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Abstract

Statistics meets Optimization: Computational guarantees for statistical learning algorithms

by

Fan Yang

Doctor of Philosophy in Engineering – Electrial Engineering and Computer Science

University of California, Berkeley

Professor Martin J. Wainwright, Chair

Modern technological advances have prompted massive scale data collection in many
modern fields such as artificial intelligence, and traditional sciences alike. This has led to
an increasing need for scalable machine learning algorithms and statistical methods to draw
conclusions about the world. In all data-driven procedures, the data scientist faces the
following fundamental questions: How should I design the learning algorithm and how long
should I run it? Which samples should I collect for training and how many are sufficient to
generalize conclusions to unseen data? These questions relate to statistical and computational
properties of both the data and the algorithm. This thesis explores their role in the areas of
non-convex optimization, non-parametric estimation, active learning and multiple testing.

In the first part of this thesis, we provide insights of different flavor concerning the
interplay between statistical and computational properties of first-order type methods on
common estimation procedures. The expectation-maximization (EM) algorithm estimates
parameters of a latent variable model by running a first-order type method on a non-convex
landscape. We identify and characterize a general class of Hidden Markov Models for which
linear convergence of EM to a statistically optimal point is provable for a large initialization
radius. For non-parametric estimation problems, functional gradient descent type (also
called boosting) algorithms are used to estimate the best fit in infinite dimensional function
spaces. We develop a new proof technique showing that early stopping the algorithm instead
may also yield an optimal estimator without explicit regularization. In fact, the same
key quantities (localized complexities) are underlying both traditional penalty-based and
algorithmic regularization.

In the second part of the thesis, we explore how data collected adaptively with a constantly
updated estimation can lead to signifcant reduction in sample complexity for multiple
hypothesis testing problems. In particular, we show how adaptive strategies can be used
to simultaneously control the false discovery rate over multiple tests and return the best
alternative (among many) for each test with optimal sample complexity in an online manner.
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Chapter 1

Introduction

In the modern world, scientists and engineers alike rely on data to draw conclusions and
develop new technologies. In general, data consists of either labeled or unlabeled observations
which contain information about the underlying true model in nature. If we had all possible
observations at our disposal, such as the true probability distribution of a variable of interest or
true labels for all images one could ever see, the inferred model would trivially be equivalent to
the true one we wish to know. The fundamental question in machine learning and data science
is how well one can learn about the true model when only finite and limited observations are
available. Controlling the gap between the learned estimator and the true model is one of
the essential challenges in machin learning research. The size of the gap depends both on the
statistical and algorithmic aspects in the pipeline.

As the name already suggests, data science depends heavily on the data that is available.
Hereby it is important to note that the amount of data itself is not necessarily indicative of
the quality of the inference. In layman’s terms, it is far more relevant how much information
is contained in the data and how representative it is. Usually, data is considered as a given
and the scientist has to use an optimal procedure to find a good estimator. Not all data
is created equal however, and it can be natural to consider procedures where the learning
procedure potentially interacts with the data collection process. Regular feedback indicating
which samples would be most informative to include in the dataset could reduce the required
number of samples to achieve a desired estimation accuracy. This is helpful especially when
data is costly, which is for example the case for experiments including human beings or
biological organisms.

The data collection process is not the only crucial factor which determines the performance
of the learning procedure. Even when the samples are fixed, the gap between the estimated
and true model can vary depending on the learning procedure. On a high level, the estimation
process usually consists of the following four fundamental building blocks: 1) choosing a
family of models among which the one that “fits best” is returned 2) a loss function which
defines the best fit 3) an iterative optimization algorithm aimed at finding the optimal model
and 4) a stopping criterion which determines when the algorithm should terminate.

The combination of all these choices together with the data collection procedure determine
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the final quality of the estimator. The work in this thesis studies the effects of the optimization
algorithm including its stopping time and adaptive data collection on common as well as
newly proposed machine learning procedures.

In the first part, we discuss topics in parametric and non-parametric estimation via
empirical risk minimization. In particular, for the former we prove theoretical guarantees for
a standard first-order method to maximize the generally non-convex likelihood of a latent
variable model with dependent samples. For non-parametric estimation, we investigate how
the effects of early stopping a gradient-descent type method is comparable to well-understood
penalty regularization methods. The second part considers common multiple testing problems
and explores the benefits of allowing interaction between data collection and learning in that
context. In brief, we show how adaptive sampling can lead to significant gains in sample
complexity when testing many hypotheses with multiple treatments. The next sections
highlight the specific contributions of this thesis in more detail.

1.1 Estimation from samples

A typical data science problem can be mathematically framed as follows: Given data, which
consists of samples from a distribution P, we want to learn a parameter in Rd or a function
in some function space which determines the distribution. Sometimes the relation between a
covariate X and a target variable Y is of interest for prediction or scientific purposes, at other
times the parameter (for example the mean or variance) of the distribution is an interpretable
quantity one wants to learn about. We assume that both the “true mapping” f ∗ from x
to y or parameter θ? of a distribution may be computed exactly when the distribution P
is known. Oftentimes, θ? or f ∗ correspond to the optimizer of a so-called population loss
involving the distribution. It can be found via iterative optimization algorithms, such as
gradient-type methods, which are efficient when the population loss is well-behaved. For
first-order methods one often assumes the population loss to be convex and smooth.

In practice, the distribution is unknown and one relies on a finite number of samples n
from the distribution instead. As a result, the empirical loss must serve as a proxy for the
population loss instead and could be non-convex, have multiple local minima or a global
minimum far away from the true θ?, f ∗. Minimizing the empirical loss and obtaining the
estimates θ̂, f̂ is thus not guaranteed to be a statistically sound or computationally efficient
strategy even though the algorithm behaves perfectly on the population loss. In the first part
of the thesis, we show how the statistical and computational errors behave as a function of
the number of iterations for first-order type algorithms. The results give guidance as to how
such methods should be used in practice.

Guarantees for non-convex optimization

A line of recent work has shown that even for problems with an inherent non-convex structure,
such as low rank matrix factorization or deep neural networks, first-order optimization
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algorithms can still find useful solutions fast. While convex optimization problems are well-
understood from a theoretical point of view, until recently non-convex optimization has largely
remained an untouched field. The simplicity and effectiveness of these algorithms however
has sparked a surge of interest to provide mathematical explanation for this phenomenon. A
recent line of work has taken a closer look at specific non-convex instances which are known
to exhibit good convergence behavior and often utilized the particular model structure in
order to give rigorous performance guarantees.

The expectation-maximization (EM) algorithm is one such algorithm, which behaves like
a first-order method and is designed for finding the maximum likelihood estimator (MLE) of
probabilistic models with latent variables such as mixture models. Despite its wide usage
since its invention, the reason for its good performance in typical problems has not been
well understood. In my work with Sivaraman Balakrishnan and Martin Wainwright [85], we
focused on the application of EM on the case of non-independent data drawn from a Hidden
Markov Model (HMM), also called the Baum-Welch algorithm [9]. The use of EM for fitting
HMM models is a workhorse for speech, gesture recognition and bioinformatics for example.

Until our work, it was only known that the Baum-Welch algorithm, similar to a vanilla first
order method, can quickly find its nearby stationary point [9]. Furthermore, the maximum
likelihood estimator was proven to be consistent and asymptotically normal [14]. However, a
corollary of both results merely predicted convergence to a consistent estimator for arbitrarily
close initializations which is not useful to explain its empirical performance. This is because
it usually operates on finite-sample non-convex loss functions. In contrast, we wanted to
understand why, how and when Baum-Welch converges with high probability to parameter
estimates that are close to the population optimum: How large does the necessary initialization
radius have to be for convergence to a statistically good estimate? How many iterations does
one need to get how close to the population optimum?

In a nutshell, for a broad class of Hidden Markov models we were able to prove linear
convergence of Baum-Welch to a statistically optimal point. This holds for starting points
within a big basin of attraction around the population optimum and shows that in fact every
local minimum in that basin lies within statistical precision of the population maximum
likelihood estimator θ?. Therefore, as long as the algorithm is suitably initialized (for example
via spectral methods) we are guaranteed to obtain an estimate that is optimally close to θ?. To
our knowledge, these are the first results which give rigorous model-dependent non-asymptotic
statistical bounds and convergence characterization for Baum-Welch estimates.

Implicit regularization via early stopping

For iterative algorithms such as boosting and gradient-type algorithms, a good estimate is
often reached much before convergence. In fact, besides wasting computational resources,
finding the actual finite-sample optimum in non-parametric spaces could potentially result in
suboptimal generalization to unseen data. The classical approach to avoid overfitting is to
add a penalty term or constraint to the loss function, referred to as a penalized estimator.
In practice, another way to control the generalization performance of iterative algorithms is
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to monitor the error on a separate validation set. The algorithm then terminates whenever
the test error stops decreasing or even starts increasing. It has indeed been observed in the
boosting literature that estimators obtained by early stopping gradient descent type methods
are comparable to optimizers of penalized likelihoods.

While there is a rich literature on penalized estimators (e.g. [74], [73]), algorithmic
regularization is far less understood. Most existing literature addresses consistency and
non-asymptotics for specific loss functions. These types of results however did not provide
fundamental insights as to why stopping rules can result in consistent and statistically optimal
estimators for many different models. Our work attempts to move one step further into
this direction by understanding the geometric reason underlying algorithmic regularization
of iterative first-order methods: How does the effective complexity of the function space
evolve with the number of iterations and how does this relate to generalization properties of
intermediate iterates?

