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Abstract 

 Parametric oscillation provides another avenue to excite micro electro-mechanical resonators 

into oscillation. Rather than driving the resonator at its resonant frequency, modulating the stiffness of 
the resonator forces this motion. While this technique can lead to failures, it also can provide methods 

for frequency division, phase noise reduction, and sustaining oscillations of various frequency with a single 
amplifier. This work models the voltage conditions for parametric oscillation and compares them to 

measured results with an accuracy of 15%. Discrepancies caused by assumptions of the driving signal and 
measurement noise cause the difference between the theoretical and experimental results. Additionally, 

this work characterizes the frequency conditions for parametric oscillation. By sweeping the frequency 
from high to low and low to high, the driving frequencies that cause parametric oscillation are determined. 

This work also investigates a shorting failure mode caused by a large driving signal that decreases the 
quality factor of the device.    
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2 INTRODUCTION 

2.1 BACKGROUND AND OBJECTIVE 
 

Resonators generally only react to inputs that are close to its resonant frequency. However, a well-
known phenomenon called parametric oscillation can cause a resonator to oscillate when driven by a 
frequency far from its resonant frequency. Essentially, if the resonator has a modulated mechanical 
property at twice the resonant frequency of the device, then oscillations can occur. In this work, a time 
varying biasing voltage applied to the resonator modulates its stiffness. The changing capacitance 
converts the time varying voltage into a time varying electrical stiffness. If this change in stiffness is large 
enough, oscillations will occur. The parametric driving voltage does not actually create any forces on the 
disk due to being far from the resonant frequency. This phenomenon has been proved as far back as 1887 
and demonstrated by various research efforts [1] [2] [3]. However, the conditions for parametric 
oscillation for capacitively transduced wineglass disk resonators has not been explicitly stated. This work 
aims to prove and demonstrate the conditions for parametric oscillation for wineglass disk resonators. 

Potential applications of such a technique include frequency dividers for phase-locked loops, 
frequency synthesizers, and filters. Capacitively transduced micromechanical wineglass disk resonators 
have proven to parametrically oscillate and even reduce the phase noise of the input signal [2]. By 
understanding the conditions of parametric oscillation, multiple resonators can be daisy-chained together 
in order to reduce the phase noise even further. This technique requires frequency matching among the 
devices and is not the focus of this work due to this limitation. Alternatively, daisy-chaining multiple 
devices could create a mechanism to generate various harmonically-related frequency terms in order to 
create a frequency synthesizer. Another benefit is that only one amplifier is required in both applications 
to sustain oscillation for the largest frequency device. Figure 2.1 demonstrates the schematic necessary 
for both applications. 

 
Figure 2.1. Schematic of daisy chained parametrically oscillating devices with one sustaining amplifier for phase noise reduction 
or frequency synthesis.   
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3 CONDITIONS FOR PARAMETRIC OSCILLATION 

3.1 THEORY OF OPERATION 
 

Equation (3.1) describes the motion of an un-driven resonator with time varying stiffness where 
𝑚𝑚 is the mass, 𝑥𝑥 is the position of the resonator, 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 is the natural resonant frequency of the resonator, 
𝑘𝑘𝑛𝑛 is the mechanical stiffness of the resonator, 𝑄𝑄 is the quality factor, and 𝑘𝑘𝑒𝑒(𝑡𝑡) is a time varying stiffness.  

 
 

𝑚𝑚
𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+
𝑚𝑚𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛
𝑄𝑄

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ �𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑒𝑒(𝑡𝑡)�𝑥𝑥 = 0 
(3.1) 

 
The resonators used in this work are parallel-plate capacitive-gap transduced micromechanical disk 

resonators. Due to the geometry of these resonators, the nonlinearity of the changing capacitive gap 
create an electrical stiffness [4]. If the capacitive gap voltage is time varying, the electrical stiffness will be 
time varying and in the form of equation (3.2), where 𝐶𝐶(𝑥𝑥) the capacitance between the resonator disk 
and the electrodes and 𝑉𝑉𝑔𝑔(𝑡𝑡) is the capacitive gap voltage between the disk and the electrodes.  

 
𝑘𝑘𝑒𝑒(𝑡𝑡) =

1
2
𝜕𝜕2𝐶𝐶(𝑥𝑥)
𝜕𝜕𝑥𝑥2

�𝑉𝑉𝑔𝑔(𝑡𝑡)�
2

 
(3.2) 

   
The time varying biasing signal technically creates a force on the resonator. However, we will 

assume that the frequency of the force will be far from the resonant frequency of the resonator and the 
quality factor of the resonator is sufficiently large. Thus, this force is negligible [1]. The case of interest is 
when the gap voltage has a static component and a time varying component that is approximately twice 
the resonant frequency of the device. By assuming small motion and frequency terms larger than twice 
the resonant frequency are negligible, equation (3.2) can be approximated by equation (3.3), where 𝑑𝑑𝑛𝑛 is 
the gap between the electrode and the disk, 𝐶𝐶𝑛𝑛 is the static overlap capacitance between the electrodes 
and the disk, 𝑉𝑉𝑝𝑝 is the DC gap voltage, 𝑉𝑉𝐷𝐷 is the amplitude of the time varying gap voltage, 𝜔𝜔 is a frequency 
close to the resonant frequency , and 𝜅𝜅 is a modifying factor that applies when there is non-uniform 
motion along the area of the electrodes [4]. Equation (3.3) shows that the electrical stiffness has both 
static and time varying components. The static electrical stiffness shifts the resonant frequency of the 
device from the natural mechanical resonant frequency of the disk structure. The time varying component 
can give rise to parametric oscillation [2].  

