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Abstract

Measuring Generalization and Overfitting in Machine Learning

by

Rebecca Roelofs

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Benjamin Recht, Co-chair

Professor James Demmel, Co-chair

Due to the prevalence of machine learning algorithms and the potential for their decisions
to profoundly impact billions of human lives, it is crucial that they are robust, reliable, and
understandable. This thesis examines key theoretical pillars of machine learning surrounding
generalization and overfitting, and tests the extent to which empirical behavior matches
existing theory. We develop novel methods for measuring overfitting and generalization,
and we characterize how reproducible observed behavior is across differences in optimization
algorithm, dataset, task, evaluation metric, and domain.

First, we examine how optimization algorithms bias machine learning models towards
solutions with varying generalization properties. We show that adaptive gradient methods
empirically find solutions with inferior generalization behavior compared to those found by
stochastic gradient descent. We then construct an example using a simple overparameterized
model that corroborates the algorithms’ empirical behavior on neural networks.

Next, we study the extent to which machine learning models have overfit to commonly
reused datasets in both academic benchmarks and machine learning competitions. We build
new test sets for the CIFAR-10 and ImageNet datasets and evaluate a broad range of clas-
sification models on the new datasets. All models experience a drop in accuracy, which
indicates that current accuracy numbers are susceptible to even minute natural variations in
the data distribution. Surprisingly, despite several years of adaptively selecting the models
to perform well on these competitive benchmarks, we find no evidence of overfitting. We
then analyze data from the machine learning platform Kaggle and find little evidence of
substantial overfitting in ML competitions. These findings speak to the robustness of the
holdout method across different data domains, loss functions, model classes, and human
analysts.

Overall, our work suggests that the true concern for robust machine learning is distribu-
tion shift rather than overfitting, and designing models that still work reliably in dynamic
environments is a challenging but necessary undertaking.
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Chapter 1

Introduction

Over the past decade, an increasingly broad and diverse set of industries have deployed
machine learning as a key component of their services. Technological innovations that trans-
formed streams of data into fire hydrants, as well as ubiquitous economic pressures for
automation, fueled the growing adoption of machine learning. Today, law enforcement,
employment decisions, admissions, credit scoring, social networks, search results, and ad-
vertising all commonly use machine learning algorithms. Once deployed, these algorithms
quickly achieve massive reach, and their decisions can potentially affect the lives of billions of
people. In some application areas, such as medical diagnoses and self-driving cars, decisions
made by machine learning algorithms can also have serious repercussions for human safety.

Since machine learning algorithms now have the power to shape and influence all aspects
of society at unprecedented scale, it is critical that the algorithms are robust, reliable, and
understandable. However, as we push the technology into more challenging application areas,
weaknesses have emerged.

One shortcoming is that current classifiers are extremely sensitive to small shifts in the
underlying data distribution. This fragility to distribution shift hinders the ability of the
algorithm to generalize, or handle unseen or novel situations. For example, a self-driving car
trained to drive on city streets would have difficulty driving on highways. Ultimately, the
algorithm’s lack of generalization causes it to make incorrect decisions, some of which have
severe consequences. Moreover, distributional sensitivity leaves the underlying algorithms
vulnerable to attack from malicious adversaries; by changing the underlying data in a way
that is imperceptible to humans, an adversary can easily manipulate specific predictions
made by the algorithm.

A related weakness of machine learning algorithms is that they are notoriously difficult
to interpret. When mistakes inevitably occur, it is challenging to identify what aspect of the
data or system caused the mistake and how one should fix the problem. Even among machine
learning experts, there is a lack of understanding for how or why a machine learning system
arrives at a certain decision, in part because much of the success of machine learning has been
driven by empirical progress, with little guidance from theory. The majority of published
papers have embraced a paradigm where the main justification for a new learning technique
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is its improved performance on a few key benchmarks, yet there are few explanations as to
why a proposed technique achieves a reliable improvement over prior work.

Deep neural networks, in particular, have proved difficult to analyze from a theoretical
perspective. Several architectural components and optimization techniques—for example,
batch normalization, residual connections, extreme overfitting, and increasing step sizes—
work exceedingly well in practice but have little theoretical justification. While there has
been some progress in analyzing these phenomena [82, 17, 18], our current theoretical under-
standing is not rich enough to predict practical behavior. As a result, our ability to propose
novel innovations that improve existing networks is limited.

The goal of this thesis is to empirically examine key theoretical pillars of machine learning
so that we can build algorithms that are more reliable and robust. If we can understand and
identify precisely where the breakdowns between theory and practice occur, we can create a
body of knowledge that is reproducible across many settings, giving us the tools we need to
both recognize the limitations of existing algorithms and improve their ability to adapt to
novel situations.

At a high level, the analysis we perform exhibits a common pattern: In each case, we
isolate a key phenomenon, either originating from existing theory or “conventional wisdom”,
and then rigorously test the range of settings under which the phenomenon holds. We focus
on how the phenomenon changes as we individually vary core parts of the machine learning
system, such as the optimization algorithm, the data, the hypothesis class, and the task
objective. We then verify how well the behavior we observe empirically matches existing
theory.

One theme that arises in the thesis is that measurement matters. We cannot build our
theoretical understanding of the principles that govern robustness and reliability without
accurate measurements of generalization. One issue that arises immediately from the theo-
retical definition of generalization error is that the exact quantity of interest is impossible
to evaluate because it requires knowing the underlying population distribution. We can use
approximations to bypass this difficulty, but it is important to know what assumptions we
use when we make these approximations and to be aware of situations where we break these
assumptions. As we rely more and more on machine learning for real-world, safety-critical
applications, our models must be robust to small shifts in the underlying data distribution.
To achieve robustness, we must be able to measure it.

1.1 Formal background on generalization and overfitting
“Generalization” and “overfitting” are widely used throughout machine learning as umbrella
terms; generalization is often interpreted as the broad ability of a classifier to handle new
scenarios while overfitting is used to describe any unwanted performance drop of a machine
learning model. In this section, we provide formal background that allows us to define more
precisely the notions of generalization and overfitting that we use throughout the rest of the
thesis.
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1.1.1 Generalization error

In statistical learning theory, our goal is to predict an outcome y from a set Y of possible
outcomes, given that we observe x from some feature space X . Our input is a dataset of n
labeled examples

S = {(x1, y1), . . . , (xn, yn)} (1.1.1)

which we use to choose a function f : X → Y so that given a new pair (x, y), f(x) is a good
approximation to y. The classic approach to measuring how well f(x) predicts y is to define
a loss function l : Y × Y → R which intuitively represents the cost of predicting ŷ = f(x)
when the true label is y.

We adopt the standard probabilistic assumption and posit the existence of a “true”
underlying data distribution D over labeled examples (x, y). We assume that the pairs
(x1, y1), . . . , (xn, yn) in our sample are chosen independently and identically from the data
distribution D. Then, we wish to choose f so that we minimize the expected population risk

LD(f) = E[l(f(x), y)] (1.1.2)

where the expectation is taken with respect to the draw of (x, y) from D.
However, since we often do not know the exact form of the data distribution D, we cannot

always evaluate the expectation needed to compute the population risk. Instead, we use our
sample S to evaluate the empirical loss

LS(f) =
1

n

n∑
i=1

l(f(xi), yi). (1.1.3)

We then minimize the empirical loss to learn a function f̂n such that

f̂n = arg min
f

LS(f) (1.1.4)

We use the subscript n on f̂n to denote explicitly that f depends on the sample S =
{(x1, y1), . . . , (xn, yn)}. Here, S is the training set, the empirical loss is akin to the training
loss, and the process of finding the function f̂n that minimizes the empirical loss is the
process of training a model.

The generalization error G of f̂n is the difference between the empirical loss and the
population loss

G = LD(f̂n)− LS(f̂n). (1.1.5)

Since we do not know how to evaluate LD, we rely on another sample Stest ∼ D to estimate
the population loss. Then, we compute an approximate generalization error Ĝ as

Ĝ = LStest(f̂n)− LS(f̂n). (1.1.6)

In deep learning, a trained model often achieves a training loss of 0 (i.e. LS(f̂n) = 0), so we
also sometimes assume that

Ĝ ≈ LStest(f̂n) (1.1.7)
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In Chapter 2 we use the trained model’s performance on the test set as a proxy for the
model’s generalization error. However, as we discuss next and revisit in Chapters 3 and 4,
this approximation critically assumes that we have not used the test set to select the trained
model.

1.1.2 Adaptive overfitting

In this thesis, we focus on adaptive overfitting, which is overfitting caused by test set reuse.
When defining generalization error, we assumed that the model learned from the training set
f̂n does not depend on the test set Stest. This assumption underlies essentially all empirical
evaluations in machine learning since it allows us to argue that the model f̂n generalizes. As
long as the model f̂n does not depend on the test set Stest, standard concentration results [83]
show that LStest(f̂n) is a good approximation of the true performance given by the population
loss LD(f̂n).

However, machine learning practitioners often undermine this assumption by selecting
models and tuning hyperparameters based on the test loss. Especially when algorithm
designers evaluate a large number of different models on the same test set, the final classifier
may only perform well on the specific examples in the test set. The failure to generalize to
the entire data distribution D manifests itself in a large adaptivity gap LD(f̂n) − LStest(f̂n)
and leads to overly optimistic performance estimates.

In practice, if Stest has been used to select f̂n, we must draw a new test set S ′test ∼ D that
is independent of f̂n to evaluate the empirical loss as an approximation to the population
loss LD(f̂n). Then, we can empirically measure the amount of adaptive overfitting as the
difference between the empirical loss on the new test set and the empirical loss on the original
test set

LS′test(f̂n)− LStest(f̂n) (1.1.8)

In Chapters 3 and 4 we exploit this strategy to explore to what extent adaptive overfitting
occurs in popular machine learning benchmarks and competitions.

1.2 Dissertation overview
The goal of the thesis is to ensure that machine learning algorithms are robust and reliable.
Our approach is to empirically evaluate key theoretical pillars of machine learning in order
to better understand robustness. We explore how changing key components of a machine
learning system, such as the dataset, the architecture, the task type, the evaluation metric, or
the optimization algorithm, impact empirical measurements of generalization and overfitting.

First, Chapter 2 explores the impact of the optimization algorithm on generalization
error. We demonstrate that adaptive gradient methods can find solutions that have worse
generalization error when compared to the more traditional stochastic gradient descent.

Next, Chapter 3 explores the impact of the dataset on generalization error and adaptive
overfitting. We create new test sets for CIFAR-10 and ImageNet that allow us to measure the
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amount of adaptive overfitting on these popular benchmarks. Surprisingly, we find little to
no evidence of adaptive overfitting despite the fact that these benchmarks have been reused
intensively for almost a decade for model selection.

Finally, Chapter 4 explores the impact of both the task and evaluation metric when
measuring adaptive overfitting in machine learning competitions. We conduct the first large
meta-analysis of overfitting due to test set reuse in the machine learning community, ana-
lyzing over one hundred machine learning competitions on the Kaggle platform. Our longi-
tudinal study shows, somewhat surprisingly, little evidence of substantial overfitting
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Chapter 2

Generalization properties of adaptive
gradient methods

Adaptive optimization methods, which perform local optimization with a metric constructed
from the history of iterates, are becoming increasingly popular for training deep neural
networks. Examples include AdaGrad, RMSProp, and Adam. In this chapter, we discuss
the generalization properties of adaptive gradient methods and compare these to the more
traditional stochastic gradient descent (SGD).

2.1 Introduction
An increasing share of deep learning researchers are training their models with adaptive
gradient methods [19, 64] due to their rapid training time [46]. Adam [50] in particular
has become the default algorithm used across many deep learning frameworks. However,
the generalization and out-of-sample behavior of such adaptive gradient methods remains
poorly understood. Given that many passes over the data are needed to minimize the training
objective, typical regret guarantees do not necessarily ensure that the found solutions will
generalize [77].

Notably, when the number of parameters exceeds the number of data points, it is possible
that the choice of algorithm can dramatically influence which model is learned [69]. Given
two different minimizers of some optimization problem, what can we say about their relative
ability to generalize? In this paper, we show that adaptive and non-adaptive optimization
methods indeed find very different solutions with very different generalization properties. We
provide a simple generative model for binary classification where the population is linearly
separable (i.e., there exists a solution with large margin), but AdaGrad [19], RMSProp [91],
and Adam converge to a solution that incorrectly classifies new data with probability arbi-
trarily close to half. On this same example, SGD finds a solution with zero error on new
data. Our construction shows that adaptive methods tend to give undue influence to spurious
features that have no effect on out-of-sample generalization (defined as in 1.1.7).
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We additionally present numerical experiments demonstrating that adaptive methods
generalize less well than their non-adaptive counterparts. Our experiments reveal three
primary findings. First, with the same amount of hyperparameter tuning, SGD and SGD
with momentum outperform adaptive methods on the test set across all evaluated models
and tasks. This is true even when the adaptive methods achieve the same training loss
or lower than non-adaptive methods. Second, adaptive methods often display faster initial
progress on the training set, but their performance quickly plateaus on the test set. Third,
the same amount of tuning was required for all methods, including adaptive methods. This
challenges the conventional wisdom that adaptive methods require less tuning. Moreover, as
a useful guide to future practice, we propose a simple scheme for tuning learning rates and
decays that performs well on all deep learning tasks we studied.

2.2 Background
The canonical optimization algorithms used to minimize risk are either stochastic gradient
methods or stochastic momentum methods. Stochastic gradient methods can generally be
written

wk+1 = wk − αk ∇̃f(wk), (2.2.1)

where ∇̃f(wk) := ∇f(wk;xik) is the gradient of some loss function f computed on a batch
of data xik .

Stochastic momentum methods are a second family of techniques that have been used to
accelerate training. These methods can generally be written as

wk+1 = wk − αk ∇̃f(wk + γk(wk − wk−1)) + βk(wk − wk−1). (2.2.2)

The sequence of iterates (2.2.2) includes Polyak’s heavy-ball method (HB) with γk = 0, and
Nesterov’s Accelerated Gradient method (NAG) [85] with γk = βk.

Notable exceptions to the general formulations (2.2.1) and (2.2.2) are adaptive gradient
and adaptive momentum methods, which choose a local distance measure constructed us-
ing the entire sequence of iterates (w1, · · · , wk). These methods (including AdaGrad [19],
RMSProp [91], and Adam [50]) can generally be written as

wk+1 = wk − αkH−1
k ∇̃f(wk + γk(wk − wk−1)) + βkH

−1
k Hk−1(wk − wk−1), (2.2.3)

where Hk := H(w1, · · · , wk) is a positive definite matrix. Though not necessary, the matrix
Hk is usually defined as

Hk = diag

{ k∑
i=1

ηigi ◦ gi

}1/2
 , (2.2.4)

where “◦” denotes the entry-wise or Hadamard product, gk = ∇̃f(wk+γk(wk−wk−1)), and ηk
is some set of coefficients specified for each algorithm. That is, Hk is a diagonal matrix whose
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entries are the square roots of a linear combination of squares of past gradient components.
We will use the fact that Hk are defined in this fashion in the sequel. For the specific settings
of the parameters for many of the algorithms used in deep learning, see Table 2.1. Adaptive
methods attempt to adjust an algorithm to the geometry of the data. In contrast, stochastic
gradient descent and related variants use the `2 geometry inherent to the parameter space,
and are equivalent to setting Hk = I in the adaptive methods.

SGD HB NAG AdaGrad RMSProp Adam
Gk I I I Gk−1 + Dk β2Gk−1 + (1− β2)Dk

β2
1−βk

2
Gk−1 + (1−β2)

1−βk
2

Dk

αk α α α α α α 1−β1
1−βk

1

βk 0 β β 0 0 β1(1−βk−1
1 )

1−βk
1

γ 0 0 β 0 0 0

Table 2.1: Parameter settings of optimization algorithms used in deep learning. Here, Dk =
diag(gk ◦ gk) and Gk := Hk ◦ Hk. We omit the additional ε added to the adaptive methods,
which is only needed to ensure non-singularity of the matrices Hk.

In this context, generalization refers to the performance of a solution w on a broader pop-
ulation. Performance is often defined in terms of a different loss function than the function
f used in training. For example, in classification tasks, we typically define generalization in
terms of classification error rather than cross-entropy.

2.2.1 Related work

Understanding how optimization relates to generalization is a very active area of current
machine learning research. Most of the seminal work in this area has focused on understand-
ing how early stopping can act as implicit regularization [100]. In a similar vein, Ma and
Belkin [60] have shown that gradient methods may not be able to find complex solutions at
all in any reasonable amount of time. Hardt et al. [77] show that SGD is uniformly stable,
and therefore solutions with low training error found quickly will generalize well. Similarly,
using a stability argument, Raginsky et al. [74] have shown that Langevin dynamics can
find solutions that generalize better than ordinary SGD in non-convex settings. Neyshabur,
Srebro, and Tomioka [69] discuss how algorithmic choices can act as implicit regularizer. In
a similar vein, Neyshabur, Salakhutdinov, and Srebro [68] show that a different algorithm,
one which performs descent using a metric that is invariant to re-scaling of the parameters,
can lead to solutions which sometimes generalize better than SGD. Our work supports the
work of [68] by drawing connections between the metric used to perform local optimization
and the ability of the training algorithm to find solutions that generalize. However, we focus
primarily on the different generalization properties of adaptive and non-adaptive methods.

A similar line of inquiry has been pursued by Keskar et al. [49]. Horchreiter and Schmid-
huber [36] showed that “sharp” minimizers generalize poorly, whereas “flat” minimizers gen-
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eralize well. Keskar et al. empirically show that Adam converges to sharper minimizers when
the batch size is increased. However, they observe that even with small batches, Adam does
not find solutions whose performance matches state-of-the-art. In the current work, we aim
to show that the choice of Adam as an optimizer itself strongly influences the set of minimiz-
ers that any batch size will ever see, and help explain why they were unable to find solutions
that generalized particularly well.

2.3 The perils of preconditioning
The goal of this section is to illustrate the following observation: when a problem has multiple
global minima, different algorithms can find entirely different solutions. In particular, we
will show that adaptive gradient methods might find very poor solutions. To simplify the
presentation, let us restrict our attention to the simple binary least-squares classification
problem, where we can easily compute closed form formulae for the solutions found by
different methods. In least-squares classification, we aim to solve

minimizew RS[w] := ‖Xw − y‖2
2. (2.3.1)

Here X is an n× d matrix of features and y is an n-dimensional vector of labels in {−1, 1}.
We aim to find the best linear classifier w. Note that when d > n, if there is a minimizer
with loss 0 then there is an infinite number of global minimizers. The question remains:
what solution does an algorithm find and how well does it generalize to unseen data?

2.3.1 Non-adaptive methods

Most common methods when applied to (2.3.1) will find the same solution. Indeed, any
gradient or stochastic gradient of RS must lie in the span of the rows of X. Therefore, any
method that is initialized in the row span of X (say, for instance at w = 0) and uses only
linear combinations of gradients, stochastic gradients, and previous iterates must also lie in
the row span of X. The unique solution that lies in the row span of X also happens to be the
solution with minimum Euclidean norm. We thus denote wSGD = XT (XXT )−1y. Almost all
non-adaptive methods like SGD, SGD with momentum, mini-batch SGD, gradient descent,
Nesterov’s method, and the conjugate gradient method will converge to this minimum norm
solution. Minimum norm solutions have the largest margin, or distance between the decision
boundary and the closest data point to the decisioun boundary, out of all solutions of the
equation Xw = y. Maximizing margin has a long and fruitful history in machine learning,
and thus it is a pleasant surprise that gradient descent naturally finds a max-margin solution.

2.3.2 Adaptive methods

Let us now consider the case of adaptive methods, restricting our attention to diagonal adap-
tation. While it is difficult to derive the general form of the solution, we can analyze special
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cases. Indeed, we can construct a variety of instances where adaptive methods converge to
solutions with low `∞ norm rather than low `2 norm.

For a vector x ∈ Rq, let sign(x) denote the function that maps each component of x to
its sign.

Lemma 2.3.1. Suppose XTy has no components equal to 0 and there exists a scalar c such
that X sign(XTy) = cy. Then, when initialized at w0 = 0, AdaGrad, Adam, and RMSProp
all converge to the unique solution w ∝ sign(XTy).

In other words, whenever there exists a solution of Xw = y that is proportional to
sign(XTy), this is precisely the solution to where all of the adaptive gradient methods con-
verge.

Proof. We prove this lemma by showing that the entire trajectory of the algorithm consists
of iterates whose components have constant magnitude. In particular, we will show that

wk = λk sign(XTy) .

for some scalar λk. Note that w0 = 0 satisfies the assertion with λ0 = 0.
Now, assume the assertion holds for all k ≤ t. Observe that

∇RS(wk + γk(wk − wk−1)) = XT (X(wk + γk(wk − wk−1))− y)

= XT
{

(λk + γk(λk − λk−1))X sign(XTy)− y
}

= {(λk + γk(λk − λk−1))c− 1}XTy

= µkX
Ty,

where the last equation defines µk. Hence, letting gk = ∇RS(wk + γk(wk − wk−1)), we also
have

Hk = diag

{ k∑
s=1

ηs gs ◦ gs

}1/2
 = diag

{ k∑
s=1

ηsµ
2
s

}1/2

|XTy|

 = νk diag
(
|XTy|

)
where |u| denotes the component-wise absolute value of a vector and the last equation defines
νk.

Thus we have,

wk+1 = wk − αkH−1
k ∇f(wk + γk(wk − wk−1)) + βtH

−1
k Hk−1(wk − wk−1) (2.3.2)

=

{
λk −

αkµk
νk

+
βkνk−1

νk
(λk − λk−1)

}
sign(XTy) (2.3.3)

proving the claim.

Note that this solution w could be obtained without any optimization at all. One simply
could subtract the means of the positive and negative classes and take the sign of the resulting
vector. This solution is far simpler than the one obtained by gradient methods, and it would
be surprising if such a simple solution would perform particularly well. We now turn to
showing that such solutions can indeed generalize arbitrarily poorly.
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2.3.3 Adaptivity can overfit

Lemma 2.3.1 allows us to construct a particularly pernicious generative model where Ada-
Grad fails to find a solution that generalizes. This example uses infinite dimensions to
simplify bookkeeping, but one could take the dimensionality to be 6n. Note that in deep
learning, we often have a number of parameters equal to 25n or more [90], so this is not a
particularly high dimensional example by contemporary standards. For i = 1, . . . , n, sample
the label yi to be 1 with probability p and −1 with probability 1− p for some p > 1/2. Let
x be an infinite dimensional vector with entries

xij =


yi j = 1

1 j = 2, 3

1 j = 4 + 5(i− 1), . . . , 4 + 5(i− 1) + 2(1− yi)
0 otherwise

.

In other words, the first feature of xi is the class label. The next 2 features are always
equal to 1. After this, there is a set of features unique to xi that are equal to 1. If the
class label is 1, then there is 1 such unique feature. If the class label is −1, then there are
5 such features. Note that for such a data set, the only discriminative feature is the first
one! Indeed, one can perform perfect classification using only the first feature. The other
features are all useless. Features 2 and 3 are constant, and each of the remaining features
only appear for one example in the data set. However, as we will see, algorithms without
such a priori knowledge may not be able to learn these distinctions.

Take n samples and consider the AdaGrad solution to the minimizing ||Xw− y||2. First
we show that the conditions of Lemma 2.3.1 hold. Let b =

∑n
i=1 yi and assume for the sake

of simplicity that b > 0. This will happen with arbitrarily high probability for large enough
n. Define u = XTy and observe that

uj =


n j = 1

b j = 2, 3

yj if j > 3 and xj = 1

and sign(uj) =


1 j = 1

1 j = 2, 3

yj if j > 3 and xj = 1

Thus we have 〈u, xi〉 = yi + 2 + yi(3− 2yi) = 4yi, as desired. Hence, the AdaGrad solution
wada ∝ sign(u). In particular, wada has all of its components either equal to 0 or to ±τ for
some positive constant τ . Now since wada has the same sign pattern as u, the first three
components of wada are equal to each other. But for a new data point, xtest, the only features
that are nonzero in both xtest and wada are the first three. In particular, we have

〈wada, xtest〉 = τ(y(test) + 2) > 0 .

Therefore, the AdaGrad solution will label all unseen data as being in the positive class!
Now let’s turn to the minimum norm solution. Let P and N denote the set of positive

and negative examples respectively. Let n+ = |P| and n− = |N |. By symmetry, we have
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that the minimum norm solution will have the form wSGD =
∑

i∈P α+xi −
∑

j∈N α−xj for
some nonnegative scalars α+ and α−. These scalars can be found by solving XXTα = y. In
closed form we have

α+ =
4n− + 3

9n+ + 3n− + 8n+n− + 3
and α− =

4n+ + 1

9n+ + 3n− + 8n+n− + 3
. (2.3.4)

The algebra required to compute these coefficients can be found in Section 2.3.4. For a new
data point, xtest, again the only features that are nonzero in both xtest and wSGD are the first
three. Thus we have

〈wSGD, xtest〉 = ytest(n+α+ + n−α−) + 2(n+α+ − n−α−) .

Using (2.3.4), we see that whenever n+ > n−/3, the SGD solution makes no errors.
Though this generative model was chosen to illustrate extreme behavior, it shares salient

features of many common machine learning instances. There are a few frequent features,
where some predictor based on them is a good predictor, though these might not be easy
to identify from first inspection. Additionally, there are many other features which are very
sparse. On finite training data it looks like such features are good for prediction, since each
such feature is very discriminatory for a particular training example, but this is over-fitting
and an artifact of having fewer training examples then features. Moreover, we will see shortly
that adaptive methods typically generalize worse than their non-adaptive counterparts on
real datasets as well.

2.3.4 Why SGD converges to the minimum norm solution

The simplest derivation of the minimum norm solution uses the kernel trick. We know that
the optimal solution has the form wSGD = XTα where α = K−1y and K = XXT . Note that

Kij =


4 if i = j and yi = 1

8 if i = j and yi = −1

3 if i 6= j and yiyj = 1

1 if i 6= j and yiyj = −1

Positing that αi = α+ if yi = 1 and α + i = α− if yi = −1 leaves us with the equation

(3n+ + 1)α+ − n−α− = 1

−n+α+ + (3n− + 3)α− = 1

Solving this system of equations yields (2.3.4).
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Name Network type Architecture Dataset Framework
C1 Deep Convolutional cifar.torch CIFAR-10 Torch
L1 2-Layer LSTM torch-rnn War & Peace Torch
L2 2-Layer LSTM + Feedforward span-parser Penn Treebank DyNet
L3 3-Layer LSTM emnlp2016 Penn Treebank Tensorflow

Table 2.2: Summary of the model architectures, datasets, and frameworks used in deep
learning experiments. 1

2.4 Deep learning experiments
Having established that adaptive and non-adaptive methods can find quite different solutions
in the convex setting, we now turn to an empirical study of deep neural networks to see
whether we observe a similar discrepancy in generalization. We compare two non-adaptive
methods – SGD and the heavy ball method (HB) – to three popular adaptive methods –
AdaGrad, RMSProp and Adam. We study performance on four deep learning problems:
(C1) the CIFAR-10 image classification task, (L1) character-level language modeling on
the novel War and Peace, and (L2) discriminative parsing and (L3) generative parsing on
Penn Treebank. In the interest of reproducibility, we use a network architecture for each
problem that is either easily found online (C1, L1, L2, and L3) or produces state-of-the-art
results (L2 and L3). Table 2.2 summarizes the setup for each application. We take care to
make minimal changes to the architectures and their data pre-processing pipelines in order
to best isolate the effect of each optimization algorithm.

We conduct each experiment 5 times from randomly initialized starting points, using the
initialization scheme specified in each code repository. We allocate a pre-specified budget on
the number of epochs used for training each model. When a development set was available,
we chose the settings that achieved the best peak performance on the development set by
the end of the fixed epoch budget. CIFAR-10 did not have an explicit development set, so
we chose the settings that achieved the lowest training loss at the end of the fixed epoch
budget.

Our experiments show the following primary findings: (i) Adaptive methods find solu-
tions that generalize worse than those found by non-adaptive methods. (ii) Even when the
adaptive methods achieve the same training loss or lower than non-adaptive methods, the
development or test performance is worse. (iii) Adaptive methods often display faster initial
progress on the training set, but their performance quickly plateaus on the development set.
(iv) Though conventional wisdom suggests that Adam does not require tuning, we find that
tuning the initial learning rate and decay scheme for Adam yields significant improvements
over its default settings in all cases.

1Architectures can be found at the following links: (1) cifar.torch: https://github.com/szagoruyk
o/cifar.torch; (2) torch-rnn: https://github.com/jcjohnson/torch-rnn; (3) span-parser: https:
//github.com/jhcross/span-parser; (4) emnlp2016: https://github.com/cdg720/emnlp2016.

https://github.com/szagoruyko/cifar.torch
https://github.com/szagoruyko/cifar.torch
https://github.com/jcjohnson/torch-rnn
https://github.com/jhcross/span-parser
https://github.com/jhcross/span-parser
https://github.com/cdg720/emnlp2016
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2.4.1 Hyperparameter tuning

Optimization hyperparameters have a large influence on the quality of solutions found by
optimization algorithms for deep neural networks. The algorithms under consideration have
many hyperparameters: the initial step size α0, the step decay scheme, the momentum
value β0, the momentum schedule βk, the smoothing term ε, the initialization scheme for
the gradient accumulator, and the parameter controlling how to combine gradient outer
products, to name a few. A grid search on a large space of hyperparameters is infeasible
even with substantial industrial resources, and we found that the parameters that impacted
performance the most were the initial step size and the step decay scheme. We left the
remaining parameters with their default settings. We describe the differences between the
default settings of Torch, DyNet, and Tensorflow in Section 2.6.1 for completeness.

To tune the step sizes, we evaluated a logarithmically-spaced grid of five step sizes. If
the best performance was ever at one of the extremes of the grid, we would try new grid
points so that the best performance was contained in the middle of the parameters. For
example, if we initially tried step sizes 2, 1, 0.5, 0.25, and 0.125 and found that 2 was the
best performing, we would have tried the step size 4 to see if performance was improved. If
performance improved, we would have tried 8 and so on. We list the initial step sizes we
tried in Section 2.6.2.

For step size decay, we explored two separate schemes, a development-based decay scheme
(dev-decay) and a fixed frequency decay scheme (fixed-decay). For dev-decay, we keep track
of the best validation performance so far, and at each epoch decay the learning rate by a
constant factor δ if the model does not attain a new best value. For fixed-decay, we decay the
learning rate by a constant factor δ every k epochs. We recommend the dev-decay scheme
when a development set is available; not only does it have fewer hyperparameters than the
fixed frequency scheme, but our experiments also show that it produces results comparable
to, or better than, the fixed-decay scheme.

2.4.2 Convolutional neural network

We used the VGG+BN+Dropout network for CIFAR-10 from the Torch blog [101], which
in prior work achieves a baseline test error of 7.55%. Figure 2.1 shows the learning curve for
each algorithm on both the training and test dataset.

We observe that the solutions found by SGD and HB do indeed generalize better than
those found by adaptive methods. The best overall test error found by a non-adaptive
algorithm, SGD, was 7.65± 0.14%, whereas the best adaptive method, RMSProp, achieved
a test error of 9.60± 0.19%.

Early on in training, the adaptive methods appear to be performing better than the non-
adaptive methods, but starting at epoch 50, even though the training error of the adaptive
methods is still lower, SGD and HB begin to outperform adaptive methods on the test
error. By epoch 100, the performance of SGD and HB surpass all adaptive methods on both
train and test. Among all adaptive methods, AdaGrad’s rate of improvement flatlines the
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(a) CIFAR-10 (Train)
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SGD: 7.65±0.14

HB: 7.74±0.25

AdaGrad: 11.34±0.46

RMSProp: 9.60±0.19

Adam: 9.78±0.25
Adam (Default): 12.02±0.16

(b) CIFAR-10 (Test)

Figure 2.1: Training (left) and top-1 test error (right) on CIFAR-10. The annotations
indicate where the best performance is attained for each method. The shading represents
± one standard deviation computed across five runs from random initial starting points. In
all cases, adaptive methods are performing worse on both train and test than non-adaptive
methods.

earliest. We also found that by increasing the step size, we could drive the performance of
the adaptive methods down in the first 50 or so epochs, but the aggressive step size made
the flatlining behavior worse, and no step decay scheme could fix the behavior.

2.4.3 Character-Level language modeling

Using the torch-rnn library, we train a character-level language model on the text of the
novel War and Peace, running for a fixed budget of 200 epochs. Our results are shown in
Figures 2.2a and 2.2b.

Under the fixed-decay scheme, the best configuration for all algorithms except AdaGrad
was to decay relatively late with regards to the total number of epochs, either 60 or 80%
through the total number of epochs and by a large amount, dividing the step size by 10.
The dev-decay scheme paralleled (within the same standard deviation) the results of the
exhaustive search over the decay frequency and amount; we report the curves from the fixed
policy.

Overall, SGD achieved the lowest test loss at 1.212 ± 0.001. AdaGrad has fast initial
progress, but flatlines. The adaptive methods appear more sensitive to the initialization
scheme than non-adaptive methods, displaying a higher variance on both train and test.
Surprisingly, RMSProp closely trails SGD on test loss, confirming that it is not impossible
for adaptive methods to find solutions that generalize well. We note that there are step
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configurations for RMSProp that drive the training loss below that of SGD, but these con-
figurations cause erratic behavior on test, driving the test error of RMSProp above Adam.