Some previous works [35] have shed light on this issue using the concept of algorithmic
stability. For more explicitly structured function classes, we show how we can in fact analyze
early stopping by adopting the perspective of localized complexity measures, which are known
to yield tight upper bounds for penalized estimation. Using this technique, we are able to
show minimax optimality of early stopped boosted estimators for a variety of loss functions
including AdaBoost, LogitBoost and L2-Boost for arbitrary reproducing kernel Hilbert spaces.
Ultimately, the goal is to use the new insights to make rigorous optimality statements about
a common practice for classical and deep learning procedures, which is to stop the algorithm
once the error on the validation set stops decreasing. This work was developed jointly Yuting
Wei (equal contribution) and Martin Wainwright [87].

1.2 Multiple testing with adaptive sampling

In part II of the thesis we go beyond the setting when the algorithm takes given data and
outputs an estimate of the truth. Often, data collection and experiments are expensive and
the main obstacle to good performance of a machine learning system. In such cases, it is
sometimes more efficient to acquire data sequentially. By choosing unlabeled samples which
are expected to be the most informative based on data seen so far, one may extract the same
amount of information using a much smaller budget. For example, when the task is to find
the best alternative (also called arm) among many, it is much more efficient to sample the
most promising alternatives more often than the ones that are clearly worse.

While adaptive sampling has become standard for finding a best arm for example, it
is rarely considered for related classical statistical settings when two or more alternatives
are tested against a control. This is in part due to the bias that adaptivity introduces in
measuring treatment effects. Furthermore, classical hypothesis tests are primarily designed
to control the probability of false alarm, when in truth the control is indeed the best arm.
When the null hypothesis is rejected, we conclude that at least one arm is better than the
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control. However, when many treatments promise better performance, what we really want
to know is which one of them is in fact the best, as illustrated in Figure 1.1.

Learning procedure

Hypothesis:

Control is 
better than 
treatments

reject

accept
Keep using 
control

Find best 
treatment

Recommend 
new best

Collect
patient 

data

Figure 1.1: Practical goals in a multiple treatment experiment beyond classical hypothesis
testing. The aim in our work is to find a procedure which can simultaneously test the null
hypothesis and find the best arm efficiently using adaptive sampling.

A standard statistical approach to answer the above question would involve testing
hypotheses of all pairs of treatments. Adaptive sampling strategies on the other hand,
can essentially pick the hypotheses which compare the most promising arms. In recently
published work with Aaditya Ramdas, Kevin Jamieson and Martin Wainwright [86], we show
how multi-armed bandit algorithms can in fact be used to simultaneously achieve best-arm
detection guarantees and traditional false discovery control for multiple experiments. The
magic lies in the construction of always valid p-values which allows the algorithm to stop
according to a criterion that ensures a desired probability of detecting the right arm.

Furthermore, instead of controlling the false alarm probability for one experiment only,
the user generally needs to make immediate decisions for many different such experiments
over time. Our doubly-sequential meta-framework controls the false discovery rate of multiple
experiments with only as many samples as is needed to also determine the best treatment in
each test with desired confidence. It also allows the scientist to employ their favorite best-arm
and online FDR strategy independently. In order to cover more practically relevant scenarios,
in another paper which is not presented in this thesis [63], we extend existing online FDR
frameworks by allowing scientists to incorporate prior knowledge and assign decaying weight
to discoveries in the past.
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Part I

Estimation
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Chapter 2

Guarantees for the Baum-Welch
Algorithm

2.1 Introduction

Hidden Markov models (HMMs) are one of the most widely applied statistical models of the
last 50 years, with major success stories in computational biology [27], signal processing and
speech recognition [61], control theory [28], and econometrics [46] among other disciplines. At
a high level, a hidden Markov model is a Markov process split into an observable component
and an unobserved or latent component. From a statistical standpoint, the use of latent
states makes the HMM generic enough to model a variety of complex real-world time series,
while the Markovian structure enables relatively simple computational procedures.

In applications of HMMs, an important problem is to estimate the state transition
probabilities and the parameterized output densities based on samples of the observable
component. From classical theory, it is known that under suitable regularity conditions,
the maximum likelihood estimate (MLE) in an HMM has good statistical properties [13].
However, given the potentially nonconvex nature of the likelihood surface, computing the
global maximum that defines the MLE is not a straightforward task. In fact, the HMM
estimation problem in full generality is known to be computationally intractable under
cryptographic assumptions [72]. In practice, however, the Baum-Welch algorithm [9] is
frequently applied and leads to good results. It can be understood as the specialization of
the EM algorithm [26] to the maximum likelihood estimation problem associated with the
HMM. Despite its wide use in many applications, the Baum-Welch algorithm can get trapped
in local optima of the likelihood function. Understanding when this undesirable behavior
occurs—or does not occur—has remained an open question for several decades.

A more recent line of work [58, 69, 37] has focused on developing tractable estimators for
HMMs, via approaches that are distinct from the Baum-Welch algorithm. Nonetheless, it has
been observed that the practical performance of such methods can be significantly improved
by running the Baum-Welch algorithm using their estimators as the initial point; see, for
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instance, the detailed empirical study in Kontorovich et al. ([49]). This curious phenomenon
has been observed in other contexts [24], but has not been explained to date. Obtaining a
theoretical characterization of when and why the Baum-Welch algorithm behaves well is the
main objective of this chapter.

Related work and our contributions

Our work builds upon a framework for analysis of EM, as previously introduced by a subset
of the current authors [3]; see also the follow-up work to regularized EM algorithms [90, 83].
All of this past work applies to models based on i.i.d. samples, and as we show in this chapter,
there are a number of non-trivial steps required to derive analogous theory for the dependent
variables that arise for HMMs. Before doing so, let us put the results of this chapter in
context relative to older and more classical work on Baum-Welch and related algorithms.

θ

�(θ)

θ*

�n(θ)

θMLE

r θ

�(θ)

θ*

�n(θ)

θMLE

r
(a) (b)

Figure 2.1: (a) A poorly behaved sample likelihood, for which there are many local optima
at varying distances from the MLE. It would require an initialization extremely close to
the MLE in order to ensure that the Baum-Welch algorithm would not be trapped at a
sub-optimal fixed point. (b) A well-behaved sample likelihood, for which all local optima lie
within an en-ball of the MLE, as well as the true parameter θ?. In this case, the Baum-Welch
algorithm, when initialized within a ball of large radius r, will converge to the ball of much
smaller radius en. The goal of this chapter is to give sufficient conditions for when the sample
likelihood exhibits this favorable structure.

Under mild regularity conditions, it is well-known that the maximum likelihood estimate
(MLE) for an HMM is a consistent and asymptotically normal estimator; for instance, see
Bickel et al. [13], as well as the expository works [22, 75]. On the algorithmic level, the original
papers of Baum and co-authors [9, 8] showed that the Baum-Welch algorithm converges to
a stationary point of the sample likelihood; these results are in the spirit of the classical
convergence analysis of the EM algorithm [84, 26]. These classical convergence results only
provide a relatively weak guarantee—namely, that if the algorithm is initialized sufficiently
close to the MLE, then it will converge to it. However, the classical analysis does not
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quantify the size of this neighborhood, and as a critical consequence, it does not rule out
the pathological type of behavior illustrated in panel (a) of Figure 2.1. Here the sample
likelihood has multiple optima, both a global optimum corresponding to the MLE as well as
many local optima far away from the MLE that are also fixed points of the Baum-Welch
algorithm. In such a setting, the Baum-Welch algorithm will only converge to the MLE if it
is initialized in an extremely small neighborhood.

In contrast, the goal of this chapter is to give sufficient conditions under which the sample
likelihood has the more favorable structure shown in panel (b) of Figure 2.1. Here, even
though the MLE does not have a large basin of attraction, the sample likelihood has all of
its optima (including the MLE) localized to a small region around the true parameter θ?.
Our strategy to reveal this structure, as in our past work [3], is to shift perspective: instead
of studying convergence of Baum-Welch updates to the MLE, we study their convergence
to an εn-ball of the true parameter θ?, and moreover, instead of focusing exclusively on the
sample likelihood, we first study the structure of the population likelihood, corresponding
to the idealized limit of infinite data. Our first main result (Theorem 1) provides sufficient
conditions under which there is a large ball of radius r, over which the population version
of the Baum-Welch updates converge at a geometric rate to θ?. Our second main result
(Theorem 2) uses empirical process theory to analyze the finite-sample version of the Baum-
Welch algorithm, corresponding to what is actually implemented in practice. In this finite
sample setting, we guarantee that over the ball of radius r, the Baum-Welch updates will
converge to an εn-ball with εn � r, and most importantly, this εn-ball contains the true
parameter θ?. Typically this ball also contains the MLE with high-probability, but our theory
does not guarantee convergence to the MLE, but rather to a point that is close to both the
MLE and the true parameter θ? and whose statistical risk is equivalent to that of the MLE
upto logarithmic factors.