 
 

𝑘𝑘𝑒𝑒(𝑡𝑡) ≈
𝜅𝜅2𝐶𝐶𝑛𝑛
𝑑𝑑𝑛𝑛2

�𝑉𝑉𝑝𝑝2 +
1
2
𝑉𝑉𝐷𝐷2� + 2

𝜅𝜅2𝐶𝐶𝑛𝑛
𝑑𝑑𝑛𝑛2

𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷 cos(2𝜔𝜔𝑡𝑡) 
(3.3) 

 
 Substituting equation (3.3) into (3.1), changing the unit of time, and renaming variables as 

dictated by Table 3.1 yields equation (3.4), also known as the linear Mathieu equation. This work uses 
Hill’s infinite determinate with the inclusion of the damping term in order to determine the conditions for 
parametric oscillation [1] [5].  
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 𝑑𝑑2𝑥𝑥
𝑑𝑑𝜏𝜏2

+ 2𝐾𝐾
𝑑𝑑𝑥𝑥
𝑑𝑑𝜏𝜏

+ (Θ𝑛𝑛 + 2Θ1 cos 2𝜏𝜏)𝑥𝑥 = 0 
(3.4) 

 
 

Table 3.1. Variables List 
Equation Description 

 

𝑘𝑘𝑒𝑒0 =
𝜅𝜅2𝐶𝐶𝑛𝑛
𝑑𝑑𝑛𝑛2

�𝑉𝑉𝑝𝑝 +
1
2
𝑉𝑉𝐷𝐷� 

 

 
Static Electrical Stiffness 

 

𝑘𝑘𝑒𝑒2 =
𝜅𝜅2𝐶𝐶𝑛𝑛
𝑑𝑑𝑛𝑛2

𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷 

 

 
Dynamic Electrical 

Stiffness 

 

𝜔𝜔𝑛𝑛2 =
𝑘𝑘𝑒𝑒 − 𝑘𝑘𝑒𝑒0

𝑚𝑚
=
𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡
𝑚𝑚

 

 

 
Resonant Frequency of 

Resonator 

 
𝜔𝜔 = 𝜔𝜔𝑛𝑛 + Δ𝜔𝜔 

 

 
Driving Frequency 

 
𝜏𝜏 = 𝜔𝜔𝑡𝑡 

 

 
Time Unit Change 

 

𝐾𝐾 =
𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛
2𝜔𝜔𝑄𝑄

 

 

 
Normalized Damping 

coefficient 

 

Θ𝑛𝑛 =
1

(1 + Δ𝜔𝜔/𝜔𝜔𝑛𝑛)2 

 

 
Normalized Resonant 

Frequency 

 

Θ1 = −
𝑘𝑘𝑒𝑒2 

𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡
1

(1 + Δ𝜔𝜔/𝜔𝜔𝑛𝑛)2 

 

 
Normalized Parametric 

Parameter 

 

 According to Hill, the solution of this differential equation is in the form of equation (3.5) [1]. 
Notice, if the normalized frequency, 𝜔𝜔�, is approximately equal to unity and if 𝑏𝑏𝑛𝑛 = 𝑏𝑏−(𝑛𝑛+1)

∗ , then 𝑥𝑥(𝜏𝜏) will 
be in the form of sum of cosines of the frequency 𝜔𝜔 and its odd harmonics.  We will assume that this is 
the case in this analysis. Additionally, we will assume that all harmonics above the third will be negligible.  

 
 

𝑥𝑥(𝜏𝜏) = � 𝑏𝑏𝑛𝑛𝑒𝑒𝑗𝑗𝑗𝑗(𝜔𝜔�+2𝑛𝑛)
∞

𝑛𝑛= −∞

 
(3.5) 
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Substituting (3.5) into (3.4) yields the system of equations (3.6). There exist nontrivial solutions to 
this system of equations for specific values of 𝜔𝜔� that make the determinant of the matrix zero. Solving for 
these specific frequencies yields equations (3.7)-(3.8) for the normalized frequency.  

 
�
(𝜔𝜔� − 2)2 − 2𝑗𝑗𝐾𝐾(𝜔𝜔� − 2) − Θ𝑛𝑛 −Θ1 0

−Θ1 𝜔𝜔�2 − 2𝑗𝑗𝐾𝐾𝜔𝜔� − Θ𝑛𝑛 −Θ1
0 −Θ (𝜔𝜔� + 2)2 − 2𝑗𝑗𝐾𝐾(𝜔𝜔� + 2) − Θ𝑛𝑛

� �
𝑏𝑏−1
𝑏𝑏0
𝑏𝑏1
� = �

0
0
0
� 

 

(3.6) 

 
 

𝜔𝜔� = 𝜔𝜔�𝑅𝑅 + 𝑗𝑗𝜔𝜔�𝐼𝐼 = �1 −
1
8
Θ1 ± 𝐵𝐵 + 𝑗𝑗𝐾𝐾 

(3.7) 

 
 