2.4.4 Constituency parsing

A constituency parser is used to predict the hierarchical structure of a sentence, breaking
it down into nested clause-level, phrase-level, and word-level units. We carry out experi-
ments using two state-of-the-art parsers: the stand-alone discriminative parser of Cross and
Huang [12], and the generative reranking parser of Choe and Charniak [7]. In both cases,
we use the dev-decay scheme with δ = 0.9 for learning rate decay.

Discriminative model. Cross and Huang [12] develop a transition-based framework that
reduces constituency parsing to a sequence prediction problem, giving a one-to-one corre-
spondence between parse trees and sequences of structural and labeling actions. Using their
code with the default settings, we trained for 50 epochs on the Penn Treebank [63], compar-
ing labeled F1 scores on the training and development data over time. RMSProp was not
implemented in the used version of DyNet, and we omit it from our experiments. Results
are shown in Figures 2.2c and 2.2d.

We find that SGD obtained the best overall performance on the development set, followed
closely by HB and Adam, with AdaGrad trailing far behind. The default configuration of
Adam without learning rate decay actually achieved the best overall training performance
by the end of the run, but was notably worse than tuned Adam on the development set.

Interestingly, Adam achieved its best development F1 of 91.11 quite early, after just 6
epochs, whereas SGD took 18 epochs to reach this value and didn’t reach its best F1 of 91.24
until epoch 31. On the other hand, Adam continued to improve on the training set well after
its best development performance was obtained, while the peaks for SGD were more closely
aligned.

Generative model. Choe and Charniak [7] show that constituency parsing can be cast
as a language modeling problem, with trees being represented by their depth-first traver-
sals. This formulation requires a separate base system to produce candidate parse trees,
which are then rescored by the generative model. Using an adapted version of their code
base,2 we retrained their model for 100 epochs on the Penn Treebank. However, to reduce
computational costs, we made two minor changes: (a) we used a smaller LSTM hidden di-
mension of 500 instead of 1500, finding that performance decreased only slightly; and (b)
we accordingly lowered the dropout ratio from 0.7 to 0.5. Since they demonstrated a high
correlation between perplexity (the exponential of the average loss) and labeled F1 on the

2While the code of Choe and Charniak treats the entire corpus as a single long example, relying on the
network to reset itself upon encountering an end-of-sentence token, we use the more conventional approach
of resetting the network for each example. This reduces training efficiency slightly when batches contain
examples of different lengths, but removes a potential confounding factor from our experiments.
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development set, we explored the relation between training and development perplexity to
avoid any conflation with the performance of a base parser.

Our results are shown in Figures 2.2e and 2.2f. On development set performance, SGD
and HB obtained the best perplexities, with SGD slightly ahead. Despite having one of
the best performance curves on the training dataset, Adam achieves the worst development
perplexities.

2.5 Conclusion
Despite the fact that our experimental evidence demonstrates that adaptive methods are
not advantageous for machine learning, the Adam algorithm remains incredibly popular.
We are not sure exactly as to why, but hope that our step-size tuning suggestions make it
easier for practitioners to use standard stochastic gradient methods in their research. In our
conversations with other researchers, we have surmised that adaptive gradient methods are
particularly popular for training GANs [79, 43] and Q-learning with function approxima-
tion [66, 56]. Both of these applications stand out because they are not solving optimization
problems. It is possible that the dynamics of Adam are accidentally well matched to these
sorts of optimization-free iterative search procedures. It is also possible that carefully tuned
stochastic gradient methods may work as well or better in both of these applications. It is
an exciting direction of future work to determine which of these possibilities is true and to
understand better as to why.
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(a) War and Peace (Training Set)
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SGD: 1.212±0.001

HB: 1.218±0.002

AdaGrad: 1.233±0.004

RMSProp: 1.214±0.005

Adam: 1.229±0.004

Adam (Default): 1.269±0.007

(b) War and Peace (Test Set)
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(c) Discriminative Parsing (Training Set)
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AdaGrad: 90.18±0.03

Adam (Default): 90.79±0.13

Adam: 91.11±0.09
HB: 91.16±0.12

SGD: 91.24±0.11

(d) Discriminative Parsing (Development
Set)
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(e) Generative Parsing (Training Set)
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SGD: 5.09±0.04

HB: 5.13±0.01

AdaGrad: 5.24±0.02

RMSProp: 5.28±0.00

Adam: 5.35±0.01

Adam (Default): 5.47±0.02

(f) Generative Parsing (Development Set)

Figure 2.2: Performance curves on the training data (left) and the development/test data
(right) for three experiments on natural language tasks. The annotations indicate where
the best performance is attained for each method. The shading represents one standard
deviation computed across five runs from random initial starting points.
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2.6 Supplementary material

2.6.1 Differences between Torch, DyNet, and Tensorflow

Torch Tensorflow DyNet
SGD Momentum 0 No default 0.9
AdaGrad Initial Mean 0 0.1 0
AdaGrad ε 1e-10 Not used 1e-20
RMSProp Initial Mean 0 1.0 –
RMSProp β 0.99 0.9 –
RMSProp ε 1e-8 1e-10 –
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999

Table 2.3: Default hyperparameters for algorithms in deep learning frameworks.

Table 2.3 lists the default values of the parameters for the various deep learning packages
used in our experiments. In Torch, the Heavy Ball algorithm is callable simply by changing
default momentum away from 0 with nesterov=False. In Tensorflow and DyNet, SGD with
momentum is implemented separately from ordinary SGD. For our Heavy Ball experiments
we use a constant momentum of β = 0.9.

2.6.2 Step sizes used for parameter tuning
CIFAR-10

• SGD: {2, 1, 0.5 (best), 0.25, 0.05, 0.01}

• HB: {2, 1, 0.5 (best), 0.25, 0.05, 0.01}

• AdaGrad: {0.1, 0.05, 0.01 (best, def.), 0.0075, 0.005}

• RMSProp: {0.005, 0.001, 0.0005, 0.0003 (best), 0.0001}

• Adam: {0.005, 0.001 (default), 0.0005, 0.0003 (best), 0.0001, 0.00005}

The default Torch step sizes for SGD (0.001) , HB (0.001), and RMSProp (0.01) were outside the
range we tested.

War & Peace

• SGD: {2, 1 (best), 0.5, 0.25, 0.125}

• HB: {2, 1 (best), 0.5, 0.25, 0.125}
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• AdaGrad: {0.4, 0.2, 0.1, 0.05 (best), 0.025}

• RMSProp: {0.02, 0.01, 0.005, 0.0025, 0.00125, 0.000625, 0.0005 (best), 0.0001}

• Adam: {0.005, 0.0025, 0.00125, 0.000625 (best), 0.0003125, 0.00015625}

Under the fixed-decay scheme, we selected learning rate decay frequencies from the set
{10, 20, 40, 80, 120, 160,∞} and learning rate decay amounts from the set {0.1, 0.5, 0.8, 0.9}.

Discriminative Parsing

• SGD: {1.0, 0.5, 0.2, 0.1 (best), 0.05, 0.02, 0.01}

• HB: {1.0, 0.5, 0.2, 0.1, 0.05 (best), 0.02, 0.01, 0.005, 0.002}

• AdaGrad: {1.0, 0.5, 0.2, 0.1, 0.05, 0.02 (best), 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002,
0.0001}

• RMSProp: Not implemented in DyNet.

• Adam: {0.01, 0.005, 0.002 (best), 0.001 (default), 0.0005, 0.0002, 0.0001}

Generative Parsing

• SGD: {1.0, 0.5 (best), 0.25, 0.1, 0.05, 0.025, 0.01}

• HB: {0.25, 0.1, 0.05, 0.02, 0.01 (best), 0.005, 0.002, 0.001}

• AdaGrad: {5.0, 2.5, 1.0, 0.5, 0.25 (best), 0.1, 0.05, 0.02, 0.01}

• RMSProp: {0.05, 0.02, 0.01, 0.005, 0.002 (best), 0.001, 0.0005, 0.0002, 0.0001}

• Adam: {0.005, 0.001, 0.001 (default), 0.0005 (best), 0.0002, 0.0001}
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Chapter 3

Do ImageNet classifiers generalize to
ImageNet?

3.1 Introduction
The overarching goal of machine learning is to produce models that generalize. We usually
quantify generalization by measuring the performance of a model on a held-out test set.
What does good performance on the test set then imply? At the very least, one would hope
that the model also performs well on a new test set assembled from the same data source by
following the same data cleaning protocol.

In this chapter, we realize this thought experiment by replicating the dataset creation
process for two prominent benchmarks, CIFAR-10 and ImageNet [53, 15]. In contrast to the
ideal outcome, we find that a wide range of classification models fail to reach their original
accuracy scores. The accuracy drops range from 3% to 15% on CIFAR-10 and 11% to 14% on
ImageNet. On ImageNet, the accuracy loss amounts to approximately five years of progress
in a highly active period of machine learning research.

Conventional wisdom suggests that such drops arise because the models have been
adapted to the specific images in the original test sets, e.g., via extensive hyperparameter
tuning. However, our experiments show that the relative order of models is almost exactly
preserved on our new test sets: the models with highest accuracy on the original test sets are
still the models with highest accuracy on the new test sets. Moreover, there are no dimin-
ishing returns in accuracy. In fact, every percentage point of accuracy improvement on the
original test set translates to a larger improvement on our new test sets. So although later
models could have been adapted more to the test set, they see smaller drops in accuracy.
These results provide evidence that exhaustive test set evaluations are an effective way to
improve image classification models. Adaptivity is therefore an unlikely explanation for the
accuracy drops.

Instead, we propose an alternative explanation based on the relative difficulty of the
original and new test sets. We demonstrate that it is possible to recover the original ImageNet
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accuracies almost exactly if we only include the easiest images from our candidate pool. This
suggests that the accuracy scores of even the best image classifiers are still highly sensitive
to minutiae of the data cleaning process. This brittleness puts claims about human-level
performance into context [47, 33, 81]. It also shows that current classifiers still do not
generalize reliably even in the benign environment of a carefully controlled reproducibility
experiment.

Figure 3.1 shows the main result of our experiment. Before we describe our methodology
in Section 3.3, the next section provides relevant background. To enable future research, we
release both our new test sets and the corresponding code.1
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Figure 3.1: Model accuracy on the original test sets vs. our new test sets. Each data
point corresponds to one model in our testbed (shown with 95% Clopper-Pearson confidence
intervals). The plots reveal two main phenomena: (i) There is a significant drop in accuracy
from the original to the new test sets. (ii) The model accuracies closely follow a linear
function with slope greater than 1 (1.7 for CIFAR-10 and 1.1 for ImageNet). This means
that every percentage point of progress on the original test set translates into more than one
percentage point on the new test set. The two plots are drawn so that their aspect ratio is
the same, i.e., the slopes of the lines are visually comparable. The red shaded region is a
95% confidence region for the linear fit from 100,000 bootstrap samples.

3.2 Potential causes of accuracy drops
We adopt the standard classification setup and posit the existence of a “true” underlying
data distribution D over labeled examples (x, y). The overall goal in classification is to find

1https://github.com/modestyachts/CIFAR-10.1 and https://github.com/modestyachts/ImageN
etV2

https://github.com/modestyachts/CIFAR-10.1
https://github.com/modestyachts/ImageNetV2
https://github.com/modestyachts/ImageNetV2
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a model f̂ that minimizes the population loss

LD(f̂) = E
(x,y)∼D

[
I[f̂(x) 6= y]

]
. (3.2.1)

Since we usually do not know the distribution D, we instead measure the performance of
a trained classifier via a test set Stest drawn from the distribution D:

LStest(f̂) =
1

|Stest|
∑

(x,y)∈Stest

I[f̂(x) 6= y] . (3.2.2)

We then use this test error LStest(f̂) as a proxy for the population loss LD(f̂). If a model
f̂ achieves a low test error, we assume that it will perform similarly well on future examples
from the distribution D. This assumption underlies essentially all empirical evaluations in
machine learning since it allows us to argue that the model f̂ generalizes.

In our experiments, we test this assumption by collecting a new test set S ′test from a data
distribution D′ that we carefully control to resemble the original distribution D. Ideally, the
original test accuracy LStest(f̂) and new test accuracy LS′test(f̂) would then match up to the
random sampling error. In contrast to this idealized view, our results in Figure 3.1 show
a large drop in accuracy from the original test set Stest set to our new test set S ′test. To
understand this accuracy drop in more detail, we decompose the difference between LStest(f̂)
and LS′test(f̂) into three parts (dropping the dependence on f̂ to simplify notation):

LStest − LS′test = (LStest − LD)︸ ︷︷ ︸
Adaptivity gap

+ (LD − LD′)︸ ︷︷ ︸
Distribution Gap

+ (LD′ − LS′test)︸ ︷︷ ︸
Generalization gap

.

We now discuss to what extent each of the three terms can lead to accuracy drops.

Generalization gap. By construction, our new test set S ′test is independent of the existing
classifier f̂ . Hence the third term LD′ − LS′test is the standard generalization gap commonly
studied in machine learning. It is determined solely by the random sampling error.

A first guess is that this inherent sampling error suffices to explain the accuracy drops
in Figure 3.1 (e.g., the new test set S ′test could have sampled certain “harder” modes of the
distribution D more often). However, random fluctuations of this magnitude are unlikely for
the size of our test sets. With 10,000 data points (as in our new ImageNet test set), a Clopper-
Pearson 95% confidence interval for the test accuracy has size of at most ± 1%. Increasing
the confidence level to 99.99% yields a confidence interval of size at most ± 2%. Moreover,
these confidence intervals become smaller for higher accuracies, which is the relevant regime
for the best-performing models. Hence random chance alone cannot explain the accuracy
drops observed in our experiments.2

2We remark that the sampling process for the new test set S′
test could indeed systematically sample

harder modes more often than under the original data distribution D. Such a systematic change in the
sampling process would not be an effect of random chance but captured by the distribution gap described
below.
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Adaptivity gap. We call the term LStest − LD the adaptivity gap. It measures how much
adapting the model f̂ to the test set Stest causes the test error LStest to underestimate the
population loss LD. If we assumed that our model f̂ is independent of the test set Stest, this
terms would follow the same concentration laws as the generalization gap LD′−LS′test above.
But this assumption is undermined by the common practice of tuning model hyperparameters
directly on the test set, which introduces dependencies between the model f̂ and the test
set Stest. In the extreme case, this can be seen as training directly on the test set. But
milder forms of adaptivity may also artificially inflate accuracy scores by increasing the gap
between LStest and LD beyond the purely random error.

Distribution gap. We call the term LD−LD′ the distribution gap. It quantifies how much
the change from the original distribution D to our new distribution D′ affects the model
f̂ . Note that this term is not influenced by random effects but quantifies the systematic
difference between sampling the original and new test sets. While we went to great lengths
to minimize such systematic differences, in practice it is hard to argue whether two high-
dimensional distributions are exactly the same. We typically lack a precise definition of
either distribution, and collecting a real dataset involves a plethora of design choices.

3.2.1 Distinguishing between the two mechanisms

For a single model f̂ , it is unclear how to disentangle the adaptivity and distribution gaps.
To gain a more nuanced understanding, we measure accuracies for multiple models f̂1, . . . , f̂k.
This provides additional insights because it allows us to determine how the two gaps have
evolved over time.

For both CIFAR-10 and ImageNet, the classification models come from a long line of
papers that incrementally improved accuracy scores over the past decade. A natural as-
sumption is that later models have experienced more adaptive overfitting since they are the
result of more successive hyperparameter tuning on the same test set. Their higher accu-
racy scores would then come from an increasing adaptivity gap and reflect progress only
on the specific examples in the test set Stest but not on the actual distribution D. In an
extreme case, the population accuracies LD(f̂i) would plateau (or even decrease) while the
test accuracies LStest(f̂i) would continue to grow for successive models f̂i.

However, this idealized scenario is in stark contrast to our results in Figure 3.1. Later
models do not see diminishing returns but an increased advantage over earlier models. Hence
we view our results as evidence that the accuracy drops mainly stem from a large distribution
gap. After presenting our results in more detail in the next section, we will further discuss
this point in Section 3.7.
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3.3 Summary of our experiments
We now give an overview of the main steps in our reproducibility experiment. Sections 3.5
and 3.6 describe our methodology in more detail. We begin with the first decision, which
was to choose informative datasets.

3.3.1 Choice of datasets

We focus on image classification since it has become the most prominent task in machine
learning and underlies a broad range of applications. The cumulative progress on ImageNet
is often cited as one of the main breakthroughs in computer vision and machine learning [62].
State-of-the-art models now surpass human-level accuracy by some measure [33, 81]. This
makes it particularly important to check if common image classification models can reliably
generalize to new data from the same source.

We decided on CIFAR-10 and ImageNet, two of the most widely-used image classification
benchmarks [30]. Both datasets have been the focus of intense research for almost ten years
now. Due to the competitive nature of these benchmarks, they are an excellent example
for testing whether adaptivity has led to overfitting. In addition to their popularity, their
carefully documented dataset creation process makes them well suited for a reproducibility
experiment [53, 15, 81].

Each of the two datasets has specific features that make it especially interesting for our
replication study. CIFAR-10 is small enough so that many researchers developed and tested
new models for this dataset. In contrast, ImageNet requires significantly more computational
resources, and experimenting with new architectures has long been out of reach for many
research groups. As a result, CIFAR-10 has likely experienced more hyperparameter tuning,
which may also have led to more adaptive overfitting.

On the other hand, the limited size of CIFAR-10 could also make the models more
susceptible to small changes in the distribution. Since the CIFAR-10 models are only exposed
to a constrained visual environment, they may be unable to learn a robust representation. In
contrast, ImageNet captures a much broader variety of images: it contains about 24× more
training images than CIFAR-10 and roughly 100× more pixels per image. So conventional
wisdom (such as the claims of human-level performance) would suggest that ImageNet models
also generalize more reliably .

As we will see, neither of these conjectures is supported by our data: CIFAR-10 models
do not suffer from more adaptive overfitting, and ImageNet models do not appear to be
significantly more robust.

3.3.2 Dataset creation methodology

One way to test generalization would be to evaluate existing models on new i.i.d. data from
the original test distribution. For example, this would be possible if the original dataset
authors had collected a larger initial dataset and randomly split it into two test sets, keeping
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one of the test sets hidden for several years. Unfortunately, we are not aware of such a setup
for CIFAR-10 or ImageNet.

In this thesis, we instead mimic the original distribution as closely as possible by repeating
the dataset curation process that selected the original test set3 from a larger data source.
While this introduces the difficulty of disentangling the adaptivity gap from the distribution
gap, it also enables us to check whether independent replication affects current accuracy
scores. In spite of our efforts, we found that it is astonishingly hard to replicate the test set
distributions of CIFAR-10 and ImageNet.

At a high level, creating a new test set consists of two parts:

Gathering Data. To obtain images for a new test set, a simple approach would be to
use a different dataset, e.g., Open Images [52]. However, each dataset comes with specific
biases [92]. For instance, CIFAR-10 and ImageNet were assembled in the late 2000s, and
some classes such as car or cell_phone have changed significantly over the past decade.
We avoided such biases by drawing new images from the same source as CIFAR-10 and
ImageNet. For CIFAR-10, this was the larger Tiny Image dataset [93]. For ImageNet, we
followed the original process of utilizing the Flickr image hosting service and only considered
images uploaded in a similar time frame as for ImageNet.

In addition to the data source and the class distribution, both datasets also have rich
structure within each class. For instance, each class in CIFAR-10 consists of images from
multiple specific keywords in Tiny Images. Similarly, each class in ImageNet was assembled
from the results of multiple queries to the Flickr API. We relied on the documentation of
the two datasets to closely match the sub-class distribution as well.

Cleaning data. Many images in Tiny Images and the Flickr results are only weakly related
to the query (or not at all). To obtain a high-quality dataset with correct labels, it is therefore
necessary to manually select valid images from the candidate pool. While this step may seem
trivial, our results in Section 3.4 will show that it has major impact on the model accuracies.

The authors of CIFAR-10 relied on paid student labelers to annotate their dataset. The
researchers in the ImageNet project utilized Amazon Mechanical Turk (MTurk) to handle
the large size of their dataset. We again replicated both annotation processes. Two graduate
students impersonated the CIFAR-10 labelers, and we employed MTurk workers for our new
ImageNet test set. For both datasets, we also followed the original labeling instructions,
MTurk task format, etc.

After collecting a set of correctly labeled images, we sampled our final test sets from the
filtered candidate pool. We decided on a test set size of 2,000 for CIFAR-10 and 10,000 for
ImageNet. While these are smaller than the original test sets, the sample sizes are still large
enough to obtain 95% confidence intervals of about ±1%. Moreover, our aim was to avoid

3For ImageNet, we repeat the creation process of the validation set because most papers developed and
tested models on the validation set. We discuss this point in more detail in Section 3.6.1. In the context of
this thesis, we use the terms “validation set” and “test set” interchangeably for ImageNet.
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bias due to CIFAR-10 and ImageNet possibly leaving only “harder” images in the respective
data sources. This effect is minimized by building test sets that are small compared to the
original datasets (about 3% of the overall CIFAR-10 dataset and less than 1% of the overall
ImageNet dataset).

3.3.3 Results on the new test sets

CIFAR-10

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf 98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0
6 shake_shake_64d_cutout 97.1 [96.8, 97.4] 93.0 [91.8, 94.1] 4.1 5 1
16 wide_resnet_28_10 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 14 2
23 resnet_basic_110 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 24 -1
27 vgg_15_BN_64 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 27 0
30 cudaconvnet 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11.0 30 0
31 random_features_256k_aug 85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12.5 31 0

ImageNet Top-1

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 72.2 [71.3, 73.1] 10.7 3 -2
4 nasnetalarge 82.5 [82.2, 82.8] 72.2 [71.3, 73.1] 10.3 1 3
21 resnet152 78.3 [77.9, 78.7] 67.0 [66.1, 67.9] 11.3 21 0
23 inception_v3_tf 78.0 [77.6, 78.3] 66.1 [65.1, 67.0] 11.9 24 -1
30 densenet161 77.1 [76.8, 77.5] 65.3 [64.4, 66.2] 11.8 30 0
43 vgg19_bn 74.2 [73.8, 74.6] 61.9 [60.9, 62.8] 12.3 44 -1
64 alexnet 56.5 [56.1, 57.0] 44.0 [43.0, 45.0] 12.5 64 0
65 fv_64k 35.1 [34.7, 35.5] 24.1 [23.2, 24.9] 11.0 65 0

Table 3.1: Model accuracies on the original CIFAR-10 test set, the original ImageNet vali-
dation set, and our new test sets. ∆ Rank is the relative difference in the ranking from the
original test set to the new test set in the full ordering of all models (see Section 3.10.0.3 and
3.11.0.2). For example, ∆Rank = −2 means that a model dropped by two places on the new
test set compared to the original test set. The confidence intervals are 95% Clopper-Pearson
intervals. References for the models can be found in Sections 3.10.0.2 and 3.11.0.1.

After assembling our new test sets, we evaluated a broad range of image classification
models spanning a decade of machine learning research. The models include the seminal
AlexNet [54], widely used convolutional networks [84, 32, 40, 89], and the state-of-the-art
[13, 58]. For all deep architectures, we used code previously published online. We relied
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on pre-trained models whenever possible and otherwise ran the training commands from
the respective repositories. In addition, we also evaluated the best-performing approaches
preceding convolutional networks on each dataset. These are random features for CIFAR-10
[75, 10] and Fisher vectors for ImageNet [71].4 We wrote our own implementations for these
models, which we also release publicly.5

Overall, the top-1 accuracies range from 83% to 98% on the original CIFAR-10 test set
and 21% to 83% on the original ImageNet validation set. We refer the reader to Sections
3.11.0.1 and 3.10.0.2 for a full list of models and source repositories.

Figure 3.1 in the introduction plots original vs. new accuracies, and Table 3.1 in this
section summarizes the numbers of key models. The remaining accuracy scores can be found
in Sections 3.10.0.3 and 3.11.0.2. We now briefly describe the two main trends and discuss
the results further in Section 3.7.

A significant drop in accuracy. All models see a large drop in accuracy from the original
test sets to our new test sets. For widely used architectures such as VGG [84] and ResNet
[32], the drop is 8% on CIFAR-10 and 11% on ImageNet. On CIFAR-10, the state of the
art [13] is more robust and only drops by 3% from 98.4% to 95.5%. In contrast, the best
model on ImageNet [58] sees an 11% drop from 83% to 72% in top-1 accuracy and a 6% drop
from 96% to 90% in top-5 accuracy. So the top-1 drop on ImageNet is larger than what we
observed on CIFAR-10.

To put these accuracy numbers into perspective, we note that the best model in the
ILSVRC6 2013 competition achieved 89% top-5 accuracy, and the best model from ILSVRC
2014 achieved 93% top-5 accuracy. So the 6% drop in top-5 accuracy from the 2018 state-of-
the-art corresponds to approximately five years of progress in a very active period of machine
learning research.

Few changes in the relative order. When sorting the models in order of their original
and new accuracy, there are few changes in the respective rankings. Models with comparable
original accuracy tend to see a similar decrease in performance. In fact, Figure 3.1 shows
that the original accuracy is highly predictive of the new accuracy and that the relationship
can be summarized well with a linear function. On CIFAR-10, the new accuracy of a model
is approximately given by the following formula:

accnew = 1.69 · accorig − 72.7% .

4We remark that our implementation of Fisher vectors yields top-5 accuracy numbers that are 17% lower
than the published numbers in ILSVRC 2012 [81]. Unfortunately, there is no publicly available reference
implementation of Fisher vector models achieving this accuracy score. Hence our implementation should not
be seen as an exact reproduction of the state-of-the-art Fisher vector model, but as a baseline inspired by
this approach. The main goal of including Fisher vector models in our experiment is to investigate if they
follow the same overall trends as convolutional neural networks.

5https://github.com/modestyachts/nondeep
6ILSVRC is the ImageNet Large Scale Visual Recognition Challenge [81].

https://github.com/modestyachts/nondeep
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On ImageNet, the top-1 accuracy of a model is given by

accnew = 1.11 · accorig − 20.2% .

Computing a 95% confidence interval from 100,000 bootstrap samples gives [1.63, 1.76] for
the slope and [−78.6,−67.5] for the offset on CIFAR-10, and [1.07, 1.19] and [−26.0,−17.8]
respectively for ImageNet.

On both datasets, the slope of the linear fit is greater than 1. So models with higher
original accuracy see a smaller drop on the new test sets. In other words, model robustness
improves with increasing accuracy. This effect is less pronounced on ImageNet (slope 1.1)
than on CIFAR-10 (slope 1.7). In contrast to a scenario with strong adaptive overfitting,
neither dataset sees diminishing returns in accuracy scores when going from the original to
the new test sets.

3.3.4 Experiments to test follow-up hypotheses

Since the drop from original to new accuracies is concerningly large, we investigated mul-
tiple hypotheses for explaining this drop. Sections 3.5.2 and 3.6.3 list a range of follow-up
experiments we conducted, e.g., re-tuning hyperparameters, training on part of our new test
set, or performing cross-validation. However, none of these effects can explain the size of
the drop. We conjecture that the accuracy drops stem from small variations in the human
annotation process. As we will see in the next section, the resulting changes in the test sets
can significantly affect model accuracies.

3.4 Understanding the impact of data cleaning on
ImageNet

A crucial aspect of ImageNet is the use of MTurk. There is a broad range of design choices
for the MTurk tasks and how the resulting annotations determine the final dataset. To
better understand the impact of these design choices, we assembled three different test sets
for ImageNet. All of these test sets consist of images from the same Flickr candidate pool,
are correctly labeled, and selected by more than 70% of the MTurk workers on average.
Nevertheless, the resulting model accuracies vary by 14%. To put these numbers in context,
we first describe our MTurk annotation pipeline.

MTurk Tasks. We designed our MTurk tasks and user interface to closely resemble those
originally used for ImageNet. As in ImageNet, each MTurk task contained a grid of 48
candidate images for a given target class. The task description was derived from the orig-
inal ImageNet instructions and included the definition of the target class with a link to a
corresponding Wikipedia page. We asked the MTurk workers to select images belonging to
the target class regardless of “occlusions, other objects, and clutter or text in the scene” and
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to avoid drawings or paintings (both as in ImageNet). Section 3.6.1.2 shows a screenshot of
our UI and a screenshot of the original UI for comparison.

For quality control, we embedded at least six randomly selected images from the original
validation set in each MTurk task (three from the same class, three from a class that is
nearby in the WordNet hierarchy). These images appeared in random locations of the image
grid for each task. In total, we collected sufficient MTurk annotations so that we have at
least 20 annotated validation images for each class.

The main outcome of the MTurk tasks is a selection frequency for each image, i.e., what
fraction of MTurk workers selected the image in a task for its target class. We recruited
at least ten MTurk workers for each task (and hence for each image), which is similar to
ImageNet. Since each task contained original validation images, we could also estimate how
often images from the original dataset were selected by our MTurk workers.

Sampling Strategies. In order to understand how the MTurk selection frequency affects
the model accuracies, we explored three sampling strategies.

• MatchedFrequency: First, we estimated the selection frequency distribution for each
class from the annotated original validation images. We then sampled ten images from
our candidate pool for each class according to these class-specific distributions (see
Section 3.6.1.4 for details).

• Threshold0.7: For each class, we sampled ten images with selection frequency at least
0.7.

• TopImages: For each class, we chose the ten images with highest selection frequency.

In order to minimize labeling errors, we manually reviewed each dataset and removed incor-
rect images. The average selection frequencies of the three final datasets range from 0.93
for TopImages over 0.85 for Threshold0.7 to 0.73 for MatchedFrequency. For comparison,
the original validation set has an average selection frequency of 0.71 in our experiments.
Hence all three of our new test sets have higher selection frequencies than the original Im-
ageNet validation set. In the preceding sections, we presented results on MatchedFrequency
for ImageNet since it is closest to the validation set in terms of selection frequencies.

Results. Table 3.2 shows that the MTurk selection frequency has significant impact on
both top-1 and top-5 accuracy. In particular, TopImages has the highest average MTurk
selection frequency and sees a small increase of about 2% in both average top-1 and top-5
accuracy compared to the original validation set. This is in stark contrast to MatchedFre-
quency, which has the lowest average selection frequency and exhibits a significant drop
of 12% and 8%, respectively. The Threshold0.7 dataset is in the middle and sees a small
decrease of 3% in top-1 and 1% in top-5 accuracy.

In total, going from TopImages to MatchedFrequency decreases the accuracies by about
14% (top-1) and 10% (top-5). For comparison, note that after excluding AlexNet (and the
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Sampling
Strategy

Average MTurk
Selection Freq.

Average Top-1
Accuracy Change

Average Top-5
Accuracy Change

MatchedFrequency 0.73 -11.8% -8.2%
Threshold0.7 0.85 -3.2% -1.2%
TopImages 0.93 +2.1% +1.8%

Table 3.2: Impact of the three sampling strategies for our ImageNet test sets. The table shows
the average MTurk selection frequency in the resulting datasets and the average changes in
model accuracy compared to the original validation set. We refer the reader to Section 3.4
for a description of the three sampling strategies. All three test sets have an average selection
frequency of more than 0.7, yet the model accuracies still vary widely. For comparison, the
original ImageNet validation set has an average selection frequency of 0.71 in our MTurk
experiments. The changes in average accuracy span 14% and 10% in top-1 and top-5,
respectively. This shows that details of the sampling strategy have large influence on the
resulting accuracies.

SqueezeNet models tuned to match AlexNet [41]), the range of accuracies spanned by all
remaining convolutional networks is roughly 14% (top-1) and 8% (top-5). So the variation
in accuracy caused by the three sampling strategies is larger than the variation in accuracy
among all post-AlexNet models we tested.

Figure 3.2 plots the new vs. original top-1 accuracies on Threshold0.7 and TopImages,
similar to Figure 3.1 for MatchedFrequency before. For easy comparison of top-1 and top-5
accuracy plots on all three datasets, we refer the reader to Figure 3.1 in Section 3.11.0.2. All
three plots show a good linear fit.
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Figure 3.2: Model accuracy on the original ImageNet validation set vs. accuracy on two
variants of our new test set. We refer the reader to Section 3.4 for a description of these test
sets. Each data point corresponds to one model in our testbed (shown with 95% Clopper-
Pearson confidence intervals). On Threshold0.7, the model accuracies are 3% lower than on
the original test set. On TopImages, which contains the images most frequently selected by
MTurk workers, the models perform 2% better than on the original test set. The accuracies
on both datasets closely follow a linear function, similar to MatchedFrequency in Figure 3.1.
The red shaded region is a 95% confidence region for the linear fit from 100,000 bootstrap
samples.
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3.5 CIFAR-10 experiment details
We first present our reproducibility experiment for the CIFAR-10 image classification dataset
[53]. There are multiple reasons why CIFAR-10 is an important example for measuring how
well current models generalize to unseen data.

• CIFAR-10 is one of the most widely used datasets in machine learning and serves as a
test ground for many image classification methods. A concrete measure of popularity
is the fact that CIFAR-10 was the second most common dataset in NIPS 2017 (after
MNIST) [30].

