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Abstract

A large-batch training approach has enabled us to apply large-scale distributed
processing. By scaling the batch size from 256 to 64K, researchers have been able
to reduce the training time of ResNet50 on the ImageNet dataset from 29 hours
to 8.6 minutes. However, there are three problems in current large-batch research:
(1) Although RNN techniques like LSTM [12] have been widely used in many
real-world applications, the current large-batch research is only focused on CNN
applications. (2) Even for CNN applications, there is no automated technique for
the extending the batch size beyond 8K. Instead it requires significant parameter
turning. (3) To keep the variance in the gradient expectation constant, theory
suggests Sqrt Scaling scheme should be used in large-batch training. Unfortunately,
there is no successful application using such a Sqrt Scaling scheme. In this paper,
we propose a new approach called linear-epoch gradual-warmup (LEGW) for better
large-batch training. We call this approach Leg-Warmup. We observe that LEGW
achieves much better results than previous Linear Scaling learning rate scheme
(Figure[T). With LEGW, we are able to conduct large-batch training for both CNNs
and LSTMs with the Sqrt Scaling scheme. LEGW enables Sqrt Scaling scheme
in practice and we achieve much better results than Linear Scaling learning rate
scheme (Figure|[I)). For LSTM applications, we are able to scale the batch size by
64 times without losing accuracy and without tuning the hyper-parameters. For
CNN applications, LEGW is able to achieve the constant accuracy when we scale
the batch size to 32K. LEGW works better than previous large-batch auto-tuning
techniques (Figure[I). We also provide some theoretical explanations for LEGW.

1 Introduction

Speeding up Deep Neural Networks (DNN) training is important because it can improve the pro-
ductivity of machine learning researchers and developers. Since the efficiency of model parallelism
is limited, the current research focus is on data parallelism. Concretely, the large-batch training
approach has enabled us to successfully apply large-scale distributed processing [[1} 9} 15} 20} [32]. By
scaling the batch size from 256 to 64K, researchers are able to reduce the training time of ResNet50
for ImageNet from 29 hours [10]] to 8.6 minutes [[15]. However, there are three problems in current
large-batch study:

o Although RNN techniques like LSTM [12] have been widely used, the current large-batch
study is focused on CNN applications. On the other hand, adaptive solvers like Adam do
not beat well-tuned Momentum SGD for ImageNet training. We want to evaluate Adam for
large-batch LSTM training.

e Even for CNN applications, significant hyper-parameter tuning is required to increase the
batch size beyond 8K with no loss in accuracy. For batch sizes lower than 8K, linear scaling
usually works well for most applications. However, for batch sizes beyond 8K, even solvers
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Figure 1: LEGW achieves the constant accuracy when we scale up the batch size without tuning the parameters.
LEGW works better than previous large-batch tuning techniques (Goyal et al [9]).

like LARS requires users to manually tune the hype-parameter (including learning rate,
warmup, weight decay, and momentum).

e Prior successful large-batch training applications depend on a linear scaling scheme [9].
However, to keep the variance in the gradient expectation constant, theory [18] suggests
Sqrt Scaling scheme should be used. Currently there is no successful large-batch training
scheme using Sqrt Scaling.

To solve these problems, we propose linear-epoch gradual-warmup (LEGW) approach in this paper.
We call this approach Leg-Warmup. LEGW enables Sqrt Scaling scheme in practice and as a result
we achieve much better performance than the previous Linear Scaling learning rate scheme. For
the MNIST dataset with LSTM, we are able to scale the batch size by a factor of 64 without losing
accuracy and without tuning the hyper-parameters mentioned above. For the PTB dataset with LSTM,
we are able to scale the batch size by a factor of 32 without losing accuracy and without tuning the
hyper-parameters. Beyond RNN applications, we also successfully applied LEGW in ImageNet
training with ResNet50. Together with LARS solver, LEGW is able to achieve the constant accuracy
when we scale the batch size to 32K. LEGW works better than previous large-batch tuning techniques
(Figure[T). We also give some theoretical insights to explain why LEGW works well in large-batch
training.

2 Background and Related Work

2.1 Data-Parallelism Mini-Batch SGD

Let us refer to w as the DNN weights, X as the training data, n as the number of samples in X, and
Y as the labels of X. Let us also denote z; as a sample of X and [(x;, w) as the loss computed by x;
and its lable y; (¢ € {1,2,...,n}). A typical loss function is cross-entropy loss. The goal of DNN
training is to minimize the loss function defined in Equation (T).

