS)
queues of vports and pports, BESS preserves in-order packet processing on a flow basis,
provided that peers and hardware NICs do not interleave a flow across multiple queues.

Scheduler

Each BESS worker thread, pinned to its dedicated CPU core, runs an independent
scheduling loop with its own class tree (§5.4). This is our design choice in favor of per-
formance; sharing a single, global class tree among worker threads would have caused too
much inter-core synchronization cost, nullifying the point of multiple cores. By having a
separate scheduler and a class tree, a worker thread can make scheduling decisions on its
own. This is crucial to achieve linear performance scalability with the number of CPU cores.

On the other hand, running a separate scheduler on each work thread means that only
one scheduler may schedule a traffic class and measure its resource use at any given time.
In case we need to enforce resource allocation limit for certain type of traffic across multiple
cores, an external controller would be required in the feedback loop. The controller needs to
monitor the aggregate resource usage of relevant traffic classes and “rebalance” the limit of
each.

5.6 Performance Evaluation
The main promise of BESS is to provide a flexible framework for implementing various

NIC features, without sacrificing performance. In this section, we focus on the overheads of
BESS framework itself, without considering the performance of individual feature modules.
We quantify the overheads by measuring how fast BESS performs as a NIC, in terms of
end-to-end latency (§5.6.2), throughput and multi-core scalability (§5.6.3).

5.6.1 Experimental Setup

We use two directly connected servers, each equipped with two Intel Xeon 2.6GHz E5-
2650v2 processors (16 cores in total), 128GB of memory, and four Intel 82599 10GbE ports
with an aggregate bandwidth of 40Gbps. We disable the CPU’s power management features
(C/P-states) for reproducible latency measurement [33]. We use unmodified Linux 3.14.16
(for both host and guest), QEMU/KVM 1.7.0 for virtualization, and ixgbe 3.19.1-k NIC
device driver in the test cases where BESS is not used.

5.6.2 End-to-End Latency

Figure 5.10 shows the end-to-end, round-trip latency measured with UDP packets (TCP
results are similar). In T1, the application performs direct packet I/O using a dedicated

5.6. PERFORMANCE EVALUATION 62

D
PD

K
 ix

gb
e

vs
w

itc
h

vs
w

itc
h

SR
-I

O
V

SR
-I

O
V

So
ftN

IC

So
ftN

IC

So
ftN

IC

So
ftN

IC

0
10
20
30
40
50
60
70
80
90

100

T1: Hosts
(raw packet)

T2: Hosts
(kernel UDP)

T3: VM-to-VM
(inter-machine)

T4: VM-to-VM
(intra-machine)

R
ou

nd
tr

ip
 la

te
nc

y
(u

s)

Figure 5.10: Round-trip latency between two application processes.

hardware NIC with DPDK (8.22 µs) or a vport (8.82µs), thus bypassing the kernel protocol
stack. BESS adds a small latency overhead of 0.6 µs per round trip, or 0.15µs per direction
per server (one round trip involves BESS four times). We posit that the advantage of using
BESS—allowing multiple kernel-bypass and conventional TCP/IP applications to coexist
without requiring exclusive hardware access—outweighs the costs.

T2–4 shows the latency for conventional applications when using the kernel TCP/IP sup-
port, measured with the netperf UDP_RR [84] test. Surprisingly, for the non-virtualization
case (T2), the baseline (ixgbe) latency of 28.3 µs was higher than BESS’s 21.4 µs. This is
due to a limitation of 82599; when LRO is enabled, the NIC buffers incoming packets (thus
inflating latency), even if they do not require reassembly. When LRO is disabled, latency
decreases to 21.1 µs, which comes very close to that of BESS.

With server virtualization, T36, we compare BESS with virtual switching in the host
network stack (vswitch) and hardware NIC virtualization (SR-IOV). As expected, using a
vswitch incurs significant latency overhead because packets go through the slow host network
stack four times (vs. two times in T4) in a single round trip. For SR-IOV and BESS, packets
bypass the host network stack. When compared with the bare-metal case (T2), both exhibit
higher latency, because packet I/O interrupts to the VMs have to go through the host kernel.
We expect that the latency for VMs using SR-IOV and BESS will be close to bare-metal
with recent progresses in direct VM interrupt injection [36, 44], and the latency of BESS
will remain comparable to hardware NIC virtualization.

In summary, the results confirm that BESS does not add significant overhead to end-
to-end latency for both bare-metal and virtual machines. We conclude that BESS is viable
even for latency-sensitive applications.

6For completeness, we also show T4 where two VMs reside on the same physical machine.

5.6. PERFORMANCE EVALUATION 63

0

5

10

15

20

25

30

35

40

60 76 92 108 124 140 156 172 188

Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (B)

3 cores

2 cores

1 core

Figure 5.11: BESS throughput and multi-core scalability.

5.6.3 Throughput

We demonstrate that BESS sustains enough throughput on a single core to support
high-speed links and scales well on multiple cores. For the experiment, we could not use
conventional TCP/IP applications due to the low performance (roughly 700 kpps per core)
of Linux TCP/IP stack, which is not enough to saturate BESS. Instead, we write a simple
application that performs minimal forwarding (packets received from a port are forwarded
to another port) with the BESS vport raw packet interface. The application runs on a single
core and is never the bottleneck since effectively the heavy-weight packet I/O is offloaded to
BESS.

Figure 5.11 depicts the bidirectional throughput with varying packet sizes as we increase
the number of BESS cores. In the worst case with 60B minimum-sized Ethernet packets,
BESS on a single core can sustain about 27.2Mpps (18.3Gbps) for both RX and TX direc-
tions simultaneously, fully saturating our 40G link capacity with 168B packets or larger.
With multiple BESS cores, the throughput almost scales linearly. Considering the average
packet size of 850B in datacenters [16], we conclude that BESS on a single core provides
enough performance to drive a 40G link in realistic scenarios. For higher speed links (e.g.,
100Gbps for end hosts in the future) or applications with emphasis on small-packet perfor-
mance (e.g., VoIP gateway), BESS needs to run on multiple cores.

Given that the number of cores in a typical datacenter server is large (16-32 as of today)
and keeps pace with the link speed increase, we expect the required number of BESS cores for
future high-speed links will remain relatively small. We also note that this small investment
can bring huge net gain—-as we will see in the following macrobenchmarks—because BESS
effectively takes over the burden of implementing NIC features from the host network stack,
running them with much higher efficiency.

5.6.4 Application-Level Performance

We examine the performance impact of BESS on end-to-end application performance us-
ing memcached [77]. We use memaslap [3] as a load generator, with 64-byte keys, 1,024-byte
values, and 9:1 get/put request ratio. We use 10k client TCP connections, which give similar

5.6. PERFORMANCE EVALUATION 64

Throughput (ops/s) CPU usage

Bare-metal
ixgbe 593,345 945%

BESS 608,974 949%

Virtualized
vswitch 185,060 1,009%

SR-IOV 138,297 432%

BESS 344,980 1,034%

Table 5.1: Memcached throughput and its corresponding system-wide CPU usage (all 16
cores are used thus 1,600% is the maximum). The BESS cases includes its own overhead of
100%, as BESS dedicates a single core. BESS heavily boosts the performance of network
I/O under virtualization.

load to the network stack for both the baseline and BESS cases (§6.1.3). Table 5.1 shows
the system-wide CPU usage (not fully utilized because of the global lock in memcached) and
the throughput.

With virtualization, the slowpath processing of vswitch is 57% slower in terms of ef-
ficiency (i.e., CPU cycles per operation), as traffic goes through the host network stack
incurring high CPU overheads. In contrast, BESS and SR-IOV equally performs well in
terms of CPU cycles per operation by virtue of host bypass. However, the absolute through-
put of BESS is much higher than that of SR-IOV, because of the limitation of the SR-IOV
of 82599 NIC and its device driver; it only supports a single RX/TX queue pair for each
VM, severely limiting the multi-core scalability of the VM’s network stack. We suspect that
this limitation is due to the lack of native per-VM rate limiters (cf., §6.1.2). 82599 only has
single-level per-queue rate limiters, mandating use of a single queue to emulate per-VM rate
enforcement.

We note that this kind of artifacts of SR-IOV is fundamental to its design and implemen-
tation. As SR-IOV is implemented by statically partitioning the hardware NIC resources
(e.g., NIC queues), implementation of feature logics need to be physically duplicated for each
VM. Otherwise, features would be unusable by VMs or lack per-VM control. The complete
software bypass of SR-IOV imposes another flexibility issue; the hardware defines the bound-
ary what the system can do as there is no way to introduce software augmentation. The
host-based software approach does not suffer from such flexibility issues – since its behavior
is not hard limited the capability/capacity of underlying hardware NICs – although its low
performance is problematic. We address this performance issue with BESS.