𝐵𝐵 = ��1 − Θ𝑛𝑛 + 𝐾𝐾2 −
1
8
Θ12�

2
− Θ12 

(3.8) 

 
If B is imaginary, then 𝜔𝜔� can have a negative imaginary component, and the solution to (3.4) will be 

an exponentially growing sinusoid. Assuming  Δ𝜔𝜔 ≪ 𝜔𝜔𝑛𝑛,𝑄𝑄 ≫ 1,  𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡 ≫ 𝑘𝑘𝑒𝑒2 , second order powers of 
Δ𝜔𝜔/𝜔𝜔𝑛𝑛 are negligible, and fourth order products of  Θ1 and  𝐾𝐾 are negligible yields the condition for B to 
be imaginary and approximations for the real and imaginary components of 𝜔𝜔�. 

 
 𝜔𝜔𝑛𝑛2𝑄𝑄2𝑘𝑘𝑒𝑒22

𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛2 𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡2 >
2(1 −Θ𝑛𝑛)
Θ0(5− Θ𝑛𝑛)

≈ Δ𝜔𝜔/𝜔𝜔𝑛𝑛 
(3.9) 

 
 𝜔𝜔�𝑅𝑅  ≈ 1 +

1
32

Θ12(3− Θ𝑛𝑛) +
1
4
𝐾𝐾2(Θ𝑛𝑛 − 1) (3.10) 

 
 

 𝜔𝜔�𝐼𝐼 ≈ 𝐾𝐾 ± � 5
16

Θ12 +
1
2
Θ𝑛𝑛𝐾𝐾2 −

1
2
𝐾𝐾2 −

1
16

Θ0Θ12 
(3.11) 

 
The term Δ𝜔𝜔/𝜔𝜔𝑛𝑛 can be arbitrarily small, so B will most likely be imaginary. Substituting in values 

given by Table 3.1 and setting equation (3.11) less than zero yields the generic condition for parametric 
oscillation, equation (3.12). For most MEMS devices, the term 𝜔𝜔𝑛𝑛/𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛 is close to unity. Neglecting the 
Δ𝜔𝜔/𝜔𝜔𝑛𝑛  and 𝜔𝜔𝑛𝑛/𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛  terms shows that 𝑘𝑘𝑒𝑒2/𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡 >  1/𝑄𝑄 , and the geometry of the resonator shows 
that 𝑘𝑘𝑒𝑒2 ∝ 1/𝑑𝑑𝑛𝑛2. Thus, the larger the quality factor of the device or the smaller the electrode-disk gap, 
the easier it is to create parametric oscillation. Additionally, 𝑘𝑘𝑒𝑒2 ∝ 𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷; thus, increasing the gap voltages 
can induce parametric oscillation.  

 𝜔𝜔𝑛𝑛𝑄𝑄𝑘𝑘𝑒𝑒2
2𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡

> �
2(3 − Θ𝑛𝑛)
Θ𝑛𝑛(5 − Θ𝑛𝑛) ≈  1 +

5
4
Δ𝜔𝜔
𝜔𝜔𝑛𝑛

 
(3.12) 

 
 Substituting the values in Table 3.1 into (3.10) yields equation (3.13). From the condition of 

parametric oscillation,  𝑘𝑘𝑒𝑒2/𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡 will approximately be the same order of magnitude as 1/𝑄𝑄. Thus, all non-
unity components of 𝜔𝜔�𝑅𝑅 will be proportional to 1/𝑄𝑄2. This work uses devices with quality factors on the 
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order of 10,000. Consequently, the frequency of oscillation will be essentially equal to the parametric 
driving frequency, 𝜔𝜔.  

 
𝜔𝜔�𝑅𝑅 = 1 +

𝑘𝑘𝑒𝑒22

16𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡2 −
1
8�

3𝑘𝑘𝑒𝑒22

2𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡2 +
𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛2

𝜔𝜔𝑛𝑛2𝑄𝑄2
�
Δ𝜔𝜔
𝜔𝜔𝑛𝑛

 
(3.13) 

3.2 EXPERIMENTAL PROCEDURE 
 

 
Figure 3.1. Experimental measurement setup used for all measurements in this work. The network analyzer provided the 
parametric drive signal and could sense the response. The spectrum analyzer could measure harmonics and the actual 
frequencies output by the resonators. 
 

 Figure 3.1 shows the measurement setup used for all measurements in this work. The Agilent 
E5071C network analyzer contains the functionality to have different drive and sense frequencies 
between different ports. This functionality allowed driving the disk structure or two electrodes (depending 
on the measurement) at frequencies approximately twice the resonant frequency and measuring signals 
at the other two electrodes at exactly half the driven frequency. Additionally, the E5071 has the 
functionality to run forwards and backwards frequency sweeps, which allows comparison to earlier works 
[3]. The E5071C operated in stepped mode with a 50 Hz IF bandwidth to ensure accurate measurement. 
The three bias tees used protect the E5071C from any DC voltages on the resonator and ensure that the 
DC operating points, thus the static and dynamic electrical stiffness, are controlled. The resonator itself 
was contained and probed in a Lakeshore model FWPX vacuum probe station capable of providing 10 
μTorr vacuum. Traces on the layout connected the electrodes of the wineglass disk resonators, so no bond 
wiring was required. The Agilent E3649A set the DC bias voltage, 𝑉𝑉𝑝𝑝.  