1 n
L(w) = ﬁzizll(ifz’,yi,w) ey
At t-th iteration, we use forward and backward propagation to get the gradients of weights based on
the loss. Then we use the gradients to update the weights, which is shown in Equation (2):

Wi = wy — NVI(2;, yi, w) 2

where 7) is the learning rate. This method is called as Stochastic Gradient Descent (SGD). Usually,
people do not use a single sample to compute the loss and the gradients. They use a batch of samples
at each iteration. Let us refer to the batch of sample at ¢-th iteration as B;. The size of B, is b. Then
we update the weights based on Equation (3).



—w, —
Wiyl = Wy b meBtVZ(m’y’w) (3)
This method is called as Mini-Batch SGD. To simplify the notation, we define the gradient estimator
as Vwy := $> o B, VI(z,y, w) and the updating rule in Equation (4) can be denoted as

wip1 = wy — V. “)

2.2 Large-Batch Training Difficulty

Increasing the batch size allows us to scale to more machines without reducing the workload on each
machine. On modern architecture like TPUs, reducing the workload often leads to a lower efficiency.
However, when we increase the batch size after a certain point (e.g. 1024) without carefully tuning
the hyper parameters, the algorithm usually suffers from slow convergence. The test accuracy of the
converged solution becomes significantly lower than the baseline [9} 13 [16| 21]. Keskar et al [[16]
suggested that there is a generalization problem for large-batch training. Hoffer et al [13]] and Li et al
[21] suggests that training longer will help algorithm to generalize better and keep the accuracy. On
the other hand, Goyal et al [9] can scale the batch size to 8K without losing accuracy.

2.3 Large Batch Traing Technique

When we increase the batch size (B), we need to increase the initial LR to prevent losing accuracy
[9]. There are two rules of increasing the initial LR:

Sqrt Scaling Rule [18]]. When we increase the batch size by k times, we should increase the LR by
vk times to keep the variance in the gradient expectation constant.

Linear Scaling Rule [18]: When we increase the batch size by k times, we should increase the LR
by k times based on the assumption that VI(z,y, w;) = Vi(z,y, ws;), where j < B.

Warmup Scheme [9] Usually, under linear scaling rule, k7 is exetremely large, which may make
the algorithm diverge at the beginning. Therefore, people set the initial LR to a small value and
increase it gradually to k7 in a few epochs (e.g. 5 or 10). This method is called as Gradual Warmup
Scheme. There is another method called as Constant Warmup Scheme, which uses a constant
small LR during the first a few epochs. Constant warmup scheme works efficiently for prototyping
object detection and segmentation [8], [22]. Goyal et al [9] showed that gradual warmup performs
better than constant warmup for ResNet-50 training. Cyclical Learning Rate [28] is a similar idea to
warmup scheme.

Bottou et al [2] showed that there should be an upper bound of LR regardless of batch size. Our
experimental results are in line with this findings. Chen et al [3]] also used linear scaling LR scheme
in their experiments when they increase the batch size from 1600 to 6400. However, they did not
show the accuracy of the small-batch baseline.

Krizhevsky [18] reported 1 percent loss in accuracy when he increased the the batch size from 128 to
1024. Tandola et al [[14] also scaled the batch size to 1K for AlexNet and GooglLeNet. Li [20] used
a batch of 5120 for ResNet-101 to train Imagenet dataset on 160 GPUs. Goyal et al [9] scaled the
batch size to 8K for ImageNet training with ResNet-50. You et al [31] proposed the LARS algorithm
to scale the batch size to 32K for ImageNet training. The LARS algorithm was implemented on 2048
Intel KNL chips and finishes the ImageNet training with ResNet50 in 15 minutes [32]]. Codreanu et al
[4] scaled DNN training on 1024 SkyLake CPUs and finished ImageNet training with ResNet50 in 44
minutes. Akiba et al [[1]] scaled the batch size to 32K and finish the ImageNet training with ResNet50
in 15 minutes. However, their baseline’s accuracy was missing. Jia et al [15] combined LARS
algorithm with mixed-precision training [25]] and finished the ImageNet training with ResNet50 in
8.6 minutes. The other related directions include K-FAC [24]] and dynamic batch size [6}29].