65

Chapter 6

Applications of BESS

6.1 Case Study: Advanced NIC features
BESS provides an effective platform to implement a wide variety of NIC features that

are either not readily available or cannot be fully implemented in hardware, while providing
higher performance than achievable by a software implementation in host network stacks.
This section highlights the programmability and performance of BESS with various NIC
feature examples.

6.1.1 Segmentation Offloading for Tunneled Packets

Many NIC features perform protocol-dependent operations. However, the slow update
cycle of NIC hardware cannot keep up with the emergence of new protocols and their ex-
tensions. This unfortunate gap further burdens already slow host network stacks [96], or
restricts the protocol design space (e.g., MPTCP [46, 98] and STT [66]). BESS is a viable
alternative to the problem as it can be easily reprogrammed to support new protocols and
their extensions while minimizing performance overheads.

As an example, we discuss TCP segmentation offloading (TSO for sender-side segmenta-
tion and LRO for receiver-side reassembly) over tunneling protocols, such as VXLAN [72],
NVGRE [122], and Geneve [37]. These tunneling protocols are used to provide virtual net-
works for tenants over the shared physical network [66]. Most 10G NICs do not support
segmentation offloading for inner TCP frames, since they do not understand the encapsu-
lation format. While 40G NICs have begun supporting segmentation for tunneled packets,
VM traffic still has to go through the slow host network stack since NICs lack support for
encapsulating packets itself and IP forwarding (for MAC-over-IP tunneling protocols, e.g.,
VXLAN, and Geneve).

We compare TCP performance over VXLAN on two platforms: the host network stack
(Linux) and BESS. Adding VXLAN support to the regular (non-tunneled) TCP TSO/LRO
modules in BESS was trivial, requiring only 70 lines of code modification. The results
shown in Table 6.1 clearly demonstrate that segmentation onloading on BESS achieves much

6.1. CASE STUDY: ADVANCED NIC FEATURES 66

Throughput BESS QEMU Host Guest Total

Linux 14.4Gbps - - 475.2 242.6 717.8

BESS 40.0Gbps 200.0 66.6 9.8 186.1 462.4

(a) Sender-side CPU usage (%)

Throughput BESS QEMU Host Guest Total

Linux 14.4Gbps - - 771.7 387.2 1158.9

BESS 40.0Gbps 200.0 80.5 21.9 179.0 481.4

(b) Receiver-side CPU usage (%)

Table 6.1: TCP throughput and CPU usage breakdown over the VXLAN tunneling proto-
col. 32 TCP connections are generated with the netperf TCP_STREAM test, between two
VMs on separate physical servers. The current implementation of BESS injects packet I/O
interrupts through QEMU; we expect that the QEMU overheads be eliminated by injecting
interrupts directly into KVM. Overall, BESS outperforms the host network stack, by a factor
of 4.3 for TX and 6.7 for RX in terms of throughput per CPU cycle.

higher throughput at lower CPU overhead. BESS running on two cores1 was able to saturate
40Gbps, while Linux’s throughput maxed out at 14.4Gbps even when consuming more CPU
cycles. In terms of CPU efficiency, i.e., bits per cyle, BESS is 4.3× and 6.7× more efficient
than Linux for TX and RX respectively.2

We note that there is a widely held view that hardware segmentation offloading is indis-
pensable for supporting high-speed links [66, 96, 97, 98]. Interestingly, our results show that
software approaches to TSO/LRO can also support high-speed links, as long as the software
is carefully designed and implemented.

6.1.2 Scalable Rate Limiter

Many recent research proposals [9, 56, 95, 105, 114] rely on endhost-based rate enforce-
ment for fair and guaranteed bandwidth allocation in a multi-tenant datacenter. These
systems require a large number (< 1,000s) of rate limiters, far beyond the capacity of com-
modity NICs (e.g., Intel’s 82599 10G NIC supports up to 128 rate limiters, and XL710 40G

1Unlike the regular TCP TSO/LRO with which BESS can saturate 40Gbps on a single core, we needed
two BESS cores for VXLAN. This is because BESS has to calculate checksum for the inner TCP frame in
software; Intel 82599 NICs do not support checksum offloading over an arbitrary payload range.

2The asymmetry between TX and RX is due to the fact that the host network stack implements TCP
over VXLAN segmentation for the sender side [136], but reassembly at the receiver side is currently not
supported, thus overloading the host and VM network stacks with small packets.

6.1. CASE STUDY: ADVANCED NIC FEATURES 67

Per-flow rate Number of SENIC BESS
(Mbps) flows (µs) (µs)

1 1 - 0.8
1 500 7.1 1.4
1 4096 N/A 2.0
1 8192 - 6.5
10 1 0.23 1.4
10 10 0.24 1.4
10 100 1.3 1.6
10 1000 - 4.4

100 1 0.087 1.1
100 10 0.173 1.4
100 100 - 1.4
1000 1 0.161 1.1
1000 3 0.191 1.1
1000 10 - 0.6

Table 6.2: Accuracy comparison between BESS and SENIC rate limiters, with the standard
deviation of IPGs. The SENIC numbers are excerpted from their NetFPGA implementa-
tion [97, Table 3].

NIC supports 384). Software rate limiters in host network stacks (e.g., Linux tc [47]) can
scale, but their high CPU overheads hinder support for high-speed links and precise rate
enforcement [97]. We show that rate enforcement with BESS achieves both scalability and
accuracy for high-speed links.

We conduct an experiment with 1,000 concurrent UDP flows, whose target rate ranges
between 1–11Mbps with 10 kbps steps. The measured accuracy for each flow—the ratio of
the measured rate to the target—is higher than 0.9999.

Another important metric is microscopic accuracy, i.e., how evenly flows are paced at
the packet level, since precise packet burstiness control on short timescales is essential for
achieving low latency in a datacenter [53, 90]. Table 6.2 shows the standard deviation of
inter-packet gaps (IPG) measured at the receiver side. Since we collect IPG measurements
on a server, instead of using specialized measurement hardware, our IPG numbers are over-
estimated due to the receiver’s measurement error. Nevertheless, BESS achieves about 1-2 µs
standard deviation across a wide range of scenarios.

As a point of comparison3, we also show the results from SENIC [97] as a state-of-the-
art hardware NIC. The hardware-based real-time behavior allows SENIC to achieve a very
low standard deviation of 100 ns with 10 or less flows, but its IPG variation increases as
the number of flows grows. At the largest data point presented in [97, Table 3], 500 flows

3We omit the Linux tc and Intel 82599 NIC results, as they fail to sustain the aggregate throughput or
do not support enough rate limiters, respectively.

6.1. CASE STUDY: ADVANCED NIC FEATURES 68

0

200

400

600

800

1000

1200

1400

1600

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

C
PU

 u
sa

ge
 (%

)

of concurrent TCP connections

Flow Director

SoftNIC

Figure 6.1: System-wide CPU usage to sustain 1M dummy transactions per second. The
bump between 32k and 64k is due to additional TCP packets caused by delayed ACK. With
BESS, the system scales better with high concurrency.

at 1Mbps, the standard deviation of SENIC is 7.1 µs, which is higher than BESS’s 1.4µs.
This is because the packet scheduler in SENIC performs a linear scan through the token
bucket table on SRAM, requiring 5 clock cycles per active flow. While we are unaware
of whether this linear scanning is due to hardware design limitations or implementation
difficulties, BESS can achieve near-constant time with a time-sorted data structure whose
software implementation is trivial. We conclude that BESS scales well to thousands of rate
limiters, yet is fast and accurate enough for most practical purposes.

6.1.3 Packet Steering for Flow Affinity

Ensuring flow affinity—collocating TCP processing and application processing on the
same core is known to be crucial for the performance TCP-based server applications. Exist-
ing software solutions to flow affinity [42, 92] restrict the application programming model,
incurring multiple limitations: each application thread needs to be pinned to a core, connec-
tions should not be handed over among cores, and applications may require non-trivial code
modifications.

As a more general solution without these limitations, Intel 82559 NICs support a feature
called Flow Director, which maintains a flow-core mapping table so that the NIC can deliver
incoming packets to the “right core” for each flow [51]. However, the table size is limited to 8k
flow entries to fit in the scarce on-chip memory. Applications that require higher concurrency

6.1. CASE STUDY: ADVANCED NIC FEATURES 69

(e.g., front-end web servers and middleboxes often handle millions of concurrent flows) cannot
benefit from this limited flow table. In BESS, we implement a module BESS that provides
the same functionality but supports virtually unlimited flow entries by leveraging system
memory.

Figure 6.1 shows the effectiveness of Flow Director and its BESS counterpart. We use a
simple benchmark program that exchanges 512B dummy requests and responses with a fixed
rate of 1M transactions per second. We vary the number of concurrent TCP connections and
measure the total CPU usage of the system. When there are a small number of concurrent
connections, BESS’s overhead is slightly higher due to the cost of the dedicated BESS core4.
Once the number of connections exceeds 8k and the hardware flow table begins to overflow,
Flow Director exhibits higher CPU overheads due to increased cache bouncing and lock
contention among cores. In contrast, BESS shows a much more gradual increase (due to
CPU cache capacity misses) in CPU usage with high concurrency. With 1M connections,
for instance, BESS effectively saves 4.8 CPU cores, which is significant given that BESS is a
drop-in solution.