 For swept measurements, GPIB automated the testing procedure to control the E5071C and 
E3649A in order to sweep between different values of 𝑉𝑉𝑝𝑝  and parametric drive voltage. The testing 
procedure is as follows: 



6 
 

 
1. Probe the resonator according to Figure 3.1 
2. Set the current limit of the E3649A to 5 mA  
3. Set the multiplier of port 1 to 2 and the multipliers of ports 2 and 3 to 1 
4. Slowly ramp up the DC biasing voltage 𝑉𝑉𝑝𝑝 to the desired value 
5. Set the input power of the E5071C to approximately -30 dBm and measure the frequency 

response between ports 2 and 3 (S32) 
6. Center the frequency sweep at the resonant frequency of the resonator and set the span to 

approximately 10 times the bandwidth 
7. Change the input power of the E5071C to correspond to the desired parametric drive voltage and 

measure the frequency response between ports 2 and 1 (S21).  
8. Measure S21 with a backwards frequency sweep 
9. Go to step 7 and repeat until frequency responses for all desired parametric drive voltages are 

measured 
10. Set the input power of the E5071C to the same power as step 5 and measure S32 
11. Go to step 4 and repeat until frequency responses for all desired 𝑉𝑉𝑝𝑝 are measured. 
12. Slowly ramp down 𝑉𝑉𝑝𝑝 to 0 V.  

 
For non-sweeping measurements, the N9030A measured the frequency spectrum of the response 

of the resonator when driven by a single frequency at a specific bias voltage and parametric drive voltage. 
The E5071C provided the parametric drive signal. By setting the center frequency to the desired value and 
setting the span to zero, the E5071C can effectively be a signal source.  While not a high fidelity signal 
source, the E5071C was sufficient to measure the oscillating frequency of the resonator and the 
amplitudes of harmonics.  

3.3 EXPERIMENTAL RESULTS 

3.3.1 Resonators 
 

The data provided in this section describes the mechanical and electrical properties of the 
resonators used in this work. The two main resonators used in this work for parametric data are a 61MHz 
wineglass disk resonator fabricated by Zeying Ren in 2009 and a 13MHz wineglass disk resonator designed 
by Thanh-Phong Nguyen and fabricated by Alper Ozgurluk in 2018. The 61MHz wineglass disk resonator 
is a standard design used in many previous works [4] [2]. The 13MHz wineglass disk differs slightly from 
the standard design procedure in that it has a large etch hole in the center to decrease the total stiffness 
of the device in order to decrease the resonant frequency and to decrease the release time required for 
this device. A standard design for the 13MHz disk would yield a disk too large in radius to sufficiently 
release without negatively affecting the release of higher frequency devices on the same die. Iterative 
COMSOL simulations determined the inner and outer radii and mechanic stiffness of the 13MHz disk. 
Table 3.2 lists the various mechanical and electrical properties of each resonator. All the data marked with 
the asterisk are the designed values. All other values are extracted by curve-fitting measured frequency 
response data to appropriate models described in [4]. Note: the static overlap capacitance, Coi, is for one 
electrode. The difference between device A and device B is that the parametric signal was applied to two 
electrodes for device A and applied to the disk for device B.  



7 
 

 
Table 3.2. Relevant Mechanical and Electrical Properties 

 Resonator 
Parameter 61 MHz (A) 61 MHz (B) 13 MHz (C) 

Outer Disk Radius, Rdisk [μm] 31.4 31.4 69.0* 

Outer Disk Radius, Rhole [μm] - - 29.2* 

Nominal Frequency, fnom [MHz] 61.3 61.3 13.9 
Electrode Span Angle, θi [ᵒ] 70.0* 70.0* 77.7* 

Disk Thickness, t [μm] 3* 3* 3* 
Quality Factor, Qo† 62,464 62,078 12,795 

Electrode-to-resonator Gap, do [μm] 58.7 59.3 44.5 
Mechanical Stiffness, ko [N/m] 11.6 × 105 11.6 × 105 3.93 × 105* 

Static Overlap Capacitance, Coi [fF] 17.8 17.2 55.9 
Varying Displacement Modifying factor, 𝜅𝜅 0.769 0.769 0.747 

Parasitic Resistance, 𝑅𝑅𝑡𝑡 [Ω] 287 533 312 
*Designed values 
†Curve-fit value at DC bias voltage of 4V 
 
 The quality factors given are curve-fit values at 4V rather than measured values. The measured 
quality factor actually decreases as the DC bias voltage increases. Q-loading can explain this phenomenon 
[6]. Essentially, resistances on any electrode of the resonator will add extra losses and flatten out the 
response of the resonator with respect to frequency, thus lowering the effective quality factor. Equations 
(3.14)-(3.16) explain the dependence on DC bias voltage, where 𝑄𝑄𝑛𝑛 is the unloaded quality factor of the 
device, 𝑅𝑅𝑥𝑥 is the effective electrical resistance of the resonator, 𝑅𝑅𝑡𝑡 is any resistances on the electrodes of 
the device, and 𝑟𝑟𝑥𝑥 is the motional resistance of the device. No explicit resistors are place on the device, so 
𝑅𝑅𝑡𝑡 only includes parasitic resistances due to the traces, which should be constant with changing voltage. 
The motional resistance of the resonator is also constant with changing DC bias voltage. However, the 
effective electrical resistance decreases with the square of bias voltage. Thus, as bias voltage increases, 
the electrical resistance decreases, which decreases the effective quality factor. Figure 3.2 shows the 
measured and curve-fit values of the quality factor. All subsequent calculations used the curve-fit values 
of quality factor.  