These latter two results are abstract, applicable to a broad class of HMMs. We then
specialize them to the case of a hidden Markov mixture consisting of two isotropic components,
with means separated by a constant distance, and obtain concrete guarantees for this model.
It is worth comparing these results to past work in the i.i.d. setting, for which the problem
of Gaussian mixture estimation under various separation assumptions has been extensively
studied (e.g. [25, 76, 10, 57]). The constant distance separation required in our work is much
weaker than the separation assumptions imposed in most papers that focus on correctly
labeling samples in a mixture model. Our separation condition is related to, but in general
incomparable with the non-degeneracy requirements in other work [37, 36, 57].

Finally, let us discuss the various challenges that arise in studying the dependent data
setting of hidden Markov models, and highlight some important differences with the i.i.d.
setting [3]. In the non-i.i.d. setting, arguments passing from the population-based to sample-
based updates are significantly more delicate. First of all, it is not even obvious that the
population version of the Q-function—a central object in the Baum-Welch updates— exists.
From a technical standpoint, various gradient smoothness conditions are much more difficult
to establish, since the gradient of the likelihood no longer decomposes over the samples as in
the i.i.d. setting. In particular, each term in the gradient of the likelihood is a function of all
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observations. Finally, in order to establish the finite-sample behavior of the Baum-Welch
algorithm, we can no longer appeal to standard i.i.d. concentration and empirical process
techniques. Nor do we pursue the approach of some past work on HMM estimation (e.g. [37]),
in which it is assumed that there are multiple independent samples of the HMM.1 Instead, we
directly analyze the Baum-Welch algorithm that practioners actually use—namely, one that
applies to a single sample of an n-length HMM. In order to make the argument rigorous, we
need to make use of more sophisticated techniques for proving concentration for dependent
data [91, 59].

The remainder of this chapter is organized as follows. In Section 3.2, we introduce basic
background on hidden Markov models and the Baum-Welch algorithm. Section 2.3 is devoted
to the statement of our main results in the general setting, whereas Section 2.4 contains the
more concrete consequences for the Gaussian output HMM. The main parts of our proofs are
given in Section 3.5, with the more technical details deferred to the appendices.

2.2 Background and problem set-up

In this section, we introduce some standard background on hidden Markov models and the
Baum-Welch algorithm.

Standard HMM notation and assumptions

We begin by defining a discrete-time hidden Markov model with hidden states taking values
in a discrete space. Letting Z denote the integers, suppose that the observed random variables
{Xi}i∈Z take values in Rd, and the latent random variables {Zi}i∈Z take values in the discrete
space [s] : = {1, . . . , s}. The Markov structure is imposed on the sequence of latent variables.
In particular, if the variable Z1 has some initial distribution π1, then the joint probability of
a particular sequence (z1, . . . , zn) is given by

p(z1, . . . , zn; β) = π1(z1; β)
n∏
i=1

p(zi | zi−1; β), (2.1)

where the vector β is a particular parameterization of the initial distribution and Markov chain
transition probabilities. We restrict our attention to the homogeneous case, meaning that
the transition probabilities for step (t− 1)→ t are independent of the index t. Consequently,
if we define the transition matrix A ∈ Rs×s with entries

A(j, k; β) : = p(z2 = k | z1 = j; β),

then the marginal distribution πi of Zi can be described by the matrix vector equation

πTi = πT1 A
i−1,

1The rough argument here is that it is possible to reduce an i.i.d. sampling model by cutting the original
sample into many pieces, but this is not an algorithm that one would implement in practice.
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where πi and π1 denote vectors belonging to the s-dimensional probability simplex.
We assume throughout that the Markov chain is aperiodic and recurrent, whence it has

a unique stationary distribution π, defined by the eigenvector equation πT = πTA. To be
clear, both π and the matrix A depend on β, but we omit this dependence so as to simplify
notation. We assume throughout that the Markov chain begins in its stationary state, so
that π1 = π, and moreover, that it is reversible, meaning that

π(j)A(j, k) = π(k)A(k, j) (2.2)

for all pairs j, k ∈ [s].
A key quantity in our analysis is the mixing rate of the Markov chain. In particular, we

assume the existence of mixing constant εmix ∈ (0, 1] such that

εmix ≤
p(zi|zi−1; β)

π(zi)
≤ ε−1

mix (2.3)

for all (zi, zi−1) ∈ [s] × [s]. This condition implies that the dependence on the initial
distribution decays geometrically. More precisely, some simple algebra shows that

sup
π1

∥∥πT1 At − πT1 ∥∥TV
≤ c0ρ

t
mix for all t = 1, 2, . . ., (2.4)

where ρmix = 1− εmix denotes the mixing rate of the process, and c0 is a universal constant.
Note that as εmix → 1−, the Markov chain has behavior approaching that of an i.i.d. sequence,
whereas as εmix → 0+, its behavior becomes increasingly “sticky”.

p(zi|zi-1, )

p(x|z, )

Xi-1 Xi Xi+1

Figure 2.2: The hidden Markov model as a graphical model. The blue circles indicate observed
variables Zi, whereas the orange circles indicate latent variables Xi.

Associated with each latent variable Zi is an observation Xi ∈ Rd. We use p(xi|zi;µ) to
denote the density of Xi given that Zi = zi, an object that we assume to be parameterized
by a vector µ. Introducing the shorthand xn1 = (x1, . . . , xn) and zn1 = (z1, . . . , zn), the joint
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probability of the sequence (xn1 , z
n
1 ) (also known as the complete likelihood) can be written

in the form

p(zn1 , x
n
1 ; θ) = π1(z1)

n∏
i=2

p(zi | zi−1; β)
n∏
i=1

p(xi|zi;µ), (2.5)

where the pair θ : = (β, µ) parameterizes the transition and observation functions. The
likelihood then reads

p(xn1 ; θ) =
∑
zn1

p(zn1 , x
n
1 ; θ).

For our convenience in subsequent analysis, we also define a form of complete likelihood
including an additional hidden variable z0 which is not associated to any observation x0

p(zn0 , x
n
1 ; θ) = π0(z0)

n∏
i=1

p(zi | zi−1; β)
n∏
i=1

p(xi|zi;µ), (2.6)

where π0 = π. Note that it preserves the usual relationship
∑

zn0
p(zn0 , x

n
1 ; θ) = p(xn1 ; θ)

between the ordinary and complete likelihoods in EM problems.
A simple example: A special case helps to illustrate these definitions. In particular,

suppose that we have a Markov chain with s = 2 states. Consider a matrix of transition
probabilities A ∈ R2×2 of the form

A =
1

eβ + e−β

[
eβ e−β

e−β eβ

]
=

[
ζ 1− ζ

1− ζ ζ

]
, (2.7)

where ζ : = eβ

eβ+e−β
. By construction, this Markov chain is recurrent and aperiodic with the

unique stationary distribution π =
[

1
2

1
2

]T
. Moreover, by calculating the eigenvalues of the

transition matrix, we find that the mixing condition (2.4) holds with

ρmix : = |2ζ − 1| = | tanh(β)|.

Suppose moreover that the observed variables in Rd are conditionally Gaussian, say with

p(xt|zt;µ) =

{
1

(2πσ2)d/2
exp

{
− 1

2σ2‖x− µ‖2
2

}
if zt = 1

1
(2πσ2)d/2

exp
{
− 1

2σ2‖x+ µ‖2
2

}
if zt = 2.

(2.8)

With this choice, the marginal distribution of each Xt is a two-state Gaussian mixture with
mean vectors µ and −µ, and covariance matrices σ2Id. We provide specific consequences of
our general theory for this special case in the sequel.
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Baum-Welch updates for HMMs

We now describe the Baum-Welch updates for a general discrete-state hidden Markov model.
As a special case of the EM algorithm, the Baum-Welch algorithm is guaranteed to ascend on
the likelihood function of the hidden Markov model. It does so indirectly, by first computing
a lower bound on the likelihood (E-step) and then maximizing this lower bound (M-step).

For a given integer n ≥ 1, suppose that we observe a sequence xn1 = (x1, . . . , xn) drawn
from the marginal distribution over Xn

1 defined by the model (2.5). The rescaled log likelihood
of the sample path xn1 is given by

`n(θ) =
1

n
log
(∑

zn0

p(zn0 , x
n
1 ; θ)

)
The EM likelihood is based on lower bounding the likelihood via Jensen’s inequality. For
any choice of parameter θ′ and positive integers i ≤ j and a < b, let EZji |xba,θ′ denote the

expectation under the conditional distribution p(Zj
i | xba; θ′). With this notation, the concavity

of the logarithm and Jensen’s inequality imply that for any choice of θ′, we have the lower
bound

`n(θ) =
1

n
log
[
EZn0 |xn1 ,θ′

p(Zn
0 , x

n
1 ; θ)

p(Zn
0 | xn1 ; θ′)

]
≥ 1

n
EZn0 |xn1 ,θ′

[
log p(Zn

0 , x
n
1 ; θ)

]︸ ︷︷ ︸
Qn(θ |θ′)

+
1

n
EZn0 |xn1 ,θ′

[
− log p(Zn

0 | xn1 ; θ′)]︸ ︷︷ ︸
Hn(θ′)

.

For a given choice of θ′, the E-step corresponds to the computation of the function θ 7→ Qn(θ | θ′).
The M -step is defined by the EM operator Mn : Ω̃ 7→ Ω̃

Mn(θ′) = arg max
θ∈Ω̃

Qn(θ | θ′), (2.9)

where Ω̃ is the set of feasible parameter vectors. Overall, given an initial vector θ0 = (β0, µ0),
the EM algorithm generates a sequence {θt}∞t=0 according to the recursion θt+1 = Mn(θt).