6.1.4 Scaling Legacy Applications

Many legacy applications are still single-threaded, as parallelization may require non-
trivial redesign of software. BESS can be utilized to scale single-threaded network appli-
cations, given that they do not need state to be shared across cores. We use Snort [117]
2.9.6.1, an intrusion prevention system as an example legacy application to show this scaling.
There are two requirements for scaling Snort: (i) the NIC must distribute incoming packets
across multiple Snort instances; (ii) moreover, such demultiplexing has to be done on a flow
basis, so that each instance correctly performs deep-packet inspection on every flow. While
we can meet these requirements with receive-side scaling (RSS), an existing NIC feature in
commodity hardware NICs, it is often infeasible; RSS requires that any physical ports used
by Snort not be shared with other applications.

The flexible BESS pipeline provides a straightforward mechanism for scaling Snort. BESS
provides a backwards-compatible mechanism to distribute traffic from a physical link between
multiple instances. To do this, we create a vport for each Snort instance and connect
all vports and a pport with a load balancer module. The load balancer distributes flows
across vports using the hash of the flow’s 5-tuple. With this setup, each Snort instance can
transparently receive and send packets through its vport. Figure 6.2 shows the 99th percentile
end-to-end (from a packet generator to a sink) latency, using packet traces captured at a
campus network gateway. We find that even at 500Mbps a single instance of Snort (SINGLE)
has a tail latency of approximately 366 ms, while using four Snort instances with our hash-
based loadbalancer (HASH) limits latency to 57 µs (a 6, 000× improvement).

Furthermore, BESS allows us for rapid prototyping of more advanced load balancing
schemes. We implemented an adaptive load balancer, ADAPTIVE, which tracks load at

4For a fair comparison, we always account 100% for the BESS case to reflect its busy-wait polling.
Throughout the experiment, however, the actual utilization of the BESS core was well below 100%.

6.2. RESEARCH PROJECTS BASED ON BESS 70

10

100

1000

10000

100000

0 500 1000 1500 2000

99
%

-il
e l

at
en

cy
 (u

s,
lo

g
sc

al
e)

Offered load (Mbps)

SINGLE
HASH
ADAPTIVE

Figure 6.2: Snort 99%-ile tail latency with a single instance without BESS (SINGLE), four
instances with static (HASH) and dynamic (ADAPTIVE) load balancing with BESS. Note
that the absolute low throughput is due to the application bottleneck, not BESS.

each instance and assigns new flows to the least loaded vport. As compared to HASH,
this scheme mitigates transient imbalance among instances, prevents hash-collision based
attacks [125], and retains flow stickiness upon dynamic change in number of instances. Our
current heuristic estimates the load of each port using “load points”; we assign a vport 10,000
load points for its new flow, 1,000 points per packet, and 1 point per byte. When a new
flow arrives, we assign it to the vport which accumulated the fewest load points in the last
1ms time window. The adaptive load balancer maintains a flow table for flow stickiness of
subsequent packets. ADAPTIVE performs significantly better than HASH, improving tail
latency by 5× at 1.8Gbps. We expect that implementing such a load balancing scheme in
hardware would not be as straightforward; this example demonstrates the programmability
of BESS.

6.2 Research Projects Based on BESS
The premise of BESS is to provide a highly flexible and modular framework for network

dataplane, without compromising on performance. Because of its flexibility, BESS can be an
effective building block for supporting and enhancing emerging networked systems. Many
research and commercial projects have been built on BESS, by ourselves and colleagues in
academia and industry. This section illustrates two BESS-derived research projects [88, 135]

6.2. RESEARCH PROJECTS BASED ON BESS 71

that the author of this dissertation participated in as a coauthor.

6.2.1 E2: A Framework for NFV Applications

Inspired by the benefits of cloud computing, network function virtualization (NFV) aims
to bring the greater agility and efficiency of software to the processing of network traffic.
While NFV has quickly gained significant momentum in both industry and academia alike,
a closer look under the hood reveals a less rosy picture. More specifically, the following
challenges must be addressed first to fully realize the promise of NFV:

• Orchestration: how to integrate individual NFs to compose a “service chain”?

• Automation: how to automate common management tasks, such as load balancing or
monitoring, for various types of NFs?

• Isolation: how to multiplex multiple traffic streams (from different users, or “tenants”),
while ensuring security, protection, and fair use of resources among them?

• Scalability: how to scale in/out the system elastically in response to load changes,
without disrupting quality of service?

• Utilization: how to maximize the hardware resource utilization of the system?

• Performance: how to avoid throughput/latency overheads associated with virtualiza-
tion?

E2 [88] is our proof-of-concept research system for NFV orchestration. E2 is our attempt
to develop novel, NF-agnostic methods to build a scalable NFV runtime system. E2 addresses
various common issues in NFV deployment, including: placement,elastic scaling, service
composition, resource isolation, and fault tolerance. We highlight two notable schemes we
devised and implemented in E2. First, we developed a scheduling algorithm (which NFs
should be placed where) that allows efficient resource utilization. When multiple NFs form a
compound service, individual NF instances should be placed in a way that minimizes inter-
server traffic, in order to save processor cycles and network bandwidth. Our scheme models
NF instances and their connectivity as a graph partitioning problem (NP-hard) and solves
it with a heuristic loosely based on the Kernighan-Lin algorithm. Second, we introduced
a strategy called migration avoidance. This strategy supports dynamic scaling of stateful
NFs without breaking “affinity”, where traffic for a given flow must reach the instance that
holds the state of the flow. Our scheme improves previous work with two benefits: 1) it
supports legacy NFs without any state migration support and 2) it minimizes resource usage
in hardware switches.

The E2 central controller takes a high-level “policy” graph, which is a chain of network
functions that captures how network traffic should be processed by NFs in a declarative
manner. Based on the policy graph, the controller makes scheduling decisions, such as how

6.2. RESEARCH PROJECTS BASED ON BESS 72

(a) Original policy graph, a chain of NF A and B

(b) Instance graph with split NF B

(c) Instance graph with split NF A and B

(d) Optimized instance graph

A B

A

B

B

B

B

A

A

A

A

B

B

A

A

A

A

B

B

Figure 6.3: Transformations of a high-level policy graph (a) into an instance graph (b, c, d).

6.2. RESEARCH PROJECTS BASED ON BESS 73

many physical NF instances should be deployed and what servers the NF instances should
be assigned to, as illustrated in Figure 6.3. (a) shows an example of policy graph, which
consist of a source node, logical NF nodes A and B, and a sink node. This graph represents
that incoming packets are processed by NF A first, then by B. (b) is an example “instance”
graph, where NF B requires four physical instances to handle the load. This NF split requires
distributing the input traffic (after NF A) across all instances. Similarly, in (c), NF A needs
four instances, while B needs two. In this case, the mesh between NF A instances and B
instances represents that output packets from any NF A instance may be distributed to any
instance of NF B. Assuming two servers, (d) depicts an optimal instantiation of the original
policy graph; by placing two A instances and one B instance on each server, we can eliminate
the inter-server traffic between NF A and B.

Once physical NF instances deployed across servers, they must be interconnected in a
way that certain external traffic is classified and processed along the service chain according
to the original policy graph. BESS is a central building block of the E2 dataplane, running
on each server in the E2 cluster. BESS processes all packets coming in and out from the
virtual network function instances running on the server as a gateway. The packet processing
operations done by BESS include 1) classification: determining which policy graph packets
belong to and what the next action should be, 2) load balancing: distributing packets across
physical NF instances, 3) routing: redirecting packets if they are supposed to be processed
in another server, and 4) inline NF processing: simple network functions, such as NAT and
stateless ACL functions, can be directly implemented as BESS modules and embedded in
the dataflow graph, to eliminate the packet I/O overhead imposed by VM/container virtual
ports.

For the E2 dataplane implementation, BESS was an ideal platform for multiple reasons.
First, since BESS is designed to be highly modular, any changes in the E2 dataplane for
experimental features could be easily tested and verified by combining a few new and ex-
isting BESS modules, without requiring heavy modification in BESS system itself. This
flexibility is not feasible with other purpose-built virtual switches, whose features are stat-
ically hardwired for particular functionality. Second, the BESS pipeline can be configured
in a highly streamlined manner for optimal performance. Sources of packet processing over-
heads, such as unnecessary packet checks or operations or support for unused protocols, can
be completely avoided if the E2 dataplane do not need them.