• The dataset creation process for CIFAR-10 is transparent and well documented [53].
Importantly, CIFAR-10 draws from the larger Tiny Images repository that has more
fine-grained labels than the ten CIFAR-10 classes [93]. This enables us to minimize
various forms of distribution shift between the original and new test set.

• CIFAR-10 poses a difficult enough problem so that the dataset is still the subject of
active research (e.g., see [16, 28, 98, 104, 76, 13]). Moreover, there is a wide range
of classification models that achieve significantly different accuracy scores. Since code
for these models has been published in various open source repositories, they can be
treated as independent of our new test set.

Compared to ImageNet, CIFAR-10 is significantly smaller both in the number of images
and in the size of each image. This makes it easier to conduct various follow-up experiments
that require training new classification models. Moreover, the smaller size of CIFAR-10 also
means that the dataset has been accessible to more researchers for a longer time. Hence it
is plausible that CIFAR-10 experienced more test set adaptivity than ImageNet, where it is
much more costly to tune hyperparameters.

Before we describe how we created our new test set, we briefly review relevant background
on CIFAR-10 and Tiny Images.

Tiny Images. The dataset contains 80 million RGB color images with resolution 32 × 32
pixels and was released in 2007 [93]. The images are organized by roughly 75,000 keywords
that correspond to the non-abstract nouns from the WordNet database [65] Each keyword
was entered into multiple Internet search engines to collect roughly 1,000 to 2,500 images
per keyword. It is important to note that Tiny Images is a fairly noisy dataset. Many of
the images filed under a certain keyword do not clearly (or not at all) correspond to the
respective keyword.

CIFAR-10. The CIFAR-10 dataset was created as a cleanly labeled subset of Tiny Images
for experiments with multi-layer networks. To this end, the researchers assembled a dataset
consisting of ten classes with 6,000 images per class, which was published in 2009 [53]. These
classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
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The standard train / test split is class-balanced and contains 50,000 training images and
10,000 test images.

The CIFAR-10 creation process is well-documented [53]. First, the researchers assembled
a set of relevant keywords for each class by using the hyponym relations in WordNet [65]
(for instance, “Chihuahua” is a hyponym of “dog”). Since directly using the corresponding
images from Tiny Images would not give a high quality dataset, the researchers paid student
annotators to label the images from Tiny Images. The labeler instructions can be found in
Section C of [53] and include a set of specific guidelines (e.g., an image should not contain
two object of the corresponding class). The researchers then verified the labels of the images
selected by the annotators and removed near-duplicates from the dataset via an `2 nearest
neighbor search.

3.5.1 Dataset creation methodology

Our overall goal was to create a new test set that is as close as possible to being drawn from
the same distribution as the original CIFAR-10 dataset. One crucial aspect here is that the
CIFAR-10 dataset did not exhaust any of the Tiny Image keywords it is drawn from. So by
collecting new images from the same keywords as CIFAR-10, our new test set can match the
sub-class distribution of the original dataset.

Understanding the Sub-Class Distribution. As the first step, we determined the Tiny
Image keyword for every image in the CIFAR-10 dataset. A simple nearest-neighbor search
sufficed since every image in CIFAR-10 had an exact duplicate (`2-distance 0) in Tiny Images.
Based on this information, we then assembled a list of the 25 most common keywords for
each class. We decided on 25 keywords per class since the 250 total keywords make up
more than 95% of CIFAR-10. Moreover, we wanted to avoid accidentally creating a harder
dataset with infrequent keywords that the classifiers had little incentive to learn based on
the original CIFAR-10 dataset.

The keyword distribution can be found in Section 3.10.0.1. Inspecting this list reveals the
importance of matching the sub-class distribution. For instance, the most common keyword
in the airplane class is stealth_bomber and not a more common civilian type of airplane.
In addition, the third most common keyword for the airplane class is stealth_fighter.
Both types of planes are highly distinctive. There are more examples where certain sub-
classes are considerably different. For instance, trucks from the keyword fire_truck are
mostly red, which is quite different from pictures for dump_truck or other keywords.

Collecting new images. After determining the keywords, we collected corresponding
images. To simulate the student / researcher split in the original CIFAR-10 collection proce-
dure, we introduced a similar split among two authors of this paper. Author A took the role
of the original student annotators and selected new suitable images for the 250 keywords.
In order to ensure a close match between the original and new images for each keyword, we
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built a user interface that allowed Author A to first look through existing CIFAR-10 images
for a given keyword and then select new candidates from the remaining pictures in Tiny
Images. Author A followed the labeling guidelines in the original instruction sheet [53]. The
number of images Author A selected per keyword was so that our final dataset would contain
between 2,000 and 4,000 images. We decided on 2,000 images as a target number for two
reasons:

• While the original CIFAR-10 test set contains 10,000 images, a test set of size 2,000
is already sufficient for a fairly small confidence interval. In particular, a conservative
confidence interval (Clopper-Pearson at confidence level 95%) for accuracy 90% has
size about ±1% with n = 2,000 (to be precise, [88.6%, 91.3%]). Since we considered
a potential discrepancy between original and new test accuracy only interesting if it
is significantly larger than 1%, we decided that a new test set of size 2,000 was large
enough for our study.

• As with very infrequent keywords, our goal was to avoid accidentally creating a harder
test set. Since some of the Tiny Image keywords have only a limited supply of remaining
adequate images, we decided that a smaller target size for the new dataset would reduce
bias to include images of more questionable difficulty.

After Author A had selected a set of about 9,000 candidate images, Author B adopted the role
of the researchers in the original CIFAR-10 dataset creation process. In particular, Author B
reviewed all candidate images and removed images that were unclear to Author B or did not
conform to the labeling instructions in their opinion (some of the criteria are subjective). In
the process, a small number of keywords did not have enough images remaining to reach the
n = 2,000 threshold. Author B then notified Author A about the respective keywords and
Author A selected a further set of images for these keywords. In this process, there was only
one keyword where Author A had to carefully examine all available images in Tiny Images.
This keyword was alley_cat and comprises less than 0.3% of the overall CIFAR-10 dataset.

Final assembly. After collecting a sufficient number of high-quality images for each key-
word, we sampled a random subset from our pruned candidate set. The sampling procedure
was such that the keyword-level distribution of our new dataset matches the keyword-level
distribution of CIFAR-10 (see Section 3.10.0.1). In the final stage, we again proceeded simi-
lar to the original CIFAR-10 dataset creation process and used `2-nearest neighbors to filter
out near duplicates. In particular, we removed near-duplicates within our new dataset and
also images that had a near duplicate in the original CIFAR-10 dataset (train or test). The
latter aspect is particularly important since our reproducibility study is only interesting if we
evaluate on truly unseen data. Hence we manually reviewed the top-10 nearest neighbors for
each image in our new test set. After removing near-duplicates in our dataset, we re-sampled
the respective keywords until this process converged to our final dataset.

Figure 3.3b shows a random subset of images from the original and our new test set.
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(a) Test set A (b) Test set B

Figure 3.3: Randomly selected images from the original and new CIFAR-10 test sets. Each
grid contains two images for each of the ten classes. The following footnote reveals which of
the two grids corresponds to the new test set.7

We remark that we did not run any classifiers on our new dataset during the data col-
lection phase of our study. In order to ensure that the new data does not depend on the
existing classifiers, it is important to strictly separate the data collection phase from the
following evaluation phase.

3.5.2 Follow-up hypotheses

Since the gap between original and new accuracy is concerningly large, we investigated
multiple hypotheses for explaining this gap.

3.5.2.1 Statistical Error

A first natural guess is that the gap is simply due to statistical fluctuations. But as noted
before, the sample size of our new test set is large enough so that a 95% confidence interval has
size about ±1.2%. Since a 95% confidence interval for the original CIFAR-10 test accuracy is
even smaller (roughly ±0.6% for 90% classification accuracy and ±0.3% for 97% classification
accuracy), we can rule out statistical error as the main explanation.

3.5.2.2 Differences in Near-Duplicate Removal

As mentioned in Section 3.5.1, the final step of both the original CIFAR-10 and our dataset
creation procedure is to remove near-duplicates. While removing near-duplicates between
our new test set and the original CIFAR-10 dataset, we noticed that the original test set
contained images that we would have ruled out as near-duplicates. A large number of
near-duplicates between CIFAR-10 train and test, combined with our more stringent near-
duplicate removal, could explain some of the accuracy drop. Indeed, we found about 800
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images in the original CIFAR-10 test set that we would classify as near-duplicates (8% of
the entire test set). Moreover, most classifiers have accuracy between 99% and 100% on
these near-duplicates (recall that most models achieve 100% training error). However, the
following calculation shows that the near-duplicates can explain at most 1% of the observed
difference.

For concreteness, we consider a model with 93% original test set accuracy such as a
common VGG or ResNet architecture. Let acctrue be the “true” accuracy of the model on
test images that are not near-duplicates, and let accnd be the accuracy on near-duplicates.
Then for 8% near-duplicates, the overall accuracy is given by

acc = 0.92 · acctrue + 0.08 · accnd .

Using acc = 0.93, accnd = 1.0, and solving for acctrue then yields acctrue ≈ 0.924. So the
accuracy on original test images that are not near-duplicates is indeed lower, but only by
a small amount (0.6%). This is in contrast to the 8% - 9% accuracy drop that VGG and
ResNet models with 93% original accuracy see in our experiments.

For completeness, we describe our process for finding near duplicates in detail. For every
test image, we visually inspected the top-10 nearest neighbors in both `2-distance and the
SSIM (structural similarity) metric. We compared the original test set to the CIFAR-10
training set, and our new test set to both the original training and test sets. We consider
an image pair as near-duplicates if both images have the same object in the same pose. We
include images that have different zoom, color scale, stretch in the horizontal or vertical
direction, or small shifts in vertical or horizontal position. If the object was rotated or in a
different pose, we did not include it as a near-duplicate.

3.5.2.3 Hyperparameter Tuning

Another conjecture is that we can recover some of the missing accuracy by re-tuning hyper-
parameters of a model. To this end, we performed a grid search over multiple parameters
of a VGG model. We selected three standard hyperparameters known to strongly influence
test set performance: initial learning rate, dropout, and weight decay. The vgg16_keras
architecture uses different amounts of dropout across different layers of the network, so we
chose to tune a multiplicative scaling factor for the amount of dropout. This keeps the ratio
of dropout across different layers constant.

We initialized a hyperparameter configuration from values tuned to the original test set
(learning rate 0.1, dropout ratio 1, weight decay 5×10−4), and performed a grid search across
the following values:

• Learning rate in {0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8}.

• Dropout ratio in {0.5, 0.75, 1, 1.25, 1.75}.
7Test Set A is the new test set and Test Set B is the original test set.
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• Weight decay in {5×10−5, 1×10−4, 5×10−4, 1×10−3, 5×10−3}.

We ensured that the best performance was never at an extreme point of any range we
tested for an individual hyperparameter. Overall, we did not find a hyperparameter setting
with a significantly better accuracy on the new test set (the biggest improvement was from
85.3% to 85.8%).

3.5.2.4 Visually Inspecting Hard Images

It is also possible that we accidentally created a more difficult test set by including a set
of “harder” images. To explore this question, we visually inspected the set of images that
most models incorrectly classified. Figure 3.11 in Section 3.10.0.5 shows examples of the
hard images in our new test set that no model correctly classified. We find that all the new
images are valid images that are recognizable to humans.

3.5.2.5 Human Accuracy Comparison

The visual inspection of hard images in the previous section is one way to compare the
original and new test sets. However, our conclusion may be biased since we have created the
new test set ourselves. To compare the relative hardness of the two test sets more objectively,
we also conducted a small experiment to measure human accuracy on the two test sets.8 The
goal of the experiment was to measure if human accuracy is significantly different on the
original and new test sets.

Since we conjectured that our new test set included particularly hard images, we focused
our experiment on the approximately 5% hardest images in both test sets. Here, “hardness”
is defined by how many models correctly classified an image. After rounding to include all
images that were classified by the same number of models, we obtained 500 images from the
original test set and 115 images from our new test set.

We recruited nine graduate students from three different research groups in the Electrical
Engineering & Computer Sciences Department at UC Berkeley. We wrote a simple user
interface that allowed the participants to label images with one of the ten CIFAR-10 classes.
To ensure that the participants did not know which dataset an image came from, we presented
the images in random order.

Table 3.3 shows the results of our experiment. We find that four participants performed
better on the original test set and five participants were better on our new test set. The
average difference is -0.8%, i.e., the participants do not see a drop in average accuracy on
this subset of original and new test images. This suggests that our new test set is not
significantly harder for humans. However, we remark that our results here should only be
seen as a preliminary study. Understanding human accuracy on CIFAR-10 in more detail
will require further experiments.

8Use of this data was permitted by the Berkeley Committee for Protection of Human Subjects (CPHS).



CHAPTER 3. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET? 39

Human Accuracy (%)

Original Test Set New Test Set Gap

Participant 1 85 [81.6, 88.0] 83 [74.2, 89.8] 2
Participant 2 83 [79.4, 86.2] 81 [71.9, 88.2] 2
Participant 3 82 [78.3, 85.3] 78 [68.6, 85.7] 4
Participant 4 79 [75.2, 82.5] 84 [75.3, 90.6] -5
Participant 5 76 [72.0, 79.7] 77 [67.5, 84.8] -1
Participant 6 75 [71.0, 78.7] 73 [63.2, 81.4] 2
Participant 7 74 [69.9, 77.8] 79 [69.7, 86.5] -5
Participant 8 74 [69.9, 77.8] 76 [66.4, 84.0] -2
Participant 9 67 [62.7, 71.1] 71 [61.1, 79.6] -4

Table 3.3: Human accuracy on the “hardest” images in the original and our new CIFAR-10
test set. We ordered the images by number of incorrect classifications from models in our
testbed and then selected the top 5% images from the original and new test set (500 images
from the original test set, 115 images from our new test set). The results show that on
average humans do not see a drop in accuracy on this subset of images.

3.5.2.6 Training on Part of Our New Test Set

If our new test set distribution is significantly different from the original CIFAR-10 distri-
bution, retraining on part of our new test set (plus the original training data) may improve
the accuracy on the held-out fraction of our new test set.

We conducted this experiment by randomly drawing a class-balanced split containing
about 1,000 images from the new test set. We then added these images to the full CIFAR-10
training set and retrained the vgg16_kerasmodel. After training, we tested the model on the
remaining half of the new test set. We repeated this experiment twice with different randomly
selected splits from our test set, obtaining accuracies of 85.1% and 85.4% (compared to 84.9%
without the extra training data9). This provides evidence that there is no large distribution
shift between our new test set and the original CIFAR-10 dataset, or that the model is unable
to learn the modified distribution.

3.5.2.7 Cross-validation

Cross-validation can be a more reliable way of measuring a model’s generalization ability
than using only a single train / test split. Hence we tested if cross-validation on the original
CIFAR-10 dataset could predict a model’s error on our new test set. We created cross-
validation data by randomly dividing the training set into 5 class-balanced splits. We then

9This number is slightly lower than the accuracy of vgg16_keras on our new test set in Table 3.12, but
still within the 95% confidence interval [83.6, 86.8]. Hence we conjecture that the difference is due to the
random fluctuation arising from randomly initializing the model.
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randomly shuffled together 4 out of the 5 training splits with the original test set. The
leftover held-out split from the training set then became the new test set.

We retrained the models vgg_15_BN_64, wide_resnet_28_10, and shake_shake_64d_cutout
on each of the 5 new datasets we created. The accuracies are reported in Table 3.4. The
accuracies on the cross-validation splits did not differ much from the accuracy on the original
test set. The variation among the cross-validation splits is significantly smaller than the drop
on our new test set.

Model Accuracy (%)

Dataset vgg_15_BN_64 wide_resnet_28_10 shake_shake_64d_cutout

Original Test Set 93.6 [93.1, 94.1] 95.7 [95.3, 96.1] 97.1 [96.8, 97.4]

Split 1 93.9 [93.4, 94.3] 96.2 [95.8, 96.6] 97.2 [96.9, 97.5]
Split 2 93.8 [93.3, 94.3] 96.0 [95.6, 96.4] 97.3 [97.0, 97.6]
Split 3 94.0 [93.5, 94.5] 96.4 [96.0, 96.8] 97.4 [97.1, 97.7]
Split 4 94.0 [93.5, 94.5] 96.2 [95.8, 96.6] 97.4 [97.1, 97.7]
Split 5 93.5 [93.0, 94.0] 96.5 [96.1, 96.9] 97.4 [97.1, 97.7]

New Test Set 84.9 [83.2, 86.4] 89.7 [88.3, 91.0] 93.0 [91.8, 94.1]

Table 3.4: Model accuracies on cross-validation splits for the original CIFAR-10 data. The
difference in cross-validation accuracies is significantly smaller than the drop to the new test
set.

3.5.2.8 Training a Discriminator for Original vs. New Test Set

Our main hypothesis for the accuracy drop is that small variations in the test set creation
process suffice to significantly reduce a model’s accuracy. To test whether these variations
could be detected by a convolutional network, we investigated whether a discriminator model
could distinguish between the two test sets.

We first created a training set consisting of 3, 200 images (1,600 from the original test
set and 1,600 from our new test set) and a test set of 800 images (consisting of 400 images
from original and new test set each). Each image had a binary label indicating whether it
came from the original or new test set. Additionally, we ensured that that both datasets
were class balanced.

We then trained resnet_32 and resnet_110 models for 160 epochs using a standard
SGD optimizer to learn a binary classifier between the two datasets. We conducted two
variants of this experiment: in one variant, we trained the model from scratch. In the other
variant, we started with a model pre-trained on the regular CIFAR-10 classification task.

Our results are summarized in Table 3.5. Overall we found that the resulting models
could not discriminate well between the original and our new test set: the best accuracy we
obtained is 53.1%.
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Model Discriminator Accuracy (%) Discriminator Accuracy (%)
random initialization pre-trained

resnet_32 50.1 [46.6, 53.6] 52.9 [49.4, 56.4]
resnet_110 50.3 [46.7, 53.8] 53.1 [49.6, 56.6]

Table 3.5: Accuracies for discriminator models trained to distinguish between the original
and new CIFAR-10 test sets. The models were initialized either randomly or using a model
pre-trained on the original CIFAR-10 dataset. Although the models performed slightly better
than random chance, the confidence intervals (95% Clopper Pearson) still overlap with 50%
accuracy.

3.5.2.9 An Exactly Class-balanced Test Set

The top 25 keywords of each class in CIFAR-10 capture approximately 95% of the dataset.
However, the remaining 5% of the dataset are skewed towards the class ship. As a result,
our new dataset was not exactly class-balanced and contained only 8% images of class ship
(as opposed to 10% in the original test set).

To measure whether this imbalance affected the accuracy scores, we created an exactly
class-balanced version of our new test set with 2,000 images (200 per class). In this version,
we selected the top 50 keywords in each class and computed a fractional number of images
for each keyword. We then rounded these numbers so that images for keywords with the
largest fractional part were added first. The resulting model accuracies can be found in
Table 3.13 (Section 3.10.0.4). Models with lower original accuracies achieve a small accuracy
improvement on the exactly class-balanced test set (around 0.3%), but the accuracy drop of
the best-performing model remains unchanged.
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3.6 ImageNet experiment details
Our results on CIFAR-10 show that current models fail to reliably generalize in the presence
of small variations in the data distribution. One hypothesis is that the accuracy drop stems
from the limited nature of the CIFAR-10 dataset. Compared to other datasets, CIFAR-10 is
relatively small, both in terms of image resolution and the number of images in the dataset.
Since the CIFAR-10 models are only exposed to a constrained visual environment, they may
be unable to learn a more reliable representation.

To investigate whether ImageNet models generalize more reliably, we assemble a new
test set for ImageNet. ImageNet captures a much broader variety of natural images: it
contains about 24× more training images than CIFAR-10 with roughly 100× more pixels
per image. As a result, ImageNet poses a significantly harder problem and is among the
most prestigious machine learning benchmarks. The steadily improving accuracy numbers
have also been cited as an important breakthrough in machine learning [62]. If popular
ImageNet models are indeed more robust to natural variations in the data (and there is
again no adaptive overfitting), the accuracies on our new test set should roughly match the
existing accuracies.

Before we proceed to our experiments, we briefly describe the relevant background con-
cerning the ImageNet dataset. For more details, we refer the reader to the original ImageNet
publications [15, 81].

ImageNet. ImageNet [15, 81] is a large image database consisting of more than 14 million
human-annotated images depicting almost 22,000 classes. The images do not have a uniform
size, but most of them are stored as RGB color images with a resolution around 500 × 400
pixels. The classes are derived from the WordNet hierarchy [65], which represents each class
by a set of synonyms (“synset”) and is organized into semantically meaningful relations. Each
class has an associated definition (“gloss”) and a unique WordNet ID (“wnid”).

The ImageNet team populated the classes with images downloaded from various image
search engines, using the WordNet synonyms as queries. The researchers then annotated the
images via Amazon Mechanical Turk (MTurk). A class-specific threshold decided how many
agreements among the MTurk workers were necessary for an image to be considered valid.
Overall, the researchers employed over 49,000 workers from 167 countries [55].

Since 2010, the ImageNet team has run the yearly ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC), which consists of separate tracks for object classification, local-
ization, and detection. All three tracks are based on subsets of the ImageNet data. The
classification track has received the most attention and is also the focus of this chapter.

The ILSVRC2012 competition data has become the de facto benchmark version of the
dataset and comprises 1.2 million training images, 50,000 validation images, and 100,000 test
images depicting 1,000 categories. We generally refer to this data as the ImageNet training,
validation, and test set. The labels for the ImageNet test set were never publicly released
in order to minimize adaptive overfitting. Instead, teams could submit a limited number of
requests to an evaluation server in order to obtain accuracy scores. There were no similar
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limitations in place for the validation set. Most publications report accuracy numbers on
the validation set.

The training, validation, and test sets were not drawn strictly i.i.d. from the same dis-
tribution (i.e., there was not a single data collection run with the result split randomly into
training, validation, and test). Instead, the data collection was an ongoing process and both
the validation and test sets were refreshed in various years of the ILSVRC. One notable dif-
ference is that the ImageNet training and validation sets do not have the same data source:
while the ImageNet training set consists of images from several search engines (e.g., Google,
MSN, Yahoo, and Flickr), the validation set consists almost entirely of images from Flickr
[1].

3.6.1 Dataset creation methodology

Since the existing training, validation, and test sets are not strictly i.i.d. (see above), the
first question was which dataset part to replicate. For our experiment, we decided to match
the distribution of the validation set. There are multiple reasons for this choice:

• In contrast to the training set, the validation set comes from only one data source
(Flickr). Moreover, the Flickr API allows fine-grained searches, which makes it easier
to control the data source and match the original distribution.

• In contrast to the original test set, the validation set comes with label information.
This makes it easier to inspect the existing image distribution for each class, which is
important to ensure that we match various intricacies of the dataset (e.g., see Section
3.11.0.6 for examples of ambiguous classes).

• Most papers report accuracy numbers on the validation set. Hence comparing new vs.
existing accuracies is most relevant for the validation set.

• The validation set is commonly used to develop new architectures and tune hyperpa-
rameters, which leads to the possibility of adaptive overfitting. If we again observe
no diminishing returns in accuracy on our new test set, this indicates that even the
validation set is resilient to adaptive overfitting.

Therefore, our goal was to replicate the distribution of the original validation set as
closely as possible. We aimed for a new test set of size 10,000 since this would already result
in accuracy scores with small confidence intervals (see Section 3.2). While a larger dataset
would result in even smaller confidence intervals, we were also concerned that searching for
more images might lead to a larger distribution shift. In particular, we decided to use a time
range for our Flickr queries after the original ImageNet collection period (see below for the
corresponding considerations). Since a given time period only has a limited supply of high
quality images, a larger test set would have required a longer time range. This in turn may
create a larger temporal distribution shift. To balance these two concerns, we decided on a
size of 10,000 images for the new test set.
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Figure 3.4 presents a visual overview of our dataset creation pipeline. It consists of two
parts: creating a pool of candidate images and sampling a clean dataset from this candidate
pool. We now describe each part in detail to give the reader insights into the design choices
potentially affecting the final distribution.

Figure 3.4: The pipeline for creating the new ImageNet test set. It consists of two parts:
creating the candidate pool and sampling the final dataset from this candidate pool.

3.6.1.1 Creating a Candidate Pool

Similar to the creation procedure for the original ImageNet validation set, we collected can-
didate images from the Flickr image hosting service and then annotated them with Amazon
Mechanical Turk (MTurk).

Downloading images from Flickr. The Flickr API has a range of parameters for image
searches such as the query terms, an allowed time range, a maximum number of returned
images, and a sorting order. We summarize the main points here:

• Query terms: For each class, we used each of the WordNet synonyms as a search
term in separate queries.

• Date range: There were two main options for the date range associated with our
queries to Flickr: either the same date range as the original ImageNet data collection,
or a date range directly after ImageNet. The advantage of using the ImageNet date
range is that it avoids a distribution shift due to the time the images were taken.
However, this option also comes with two important caveats: First, the pool of high
quality images in the original ImageNet date range could have been largely exhausted
by ImageNet. Second, the new dataset could end up with near-duplicates of images
in the original validation or training set that are hard to detect. Especially the first
issue is difficult to quantify, so we decided on a time range directly after the ImageNet
collection period.
In particular, we initially searched for images taken and uploaded to Flickr between
July 11, 2012 and July 11, 2013 because the final ILSVRC2012 public data release
was on July 10, 2012. Since we used a period of only one year (significantly shorter
than the ImageNet collection period), we believe that the temporal component of the
distribution shift is small.
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• Result size: We initially downloaded up to 100 images for each class. If a class has k
synonyms associated with it, we requested 100/k images for each synonym. We decided
on 100 images per class since we aimed for 10,000 images overall and estimated that
10% of the candidate images would be of sufficiently high quality (similar to ImageNet
[15]).

• Result order: Flickr offers the sorting options “relevance”, “interestingness”, and vari-
ous temporal orderings. Note that the “relevance” and “interestingness” orderings may
rely on machine learning models trained on ImageNet. Since these orderings may intro-
duce a significant bias (e.g., by mainly showing images that current ImageNet models
recognize for the respective search term), we chose to order the images by their upload
date. This helps to ensure that our new test set is independent of current classifiers.

After our first data collection, we found it necessary to expand the initial candidate pool
for particular classes in order to reach a sufficient number of valid images. This is similar
to the original ImageNet creation process, where the authors expanded the set of queries
using two methods [15, 81]. The first method appended a word from the parent class to
the queries if this word also appeared in the gloss of the target class. The second method
included translations of the queries into other languages such as Chinese, Spanish, Dutch,
and Italian.

We took the following steps to expand our search queries, only proceeding to the next
step for a given class when in need of more images.

1. Append a word from the parent class if the word appears in the gloss of the target
class.

2. Expand the maximum number of images to 200 for this class.

3. Expand the search range to include photos taken or uploaded before July 11, 2014 (i.e.,
a time span of two years instead of one).

4. Concatenate compound queries, i.e., search for “dialphone” instead of “dial phone”.

5. Manually pick alternative query words, including translations of the queries.

In total, we obtained 208,145 candidate images from Flickr.

Amazon Mechanical Turk. While the candidate images from Flickr are correlated with
their corresponding class, a large number of images are still unsuitable for an image clas-
sification dataset. For instance, the images may be of low quality (blurry, unclear object
presence, etc.), violate dataset rules (e.g., no paintings), or be simply unrelated to the target
class. So similar to ImageNet, we utilized MTurk to filter our pool of candidate images.

We designed our MTurk tasks and UI to be close to those used in ImageNet. As in
ImageNet, we showed each MTurk worker a grid of 48 candidate images for a given target
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class. The task description was derived from the original ImageNet instructions and included
the definition of the target class with a link to a corresponding Wikipedia page. We asked
the MTurk workers to select images belonging to the target class regardless of “occlusions,
other objects, and clutter or text in the scene” and to avoid drawings or paintings (both as
in ImageNet). Section 3.6.1.2 shows a screenshot of our UI and a screenshot of the original
UI for comparison.

For quality control, we embedded at least six randomly selected images from the original
validation set in each MTurk task (three from the same class, three from a class that is
nearby in the WordNet hierarchy). These images appeared in random locations of the image
grid for each task. We obfuscated all image URLs and resized our images to match the most
common size of the existing validation images so that the original validation images were
not easy to spot.

The main outcome of the MTurk tasks is a selection frequency for each image, i.e., what
fraction of MTurk workers selected the image in a task for its target class. We recruited
at least ten MTurk workers for each task (and hence for each image), which is similar to
ImageNet. Since each task contained original validation images, we could also estimate how
often images from the original dataset were selected by our MTurk workers.

Removing near-duplicate images. The final step in creating the candidate pool was
to remove near-duplicates, both within our new test set and between our new test set and
the original ImageNet dataset. Both types of near-duplicates could harm the quality of our
dataset.

Since we obtained results from Flickr in a temporal ordering, certain events (e.g., the
2012 Olympics) led to a large number of similar images depicting the same scene (e.g., in the
class for the “horizontal bar“ gymnastics instrument). Inspecting the ImageNet validation set
revealed only very few sets of images from a single event. Moreover, the ImageNet paper also
remarks that they removed near-duplicates [15]. Hence we decided to remove near-duplicates
within our new test set.

Near-duplicates between our dataset and the original test set are also problematic. Since
the models typically achieve high accuracy on the training set, testing on a near-duplicate
of a training image checks for memorization more than generalization. A near-duplicate
between the existing validation set and our new test set also defeats the purpose of measuring
generalization to previously unseen data (as opposed to data that may already have been
the victim of adaptive overfitting).

To find near-duplicates, we computed the 30 nearest neighbors for each candidate image
in three different metrics: `2-distance on raw pixels, `2-distance on features extracted from a
pre-trained VGG [84] model (fc7), and SSIM (structural similarity) [94], which is a popular
image similarity metric. For metrics that were cheap to evaluate (`2-distance on pixels and
`2-distance on fc7), we computed nearest neighbor distances to all candidate images and all
of the original ImageNet data. For the more compute-intensive SSIM metric, we restricted
the set of reference images to include all candidate images and the five closest ImageNet
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classes based on the tree distance in the WordNet hierarchy. We then manually reviewed
nearest neighbor pairs below certain thresholds for each metric and removed any duplicates
we discovered.

To the best of our knowledge, ImageNet used only nearest neighbors in the `2-distance
to find near-duplicates [1]. While this difference may lead to a small change in distribution,
we still decided to use multiple metrics since including images that have near-duplicates
in ImageNet would be contrary to the main goal of our experiment. Moreover, a manual
inspection of the original validation set revealed only a very small number of near-duplicates
within the existing dataset.

3.6.1.2 MTurk user interfaces

For comparison, we include the original ImageNet MTurk user interface (UI) in Figure 3.5
and the MTurk UI we used in our experiments in Figure 3.6. Each UI corresponds to one
task for the MTurk workers, which consists of 48 images in both cases. In contrast to the
original ImageNet UI, our UI takes up more than one screen. This requires the MTurk
workers to scroll but also provides more details in the images. While the task descriptions
are not exactly the same, they are very similar and contain the same directions (e.g., both
descriptions ask the MTurk workers to exclude drawings or paintings).

Figure 3.5: The user interface employed in the original ImageNet collection process for the
labeling tasks on Amazon Mechanical Turk.
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Figure 3.6: Our user interface for labeling tasks on Amazon Mechanical Turk. The screenshot
here omits the scroll bar and shows only a subset of the entire MTurk task. As in the
ImageNet UI, the full task involves a grid of 48 images.
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3.6.1.3 User interface for our final reviewing process

Figure 3.7 shows a screenshot of the reviewing UI that we used to manually review the new
ImageNet datasets. At the top, the UI displays the wnid (“n01667114”), the synset (mud
turtle), and the gloss. Next, a grid of 20 images is shown in 4 rows.

The top two rows correspond to the candidate images currently sampled for the new
dataset. Below each image, our UI shows a unique identifier for the image and the date the
image was taken. There is also a check box to blacklist any incorrect images. In addition,
there is a check box for each image to add it to the blacklist of incorrect images. If an
image is added to the blacklist, it will be removed in the next revision of the dataset and
replaced with a new image from the candidate pools. The candidate images are sorted by
the date they were taken, which makes it easier to spot and remove near-duplicates. Images
are marked as near-duplicates by adding their identifier to the “Near-duplicate set” text field.

The bottom two rows correspond to a random sample of images from the validation set
that belong to the target class. We display these images to make it easier to detect and
correct for distribution shifts between our new test sets and the original ImageNet validation
dataset.

3.6.1.4 Sampling a Clean Dataset

The result of collecting a candidate pool was a set of images with annotations from MTurk,
most importantly the selection frequency of each image. In the next step, we used this
candidate pool to sample a new test set that closely resembles the distribution of the existing
validation set. There were two main difficulties in this process.

First, the ImageNet publications do not provide the agreement thresholds for each class
that were used to determine which images were valid. One possibility could be to run the
algorithm the ImageNet authors designed to compute the agreement thresholds. However,
this algorithm would need to be exactly specified, which is unfortunately not the case to the
best of our knowledge.10

Second, and more fundamentally, it is impossible to exactly replicate the MTurk worker
population from 2010 – 2012 with a reproducibility experiment in 2018. Even if we had
access to the original agreement thresholds, it is unclear if they would be meaningful for our
MTurk data collection (e.g., because the judgments of our annotations could be different).
Similarly, re-running the algorithm for computing agreement thresholds could give different
results with our MTurk worker population.