This description can be made more concrete for an HMM, in which case the Q-function
takes the form

Qn(θ | θ′) =
1

n
EZ0|xn1 ,θ′

[
log π0(Z0; β)

]
+

1

n

n∑
i=1

EZi−1,Zi|xn1 ,θ′
[

log p(Zi | Zi−1; β)
]

+
1

n

n∑
i=1

EZi|xn1 ,θ′
[

log p(xi | Zi;µ)
]
, (2.10)

where the dependence of π0 on β comes from the assumption that π0 = π. Note that the
Q-function can be decomposed as the sum of a term which is solely dependent on µ, and
another one which only depends on β—that is

Qn(θ | θ′) = Q1,n(µ | θ′) +Q2,n(β | θ′) (2.11)
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where Q1,n(µ | θ′) = 1
n

∑n
i=1 EZi|xn1 ,θ′

[
log p(xi | Zi, µ)

]
, and Q2,n(β | θ′) collects the remaining

terms. In order to compute the expectations defining this function (E-step), we need
to determine the marginal distributions over the singletons Zi and pairs (Zi, Zi+1) under
the joint distribution p(Zn

0 | xn1 ; θ′). These marginals can be obtained efficiently using a
recursive message-passing algorithm, known either as the forward-backward or sum-product
algorithm [50, 82].

In the M -step, the decomposition (2.11) suggests that the maximization over the two
components (β, µ) can also be decoupled. Accordingly, with a slight abuse of notation, we
often write

Mµ
n (θ′) = arg max

µ∈Ωµ
Q1,n(µ | θ′), and Mβ

n (θ′) = arg max
β∈Ωβ

Q2,n(β | θ′)

for these two decoupled maximization steps, where Ωβ and Ωµ denote the feasible set of

transition and observation parameters respectively and Ω̃ : = Ωβ × Ωµ. In the following,
unless otherwise stated, Ωµ = Rd, so that the maximization over the observation parameters
is unconstrained.

2.3 Main results

We now turn to the statement of our main results, along with a discussion of some of their
consequences. The first step is to establish the existence of an appropriate population
analog of the Q-function. Although the existence of such an object is a straightforward
consequence of the law of large numbers in the case of i.i.d. data, it requires some technical
effort to establish existence for the case of dependent data; in particular, we do so using a
k-truncated version of the full Q-function (see Proposition 2.3.1). This truncated object plays
a central role in the remainder of our analysis. In particular, we first analyze a version of
the Baum-Welch updates on the expected k-truncated Q-function for an extended sequence
of observations xn+k

1−k , and provide sufficient conditions for these population-level updates to
be contractive (see Theorem 1). We then use non-asymptotic forms of empirical process
theory to show that under suitable conditions, the actual sample-based EM updates—i.e.,
the updates that are actually implemented in practice—are also well-behaved in this region
with high probability (see Theorem 2). In subsequent analysis to follow in Section 2.4, we
show that this initialization radius is suitably large for an HMM with Gaussian outputs.

Existence of population Q-function

In the analysis of [3], the central object is the notion of a population Q-function—namely,
the function that underlies the EM algorithm in the idealized limit of infinite data. In their
setting of i.i.d. data, the standard law of large numbers ensures that as the sample size n
increases, the sample-based Q-function approaches its expectation, namely the function

Q(θ | θ′) = E
[
Qn(θ | θ′)

]
= E

[
EZ1|X1,θ′

[
log p(X1, Z1; θ)

]]
.
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Here we use the shorthand E for the expectation over all samples X that are drawn from the
joint distribution (in this case E := EXn

1 |θ∗).

When the samples are dependent, the quantity E
[
Qn(θ | θ′)

]
is no longer independent of

n, and so an additional step is required. A reasonable candidate for a general definition of
the population Q-function is given by

Q(θ | θ′) : = lim
n→+∞

[EQn(θ | θ′)]. (2.12)

Although it is clear that this definition is sensible in the i.i.d. case, it is necessary for
dependent sampling schemes to prove that the limit given in definition (2.12) actually exists.

In this chapter, we do so by considering a suitably truncated version of the sample-based
Q-function. Similar arguments have been used in past work (e.g., [22, 75]) to establish
consistency of the MLE; here our focus is instead on the behavior of the Baum-Welch
algorithm. Let us consider a sequence {(Xi, Zi)}n+k

i=1−k, assumed to be drawn from the
stationary distribution of the overall chain. Recall that EZji |xba,θ denotes expectations taken

over the distribution p(Zj
i | xba, θ). Then, for a positive integer k to be chosen, we define

Qk
n(θ | θ′) =

1

n

[
EZ0|xk−k,θ′

log p(Z1; β) +
n∑
i=1

EZii−1|x
i+k
i−k,θ

′ log p(Zi | Zi−1; β)

+
n∑
i=1

EZi|xi+ki−k,θ
′ log p(xi | Zi;µ)

]
. (2.13)

In an analogous fashion to the decomposition in equation (2.10), we can decompose Qk
n in

the form

Qk
n(θ | θ′) = Qk

1,n(µ | θ′) +Qk
2,n(β | θ′).

We associate with this triplet of Q-functions the corresponding EM operators Mk
n(θ′), Mµ,k

n (θ′)
and Mβ,k

n (θ′) as in Equation (2.9). Note that as opposed to the function Qn from equa-
tion (2.10), the definition of Qk

n involves variables Zi, Zi−1 that are not conditioned on the full
observation sequence xn1 , but instead only on a 2k window centered around the index i. By
construction, we are guaranteed that the k-truncated population function and its decomposed
analogs given by

Qk(θ | θ′) := lim
n→∞

EQk
n(θ | θ′) = EQk

1,n(µ | θ′) + lim
n→∞

EQk
2,n(β | θ′)

:= Qk
1(µ | θ′) +Qk

2(β | θ′) (2.14)

are well-defined. In particular, due to stationarity of the random sequences {p(zi | X i+k
i−k )}ni=1

and {p(zii−1 | X i+k
i−k )}ni=1, the expectation over {(Xi, Zi)}n+k

i=1−k is independent of the sample
size n. Notice that the Baum-Welch algorithm in practice essentially corresponds to using
k = n.
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Our first result uses the existence of this truncated population object in order to show
that the standard population Q-function from equation (2.12) is indeed well-defined. In doing
so, we make use of the sup-norm

‖Q1 −Q2‖∞ : = sup
θ,θ′∈Ω̃

∣∣∣Q1(θ | θ′)−Q2(θ | θ′)
∣∣∣. (2.15)

We require in the following that the observation densities satisfy the following boundedness
condition

sup
θ∈Ω̃

E
[

max
zi∈[s]

∣∣ log p(Xi | zi, θ)
∣∣] <∞. (2.16)

Proposition 2.3.1. Under the previously stated assumptions, the population function Q
defined in equation (2.12) exists.

The proof of this claim is given in Section 2.7. It hinges on the following auxiliary claim,
which bounds the difference between EQn and the k-truncated Q-function as

‖EQn −Qk‖∞ ≤
c s4

ε9mixπ
2
min

(
1− εmixπmin

)k
+
c(πmin, s, εmix)

n
, (2.17)

where πmin := minβ∈Ωβ ,j∈[s] π(j | β) is the minimum probability in the stationary distribution,
εmix is the mixing constant from equation (2.3), and c(·) is a constant dependent only on
the inherent model parameters. The dependencies on εmix and πmin are not optimized here.
Since this bound holds for all n, it shows that the population function Q can be uniformly
approximated by Qk, with the approximation error decreasing geometrically as the truncation
level k grows. This fact plays an important role in the analysis to follow.

Analysis of updates based on Qk

Our ultimate goal is to establish a bound on the difference between the sample-based Baum-
Welch estimate and θ∗, in particular showing contraction of the Baum-Welch update towards
the true parameter. Our strategy for doing so involves first analyzing the Baum-Welch
iterates at the population level, which is the focus of this section.

The quantity Q is significant for the EM updates because the parameter θ∗ satisfies the
self-consistency property θ∗ = arg maxθQ(θ | θ∗). In the i.i.d. setting, the function Q can
often be computed in closed form, and hence directly analyzed, as was done in past work [3].
In the HMM case, this function Q no longer has a closed form, so an alternative route is
needed. Here we analyze the population version via the truncated function Qk (2.14) instead,
where k is a given truncation level (to be chosen in the sequel). Although θ∗ is no longer a
fixed point of Qk, the bound (2.17) combined with the assumption of strong concavity of Qk

imply an upper bound on the distance of the maximizers of Qk and Q.
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With this setup, we consider an idealized population-level algorithm that, based on some
initialization θ̃0 ∈ Ω = B2

(
r;µ∗

)
× Ωβ, generates the sequence of iterates

θ̃t+1 = Mk(θ̃t) := arg max
θ∈Ω̃

Qk(θ | θ̃t). (2.18)

where Ω̃ = Ωβ × Ωµ is a larger set than Ω, especially Ωµ = Rd. Since Qk is an approximate
version of Q, the update operator Mk should be understood as an approximation to the
idealized population EM operator M where the maximum is taken with respect to Q. As
part (a) of the following theorem shows, the approximation error is well-controlled under

suitable conditions. We analyze the convergence of the sequence {θ̃t}∞t=0 in terms of the norm
‖ · ‖? : Ωµ × Ωβ → R+ given by

‖θ − θ∗‖? = ‖(µ, β)− (µ∗, β∗)‖? : = ‖µ− µ∗‖2 + ‖β − β∗‖2. (2.19)

Contraction in this norm implies that both parameters µ, β converge linearly to the true
parameter.