6.2.2 S6: Elastic Scaling of Stateful Network Functions

Elastic scaling, which is one of the most important benefits of NFV, is the ability to
increase or decrease the number of physical NF instances for a logical NF, in order to adapt
to changes in offered load. However, realizing elastic scaling has proven challenging due to
the fact that most NFs are stateful; NFs instances must maintain shared state, which may
be read or updated very frequently. For such stateful NFs, merely spinning up new physical
NF instances and send some portion of the traffic to them is not sufficient to guarantee
correct NF behavior. Elastic scaling must support access to shared state in a manner that

6.2. RESEARCH PROJECTS BASED ON BESS 74

Node	A
(Requester)

Node	B
(Key	owner)

Node	C
(Object	owner)

object	space

key	space where(Key1)=C

.......
get(Key1)
.......

NF	app
hash(Key1)=B

ObjectKey1
migrationable

Figure 6.4: Distributed shared object (DSO) space, where object distribution is done in two
layers: key and object layers. The key layer partitions the key space; each node keeps track
of the current location of every object in the key partition. The object layer stores the actual
binary of objects. The key layer provides indirect access to objects, allowing great flexibility
in object placement.

ensures the consistency requirements of that state are met, and at the same time, without
sacrificing NF throughput and latency. Previous work on scaling out of stateful NF have
shown limitations in performance (e.g., high packet processing latency due to remote access
or data migration), functionality (e.g., limited operation support for shared state), and/or
development complexity (e.g., requiring heavy modification to the design of existing NF
implementations).

S6 [135] is our NF development and runtime framework, to support elastic scaling of
NFs without compromising performance. Its design builds on the insight that a distributed
shared state abstraction is well-suited to the NFV context. As depicted in Figure 6.4, S6
organizes state as a distributed shared object (DSO) space and extends the DSO concept with
techniques designed to meet the need for elasticity and high-performance in NFV workloads.
S6 extends the traditional DSO scheme as follows: 1) S6 dynamically reorganizes the DSO
keyspace for space elasticity; 2) upon scaling events, state migrates in a “lazy” manner to
minimize the downtime; 3) S6 utilizes per-packet microthreads to hide the remote access
latency transparently and; 4) S6 extends the C++ syntax, so that developers can give
S6 “hints” on migration and caching strategies on a per-object basis. Each object hence
can have different consistency guarantees depending on their usage, enabling per-object
optimization with trade-off between consistency requirements and performance. S6 simplifies
NF development by hiding all the internal complexities of distributed state management
under the hood, allowing developers to focus on NF-specific application logic.

In our prototype implementation of S6, BESS BESS was used as a dataplane virtual
switch. NF instances built on S6 run in Linux containers, and BESS running in the host
interconnects the containers with the physical interfaces. In addition to providing basic con-

6.2. RESEARCH PROJECTS BASED ON BESS 75

nectivity to S6 containers, BESS performs two additional roles for the S6 system evaluation.
The extreme flexibility of BESS enables us to evaluate S6 in various what-if test scenarios
quickly and easily, without requiring any specialized hardware.

• Traffic load balancing. For evaluation of S6, we use BESS as a traffic load balancer
to distribute incoming packets across S6 containers. The load balancing scheme is
highly configurable (e.g., what packet header fields should be used for hash-based
packet distribution), and can be dynamically programmed at runtime. While S6 itself
does not require any specific behaviors or guarantees from the load balancer in the
cluster—it only assumes that the network somehow distributes input traffic across S6
instances—the programmability of BESS allows us to evaluate the effectiveness of S6
under various conditions. For example, we can test how well S6 behaves if input load
is imbalanced among S6 instances. Also, we were able to test the worst-case scenario
in terms of state access pattern, by artificially distributing packets in a way that state
has to migrate without exhibiting any data locality.

• Traffic generation. We also use BESS as a traffic generator to measure the per-
formance of the S6 cluster. BESS is configured to generate input packets to simulate
various traffic characteristics, such as number of concurrent flows, the rate of new flows,
the pattern of packet arrival, and the overall packet rate. BESS can easily achieve this
thanks to its built-in scheduler with fine-grained resource usage control over a massive
number of traffic classes. Also, BESS receives the return traffic processed by NF in-
stances and measures throughput, drop date, latency, and jitter on a per-flow basis.
Typically, these functionalities are provided by dedicated, expensive hardware traffic
generator appliances. Unlike purpose-built virtual switches, the flexibility of BESS
enabled easy addition of traffic generation and measurement features.

76

Chapter 7

Related Work

7.1 MegaPipe
A variety of work shares similar goals and/or approaches with MegaPipe in many differ-

ent contexts. Fundamentally, there are two different philosophies: incrementally improving
current solutions, or electing to take the clean-slate approach. As a clean-slate approach
with a fresh API, MegaPipe does require slight modifications to applications, but we think
these changes are justifiable given the performance improvements MegaPipe achieves, as
shown in §4. In this section, we explore the similarities and differences between MegaPipe
and existing work.

7.1.1 Scaling with Concurrency

Stateless event multiplexing APIs, such as select() or poll(), scale poorly as the
number of concurrent connections grows since applications must declare the entire interest
set of file descriptors to the kernel repeatedly. Banga et al. address this issue by introducing
stateful interest sets with incremental updates [10], and we follow the same approach in
this work with mp_(un)register(). The idea was realized with with epoll [30] in Linux
(also used as the baseline in our evaluation) and kqueue [68] in FreeBSD. Note that this
scalability issue in event delivery is orthogonal to the other scalability issue in the kernel:
VFS overhead, which is addressed by lwsocket in MegaPipe.

7.1.2 Asynchronous I/O

Like MegaPipe, Lazy Asynchronous I/O (LAIO) [27] provides an interface with com-
pletion notifications, based on “continuation”. LAIO achieves low overhead by exploiting
the fact that most I/O operations do not block. MegaPipe adopts this idea, by processing
non-blocking I/O operations immediately as explained in §5.2.

POSIX AIO defines functions for asynchronous I/O in UNIX [124]. POSIX AIO is
not particularly designed for sockets, but rather, general files. For instance, it does not

7.1. MEGAPIPE 77

have an equivalent of accept() or shutdown(). Interestingly, it also supports a form of
I/O batching: lio_listio() for AIO commands and aio_suspend() for their completion
notifications. This batching must be explicitly arranged by programmers, while MegaPipe
supports transparent batching.

Event Completion Framework [31] in Solaris and kqueue [68] in BSD expose similar inter-
faces (completion notification through a completion port) to MegaPipe (through a channel),
when they are used in conjunction with POSIX AIO. These APIs associate individual AIO
operations, not handles, with a channel to be notified. In contrast, a MegaPipe handle is
a member of a particular channel for explicit partitioning between CPU cores. Windows
IOCP [134] also has the concept of completion port and membership of handles. In IOCP,
I/O commands are not batched, and handles are still shared by all CPU cores, rather than
partitioned as lwsockets.

7.1.3 System Call Batching

While MegaPipe’s batching was inspired by FlexSC [118, 119], the main focus of MegaPipe
is I/O, not general system calls. FlexSC batches synchronous system call requests via asyn-
chronous channels (syscall pages), while MegaPipe batches asynchronous I/O requests via
synchronous channels (with traditional exception-based system calls). Loose coupling be-
tween system call invocation and its execution in FlexSC may lead poor cache locality on
multi-core systems; for example, the send() system call invoked from one core may be exe-
cuted on another, inducing expensive cache migration during the copy of the message buffer
from user to kernel space. Compared with FlexSC, MegaPipe explicitly partitions cores to
make sure that all processing of a flow is contained within a single core.

netmap [103] extensively use batching to amortize the cost of system calls, for high-
performance, user-level packet I/O. MegaPipe follows the same approach, but its focus is
generic I/O rather than raw sockets for low-level packet I/O.

7.1.4 Kernel-Level Network Applications

Some network applications are partly implemented in the kernel, tightly coupling performance-
critical sections to the TCP/IP stack [57]. While this improves performance, it comes at a
price of limited security, reliability, programmability, and portability. MegaPipe gives user
applications lightweight mechanisms to interact with the TCP/IP stack for similar perfor-
mance advantages, while retaining the benefits of user-level programming.

7.1.5 Multi-Core Scalability

Past research has shown that partitioning cores is critical for linear scalability of network
I/O on multi-core systems [19, 20, 91, 128]. The main ideas are to maintain flow affinity
and minimize unnecessary sharing between cores. In §3.3.4, we addressed the similarities
and differences between Affinity-Accept [91] and MegaPipe. In [20], the authors address the

7.2. BESS 78

scalability issues in VFS, namely inode and dentry, in the general context. We showed in
§3.3.4 that the VFS overhead can be completely bypassed for network sockets in most cases.

The Chronos [59] work explores the case of direct coupling between NIC queues and
application threads, in the context of multi-queue NIC and multi-core CPU environments.
Unlike MegaPipe, Chronos bypasses the kernel, exposing NIC queues directly to user-space
memory. While this does avoid in-kernel latency/scalability issues, it also loses the generality
of TCP connection handling which is traditionally provided by the kernel.