 
 

 𝑄𝑄 = 𝑄𝑄𝑛𝑛
𝑅𝑅𝑥𝑥

𝑅𝑅𝑥𝑥 + 𝑅𝑅𝑡𝑡
 (3.14) 

  
 𝑅𝑅𝑥𝑥 =

𝑟𝑟𝑥𝑥

𝑉𝑉𝑝𝑝2 �
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�

2 =
𝑘𝑘𝑛𝑛/𝜔𝜔𝑛𝑛𝑄𝑄

𝑉𝑉𝑝𝑝2 �
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�

2 
(3.15) 

 
 𝑄𝑄 =

𝑄𝑄𝑛𝑛

1 + 𝑉𝑉𝑝𝑝2 �
𝜕𝜕𝐶𝐶
𝜕𝜕𝑥𝑥�

2 𝜔𝜔𝑛𝑛𝑄𝑄𝑅𝑅𝑡𝑡
𝑘𝑘𝑛𝑛

 (3.16) 
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Figure 3.2. Measured and curve-fit quality factors for the three measured devices: (Top Left) Device A, (Top Right) Device B, and 
(Bottom) Device C. 

  
Figure 3.3. COMSOL simulated mode shapes for (Left) 61MHz wineglass disk resonator and (Right) 13MHz wineglass disk 
resonator.  
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Figure 3.4. SEM of 61MHz wineglass disk resonator. 

3.3.2 Voltage Conditions 
 

The data provided in this section verifies the claims presented in 3.1. By substituting in values 
described by Table 3.1 into (3.12), assuming that the driving frequency is at resonance, and rearranging 
to isolate the voltage terms yields (3.17). This equation simply shows that the product of DC bias voltage 
and the AC bias voltage must be larger than the product of various device parameters. Technically, the 
terms 𝜔𝜔𝑛𝑛 and 𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡 have a dependence on 𝑉𝑉𝑝𝑝 and 𝑉𝑉𝐷𝐷. However, disk resonators with gaps used in this work 
have low tuning capabilities [7]. Consequently, we assumed 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛/𝜔𝜔𝑛𝑛 ≈ 1 and 𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡 ≈ 𝑘𝑘𝑛𝑛  in this work.  
Notice: 𝐶𝐶𝑛𝑛 is the total gap capacitance that the total capacitance that the AC bias voltage is applied across. 
If the AC bias voltage is applied to the disk (Port 1 in Figure 3.1), then 𝐶𝐶𝑛𝑛 = 4𝐶𝐶𝑛𝑛𝑜𝑜. However, if the AC bias 
voltage is only applied to two electrodes (Ports 2 or 3 in Figure 3.1), then 𝐶𝐶𝑛𝑛 = 2𝐶𝐶𝑛𝑛𝑜𝑜. From the theory, we 
would then expect that a device driven from the electrodes would require twice as much voltage than a 
device driven from the disk.   

 
 

𝑄𝑄𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷 > 2
𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛
𝜔𝜔𝑛𝑛

𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡
𝑑𝑑𝑛𝑛2

𝜅𝜅2𝐶𝐶𝑛𝑛
≈ 2𝑘𝑘𝑛𝑛

𝑑𝑑𝑛𝑛2

𝜅𝜅2𝐶𝐶𝑛𝑛
= Λ 

(3.17) 

 
Table 3.3 lists the minimum drive voltages necessary for parametric oscillation and compares the 

measured products from (3.17). Again, devices B and C were driven parametrically from the disk, while 
device A was driven parametrically from two electrodes. The last column of the table shows the 
discrepancy between the two products; there is decent agreement with the theory. At most, there is 
approximately 15% error between Λ and 𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷,𝑛𝑛𝑜𝑜𝑛𝑛𝑄𝑄. Interestingly, the error is always positive, suggesting 
that a lower drive voltage is necessary for parametric oscillation. The discrepancy is not due to the 
assumptions that 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛/𝜔𝜔𝑛𝑛 ≈ 1 and 𝑘𝑘𝑡𝑡𝑛𝑛𝑡𝑡 ≈ 𝑘𝑘𝑛𝑛, but rather come from the assumption that only harmonic 
terms at approximately 2𝜔𝜔𝑛𝑛 are present in (3.4). Figure 3.5 shows that the drive signal has a measureable 
component at approximately 4𝜔𝜔𝑛𝑛  and  6𝜔𝜔𝑛𝑛 . The addition of these components in section 3.1 would 
significantly increase the complexity of the derivation by changing (3.6) into a 7x7 matrix, but could explain 
the decrease in expected drive voltage necessary for parametric oscillation. Another indication of the 
effect of the higher harmonic terms is the presence of a non-negligible harmonic term at 3𝜔𝜔𝑛𝑛 . The 
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derivation in section 3.1 does predict a term at 3𝜔𝜔𝑛𝑛, which can be calculated by substituting (3.7) into 
(3.6). However, substituting measured numbers into these equations yields that the third harmonic should 
be >100 dB lower than the first harmonic. The measured third harmonic is actually only approximately 10 
down from the first harmonic. Consequently, the driving terms at 4𝜔𝜔𝑛𝑛 and 6𝜔𝜔𝑛𝑛 are significant and can 
actually lower the drive voltages necessary for parametric oscillation.  