Conditions on Qk: Let us now introduce the conditions on the truncated function Qk

that underlie our analysis. For this purpose, we concentrate on a potentially smaller set

Ω : = B2(r;µ∗)× Ωβ

with radius r > 0, where Ωβ is the set of allowable HMM transition parameters. The goal is

to find the largest Ω ⊂ Ω̃, in which said conditions are fulfilled. This set Ω is then equivalent
to the basin of attraction, i.e. the set in which we can initialize the algorithm and obtain
linear convergence to a good optimum.

First, let us say that the function Qk(· | θ′) is (λµ, λβ)-strongly concave in Ω if for all
θ′ ∈ Ω we have

Qk
1(µ1 | θ′)−Qk

1(µ2 | θ′)− 〈∇µQ
k
1(µ2 | θ′), µ1 − µ2〉 ≤ −

λµ
2
‖µ1 − µ2‖2

2 (2.20a)

and Qk
2(β1 | θ′)−Qk

2(β2 | θ′)− 〈∇βQ
k
2(β2 | θ′), β1 − β2〉 ≤ −

λβ
2
‖β1 − β2‖2

2 (2.20b)

for all (µ1, β1), (µ2, β2) ∈ Ω.
Second, we impose first-order stability conditions on the gradients of each component of

Qk:
• For each µ ∈ Ωµ, θ

′ ∈ Ω, we have

‖∇µQ
k
1(µ | µ′, β′)−∇µQ

k
1(µ | µ∗, β′)‖2 ≤ Lµ,1‖µ′ − µ∗‖2 (2.21a)

‖∇µQ
k
1(µ | µ′, β′)−∇µQ

k
1(µ | µ′, β∗)‖2 ≤ Lµ,2‖β′ − β∗‖2, (2.21b)

We refer to this condition as Lµ-FOS for short.
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• Secondly, for all β ∈ Ωβ, θ
′ ∈ Ω, we require that

‖∇βQ
k
2(β | µ′, β′)−∇βQ

k
2(β | µ∗, β′)‖2 ≤ Lβ,1‖µ′ − µ∗‖2 (2.22a)

‖∇βQ
k
2(β | µ′, β′)−∇βQ

k
2(β | µ′, β∗)‖2 ≤ Lβ,2‖β′ − β∗‖2. (2.22b)

We refer to this condition as Lβ-FOS for short. The experienced reader may find that the
(Lµ, Lβ)-FOS conditions look intriguingly similar to the Lipschitz gradient conditions often
encountered when proving geometric convergence for gradient descent methods. On a high
level, smoothness requires function values of one function to be close for any pair of arguments
that are close. Although our conditions seem to invoke Lipschitz gradients as well, it is
actually of a completely different nature. The important difference arises from the existence
of two parameters, as we now clarify.

As opposed to gradient descent, the EM updates optimize over the first parameter θ of
a function Qk(· | θ′) defined by the second parameter θ′ at every time step. If we could
access Qk(· | θ∗), EM would converge in one step to the true optimum. Therefore, if we can
guarantee that Qk(· | θ′) and Qk(· | θ∗) are close in some sense, there should be good reasons
to hope that under some more regularity assumptions the maximizers are close as well, i.e.
that Mk(θ′) is close to θ∗.

The (Lµ, Lβ)-FOS conditions are precisely encouraging closeness of these two functions in
a first-order sense. In particular, we require the gradients (with respect to the first argument
θ) to be Lipschitz in the second argument θ′. Typical smoothness however is a property
with respect to a fixed function (i.e. a fixed θ′ in our case) and thus requires gradients to
be Lipschitz in the first argument. Loosely speaking it upper bounds the curvature of said
function, and thus is more like a second-order condition by nature. This distinction also
explains why (Lµ, Lβ)-FOS conditions require to be uniformly satisfied only over the first
argument, while one of the second arguments can be fixed at µ∗ or β∗ respectively. Finally,
as we show in Section 2.4, these conditions hold for concrete models.

Convergence guarantee for Qk-updates: We are now equipped to state our main
convergence guarantee for the updates. It involves the quantities

L : = max{Lµ1 , Lµ2}+ max{Lβ1 , Lβ2}, λ : = min{λµ, λβ} and κ : =
L

λ
, (2.23)

with κ generally required to be smaller than one, as well as the additive norm ‖ · ‖? from
equation (2.19).

Part (a) of the theorem controls the approximation error induced by using the k-truncated
function Qk as opposed to the exact population function Q, whereas part (b) guarantees a
geometric rate of convergence in terms of κ defined above in equation (2.23).

Theorem 1. (a) Approximation guarantee: Under the mixing condition (2.4), density bound-
edness condition (2.16), and (λµ, λβ)-strong concavity condition (2.20), there is a universal
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constant c0 such that

‖Mk(θ)−M(θ)‖2
? ≤

Cs4

λ ε9mixπ
2
min

(
1− εmixπmin

)k
︸ ︷︷ ︸

=:ϕ2(k)

for all θ ∈ Ω, (2.24)

where s is the number of states, and πmin : = min
β∈Ωβ

min
j∈[s]

π(j; β).

(b) Convergence guarantee: Suppose in addition that the (Lµ, Lβ)-FOS conditions (2.21),(2.22)
holds with parameter κ ∈ (0, 1) as defined in (2.23) for θ, θ′ ∈ Ω = B2

(
r;µ∗

)
× Ωβ, and

that the truncation parameter k is sufficiently large to ensure that

ϕ(k) ≤
(
1− κ

)
r − κmax

β∈Ωβ
‖β − β∗‖2.

Then, given an initialization θ̃0 ∈ Ω, the iterates {θ̃t}∞t=0 generated by the Mk operator
satisfy the bound

‖θ̃t − θ?‖? ≤ κt‖θ̃0 − θ?‖? +
1

1− κϕ(k). (2.25)

Note that the subtlety here is that θ? is no longer a fixed point of the operator Mk, due
to the error induced by the kth-order truncation. Nonetheless, under the mixing condition,
as the bounds (2.24) and (2.25) show, this approximation error is controlled, and decays
exponentially in k. The proof of the recursive bound (2.25) is based on showing that

‖Mk(θ)−Mk(θ?)‖? ≤ κ‖θ − θ∗‖? (2.26)

for any θ ∈ Ω. Inequality (2.26) is equivalent to stating that the operator Mk is contractive,
i.e. that applying Mk to the pair θ and θ? always decreases the distance.

Finally, when Theorem 1 is applied to a concrete model, the task is to find a big r and Ωβ

such that the conditions in the theorem are satisfied, and we do so for the Gaussian output
HMM in Section 2.4.

Sample-based results

We now turn to a result that applies to the sample-based form of the Baum-Welch algorithm—
that is, corresponding to the updates that are actually applied in practice. For a tolerance
parameter δ ∈ (0, 1), we let ϕn(δ, k) be the smallest positive scalar such that

P
[

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖? ≥ ϕn(δ, k)
]
≤ δ. (2.27a)
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This quantity bounds the approximation error induced by the k-truncation, and is the
sample-based analogue of the quantity ϕ(k) appearing in Theorem 1(a). For each δ ∈ (0, 1),
we let εµn(δ, k) and εβn(δ, k) denote the smallest positive scalars such that

P
[

sup
θ∈Ω
‖Mµ,k

n (θ)−Mµ,k(θ)‖2 ≥ εµn(δ, k)
]
≤ δ, and (2.27b)

P
[

sup
θ∈Ω
‖Mβ,k

n (θ)−Mβ,k(θ)‖2 ≥ εβn(δ, k)
]
≤ δ,

where Mµ,k
n (·) and Mβ,k

n (·) correspond to the truncated versions of Mµ
n (·) and Mβ

n (·). Further-
more we define εn(δ, k) : = εµn(δ, k) + εβn(δ, k). For a given truncation level k, these values give
an upper bound on the difference between the population and sample-based M -operators, as
induced by having only a finite number n of samples.

Theorem 2 (Sample Baum-Welch). Suppose that the truncated population EM operator Mk

satisfies the local contraction bound (2.26) with parameter κ ∈ (0, 1) in Ω. For a given sample
size n, suppose that (k, n) are sufficiently large to ensure that

ϕn(δ, k) + ϕ(k) + εµn
(
δ, k
)
≤ (1− κ) r − κmax

β∈Ωβ
‖β − β∗‖2. (2.28a)

Then given any initialization θ̂0 ∈ Ω, with probability at least 1−2δ, the Baum-Welch sequence
{θ̂t}∞t=0 satisfies the bound

‖θ̂t − θ?‖? ≤ κt‖θ̂0 − θ?‖?︸ ︷︷ ︸
Geometric decay

+
1

1− κ
{
ϕn
(
δ, k
)

+ ϕ(k) + εn
(
δ, k
)}

︸ ︷︷ ︸
Residual error en

. (2.28b)

The bound (2.28b) shows that the distance between θ̂t and θ? is bounded by two terms:
the first decays geometrically as t increases, and the second term corresponds to a residual
error term that remains independent of t. Thus, by choosing the iteration number T larger
than log(2r/ε)

log κ
, we can ensure that the first term is at most ε. The residual error term can be

controlled by requiring that the sample size n is sufficiently large, and then choosing the
truncation level k appropriately. We provide a concrete illustration of this procedure in the
following section, where we analyze the case of Gaussian output HMMs. In particular, we
can see that the residual error is of the same order as for the MLE and that the required
initialization radius is optimal up to constants. Let us emphasize here that k as well as the
truncated operators are purely theoretical objects which were introduced for the analysis.