7.1.6 Similarities in Abstraction

Common Communication Interface (CCI) [8] defines a portable interface to support var-
ious transports and network technologies, such as Infiniband and Cray’s Gemini. While
CCI and MegaPipe have different contexts in mind (user-level message-passing in HPC vs.
general sockets via the kernel network stack), both have very similar interfaces. For exam-
ple, CCI provides the endpoint abstraction as a channel between a virtual network instance
and an application. Asynchronous I/O commands and notifications are passed through the
channel with similar API semantics (e.g., cci_get_event()/cci_send() corresponding to
mp_dispatch()/mp_write()).

The channel abstraction of MegaPipe shares some similarities with Mach port [2] and
other IPC mechanisms in microkernel designs, as it forms queues for typed messages (I/O
commands and notifications in MegaPipe) between subsystems. Especially, Barrelfish [11]
leverages message passing (rather than sharing) based on event-driven programming model
to solve scalability issues, while its focus is mostly on inter-core communication rather than
strict intra-core communication in MegaPipe.

7.2 BESS

7.2.1 Click

The modular packet processing pipeline of BESS is inspired by the Click modular router [65].
We briefly discuss how we adapt Click’s design for BESS. In general, Click’s elements are
defined in a much more fine-grained manner, e.g., the Strip element removes a specified
number of bytes from the packet, while BESS modules embody entire NIC functions (e.g.,
switching is a single module). We chose to go with relatively coarse-grained modules be-
cause frequent transitions among modules has a significant impact on performance—small,
dynamic modules provide compilers with limited optimization opportunities.

Furthermore, in BESS we assume that each module internally implements its own queues
as necessary, whereas Click’s scheduling is centered around providing explicit queues in the
pipeline. This design choice simplifies our scheduling. The absence of explicit queues greatly
streamlines packet processing in BESS; it can simply pick a traffic class and process packets
using run to completion, without having to deal with “push” and “poll” calls as in Click.
Another advantage of forgoing explicit queues is scalability. For example, in Click, supporting

7.2. BESS 79

1,000 rate limiters requires there be 1,000 explicit queues and token bucket elements in the
dataflow graph, requiring the scheduler to consider all of these elements individually. In
contrast, with the rate limiter of BESS (§6.1.2), the scheduler only needs to pick a traffic
class to serve, simplifying the decision making.

For CPU scheduling, Click executes elements with weighted round-robin, enforcing fair-
ness in terms of the number of executions. This is not a meaningful measure for either
bandwidth (packet sizes differ) or processor time (packets may consume vastly different
CPU cycles). We extend this scheduling model with explicit traffic class support, fixed pri-
ority, hierarchical composition, and accurate resource usage accounting. These extensions
enable BESS to provide high-level performance isolation and guarantees across applications.

7.2.2 High-performance packet I/O

Efficient packet I/O is one of the most important enabling function of BESS, to implement
its “fast-path” packet processing pipeline. BESS heavily relies on the recent advances in this
area [24, 34, 41, 48, 103], such as batched packet I/O to save CPU cycles and reduce the
cost of PCIe access, minimization of per-packet overhead on critical path, use of hugepages,
lightweight packet buffers, busy-wait polling on dedicated cores, and bypassing operating
system kernel.

7.2.3 Hardware support for virtual network I/O

The low performance of software-based virtual network I/O has received much atten-
tion [78, 107, 109, 129]. IOMMU-enabled servers allows VM guests to access the NIC hard-
ware directly [15], to bypass the hypervisor network stack without compromising security.
On top of IOMMU, NICs with the SR-IOV feature expose the hardware slices to guests, al-
lowing them to share the same NIC [25]. While this hypervisor-bypass approach can achieve
near native performance, its applicability is quite limited, especially in the context of multi-
tenant datacenters, due to the rudimentary switching capability [99] and restricted means
of traffic policy enforcement (e.g., rate limiting [114], tunneling [66], and security filtering)
of commodity NIC hardware.

We showed this trade-off in virtual network I/O between flexibility and performance is not
fundamental. Note that many previous research papers have presumed that hardware-based
NIC virtualization is the necessary norm and urged NIC vendors to implement their specific
requirements (e.g., [60, 93, 96, 114]), but we argued that it is very unlikely to be timely.
Our results indicate that software-based virtual network I/O can achieve both flexibility and
performance, with careful design and implementation of software fast-path.

7.2.4 Smart NICs

Given the central role of networking in datacenter computing, the capability of NICs
(especially in the virtualization context) have recently drawn significant attention. Many

7.2. BESS 80

previous research projects (e.g., sNICh [100], BMGNIC [82], FasTrak [96], Arrakis [93]) have
suggested to augment some specific features to hardware NICs for additional functionalities
or higher performance. We showed that BESS can implement many sophisticated features
in software with little performance impact, even if we assume minimal hardware supports.

Concerning flexibility, there are commercial/research NICs that incorporate low-power
processors or FPGA, which thus can be used as programmable NICs [6, 28, 70, 110, 120].
BESS on general-purpose processors has several advantages over those programmable hard-
ware NICs: higher visibility and controllability without vendor/model specifics, elasticity in
computation power provisioning, and easier development.

7.2.5 Ideal hardware NIC model

Although BESS can coexist with existing hardware NICs, an important benefit of the
modular design is that BESS could act as an enabler for improved NIC designs in the long
term. While there is growing consensus on exploiting NIC resources [115, 116], the interface
and implementation of black-box (e.g., “do checksum for this SCTP packet”) features of recent
NIC hardware present difficulties. We argue that NICs should instead offer components (e.g.,
“calculate checksum for this payload range with CRC32 and update the result here”), so that
BESS can offload a subset of dataflow graph to the hardware NIC, by compounding small
yet reusable hardware building blocks into complete features. In this way, NICs can provide
fine-grained behavior control, better state visibility, future proofness. We expect that the
P4 [18] work can be a good starting point for this ideal NIC model.

7.2.6 Alternative approaches

BESS has several benefits over other approaches. Implementing network dataplane in
legacy network stacks is slow, which is why hardware approaches gained popularity in the
first place. Another alternative is to make the hardware more programmable (e.g., FPGA [70,
110] and network processors [111]). However, the degree of programmability is still limited
as compared to software on commodity servers, and hardware resource limitations still ap-
ply. Having a general-purpose processor on the NIC card, as a bump-in-the-wire, would be
another option that is similar in spirit to BESS. We argue that BESS’s approach (reusing
existing server resources) is superior, in terms of efficiency/elasticity of resources and main-
taining a global view of system.

81

Chapter 8

Concluding Remarks

In this dissertation we have presented two systems, MegaPipe (Chapter 3) and BESS
(Chapter 5). The former targets at a more traditional application of network software:
network server applications running on endhosts. Server applications utilize the socket ab-
straction, rather than directly dealing with raw packets, to communicate with clients. The
latter focuses on a recently emerging application: software-based network functions running
in-network. Network functions process network traffic at the packet level. Overall, MegaPipe
and BESS represent higher-layer and lower-layer of the network stack respectively. One in-
teresting avenue for future work is vertical integration of MegaPipe and BESS, so that the
network stack can be truly programmable across all the layers, while providing optimal
performance comparable to specialized, fixed-function network stack implementations.

Going forward, we believe that the techniques developed in the both systems as shown in
this dissertation would be a practical guide to building software packet processing systems.
The source code of MegaPipe and BESS have been publicly released for the academic and
industry communities as an open source project under a BSD license. We expect that they
can be a useful foundation for both researchers and systems developers to build upon.

82

Bibliography

[1] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin Don-
nelly. “Symbiotic Routing in Future Data Centers”. In: ACM SIGCOMM. 2010.

[2] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young. “Mach: A New Kernel Foundation For UNIX Devel-
opment”. In: Proceedings of USENIX Summer. 1986.

[3] Brian Aker. memaslap: Load testing and benchmarking a server. http : / / docs .
libmemcached.org/memaslap.html. 2012.

[4] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. “Less is More: Trading a Little Bandwidth for Ultra-low Latency
in the Data Center”. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI). San Jose, CA, 2012.

[5] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. “pFabric: Minimal Near-Optimal Datacenter
Transport”. In: ACM SIGCOMM. 2013.

[6] Muhammad Bilal Anwer, Murtaza Motiwala, Mukarram bin Tariq, and Nick Feam-
ster. “SwitchBlade: A Platform for Rapid Deployment of Network Protocols on Pro-
grammable Hardware”. In: ACM SIGCOMM. 2010.

[7] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concurrent
Programming in Erlang. Second. Prentice Hall, 1996.

[8] Scott Atchley, David Dillow, Galen Shipman, Patrick Geoffray, Jeffrey M. Squyres,
George Bosilca, and Ronald Minnich. “The Common Communication Interface (CCI)”.
In: Proceedings of IEEE HOTI. 2011.