Table 3.3. Measured minimum drive voltage necessary for parametric oscillation for three different wineglass disk resonators 
across different DC biasing voltages. 

 𝑉𝑉𝑝𝑝 [V] 𝑉𝑉𝐷𝐷,𝑛𝑛𝑜𝑜𝑛𝑛 [V] Λ [Nm/F] 𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷,𝑛𝑛𝑜𝑜𝑛𝑛𝑄𝑄 [V2] Error (%) 

61
 M

Hz
 (A

) 5 1.06 379680 331612 12.7 
5.25 1.00 379682 324894 14.4 
5.5 0.946 379685 317459 16.4 

5.75 0.946 379688 327759 13.9 
6 0.946 379690 337620 11.1 

61
 M

Hz
 (B

) 5 0.632 200375 196308 2.03 
5.25 0.564 200377 180393 9.97 
5.5 0.564 200378 185474 7.44 

5.75 0.532 200379 179569 10.4 
6 0.532 200381 183717 8.32 

13
 M

Hz
 (C

) 

4 0.238 13431 12540 6.63 
4.25 0.224 13432 12323 8.25 
4.5 0.212 13433 12058 10.2 

4.75 0.212 13434 12450 7.32 
5 0.200 13435 12094 9.98 

5.25 0.188 13436 11711 12.8 
5.5 0.188 13438 11979 10.9 

5.75 0.178 13439 11537 14.2 
6 0.178 13441 11742 12.6 

 
 Table 3.3 shows a slight increase in percent error with bias voltage for the 13 MHz (C) device. 
Inaccuracies in measuring the quality factor of these devices most likely cause this trend. Figure 3.6 shows 
the typical frequency response for device C. Even at the peak of the response, there is approximately 3 dB 
of noise. Rather than directly measuring the quality factor like with devices A and B, the responses of 
device C were fit to a Lorentz curve, and the subsequent curve was used to calculate the center frequency, 
bandwidth, and quality factor of the device. The designs of devices A and B are designs that consistently 
yield high Q devices [4] [2] [7] [8] [9]. Device C, while interesting, is not an optimized design with respect 
to anchor size and process. Device C was created in a process that targeted 10nm gaps. Clearly, device C 
does not have 10nm gaps, and the low quality factor indicates that the process and design can be further 
optimized.  
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Figure 3.5. Measured harmonics of (Top Left) drive signal, (Top Right) resonator driven at resonant frequency, and (Bottom) 
resonator driven at twice-resonant frequency.  

 

 
Figure 3.6. Measured frequency response for 13 MHz (C) device at Vp = 4.25V.  
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 Equation (3.17) predicts that devices with lower stiffness, higher static capacitance, or smaller 
gaps will parametrically oscillate with a lower 𝑄𝑄𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷 product. The choices of devices in this work supports 
these claims. Device A was driven at two electrodes, while device B was driven at the disk. Consequently, 
equation (3.17) predicts that twice as much drive voltage is necessary for a given DC bias voltage and 
quality factor to excite device A compared to device B. The measured results support this with drive 
voltages for device A being approximately twice the drive voltages for device B. The slight discrepancy is 
due to non-equal quality factors. Device B has a slightly lower quality factor than device A, and thus 
requires more drive voltage to compensate, which the measured data also supports. Both devices B and 
C were driven at the disk, but differ in their gap size, stiffness, static capacitance, and quality factor. Device 
C has approximately 3/4 the gap, 1/3 the stiffness, 3 times the capacitance, and 1/5 the quality factor of 
device A. Consequently, equation (3.17) predicts that the necessary drive voltage of device C should be 
approximately 1/3 of device B. The measured results show that this back of the envelope calculation is 
fairly accurate.  

3.3.3 Frequency Conditions 
 

Prior works have demonstrated the existence stability regions for parametrically oscillating 
devices experimentally and through derivations using techniques such as Flouquet’s theorem and 
averaging [5] [3]. Regardless, the stability regions of Devices A, B, and C were measured to compare them 
to past work and to allow for comparison to future work.  

Figure 3.7 shows the typical parametric oscillation frequency responses measured on the network 
analyzer. Note: the drive signal is twice the sense frequency. The stability regions are extracted from these 
measurements. Any response above the noise floor represents instability (oscillation). Notice that the 
forward and backward responses are different, which results in different stability regions for forward and 
backward sweeps. 

 
 

  
Figure 3.7. Typical measured parametric oscillation frequency responses for (Left) device B and (right) device C. The blue curve 
represents the forward (low frequency to high frequency) sweeps. The orange curve represents backward (high frequency to 
low frequency) sweeps. 