2.4 Concrete results for the Gaussian output HMM

We now return to the concrete example of a Gaussian output HMM, as first introduced
in Section 2.2, and specialize our general theory to it. Before doing so, let us make some
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preliminary comments about our notation and assumptions. Recall that our Gaussian output
HMM is based on s = 2 hidden states, using the transition matrix from equation (2.7), and
the Gaussian output densities from equation (2.8). For convenience of analysis, we let the
hidden variables Zi take values in {−1, 1}. In addition, we require that the mixing coefficient
ρmix = 1− εmix is bounded away from 1 in order to ensure that the mixing condition (2.3)
is fulfilled. We denote the upper bound for ρmix as b < 1 so that ρmix ≤ b and εmix ≥ 1− b.
The feasible set of the probability parameter ζ and its log odds analog β = 1

2
log
(

ζ
1−ζ

)
are

then given by

Ωζ =

{
ζ ∈ R | 1− b

2
≤ ζ ≤ 1 + b

2

}
, and Ωβ =

{
β ∈ R | |β| < 1

2
log
(1 + b

1− b
)

︸ ︷︷ ︸
βB

}
. (2.29)

Explicit form of Baum-Welch updates

We begin by deriving an explicit form of the Baum-Welch updates for this model. Using this
notation, the Baum-Welch updates take the form

µ̂t+1 =
1

n

n∑
i=1

(2p(Zi = 1 | xn1 ; θ̂t)− 1)xi, (2.30a)

ζ̂t+1 = ΠΩζ

(
1

n

n∑
i=1

∑
Zi

p(Zi = Zi+1 | xn1 ; θ̂t)

)
, and (2.30b)

β̂t+1 =
1

2
log
( ζ̂t+1

1− ζ̂t+1

)
, (2.30c)

where ΠΩζ denotes the Euclidean projection onto the set Ωζ . Note that the maximization
steps are carried out on the decomposed Q-functions Q1,n(· | θt), Q2,n(· | θt). In addition,
since we are dealing with a one-dimensional quantity β, the projection of the unconstrained
maximizer onto the interval Ωζ is equivalent to the constrained maximizer over the feasible
set Ωζ . This step is in general not valid for higher dimensional transition parameters.

Population and sample guarantees

We now use the results from Section 2.3 to show that the population and sample-based
version of the Baum-Welch updates are linearly convergent in a ball around θ∗ of fixed
radius. In establishing the population-level guarantee, the key conditions which need to
be fulfilled—and the one that are the most technically challenging to establish— are the
(Lµ, Lβ)-FOS conditions (2.21), (2.22). In particular, we want to show that these conditions
hold with Lipschitz constants Lµ, Lβ that decrease exponentially with the separation of the
mixtures. As a consequence, we obtain that for large enough separation L

λ
< 1, i.e. the EM

operator is contractive towards the true parameter.
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In order to ease notation, our explicit tracking of parameter dependence is limited to the
standard deviation σ and Euclidean norm ‖µ∗‖2, which together determine the signal-to-noise

ratio η2 : =
‖µ∗‖22
σ2 of the mixture model. Throughout this section, we therefore use c0, c1 to

denote universal constants and C0, C1 for quantities that do not depend on (‖µ∗‖2, σ), but
may depend on other parameters such as πmin, ρmix, b, and so on.

We begin by stating a result for the sequence {θ̃t}∞t=0 obtained by repeatedly applying the
k-truncated population-level Baum-Welch update operator Mk. Our first corollary establishes
that this sequence is linearly convergent, with a convergence rate κ = κ(η) that is given by

κ(η) : =
C1η

2(η2 + 1) e−c2η
2

1− b2
. (2.31)

Corollary 1 (Population Baum-Welch). Consider a two-state Gaussian output HMM that
is mixing (i.e. satisfies equation (2.3)), and with its SNR lower bounded as η2 ≥ C for

a sufficiently large constant C. Given the radius r = ‖µ∗‖2
4

, suppose that the truncation
parameter k is sufficiently large to ensure that ϕ(k) ≤ (1− κ)r− κmaxβ∈Ωβ ‖β − β∗‖2. Then

for any initialization θ̃0 = (µ̃0, β̃0) ∈ B2

(
r;µ∗

)
× Ωβ, the sequence {θ̃t}∞t=0 generated by Mk

satisfies the bound

‖θ̃t − θ∗‖? ≤ κt‖θ̃0 − θ∗‖? +
1

1− κϕ(k) (2.32)

for all iterations t = 1, 2, . . ..

From definition (2.31) it follows that as long as the signal-to-noise ratio η is larger than a
universal constant, the convergence rate κ(η) < 1. The bound (2.32) then ensures a type of
contraction and the pre-condition ϕ(k) ≤ (1− κ)r− κmaxβ∈Ωβ ‖β − β∗‖2 can be satisfied by
choosing the truncation parameter k large enough. If we use a finite truncation parameter
k, then the contraction occurs up to the error floor given by ϕ(k), which reflects the bias
introduced by truncating the likelihood to a window of size k. At the population level (in
which the effective sample size is infinite), we could take the limit k →∞ so as to eliminate
this bias. However, this is no longer possible in the finite sample setting, in which we must
necessarily have k � n. While large k give a better truncation approximation, it allows for
fewer samples which are “sufficiently independent” from each other within the sequence. We
can see in the proof of Corollary 2 that k % log n is a good choice to obtain an adequate
trade-off.

Corollary 2 (Sample Baum-Welch iterates). For a given tolerance δ ∈ (0, 1), suppose that
the sample size is lower bounded as n ≥ C1

‖µ∗‖22σ2 (η2 + 1)3d log8(d
δ
). Then under the conditions

of Corollary 1 and η2 ≥ C log 1
1−b2 , with probability at least 1− δ, we have

‖θ̃t − θ∗‖? ≤ κt‖θ̂0 − θ∗‖? +
C

σ

(
‖µ∗‖22
σ2 + 1

)3/2
√

d log8(n/δ)
n

1− κ . (2.33)
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Remarks: As a consequence of the bound (2.33), if we are given a sample size n % d log8 d,

then taking T ≈ log n iterations is guaranteed to return an estimate (µ̂T , β̂T ) with error of

the order

√
d log8(n)

n
.

In order to interpret this guarantee, note that in the case of symmetric Gaussian output
HMMs as in Section 2.4, standard techniques can be used to show that the minimax rate of

estimating µ∗ in Euclidean norm scales as
√

d
n
. If we could compute the MLE in polynomial

time, then its error would also exhibit this scaling. The significance of Corollary 2 is that it
shows that the Baum-Welch update achieves this minimax risk of estimation up to logarithmic
factors.

Moreover, it should be noted that the initialization radius given here is essentially optimal
up to constants. Because of the symmetric nature of the population log-likelihood, the all
zeroes vector is a stationary point. Consequently, the maximum Euclidean radius of any
basin of attraction for one of the observation parameters—that is, either µ∗ or −µ∗—can at
most be r = ‖µ∗‖2. Note that our initialization radius only differs from this maximal radius
by a small constant factor.

Simulations

In this section, we provide the results of simulations that confirm the accuracy of our
theoretical predictions for two-state Gaussian output HMMs. In all cases, we update the
estimates for the mean vector µ̂t+1 and transition probability ζ̂t+1 according to equation (2.30);
for convenience, we update ζ as opposed to β. The true parameters are denoted by µ∗ and
ζ∗.

In all simulations, we fix the mixing parameter to ρmix = 0.6, generate initial vectors µ̂0

randomly in a ball of radius r : = ‖µ∗‖2
4

around the true parameter µ∗, and set ζ̂0 = 1
2
. Finally,

the estimation error of the mean vector µ is computed as log10 ‖µ̂−µ∗‖2. Since the transition
parameter estimation errors behave similarly to the observation parameter in simulations, we
omit the corresponding figures here.

Figure 2.3 depicts the convergence behavior of the Baum-Welch updates, as assessed
in terms of both the optimization and the statistical error. Here we run the Baum-Welch
algorithm for a fixed sample sequence Xn

1 drawn from a model with SNR η2 = 1.5 and ζ = 0.2,

using different random initializations in the ball around µ∗ with radius ‖µ
∗‖2
4

. We denote the
final estimate of the i−th trial by µ̂i. The curves in blue depict the optimization error—that
is, the differences between the Baum-Welch iterates µ̂ti using the i-th initialization, and µ̂1.
On the other hand, the red lines represent the statistical error—that is, the distance of the
iterates from the true parameter µ∗.