3 Linear-Epoch Gradual Warmup (LEGW or Leg-Warmup)

The warmup technique has been successfully applied in the CNN applications [9}131]. However, most
of the RNN implementations did not use warmup techniques. On the other hand, warmup has become
an additional parameter that require developers to tune, which further increases the efforts of DNN



system implementation. To make things worse, large-batch training is a sharp minimal problem, a
tiny change in the hyper parameters may have a significant influence on the test accuracy. We propose
the Linear-Epoch Gradual Warmup (LEGW or Leg-Warmup) scheme. When we increase the batch
size by k times, we also increase the warmup epochs by & times. The intuition is that larger batch size
usually needs a large learning rate (LR). However, larger LR may make the training algorithm easier
to diverge because the gradient changes dramatically in the beginning of neural network training. We
use longer warmup to avoid the divergence of larger LR.

3.1 Sqrt Learning Rate Scaling

To keep the variance in the gradient expectation constant, theory [18]] suggests that Sqrt Scaling
scheme should be used in large-batch training in order to make variance constant. In practice, however,
researchers observe that Linear Scaling scheme works better than Sqrt Scaling scheme [9 [18], 20} 32].
The constant-epoch warmup scheme was used together with Linear Scaling in previous applications.
For example, Goyal et al [9] manually set the warmup length at five epochs. The efficiency of Linear
Scaling only works up to 8K batch size, although researchers are able to scale the batch size to 32K
with signifiant hyper-parameter tuning (tuning learning rate, warmup, weight decay and momentum
for different batch sizes). With the LEGW scheme, Sqrt Scaling scheme can work well in practice,
which is able to match the expectation of theory analysis. The results are shown in Section [5

3.2 Illustration of LEGW

To illustrate how LEGW works with commonly-used LR decay schemes, we use ImageNet training
with ResNet50. First, we use multi-step LR decay (essentially the same with exponential decay)
scheme (Figure 1). The baseline uses a batch size of 1K and an initial learning rate of 22-°. In the
initial 0.3125 epochs (35,190 iterations), the LEGW gradually increases LR from 0 to 22-°. From
0.3125 epoch to 30th epoch, LEGW uses the constant learning rate of 22-5. From 30th epoch to
60th epoch, LEGW uses the constant learning rate of 0.1x22°. From 60th epoch to 80th epoch,
LEGW uses the constant learning rate of 0.01x22-. From 80th epoch to 90th epoch, LEGW uses the
constant learning rate of 0.001 x22-5, When we scale the batch size from 1K to 2K, LEGW increases
the learning rate from 22-5 to 23 based on the Sqrt Scaling scheme. For batch size of 2K, LEGW
warms up the learning rate gradually in the initial 0.625 epochs. In the same way, LEGW reduces the
learning rate by multiplying it by 0.1 at 30th, 60th, and 80th epoch. The same idea applies when we
further scale up the batch size. The details are shown in Figure[2] 1. Some users may feel there are too
many parameters in multi-step LR decay scheme. The users may need to decide which epoch to decay
the learning rate and how much learning rate should be reduced each time. Another commonly-used
scheme is polynomial decay or poly decay. Let us use p to denote the power of poly decay, 7 the
initial LR, ¢ the current iteration, and I the total number of iterations. The learning rate of iteration ¢
is ) x (1 —i/I)P. The baseline uses a batch size of 1K and an initial learning rate of 22-5. In the
initial 0.3125 epoch (35,190 iterations), the LEGW gradually increases LR from 0 to 22-°. From
0.3125 epoch to 90th epoch, LEGW uses the learning rate of 225 x (1 —i/I)2. The final LR of poly
decay is 0.0. The same idea applies when we further scale up the batch size. The details are shown in
Figure[2]2.

3.3 Minimal Tuning Effort

By using LEGW, the users do not need to manually tune the LR for different batch sizes. For example,
the users only need to tune the hyper parameters of a baseline (e.g. batch size = 256). Then, if the
user scales up the batch size by k times, they only need to increase the learning rate by v/k times
and warmup epochs by & times. On the other hand, the users may also choose and tune the hyper
parameters of a large-batch case (e.g 32K) and then use LEGW to automatically get the LR schedule
for smaller-batch cases. Running a large-batch case is much faster than running a baseline (if the
users have enough computational resources). So tuning large batch maybe faster than tuning the
small batch. In the way, when user scales down the batch size by k times, they only need to decrease

the learning rate by v/k times and warmup epochs by k times.
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Figure 2: Example of LEGW for ImageNet training with ResNet50. The figures show the examples of using
multi-step learning rate decay and using polynomial learning rate decay (power=2.0).