Figure 3.8 shows the frequency stability regions with respect to the 𝑄𝑄𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷 product for device A. 
The parametric oscillation regions appear to be symmetric about the resonant frequency of the device for 
forward sweeps. However, the regions skew towards the lower frequencies for the backward sweeps. 
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Typically, the bandwidth for the forward sweeps is approximately ±0.0008% from the resonant frequency. 
On the other hand, the bandwidths for the backwards sweeps are +0.0001%/-0.05% for backward sweeps. 
This suggests that these devices are not adequate for parametric filter applications unless the direction of 
the shift of the input frequency is adequately controlled [3]. For a given DC bias voltage, the bandwidth 
of the forward sweep seems to increase increasing drive voltage. However, this trend is not apparent in 
the backward sweep. In fact, the bandwidth of the backward sweeps appears to be more or less random.  

  

 
Figure 3.8. Stability regions for Device A with sweeping directions (Top Left) from low frequency to high frequency, (Top Right) 
high frequency to low frequency, and (bottom) high frequency to low frequency. The bottom graph is just the top right graph 
zoomed into the right four curves. The circles are the measured boundaries of oscillation for various DC bias voltages. The 
dotted lines are the linear best-fit lines used to outline the Arnold tongue. There is parametric oscillation inside these lines and 
no oscillation outside these lines for a given DC bias voltage. The dotted-dashed line shows the resonant frequency of the 
device at that specific DC bias voltage.   

Figure 3.9 shows the frequency stability regions with respect to the 𝑄𝑄𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷 product for device B. 
Contrasting to device A, the parametric oscillation regions are not symmetric about the resonant 
frequency of the device for forward sweeps. Instead, the regions skew towards higher frequencies. The 
backward sweeps follow the same trends as the backward sweeps for device A. The forward sweeps have 
a bandwidth of +0.0007% /-0.0003% and the backward sweeps have a bandwidth of +0.0003%/-0.02%. 
Consequently, it seems as though the bandwidth for parametric oscillation is larger for device A compared 
to device B. In other words, if a wider bandwidth were necessary, driving from the electrodes would be 
beneficial. However, the tradeoff is that twice as much drive voltage is necessary.  
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Figure 3.9. Stability regions for Device B with sweeping directions (Top Left) from low frequency to high frequency, (Top Right) 
high frequency to low frequency, and (bottom) high frequency to low frequency. These graphs are structured in the same way 
as Figure 3.8. 

Figure 3.10 shows the frequency stability regions with respect to the 𝑄𝑄𝑉𝑉𝑝𝑝𝑉𝑉𝐷𝐷 product for device C. 
Both the forward and backward sweeps are not symmetric about the resonant frequency. The forward 
sweeps skew towards high frequencies while the backward sweeps skew towards the lower frequencies. 
Another perspective is that these sweeps skew the regions such that the first frequency that causes 
parametric oscillation is close to the resonant frequency. The regions for the backward sweep for this 
device follows the same trend as the forward sweep regions, unlike devices A and B. This suggest that this 
design may be useful for parametric filtering applications. However, the bandwidth is still dependent on 
the sweep direction. The bandwidth of the forward sweep regions is approximately +0.008%/-0.006%, 
and the bandwidth of the backward sweep regions is +0.008%/-0.01%. The total bandwidths of the 
backward sweep regions are approximately twice the bandwidths of the forward sweep regions for given 
DC bias voltage and parametric drive voltage.   
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Figure 3.10. Stability regions for Device B with sweeping directions (Top Left) from low frequency to high frequency, (Top Right) 
high frequency to low frequency, and (bottom) high frequency to low frequency. These graphs are structured in the same way 
as Figure 3.8 

   
  

 
Figure 3.11. Measured changings in sense frequency due to changes in drive frequency as measured by the spectrum analyzer. 

 Figure 3.11 shows the change in sense frequency with change in drive frequency. The intent of 
this measurement is to support the prediction by equation (3.13) that the resulting frequency should track 
half of the parametric drive frequency. Figure 3.11 shows that this is precisely the case.  

3.3.4 Stability and Safety 
 

This section outlines the potential dangers of parametric oscillation. In fact, parametric oscillation 
can causes failures [5]. With the wineglass disk resonators, a particular failure mode is a drastic reduction 
in quality factor due to shorting. Notice that in Figure 3.7 that the parametric oscillation frequency 
responses slowly decrease towards higher frequencies for both forward and backward sweeps. A 
parametric frequency response that grows towards higher frequencies, as shown in Figure 3.12 (device 
D) and Figure 3.13 (device E), generally precedes the failure mode. Table 3.4 summarizes the changes in 
the frequency response due to shorting. Both shorting resonators experience shifts in frequency towards 
a high frequency, a decrease in quality factor, and increased noise in the measured S21. The decrease in 
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quality factor was much more significant for the device E. This may be due to the very large initial quality 
factor of 107,150. Large quality factors imply that the size of motion is also large, which suggests that this 
disk may have slammed into the electrodes with much larger force causing a much larger degradation.  

 

  
Figure 3.12. Measured (Left) frequency response and (Right) parametric oscillation response for Device D. The left figure shows 
the frequency response before and after failure. The right shows the parametric oscillation response that caused the failure. All 
responses were measured at 3V. The failure occurred when the parametric input power level was 6.8 dBm. 

 

  
Figure 3.13. Measured (Left) frequency response and (Right) parametric oscillation response for Device E. The left figure shows 
the frequency response before and after failure. The right shows the parametric oscillation response that caused the failure. All 
responses were measured at 3V. The failure occurred when the parametric input power level was 1.5dBm. 