For both family of curves, we observe linear convergence in the first few iterations until
an error floor is reached. The convergence of the statistical error aligns with the theoretical
prediction in upper bound (2.33) of Corollary 2. The (minimax-optimal) error floor in the
curve corresponds to the residual error and the en–region in Figure 2.1. In addition, the blue
optimization error curves show that for different initializations, the Baum-Welch algorithm
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Figure 2.3: Plot of the convergence of the optimization error log ‖µ̂ti − µ̂1‖2, plotted in blue,
and the statistical error log ‖µ̂ti − µ∗‖2, plotted in red, for 5 different initializations. The

parameter settings were d = 10, n = 1000, ρmix = 0.6 and SNR ‖µ∗‖2
σ

= 1.5. See the main
text for further details.

converges to different stationary points µ̂i; however, all of these points have roughly the same
distance from µ∗. This phenomenon highlights the importance of the change of perspective
in our analysis—that is, focusing on the true parameter as opposed to the MLE. Given the
presence of all these local optima in a small neighborhood of µ∗, the basin of attraction of
the MLE must necessarily be much smaller than the initialization radius guaranteed by our
theory.

Figure 2.4 shows how the convergence rate of the Baum-Welch algorithm depends on the
underlying SNR parameter η2; this behavior confirms the predictions given in Corollary 2.
Lines of the same color represent different random draws of parameters given a fix SNR.
Clearly, the convergence is linear for high SNR, and the rate decreases with decreasing SNR.

2.5 Proofs

In this section, we collect the proofs of our main results. In all cases, we provide the main
bodies of the proofs here, deferring the more technical details to the appendices.

Proof of Theorem 1

Throughout this proof, we make use of the shorthand ρ̃mix = 1− εmixπmin. Also we denote the
separate components of the population EM operators by M(θ) =: (Mµ(θ),Mβ(θ))T and their
truncated equivalents by Mk(θ) =: (Mµ,k(θ),Mβ,k(θ))T . We begin by proving the bound
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Figure 2.4: Plot of convergence behavior for different SNR, where for each curve, different
parameters were chosen. The parameter settings are d = 10, n = 1000 and ρmix = 0.6.

given in part (a). Since Q = limn→∞ E[Qn], we have

‖Q−Qk‖∞ = ‖ lim
n→∞

E[Qn]−Qk‖∞ ≤
Cs4

ε9mixπ
2
min

ρ̃kmix,

where we have exchanged the supremum and the limit before applying the bound (2.17). The
same holds for the separate functions Q1, Q2.

Using this bound and the fact that for Q1 we have Q1(Mµ(θ) | θ) ≥ Q1(Mµ,k(θ) | θ), we
find that

Q1(Mµ(θ) | θ) ≥ Qk
1(Mµ,k(θ) | θ)− Cs4

ε9mixπ
2
min

ρ̃kmix.

Since Mµ,k(θ) is optimal, the first-order conditions for optimality imply that

〈Qk
1(Mµ,k(θ) | θ), θ −Mµ,k(θ)〉 ≤ 0 for all θ ∈ Ω.

Combining this fact with strong concavity of Qk(·|θ) for all θ, we obtain

Cs4

ε9mixπ
2
min

ρ̃kmix ≥ Qk
1(Mµ,k(θ) | θ)−Q1(Mµ(θ) | θ)

≥ Qk
1(Mµ,k(θ) | θ)−Qk

1(Mµ(θ) | θ)− Cs4

ε9mixπ
2
min

ρ̃kmix

≥ λµ
2
‖Mµ(θ)−Mµ,k(θ)‖2

2 −
Cs4

ε9mixπ
2
min

ρ̃kmix
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and therefore ‖Mµ(θ) − Mµ,k(θ)‖2
2 ≤ 4 Cs4

λε9mixπ
2
min

ρ̃kmix. In particular, setting θ = θ∗ and

identifiability, i.e. Mµ(θ∗) = θ∗, yields

‖Mµ,k(θ∗)− θ∗‖2
2 ≤ 4

Cs4

λµε9mixπ
2
min

ρ̃kmix,

and the equivalent bound can be obtained for Mβ,k(·) which yields the claim.

We now turn to the proof of part (b). Let us suppose that the recursive bound (2.26)
holds, and use it to complete the proof of this claim. We first show that if µ̃t ∈ B2(r;µ∗), then
we must have µ̃t+1 ∈ B2(r;µ

∗) as well. Indeed, if µ̃t ∈ B2(r;µ
∗), then we have by triangle

inequality and contraction in (2.26)

‖Mµ,k(θ̃t)− µ∗‖2 ≤ ‖Mµ,k(θ̃t)−Mµ,k(θ∗)‖2 + ‖Mµ,k(θ∗)− µ∗‖2

≤ κ[‖µ̃t − µ∗‖2 + ‖β̃t − β∗‖2] + ϕ(k)

≤ κ(r + max
β∈Ωβ
‖β − β∗‖2) + ϕ(k) ≤ r,

where the final step uses the assumed bound on ϕ. For the joint parameter update we in
turn have

‖Mk(θ̃t)− θ∗‖? ≤ ‖Mk(θ̃t)−Mk(θ∗)‖? + ‖Mk(θ∗)− θ∗‖?
≤ κ‖θ̃t − θ∗‖? + ϕ(k). (2.34)

By repeatedly applying inequality (2.34) and summing the geometric series, the claimed
bound (2.25) follows.

It remains to prove the bound (2.26). Since the vector Mk(θ?) maximizes the function
θ 7→ Qk

1(θ | θ∗), we have the first-order optimality condition

〈∇Qk
1(Mµ,k(θ∗) | θ?), Mµ,k(θ)−Mµ,k(θ∗)〉 ≤ 0, valid for any θ.

Similarly, we have 〈∇Qk
1(Mµ,k(θ) | θ), Mµ,k(θ∗)−Mµ,k(θ)〉 ≤ 0, and adding together these

two inequalities yields

0 ≤ 〈∇Qk
1(Mµ,k(θ∗) | θ∗)−∇Qk

1(Mµ,k(θ) | θ), Mµ,k(θ∗)−Mµ,k(θ)〉
On the other hand, by the λ-strong concavity condition, we have

λµ‖Mµ,k(θ)−Mµ,k(θ∗)‖2
2 ≤ 〈∇Qk

1(Mµ,k(θ) | θ∗)−∇Qk
1(Mµ,k(θ∗) | θ?), Mµ,k(θ∗)−Mµ,k(θ)〉

Combining these two inequalities with the (Lµ, Lβ)-FOS condition yields

λµ‖Mµ,k(θ)−Mµ,k(θ∗)‖2
2 ≤ 〈∇Qk

1(Mµ,k(θ) | θ∗)−∇Qk
1(Mµ,k(θ) | θ), Mµ,k(θ∗)−Mµ,k(θ)〉

≤
[
Lµ1‖µ− µ∗‖2 + Lµ2‖β − β∗‖2

]
‖Mµ,k(θ)−Mµ,k(θ∗)‖2,

and similarly we obtain λβ‖Mβ,k(θ)−Mβ,k(θ∗)‖2 ≤
[
Lβ1‖µ− µ∗‖2 +Lβ2‖β − β∗‖2

]
. Adding

both inequalities yields the claim (2.26).
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Proof of Theorem 2

By the triangle inequality and inequality (2.34), we have with probability at least 1− 2δ that
for any iteration

‖θ̂t+1 − θ?‖? ≤ ‖Mn(θ̂t)−Mk
n(θ̂t)‖? + ‖Mk

n(θ̂t)−Mk(θ̂t)‖? + ‖Mk(θ̂t)− θ∗‖?
≤ ϕn(δ, k) + εn(δ, k) + κ‖θ̂t − θ?‖? + ϕ(k).

In order to see that the iterates do not leave B2

(
r;µ∗

)
, observe that

‖µ̂t+1 − µ∗‖2 ≤ ‖Mµ
n (θ̂t)−Mµ,k

n (θ̂t)‖2 + ‖Mµ,k
n (θ̂t)−Mµ,k(θ̂t)‖2 + ‖Mµ,k(θ̂t)− µ∗‖2

≤ ϕn(δ, k) + εµn(δ, k) + κ(‖µ̂t − µ∗‖2 + max
β∈Ωβ
‖β − β∗‖2) + ϕ(k). (2.35)

Consequently, as long as ‖µ̂t − µ∗‖2 ≤ r, we also have ‖µ̂t+1 − µ∗‖2 ≤ r whenever

ϕn(δ, k) + ϕ(k) + εµn(δ, k) ≤ (1− κ) r − κmax
β∈Ωβ
‖β − β∗‖2.

Combining inequality (2.35) with the equivalent bound for β, we obtain

‖θ̂t − θ∗‖? ≤ κ‖θ̂t−1 − θ∗‖? + ϕn(δ, k) + εn(δ, k) + ϕ(k)

Summing the geometric series yields the bound (2.28b).

Proof of Corollary 1

The boundedness condition (Assumption (2.16)) is easy to check since for X ∼ N(µ∗, σ2),
the quantity sup

µ∈B2(r;µ∗)

E
[

max{‖X − µ‖2, ‖X + µ‖2}
]

is finite for any choice of radius r <∞.