4 Explanation of LEGW

In general, it is hard to prove that a specific learning rate schedule works. However, some experimental
findings on the change of local Lipschitz constant during iterations partially explained why the linear
warm-up scheme works better.

Consider the update along the direction g. Assume the update is © < x — ng, the question is:
how to choose step size n? One classical idea is to form a second order approximation around
current solution x: f(x+A) ~ f(z + A) := {f(z) + ATV f(2) + LATV? f(x)A}, and then find
A to minimize the approximation function. If we assume A = —nyg, then the optimal 7 will be
7" = argmin,, f(:c —ng) = ”gTVQf(i)g”/”g”z = L(;’g). Therefore, ideally the step size should
be inversely proportional to L(x, g). 1Moreover, it is known that the update —ng will decrease the

objective function if < ming cg =9 within the region S. This is also called the local Lipchitz

constant on one dimension space, and L(z, g) can be viewed as its approximation. In Figure [3]
we plot the values of L(x,g) for all the iterations. It is hard to compute L(z, g) exactly since
V2 f(z) involves all the training samples). So we approximate it using a small batch and compute the
Hessian-vector product by finite difference. Due to the same reason it’s hard to apply a second order
method exactly, but the plots in the figures show an interesting phenomenon which explains why
linear warmup works. We observe that the value of L(x, g) usually has a peak in the early iterations,
implying a smaller step size should be used in the beginning. Furthermore, the peak tends to shift
toward right (almost linearly) when as batch size grows. This intuitively explains our linear warm-up
strategy—when batch size increases, the warm up should be longer to cover the “peak region”.

*

S Experimental Results

In all the comparisons of this paper, different methods will use the same hardware and run the same
number of epochs.



5.1 The LSTM applications

5.1.1 Handwritten Digits Recognition for MNIST Dataset

MNIST dataset [[19] has 60k training examples and 10k test examples. Each sample is a 28-by-28
handwritten digit image. We use this dataset to train a pure-LSTM model. We partition each image
as 28-step input vectors. The dimension of each input vector is 28-by-1. Then we have a 128-by-28
transform layer before the LSTM layer, which means the actual LSTM input vector is 128-by-1. The
hidden dimension of LSTM layer is 128. Thus the cell kernel of LSTM layer is a 256-by-512 matrix.
After training 25 epochs, our model is able to achieve 98.8% accuracy. We use momentum solver
(momentum=0.9) and constant learning rate. The baseline’s batch size is 128. Our goal is to scale the
batch size to 8K without losing accuracy.

5.1.2 Language Modeling for PTB Dataset

The Penn Treebank (PTB) [23] dataset selected 2,499 stories from a three year Wall Street Journal
(WSJ) collection of 98,732 stories for syntactic annotation. The vocabulary has 10,000 words. After
word embedding, the input vector length is 200. The sequence length is 20. Our LSTM model has
two layers. The hidden dimensions of both these two layers are 200. For both layers, the LSTM
Cell Kernel is an 400-by-800 dense matrix. We use perplexity to evaluate the correctness of our
LSTM model. The perplexity is essentially the cost of the function (lower is better). After training 13
epochs, our model is able to achieve 115.91 perplexity. We use momentum solver (momentum=0.9)
and exponential learning rate decay. The network uses constant learning rate in the first seven epochs.
Then the learning rate will be decayed by a half after each epoch. The baseline’s batch size is 20. Our
goal is to scale the batch size to 640 without losing accuracy.