10To be precise: Jia Deng’s PhD thesis [14] provides a clear high-level description of their algorithm
for computing agreement thresholds. However – as is commonly the case in synopses of algorithms – the
description still omits some details such as the binning procedure or the number of images used to compute
the thresholds. Since it is usually hard to exactly reconstruct a non-trivial algorithm from an informal
summary, we instead decided to implement three different sampling strategies and compare their outcomes.
Potential deviations from the ImageNet sampling procedure are also alleviated by the fact that our MTurk
tasks always included at least a few images from the original validation set, which allowed us to calibrate
our sampling strategies to match the existing ImageNet data.
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So instead of attempting to directly replicate the original agreement thresholds, we in-
stead explored three different sampling strategies. An important asset in this part of our
experiment was that we had inserted original validation images into the MTurk tasks (see
the previous subsection). So at least for our MTurk worker population, we could estimate
how frequently the MTurk workers select the original validation images.

In this subsection, we describe our sampling strategy that closely matches the selection
frequency distribution of the original validation set. The follow-up experiments in Section
3.4 then explore the impact of this design choice in more detail. As we will see, the sampling
strategy has significant influence on the model accuracies.

Matching the Per-class Selection Frequency. A simple approach to matching the
selection frequency of the existing validation set would be to sample new images so that the
mean selection frequency is the same as for the original dataset. However, a closer inspection
of the selection frequencies reveals significant differences between the various classes. For
instance, well-defined and well-known classes such as “African elephant” tend to have high
selection frequencies ranging from 0.8 to 1.0. At the other end of the spectrum are classes
with an unclear definition or easily confused alternative classes. For instance, the MTurk
workers in our experiment often confused the class “nail” (the fastener) with fingernails, which
led to significantly lower selection frequencies for the original validation images belonging to
this class. In order to match these class-level details, we designed a sampling process that
approximately matches the selection frequency distribution for each class.

As a first step, we built an estimate of the per-class distribution of selection frequencies.
For each class, we divided the annotated validation images into five histogram bins based on
their selection frequency. These frequency bins were [0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8),
and [0.8, 1.0]. Intuitively, these bins correspond to a notion of image quality assessed by
the MTurk workers, with the [0.0, 0.2) bin containing the worst images and the [0.8, 1.0] bin
containing the best images. Normalizing the resulting histograms then yielded a distribution
over these selection frequency bins for each class.

Next, we sampled ten images for each class from our candidate pool, following the dis-
tribution given by the class-specific selection frequency histograms. More precisely, we first
computed the target number of images for each histogram bin, and then sampled from the
candidates images falling into this histogram bin uniformly at random. Since we only had a
limited number of images for each class, this process ran out of images for a small number
of classes. In these cases, we then sampled candidate images from the next higher bin until
we found a histogram bin that still had images remaining. While this slightly changes the
distribution, we remark that it makes our new test set easier and only affected 0.8% of the
images in the new test set.

At the end of this sampling process, we had a test set with 10, 000 images and an average
sampling frequency of 0.73. This is close to the average sampling frequency of the annotated
validation images (0.71).
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Final Reviewing. While the methodology outlined so far closely matches the original
ImageNet distribution, it is still hard to ensure that no unintended biases crept into the
dataset (e.g., our MTurk workers could interpret some of the class definitions differently
and select different images). So for quality control, we added a final reviewing step to our
dataset creation pipeline. Its purpose was to rule out obvious biases and ensure that the
dataset satisfies our quality expectations before we ran any models on the new dataset. This
minimizes dependencies between the new test set and the existing models.

In the final reviewing step, we manually reviewed every image in the dataset. Section
3.6.1.3 includes a screenshot and brief description of the user interface. When we found an
incorrect image or a near-duplicate, we removed it from the dataset. After a pass through
the dataset, we then re-sampled new images from our candidate pool. In some cases, this
also required new targeted Flickr searches for certain classes. We repeated this process until
the dataset converged after 33 iterations. We remark that the majority of iterations only
changed a small number of images.

One potential downside of the final reviewing step is that it may lead to a distribution
shift. However, we accepted this possibility since we view dataset correctness to be more
important than minimizing distribution shift. In the end, a test set is only interesting if
it has correct labels. Note also that removing incorrect images from the dataset makes it
easier, which goes against the main trend we observe (a drop in accuracy). Finally, we kept
track of all intermediate iterations of our dataset so that we could measure the impact of
this final reviewing step (see Section 3.6.3.2). This analysis shows that the main trends (a
significant accuracy drop and an approximately linear relationship between original and new
accuracy) also hold for the first iteration of the dataset without any additional reviewing.

3.6.2 Model performance results

After assembling our new test sets, we evaluated a broad range of models on both the original
validation set and our new test sets. Section 3.11.0.1 contains a list of all models we evaluated
with corresponding references and links to source code repositories. Tables 3.14 and 3.15
show the top-1 and top-5 accuracies for our main test set MatchedFrequency. Figure 3.12
visualizes the top-1 and top-5 accuracies on all three test sets.

In the main text of the chapter and Figure 3.12, we have chosen to exclude the Fisher
Vector models and show accuracies only for the convolutional neural networks (convnets).
Since the Fisher Vector models achieve significantly lower accuracy, a plot involving both
model families would have sacrificed resolution among the convnets. We decided to focus on
convnets in the main text because they have become the most widely used model family on
ImageNet.

Moreover, a linear model of accuracies (as shown in previous plots) is often not a good
fit when the accuracies span a wide range. Instead, a non-linear model such as a logistic
or probit model can sometimes describe the data better. Indeed, this is also the case for
our data on ImageNet. Figure 3.8 shows the accuracies both on a linear scale as in the
previous plots, and on a probit scale, i.e., after applying the inverse of the Gaussian CDF
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to all accuracy scores. As can be seen by comparing the two plots in Figure 3.8, the probit
model is a better fit for our data. It accurately summarizes the relationship between original
and new test set accuracy for all models from both model families in our testbed.

Similar to Figure 3.12, we also show the top-1 and top-5 accuracies for all three datasets
in the probit domain in Figure 3.13. Section 3.7.3 describes a possible generative model that
leads to a linear fit in the probit domain as exhibited by the plots in Figures 3.8 and 3.13.

3.6.3 Follow-up hypotheses

As for CIFAR-10, the gap between original and new accuracy is concerningly large. Hence
we investigated multiple hypotheses for explaining this gap.

3.6.3.1 Cross validation

A natural question is whether cross-validation with the existing ImageNet data could have
pointed towards a significant drop in accuracy. If adaptive overfitting to the images in the
validation set is a cause for the accuracy drop, testing on different images from another
cross-validation fold could produce lower accuracies.11 Moreover, recall that the ImageNet
validation set is not a strictly i.i.d. sample from the same distribution as the training set
(see the beginning of Section 3.4). This also raises the question of how well a model would
perform on a cross-validation fold from the training data.

To investigate these two effects, we conducted a cross-validation experiment with the
ImageNet training and validation sets. In order to ensure that the new cross-validation
folds contain only training images, we treated the existing validation set as one fold and
created five additional folds with 50,000 images each. To this end, we drew a class-balanced
sample of 250,000 images from the training set and then randomly partitioned this sample
into five cross-validation folds (again class-balanced). For each of these five folds, we added
the validation set (and the other training folds) to the training data so that the size of the
training set was unchanged. We then trained one resnet50 model12 [32] for each of the five
training sets and evaluated them on the corresponding held-out data. Table 3.6 shows the
resulting accuracies for each split.

Overall, we do not see a large difference in accuracy on the new cross validation splits:
all differences fall within the 95% confidence intervals around the accuracy scores. This is
in contrast to the significantly larger accuracy drops on our new test sets.

11Note however that the training images may also be affected by adaptive overfitting since the model
hyperparameters are often tuned for fast training speed and high training accuracy.

12To save computational resources, we used the optimized training code from https://github.com/fas
tai/imagenet-fast. Hence the top-5 accuracy on the original validation set is 0.4% lower than in Table
3.15.

https://github.com/fastai/imagenet-fast
https://github.com/fastai/imagenet-fast
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Dataset resnet50 Top-5 Accuracy (%)

Original validation set 92.5 [92.3, 92.8]

Split 1 92.60 [92.4, 92.8]
Split 2 92.59 [92.4, 92.8]
Split 3 92.61 [92.4, 92.8]
Split 4 92.55 [92.3, 92.8]
Split 5 92.62 [92.4, 92.9]

New test set (MatchedFrequency) 84.7 [83.9, 85.4]

Table 3.6: resnet50 accuracy on cross-validation splits created from the original ImageNet
train and validation sets. The accuracy increase is likely caused by a small shift in distribu-
tion between the ImageNet training and validation sets.

3.6.3.2 Impact of dataset revisions

As mentioned in Section 3.6.1.4, our final reviewing pass may have led to a distribution shift
compared to the original ImageNet validation set. In general, our reviewing criterion was to
blacklist images that were

• not representative of the target class,

• cartoons, paintings, drawings, or renderings,

• significantly different in distribution from the original ImageNet validation set,

• unclear, blurry, severely occluded, overly edited, or including only a small target object.

For each class, our reviewing UI (screenshot in Section 3.6.1.3) displayed a random sample
of ten original validation images directly next to the ten new candidate images currently
chosen. At least to some extent, this allowed us to detect and correct distribution shifts
between the original validation set and our candidate pool. As a concrete example, we noted
in one revision of our dataset that approximately half of the images for “great white shark”
were not live sharks in the water but models in museums or statues outside. In contrast,
the ImageNet validation set had fewer examples of such artificial sharks. Hence we decided
to remove some non-live sharks from our candidate pool and sampled new shark images as
a replacement in the dataset.

Unfortunately, some of these reviewing choices are subjective. However, such choices
are often an inherent part of creating a dataset and it is unclear whether a more “hands-
off” approach would lead to more meaningful conclusions. For instance, if the drop in
accuracy was mainly caused by a distribution shift that is easy to identify and correct
(e.g., an increase in black-and-white images), the resulting drop may not be an interesting
phenomenon (beyond counting black-and-white images). Hence we decided to both remove
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distribution shifts that we found easy to identify visually, and also to measure the effect of
these interventions.

Our reviewing process was iterative, i.e., we made a full pass over every incomplete class
in a given dataset revision before sampling new images to fill the resulting gaps. Each time
we re-sampled our dataset, we saved the current list of images in our version control system.
This allowed us to track the datasets over time and later measure the model accuracy for
each dataset revision. We remark that we only computed model accuracies on intermediate
revisions after we had arrived at the final revision of the corresponding dataset.

Figure 3.9 plots the top-1 accuracy of a resnet50 model versus the dataset revision for
our new MatchedFrequency test set. Overall, reviewing improved model accuracy by about
4% for this dataset. This is evidence that our manual reviewing did not cause the drop in
accuracy between the original and new dataset.

In addition, we also investigated whether the linear relationship between original and
new test accuracy was affected by our final reviewing passes. To this end, we evaluated
our model testbed on the first revision of our MatchedFrequency test set. As can be seen in
Figure 3.10, the resulting accuracies still show a good linear fit that is of similar quality as
in Figure 3.12. This shows that the linear relationship between the test accuracies is not a
result of our reviewing intervention.
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Figure 3.7: The user interface we built to review dataset revisions and remove incorrect or
near duplicate images. This user interface was not used for MTurk but only in the final
dataset review step conducted by the authors of this paper.
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Figure 3.8: Model accuracy on the original ImageNet validation set vs. our new test set
MatchedFrequency. Each data point corresponds to one model in our testbed (shown with
95% Clopper-Pearson confidence intervals), and we now also include the Fisher Vector mod-
els. The left plot shows the model accuracies with a linear scale on the axes. The right
plot instead uses a probit scale, i.e., accuracy α appears at Φ−1(α), where Φ is the Gaussian
CDF. Comparing the two plot provides evidence that the probit model is a better fit for the
accuracy scores. Over a range of 60 percentage points, the linear fit in the probit domain
accurately describes the relationship between original and new test set accuracy. The shaded
region around the linear fit is a 95% confidence region from 100,000 bootstrap samples. The
confidence region is present in both plots but is significantly smaller in the right plot due to
the better fit in the probit domain.
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Figure 3.9: Impact of the reviewing passes on the accuracy of a resnet152 on our new
MatchedFrequency test set. The revision numbers correspond to the chronological ordering
in which we created the dataset revisions
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Figure 3.10: Model accuracy on the original ImageNet validation set vs. accuracy on the first
revision of our MatchedFrequency test set. Each data point corresponds to one model in our
testbed (shown with 95% Clopper-Pearson confidence intervals). The red shaded region is
a 95% confidence region for the linear fit from 100,000 bootstrap samples. The plots show
that the linear relationship between original and new test accuracy also occurs without our
final dataset reviewing step. The accuracy plots for the final revision of MatchedFrequency
can be found in Figure 3.12.
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3.7 Discussion
We now return to the main question from Section 3.2: What causes the accuracy drops? As
before, we distinguish between two possible mechanisms.

3.7.1 Adaptivity gap

In its prototypical form, adaptive overfitting would manifest itself in diminishing returns
observed on the new test set (see Section 3.2.1). However, we do not observe this pattern on
either CIFAR-10 or ImageNet. On both datasets, the slope of the linear fit is greater than
1, i.e., each point of accuracy improvement on the original test set translates to more than
1% on the new test set. This is the opposite of the standard overfitting scenario. So at least
on CIFAR-10 and ImageNet, multiple years of competitive test set adaptivity did not lead
to diminishing accuracy numbers.

While our experiments rule out the most dangerous form of adaptive overfitting, we
remark that they do not exclude all variants. For instance, it could be that any test set
adaptivity leads to a roughly constant drop in accuracy. Then all models are affected equally
and we would see no diminishing returns since later models could still be better. Testing for
this form of adaptive overfitting likely requires a new test set that is truly i.i.d. and not the
result of a separate data collection effort. Finding a suitable dataset for such an experiment
is an interesting direction for future research.

The lack of adaptive overfitting contradicts conventional wisdom in machine learning.
We now describe two mechanisms that could have prevented adaptive overfitting:

The Ladder mechanism. Blum and Hardt introduced the Ladder algorithm to protect
machine learning competitions against adaptive overfitting [3]. The core idea is that con-
strained interaction with the test set can allow a large number of model evaluations to
succeed, even if the models are chosen adaptively. Due to the natural form of their algo-
rithm, the authors point out that it can also be seen as a mechanism that the machine
learning community implicitly follows.

Limited model class. Adaptivity is only a problem if we can choose among models for
which the test set accuracy differs significantly from the population accuracy. Importantly,
this argument does not rely on the number of all possible models (e.g., all parameter settings
of a neural network), but only on those models that could actually be evaluated on the test
set. For instance, the standard deep learning workflow only produces models trained with
SGD-style algorithms on a fixed training set, and requires that the models achieve high
training accuracy (otherwise we would not consider the corresponding hyperparameters).
Hence the number of different models arising from the current methodology may be small
enough so that uniform convergence holds.

Our experiments offer little evidence for favoring one explanation over the other. One
observation is that the convolutional networks shared many errors on CIFAR-10, which could
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be an indicator that the models are rather similar. But to gain a deeper understanding into
adaptive overfitting, it is likely necessary to gather further data from more machine learning
benchmarks, especially in scenarios where adaptive overfitting does occur naturally.

3.7.2 Distribution gap

The lack of diminishing returns in our experiments points towards the distribution gap as
the primary reason for the accuracy drops. Moreover, our results on ImageNet show that
changes in the sampling strategy can indeed affect model accuracies by a large amount, even
if the data source and other parts of the dataset creation process stay the same.

So in spite of our efforts to match the original dataset creation process, the distribu-
tion gap is still our leading hypothesis for the accuracy drops. This demonstrates that it
is surprisingly hard to accurately replicate the distribution of current image classification
datasets. The main difficulty likely is the subjective nature of the human annotation step.
There are many parameters that can affect the quality of human labels such as the annotator
population (MTurk vs. students, qualifications, location & time, etc.), the exact task format,
and compensation. Moreover, there are no exact definitions for many classes in ImageNet
(e.g., see Section 3.11.0.6). Understanding these aspects in more detail is an important di-
rection for designing future datasets that contain challenging images while still being labeled
correctly.

The difficulty of clearly defining the data distribution, combined with the brittle be-
havior of the tested models, calls into question whether the black-box and i.i.d. framework
of learning can produce reliable classifiers. Our analysis of selection frequencies in Figure
3.15 (Section 3.11.0.5) shows that we could create a new test set with even lower model
accuracies. The images in this hypothetical dataset would still be correct, from Flickr, and
selected by more than half of the MTurk labelers on average. So in spite of the impressive
accuracy scores on the original validation set, current ImageNet models still have difficulty
generalizing from “easy” to “hard” images.

3.7.3 A model for the linear fit

Finally, we briefly comment on the striking linear relationship between original and new test
accuracies that we observe in all our experiments (for instance, see Figure 3.1 in the intro-
duction or Figures 3.12 and 3.13 in the supplementary material at the end of the chapter).
To illustrate how this phenomenon could arise, we present a simple data model where a
small modification of the data distribution can lead to significant changes in accuracy, yet
the relative order of models is preserved as a linear relationship. We emphasize that this
model should not be seen as the true explanation. Instead, we hope it can inform future
experiments that explore natural variations in test distributions.

First, as we describe in Section 3.6.2, we find that we achieve better fits to our data under
a probit scaling of the accuracies. Over a wide range from 21% to 83% (all models in our
ImageNet testbed), the accuracies on the new test set, αnew, are related to the accuracies on
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the original test set, αorig, by the relationship

Φ−1(αnew) = u · Φ−1(αorig) + v

where Φ is the Gaussian CDF, and u and v are scalars. The probit scale is in a sense
more natural than a linear scale as the accuracy numbers are probabilities. When we plot
accuracies on a probit scale in Figures 3.8 and 3.13, we effectively visualize Φ−1(α) instead
of α.

We now provide a simple plausible model where the original and new accuracies are
related linearly on a probit scale. Assume that every example i has a scalar “difficulty”
τi ∈ R that quantifies how easy it is to classify. Further assume the probability of a model j
correctly classifying an image with difficulty τ is given by an increasing function ζj(τ). We
show that for restricted classes of difficulty functions ζj, we find a linear relationship between
average accuracies after distribution shifts.

To be specific, we focus on the following parameterization. Assume the difficulty distri-
bution of images in a test set follows a normal distribution with mean µ and variance σ2.
Further assume that

ζj(τ) = Φ(sj − τ) ,

where Φ : R → (0, 1) is the CDF of a standard normal distribution, and sj is the “skill” of
model j. Models with higher skill have higher classification accuracy, and images with higher
difficulty lead to smaller classification accuracy. Again, the choice of Φ here is somewhat
arbitrary: any sigmoidal function that maps (−∞,+∞) to (0, 1) is plausible. But using the
Gaussian CDF yields a simple calculation illustrating the linear phenomenon.

Using the above notation, the accuracy αj,µ,σ of a model j on a test set with difficulty
mean µ and variance σ is then given by

αj,µ,σ = E
τ∼N (µ,σ)

[Φ(sj − τ)] .

We can expand the CDF into an expectation and combine the two expectations by utilizing
the fact that a linear combination of two Gaussians is again Gaussian. This yields:

αj,µ,σ = Φ

(
sj − µ√
σ2 + 1

)
.

On a probit scale, the quantities we plot are given by

α̃j,µ,σ = Φ−1(αj,µ,σ) =
sj − µ√
σ2 + 1

.

Next, we consider the case where we have multiple models and two test sets with difficulty
parameters µk and σk respectively for k ∈ {1, 2}. Then α̃j,2, the probit-scaled accuracy on
the second test set, is a linear function of the accuracy on the first test set, α̃j,1:

α̃j,2 = u · α̃j,1 + v ,
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with

u =

√
σ2

1 + 1√
σ2

2 + 1
and v =

µ1 − µ2√
σ2

2 + 1
.

Hence, we see that the Gaussian difficulty model above yields a linear relationship between
original and new test accuracy in the probit domain. While the Gaussian assumptions here
made the calculations simple, a variety of different simple classes of ζj will give rise to the
same linear relationship between the accuracies on two different test sets.

3.8 Related work
We now briefly discuss related threads in machine learning. To the best of our knowledge,
there are no reproducibility experiments directly comparable to ours in the literature.

Dataset biases. The computer vision community has a rich history of creating new
datasets and discussing their relative merits, e.g., [25, 99, 72, 92, 23, 15, 81, 57]. The
paper closest to ours is [92], which studies dataset biases by measuring how models trained
on one dataset generalize to other datasets. The main difference to our work is that the
authors test generalization across different datasets, where larger changes in the distribution
(and hence larger drops in accuracy) are expected. In contrast, our experiments explicitly
attempt to reproduce the original data distribution and demonstrate that even small vari-
ations arising in this process can lead to significant accuracy drops. Moreover, [92] do not
test on previously unseen data, so their experiments cannot rule out adaptive overfitting.

Transfer learning from ImageNet. Kornblith et. al. [51] study how well accuracy on
ImageNet transfers to other image classification datasets. An important difference from both
our work and [92] is that the the ImageNet models are re-trained on the target datasets. The
authors find that better ImageNet models usually perform better on the target dataset as
well. Similar to [92], these experiments cannot rule out adaptive overfitting since the authors
do not use new data. Moreover, the experiments do not measure accuracy drops due to small
variations in the data generating process since the models are evaluated on a different task
with an explicit adaptation step. Interestingly, the authors also find an approximately linear
relationship between ImageNet and transfer accuracy.

Adversarial examples. While adversarial examples [88, 2] also show that existing models
are brittle, the perturbations have to be finely tuned since models are much more robust
to random perturbations. In contrast, our results demonstrate that even small, benign
variations in the data sampling process can already lead to a significant accuracy drop
without an adversary.
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A natural question is whether adversarially robust models are also more robust to the
distribution shifts observed in our work. As a first data point, we tested the common `∞-
robustness baseline from [61] for CIFAR-10. Interestingly, the accuracy numbers of this
model fall almost exactly on the linear fit given by the other models in our testbed. Hence
`∞-robustness does not seem to offer benefits for the distribution shift arising from our
reproducibility experiment. However, we note that more forms of adversarial robustness
such as spatial transformations or color space changes have been studied [21, 37, 95, 24, 45].
Testing these variants is an interesting direction for future work.

Non-adversarial image perturbations. Recent work also explores less adversarial changes
to the input, e.g., [29, 35]. In these papers, the authors modify the ImageNet validation set
via well-specified perturbations such as Gaussian noise, a fixed rotation, or adding a synthetic
snow-like pattern. Standard ImageNet models then achieve significantly lower accuracy on
the perturbed examples than on the unmodified validation set. While this is an interesting
test of robustness, the mechanism underlying the accuracy drops is significantly different
from our work. The aforementioned papers rely on an intentional, clearly-visible, and well-
defined perturbation of existing validation images. Moreover, some of the interventions are
quite different from the ImageNet validation set (e.g., ImageNet contains few images of
falling snow). In contrast, our experiments use new images and match the distribution of
the existing validation set as closely as possible. Hence it is unclear what properties of our
new images cause the accuracy drops.

3.9 Conclusion and future work
The expansive growth of machine learning rests on the aspiration to deploy trained systems
in a variety of challenging environments. Common examples include autonomous vehicles,
content moderation, and medicine. In order to use machine learning in these areas responsi-
bly, it is important that we can both train models with sufficient generalization abilities, and
also reliably measure their performance. As our results show, these goals still pose significant
hurdles even in a benign environment.

Our experiments are only a first step in addressing this reliability challenge. One impor-
tant question is whether other machine learning tasks are also resilient to adaptive overfitting,
but similarly brittle under natural variations in the data. Another direction is developing
methods for more comprehensive yet still realistic evaluations of machine learning systems.
Of course, the overarching goal is to develop learning algorithms that generalize reliably.
While this is often a vague goal, our new test sets offer a well-defined instantiation of this
challenge that is beyond the reach of current methods. Generalizing from our “easy” to
slightly “harder” images will hopefully serve as a starting point towards a future generation
of more reliable models
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3.10 Supplementary material for CIFAR-10
In this section we provide supplementary material related to our CIFAR-10 experiments.

3.10.0.1 Keyword Distribution in CIFAR-10

The sub-tables in Table 3.7 show the keyword distribution for each of the ten classes in the
original CIFAR-10 test set and our new test set.

Table 3.7: Distribution of the top 25 keywords in each class for the new and original test set.

Frog

New Original

bufo_bufo 0.64% 0.63%
leopard_frog 0.64% 0.64%
bufo_viridis 0.59% 0.57%
rana_temporaria 0.54% 0.53%
bufo 0.49% 0.47%
bufo_americanus 0.49% 0.46%
toad 0.49% 0.46%
green_frog 0.45% 0.44%
rana_catesbeiana 0.45% 0.43%
bufo_marinus 0.45% 0.43%
bullfrog 0.45% 0.42%
american_toad 0.45% 0.43%
frog 0.35% 0.35%
rana_pipiens 0.35% 0.32%
toad_frog 0.30% 0.30%
spadefoot 0.30% 0.27%
western_toad 0.30% 0.26%
grass_frog 0.30% 0.27%
pickerel_frog 0.25% 0.24%
spring_frog 0.25% 0.22%
rana_clamitans 0.20% 0.20%
natterjack 0.20% 0.17%
crapaud 0.20% 0.18%
bufo_calamita 0.20% 0.18%
alytes_obstetricans 0.20% 0.16%

Cat

New Original

tabby_cat 1.78% 1.78%
tabby 1.53% 1.52%
domestic_cat 1.34% 1.33%
cat 1.24% 1.25%
house_cat 0.79% 0.79%
felis_catus 0.69% 0.69%
mouser 0.64% 0.63%
felis_domesticus 0.54% 0.50%
true_cat 0.49% 0.47%
tomcat 0.49% 0.49%
alley_cat 0.30% 0.30%
felis_bengalensis 0.15% 0.11%
nougat 0.10% 0.05%
gray 0.05% 0.03%
manx_cat 0.05% 0.04%
fissiped 0.05% 0.03%
persian_cat 0.05% 0.03%
puss 0.05% 0.05%
catnap 0.05% 0.03%
tiger_cat 0.05% 0.03%
black_cat 0.05% 0.04%
bedspread 0.00% 0.02%
siamese_cat 0.00% 0.02%
tortoiseshell 0.00% 0.02%
kitty-cat 0.00% 0.02%
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Dog

New Original

pekingese 1.24% 1.22%
maltese 0.94% 0.93%
puppy 0.89% 0.87%
chihuahua 0.84% 0.81%
dog 0.69% 0.67%
pekinese 0.69% 0.66%
toy_spaniel 0.59% 0.60%
mutt 0.49% 0.47%
mongrel 0.49% 0.49%
maltese_dog 0.45% 0.43%
toy_dog 0.40% 0.36%
japanese_spaniel 0.40% 0.38%
blenheim_spaniel 0.35% 0.35%
english_toy_spaniel 0.35% 0.31%
domestic_dog 0.35% 0.32%
peke 0.30% 0.28%
canis_familiaris 0.30% 0.27%
lapdog 0.30% 0.30%
king_charles_spaniel 0.20% 0.17%
toy 0.15% 0.13%
feist 0.10% 0.06%
pet 0.10% 0.07%
cavalier 0.10% 0.05%
canine 0.05% 0.04%
cur 0.05% 0.04%

Deer

New Original

elk 0.79% 0.77%
capreolus_capreolus 0.74% 0.71%
cervus_elaphus 0.64% 0.61%
fallow_deer 0.64% 0.63%
roe_deer 0.59% 0.60%
deer 0.59% 0.60%
muntjac 0.54% 0.51%
mule_deer 0.54% 0.51%
odocoileus_hemionus 0.49% 0.50%
fawn 0.49% 0.49%
alces_alces 0.40% 0.36%
wapiti 0.40% 0.36%
american_elk 0.40% 0.35%
red_deer 0.35% 0.33%
moose 0.35% 0.35%
rangifer_caribou 0.25% 0.24%
rangifer_tarandus 0.25% 0.24%
caribou 0.25% 0.23%
sika 0.25% 0.22%
woodland_caribou 0.25% 0.21%
dama_dama 0.20% 0.19%
cervus_sika 0.20% 0.16%
barking_deer 0.20% 0.18%
sambar 0.15% 0.15%
stag 0.15% 0.13%

Bird

New Original

cassowary 0.89% 0.85%
bird 0.84% 0.84%
wagtail 0.74% 0.74%
ostrich 0.69% 0.68%
struthio_camelus 0.54% 0.51%
sparrow 0.54% 0.52%
emu 0.54% 0.51%
pipit 0.49% 0.47%
passerine 0.49% 0.50%
accentor 0.49% 0.49%
honey_eater 0.40% 0.37%
dunnock 0.40% 0.37%
alauda_arvensis 0.30% 0.26%
nandu 0.30% 0.27%
prunella_modularis 0.30% 0.30%
anthus_pratensis 0.30% 0.28%
finch 0.25% 0.24%
lark 0.25% 0.20%
meadow_pipit 0.25% 0.20%
rhea_americana 0.25% 0.21%
flightless_bird 0.15% 0.10%
emu_novaehollandiae 0.15% 0.12%
dromaius_novaehollandiae 0.15% 0.14%
apteryx 0.15% 0.10%
flying_bird 0.15% 0.13%

Ship

New Original

passenger_ship 0.79% 0.78%
boat 0.64% 0.64%
cargo_ship 0.40% 0.37%
cargo_vessel 0.40% 0.39%
pontoon 0.35% 0.31%
container_ship 0.35% 0.31%
speedboat 0.35% 0.32%
freighter 0.35% 0.32%
pilot_boat 0.35% 0.31%
ship 0.35% 0.31%
cabin_cruiser 0.30% 0.29%
police_boat 0.30% 0.25%
sea_boat 0.30% 0.29%
oil_tanker 0.30% 0.29%
pleasure_boat 0.25% 0.21%
lightship 0.25% 0.22%
powerboat 0.25% 0.25%
guard_boat 0.25% 0.20%
dredger 0.25% 0.20%
hospital_ship 0.25% 0.21%
banana_boat 0.20% 0.19%
merchant_ship 0.20% 0.17%
liberty_ship 0.20% 0.15%
container_vessel 0.20% 0.19%
tanker 0.20% 0.18%
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Truck

New Original

dump_truck 0.89% 0.89%
trucking_rig 0.79% 0.76%
delivery_truck 0.64% 0.61%
truck 0.64% 0.65%
tipper_truck 0.64% 0.60%
camion 0.59% 0.58%
fire_truck 0.59% 0.55%
lorry 0.54% 0.53%
garbage_truck 0.54% 0.53%
moving_van 0.35% 0.32%
tractor_trailer 0.35% 0.34%
tipper 0.35% 0.30%
aerial_ladder_truck 0.35% 0.34%
ladder_truck 0.30% 0.26%
fire_engine 0.30% 0.27%
dumper 0.30% 0.28%
trailer_truck 0.30% 0.28%
wrecker 0.30% 0.27%
articulated_lorry 0.25% 0.24%
tipper_lorry 0.25% 0.25%
semi 0.20% 0.18%
sound_truck 0.15% 0.12%
tow_truck 0.15% 0.12%
delivery_van 0.15% 0.11%
bookmobile 0.10% 0.10%

Horse

New Original

arabian 1.14% 1.12%
lipizzan 1.04% 1.02%
broodmare 0.99% 0.97%
gelding 0.74% 0.73%
quarter_horse 0.74% 0.72%
stud_mare 0.69% 0.69%
lippizaner 0.54% 0.52%
appaloosa 0.49% 0.45%
lippizan 0.49% 0.46%
dawn_horse 0.45% 0.42%
stallion 0.45% 0.43%
tennessee_walker 0.45% 0.45%
tennessee_walking_horse 0.40% 0.38%
walking_horse 0.30% 0.28%
riding_horse 0.20% 0.20%
saddle_horse 0.20% 0.18%
female_horse 0.15% 0.11%
cow_pony 0.15% 0.11%
male_horse 0.15% 0.14%
buckskin 0.15% 0.13%
horse 0.10% 0.08%
equine 0.10% 0.08%
quarter 0.10% 0.07%
cavalry_horse 0.10% 0.09%
thoroughbred 0.10% 0.06%

Airplane

New Original

stealth_bomber 0.94% 0.92%
airbus 0.89% 0.89%
stealth_fighter 0.79% 0.80%
fighter_aircraft 0.79% 0.76%
biplane 0.74% 0.74%
attack_aircraft 0.69% 0.67%
airliner 0.64% 0.61%
jetliner 0.59% 0.56%
monoplane 0.54% 0.55%
twinjet 0.54% 0.52%
dive_bomber 0.54% 0.52%
jumbo_jet 0.49% 0.47%
jumbojet 0.35% 0.35%
propeller_plane 0.30% 0.28%
fighter 0.20% 0.20%
plane 0.20% 0.15%
amphibious_aircraft 0.20% 0.20%
multiengine_airplane 0.15% 0.14%
seaplane 0.15% 0.14%
floatplane 0.10% 0.05%
multiengine_plane 0.10% 0.06%
reconnaissance_plane 0.10% 0.09%
airplane 0.10% 0.08%
tail 0.10% 0.05%
joint 0.05% 0.04%

Automobile

New Original

coupe 1.29% 1.26%
convertible 1.19% 1.18%
station_wagon 0.99% 0.98%
automobile 0.89% 0.90%
car 0.84% 0.81%
auto 0.84% 0.83%
compact_car 0.79% 0.76%
shooting_brake 0.64% 0.63%
estate_car 0.59% 0.59%
wagon 0.54% 0.51%
police_cruiser 0.45% 0.45%
motorcar 0.40% 0.40%
taxi 0.20% 0.17%
cruiser 0.15% 0.13%
compact 0.15% 0.11%
beach_wagon 0.15% 0.13%
funny_wagon 0.10% 0.05%
gallery 0.10% 0.07%
cab 0.10% 0.07%
ambulance 0.10% 0.07%
door 0.00% 0.03%
ford 0.00% 0.03%
opel 0.00% 0.03%
sport_car 0.00% 0.03%
sports_car 0.00% 0.03%
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3.10.0.2 Full List of Models Evaluated on CIFAR-10

The following list contains all models we evaluated on CIFAR-10 with references and links
to the corresponding source code.