 

Table 3.4. Summary of Device Failures for Devices D and E 
 Device D Device E 

Pre-Short Post-Short Pre-Short Post-Short 
Resonant Frequency [MHz] 60.3785 60.3809 60.4059 60.4180 

Quality Factor 64,747 40,373 107,150 12,343 
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Figure 3.14. Measured (Left) frequency response of device D and (Right) parametric oscillation response at 3.75V. The input 
power was 9.8dBm. The measured quality factor was 32,467. 

 Interestingly, this failure mode does not necessarily stop the device from parametrically 
oscillating. Device D could still parametrically oscillate if given a large enough drive voltage, as shown by 
Figure 3.14.   

Figure 3.15 demonstrates another interesting phenomenon of this failure mode. In general, 
wineglass disk resonators tend to have a negative electrical stiffness [4]. Consequently, as the DC bias 
voltage increases, the resonant frequency of the device should decrease. For device D, after the shorting 
failure, the device shows to have positive electrical stiffness. However, this phenomenon does not 
necessarily follow the failure mode discussed in this section. Device E, while it failed in the same way, still 
shows to have a negative electrical stiffness. 

 Despite these potentials for failures, parametric oscillation is safe if the parametric drive voltage 
is small enough. Devices A, B, and C did not experience failures due to limited drive voltage. Figure 3.16 
shows the frequency response of device A before and after parametric oscillation. The change is negligible, 
and suggests that parametric oscillation can be a non-destructive technique.   
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Figure 3.15 Measured frequency tuning of (Top Left) device D, (Top Right) device E, and (Bottom) device A. Device E and A show 
the expected negative electrical stiffness. Device D shows positive electrical stiffness.  
 

 
Figure 3.16. Measured frequency response of device A before and after parametric oscillation. The maximum input power was 

0dBm at 6V.  
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4 CONCLUSION 

4.1 RESULTS 
 

This work derived voltage conditions for creating parametric oscillation for wineglass disk 
resonators. The result was a simple inequality that stated that the product of the drive voltage, quality 
factor, and DC bias voltage had to be larger than the product of various physical parameters of the 
resonator. The error between the lowest drive voltages necessary for given DC bias voltages differed by 
at most 16% across three different resonators. This work used two different resonator designs: 61MHz 
and 13MHz. Additionally, the parametric drive signal was applied to two different electrical positions: at 
the disk and on two electrodes. The parametric stiffness generated by this drive voltage is dependent on 
the number of electrodes that the signal is applied across. When the signal is applied to the disk, four 
electrodes create the electrical stiffness. When the signal was applied to two electrodes, only two 
electrodes create the electrical stiffness. Consequently, both the theory and the measurements show that 
approximately twice as much voltage is necessary to induce parametric oscillation for the two-electrode 
driven resonator over the disk driven resonator. The last resonator used demonstrated the effect of 
reducing the total stiffness of the device, the disk-to-electrode gap, and the disk-to-electrode capacitance 
on parametric oscillation conditions. Theoretical and experimental results show that decreasing stiffness, 
decreasing gap, and increasing capacitance decrease the voltage necessary for parametric oscillation at a 
given DC bias voltage.   

This work also provided the measured frequency conditions for parametric oscillation. By sweeping 
the frequency of the input from low to high and high to low and measuring the output response, regions 
of instability were determined. Bandwidth of these regions were larger for the electrode driven resonators 
compared to the disk driven resonators. Across all three resonators, the forward sweeping instability 
regions shifted towards lower frequencies as the DC bias voltage was increased. The negative stiffness 
known to occur in capacitively transduced micromechanical resonators completely explains this effect. As 
the DC bias voltage increases, the resonant frequency decreases. Parametric oscillation occurs close to 
the resonant frequency, so shifts in the resonant frequency should correspond to translations of the 
instability regions. The bandwidths of the backwards sweeps appeared random for the 61MHz devices. 
However, the bandwidths of the 13MHz devices qualitatively were similar to the forward sweeping 
bandwidths, but differed in that the regions were slightly wider. In addition, measurements demonstrated 
that the output frequency of the parametric oscillation tracks half of the input drive frequency.  

 Finally, this work reports on a particular failure mode seen in various resonators. Under 
parametric oscillation, the device can potentially short and cause permanent damage to the device. 
Typically, the quality factor of the device would decrease, and the resonant frequency of the device would 
increase slight. However, if the decrease in quality factor is not too much, as with one of the devices 
present, the device can still parametric oscillate. Regardless, the shorting only occurs with high input 
powers with high quality factor devices. If the input power is limited, shorting does not occur and the 
device does not experience any compromising changes due to parametric oscillation.   
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4.2 FUTURE RESEARCH  
 

This report achieved predicting the voltage conditions for parametric oscillation. In order to fully 
utilize parametric oscillation in wineglass disk resonator applications, more work is necessary in fully 
understanding this phenomenon. In particular, more effort can be placed on the following: 

1. Develop theory on the shape of the instability regions for the wineglass disk resonator 
2. Investigate the phase noise impacts of daisy-chaining multiple devices together through 

parametric oscillation  
3. Investigate the phase impacts of daisy-chaining multiple devices through parametric oscillation 

for frequency synthesis purposes 
4. Investigate the mechanisms for positive electrical stiffness due to failures caused by parametric 

oscillation 
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