[9] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. “Towards Pre-
dictable Datacenter Networks”. In: ACM SIGCOMM. 2011.

[10] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. “A Scalable and Explicit Event
Delivery Mechanism for UNIX”. In: Proceedings of USENIX Annual Technical Con-
ference (ATC). 1999.

http://docs.libmemcached.org/memaslap.html
http://docs.libmemcached.org/memaslap.html

BIBLIOGRAPHY 83

[11] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. “The Mul-
tikernel: A new OS architecture for scalable multicore systems”. In: Proceedings of
ACM Symposium on Operating Systems Principles (SOSP). 2009.

[12] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. “The mul-
tikernel: a new OS architecture for scalable multicore systems”. In: Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. ACM. 2009, pp. 29–
44.

[13] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.
“Capriccio: Scalable Threads for Internet Services”. In: Proceedings of ACM Sympo-
sium on Operating Systems Principles (SOSP). 2003.

[14] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. “IX: A Protected Dataplane Operating System for High Through-
put and Low Latency”. In: USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2014.

[15] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis Bruemmer,
and Leendert Van Doorn. “The Price of Safety: Evaluating IOMMU Performance”.
In: Ottawa Linux Symposium. 2007.

[16] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. “Understanding
data center traffic characteristics”. In: ACM SIGCOMM Computer Communication
Review (CCR) 40.1 (2010), pp. 92–99.

[17] Denis Bilenko. gevent: A coroutine-based network library for Python. http://www.
gevent.org/.

[18] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford,
Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker.
“P4: Programming Protocol-Independent Packet Processors”. In: ACM SIGCOMM
Computer Communication Review (CCR) 44.3 (2014), pp. 87–95.

[19] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek, Robert
Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and Zheng
Zhang. “Corey: An Operating System for Many Cores”. In: Proceedings of USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 2008.

[20] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. “An Analysis of Linux Scalability
to Many Cores”. In: Proceedings of USENIX Symposium on Operating Systems Design
and Implementation (OSDI). 2010.

[21] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
“Non-scalable locks are dangerous”. In: Proceedings of the Linux Symposium. 2012.

http://www.gevent.org/
http://www.gevent.org/

BIBLIOGRAPHY 84

[22] B. Briscoe. Tunnelling of Explicit Congestion Notification. RFC 6040. Nov. 2010,
pp. 1–35. url: http://tools.ietf.org/html/rfc6040.

[23] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz.
“CPU DB: Recording Microprocessor History”. In: Commun. ACM 55.4 (Apr. 2012),
pp. 55–63. issn: 0001-0782. doi: 10.1145/2133806.2133822. url: http://doi.
acm.org/10.1145/2133806.2133822.

[24] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall, Gian-
luca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. “RouteBricks:
Exploiting Parallelism to Scale Software Routers”. In: ACM Symposium on Operating
Systems Principles (SOSP). 2009.

[25] Yaozu Dong, Xiaowei Yang, Li Xiaoyong, Jianhui Li, Haibin Guan, and Kun Tian.
“High Performance Network Virtualization with SR-IOV”. In: IEEE HPCA. 2012.

[26] Norbert Egi, Mihai Dobrescu, Jianqing Du, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, Laurent Mathy, et
al. Understanding the Packet Processing Capability of Multi-Core Servers. Tech. rep.
LABOS-REPORT-2009-001. EPFL, Switzerland, Feb. 2009.

[27] Khaled Elmeleegy, Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. “Lazy
Asynchronous I/O For Event-Driven Servers”. In: Proceedings of USENIX Annual
Technical Conference (ATC). 2004.

[28] Emulex. http://www.emulex.com.

[29] Ralf S. Engelschall. “Portable Multithreading - The Signal Stack Trick for User-Space
Thread Creation”. In: Proceedings of USENIX Annual Technical Conference (ATC).
2000.

[30] epoll - I/O event notification facility. http://www.kernel.org/doc/man-pages/
online/pages/man4/epoll.4.html. 2010.

[31] Event Completion Framework for Solaris. http://developers.sun.com/solaris/
articles/event_completion.html.

[32] Mohammad Al-Fares, Khaled Elmeleegy, Benjamin Reed, and Igor Gashinsky. “Over-
clocking the Yahoo! CDN for Faster Web Page Loads”. In: Proceedings of ACM IMC.
2011.

[33] Mario Flajslik and Mendel Rosenblum. “Network Interface Design for Low Latency
Request-Response Protocols”. In: USENIX Annual Technical Conference (ATC). 2013.

[34] Francesco Fusco and Luca Deri. “High Speed Network Traffic Analysis with Com-
modity Multi-Core Systems”. In: ACM IMC. 2010.

[35] Peter X Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit
Agarwal, Sylvia Ratnasamy, and Scott Shenker. “Network requirements for resource
disaggregation”. In: 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16). 2016, pp. 249–264.

http://tools.ietf.org/html/rfc6040
https://doi.org/10.1145/2133806.2133822
http://doi.acm.org/10.1145/2133806.2133822
http://doi.acm.org/10.1145/2133806.2133822
http://www.emulex.com
http://www.kernel.org/doc/man-pages/online/pages/man4/epoll.4.html
http://www.kernel.org/doc/man-pages/online/pages/man4/epoll.4.html
http://developers.sun.com/solaris/articles/event_completion.html
http://developers.sun.com/solaris/articles/event_completion.html

BIBLIOGRAPHY 85

[36] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf
Schuster, and Dan Tsafrir. “ELI: Bare-Metal Performance for I/O Virtualization”. In:
ACM Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2012.

[37] J. Gross, T. Sridhar, P. Garg, C. Wright, and I. Ganga. Geneve: Generic Network
Virtualization Encapsulation. IETF draft, http://tools.ietf.org/html/draft-
gross-geneve-00.

[38] gRPC: A high performance, open-source universal RPC framework. https://grpc.
io, retreived 05/01/2018.

[39] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi, and Scott
Shenker. “Network support for resource disaggregation in next-generation datacen-
ters”. In: Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks.
ACM. 2013, p. 10.

[40] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and Sylvia
Ratnasamy. SoftNIC: A Software NIC to Augment Hardware. Tech. rep. UCB/EECS-
2015-155. EECS Department, University of California, Berkeley, May 2015.

[41] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. “PacketShader: a GPU-
Accelerated Software Router”. In: ACM SIGCOMM. 2010.

[42] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. “MegaPipe:
A New Programming Interface for Scalable Network I/O.” In: USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 2012.

[43] Sangjin Han and Sylvia Ratnasamy. “Large-Scale Computation Not at the Cost of Ex-
pressiveness”. In: Presented as part of the 14th Workshop on Hot Topics in Operating
Systems. 2013.

[44] Nadav Har’El, Abel Gordon, Alex Landau, Muli Ben-Yehuda, Avishay Traeger, and
Razya Ladelsky. “Efficient and Scalable Paravirtual I/O System”. In: USENIX Annual
Technical Conference (ATC). 2013.

[45] Tom Herbert. RPS: Receive Packet Steering. http://lwn.net/Articles/361440/.
2009.

[46] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley,
and Hideyuki Tokuda. “Is It Still Possible to Extend TCP?” In: ACM IMC. 2011.

[47] Bert Hubert. Linux Advanced Routing and Traffic Control. http://www.lartc.org.

[48] Intel. Data Plane Development Kit (DPDK). http://dpdk.org.

[49] Intel 10 Gigabit Ethernet Adapter. http://e1000.sourceforge.net/.

[50] Intel 8259x 10G Ethernet Controller. Intel 82599 10 GbE Controller Datasheet. 2009.

[51] Intel 8259x 10G Ethernet Controller. Intel 82599 10GbE Controller Datasheet. 2009.

http://tools.ietf.org/html/draft-gross-geneve-00
http://tools.ietf.org/html/draft-gross-geneve-00
https://grpc.io
https://grpc.io
http://lwn.net/Articles/361440/
http://www.lartc.org
http://dpdk.org
http://e1000.sourceforge.net/

BIBLIOGRAPHY 86

[52] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. “Dryad:
distributed data-parallel programs from sequential building blocks”. In: ACM SIGOPS
operating systems review. Vol. 41. 3. ACM. 2007, pp. 59–72.

[53] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. Silo: Predictable
Message Completion Time in the Cloud. Tech. rep. MSR-TR-2013-95. Sept. 2013.
url: http://research.microsoft.com/apps/pubs/default.aspx?id=201418.

[54] EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm,
Dongsu Han, and KyoungSoo Park. “mTCP: A Highly Scalable User-level TCP Stack
for Multicore Systems”. In: USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 2014.

[55] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim, and
David Mazières. “Millions of Little Minions: Using Packets for Low Latency Network
Programming and Visibility”. In: ACM SIGCOMM. 2014.