1. autoaug_pyramid_net [13, 31] https://github.com/tensorflow/models/tree/ma
ster/research/autoaugment

2. autoaug_shake_shake_112 [13, 28] https://github.com/tensorflow/models/tre
e/master/research/autoaugment

3. autoaug_shake_shake_32 [13, 28] https://github.com/tensorflow/models/tree/
master/research/autoaugment

4. autoaug_shake_shake_96 [13, 28] https://github.com/tensorflow/models/tree/
master/research/autoaugment

5. autoaug_wrn [13, 102] https://github.com/tensorflow/models/tree/master/res
earch/autoaugment

6. cudaconvnet [54] https://github.com/akrizhevsky/cuda-convnet2

7. darc [48] http://lis.csail.mit.edu/code/gdl.html

8. densenet_BC_100_12 [40] https://github.com/hysts/pytorch_image_classificat
ion/

9. nas [104] https://github.com/tensorflow/models/blob/master/research/slim/n
ets/nasnet/nasnet.py#L32

10. pyramidnet_basic_110_270 [31] https://github.com/hysts/pytorch_image_class
ification/

11. pyramidnet_basic_110_84 [31] https://github.com/hysts/pytorch_image_class
ification/

12. random_features_256k_aug [10] https://github.com/modestyachts/nondeep Ran-
dom 1 layer convolutional network with 256k filters sampled from image patches, patch
size = 6, pool size 15, pool stride 6, and horizontal flip data augmentation.

13. random_features_256k [10] https://github.com/modestyachts/nondeep Random
1 layer convolutional network with 256k filters sampled from image patches, patch size
= 6, pool size 15, pool stride 6.

14. random_features_32k_aug [10] https://github.com/modestyachts/nondeep Ran-
dom 1 layer convolutional network with 32k filters sampled from image patches, patch
size = 6, pool size 15, pool stride 6, and horizontal flip data augmentation.

https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/tensorflow/models/tree/master/research/autoaugment
https://github.com/akrizhevsky/cuda-convnet2
http://lis.csail.mit.edu/code/gdl.html
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py#L32
https://github.com/tensorflow/models/blob/master/research/slim/nets/nasnet/nasnet.py#L32
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
https://github.com/modestyachts/nondeep
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15. random_features_32k [10] Random 1 layer convolutional network with 32k filters
sampled from image patches, patch size = 6, pool size 15, pool stride 16.

16. resnet_basic_32 [32] https://github.com/hysts/pytorch_image_classificatio
n/

17. resnet_basic_44 [32] https://github.com/hysts/pytorch_image_classificatio
n/

18. resnet_basic_56 [32] https://github.com/hysts/pytorch_image_classificatio
n/

19. resnet_basic_110 [32] https://github.com/hysts/pytorch_image_classificatio
n/

20. resnet_preact_basic_110 [34] https://github.com/hysts/pytorch_image_class
ification/

21. resnet_preact_bottleneck_164 [34] https://github.com/hysts/pytorch_image_c
lassification/

22. resnet_preact_tf [34] https://github.com/tensorflow/models/tree/b871670b5a
e29aaa6cad1b2d4e004882f716c466/resnet

23. resnext_29_4x64d [96] https://github.com/hysts/pytorch_image_classificatio
n/

24. resnext_29_8x64d [96] https://github.com/hysts/pytorch_image_classificatio
n/

25. shake_drop [98] https://github.com/imenurok/ShakeDrop

26. shake_shake_32d [28] https://github.com/hysts/pytorch_image_classificatio
n/

27. shake_shake_64d [28] https://github.com/hysts/pytorch_image_classificatio
n/

28. shake_shake_96d [28] https://github.com/hysts/pytorch_image_classificatio
n/

29. shake_shake_64d_cutout [28, 16] https://github.com/hysts/pytorch_image_cla
ssification/

30. vgg16_keras [84, 59] https://github.com/geifmany/cifar-vgg

31. vgg_15_BN_64 [84, 59] https://github.com/hysts/pytorch_image_classificatio
n/

https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/imenurok/ShakeDrop
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/geifmany/cifar-vgg
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
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32. wide_resnet_tf [102] https://github.com/tensorflow/models/tree/b871670b5a
e29aaa6cad1b2d4e004882f716c466/resnet

33. wide_resnet_28_10 [102] https://github.com/hysts/pytorch_image_classificat
ion/

34. wide_resnet_28_10_cutout [102, 16] https://github.com/hysts/pytorch_image
_classification/

3.10.0.3 Full Results Table

Table 3.12 contains the detailed accuracy scores for the original CIFAR-10 test set and our
new test set.

3.10.0.4 Full Results Table for the Exactly Class-Balanced Test Set

Table 3.13 contains the detailed accuracy scores for the original CIFAR-10 test set and the
exactly class-balanced variant of our new test set.

3.10.0.5 Hard Images

Figure 3.11 shows the images in our new CIFAR-10 test set that were misclassified by all
models in our testbed. As can be seen in the figure, the class labels for these images are
correct.

https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/tensorflow/models/tree/b871670b5ae29aaa6cad1b2d4e004882f716c466/resnet
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
https://github.com/hysts/pytorch_image_classification/
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True: automobile
Predicted: airplane

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: automobile
Predicted: truck

True: bird
Predicted: frog

True: horse
Predicted: frog

True: cat
Predicted: dog

True: cat
Predicted: dog

True: cat
Predicted: deer

True: dog
Predicted: cat

True: dog
Predicted: cat

Figure 3.11: Hard images from our new test set that no model correctly. The caption of
each image states the correct class label (“True”) and the label predicted by most models
(“Predicted”).
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Table 3.12: Model accuracy on the original CIFAR-10 test set and our new test set. ∆
Rank is the relative difference in the ranking from the original test set to the new test set.
For example, ∆Rank = −2 means that a model dropped by two places on the new test
set compared to the original test set. The confidence intervals are 95% Clopper-Pearson
intervals. References for the models can be found in Section 3.10.0.2.

CIFAR-10

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf 98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0
2 autoaug_shake_shake_112_tf98.1 [97.8, 98.4] 93.9 [92.7, 94.9] 4.3 2 0
3 autoaug_shake_shake_96_tf98.0 [97.7, 98.3] 93.7 [92.6, 94.7] 4.3 3 0
4 autoaug_wrn_tf 97.5 [97.1, 97.8] 93.0 [91.8, 94.1] 4.4 4 0
5 autoaug_shake_shake_32_tf97.3 [97.0, 97.6] 92.9 [91.7, 94.0] 4.4 6 -1
6 shake_shake_64d_cutout 97.1 [96.8, 97.4] 93.0 [91.8, 94.1] 4.1 5 1
7 shake_shake_26_2x96d_SSI 97.1 [96.7, 97.4] 91.9 [90.7, 93.1] 5.1 9 -2
8 shake_shake_64d 97.0 [96.6, 97.3] 91.4 [90.1, 92.6] 5.6 10 -2
9 wrn_28_10_cutout16 97.0 [96.6, 97.3] 92.0 [90.7, 93.1] 5.0 8 1
10 shake_drop 96.9 [96.5, 97.2] 92.3 [91.0, 93.4] 4.6 7 3
11 shake_shake_32d 96.6 [96.2, 96.9] 89.8 [88.4, 91.1] 6.8 13 -2
12 darc 96.6 [96.2, 96.9] 89.5 [88.1, 90.8] 7.1 16 -4
13 resnext_29_4x64d 96.4 [96.0, 96.7] 89.6 [88.2, 90.9] 6.8 15 -2
14 pyramidnet_basic_110_270 96.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.9 11 3
15 resnext_29_8x64d 96.2 [95.8, 96.6] 90.0 [88.6, 91.2] 6.3 12 3
16 wrn_28_10 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 14 2
17 pyramidnet_basic_110_84 95.7 [95.3, 96.1] 89.3 [87.8, 90.6] 6.5 17 0
18 densenet_BC_100_12 95.5 [95.1, 95.9] 87.6 [86.1, 89.0] 8.0 20 -2
19 nas 95.4 [95.0, 95.8] 88.8 [87.4, 90.2] 6.6 18 1
20 wide_resnet_tf_28_10 95.0 [94.6, 95.4] 88.5 [87.0, 89.9] 6.5 19 1
21 resnet_v2_bottleneck_164 94.2 [93.7, 94.6] 85.9 [84.3, 87.4] 8.3 22 -1
22 vgg16_keras 93.6 [93.1, 94.1] 85.3 [83.6, 86.8] 8.3 23 -1
23 resnet_basic_110 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 24 -1
24 resnet_v2_basic_110 93.4 [92.9, 93.9] 86.5 [84.9, 88.0] 6.9 21 3
25 resnet_basic_56 93.3 [92.8, 93.8] 85.0 [83.3, 86.5] 8.3 25 0
26 resnet_basic_44 93.0 [92.5, 93.5] 84.2 [82.6, 85.8] 8.8 29 -3
27 vgg_15_BN_64 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 27 0
28 resnetv2_tf_32 92.7 [92.2, 93.2] 84.4 [82.7, 85.9] 8.3 28 0
29 resnet_basic_32 92.5 [92.0, 93.0] 84.9 [83.2, 86.4] 7.7 26 3
30 cudaconvnet 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11.0 30 0
31 random_features_256k_aug 85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12.5 31 0
32 random_features_32k_aug 85.0 [84.3, 85.7] 71.9 [69.9, 73.9] 13.0 32 0
33 random_features_256k 84.2 [83.5, 84.9] 69.9 [67.8, 71.9] 14.3 33 0
34 random_features_32k 83.3 [82.6, 84.0] 67.9 [65.9, 70.0] 15.4 34 0
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Table 3.13: Model accuracy on the original CIFAR-10 test set and the exactly class-balanced
variant of our new test set. ∆ Rank is the relative difference in the ranking from the original
test set to the new test set. For example, ∆Rank = −2 means that a model dropped by two
places on the new test set compared to the original test set. The confidence intervals are
95% Clopper-Pearson intervals. References for the models can be found in Section 3.10.0.2.

CIFAR-10

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 autoaug_pyramid_net_tf 98.4 [98.1, 98.6] 95.5 [94.5, 96.4] 2.9 1 0
2 autoaug_shake_shake_112_tf98.1 [97.8, 98.4] 94.0 [92.9, 95.0] 4.1 2 0
3 autoaug_shake_shake_96_tf98.0 [97.7, 98.3] 93.9 [92.8, 94.9] 4.1 3 0
4 autoaug_wrn_tf 97.5 [97.1, 97.8] 93.0 [91.8, 94.1] 4.5 6 -2
5 autoaug_shake_shake_32_tf97.3 [97.0, 97.6] 93.2 [92.0, 94.2] 4.2 4 1
6 shake_shake_64d_cutout 97.1 [96.8, 97.4] 93.1 [91.9, 94.2] 4.0 5 1
7 shake_shake_26_2x96d_SSI 97.1 [96.7, 97.4] 92.0 [90.7, 93.1] 5.1 9 -2
8 shake_shake_64d 97.0 [96.6, 97.3] 91.9 [90.6, 93.1] 5.1 10 -2
9 wrn_28_10_cutout16 97.0 [96.6, 97.3] 92.1 [90.8, 93.2] 4.9 8 1
10 shake_drop 96.9 [96.5, 97.2] 92.3 [91.1, 93.4] 4.6 7 3
11 shake_shake_32d 96.6 [96.2, 96.9] 90.0 [88.6, 91.3] 6.6 15 -4
12 darc 96.6 [96.2, 96.9] 89.9 [88.5, 91.2] 6.7 16 -4
13 resnext_29_4x64d 96.4 [96.0, 96.7] 90.1 [88.8, 91.4] 6.2 12 1
14 pyramidnet_basic_110_270 96.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.8 11 3
15 resnext_29_8x64d 96.2 [95.8, 96.6] 90.1 [88.7, 91.4] 6.1 14 1
16 wrn_28_10 95.9 [95.5, 96.3] 90.1 [88.8, 91.4] 5.8 13 3
17 pyramidnet_basic_110_84 95.7 [95.3, 96.1] 89.6 [88.2, 90.9] 6.1 17 0
18 densenet_BC_100_12 95.5 [95.1, 95.9] 87.9 [86.4, 89.3] 7.6 20 -2
19 nas 95.4 [95.0, 95.8] 89.2 [87.8, 90.5] 6.2 18 1
20 wide_resnet_tf_28_10 95.0 [94.6, 95.4] 88.8 [87.4, 90.2] 6.2 19 1
21 resnet_v2_bottleneck_164 94.2 [93.7, 94.6] 86.1 [84.5, 87.6] 8.1 22 -1
22 vgg16_keras 93.6 [93.1, 94.1] 85.6 [84.0, 87.1] 8.0 23 -1
23 resnet_basic_110 93.5 [93.0, 93.9] 85.4 [83.8, 86.9] 8.1 24 -1
24 resnet_v2_basic_110 93.4 [92.9, 93.9] 86.9 [85.4, 88.3] 6.5 21 3
25 resnet_basic_56 93.3 [92.8, 93.8] 84.9 [83.2, 86.4] 8.5 28 -3
26 resnet_basic_44 93.0 [92.5, 93.5] 84.8 [83.2, 86.3] 8.2 29 -3
27 vgg_15_BN_64 93.0 [92.5, 93.5] 85.0 [83.4, 86.6] 7.9 27 0
28 resnetv2_tf_32 92.7 [92.2, 93.2] 85.1 [83.5, 86.6] 7.6 26 2
29 resnet_basic_32 92.5 [92.0, 93.0] 85.2 [83.6, 86.7] 7.3 25 4
30 cudaconvnet 88.5 [87.9, 89.2] 78.2 [76.3, 80.0] 10.3 30 0
31 random_features_256k_aug 85.6 [84.9, 86.3] 73.6 [71.6, 75.5] 12.0 31 0
32 random_features_32k_aug 85.0 [84.3, 85.7] 72.2 [70.2, 74.1] 12.8 32 0
33 random_features_256k 84.2 [83.5, 84.9] 70.5 [68.4, 72.4] 13.8 33 0
34 random_features_32k 83.3 [82.6, 84.0] 68.7 [66.6, 70.7] 14.6 34 0
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3.11 Supplementary material for ImageNet
In this section we provide supplementary material related to our ImageNet experiments.

3.11.0.1 Full list of models evaluated on ImageNet

The following list contains all models we evaluated on ImageNet with references and links
to the corresponding source code.

1. alexnet [54] https://github.com/Cadene/pretrained-models.pytorch

2. bninception [42] https://github.com/Cadene/pretrained-models.pytorch

3. cafferesnet101 [32] https://github.com/Cadene/pretrained-models.pytorch

4. densenet121 [40] https://github.com/Cadene/pretrained-models.pytorch

5. densenet161 [40]https://github.com/Cadene/pretrained-models.pytorch

6. densenet169 [40] https://github.com/Cadene/pretrained-models.pytorch

7. densenet201 [40] https://github.com/Cadene/pretrained-models.pytorch

8. dpn107 [6] https://github.com/Cadene/pretrained-models.pytorch

9. dpn131 [6] https://github.com/Cadene/pretrained-models.pytorch

10. dpn68b [6]https://github.com/Cadene/pretrained-models.pytorch

11. dpn68 [6] https://github.com/Cadene/pretrained-models.pytorch

12. dpn92 [6] https://github.com/Cadene/pretrained-models.pytorch

13. dpn98 [6] https://github.com/Cadene/pretrained-models.pytorch

14. fbresnet152 [32] https://github.com/tensorflow/models/tree/master/researc
h/slim/

15. fv_4k [71, 9] https://github.com/modestyachts/nondeep FisherVector model using
SIFT, local color statistic features, and 16 GMM centers.

16. fv_16k [71, 9] https://github.com/modestyachts/nondeep FisherVector model us-
ing SIFT, local color statistic features, and 64 GMM centers.

17. fv_64k [71, 9] https://github.com/modestyachts/nondeep FisherVector model us-
ing SIFT, local color statistic features, and 256 GMM centers.

18. inception_resnet_v2_tf [87] https://github.com/tensorflow/models/tree/mast
er/research/slim/
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19. inception_v1_tf [86] https://github.com/tensorflow/models/tree/master/res
earch/slim/

20. inception_v2_tf [42] https://github.com/tensorflow/models/tree/master/res
earch/slim/

21. inception_v3_tf [89] https://github.com/tensorflow/models/tree/master/res
earch/slim/

22. inception_v3 [89] https://github.com/Cadene/pretrained-models.pytorch

23. inception_v4_tf [87] https://github.com/tensorflow/models/tree/master/res
earch/slim/

24. inceptionresnetv2 [42] https://github.com/Cadene/pretrained-models.pytorc
h

25. inceptionv3 [89] https://github.com/Cadene/pretrained-models.pytorch

26. inceptionv4 [87] https://github.com/Cadene/pretrained-models.pytorch

27. mobilenet_v1_tf [38] https://github.com/tensorflow/models/tree/master/res
earch/slim/

28. nasnet_large_tf [104] https://github.com/tensorflow/models/tree/master/res
earch/slim/

29. nasnet_mobile_tf [104] https://github.com/tensorflow/models/tree/master/research/slim/

30. nasnetalarge [104] https://github.com/Cadene/pretrained-models.pytorch

31. nasnetamobile [104] https://github.com/Cadene/pretrained-models.pytorch

32. pnasnet5large [58] https://github.com/Cadene/pretrained-models.pytorch

33. pnasnet_large_tf [58] https://github.com/tensorflow/models/tree/master/research/slim/

34. pnasnet_mobile_tf [58] https://github.com/tensorflow/models/tree/master/r
esearch/slim/

35. polynet [103] https://github.com/Cadene/pretrained-models.pytorch

36. resnet101 [32] https://github.com/Cadene/pretrained-models.pytorch

37. resnet152 [32] https://github.com/Cadene/pretrained-models.pytorch

38. resnet18 [32] https://github.com/Cadene/pretrained-models.pytorch

39. resnet34 [32] https://github.com/Cadene/pretrained-models.pytorch
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40. resnet50 [32] https://github.com/Cadene/pretrained-models.pytorch

41. resnet_v1_101_tf [32] https://github.com/tensorflow/models/tree/master/res
earch/slim/

42. resnet_v1_152_tf [32] https://github.com/tensorflow/models/tree/master/research/slim/

43. resnet_v1_50_tf [32] https://github.com/tensorflow/models/tree/master/res
earch/slim/

44. resnet_v2_101_tf [34] https://github.com/tensorflow/models/tree/master/res
earch/slim/

45. resnet_v2_152_tf [34] https://github.com/tensorflow/models/tree/master/res
earch/slim/

46. resnet_v2_50_tf [34] https://github.com/tensorflow/models/tree/master/res
earch/slim/

47. resnext101_32x4d [96] https://github.com/Cadene/pretrained-models.pytorch

48. resnext101_64x4d [96] https://github.com/Cadene/pretrained-models.pytorch

49. se_resnet101 [39] https://github.com/Cadene/pretrained-models.pytorch

50. se_resnet152 [39] https://github.com/Cadene/pretrained-models.pytorch

51. se_resnet50 [39] https://github.com/Cadene/pretrained-models.pytorch

52. se_resnext101_32x4d [39] https://github.com/Cadene/pretrained-models.pyto
rch

53. se_resnext50_32x4d [39] https://github.com/Cadene/pretrained-models.pytorc
h

54. senet154 [39] https://github.com/Cadene/pretrained-models.pytorch

55. squeezenet1_0 [41] https://github.com/Cadene/pretrained-models.pytorch

56. squeezenet1_1 [41] https://github.com/Cadene/pretrained-models.pytorch

57. vgg11_bn [42] https://github.com/Cadene/pretrained-models.pytorch

58. vgg11 [84] https://github.com/Cadene/pretrained-models.pytorch

59. vgg13_bn [42] https://github.com/Cadene/pretrained-models.pytorch

60. vgg13 [84] https://github.com/Cadene/pretrained-models.pytorch
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61. vgg16_bn [42] https://github.com/Cadene/pretrained-models.pytorch

62. vgg16 [84] https://github.com/Cadene/pretrained-models.pytorch

63. vgg19_bn [42] https://github.com/Cadene/pretrained-models.pytorch

64. vgg19 [84] https://github.com/Cadene/pretrained-models.pytorch

65. vgg_16_tf [84] https://github.com/tensorflow/models/tree/master/research/slim/

66. vgg_19_tf [84] https://github.com/tensorflow/models/tree/master/research/
slim/

67. xception [8] https://github.com/Cadene/pretrained-models.pytorch

3.11.0.2 Full results tables

Tables 3.14 and 3.15 contain the detailed accuracy scores (top-1 and top-5, respectively) for
the original ImageNet validation set and our main new test set MatchedFrequency. Tables
3.16 – 3.19 contain the accuracy scores for our Threshold0.7 and TopImages test sets.
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Table 3.14: Top-1 model accuracy on the original ImageNet validation set and our new test
set MatchedFrequency. ∆ Rank is the relative difference in the ranking from the original test
set to the new test set. For example, ∆Rank = −2 means that a model dropped by two
places on the new test set compared to the original test set. The confidence intervals are
95% Clopper-Pearson intervals. References for the models can be found in Section 3.11.0.1.
The second part of the table can be found on the following page.

ImageNet Top-1 MatchedFrequency

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 72.2 [71.3, 73.1] 10.7 3 -2
2 pnasnet5large 82.7 [82.4, 83.1] 72.1 [71.2, 73.0] 10.7 4 -2
3 nasnet_large_tf 82.7 [82.4, 83.0] 72.2 [71.3, 73.1] 10.5 2 1
4 nasnetalarge 82.5 [82.2, 82.8] 72.2 [71.3, 73.1] 10.3 1 3
5 senet154 81.3 [81.0, 81.6] 70.5 [69.6, 71.4] 10.8 5 0
6 polynet 80.9 [80.5, 81.2] 70.3 [69.4, 71.2] 10.5 6 0
7 inception_resnet_v2_tf 80.4 [80.0, 80.7] 69.7 [68.7, 70.6] 10.7 7 0
8 inceptionresnetv2 80.3 [79.9, 80.6] 69.6 [68.7, 70.5] 10.6 8 0
9 se_resnext101_32x4d 80.2 [79.9, 80.6] 69.3 [68.4, 70.2] 10.9 9 0
10 inception_v4_tf 80.2 [79.8, 80.5] 68.8 [67.9, 69.7] 11.4 11 -1
11 inceptionv4 80.1 [79.7, 80.4] 69.1 [68.2, 70.0] 10.9 10 1
12 dpn107 79.7 [79.4, 80.1] 68.1 [67.2, 69.0] 11.7 12 0
13 dpn131 79.4 [79.1, 79.8] 67.9 [67.0, 68.8] 11.5 13 0
14 dpn92 79.4 [79.0, 79.8] 67.3 [66.3, 68.2] 12.1 17 -3
15 dpn98 79.2 [78.9, 79.6] 67.8 [66.9, 68.8] 11.4 15 0
16 se_resnext50_32x4d 79.1 [78.7, 79.4] 67.9 [66.9, 68.8] 11.2 14 2
17 resnext101_64x4d 79.0 [78.6, 79.3] 67.1 [66.2, 68.0] 11.9 20 -3
18 xception 78.8 [78.5, 79.2] 67.2 [66.2, 68.1] 11.7 18 0
19 se_resnet152 78.7 [78.3, 79.0] 67.5 [66.6, 68.5] 11.1 16 3
20 se_resnet101 78.4 [78.0, 78.8] 67.2 [66.2, 68.1] 11.2 19 1
21 resnet152 78.3 [77.9, 78.7] 67.0 [66.1, 67.9] 11.3 21 0
22 resnext101_32x4d 78.2 [77.8, 78.5] 66.2 [65.3, 67.2] 11.9 22 0
23 inception_v3_tf 78.0 [77.6, 78.3] 66.1 [65.1, 67.0] 11.9 24 -1
24 resnet_v2_152_tf 77.8 [77.4, 78.1] 66.1 [65.1, 67.0] 11.7 25 -1
25 se_resnet50 77.6 [77.3, 78.0] 66.2 [65.3, 67.2] 11.4 23 2
26 fbresnet152 77.4 [77.0, 77.8] 65.8 [64.9, 66.7] 11.6 26 0
27 resnet101 77.4 [77.0, 77.7] 65.7 [64.7, 66.6] 11.7 28 -1
28 inceptionv3 77.3 [77.0, 77.7] 65.7 [64.8, 66.7] 11.6 27 1
29 inception_v3 77.2 [76.8, 77.6] 65.4 [64.5, 66.4] 11.8 29 0
30 densenet161 77.1 [76.8, 77.5] 65.3 [64.4, 66.2] 11.8 30 0
31 dpn68b 77.0 [76.7, 77.4] 64.7 [63.7, 65.6] 12.4 32 -1
32 resnet_v2_101_tf 77.0 [76.6, 77.3] 64.6 [63.7, 65.6] 12.3 34 -2
33 densenet201 76.9 [76.5, 77.3] 64.7 [63.7, 65.6] 12.2 31 2
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ImageNet Top-1 MatchedFrequency

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 64.6 [63.7, 65.6] 12.2 33 1
35 resnet_v1_101_tf 76.4 [76.0, 76.8] 64.5 [63.6, 65.5] 11.9 35 0
36 cafferesnet101 76.2 [75.8, 76.6] 64.3 [63.4, 65.2] 11.9 36 0
37 resnet50 76.1 [75.8, 76.5] 63.3 [62.4, 64.3] 12.8 39 -2
38 dpn68 75.9 [75.5, 76.2] 63.4 [62.5, 64.4] 12.4 38 0
39 densenet169 75.6 [75.2, 76.0] 63.9 [62.9, 64.8] 11.7 37 2
40 resnet_v2_50_tf 75.6 [75.2, 76.0] 62.7 [61.8, 63.7] 12.9 40 0
41 resnet_v1_50_tf 75.2 [74.8, 75.6] 62.6 [61.6, 63.5] 12.6 41 0
42 densenet121 74.4 [74.0, 74.8] 62.2 [61.3, 63.2] 12.2 42 0
43 vgg19_bn 74.2 [73.8, 74.6] 61.9 [60.9, 62.8] 12.3 44 -1
44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 60.9 [59.9, 61.8] 13.3 48 -4
45 nasnetamobile 74.1 [73.7, 74.5] 61.6 [60.6, 62.5] 12.5 45 0
46 inception_v2_tf 74.0 [73.6, 74.4] 61.2 [60.2, 62.2] 12.8 46 0
47 nasnet_mobile_tf 74.0 [73.6, 74.4] 60.8 [59.8, 61.7] 13.2 50 -3
48 bninception 73.5 [73.1, 73.9] 62.1 [61.2, 63.1] 11.4 43 5
49 vgg16_bn 73.4 [73.0, 73.7] 60.8 [59.8, 61.7] 12.6 49 0
50 resnet34 73.3 [72.9, 73.7] 61.2 [60.2, 62.2] 12.1 47 3
51 vgg19 72.4 [72.0, 72.8] 59.7 [58.7, 60.7] 12.7 51 0
52 vgg16 71.6 [71.2, 72.0] 58.8 [57.9, 59.8] 12.8 53 -1
53 vgg13_bn 71.6 [71.2, 72.0] 59.0 [58.0, 59.9] 12.6 52 1
54 mobilenet_v1_tf 71.0 [70.6, 71.4] 57.4 [56.4, 58.4] 13.6 56 -2
55 vgg_19_tf 71.0 [70.6, 71.4] 58.6 [57.7, 59.6] 12.4 54 1
56 vgg_16_tf 70.9 [70.5, 71.3] 58.4 [57.4, 59.3] 12.5 55 1
57 vgg11_bn 70.4 [70.0, 70.8] 57.4 [56.4, 58.4] 13.0 57 0
58 vgg13 69.9 [69.5, 70.3] 57.1 [56.2, 58.1] 12.8 59 -1
59 inception_v1_tf 69.8 [69.4, 70.2] 56.6 [55.7, 57.6] 13.1 60 -1
60 resnet18 69.8 [69.4, 70.2] 57.2 [56.2, 58.2] 12.6 58 2
61 vgg11 69.0 [68.6, 69.4] 55.8 [54.8, 56.8] 13.2 61 0
62 squeezenet1_1 58.2 [57.7, 58.6] 45.3 [44.4, 46.3] 12.8 62 0
63 squeezenet1_0 58.1 [57.7, 58.5] 45.0 [44.0, 46.0] 13.1 63 0
64 alexnet 56.5 [56.1, 57.0] 44.0 [43.0, 45.0] 12.5 64 0
65 fv_64k 35.1 [34.7, 35.5] 24.1 [23.2, 24.9] 11.0 65 0
66 fv_16k 28.3 [27.9, 28.7] 19.2 [18.5, 20.0] 9.1 66 0
67 fv_4k 21.2 [20.8, 21.5] 15.0 [14.3, 15.7] 6.2 67 0



CHAPTER 3. DO IMAGENET CLASSIFIERS GENERALIZE TO IMAGENET? 79

Table 3.15: Top-5 model accuracy on the original ImageNet validation set and our new test
set MatchedFrequency. ∆ Rank is the relative difference in the ranking from the original test
set to the new test set. For example, ∆Rank = −2 means that a model dropped by two
places on the new test set compared to the original test set. The confidence intervals are
95% Clopper-Pearson intervals. References for the models can be found in Section 3.11.0.1.
The second part of the table can be found on the following page.