5.2 Compared to Adaptive Solvers

Our goal is to minimize the tuning effort for large-batch training. To evaluate this we need to pick
an adaptive solver as a baseline for comparison. We fully evaluate a total of seven solvers: SGD
[27], Momentum [26], Nesterov [30], Adagrad [7], RMSprop [11], Adam [[17], Adadelta [33]. We
pick Adam and Adadelta as the baseline for adaptive solvers because they do not require the users
to input hyper-parameters. For MNIST and PTB datasets, we observe Adam performs much better
than Adadelta. Moreover, Adam is able to beat the existing tuning techniques (Figure ). We tune
the learning rate for batch size = 128 and refer to it as 79. Let us also refer to batch size as B. In
Figure[d 1, all the tuning versions use 7. In Figure[d]2, all the tuning versions use the linear scaling
scheme (i.e. 79 x B/128). In Figure @3, all the tuning versions use the linear scaling scheme (i.e.
1o X B/128) and poly decay with power = 2. In Figure 4, all the tuning versions use the linear
scaling scheme (i.e. ny x B/128), poly decay with power = 2, and 5-epoch warmup. For all of the
four tuning schemes in Figure[d] Adam is able to beat them. Thus, we use Adam as the adaptive solver
baseline for comparison. The comparison between Adam and LEGW is shown in Figure 5] LEGW
performs much better than Adam solver for PTB datasets in the same number of epochs. For the
MNIST dataset, Adam performs better than LEGW for small-batch cases. However, LEGW is more
constant and achieves higher accuracy than Adam for large-batch cases. Therefore, our experiments
show that LEGW is a better auto-tuning scheme compared to state-of-the-art approaches.

5.3 Compared to Comprehensive Tuning

To prove the effectiveness of LEGW, we make a comparison between LEGW and the comprehensive
tuning baseline for 8K batch size. For the MNIST dataset, since the model uses constant learning
rate for momentum solver, we only tune the learning rate. We comprehensively tune the learning
rate and find only the range of [0.01, 0.16] is effective. After tuning the learning rate from 0.01 to
0.16, we observe that LEGW'’s accuracy is higher than the best tuned version (Figure[6]1). For PTB
dataset, both the baseline and LEGW use the same exponential learning rate decay scheme. We
comprehensively tune the initial learning rate for baseline and we find only the range from 0.1 to 1.6
is effective. Then we tune the learning rate within the effective range, the baseline’s highest accuracy
is still lower than LEGW'’s accuracy (Figure[6]2). We also run the training algorithms long enough to
make sure all of them are converged. For MNIST dataset, we increase the number of epochs from 25
to 100. For PTB dataset, we increase the number epochs from 13 to 50. Even when comprehensive
turning versions are allowed to run longer, LEGW is still able to beat them (Figure 7).



Table 1: LEGW scales the batch size for ImageNet training by ResNet-50 without tuning hype-parameters.
According to Stanford DAWN benchmark [5], 93% top-5 accuracy for ImageNet dataset is the metric of correct
ResNet50 implementation.

[ BatchSize | InitLR | LRscheme [  Warmup | Epochs | Top-5 Test Accuracy |
32768 250 poly power = 2 10 epochs 90 0.9318
16384 275 poly power =2 5 epochs 90 0.9343
8192 2%.0 poly power = 2 2.5 epochs 90 0.9355
4096 235 poly power =2 1.25 epochs 90 0.9334
2048 250 poly power=2 | 0.625 epochs 90 0.9325
1024 2%5 poly power =2 | 0.3125 epochs 90 0.9336

6 ImageNet Training with ResNet-50

We also apply LEGW to CNN applications. We use LEGW together with LARS optimizer [31]
for ImageNet training with ResNet50. According to Stanford DAWN benchmark [5], 93% top-5
accuracy is the metric of correct ResNet50 implementation. We are able to scale the batch size to
32K and achieve the target accuracy without tuning hype-parameters (Table[I)). We achieved more
constant performance and higher accuracy compared to existing tuning schemes (Figure [I).

7 Conclusion

For large-batch training, warming up the learning rate is necessary to avoid divergence. LEGW is
an auto-tuning technique based on warmup technique and Sqrt Scaling scheme. In practice, LEGW
performs well on both RNN applications and CNN applications. For LSTM applications, we are able
to scale the batch size by 64 times without losing accuracy and without tuning the hyper-parameters.
For CNN applications, LEGW is able to achieve the constant accuracy when we scale the batch
size to 32K. LEGW works better than previous large-batch auto-tuning techniques (Figure[I). We
also provide a theoretical explanation for the effectiveness of LEGW. We conclude that LEGW is an
efficient approach for large-batch training.
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Single-layer LSTM for MNIST (100 Epochs)
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