[56] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazieres, Balaji Prabhakar,
Changhoon Kim, and Albert Greenberg. “EyeQ: Practical network performance iso-
lation at the edge”. In: USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI). 2013.

[57] Philippe Joubert, Robert B. King, Rich Neves, Mark Russinovich, and John M.
Tracey. “High-Performance Memory-Based Web Servers: Kernel and User-Space Per-
formance”. In: Proceedings of USENIX Annual Technical Conference (ATC). 2001.

[58] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G. Andersen. “Raising the
Bar for Using GPUs in Software Packet Processing”. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 2015.

[59] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Vahdat
Amin. Reducing Datacenter Application Latency with Endhost NIC Support. Tech.
rep. CS2012-0977. UCSD, 2012.

[60] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M Voelker, and Amin Vah-
dat. “Chronos: Predictable Low Latency for Data Center Applications”. In: ACM
Symposium on Cloud Computing (SoCC). 2012.

[61] J. Kempf and R. Austein. The Rise of the Middle and the Future of End-to-End:
Reflections on the Evolution of the Internet Architecture. RFC 3724. Mar. 2004. url:
http://tools.ietf.org/html/rfc3724.

[62] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo Park, and Sue Moon. “The Power
of Batching in the Click Modular Router”. In: ACM APSys. 2012.

[63] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and Sue Moon.
“NBA (Network Balancing Act): A High-performance Packet Processing Framework
for Heterogeneous Processors”. In: ACM European Conference on Computer Sys-
tems(EuroSys). 2015.

http://research.microsoft.com/apps/pubs/default.aspx?id=201418
http://tools.ietf.org/html/rfc3724

BIBLIOGRAPHY 87

[64] S.R. Kleiman. “Vnodes: An Architecture for Multiple File System Types in Sun
UNIX”. In: Proceedings of USENIX Summer. 1986.

[65] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
“The Click modular router”. In: 18.3 (Aug. 2000), pp. 263–297.

[66] Teemu Koponen et al. “Network Virtualization in Multi-tenant Datacenters”. In:
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
2014.

[67] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. “Events Can Make Sense”.
In: Proceedings of USENIX Annual Technical Conference (ATC). 2007.

[68] Jonathan Lemon. “Kqueue: A generic and scalable event notification facility”. In:
Proceedings of USENIX Annual Technical Conference (ATC). 2001.

[69] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky. “MICA: A
Holistic Approach to Fast In-Memory Key-Value Storage”. In: USENIX Symposium
on Networked Systems Design and Implementation (NSDI). 2014.

[70] John W Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. “NetFPGA: An Open Platform
for Gigabit-Rate Network Switching and Routing”. In: IEEE MSE. 2007.

[71] Cameron Macdonell. “Shared-Memory Optimizations for Virtual Machines”. PhD the-
sis. University of Alberta, 2011.

[72] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell,
and C. Wright. VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks. IETF draft, http : / / tools . ietf . org / html / draft -
mahalingam-dutt-dcops-vxlan-09.

[73] Ilias Marinos, Robert NM Watson, and Mark Handley. “Network Stack Specialization
for Performance”. In: ACM SIGCOMM. 2014.

[74] Ilias Marinos, Robert NM Watson, and Mark Handley. “Network Stack Specialization
for Performance”. In: ACM SIGCOMM. 2014.

[75] Nick Mathewson and Niels Provos. libevent - an event notification library. http:
//libevent.org.

[76] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: Enabling Innova-
tion in Campus Networks”. In: ACM SIGCOMM Computer Communication Review
(CCR) 38.2 (2008), pp. 69–74.

[77] memcached - a distributed memory object caching system. http://memcached.org/.

[78] Aravind Menon, Alan L Cox, and Willy Zwaenepoel. “Optimizing Network Virtual-
ization in Xen”. In: USENIX Annual Technical Conference (ATC). 2006.

http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-09
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-09
http://libevent.org
http://libevent.org
http://memcached.org/

BIBLIOGRAPHY 88

[79] Maged M Michael and Michael L Scott. “Simple, Fast, and Practical Non-Blocking
and Blocking Concurrent Queue Algorithms”. In: ACM PODC. 1996.

[80] Bosko Milekic. “Network Buffer Allocation in the FreeBSD Operating System”. In:
BSDCAN. 2004.

[81] Jeffrey C Mogul. “TCP offload is a dumb idea whose time has come”. In: USENIX
Workshop on Hot Topics in Operating Systems (HotOS). 2013.

[82] Jeffrey C. Mogul, Jayaram Mudigonda, Jose Renato Santos, and Yoshio Turner. “The
NIC Is the Hypervisor: Bare-Metal Guests in IaaS Clouds”. In: USENIX Workshop
on Hot Topics in Operating Systems (HotOS). 2013.

[83] JEFFREY C MOGUL and KK RAMAKRISHNAN. “Eliminating Receive Livelock in
an Interrupt-Driven Kernel”. In: ACM Transactions on Computer Systems (TOCS)
15.3 (1997), pp. 217–252.

[84] Netperf network benchmark software. http://netperf.org.

[85] Node.js: an event-driven I/O server-side JavaScript environment. http://nodejs.
org.

[86] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-
erich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar, Mendel
Rosenblum, Stephen M. Rumble, Eric Stratmann, and Stutsman Ryan. “The Case
for RAMClouds: Scalable High-Performance Storage Entirely in DRAM”. In: ACM
SIGOPS Operating Systems Review 43.4 (2010), pp. 92–105.

[87] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. “Flash: An Efficient and Portable
Web Server”. In: Proceedings of USENIX Annual Technical Conference (ATC). 1999.

[88] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Rat-
nasamy, Luigi Rizzo, and Scott Shenker. “E2: A Framework for NFV Applications”.
In: Symposium on Operating Systems Principles (SOSP). 2015.

[89] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and Scott
Shenker. “NetBricks: Taking the V out of {NFV}”. In: 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16). 2016, pp. 203–216.

[90] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. “Fastpass: A Centralized "Zero-queue" Datacenter Network”. In: ACM SIG-
COMM. 2014.

[91] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. “Improv-
ing Network Connection Locality on Multicore Systems”. In: Proceedings of ACM
European Conference on Computer Systems(EuroSys). 2012.

[92] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. “Improv-
ing Network Connection Locality on Multicore Systems”. In: Proceedings of ACM
European Conference on Computer Systems(EuroSys). 2012.

http://netperf.org
http://nodejs.org
http://nodejs.org

BIBLIOGRAPHY 89

[93] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krish-
namurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The Operating System
is the Control Plane. Tech. rep. UW-CSE-13-10-01. University of Washington, May
2014.

[94] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-
jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martín Casado. “The Design and Implementation of Open vSwitch”. In: USENIX
Symposium on Networked Systems Design and Implementation (NSDI). 2015.

[95] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C Mogul, and Yoshio
Turner Jose Renato Santos. “ElasticSwitch: Practical Work-Conserving Bandwidth
Guarantees for Cloud Computing”. In: ACM SIGCOMM. 2013.

[96] Radhika Niranjan Mysore George Porter and Amin Vahdat. “FasTrak: Enabling Ex-
press Lanes in Multi-Tenant Data Centers”. In: ACM CoNEXT. 2013.

[97] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
George Porter, and Amin Vahdat. “SENIC: Scalable NIC for End-Host Rate Lim-
iting”. In: USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 2014.

[98] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fabien
Duchene, Olivier Bonaventure, Mark Handley, et al. “How Hard Can It Be? Design-
ing and Implementing a Deployable Multipath TCP”. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 2012.

[99] Kaushik Kumar Ram, Alan L Cox, Mehul Chadha, Scott Rixner, Thomas W Barr, Re-
becca Smith, and Scott Rixner. “Hyper-Switch: A Scalable Software Virtual Switching
Architecture”. In: USENIX Annual Technical Conference (ATC). 2013.

[100] Kaushik Kumar Ram, Jayaram Mudigonda, Alan L Cox, Scott Rixner, Parthasarathy
Ranganathan, and Jose Renato Santos. “sNICh: Efficient Last Hop Networking in
the Data Center”. In: ACM/IEEE Symposium on Architectures for Networking and
Communication Systems (ANCS). 2010.

[101] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion No-
tification (ECN) to IP. RFC 3168. Sept. 2001, pp. 1–62. url: http://tools.ietf.
org/html/rfc3168.

[102] Receive-Side Scaling. http://www.microsoft.com/whdc/device/network/ndis_
rss.mspx. 2008.

[103] Luigi Rizzo. “netmap: a novel framework for fast packet I/O”. In: Proceedings of
USENIX Annual Technical Conference (ATC). 2012.

[104] Luigi Rizzo and Giuseppe Lettieri. “VALE: a Switched Ethernet for Virtual Machines”.
In: ACM CoNEXT. 2012.

http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168
http://www.microsoft.com/whdc/device/network/ndis_rss.mspx
http://www.microsoft.com/whdc/device/network/ndis_rss.mspx

BIBLIOGRAPHY 90

[105] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgival
Guedes. “Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter
Networks”. In: USENIX WIOV. 2011.