ImageNet Top-5 MatchedFrequency

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 90.1 [89.5, 90.7] 6.1 3 -2
2 nasnet_large_tf 96.2 [96.0, 96.3] 90.1 [89.5, 90.6] 6.1 4 -2
3 nasnetalarge 96.0 [95.8, 96.2] 90.4 [89.8, 91.0] 5.6 1 2
4 pnasnet5large 96.0 [95.8, 96.2] 90.2 [89.6, 90.8] 5.8 2 2
5 polynet 95.6 [95.4, 95.7] 89.1 [88.5, 89.7] 6.4 5 0
6 senet154 95.5 [95.3, 95.7] 89.0 [88.4, 89.6] 6.5 6 0
7 inception_resnet_v2_tf 95.2 [95.1, 95.4] 88.4 [87.7, 89.0] 6.9 9 -2
8 inception_v4_tf 95.2 [95.0, 95.4] 88.3 [87.6, 88.9] 6.9 10 -2
9 inceptionresnetv2 95.1 [94.9, 95.3] 88.5 [87.8, 89.1] 6.7 8 1
10 se_resnext101_32x4d 95.0 [94.8, 95.2] 88.0 [87.4, 88.7] 7.0 11 -1
11 inceptionv4 94.9 [94.7, 95.1] 88.7 [88.1, 89.3] 6.2 7 4
12 dpn107 94.7 [94.5, 94.9] 87.6 [86.9, 88.2] 7.1 13 -1
13 dpn92 94.6 [94.4, 94.8] 87.2 [86.5, 87.8] 7.5 17 -4
14 dpn131 94.6 [94.4, 94.8] 87.0 [86.3, 87.7] 7.6 19 -5
15 dpn98 94.5 [94.3, 94.7] 87.2 [86.5, 87.8] 7.3 16 -1
16 se_resnext50_32x4d 94.4 [94.2, 94.6] 87.6 [87.0, 88.3] 6.8 12 4
17 se_resnet152 94.4 [94.2, 94.6] 87.4 [86.7, 88.0] 7.0 15 2
18 xception 94.3 [94.1, 94.5] 87.0 [86.3, 87.7] 7.3 20 -2
19 se_resnet101 94.3 [94.1, 94.5] 87.1 [86.4, 87.7] 7.2 18 1
20 resnext101_64x4d 94.3 [94.0, 94.5] 86.9 [86.2, 87.5] 7.4 22 -2
21 resnet_v2_152_tf 94.1 [93.9, 94.3] 86.9 [86.2, 87.5] 7.2 21 0
22 resnet152 94.0 [93.8, 94.3] 87.6 [86.9, 88.2] 6.5 14 8
23 inception_v3_tf 93.9 [93.7, 94.1] 86.4 [85.7, 87.0] 7.6 23 0
24 resnext101_32x4d 93.9 [93.7, 94.1] 86.2 [85.5, 86.8] 7.7 25 -1
25 se_resnet50 93.8 [93.5, 94.0] 86.3 [85.6, 87.0] 7.4 24 1
26 resnet_v2_101_tf 93.7 [93.5, 93.9] 86.1 [85.4, 86.8] 7.6 27 -1
27 fbresnet152 93.6 [93.4, 93.8] 86.1 [85.4, 86.7] 7.5 28 -1
28 dpn68b 93.6 [93.4, 93.8] 85.3 [84.6, 86.0] 8.3 33 -5
29 densenet161 93.6 [93.3, 93.8] 86.1 [85.4, 86.8] 7.4 26 3
30 resnet101 93.5 [93.3, 93.8] 86.0 [85.3, 86.7] 7.6 30 0
31 inception_v3 93.5 [93.3, 93.7] 85.9 [85.2, 86.6] 7.6 31 0
32 inceptionv3 93.4 [93.2, 93.6] 86.1 [85.4, 86.7] 7.4 29 3
33 densenet201 93.4 [93.1, 93.6] 85.3 [84.6, 86.0] 8.1 34 -1
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ImageNet Top-5 MatchedFrequency

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 85.4 [84.6, 86.0] 7.8 32 2
35 resnet_v1_101_tf 92.9 [92.7, 93.1] 85.2 [84.5, 85.9] 7.7 35 0
36 resnet50 92.9 [92.6, 93.1] 84.7 [83.9, 85.4] 8.2 38 -2
37 resnet_v2_50_tf 92.8 [92.6, 93.1] 84.4 [83.6, 85.1] 8.5 40 -3
38 densenet169 92.8 [92.6, 93.0] 84.7 [84.0, 85.4] 8.1 37 1
39 dpn68 92.8 [92.5, 93.0] 84.6 [83.9, 85.3] 8.2 39 0
40 cafferesnet101 92.8 [92.5, 93.0] 84.9 [84.1, 85.6] 7.9 36 4
41 resnet_v1_50_tf 92.2 [92.0, 92.4] 84.1 [83.4, 84.8] 8.1 41 0
42 densenet121 92.0 [91.7, 92.2] 83.8 [83.1, 84.5] 8.2 42 0
43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 83.1 [82.4, 83.8] 8.8 46 -3
44 vgg19_bn 91.8 [91.6, 92.1] 83.5 [82.7, 84.2] 8.4 43 1
45 inception_v2_tf 91.8 [91.5, 92.0] 83.1 [82.3, 83.8] 8.7 47 -2
46 nasnetamobile 91.7 [91.5, 92.0] 83.4 [82.6, 84.1] 8.4 45 1
47 nasnet_mobile_tf 91.6 [91.3, 91.8] 82.2 [81.4, 82.9] 9.4 50 -3
48 bninception 91.6 [91.3, 91.8] 83.4 [82.7, 84.2] 8.1 44 4
49 vgg16_bn 91.5 [91.3, 91.8] 83.0 [82.2, 83.7] 8.6 48 1
50 resnet34 91.4 [91.2, 91.7] 82.7 [82.0, 83.5] 8.7 49 1
51 vgg19 90.9 [90.6, 91.1] 81.5 [80.7, 82.2] 9.4 52 -1
52 vgg16 90.4 [90.1, 90.6] 81.7 [80.9, 82.4] 8.7 51 1
53 vgg13_bn 90.4 [90.1, 90.6] 81.1 [80.3, 81.9] 9.3 53 0
54 mobilenet_v1_tf 90.0 [89.7, 90.2] 79.4 [78.6, 80.1] 10.6 60 -6
56 vgg_19_tf 89.8 [89.6, 90.1] 80.7 [79.9, 81.4] 9.2 54 2
55 vgg_16_tf 89.8 [89.6, 90.1] 80.5 [79.7, 81.3] 9.3 55 0
57 vgg11_bn 89.8 [89.5, 90.1] 80.0 [79.2, 80.8] 9.8 58 -1
58 inception_v1_tf 89.6 [89.4, 89.9] 80.1 [79.3, 80.9] 9.5 57 1
59 vgg13 89.2 [89.0, 89.5] 79.5 [78.7, 80.3] 9.7 59 0
60 resnet18 89.1 [88.8, 89.3] 80.2 [79.4, 81.0] 8.9 56 4
61 vgg11 88.6 [88.3, 88.9] 78.8 [78.0, 79.6] 9.8 61 0
62 squeezenet1_1 80.6 [80.3, 81.0] 69.0 [68.1, 69.9] 11.6 62 0
63 squeezenet1_0 80.4 [80.1, 80.8] 68.5 [67.6, 69.4] 11.9 63 0
64 alexnet 79.1 [78.7, 79.4] 67.4 [66.5, 68.3] 11.7 64 0
65 fv_64k 55.7 [55.3, 56.2] 42.6 [41.6, 43.6] 13.2 65 0
66 fv_16k 49.9 [49.5, 50.4] 37.5 [36.6, 38.5] 12.4 66 0
67 fv_4k 41.3 [40.8, 41.7] 31.0 [30.1, 31.9] 10.3 67 0
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Table 3.16: Top-1 model accuracy on the original ImageNet validation set and our new test
set Threshold0.7. ∆ Rank is the relative difference in the ranking from the original test set
to the new test set. For example, ∆Rank = −2 means that a model dropped by two places
on the new test set compared to the original test set. The confidence intervals are 95%
Clopper-Pearson intervals. References for the models can be found in Section 3.11.0.1. The
second part of the table can be found on the following page.

ImageNet Top-1 Threshold0.7

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 80.2 [79.4, 80.9] 2.7 2 -1
2 pnasnet5large 82.7 [82.4, 83.1] 80.3 [79.5, 81.1] 2.4 1 1
3 nasnet_large_tf 82.7 [82.4, 83.0] 80.1 [79.3, 80.9] 2.6 3 0
4 nasnetalarge 82.5 [82.2, 82.8] 80.0 [79.2, 80.8] 2.5 4 0
5 senet154 81.3 [81.0, 81.6] 78.7 [77.8, 79.5] 2.6 5 0
6 polynet 80.9 [80.5, 81.2] 78.5 [77.7, 79.3] 2.3 6 0
7 inception_resnet_v2_tf 80.4 [80.0, 80.7] 77.9 [77.1, 78.7] 2.5 8 -1
8 inceptionresnetv2 80.3 [79.9, 80.6] 78.0 [77.2, 78.8] 2.3 7 1
9 se_resnext101_32x4d 80.2 [79.9, 80.6] 77.6 [76.8, 78.5] 2.6 11 -2
10 inception_v4_tf 80.2 [79.8, 80.5] 77.8 [77.0, 78.6] 2.4 10 0
11 inceptionv4 80.1 [79.7, 80.4] 77.9 [77.0, 78.7] 2.2 9 2
12 dpn107 79.7 [79.4, 80.1] 76.6 [75.8, 77.5] 3.1 12 0
13 dpn131 79.4 [79.1, 79.8] 76.6 [75.7, 77.4] 2.9 13 0
14 dpn92 79.4 [79.0, 79.8] 76.3 [75.5, 77.1] 3.1 17 -3
15 dpn98 79.2 [78.9, 79.6] 76.3 [75.5, 77.2] 2.9 16 -1
16 se_resnext50_32x4d 79.1 [78.7, 79.4] 76.5 [75.7, 77.3] 2.6 14 2
17 resnext101_64x4d 79.0 [78.6, 79.3] 75.6 [74.7, 76.4] 3.4 20 -3
18 xception 78.8 [78.5, 79.2] 76.4 [75.5, 77.2] 2.5 15 3
19 se_resnet152 78.7 [78.3, 79.0] 76.1 [75.3, 76.9] 2.5 18 1
20 se_resnet101 78.4 [78.0, 78.8] 75.8 [75.0, 76.7] 2.6 19 1
21 resnet152 78.3 [77.9, 78.7] 75.3 [74.5, 76.2] 3.0 22 -1
22 resnext101_32x4d 78.2 [77.8, 78.5] 75.4 [74.5, 76.2] 2.8 21 1
23 inception_v3_tf 78.0 [77.6, 78.3] 75.0 [74.2, 75.9] 2.9 24 -1
24 resnet_v2_152_tf 77.8 [77.4, 78.1] 75.2 [74.4, 76.1] 2.6 23 1
25 se_resnet50 77.6 [77.3, 78.0] 74.2 [73.3, 75.1] 3.4 30 -5
26 fbresnet152 77.4 [77.0, 77.8] 74.8 [74.0, 75.7] 2.6 25 1
27 resnet101 77.4 [77.0, 77.7] 74.5 [73.6, 75.3] 2.9 29 -2
28 inceptionv3 77.3 [77.0, 77.7] 74.5 [73.6, 75.4] 2.8 28 0
29 inception_v3 77.2 [76.8, 77.6] 74.7 [73.8, 75.6] 2.5 26 3
30 densenet161 77.1 [76.8, 77.5] 74.6 [73.7, 75.4] 2.6 27 3
31 dpn68b 77.0 [76.7, 77.4] 73.8 [72.9, 74.7] 3.2 33 -2
32 resnet_v2_101_tf 77.0 [76.6, 77.3] 74.0 [73.1, 74.8] 3.0 31 1
33 densenet201 76.9 [76.5, 77.3] 73.9 [73.1, 74.8] 3.0 32 1
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ImageNet Top-1 Threshold0.7

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 73.7 [72.9, 74.6] 3.1 34 0
35 resnet_v1_101_tf 76.4 [76.0, 76.8] 73.4 [72.5, 74.2] 3.0 35 0
36 cafferesnet101 76.2 [75.8, 76.6] 72.9 [72.0, 73.7] 3.3 37 -1
37 resnet50 76.1 [75.8, 76.5] 72.7 [71.8, 73.6] 3.4 38 -1
38 dpn68 75.9 [75.5, 76.2] 73.0 [72.1, 73.8] 2.9 36 2
39 densenet169 75.6 [75.2, 76.0] 72.3 [71.4, 73.1] 3.3 40 -1
40 resnet_v2_50_tf 75.6 [75.2, 76.0] 72.3 [71.4, 73.2] 3.3 39 1
41 resnet_v1_50_tf 75.2 [74.8, 75.6] 71.9 [71.0, 72.8] 3.3 41 0
42 densenet121 74.4 [74.0, 74.8] 70.5 [69.6, 71.4] 3.9 47 -5
43 vgg19_bn 74.2 [73.8, 74.6] 71.4 [70.5, 72.3] 2.8 42 1
44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 70.6 [69.7, 71.5] 3.6 46 -2
45 nasnetamobile 74.1 [73.7, 74.5] 70.9 [70.0, 71.8] 3.2 45 0
46 inception_v2_tf 74.0 [73.6, 74.4] 71.1 [70.2, 72.0] 2.9 44 2
47 nasnet_mobile_tf 74.0 [73.6, 74.4] 70.0 [69.0, 70.8] 4.0 50 -3
48 bninception 73.5 [73.1, 73.9] 71.3 [70.4, 72.2] 2.2 43 5
49 vgg16_bn 73.4 [73.0, 73.7] 70.2 [69.3, 71.1] 3.1 48 1
50 resnet34 73.3 [72.9, 73.7] 70.2 [69.2, 71.0] 3.2 49 1
51 vgg19 72.4 [72.0, 72.8] 68.7 [67.8, 69.6] 3.7 51 0
52 vgg16 71.6 [71.2, 72.0] 68.0 [67.0, 68.9] 3.6 52 0
53 vgg13_bn 71.6 [71.2, 72.0] 67.3 [66.4, 68.2] 4.3 55 -2
54 mobilenet_v1_tf 71.0 [70.6, 71.4] 66.1 [65.2, 67.0] 4.9 59 -5
55 vgg_19_tf 71.0 [70.6, 71.4] 67.4 [66.5, 68.3] 3.6 54 1
56 vgg_16_tf 70.9 [70.5, 71.3] 67.6 [66.7, 68.5] 3.3 53 3
57 vgg11_bn 70.4 [70.0, 70.8] 66.4 [65.5, 67.3] 4.0 58 -1
58 vgg13 69.9 [69.5, 70.3] 66.0 [65.0, 66.9] 4.0 60 -2
59 inception_v1_tf 69.8 [69.4, 70.2] 66.4 [65.5, 67.4] 3.3 57 2
60 resnet18 69.8 [69.4, 70.2] 66.6 [65.7, 67.5] 3.2 56 4
61 vgg11 69.0 [68.6, 69.4] 64.6 [63.7, 65.6] 4.4 61 0
62 squeezenet1_1 58.2 [57.7, 58.6] 54.4 [53.4, 55.4] 3.8 62 0
63 squeezenet1_0 58.1 [57.7, 58.5] 53.4 [52.4, 54.4] 4.7 63 0
64 alexnet 56.5 [56.1, 57.0] 51.3 [50.3, 52.3] 5.2 64 0
65 fv_64k 35.1 [34.7, 35.5] 29.1 [28.2, 30.0] 6.0 65 0
66 fv_16k 28.3 [27.9, 28.7] 23.4 [22.5, 24.2] 5.0 66 0
67 fv_4k 21.2 [20.8, 21.5] 17.8 [17.0, 18.5] 3.4 67 0
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Table 3.17: Top-5 model accuracy on the original ImageNet validation set and our new test
set Threshold0.7. ∆ Rank is the relative difference in the ranking from the original test set
to the new test set. For example, ∆Rank = −2 means that a model dropped by two places
on the new test set compared to the original test set. The confidence intervals are 95%
Clopper-Pearson intervals. References for the models can be found in Section 3.11.0.1. The
second part of the table can be found on the following page.

ImageNet Top-5 Threshold0.7

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 95.6 [95.2, 96.0] 0.6 2 -1
2 nasnet_large_tf 96.2 [96.0, 96.3] 95.7 [95.2, 96.0] 0.5 1 1
3 nasnetalarge 96.0 [95.8, 96.2] 95.3 [94.9, 95.8] 0.7 4 -1
4 pnasnet5large 96.0 [95.8, 96.2] 95.5 [95.0, 95.9] 0.5 3 1
5 polynet 95.6 [95.4, 95.7] 94.9 [94.4, 95.3] 0.7 5 0
6 senet154 95.5 [95.3, 95.7] 94.8 [94.3, 95.2] 0.7 6 0
7 inception_resnet_v2_tf 95.2 [95.1, 95.4] 94.7 [94.2, 95.1] 0.6 7 0
8 inception_v4_tf 95.2 [95.0, 95.4] 94.4 [94.0, 94.9] 0.8 9 -1
9 inceptionresnetv2 95.1 [94.9, 95.3] 94.5 [94.1, 95.0] 0.6 8 1
10 se_resnext101_32x4d 95.0 [94.8, 95.2] 94.3 [93.8, 94.7] 0.7 11 -1
11 inceptionv4 94.9 [94.7, 95.1] 94.3 [93.8, 94.7] 0.6 10 1
12 dpn107 94.7 [94.5, 94.9] 93.7 [93.2, 94.2] 1.0 12 0
13 dpn92 94.6 [94.4, 94.8] 93.7 [93.2, 94.2] 0.9 14 -1
14 dpn131 94.6 [94.4, 94.8] 93.5 [92.9, 93.9] 1.1 20 -6
15 dpn98 94.5 [94.3, 94.7] 93.6 [93.1, 94.1] 0.9 17 -2
16 se_resnext50_32x4d 94.4 [94.2, 94.6] 93.6 [93.1, 94.1] 0.8 16 0
17 se_resnet152 94.4 [94.2, 94.6] 93.7 [93.2, 94.2] 0.7 13 4
18 xception 94.3 [94.1, 94.5] 93.6 [93.1, 94.1] 0.7 18 0
19 se_resnet101 94.3 [94.1, 94.5] 93.6 [93.1, 94.0] 0.7 19 0
20 resnext101_64x4d 94.3 [94.0, 94.5] 93.3 [92.8, 93.8] 0.9 22 -2
21 resnet_v2_152_tf 94.1 [93.9, 94.3] 93.4 [92.9, 93.9] 0.7 21 0
22 resnet152 94.0 [93.8, 94.3] 93.7 [93.2, 94.2] 0.4 15 7
23 inception_v3_tf 93.9 [93.7, 94.1] 92.8 [92.3, 93.3] 1.1 25 -2
24 resnext101_32x4d 93.9 [93.7, 94.1] 92.7 [92.2, 93.2] 1.2 28 -4
25 se_resnet50 93.8 [93.5, 94.0] 93.0 [92.4, 93.5] 0.8 24 1
26 resnet_v2_101_tf 93.7 [93.5, 93.9] 93.2 [92.7, 93.7] 0.5 23 3
27 fbresnet152 93.6 [93.4, 93.8] 92.7 [92.1, 93.2] 0.9 29 -2
28 dpn68b 93.6 [93.4, 93.8] 92.7 [92.1, 93.2] 0.9 31 -3
29 densenet161 93.6 [93.3, 93.8] 92.8 [92.3, 93.3] 0.8 26 3
30 resnet101 93.5 [93.3, 93.8] 92.8 [92.3, 93.3] 0.8 27 3
31 inception_v3 93.5 [93.3, 93.7] 92.7 [92.1, 93.2] 0.9 30 1
32 inceptionv3 93.4 [93.2, 93.6] 92.6 [92.1, 93.1] 0.8 32 0
33 densenet201 93.4 [93.1, 93.6] 92.4 [91.9, 92.9] 1.0 33 0
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ImageNet Top-5 Threshold0.7

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 92.2 [91.7, 92.7] 1.0 34 0
35 resnet_v1_101_tf 92.9 [92.7, 93.1] 92.0 [91.5, 92.5] 0.9 36 -1
36 resnet50 92.9 [92.6, 93.1] 92.0 [91.5, 92.5] 0.9 37 -1
37 resnet_v2_50_tf 92.8 [92.6, 93.1] 91.9 [91.4, 92.5] 0.9 38 -1
38 densenet169 92.8 [92.6, 93.0] 91.9 [91.4, 92.4] 0.9 39 -1
39 dpn68 92.8 [92.5, 93.0] 92.1 [91.5, 92.6] 0.7 35 4
40 cafferesnet101 92.8 [92.5, 93.0] 91.6 [91.1, 92.2] 1.1 40 0
41 resnet_v1_50_tf 92.2 [92.0, 92.4] 91.1 [90.6, 91.7] 1.0 41 0
42 densenet121 92.0 [91.7, 92.2] 91.1 [90.5, 91.6] 0.9 42 0
43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 90.7 [90.1, 91.3] 1.1 47 -4
44 vgg19_bn 91.8 [91.6, 92.1] 91.0 [90.4, 91.5] 0.9 44 0
45 inception_v2_tf 91.8 [91.5, 92.0] 91.0 [90.5, 91.6] 0.7 43 2
46 nasnetamobile 91.7 [91.5, 92.0] 90.9 [90.3, 91.4] 0.9 46 0
47 nasnet_mobile_tf 91.6 [91.3, 91.8] 90.1 [89.5, 90.7] 1.4 50 -3
48 bninception 91.6 [91.3, 91.8] 90.9 [90.3, 91.5] 0.7 45 3
49 vgg16_bn 91.5 [91.3, 91.8] 90.4 [89.8, 90.9] 1.1 49 0
50 resnet34 91.4 [91.2, 91.7] 90.5 [89.9, 91.0] 1.0 48 2
51 vgg19 90.9 [90.6, 91.1] 89.7 [89.1, 90.3] 1.2 51 0
52 vgg16 90.4 [90.1, 90.6] 88.8 [88.1, 89.4] 1.6 53 -1
53 vgg13_bn 90.4 [90.1, 90.6] 89.0 [88.3, 89.6] 1.4 52 1
54 mobilenet_v1_tf 90.0 [89.7, 90.2] 87.6 [86.9, 88.2] 2.4 60 -6
56 vgg_19_tf 89.8 [89.6, 90.1] 88.5 [87.8, 89.1] 1.4 55 1
55 vgg_16_tf 89.8 [89.6, 90.1] 88.6 [87.9, 89.2] 1.3 54 1
57 vgg11_bn 89.8 [89.5, 90.1] 88.3 [87.6, 88.9] 1.5 56 1
58 inception_v1_tf 89.6 [89.4, 89.9] 88.1 [87.4, 88.7] 1.5 57 1
59 vgg13 89.2 [89.0, 89.5] 87.6 [86.9, 88.2] 1.6 59 0
60 resnet18 89.1 [88.8, 89.3] 88.1 [87.4, 88.7] 1.0 58 2
61 vgg11 88.6 [88.3, 88.9] 86.9 [86.2, 87.5] 1.7 61 0
62 squeezenet1_1 80.6 [80.3, 81.0] 78.0 [77.2, 78.8] 2.6 62 0
63 squeezenet1_0 80.4 [80.1, 80.8] 77.7 [76.9, 78.5] 2.7 63 0
64 alexnet 79.1 [78.7, 79.4] 75.9 [75.0, 76.7] 3.2 64 0
65 fv_64k 55.7 [55.3, 56.2] 49.8 [48.8, 50.7] 6.0 65 0
66 fv_16k 49.9 [49.5, 50.4] 44.2 [43.2, 45.2] 5.7 66 0
67 fv_4k 41.3 [40.8, 41.7] 36.5 [35.6, 37.5] 4.8 67 0
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Table 3.18: Top-1 model accuracy on the original ImageNet validation set and our new test
set TopImages. ∆ Rank is the relative difference in the ranking from the original test set to
the new test set. For example, ∆Rank = −2 means that a model dropped by two places
on the new test set compared to the original test set. The confidence intervals are 95%
Clopper-Pearson intervals. References for the models can be found in Section 3.11.0.1. The
second part of the table can be found on the following page.

ImageNet Top-1 TopImages

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 82.9 [82.5, 83.2] 83.9 [83.2, 84.6] -1.0 3 -2
2 pnasnet5large 82.7 [82.4, 83.1] 83.9 [83.1, 84.6] -1.1 4 -2
3 nasnet_large_tf 82.7 [82.4, 83.0] 84.0 [83.3, 84.7] -1.3 2 1
4 nasnetalarge 82.5 [82.2, 82.8] 84.2 [83.4, 84.9] -1.7 1 3
5 senet154 81.3 [81.0, 81.6] 82.8 [82.1, 83.6] -1.5 6 -1
6 polynet 80.9 [80.5, 81.2] 83.0 [82.2, 83.7] -2.1 5 1
7 inception_resnet_v2_tf 80.4 [80.0, 80.7] 82.5 [81.7, 83.2] -2.1 8 -1
8 inceptionresnetv2 80.3 [79.9, 80.6] 82.8 [82.0, 83.5] -2.5 7 1
9 se_resnext101_32x4d 80.2 [79.9, 80.6] 82.2 [81.5, 83.0] -2.0 11 -2
10 inception_v4_tf 80.2 [79.8, 80.5] 82.3 [81.5, 83.0] -2.1 9 1
11 inceptionv4 80.1 [79.7, 80.4] 82.3 [81.5, 83.0] -2.2 10 1
12 dpn107 79.7 [79.4, 80.1] 81.4 [80.6, 82.1] -1.6 13 -1
13 dpn131 79.4 [79.1, 79.8] 81.3 [80.5, 82.1] -1.9 15 -2
14 dpn92 79.4 [79.0, 79.8] 81.2 [80.5, 82.0] -1.8 16 -2
15 dpn98 79.2 [78.9, 79.6] 81.5 [80.7, 82.3] -2.3 12 3
16 se_resnext50_32x4d 79.1 [78.7, 79.4] 81.4 [80.6, 82.1] -2.3 14 2
17 resnext101_64x4d 79.0 [78.6, 79.3] 80.3 [79.5, 81.0] -1.3 22 -5
18 xception 78.8 [78.5, 79.2] 81.0 [80.2, 81.8] -2.2 18 0
19 se_resnet152 78.7 [78.3, 79.0] 81.0 [80.3, 81.8] -2.4 17 2
20 se_resnet101 78.4 [78.0, 78.8] 80.5 [79.7, 81.3] -2.1 19 1
21 resnet152 78.3 [77.9, 78.7] 80.3 [79.5, 81.1] -2.0 21 0
22 resnext101_32x4d 78.2 [77.8, 78.5] 79.9 [79.1, 80.6] -1.7 26 -4
23 inception_v3_tf 78.0 [77.6, 78.3] 80.1 [79.3, 80.9] -2.1 23 0
24 resnet_v2_152_tf 77.8 [77.4, 78.1] 80.3 [79.5, 81.1] -2.6 20 4
25 se_resnet50 77.6 [77.3, 78.0] 79.4 [78.6, 80.2] -1.8 31 -6
26 fbresnet152 77.4 [77.0, 77.8] 80.1 [79.3, 80.9] -2.7 24 2
27 resnet101 77.4 [77.0, 77.7] 79.0 [78.2, 79.8] -1.7 32 -5
28 inceptionv3 77.3 [77.0, 77.7] 79.6 [78.8, 80.4] -2.3 27 1
29 inception_v3 77.2 [76.8, 77.6] 79.6 [78.8, 80.4] -2.4 28 1
30 densenet161 77.1 [76.8, 77.5] 79.5 [78.7, 80.3] -2.4 29 1
31 dpn68b 77.0 [76.7, 77.4] 79.4 [78.6, 80.2] -2.4 30 1
32 resnet_v2_101_tf 77.0 [76.6, 77.3] 80.1 [79.3, 80.8] -3.1 25 7
33 densenet201 76.9 [76.5, 77.3] 79.0 [78.1, 79.7] -2.1 34 -1
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ImageNet Top-1 TopImages

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 76.8 [76.4, 77.2] 79.0 [78.2, 79.8] -2.2 33 1
35 resnet_v1_101_tf 76.4 [76.0, 76.8] 78.6 [77.8, 79.4] -2.2 35 0
36 cafferesnet101 76.2 [75.8, 76.6] 78.3 [77.4, 79.1] -2.1 37 -1
37 resnet50 76.1 [75.8, 76.5] 78.1 [77.3, 78.9] -2.0 38 -1
38 dpn68 75.9 [75.5, 76.2] 78.4 [77.6, 79.2] -2.6 36 2
39 densenet169 75.6 [75.2, 76.0] 78.0 [77.2, 78.8] -2.4 39 0
40 resnet_v2_50_tf 75.6 [75.2, 76.0] 78.0 [77.2, 78.8] -2.4 40 0
41 resnet_v1_50_tf 75.2 [74.8, 75.6] 77.0 [76.2, 77.9] -1.8 41 0
42 densenet121 74.4 [74.0, 74.8] 76.8 [75.9, 77.6] -2.3 45 -3
43 vgg19_bn 74.2 [73.8, 74.6] 76.6 [75.7, 77.4] -2.3 46 -3
44 pnasnet_mobile_tf 74.1 [73.8, 74.5] 76.8 [76.0, 77.6] -2.7 44 0
45 nasnetamobile 74.1 [73.7, 74.5] 76.4 [75.5, 77.2] -2.3 47 -2
46 inception_v2_tf 74.0 [73.6, 74.4] 77.0 [76.1, 77.8] -3.0 43 3
47 nasnet_mobile_tf 74.0 [73.6, 74.4] 76.0 [75.1, 76.8] -2.0 49 -2
48 bninception 73.5 [73.1, 73.9] 77.0 [76.1, 77.8] -3.4 42 6
49 vgg16_bn 73.4 [73.0, 73.7] 75.9 [75.1, 76.8] -2.6 50 -1
50 resnet34 73.3 [72.9, 73.7] 76.3 [75.4, 77.1] -3.0 48 2
51 vgg19 72.4 [72.0, 72.8] 74.2 [73.3, 75.0] -1.8 51 0
52 vgg16 71.6 [71.2, 72.0] 73.9 [73.0, 74.7] -2.3 52 0
53 vgg13_bn 71.6 [71.2, 72.0] 73.5 [72.7, 74.4] -1.9 55 -2
54 mobilenet_v1_tf 71.0 [70.6, 71.4] 72.4 [71.5, 73.3] -1.4 59 -5
55 vgg_19_tf 71.0 [70.6, 71.4] 73.6 [72.7, 74.5] -2.6 53 2
56 vgg_16_tf 70.9 [70.5, 71.3] 73.5 [72.7, 74.4] -2.6 54 2
57 vgg11_bn 70.4 [70.0, 70.8] 73.0 [72.1, 73.8] -2.6 58 -1
58 vgg13 69.9 [69.5, 70.3] 72.0 [71.1, 72.9] -2.1 60 -2
59 inception_v1_tf 69.8 [69.4, 70.2] 73.1 [72.2, 73.9] -3.3 56 3
60 resnet18 69.8 [69.4, 70.2] 73.0 [72.2, 73.9] -3.3 57 3
61 vgg11 69.0 [68.6, 69.4] 70.8 [69.9, 71.7] -1.8 61 0
62 squeezenet1_1 58.2 [57.7, 58.6] 61.7 [60.7, 62.6] -3.5 62 0
63 squeezenet1_0 58.1 [57.7, 58.5] 60.7 [59.7, 61.7] -2.6 63 0
64 alexnet 56.5 [56.1, 57.0] 58.2 [57.2, 59.1] -1.7 64 0
65 fv_64k 35.1 [34.7, 35.5] 34.2 [33.3, 35.2] 0.8 65 0
66 fv_16k 28.3 [27.9, 28.7] 27.4 [26.6, 28.3] 0.9 66 0
67 fv_4k 21.2 [20.8, 21.5] 21.1 [20.3, 21.9] 0.1 67 0
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Table 3.19: Top-5 model accuracy on the original ImageNet validation set and our new test
set TopImages. ∆ Rank is the relative difference in the ranking from the original test set to
the new test set. For example, ∆Rank = −2 means that a model dropped by two places
on the new test set compared to the original test set. The confidence intervals are 95%
Clopper-Pearson intervals. References for the models can be found in Section 3.11.0.1. The
second part of the table can be found on the following page.

ImageNet Top-5 TopImages

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

1 pnasnet_large_tf 96.2 [96.0, 96.3] 97.2 [96.9, 97.5] -1.0 2 -1
2 nasnet_large_tf 96.2 [96.0, 96.3] 97.2 [96.9, 97.5] -1.0 1 1
3 nasnetalarge 96.0 [95.8, 96.2] 97.1 [96.7, 97.4] -1.1 3 0
4 pnasnet5large 96.0 [95.8, 96.2] 96.9 [96.6, 97.2] -0.9 4 0
5 polynet 95.6 [95.4, 95.7] 96.8 [96.4, 97.1] -1.2 5 0
6 senet154 95.5 [95.3, 95.7] 96.6 [96.2, 97.0] -1.1 8 -2
7 inception_resnet_v2_tf 95.2 [95.1, 95.4] 96.8 [96.4, 97.1] -1.5 6 1
8 inception_v4_tf 95.2 [95.0, 95.4] 96.5 [96.1, 96.9] -1.3 9 -1
9 inceptionresnetv2 95.1 [94.9, 95.3] 96.7 [96.3, 97.0] -1.5 7 2
10 se_resnext101_32x4d 95.0 [94.8, 95.2] 96.2 [95.8, 96.6] -1.2 11 -1
11 inceptionv4 94.9 [94.7, 95.1] 96.4 [96.0, 96.7] -1.5 10 1
12 dpn107 94.7 [94.5, 94.9] 96.0 [95.6, 96.4] -1.4 13 -1
13 dpn92 94.6 [94.4, 94.8] 95.9 [95.5, 96.3] -1.3 17 -4
14 dpn131 94.6 [94.4, 94.8] 96.0 [95.6, 96.4] -1.5 14 0
15 dpn98 94.5 [94.3, 94.7] 96.0 [95.6, 96.4] -1.5 15 0
16 se_resnext50_32x4d 94.4 [94.2, 94.6] 95.9 [95.5, 96.3] -1.5 18 -2
17 se_resnet152 94.4 [94.2, 94.6] 95.9 [95.5, 96.3] -1.5 19 -2
18 xception 94.3 [94.1, 94.5] 95.9 [95.5, 96.3] -1.6 20 -2
19 se_resnet101 94.3 [94.1, 94.5] 95.9 [95.5, 96.3] -1.6 21 -2
20 resnext101_64x4d 94.3 [94.0, 94.5] 95.7 [95.3, 96.1] -1.5 23 -3
21 resnet_v2_152_tf 94.1 [93.9, 94.3] 96.0 [95.6, 96.3] -1.9 16 5
22 resnet152 94.0 [93.8, 94.3] 96.2 [95.8, 96.5] -2.1 12 10
23 inception_v3_tf 93.9 [93.7, 94.1] 95.5 [95.1, 95.9] -1.5 25 -2
24 resnext101_32x4d 93.9 [93.7, 94.1] 95.2 [94.8, 95.6] -1.3 31 -7
25 se_resnet50 93.8 [93.5, 94.0] 95.5 [95.1, 95.9] -1.8 24 1
26 resnet_v2_101_tf 93.7 [93.5, 93.9] 95.8 [95.4, 96.2] -2.1 22 4
27 fbresnet152 93.6 [93.4, 93.8] 95.2 [94.8, 95.7] -1.7 28 -1
28 dpn68b 93.6 [93.4, 93.8] 95.2 [94.8, 95.6] -1.6 32 -4
29 densenet161 93.6 [93.3, 93.8] 95.2 [94.8, 95.6] -1.7 29 0
30 resnet101 93.5 [93.3, 93.8] 95.4 [95.0, 95.8] -1.9 26 4
31 inception_v3 93.5 [93.3, 93.7] 95.1 [94.7, 95.5] -1.6 34 -3
32 inceptionv3 93.4 [93.2, 93.6] 95.2 [94.8, 95.6] -1.8 30 2
33 densenet201 93.4 [93.1, 93.6] 95.2 [94.8, 95.7] -1.9 27 6
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ImageNet Top-5 TopImages

Orig. New
Rank Model Orig. Accuracy New Accuracy Gap Rank ∆ Rank

34 resnet_v1_152_tf 93.2 [92.9, 93.4] 95.2 [94.7, 95.6] -2.0 33 1
35 resnet_v1_101_tf 92.9 [92.7, 93.1] 94.9 [94.4, 95.3] -2.0 35 0
36 resnet50 92.9 [92.6, 93.1] 94.7 [94.2, 95.1] -1.8 39 -3
37 resnet_v2_50_tf 92.8 [92.6, 93.1] 94.8 [94.3, 95.2] -1.9 37 0
38 densenet169 92.8 [92.6, 93.0] 94.7 [94.2, 95.1] -1.9 38 0
39 dpn68 92.8 [92.5, 93.0] 94.8 [94.3, 95.2] -2.0 36 3
40 cafferesnet101 92.8 [92.5, 93.0] 94.6 [94.1, 95.0] -1.8 40 0
41 resnet_v1_50_tf 92.2 [92.0, 92.4] 94.2 [93.8, 94.7] -2.1 41 0
42 densenet121 92.0 [91.7, 92.2] 94.0 [93.5, 94.5] -2.0 46 -4
43 pnasnet_mobile_tf 91.9 [91.6, 92.1] 94.1 [93.6, 94.5] -2.2 44 -1
44 vgg19_bn 91.8 [91.6, 92.1] 94.0 [93.5, 94.4] -2.1 47 -3
45 inception_v2_tf 91.8 [91.5, 92.0] 94.2 [93.7, 94.7] -2.5 42 3
46 nasnetamobile 91.7 [91.5, 92.0] 94.1 [93.6, 94.5] -2.3 43 3
47 nasnet_mobile_tf 91.6 [91.3, 91.8] 93.8 [93.4, 94.3] -2.3 49 -2
48 bninception 91.6 [91.3, 91.8] 94.0 [93.6, 94.5] -2.5 45 3
49 vgg16_bn 91.5 [91.3, 91.8] 93.7 [93.2, 94.1] -2.1 50 -1
50 resnet34 91.4 [91.2, 91.7] 93.9 [93.4, 94.3] -2.5 48 2
51 vgg19 90.9 [90.6, 91.1] 92.8 [92.2, 93.3] -1.9 51 0
52 vgg16 90.4 [90.1, 90.6] 92.5 [92.0, 93.0] -2.1 53 -1
53 vgg13_bn 90.4 [90.1, 90.6] 92.6 [92.1, 93.1] -2.2 52 1
54 mobilenet_v1_tf 90.0 [89.7, 90.2] 91.4 [90.8, 91.9] -1.4 59 -5
56 vgg_19_tf 89.8 [89.6, 90.1] 92.1 [91.5, 92.6] -2.2 56 0
55 vgg_16_tf 89.8 [89.6, 90.1] 92.2 [91.6, 92.7] -2.3 54 1
57 vgg11_bn 89.8 [89.5, 90.1] 91.9 [91.4, 92.5] -2.1 58 -1
58 inception_v1_tf 89.6 [89.4, 89.9] 92.1 [91.6, 92.6] -2.5 55 3
59 vgg13 89.2 [89.0, 89.5] 91.4 [90.8, 91.9] -2.2 60 -1
60 resnet18 89.1 [88.8, 89.3] 92.0 [91.4, 92.5] -2.9 57 3
61 vgg11 88.6 [88.3, 88.9] 91.0 [90.4, 91.5] -2.4 61 0
62 squeezenet1_1 80.6 [80.3, 81.0] 83.9 [83.1, 84.6] -3.2 62 0
63 squeezenet1_0 80.4 [80.1, 80.8] 83.5 [82.8, 84.3] -3.1 63 0
64 alexnet 79.1 [78.7, 79.4] 81.8 [81.0, 82.6] -2.7 64 0
65 fv_64k 55.7 [55.3, 56.2] 55.9 [54.9, 56.8] -0.1 65 0
66 fv_16k 49.9 [49.5, 50.4] 49.8 [48.8, 50.8] 0.1 66 0
67 fv_4k 41.3 [40.8, 41.7] 41.9 [40.9, 42.8] -0.6 67 0
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3.11.0.3 Accuracy plots for all ImageNet test sets

Figure 3.12 shows the top-1 and top-5 accuracies for our three test sets and all convolutional
networks in our model testbed. Figure 3.13 shows the accuracies for all models (including
Fisher Vector models) with a probit scale on the axes.

3.11.0.4 Example images

Figure 3.14 shows randomly selected images for three randomly selected classes for both the
original ImageNet validation set and our three new test sets.

3.11.0.5 Effect of selection frequency on model accuracy

To better understand how the selection frequency of an image impacts the model accuracies,
Figures 3.15, 3.16, and 3.17 show model accuracies stratified into five selection frequency
bins.

3.11.0.6 Ambiguous class examples

Figure 3.18 shows randomly selected images from the original ImageNet validation set for
three pairs of classes with ambiguous class boundaries. We remark that several more classes
in ImageNet have ill-defined boundaries. The three pairs of classes here were chosen only as
illustrative examples.

The following list shows names and definitions for the three class pairs:

• Pair 1

a. projectile, missile: “a weapon that is forcibly thrown or projected at a targets
but is not self-propelled”

b. missile: “a rocket carrying a warhead of conventional or nuclear explosives; may
be ballistic or directed by remote control”

• Pair 2

c. tusker: “any mammal with prominent tusks (especially an elephant or wild boar)”

d. Indian elephant, Elephas maximus: “Asian elephant having smaller ears and
tusks primarily in the male”

• Pair 3

e. screen, CRT screen: “the display that is electronically created on the surface of
the large end of a cathode-ray tube”

13Test Set A is the original validation set, Test Set B is the MatchedFrequencydataset, Test Set C is the
Threshold0.7, Test set D is TopImages.
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f. monitor: “electronic equipment that is used to check the quality or content of
electronic transmissions”
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Figure 3.12: Model accuracy on the original ImageNet validation set vs. our new test sets.
Each data point corresponds to one model in our testbed (shown with 95% Clopper-Pearson
confidence intervals). The red shaded region is a 95% confidence region for the linear fit
from 100,000 bootstrap samples. For MatchedFrequency, the new test set accuracies are
significantly below the original accuracies. The accuracies for Threshold0.7 are still below
the original counterpart, but for TopImages they improve over the original test accuracies.
This shows that small variations in the data generation process can have significant impact
on the accuracy scores. As for CIFAR-10, all plots reveal an approximatly linear relationship
between original and new test accuracy.
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Figure 3.13: Model accuracy on the original ImageNet validation set vs. our new test sets.
The structure of the plots is similar to Figure 3.12 and we refer the reader to the description
there. In contrast to Figure 3.12, the plots here contain also the Fisher Vector models.
Moreover, the axes are scaled according to the probit transformation, i.e., accuracy α appears
at Φ−1(α), where Φ is the Gaussian CDF. For all three datasets and both top-1 and top-
5 accuracy, the plots reveal a good linear fit in the probit domain spanning around 60
percentage points of accuracy. All plots include a 95% confidence region for the linear fit as
in Figure 3.12, but the red shaded region is hard to see in some of the plots due to its small
size.
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(a) Test Set A

(b) Test Set B

(c) Test Set C

(d) Test Set D

Figure 3.14: Randomly selected images from the original ImageNet validation set and our
new ImageNet test sets. We display four images from three randomly selected classes for each
of the four datasets (the original validation set and our three test sets described in Section
3.4). The displayed classes are “Cypripedium calceolus”, “gyromitra”, and “mongoose”. The
following footnote reveals which datasets correspond to original and new ImageNet test sets.
13
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Figure 3.15: Model accuracy on our new test set MatchedFrequency, stratified into five
selection frequency bins, versus the original ImageNet validation set accuracy. Every bin
contains the images with MTurk selection frequency falling into the corresponding range.
Each data point corresponds to one model and one of the five frequency bins (indicated by
the different colors). The x-value of each data point is given by the model’s accuracy on the
entire original validation set. The y-value is given by the model’s accuracy on our new test
images falling into the respective selection frequency bin. The plot shows that the selection
frequency has strong influence on the model accuracy. For instance, images with selection
frequencies in the [0.4, 0.6) bin lead to an average model accuracy about 20% lower than for
the entire test set MatchedFrequency, and 30% lower than the original validation set. We
remark that we manually reviewed all images in MatchedFrequency to ensure that (almost)
all images have the correct class label, regardless of selection frequency bin.
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Figure 3.16: Model accuracy on the original ImageNet validation set stratified into five
selection frequency bins. This plot has a similar structure as Figure 3.15 above, but contains
the original validation set accuracy on both axes (as before, the images are binned on the y-
axis and not binned on the x-axis, i.e., the x-value is the accuracy on the entire validation set).
The plot shows that the selection frequency has strong influence on the model accuracy on
the original ImageNet validation set as well. For instance, images with selection frequencies
in the [0.4, 0.6) bin lead to an average model accuracy about 10 – 15% lower than for the
entire validation set.
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Figure 3.17: Model accuracy on the original ImageNet validation set vs. accuracy on our
new test set MatchedFrequency. In contrast to the preceding Figures 3.15 and 3.16, both
original and new test accuracy is now stratified into five selection frequency bins. Each data
point corresponds to the accuracy achieved by one model on the images from one of the five
frequency bins (indicated by the different colors). The plot shows that the model accuracies
in the various bins are strongly correlated, but the accuracy on images in our new test is
consistently lower. The gap is largest for images in the middle frequency bins (about 20%
accuracy difference) and smallest for images in the lowest and highest frequency bins (5 –
10 % difference).
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(a) projectile, missile (b) missile

(c) tusker (d) Indian elephant, Elephas maximus

(e) screen, CRT screen (f) monitor

Figure 3.18: Random images from the original ImageNet validation set for three pairs of classes
with ambiguous class boundaries.
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Chapter 4

A meta-analysis of overfitting in machine
learning

4.1 Introduction
The holdout method is central to empirical progress in the machine learning community.
Competitions, benchmarks, and large-scale hyperparameter search all rely on splitting a
data set into multiple pieces to separate model training from evaluation. However, when
practitioners repeatedly reuse holdout data, the danger of overfitting to the holdout data
arises [67, 20].

Despite its importance, there is little empirical research into the manifested robustness
and validity of the holdout method in practical scenarios. Real-world use cases of the holdout
method often fall outside the guarantees of existing theoretical bounds, making questions of
validity a matter of guesswork.

Recent replication studies [78] demonstrated that the popular CIFAR-10 [53] and Ima-
geNet [15, 81] benchmarks continue to support progress despite years of intensive use. The
longevity of these benchmarks perhaps suggests that overfitting to holdout data is less of a
concern than reasoning from first principles might have suggested. However, this is evidence
from only two, albeit important, computer vision benchmarks. It remains unclear whether
the observed phenomenon is specific to the data domain, model class, or practices of vision
researchers. Unfortunately, these replication studies required assembling new test sets from
scratch, resulting in a highly labor-intensive analysis that is difficult to scale.

In this thesis, we empirically study holdout reuse at a significantly larger scale by an-
alyzing data from 112 machine learning competitions on the popular Kaggle platform [44].
Kaggle competitions are a particularly well-suited environment for studying overfitting since
data sources are diverse, contestants use a wide range of model families, and training tech-
niques vary greatly. Moreover, Kaggle competitions use public and private test data splits
which provide a natural experimental setup for measuring overfitting on various datasets.

To provide a detailed analysis of each competition, we introduce a coherent methodology
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to characterize the extent of overfitting at three increasingly fine scales. Our approach
allows us both to discuss the overall “health” of a competition across all submissions and to
inspect signs of overfitting separately among the top submissions. In addition, we develop a
statistical test specific to the classification competitions on Kaggle to compare the submission
scores to those arising in an ideal null model that assumes no overfitting. Observed data
that are close to data predicted by the null model is strong evidence against overfitting.

Overall, we conclude that the classification competitions on Kaggle show little to no signs
of overfitting. While there are some outlier competitions in the data, these competitions
usually have pathologies such as non-i.i.d. data splits or (effectively) small test sets. Among
the remaining competitions, the public and private test scores show a remarkably good
correspondence. The picture becomes more nuanced among the highest scoring submissions,
but the overall effect sizes of (potential) overfitting are typically small (e.g., less than 1%
classification accuracy). Thus, our findings show that substantial overfitting is unlikely to
occur naturally in regular machine learning workflows.

4.2 Background and setup
Before we delve into the analysis of the Kaggle data, we briefly define the type of overfitting
we study and then describe how the Kaggle competition format naturally lends itself to
investigating overfitting in machine learning competitions.

4.2.1 Adaptive overfitting

“Overfitting” is often used as an umbrella term to describe any unwanted performance drop
of a machine learning model. Here, we focus on adaptive overfitting, which is overfitting
caused by test set reuse. While other phenomena under the overfitting umbrella are also
important aspects of reliable machine learning (e.g. performance drops due to distribution
shifts), they are beyond the scope of our paper since they require an experimental setup
different from ours.

Formally, let f : X → Y be a trained model that maps examples x ∈ X to output values
y ∈ Y (e.g., class labels or regression targets). The standard approach to measuring the
performance of such a trained model is to define a loss function l : Y × Y → R and to draw
samples S = {(x1, y1), . . . , (xn, yn)} from a data distribution D which we then use to evaluate
the test loss LS(f) = 1

n

∑n
i=1 l(f(xi), yi). As long as the model f does not depend on the

test set S, standard concentration results [83] show that LS(f) is a good approximation of
the true performance given by the population loss LD(f) = ED[l(f(x), y)].

However, machine learning practitioners often undermine the assumption that f does not
depend on the test set by selecting models and tuning hyperparameters based on the test
loss. Especially when algorithm designers evaluate a large number of different models on
the same test set, the final classifier may only perform well on the specific examples in the
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test set. The failure to generalize to the entire data distribution D manifests itself in a large
adaptivity gap LD(f)− LS(f) and leads to overly optimistic performance estimates.

4.2.2 Kaggle

Kaggle is the most widely used platform for machine learning competitions, currently hosting
1,461 active and completed competitions. Various organizations (companies, educators, etc.)
provide the datasets and evaluation rules for the competitions, which are generally open to
any participant. Each competition is centered around a dataset consisting of a training set
and a test set.

Considering the danger of overfitting to the test set in a competitive environment, Kaggle
subdivides each test set into public and private components. The subsets are randomly
shuffled together and the entire test set is released without labels, so that participants should
not know which test samples belong to which split. Hence participants submit predictions
for the entire test set. The Kaggle server then internally evaluates each submission on both
public and private splits and updates the public competition leaderboard only with the score
on the public split. At the end of the competition, Kaggle releases the private scores, which
determine the winner.

Kaggle has released the MetaKaggle dataset1, which contains detailed information about
competitions, submissions, etc. on the Kaggle platform. The structure of Kaggle competi-
tions makes MetaKaggle a useful dataset for investigating overfitting empirically at a large
scale. In particular, we can view the public test split Spublic as the regular test set and use the
held-out private test split Sprivate to approximate the population loss. Since Kaggle competi-
tors do not receive feedback from Sprivate until the competition has ended, we assume that
the submitted models may be overfit to Spublic but not to Sprivate.2 Under this assumption,
the difference between private and public loss LSprivate(f) − LSpublic(f) is an approximation
of the adaptivity gap LD(f)− LS(f). Hence our setup allows us to estimate the amount of
overfitting occurring in a typical machine learning competition. In the rest of this paper, we
will analyze the public versus private score differences as a proxy for adaptive overfitting.

Due to the large number of competitions on the Kaggle platform, we restrict our attention
to the most popular classification competitions. In particular, we survey the competitions
with at least 1,000 submissions before the competition deadline. Moreover, we include only
competitions with evaluation metrics that have at least 10 competitions. These metrics
are classification accuracy, AUC (area under curve), MAP@K (mean average precision), the
logistic loss, and a multiclass variant of the logistic loss. Section 4.3 provides more detail on
our selection criteria.

1https://www.kaggle.com/kaggle/meta-kaggle
2Since test examples without labels are available, contestants may still overfit to Sprivate using an unsu-

pervised approach. While such overfitting may have occurred in a limited number of competitions, we base
our analysis on the assumption that unsupervised overfitting did not occur widely with effect sizes that are
large compared to overfitting to the public test split.

https://www.kaggle.com/kaggle/meta-kaggle
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4.3 Overview of Kaggle competitions and our resulting
selection criteria

At the time of writing, the MetaKaggle dataset has 1,461 competitions. Due to the variety
of different scoring mechanisms used on Kaggle and intricacies of individual competitions,
it is challenging to analyze the entire datast in a coherent way. To limit the scope of our
investigation and allow for a detailed analysis, we restricted our attention to a subset of
competitions based on the following two criteria.

Figure 4.1: Overview of the Kaggle competitions. The left plot shows the distribution of
submissions per competition. The right plot shows the score types that are most common
among the competitions with at least 1,000 submissions.

Number of submissions. Kaggle competitions have a wide range of submissions, rang-
ing from 0 for the bottom 10% to 3,159 for the most popular 10% of competitions (and
132,097 for the most popular competition). The left plot in Figure 4.1 shows the distribu-
tion of competition sizes. From the perspective of adaptive overfitting, competitions with
many submissions are more interesting since a larger number of submissions indicate more
potential adaptivity. Moreover, overfitting on the most popular competitions would also
be more important to understand as it would undermine the credibility of the competition
paradigm. So to limit the number of competitions, we included only competitions with at
least 1,000 submissions before the corresponding competition deadline. This left a total of
262 competitions.

Score type. Depending on the competition, the performance of a submissions is measured
with one of various scoring mechanisms. The list of scoring mechanisms involves well-known
score types (accuracy, AUC, RMSE) and a long tail of more specialized metrics (see the right
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plot in Figure 4.1. We focus on score types used for classification tasks with at least 10 com-
petitions (passing our submission count filter) so we can compare competitions with multiple
other competitions using the same score type. This avoids difficulties such as comparing clas-
sification vs. regression competitions or bounded vs. unbounded scores. Moreover, the most
popular score types are also the most relevant for measuring the amount of overfitting in
machine learning competitions. The classification score types with at least 10 competitions
are classification accuracy, AUC (area under curve), MAP@K (mean average precision), the
logistic loss, and a multiclass variant of the logistic loss.

In total, the above exclusion rules leave 112 competitions. It would be possible to restrict
the set of competitions even further, e.g., by only including “featured” competitions (the com-
petitions promoted by Kaggle, usually with prize money) and excluding other competition
types such as “in class” competitions which are mainly used for educational purposes. An-
other possible filter would be to exclude competitions with only small test set sizes since the
resulting scores are inherently more noisy. However, we decided to minimize the exclusion
rules so we can analyze a large number of competitions and possibly find effects of features
such as competition type and test set size.

4.4 Detailed analysis of competitions scored with
classification accuracy

We begin with a detailed look at classification competitions scored with the standard ac-
curacy metric. Classification is the prototypical machine learning task and accuracy is a
widely understood performance measure. This makes the corresponding competitions a nat-
ural starting point to understand nuances in the Kaggle data. Moreover, there is a large
number of accuracy competitions, which enables us to meaningfully compare effect sizes
across competitions. As we will see in Section 4.4.3, accuracy competitions also offer the
advantage that we can obtain measures of statistical uncertainty. Later sections will then
present an overview of the competitions scored with other metrics.

We conduct our analysis of overfitting at three levels of granularity that become increas-
ingly stringent. The first level considers all submissions in a competition and checks for
systematic overfitting that would affect a substantial number of submissions (e.g., if public
and private score diverge early in the competition). The second level then zooms into the
top 10% of submissions (measured by public accuracy) and conducts a similar comparison
of public to private scores. The goal here is to understand whether there is more overfitting
among the best submissions since they are likely most adapted to the test set. The third
analysis level then takes a mainly quantitative approach and computes the probabilities of
the observed public vs. private accuracy differences under an ideal null model. This allows
us to check if the observed gaps are larger than purely random fluctuations.

In the following subsections, we will apply these three analysis methods to investigate
four accuracy competitions. These four competitions are the accuracy competitions with
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the largest number of submissions and serve as representative examples for a typical ac-
curacy competition in the MetaKaggle dataset (see Table 4.1 for information about these
competitions). Section 4.4.5 then complements these analyses with a quantitative look at all
competitions before we summarize our findings for accuracy competitions in 4.4.6.

Table 4.1: The four Kaggle accuracy competitions with the largest number of submissions.
npublic is the size of the public test set and nprivate is the size of the private test set.

ID Name # Submissions npublic nprivate

5275 Can we predict voting outcomes? 35,247 249,344 249,343
3788 Allstate Purchase Prediction Challenge 24,532 59,657 139,199
7634 TensorFlow Speech Recognition Challenge 24,263 3,171 155,365
7115 Cdiscount’s Image Classification Challenge 5,859 53,0455 1,237,727

4.4.1 First analysis level: visualizing the overall trend

As mentioned in Section 4.2.2, the main quantities of interest are the accuracies on the public
and private parts of the test set. In order to visualize this information at the level of all
submissions to a competition, we create a scatter plot of the public and private accuracies. In
an ideal competition with a large test set and without any overfitting, the public and private
accuracies of a submission would all be almost identical and lie near the y = x diagonal. On
the other hand, substantial deviations from the diagonal would indicate gaps between the
public and private accuracy and present possible evidence of overfitting in the competition.

Figure 4.2 shows such scatter plots for the four accuracy competitions mentioned above.
In addition to a point for each submission, the scatter plots also contain a linear regression
fit to the data. All four plots show a linear fit that is close to the y = x diagonal. In addition,
three of the four plots show very little variation around the diagonal. The variation around
the diagonal in the remaining competition is largely symmetric, which indicates that it is
likely the effect of random chance.

These scatter plots can be seen as indicators of overall competition “health”: in case of
pervasive overfitting, we would expect a plateauing trend where later points mainly move on
the x-axis (public accuracy) but stagnate on the y-axis (private accuracy). In contrast, the
four plots in Figure 4.2 show that as submissions progress on the public test set, they see
corresponding improvements also on the private test set. Moreover, the public scores remain
representative of the private scores.

As can be seen in Section 4.8.1.3, this overall trend is representative for the 34 accuracy
competitions. All except one competition show a linear fit close to the main diagonal.
The only competition with a substantial deviation is the “TAU Robot Surface Detection”
competition (ID 12598). We contacted the authors of this competition and confirmed that
there are subtleties in the public / private split which undermine the assumption that the
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two splits are i.i.d. Hence we consider this competition to be an outlier since it does not
conform to the experimental setup described in Section 4.2.2. So at least on the coarse scale
of the first analysis level, there are little to no signs of adaptive overfitting: it is easier to
make genuine progress on the data distribution in these competitions than to substantially
overfit to the test set.

Submission Linear fit y=x

Figure 4.2: Private versus public accuracy for all submissions for the most popular Kaggle accu-
racy competitions. Each point corresponds to an individual submission (shown with 95% Clopper-
Pearson confidence intervals).

4.4.2 Second analysis level: zooming in to the top submissions

While the scatter plots discussed above give a comprehensive picture of an entire competition,
one concern is that overfitting may be more prevalent among the submissions with the highest
public accuracy since they may be more adapted to the public test set. Moreover, the best
submissions are those where overfitting would be most serious since invalid accuracies there
would give a misleading impression of performance on future data. So to analyze the best
submissions in more detail, we also created scatter plots for the top 10% of submissions (as
scored by public accuracy).

Figure 4.3 shows scatter plots for the same four competitions as before. Since the axes
now encompass a much smaller range (often only a few percent), they give a more nuanced
picture of the performance among the best submissions.

In the leftmost and rightmost plot, the linear fit for the submissions still closely tracks the
y = x diagonal. Hence there is little sign of overfitting also among the top 10% of submissions.
On the other hand, the middle two plots in Figure 4.3 show noticeable deviations from the
main diagonal. Interestingly, the linear fit is above the diagonal in Competition 7634 and
below the main diagonal in Competition 3788. The trend in Competition 3788 is more
concerning since it indicates that the public accuracy overestimates the private accuracy.
However, in both competitions the absolute effect size (deviation from the diagonal) is small
(about 1%). It is also worth noting that the accuracies in Competition 3788 are not in a
high-accuracy regime but around 55%. So the relative error from public to private test set
is small as well.
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Section 4.8.1.4 contains scatter plots for the remaining accuracy competitions that show
a similar overall trend. Besides the Competition 12598 discussed in the previous subsection,
there are two additional competitions with a substantial public vs. private deviation. One
competition is #3641, which has a total test set size of about 4,000 but is only derived from
7 human test subjects (the dataset consists of magnetoencephalography (MEG) recordings
from these subjects). The other competition is 12681, which contains a public test set of size
90. Since very small (effective) test sets make it easier to reconstruct the public / private
split and then overfit, and make the public and private scores noisier, we consider these two
competitions to be outliers. Overall, the second analysis level shows that if overfitting occurs
among the top submissions, it only does so to a small extent.

Submission Linear fit y=x

Figure 4.3: Private versus public accuracy for the top 10% of submissions for the most popular
Kaggle accuracy competitions. Each point corresponds to an individual submission (shown with
95% Clopper-Pearson confidence intervals).

4.4.3 Third analysis level: quantifying the amount of random
variation

When discussing deviations from the ideal y = x diagonal in the previous two subsections,
an important question is how much variation we should expect from random chance. Due
to the finite sizes of the test sets, the public and private accuracies will never match exactly
and it is a priori unclear how much of the deviation we can attribute to random chance and
how much to overfitting.

To quantitatively understand the expected random variation, we compute the probability
of a given public vs. private deviation (p-value) for a simple null model. By inspecting the
distribution of the resulting p-values, we can then investigate to what extent the observed
deviations can be attributed to random chance.

We consider the following null model under which we compute p-values for observing
certain gaps between the public and private accuracies. We fix a submission that makes a
given number of mistakes on the entire test set (public and private split combined). We then
randomly split the test set into two parts with sizes corresponding to the public and private
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splits of the competition. This leads to a certain number of mistakes (and hence accuracy)
on each of the two parts. The p-value for this submission is then given by the probability of
the event

|public_accuracy− private_accuracy| ≥ ε (4.4.1)
where ε is the observed deviation between public and private accuracy. We describe the
details of computing these p-values in Section .

Figure 4.4 plots the distribution of these p-values for the same four competitions as
before. To see potential effects of overfitting, we show p-values for all submissions, the top
10% of submissions (as in the previous subsection), and for the first submission for each
team in the competition. We plot the first submissions separately since they should be least
adapted to the test set and hence show the smallest amount of overfitting.

y=x All Submissions Top 10% Submissions First Submissions

Figure 4.4: Empirical CDFs of the p-values for three (sub)sets of submissions in the four
accuracy competitions with the largest number of submissions.

Under our ideal null hypothesis, the p-values would have a uniform distribution with a
CDF following the y = x diagonal. However, this is only the case for the first submissions
in Competitions 7634 and 7115, and even there only approximately. Most other curves
show a substantially larger number of small p-values (large gaps between public and private
accuracy) than expected under the null model. Moreover, the top 10% of submissions always
exhibit the smallest p-values, followed by all submissions and then the first submissions.

When interpreting these p-value plots, we emphasize that the null model is highly ide-
alized. In particular, we assume that every submission is evaluated on its own independent
random public / private split, which is clearly not the case for Kaggle competitions. So for
correlated submissions, we would expect clusters of approximately equal p-values that are
unlikely to arise under the null model. Since it is plausible that many models are trained
with standard libraries such as XGBoost [5] or scikit-learn [70], we conjecture that correlated
models are behind the jumps in the p-value CDFs.

In addition, it is important to note that for large test sets (e.g., the 498,000 examples
in Competition 5275), even very small systematic deviations between the public and private
accuracies are statistically significant and hence lead to small p-values. So while the analysis
based on p-value plots does point towards irregularities such as overfitting, the overall effect
size (deviation between public and private accuracies) can still be small.
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Given the highly discriminative nature of the p-values, a natural question is whether
any competition exhibits approximately uniform p-values. As can be seen in Section 4.8.1.5,
some competitions indeed have p-value plots that are close to the uniform distribution under
null model (Figure 4.10 in the same section highlights four examples). Due to the idealized
null hypothesis, this is strong evidence that these competitions are free from overfitting.

4.4.4 Computation of p-values

For a given submission, the public and private test accuracies will rarely exactly match. We
would like to understand exactly how much of this discrepancy can be attributed to random
variation as opposed to overfitting. One approach to this problem is to estimate the model’s
accuracy on the public test-set and then plug the observed test-set accuracy into a binomial
tail bound. However, this method is not fully rigorous. For instance, how do we account
for uncertainty in the model’s test-accuracy estimate? Fortunately, we can side-step these
issues and compute exact p-values for a simple null model using only MetaKaggle data.

Fix a classifier that correctly classifies m points out of a total test set of size ntotal and
incorrectly classifies the remaining ntotal −m points. We randomly split these ntotal points
into public and private test sets of size npublic and nprivate, respectively, with npublic+nprivate =
ntotal. Under the null model, every partition of the points is equally likely. Dividing points
in this fashion leads to mpublic and mprivate successes on each subset. Let ∆ be the observed
difference in public and private accuracies. Then, we’re interested in computing

p_value = P
{∣∣∣∣mprivate

nprivate
− mpublic

npublic

∣∣∣∣ > ∆

}
. (4.4.2)

Fixing mprivate also determines mpublic, and for any fixed mprivate = k, the probability of
sampling a private test set of with k correctly classified points is(

m
k

)(
n−m

nprivate−k

)(
n

nprivate

) . (4.4.3)

Therefore, we can compute the p-value in equation (4.4.2) as

P
{∣∣∣∣mprivate

nprivate
− mpublic

npublic

∣∣∣∣ > ∆

}
=

∑
k∈[m]:

∣∣∣∣ k
nprivate

− (m−k)
npublic

∣∣∣∣>∆

(
m
k

)(
n−m

nprivate−k

)(
n

nprivate

) , (4.4.4)

where [m] = {0, 1, 2, . . . ,m}. Evaluating this summation only requires access to ntotal, npublic, nprivate,
and ∆, all of which are available in the MetaKaggle dataset. Hence, a p-value can be read-
ily evaluated for each submission. Computing ratios of binomial coefficients like (4.4.3) is
numerically unstable and computationally expensive for large n. Therefore, in our implemen-
tation, we work in log-space and use Stirling’s approximation for the binomial coefficients to
efficiently and reliably approximate (4.4.4).



CHAPTER 4. A META-ANALYSIS OF OVERFITTING IN MACHINE LEARNING 108

4.4.5 Aggregate view of the accuracy competitions

The previous subsections provided tools for analyzing individual competitions and then relied
on a qualitative survey of all accuracy competitions. Due to the many nuances and failure
modes in machine learning competitions, we believe that this case-by-case approach is the
most suitable for the Kaggle data. But since this approach also carries the risk of missing
overall trends in the data, we complement it here with a quantitative analysis of all accuracy
competitions.

In order to compare the amount of overfitting across competitions, we compute the mean
accuracy difference across all submissions in a competition. Specifically, let C be a set of
submissions for a given competition. Then the mean accuracy difference of the competition
is defined as

mean_accuracy_difference =
1

|C|
∑
i∈C

public_accuracy(i)− private_accuracy(i) . (4.4.5)

A larger mean accuracy difference indicates more potential overfitting. Note that since
accuracy is in a sense the opposite of loss, our computation of mean accuracy difference is
the opposite of our earlier expression for the generalization gap.

Figure 4.5: Left: Empirical CDF of the mean accuracy differences (%) for 34 accuracy
competitions. Right: Mean accuracy differences versus competition end date for the same
competitions.

Figure 4.5 shows the empirical CDF of the mean accuracy differences for all accuracy
competitions. While the score differences between−2% to +2% are approximately symmetric
and centered at zero (as a central limit theorem argument would suggest), the plot also shows
a tail with larger score differences consisting of five competitions. Figure 4.7 in Section 4.8.1.2
aggregates our three types of analysis plots for these competitions.

We have already mentioned three of these outliers in the discussion so far. The worst
outlier is Competition 12598 which contains a non-i.i.d. data split (see Section 4.4.1). Section
4.4.2 noted that Competitions 3641 and 12681 had very small test sets. Similarly, the other
two outliers (#12349 and #5903) have small private test sets of size 209 and 100 respectively.
Moreover, the public - private accuracy gap decreases among the very best submissions in
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these competitions (see Figure 4.7 in Section 4.8.1.2). Hence we do not consider these
competitions as examples of adaptive overfitting.

As a second aggregate comparison, the right plot in Figure 4.5 shows the mean accu-
racy differences vs. competition end date and separates two types of competitions: in-class
and other, which are mainly the “featured” competitions on Kaggle with prize money. In-
terestingly, many of the competitions with large public - private deviations are from 2019.
Moreover, the large deviations are almost exclusively in-class competitions. This may indi-
cate that in-class competitions undergo less quality control than the featured competitions
(e.g., have smaller test sets), and that the quality control standards on Kaggle may change
over time.