[106] Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and John K
Ousterhout. “It’s Time for Low Latency”. In: USENIX Workshop on Hot Topics in
Operating Systems (HotOS). 2011.

[107] Rusty Russell. “virtio: Towards a De-Facto Standard for Virtual I/O Devices”. In:
ACM Operating Systems Review 42.5 (2008), pp. 95–103.

[108] Jerome H Saltzer, David P Reed, and David D Clark. “End-to-end arguments in
system design”. In: ACM Transactions on Computer Systems (TOCS) 2.4 (1984),
pp. 277–288.

[109] Jose Renato Santos, Yoshio Turner, G John Janakiraman, and Ian Pratt. “Bridg-
ing the Gap between Software and Hardware Techniques for I/O Virtualization”. In:
USENIX Annual Technical Conference (ATC). 2008.

[110] Jeffrey Shafer and Scott Rixner. “RiceNIC: A Reconfigurable Network Interface for
Experimental Research and Education”. In: ACM ExpCS. 2007.

[111] Niraj Shah. “Understanding Network Processors”. MA thesis. University of California,
Berkeley, 2001.

[112] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster, Nick
McKeown, and Jennifer Rexford. “PISCES: A Programmable, Protocol-Independent
Software Switch”. In: Proceedings of the 2016 ACM SIGCOMM Conference. ACM.
2016, pp. 525–538.

[113] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Ratnasamy,
and Vyas Sekar. “Making Middleboxes Someone Else’s Problem: Network Processing
as a Cloud Service”. In: SIGCOMM. 2012.

[114] Alan Shieh, Srikanth Kandula, Albert G Greenberg, Changhoon Kim, and Bikas Saha.
“Sharing the Data Center Network”. In: USENIX Symposium on Networked Systems
Design and Implementation (NSDI). 2011.

[115] Pravin Shinde, Antoine Kaufmann, Kornilios Kourtis, and Timothy Roscoe. “Model-
ing NICs with Unicorn”. In: ACM Workshop on Programming Languages and Oper-
ating Systems (PLOS). 2013.

[116] Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaestle. “We Need
to Talk About NICs”. In: USENIX Workshop on Hot Topics in Operating Systems
(HotOS). 2013.

[117] Snort Intrusion Detection System. https://snort.org.

[118] Livio Soares and Michael Stumm. “Exception-Less System Calls for Event-Driven
Servers”. In: Proceedings of USENIX Annual Technical Conference (ATC). 2011.

https://snort.org

BIBLIOGRAPHY 91

[119] Livio Soares and Michael Stumm. “FlexSC: Flexible System Call Scheduling with
Exception-Less System Calls”. In: Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 2010.

[120] Solarflare Communications. http://www.solarflare.com.

[121] SPECweb2009 Release 1.20 Support Workload Design Document. http://www.spec.
org/web2009/docs/design/SupportDesign.html. 2010.

[122] M. Sridharan, A. Greenberg, Y. Wang, P. Gard, N.Venkataramiah, K. Duda, I. Ganga,
G. Lin, M. Pearson, P. Thaler, and C. Tumuluri. NVGRE: Network Virtualization
using Generic Routing Encapsulation. IETF draft, http://tools.ietf.org/html/
draft-sridharan-virtualization-nvgre-04.

[123] Igor Sysoev. nginx web server. http://nginx.org/.

[124] The Open Group Base Specifications Issue 7. http : / / pubs . opengroup . org /
onlinepubs/9699919799/. 2008.

[125] R Joshua Tobin and David Malone. “Hash Pile Ups: Using Collisions to Identify
Unknown Hash Functions”. In: IEEE CRiSIS. 2012.

[126] Transactional Synchronization in Haswell. https : / / software . intel . com / en -
us/blogs/2012/02/07/transactional-synchronization-in-haswell, retreived
05/01/2018.

[127] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. “Simultaneous Multithreading:
Maximizing On-chip Parallelism”. In: Proceedings of the 22Nd Annual International
Symposium on Computer Architecture. ISCA ’95. S. Margherita Ligure, Italy: ACM,
1995, pp. 392–403. isbn: 0-89791-698-0. doi: 10.1145/223982.224449. url: http:
//doi.acm.org/10.1145/223982.224449.

[128] Bryan Veal and Annie Foong. “Performance Scalability of a Multi-Core Web Server”.
In: Proceedings of ACM/IEEE Symposium on Architectures for Networking and Com-
munication Systems (ANCS). 2007.

[129] VMware. Performance Evaluation of VMXNET3 Virtual Network Device. http://
http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf.

[130] Vector Packet Processing. https://wiki.fd.io/view/VPP, retreived 05/01/2018.

[131] Carl A Waldspurger and William E Weihl. Stride Scheduling: Deterministic Propor-
tional Share Resource Management. Massachusetts Institute of Technology. Labora-
tory for Computer Science, 1995.

[132] Matt Welsh, David Culler, and Eric Brewer. “SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services”. In: Proceedings of ACM Symposium on Op-
erating Systems Principles (SOSP). 2001.

[133] Paul Willmann, Scott Rixner, and Alan L Cox. “An Evaluation of Network Stack
Parallelization Strategies in Modern Operating Systems”. In: USENIX ATC. 2006.

http://www.solarflare.com
http://www.spec.org/web2009/docs/design/SupportDesign.html
http://www.spec.org/web2009/docs/design/SupportDesign.html
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-04
http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-04
http://nginx.org/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://doi.org/10.1145/223982.224449
http://doi.acm.org/10.1145/223982.224449
http://doi.acm.org/10.1145/223982.224449
http://http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf
http://http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf
https://wiki.fd.io/view/VPP

BIBLIOGRAPHY 92

[134] Windows I/O Completion Ports. http://msdn.microsoft.com/en-us/library/
windows/desktop/aa365198(v=vs.85).aspx. 2012.

[135] Shinae Woo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy, and Scott
Shenker. “Elastic scaling of stateful network functions”. In: 15th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 18). 2018, pp. 299–
312.

[136] Xerbert Xu. Generic Segmentation Offload. http://lwn.net/Articles/188489/.

[137] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. “Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing”. In:
Proceedings of the 9th USENIX conference on Networked Systems Design and Imple-
mentation. USENIX Association. 2012.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx
http://lwn.net/Articles/188489/

	List of Figures
	List of Tables
	Introduction
	Summary of Contributions
	Outline and Previously Published Work
	Research Projects Not Included in This Dissertation

	Background
	Packet Processing under Multi-Core Environments
	Virtualization (of Everything)
	Network Stack Specialization

	MegaPipe: A New Programming Interface for Scalable Network I/O
	Introduction
	Motivation
	Sources of Performance Inefficiency
	Performance of Message-Oriented Workloads

	Design
	Scope and Design Goals
	Completion Notification Model
	Architectural Overview
	Design Components
	Application Programming Interface
	Discussion: Thread-Based Servers

	Implementation
	Kernel Implementation
	User-Level Library

	Evaluation
	Multi-Core Scalability
	Breakdown of Performance Improvement
	Impact of Message Size

	Conclusion

	Applications of MegaPipe
	Adopting Existing Server Applications
	Porting memcached
	Porting nginx

	Macrobenchmark: memcached
	Macrobenchmark: nginx

	BESS: A Modular Framework for Extensible Network Dataplane
	Motivation
	Software-Augmented Network Interface Card
	Hypervisor Virtual Switch
	Network Functions

	BESS Design Overview
	Design Goals
	Overall Architecture
	Modular Packet Processing Pipeline

	Dynamic Packet Metadata
	Problem: Metadata Bloat
	Metadata Support in BESS
	Attribute-Offset Assignment

	Resource Scheduling for Performance Guarantees
	Implementation Details
	Overview
	Core Dedication
	Pipeline Components
	BESS Scheduler
	Packet Buffers and Batched Packet Processing
	Multi-Core Scaling

	Performance Evaluation
	Experimental Setup
	End-to-End Latency
	Throughput
	Application-Level Performance

	Applications of BESS
	Case Study: Advanced NIC features
	Segmentation Offloading for Tunneled Packets
	Scalable Rate Limiter
	Packet Steering for Flow Affinity
	Scaling Legacy Applications

	Research Projects Based on BESS
	E2: A Framework for NFV Applications
	S6: Elastic Scaling of Stateful Network Functions

	Related Work
	MegaPipe
	Scaling with Concurrency
	Asynchronous I/O
	System Call Batching
	Kernel-Level Network Applications
	Multi-Core Scalability
	Similarities in Abstraction

	BESS
	Click
	High-performance packet I/O
	Hardware support for virtual network I/O
	Smart NICs
	Ideal hardware NIC model
	Alternative approaches

	Concluding Remarks