4.4.6 Did we observe overfitting?

The preceding subsections provided an increasingly fine-grained analysis of the Kaggle com-
petitions evaluated with classification accuracy. The scatter plots for all submissions in
Section 4.4.1 show a good fit to the y = x diagonal with small and approximately symmetric
deviations from the diagonal. This is strong evidence that the overall competition is not af-
fected by substantial overfitting. When restricting the plots to the top submissions in Section
4.4.2, the picture becomes more varied but the largest overfitting effect size (public - private
accuracy deviation) is still small. In both sections we have identified outlier competitions
that do not follow the overall trend but also have issues such as small test sets or non-i.i.d.
splits. At the finest level of our analysis (Section 4.4.3), the p-value plots show that the data
is only sometimes in agreement with an idealized null model for no overfitting.

Overall we see more signs of overfitting as we sharpen our analysis to highlight smaller
effect sizes. So while we cannot rule out every form of overfitting, we view our findings as
evidence that overfitting did not pose a significant danger in the most popular classification
accuracy competitions on Kaggle. In spite of up to 35,000 submissions to these competitions,
there are no large overfitting effects. So while overfitting may have occurred to a small extent,
it did not invalidate the overall conclusions from the competitions such as which submissions
rank among the top or how well they perform on the private test split.

4.5 Classification competitions with further evaluation
metrics

In addition to accuracy classification competitions, we also surveyed competitions evaluated
with AUC, MAP@K, LogLoss, and MulticlassLoss. Unfortunately, the Meta Kaggle dataset
contains only aggregate scores for the public and private test set splits, not the loss values for
individual predictions. For the accuracy metric, these quantities are sufficient to compute
statistical measures of uncertainty such as the error bars in the scatter plots (Sections 4.4.1
& 4.4.2) or the p-value plots (Section 4.4.3). However, the aggregate data is not enough to
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compute similar quantities for the other classification metrics. For instance, lack of example-
level scores precludes the use of standard tools such as the bootstrap or permutation tests.
Hence our analysis here is more qualitative than for accuracy competitions in the preceding
section. Nevertheless, inspecting the scatter plots can still convey overall trends in the data.

Figure 4.6: Empirical CDF of mean score differences for 40 AUC competitions, 12 MAP@K
competitions, 15 LogLoss competitions, and 11 MulticlassLoss competitions.

Sections 4.8.2 to 4.8.5 contain the scatter plots for all submissions and for the top 10%
of submissions to these competitions. The overall picture is similar to the accuracy plots:
many competitions have scatter plots with a good linear fit close to the y = x diagonal.
There is more variation in the top 10% plots but due to the lack of error bars it is difficult to
attribute this to overfitting vs. random noise. As before, a small number of competitions show
more variation that may be indicative of overfitting. In all cases, the Kaggle website (data
descriptions and discussion forums) give possible reasons for this behavior (non-i.i.d. splits,
competitions with two stages and different test sets, etc.). Thus, we view these competitions
as outliers that do not contradict the overall trend.

Figure 4.6 shows plots with aggregate statistics (mean score difference) similar to Section
4.4.5. As for the accuracy competitions, the empirical distribution has an approximately
symmetric part centered at 0 (no score change) and a tail with larger score differences that
consists mainly of outlier competitions.

4.6 Related work
As mentioned in the introduction, the reproducibility experiment of Recht et. al. [78]
also points towards a surprising absence of adaptive overfitting in popular machine learning
benchmarks. However, there are two important differences to our work. First, Recht et. al.
[78] assembled new test sets from scratch, which makes it hard to disentangle the effects of
adaptive overfitting and distribution shifts. In contrast, most of the public / private splits
in Kaggle competitions are i.i.d., which removes distribution shifts as a confounder. Second,
they only investigate two image classification benchmarks on which most models come from
the same model class (CNNs) [27, 54]. We survey 112 competitions on which the Kaggle
competitors experimented with a broad range of models and training approaches. Hence our
conclusions about overfitting apply to machine learning more broadly.
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The adaptive data analysis literature [20, 80] provides a range of theoretical explanations
for how the common machine learning workflow may implicitly mitigate overfitting [4, 105,
26]. Our work is complementary to these papers and conducts a purely empirical study of
overfitting in machine learning competitions. We hope that our findings can help test and
refine the theoretical understanding of overfitting in future work.

4.7 Conclusion and future work
We surveyed 112 competitions on Kaggle covering a wide range of classification tasks but
found little to no signs of overfitting. Our results cast doubt on the standard narrative that
overfitting is a significant danger in the common machine learning workflow.

Moreover, our findings call into question whether common practices such as limiting test
set re-use increase the reliability of machine learning. We have seen multiple competitions
where a non-i.i.d. split lead to substantial gaps between public and private scores, suggesting
that distribution shifts [73, 92, 78, 22] may be a more pressing problem than test set reuse
in current machine learning.
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4.8 Supplementary material

4.8.1 Accuracy

4.8.1.1 Accuracy: competition info
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Table 4.2: Competitions scored with accuracy with greater than 1000 submissions. npublic

is the size of the public test set and nprivate is the size of the private test set. N/A means
that we could not access the competition data to compute the dataset sizes. A * after the
competition name means the name was slightly edited to fit into the table.

Accuracy

ID Name # Sub. npublic nprivate

3362 Dogs vs. Cats 1,225 3,750 8,751
3366 The Black Box Learning Challenge* 1,924 5,000 5,000
3428 Data Science London + Scikit-learn 1,477 2,700 6,299
3641 DecMeg2014 - Decoding the Human Brain 4,507 1,745 2,313
3649 CIFAR-10 - Object Recognition in Images 1,634 9,000 291,000
3788 Allstate Purchase Prediction Challenge 24,532 59,657 139,199
4554 MSU Visits* 1,288 30,000 270,000
4821 104-1 MLDS_Final 1,060 36,400 36,401
4857 Let’s Overfit 1,080 500,000 500,000
5275 Can we predict voting outcomes? 35,247 249,344 249,343
5896 Prediction Reviews Sentiment Analysis* 1,770 50 50
5903 Prediction Reviews Sentiment Analysis (Light)* 3,528 400 100
5942 Identify Me If You Can – Yandex & MIPT 1,242 20,588 20,589
6109 Identify Me If You Can 1,819 23,236 23,237
7042 Text Normalization Challenge - English Language 1,834 10,886 1,077,678
7115 Cdiscount’s Image Classification Challenge 5,859 530,455 1,237,727
7563 Cover Type Prediction of Forests 3,077 6,000 14,000
7634 TensorFlow Speech Recognition Challenge 24,263 3,171 155,365
8307 Data Science Nigeria Telecoms Churn 1,259 180 420
9051 Digit Recongnizer 1438 1,640 2,576 2,575
9491 ML-2018spring-hw5 2,247 100,000 100,000
10851 CSE158 fa18 Category Prediction 3,872 7,000 7,000
11842 AIA image classification by CNN 3,415 1,351 150
12187 CS 4740 Project 4 Revised 1,086 N/A N/A
12349 2019 1st ML month with KaKR 3,307 209 209
12357 UC Berkeley CS189 HW1 (MNIST) 1,480 3,000 7,000
12358 UC Berkeley CS189 HW1 (SPAM) 1,527 1,757 4,100
12359 UC Berkeley CS189 HW1 (CIFAR-10) 1,336 3,000 7,000
12598 TAU Robot Surface Detection 1,574 852 853
12681 PadhAI: Text - Non Text Classification Level 2 1,185 90 210
13034 UC Berkeley CS189 HW3 (MNIST) 1,193 3,000 7,000
13036 UC Berkeley CS189 HW3 (SPAM) 1,080 1,757 4,100
13078 Homework 2 Part 2 - Classification 2,245 N/A N/A
13383 ML2019spring-hw2 2,802 8,141 8,141
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4.8.1.2 Accuracy: outlier competitions

Figure 4.7 shows the plots corresponding to the three levels of overfitting analysis for the
mean accuracy difference outliers discussed in Section 4.4.5.

By reading the Kaggle forums and the description of the dataset construction, we were
able to determine a possible cause of overfitting for most of the outlier competitions. In
some cases, the competition hosts did not create the public and private test splits in a truly
i.i.d. manner, and competitors were able to exploit the difference in distribution. In other
cases, the size of the test set was extremely small. The list of outlier competitions and
corresponding cause of overfitting follow. We also include links to relevant descriptions of
the data or discussions on the Kaggle forums.

• Competition 12598: TAU Robot Surface Detection The dataset is a time series
that consists of measurements of acceleration, velocity and orientation. In some of
the measurement locations, the floor has a slope that makes the orientation channels
informative (though the orientation terms are designed to not be informative for the
particular task). In order to mitigate this effect, the organizers split the time series
data into shorter subsequences and assigned separate subsequences to the public and
private split. Thus, the public and private data were not created from a truly i.i.d.
split. 3

• Competition 12349: 2019 1st ML month with KaKR The competition uses a
small test set consisting of 418 examples (209 in the private test set and 209 in the
public test set.)

• Competition 5903: Prediction Reviews Sentiment Analysis (Light) The com-
petition uses a small test set consisting of 500 examples (400 in the public test set and
100 in the private test set).

• Competition 3641: DecMeg2014 - Decoding the Human Brain The test set
contains data generated from 7 subjects and the public and private splits were created
in a non-i.i.d. manner using data from individual subjects. https://www.kaggle.com
/c/decoding-the-human-brain/data

• Competition 12681: PadhAI: Text - Non Text Classification Level 2 The
competition uses a small test set consisting of 300 examples (90 in the public test set
and 210 in the private test set).

3Personal communication with the competition organizer Heikki Huttunen.

https://www.kaggle.com/c/decoding-the-human-brain/data
https://www.kaggle.com/c/decoding-the-human-brain/data
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Submission Linear fit y=x All Submissions Top 10% Submissions First Submissions

Figure 4.7: Private versus public accuracy for all submissions (left) and the top 10% of submissions
ranked by public accuracy (center), as well as empirical CDFs of p-Values (right) for the mean score
difference outliers discussed in Section 4.4.5. For the scatter plots, each point corresponds to an
individual submission (shown with 95% Clopper-Pearson confidence intervals). The right figure
includes empirical CDFs for an idealized null model that assumes no overfitting (see Section 4.4.3).
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4.8.1.3 Accuracy: all submissions
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Submission Linear fit y=x

Figure 4.8: Private versus public accuracy for all submissions for the most popular Kaggle accu-
racy competitions. Each point corresponds to an individual submission (shown with 95% Clopper-
Pearson confidence intervals).
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Submission Linear fit y=x

Figure 4.8: Private versus public accuracy for all submissions for the most popular Kaggle accu-
racy competitions. Each point corresponds to an individual submission (shown with 95% Clopper-
Pearson confidence intervals).
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4.8.1.4 Accuracy: top 10% of submissions
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Submission Linear fit y=x

Figure 4.9: Private versus public accuracy for top 10% of submissions for the most popular Kag-
gle accuracy competitions. Each point corresponds to an individual submission (shown with 95%
Clopper-Pearson confidence intervals).
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Submission Linear fit y=x

Figure 4.9: Private versus public accuracy for all submissions for the most popular Kaggle accu-
racy competitions. Each point corresponds to an individual submission (shown with 95% Clopper-
Pearson confidence intervals).
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4.8.1.5 Accuracy: p-value plots

y=x All Submissions Top 10% Submissions First Submissions

Figure 4.10: Competitions whose empirical CDFs agree with the idealized null model that
assumes no overfitting (full details in Section 4.4.3).
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y=x All Submissions Top 10% Submissions First Submissions

Figure 4.11: Empirical CDFs for an idealized null model that assumes no overfitting for all
Kaggle accuracy competitions (full details in Section 4.4.3)
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y=x All Submissions Top 10% Submissions First Submissions

Figure 4.11: Empirical CDFs for an idealized null model that assumes no overfitting for all
Kaggle accuracy competitions (full details in Section 4.4.3)
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4.8.2 AUC

4.8.2.1 AUC: competition info
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Table 4.3: Competitions scored with AUC with greater than 1000 submissions. npublic is
the size of the public test set and nprivate is the size of the private test set. N/A means
that we could not access the competition data to compute the dataset sizes. A * after the
competition name means the name was slightly edited to fit into the table.

AUC

ID Name # Sub. npublic nprivate

2439 INFORMS Data Mining Contest 2010 1,483 254 2,285
2445 Predict Grant Applications 2,800 544 1,632
2464 IJCNN Social Network Challenge 1,124 1,792 7,168
2478 Stay Alert! The Ford Challenge 1,402 36,252 84,588
2489 Don’t Overfit! 3,775 1,975 17,775
2551 Give Me Some Credit 7,724 30,451 71,052
3338 Amazon.com - Employee Access Challenge 16,896 17,676 41,245
3353 Marinexplore and Cornell Whale Detection* 3,295 16,351 38,152
3469 Influencers in Social Networks 2,109 2,976 2,976
3509 Whale Challenge - Right Whale Redux* 1,005 7,641 17,828
3524 Accelerometer Biometric Competition 7,130 8,102,160 18,905,040
3526 StumbleUpon Evergreen Classification Challenge 7,509 634 2,537
3774 CONNECTOMICS 1,458 75,742 75,743
3897 Acquire Valued Shoppers Challenge 25,205 N/A N/A
3926 Predicting Excitement at DonorsChoose.org* 12,530 11,193 33,579
3933 MLSP 2014 Schizophrenia Classification Challenge 2,246 0 119,749
3960 American Epilepsy Society Seizure Prediction* 17,782 1,574 2,361
4031 Driver Telematics Analysis 36,072 N/A N/A
4043 BCI Challenge @ NER 2015 4,348 680 2,721
4294 Facebook Recruiting IV: Human or Robot? 13,559 1,410 3,290
4366 West Nile Virus Prediction 29,963 2,326 113,967
4487 Springleaf Marketing Response 39,439 43,570 101,662
4493 Truly Native? 3,224 26,709 40,064
4657 Homesite Quote Conversion 36,387 52,151 121,685
4986 Santander Customer Satisfaction 93,584 37,909 37,909
5167 PRED 411-2016_04-U2-INSURANCE-A* 1,436 1,070 1,071
5174 Avito Duplicate Ads Detection 8,157 657,602 657,603
5261 Predicting Red Hat Business Value 33,696 149,606 349,081
5390 Melbourne Univ. Seizure Prediction* 10,083 N/A N/A
6242 Catch Me If You Can: Intruder Detection* 2,479 41,398 41,399
7162 WSDM - KKBox’s Music Recommendation* 15,555 1,278,396 1,278,395
8227 2018 Spring CSE6250 HW1 1,170 244,173 244,173
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Table 4.3: Competitions scored with AUC with greater than 1000 submissions. npublic is
the size of the public test set and nprivate is the size of the private test set. N/A means
that we could not access the competition data to compute the dataset sizes. A * after the
competition name means the name was slightly edited to fit into the table.

AUC

ID Name # Sub. npublic nprivate

8540 AdTracking Fraud Detection* 68,594 3,382,284 15,408,185
9120 Home Credit Default Risk 132,097 9,749 38,995
10683 Microsoft Malware Prediction 43,702 4,947,549 2,905,704
11803 BGU - Machine Learning 2,079 6,849 5,603
11848 Histopathologic Cancer Detection 20,352 28,154 29,304
12512 2019 Spring CSE6250 BDH 1,396 244,173 244,173
12558 WiDS Datathon 2019 3,021 4,312 2,222
12904 Caltech CS 155 2019 Part 1 1,078 1,264,122 1,264,122
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4.8.2.2 AUC: outlier competitions

For AUC, we also investigated competitions whose linear fit was a bad approximation to the
diagonal y = x line. We first identified these competitions using visual inspection of the
plots in Section 4.8.2.3.

By reading the Kaggle forums and the description of the dataset construction, we were
able to determine a possible cause of overfitting for most of the outlier competitions. In
most cases, the competition hosts did not create the public and private test splits in a truly
i.i.d. manner, and competitiors were able to exploit the difference in distribution. In other
cases, the size of the test set was extremely small. The list of outlier competitions and
corresponding cause of overfitting follow. We also include links to relevant descriptions of
the data or discussions on the Kaggle forums.

• Competition 4043: BCI Challenge @ NER 2015: The test set contains data
generated from 10 subjects and the public and private splits were created in a non-
i.i.d. manner using data from individual subjects https://www.kaggle.com/c/inria
-bci-challenge/discussion/12613#latest-65652.

• Competition 3926: KDD Cup 2014 - Predicting Excitement at DonorsChoose.org:
Public and private splits are not i.i.d. and likely were created by separating donations
projects by the date they were proposed. https://www.kaggle.com/c/kdd-cup-201
4-predicting-excitement-at-donors-choose/discussion/9772#latest-50827

• Competition 3933: MLSP 2014 Schizophrenia Classification Challenge The
test set contains data generated from 58 subjects and the public and private splits
were created in a non-i.i.d. manner using data from individual subjects. https:
//www.kaggle.com/c/mlsp-2014-mri/discussion/10135#latest-54483

• Competition 3774: CONNECTOMICS Participants knew which test data be-
longed in the public and private splits because the splits were provided in separate
files. https://www.kaggle.com/c/connectomics/data

• Competition 8540: TalkingData AdTracking Fraud Detection Challenge A
second, larger test set that was unintentionally released at the start of the competition
and then participants were permitted but not required to use the data. https://www.
kaggle.com/c/talkingdata-adtracking-fraud-detection/discussion/52658#lat
est-315882

• Competition 10683: Microsoft Malware Prediction The private test data in-
cluded several severe outliers not present in the public test data, indicating that the
public and private split are not i.i.d. https://www.kaggle.com/c/microsoft-malwa
re-prediction/discussion/84745

https://www.kaggle.com/c/inria-bci-challenge/discussion/12613#latest-65652
https://www.kaggle.com/c/inria-bci-challenge/discussion/12613#latest-65652
https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/discussion/9772#latest-50827
https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose/discussion/9772#latest-50827
https://www.kaggle.com/c/mlsp-2014-mri/discussion/10135#latest-54483
https://www.kaggle.com/c/mlsp-2014-mri/discussion/10135#latest-54483
https://www.kaggle.com/c/connectomics/data
https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/discussion/52658#latest-315882
https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/discussion/52658#latest-315882
https://www.kaggle.com/c/talkingdata-adtracking-fraud-detection/discussion/52658#latest-315882
https://www.kaggle.com/c/microsoft-malware-prediction/discussion/84745
https://www.kaggle.com/c/microsoft-malware-prediction/discussion/84745
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4.8.2.3 AUC: all submissions

Figure 4.12 shows the private versus public AUC scatter plots for each AUC competition
with over 1000 submissions in the MetaKaggle dataset.
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Submission Linear fit y=x

Figure 4.12: Private versus public AUC for all submissions for Kaggle AUC competitions.
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Submission Linear fit y=x

Figure 4.12: Private versus public AUC for all submissions for Kaggle AUC competitions.
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4.8.2.4 AUC: top 10% of submissions
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Submission Linear fit y=x

Figure 4.13: Private versus public accuracy for top 10% of submissions for Kaggle AUC
competitions.
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Submission Linear fit y=x

Figure 4.13: Private versus public AUC for top 10% of submissions for Kaggle AUC compe-
titions.
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4.8.3 Map@K

4.8.3.1 Map@K: competition info

Table 4.4: Competitions scored with MAP@K with greater than 1000 submissions. npublic is
the size of the public test set and nprivate is the size of the private test set. N/A means that
we could not access the competition data to compute the dataset sizes.

MAP@K

ID Name # Sub. npublic nprivate

4481 Coupon Purchase Prediction 18,487 650 1,515
5056 Expedia Hotel Recommendations 22,713 834,321 1,693,923
5186 Facebook V: Predicting Check Ins 15,127 4,445,370 4,445,369
5497 Outbrain Click Prediction 6,654 9,667,549 22,557,613
5558 Santander Product Recommendation 28,773 278,884 650,731
6818 Humpback Whale Identification 37,529 1,592 6,368
7666 CS5785 Fall 2017 Final Exam 3,898 1,000 1,000
8396 Google Landmark Retrieval Challenge 3,123 0 117,704
8857 Recipient prediction 2018 1,154 1,000 1,000
8900 Freesound General-Purpose Audio Tagging Challenge 5,684 282 9,118
10200 Quick, Draw! Doodle Recognition Challenge 21,407 10,098 102,101
12088 CS5785 Fall 2018 Final 1,877 1,000 1,000

4.8.3.2 Map@K: outlier competitions

We did not observe any MAP@K competitions which exhibit a linear fit that poorly approx-
imates the y = x diagonal line (see Section 4.8.3.3).



CHAPTER 4. A META-ANALYSIS OF OVERFITTING IN MACHINE LEARNING 136

4.8.3.3 Map@K: all submissions

Submission Linear fit y=x

Figure 4.14: Private versus public MAP@K for all submissions for Kaggle MAP@K compe-
titions.
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4.8.3.4 Map@K: top 10% of submissions

Submission Linear fit y=x

Figure 4.15: Private versus public MAP@K for top 10% of submissions for Kaggle MAP@K
competitions.
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4.8.4 MulticlassLoss

4.8.4.1 MulticlassLoss: competition info

Table 4.5: Competitions scored with MulticlassLoss with greater than 1000 submissions.
npublic is the size of the public test set and nprivate is the size of the private test set. N/A
means that we could not access the competition data to compute the dataset sizes.

MulticlassLoss

ID Name # Sub. npublic nprivate

4521 Right Whale Recognition 4,789 N/A N/A
4588 Telstra Network Disruptions 19,603 3,240 7,931
4654 Walmart Recruiting: Trip Type Classification 13,135 18,629 43,467
5048 State Farm Distracted Driver Detection 25,591 N/A N/A
5340 TalkingData Mobile User Demographics 24,631 33,621 78,450
5568 The Nature Conservancy Fisheries Monitoring 2,100 N/A N/A
5590 Two Sigma Connect: Rental Listing Inquiries 47,044 N/A N/A
6243 Intel & MobileODT Cervical Cancer Screening 1,367 N/A N/A
6841 Personalized Medicine: Redefining Cancer Treatment 3,056 N/A N/A
7516 Spooky Author Identification 10,640 2,518 5,874

4.8.4.2 MulticlassLoss: outlier competitions

For MulticlassLoss, we investigated competitions whose linear fit was a bad approximation
to the diagonal y = x line. We first identified these competitions using visual inspection of
the plots in Section 4.8.4.3.

By reading the Kaggle forums and the description of the dataset construction, we were
able to determine a possible cause of overfitting for most of the outlier competitions. In
most cases, the competition hosts did not create the public and private test splits in a truly
i.i.d. manner, and competitiors were able to exploit the difference in distribution. In other
cases, the size of the test set was extremely small. The list of outlier competitions and
corresponding cause of overfitting follow. We also include links to relevant descriptions of
the data or discussions on the Kaggle forums.

• Competition 6243: Intel & MobileODT Cervical Cancer Screening The test
set was released in two stages. https://www.kaggle.com/c/intel-mobileodt-cer
vical-cancer-screening/data

• Competition 6841: Personalized Medicine: Redefining Cancer Treatment
The test set was released in two stages because a team discovered the test data from

https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
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Stage 1, including labels, on a public website. https://www.kaggle.com/c/msk-red
efining-cancer-treatment/discussion/36383#latest-223033

• Competition 5568: The Nature Conservancy Fisheries Monitoring The test
set was released in two stages. https://www.kaggle.com/c/the-nature-conserva
ncy-fisheries-monitoring/data

https://www.kaggle.com/c/msk-redefining-cancer-treatment/discussion/36383#latest-223033
https://www.kaggle.com/c/msk-redefining-cancer-treatment/discussion/36383#latest-223033
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring/data
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring/data
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4.8.4.3 MulticlassLoss: all submissions

Submission Linear fit y=x

Figure 4.16: Private versus public MulticlassLoss for all submissions for Kaggle Multiclass-
Loss competitions.
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4.8.4.4 MulticlassLoss: top 10% of submissions

Submission Linear fit y=x

Figure 4.17: Private versus public MulticlassLoss for top 10% of submissions for Kaggle
MulticlassLoss competitions.
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4.8.5 LogLoss

4.8.5.1 LogLoss: competition info

LogLoss

ID Name # Sub. npublic nprivate

2780 Predicting a Biological Response 8,843 625 1,876
2984 Practice Fusion Diabetes Classification 2,200 1,245 3,734
3377 ICDAR2013 - Gender Prediction from Handwriting 1,884 286 486
3934 Display Advertising Challenge 8,640 1,208,427 4,833,708
3984 Tradeshift Text Classification 5,659 163,525 381,557
4120 Click-Through Rate Prediction 31,019 915,493 3,661,972
4438 Avito Context Ad Clicks 5,951 2,344,909 5,471,453
4852 BNP Paribas Cardif Claims Management 54,519 37,750 76,643
4862 March Machine Learning Mania 2016 1,054 N/A N/A
6004 Data Science Bowl 2017 1,694 N/A N/A
6277 Quora Question Pairs 53,927 140,748 2,205,048
7163 WSDM - KKBox’s Churn Prediction Challenge 6,256 N/A N/A
7380 Statoil/C-CORE Iceberg Classifier Challenge 42,936 N/A N/A
7823 Attrition de clientes 1,911 N/A N/A
8310 Google Cloud & NCAA R© ML Competition 2018-Men’s 1,660 N/A N/A

Table 4.6: Competitions scored with LogLoss with greater than 1000 submissions. npublic is
the size of the public test set and nprivate is the size of the private test set. N/A means that
we could not access the competition data to compute the dataset sizes.

4.8.5.2 LogLoss: outlier competitions

For LogLoss, we observed one competition (Competition 6004: Data Science Bowl 2017)
whose linear fit was a bad approximation the diagonal y = x line. The competition shows
approximately 13 outliers when looking at the scatter plot for the top 10% of submissions
(see Figure 4.19).

The competition is unique in two aspects: first, the competition used two stages with
separate test sets released at different times and second, participants were allowed to use
external data. Participants were eventually given all the labels to the Stage 1 test data, but
the Stage 2 test data was different in distribution from the Stage 1 test data (see https:
//www.kaggle.com/c/data-science-bowl-2017/discussion/31383#latest-174302). It
is unclear whether the final private test data was generated from an i.i.d. split with either
the Stage 1 test data or the Stage 2 data. Moreover, training the model on external data
violates our assumption that the models were only trained and evaluated on i.i.d. data.

https://www.kaggle.com/c/data-science-bowl-2017/discussion/31383#latest-174302
https://www.kaggle.com/c/data-science-bowl-2017/discussion/31383#latest-174302
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4.8.5.3 LogLoss: all submissions

Submission Linear fit y=x

Figure 4.18: Private versus public LogLoss for all submissions for Kaggle LogLoss competi-
tions.
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4.8.5.4 LogLoss: top 10% of submissions

Submission Linear fit y=x

Figure 4.19: Private versus public LogLoss for top 10% of submissions for Kaggle LogLoss
competitions.
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4.8.6 Mean score differences over time

Figure 4.20: Mean score differences (across all pre-deadline submissions) versus competition
end date for all classification evaluation metrics with at least 10 competitions with at least
1000 submissions each. Score difference is public minus private for metrics where a higher
score is better (AUC, CategorizationAccuracy (included in the main text), and MAP@K) and
private minus public for metrics where a lower score is better (LogLoss and MulticlassLoss).
Blue dots show InClass competitions and orange dots show all other competition types
(Featured, Research, Getting Started, and Playground).
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Chapter 5

Conclusion

In this thesis, we empirically evaluated key theoretical pillars of machine learning surrounding
generalization and overfitting in order to better understand machine learning robustness. We
showed that the choice of optimization algorithm can influence the generalization error of a
trained model and demonstrated that adaptive gradient methods frequently find solutions
with worse generalization error than stochastic gradient descent. We then turned to the meta
question of whether the test error itself is a realiable measurement of generalization error.
While the prevailing concern is that test set reuse leads to overfitting and overly optimistic
measurements of generalization error, we saw little evidence of overfitting in both machine
learning benchmarks and competitions. Instead, we demonstrated that machine learning
classifiers are extremely brittle to small, benign distribution shifts. Overall, designing models
that still work in dynamic environments remains a key challenge for robust machine learning.

5.1 Future Work
This thesis highlights many opportunities for future work, which we outline below.

Empirically understanding overfitting There are multiple directions for empirically
understanding overfitting in more detail. Our analysis of the Meta-Kaggle dataset in Chapter
4 focused on classification competitions, but Kaggle also hosts many regression competitions.
Is there more adaptive overfitting in regression? Answering this question will likely require
access to the individual predictions of the Kaggle submissions to appropriately handle outlier
submissions. In addition, there are still questions among the classification competitions. For
instance, one refinement of our analysis here is to obtain statistical measures of uncertainty
for competitions evaluated with metrics such as AUC (which will also require a more fine-
grained version of the Kaggle data). Finally, another important question is whether other
competition platforms such as CodaLab [11] or EvalAI [97] also show few signs of adaptive
overfitting.
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Measuring Human Accuracy. One interesting question is whether our new test sets are
also harder for humans. As a first step in this direction, our human accuracy experiment
on CIFAR-10 (see Section 3.5.2.5) shows that average human performance is not affected
significantly by the distribution shift between the original and new images that are most
difficult for the models. This suggests that the images are only harder for the trained models
and not for humans. But a more comprehensive understanding of the human baseline will
require additional human accuracy experiments on both CIFAR-10 and ImageNet.

Characterizing the Distribution Gap. Why do the classification models in our Ima-
geNet and CIFAR-10 testbed perform worse on the new test sets? The selection frequency
experiments in Section 3.4 suggest that images selected less frequently by the MTurk work-
ers are harder for the models. However, the selection frequency analysis does not explain
what aspects of the images make them harder. Candidate hypotheses are object size, special
filters applied to the images (black & white, sepia, etc.), or unusual object poses. Exploring
whether there is a succinct description of the difference between the original and new test
distributions is an interesting direction for future work.

Learning More Robust Models. An overarching goal is to make classification models
more robust to small variations in the data. If the change from the original to our new
test sets can be characterized accurately, techniques such as data augmentation or robust
optimization may be able to close some of the accuracy gap. Otherwise, one possible approach
could be to gather particularly hard examples from Flickr or other data sources and expand
the training set this way. However, it may also be necessary to develop entirely novel
approaches to image classification.

Building Further Test Sets. The dominant paradigm in machine learning is to evaluate
the performance of a classification model on a single test set per benchmark. Our results
suggest that this is not comprehensive enough to characterize the reliability of current models.
To understand their generalization abilities more accurately, new test data from various
sources may be needed. One intriguing question here is whether accuracy on other test sets
will also follow a linear function of the original test accuracy.

Suggestions For Future Datasets. We found that it is surprisingly difficult to create a
new test set that matches the distribution of an existing dataset. Based on our experience
with this process, we provide some suggestions for improving machine learning datasets in
the future:

• Code release. It is hard to fully document the dataset creation process in a paper
because it involves a long list of design choices. Hence it would be beneficial for
reproducibility efforts if future dataset papers released not only the data but also all
code used to create the datasets.
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• Annotator quality. Our results show that changes in the human annotation process
can have significant impact on the difficulty of the resulting datasets. To better under-
stand the quality of human annotations, it would be valuable if authors conducted a
standardized test with their annotators (e.g., classifying a common set of images) and
included the results in the description of the dataset. Moreover, building variants of
the test set with different annotation processes could also shed light on the variability
arising from this data cleaning step.

• “Super hold-out”. Having access to data from the original CIFAR-10 and ImageNet
data collection could have clarified the cause of the accuracy drops in our experiments.
By keeping an additional test set hidden for multiple years, future benchmarks could
explicitly test for adaptive overfitting after a certain time period.

• Simpler tasks for humans. The large number of classes and fine distinctions between
them make ImageNet a particularly hard problem for humans without special training.
While classifying a large variety of objects with fine-grained distinctions is an important
research goal, there are also trade-offs. Often it becomes necessary to rely on images
with high annotator agreement to ensure correct labels, which in turn leads to bias
by excluding harder images. Moreover, the large number of classes causes difficulties
when characterizing human performance. So an alternative approach for a dataset
could be to choose a task that is simpler for humans in terms of class structure (fewer
classes, clear class boundaries), but contains a larger variety of object poses, lighting
conditions, occlusions, image corruptions, etc.

• Test sets with expert annotations. Compared to building a full training set, a
test set requires a smaller number of human annotations. This makes it possible to
employ a separate labeling process for the test set that relies on more costly expert
annotations. While this violates the assumption that train and test splits are i.i.d.
from the same distribution, the expert labels can also increase quality both in terms
of correctness and example diversity.

Finally, we emphasize that our recommendations here should not be seen as flaws in
CIFAR-10 or ImageNet. Both datasets were assembled in the late 2000s for an accuracy
regime that is very different from the state-of-the-art now. Over the past decade, especially
ImageNet has successfully guided the field to increasingly better models, thereby clearly
demonstrating the immense value of this dataset. But as models have increased in accuracy
and our reliability expectations have grown accordingly, it is now time to revisit how we
create and utilize datasets in machine learning.
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