By Theorem 1, the k-truncated population EM iterates satisfy the bound

‖θ̃t − θ∗‖? ≤ κt‖θ̃0 − θ∗‖? +
1

1− κϕ(k), (2.36)

if the strong concavity (2.20) and FOS conditions (2.21), (2.22) hold with suitable parameters.
In the remainder of proof—and the bulk of the technical work— we show that:

• strong concavity holds with λµ = 1 and λβ ≥ 2
3
(1− b2);

• the FOS conditions hold with

Lµ,1 = c (η2 + 1)ϕ2(εmix)η2e−cη
2

, and Lµ,2 = c
√
‖µ∗‖2

2 + σ2ϕ2(εmix)η2e−cη
2

Lβ,1 = c
1− b
1 + b

ϕ2(εmix)η2e−cη
2

and Lβ,2 = c
√
‖µ∗‖2

2 + σ2ϕ2(εmix)η2e−cη
2

,

where ϕ2(εmix) : =
(

1
log(1/(1−εmix))

+ 1
εmix

)
. Substuting these choices into the bound (2.36) and

performing some algebra yields the claim.
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Establishing strong concavity

We first show concavity of Qk
1(· | θ′) and Qk

2(· | θ′) separately. For strong concavity of
Qk

1(· | θ′), observe that

Qk
1(µ | θ′) = −1

2
E
[
p(z0 = 1 | Xk

−k; θ
′)‖X0 − µ‖2

2 + (1− p(z0 = 1|Xk
−k; θ

′))‖X0 + µ‖2
2 + c]

]
,

where c is a quantity independent of µ. By inspection, this function is strongly concave in µ
with parameter λµ = 1.

On the other hand, we have

Qk
2(β | θ′) = EXk

−k|θ∗
∑
z0,z1

p(z0, z1 | Xk
−k; θ

′) log

(
eβz0z1

eβ + e−β

)
.

This function has second derivative ∂2

∂β2Q
k
2(β | θ′) = −4 e−2β

(e−2β+1)2
. As a function of β ∈ Ωβ,

this second derivative is maximized at β = 1
2

log
(

1+b
1−b

)
. Consequently, the function Qk

2(· | θ′)
is strongly concave with parameter λβ ≥ 2

3
(1− b2).

Separate FOS conditions

We now turn to proving that the FOS conditions in equations (2.21) and (2.22) hold. A key
ingredient in our proof is the fact that the conditional density p(zk−k | xk−k;µ, β) belongs to

the exponential family with parameters β ∈ R, and γi : = 〈µ, xi〉
σ2 ∈ R for i = −k, . . . , k which

define the vector γ = (γ−k, . . . , γk) (see [82] for more details on exponential families.) In
particular, we have

p(zk−k | xk−k, µ, β)︸ ︷︷ ︸
: =p(zk−k;γ,β)

= exp

{
k∑

`=−k

γ`z` + β
k−1∑
`=−k

z`z`+1 − Φ(γ, β)

}
, (2.37)

where the function h absorbs various coupling terms. Note that this exponential family is a
specific case of the following exponential family distribution

p̃(zk−k | xk−k, µ, β)︸ ︷︷ ︸
: =p̃(zk−k;γ,β)

= exp

{
k∑

`=−k

γ`z` +
k−1∑
`=−k

β`z`z`+1 − Φ(γ, β)

}
. (2.38)

The distribution in (2.37) corresponds to (2.38) with β` = β for all ` and the so-called
partition function Φ is given by

Φ(γ, β) = log
∑
z

exp

{
k∑

`=−k

γ`z` +
k−1∑
`=−k

β`z`z`+1

}
.
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The reason to view our distribution as a special case of the more general one in (2.38) becomes
clear when we consider the equivalence of expectations and the derivatives of the cumulant
function

∂Φ

∂γ`

∣∣∣∣
θ′

= EZk−k|xk−k,θ′Z` and
∂Φ

∂β0

∣∣∣∣
θ′

= EZk−k|xk−k,θ′Z0Z1, (2.39)

where we recall that EZk−k|xk−k,θ′ is the expectation with respect to the distribution p̃(Zk
−k |

xk−k;µ
′, β′) with β` = β′. Note that in the following any value θ′ for p̃ is taken to be on the

manifold on which β` = β′ for some β′ since this is the manifold the algorithm works on.
Also, as before, E denotes the expectation over the joint distribution of all samples X` drawn
according to p(·; θ∗), in this case Xk

−k.
Similarly to equations (2.39), the covariances of the sufficient statistics correspond to the

second derivatives of the cumulant function

∂2Φ

∂β`∂β0

∣∣∣∣
θ

= cov(Z0Z1, Z`Z`+1 | Xk
−k, θ) (2.40a)

∂2Φ

∂γ`∂γ0

∣∣∣∣
θ

= cov(Z0, Z` | Xk
−k, θ) (2.40b)

∂2Φ

∂β`∂γ0

∣∣∣∣
θ

= cov(Z0, Z`Z`+1 | Xk
−k, θ). (2.40c)

In the following, we adopt the shorthand

cov(Z`, Z`+1 | γ′, β′) = cov(Z`, Z`+1 | Xk
−k, θ

′)

= EZ`+1
` |Xk

−k,θ
′(Z` − EZ`+1

` |Xk
−k,θ

′Z`)(Z`+1 − EZ`+1
` |Xk

−k,θ
′Z`+1)

where the dependence on β is occasionally omitted so as to simplify notation.

Proof of inequality (2.21a)

By an application of the mean value theorem, we have

‖∇µQ
k
1(µ | µ′, β′)−∇µQ

k
1(µ | µ∗, β′)‖ ≤

∥∥∥∥∥E
k∑

`=−k

∂2Φ

∂γ`∂γ0

∣∣∣∣
θ=θ̃

(γ′` − γ∗` )X0

∥∥∥∥∥︸ ︷︷ ︸
T1

where θ̃ = θ′ + t(θ∗ − θ′) for some t ∈ (0, 1). Since second derivatives yield covariances (see
equation (2.40)), we can write

T1 =

∥∥∥∥∥
k∑

`=−k

EX0E
[
cov(Z0, Z` | γ̃)

〈µ′ − µ∗, X`〉
σ2

∣∣∣∣X0

]∥∥∥∥∥
2

,
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so that it suffices to control the expected conditional covariance. By the Cauchy-Schwarz
inequality and the fact that cov(X, Y ) ≤

√
varX

√
varY and var(Z0 | X) ≤ 1, we obtain the

following bound on the expected conditional covariance by using Lemma 4 (see Section 2.8)

E
[∣∣ cov(Z0, Z` | γ̃) | X0

∣∣] ≤√E [var(Z0 | γ̃) | X0]
√
E [var(Z` | γ̃) | X0]

≤
√

var(Z0 | γ̃0). (2.41a)

Furthermore, by Lemma 5 and 6 (see Section 2.8), we have

| cov(Z0, Z` | γ̃)| ≤ 2ρ`mix, and
∥∥E(var(Z0|γ̃0))1/2X0X

T
0

∥∥
op
≤ Ce−cη

2

. (2.41b)

From the definition of the operator norm, we have

‖E cov(Z0, Z` | γ̃)X0X
T
`

∥∥
op

= sup
‖u‖2=1
‖v‖2=1

E cov(Z0, Z` | γ̃)〈X0, v〉 〈X`, u〉

≤ sup
‖v‖2=1

E| cov(Z0, Z` | γ̃)|〈X0, v〉2

+ sup
‖u‖2=1

E| cov(Z0, Z` | γ̃)|〈X`, u〉2

= ‖EX0X
T
0 E
[
| cov(Z0, Z` | γ̃) | X0

]
‖op

+ ‖EX`X
T
` E
[

cov(Z0, Z` | γ̃) | X`

]
‖op

(i)

≤ 2 min{ρ|`|mix‖EX0X
T
0 ‖op, ‖E var(Z0 | γ̃0)1/2X0X

T
0 ‖op}

(ii)

≤ 2 min{(‖µ∗‖2
2 + σ2)ρ

|`|
mix, C

′e−cη
2}, (2.42)

where inequality (i) makes use of inequalities (2.41a) and (2.41b), and step (ii) makes use of
the second inequality in line (2.41b).

By inequality (2.42), we find that

T1 ≤
‖µ′ − µ∗‖2

σ2

k∑
`=−k

‖E cov(Z0, Z` | γ̃)X0X
T
`

∥∥
op

≤ 2
‖µ′ − µ∗‖2

σ2

k∑
`=−k

min{(‖µ∗‖2
2 + σ2)ρ

|`|
mix, Ce−cη

2}

≤ 4(η2 + 1)
(
mCe−cη

2

+
ρmmix

1− ρmix

)
‖µ′ − µ∗‖2.

where m = cη2

log(1/ρmix)
is the smallest integer such that ρmmix ≤ Ce−cη

2
The last inequality

follows from the proof of Corollary 1 in the paper [3] if η2 > C for some universal constant
C. We have thus shown that

‖∇µQ
k
1(µ | µ′, β′)−∇µQ

k
1(µ | µ∗, β′)‖ ≤ Lµ,1‖µ′ − µ∗‖2,

where Lµ,1 = c ϕ1(η)ϕ2(εmix)η2(η2 + 1)e−cη
2

as claimed.
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Proof of inequality (2.21b)

The same argument via the mean value theorem guarantees that

‖ ∂
∂β

Qk
2(β | µ′, β′)− ∂

∂β
Qk

2(β | µ′, β∗)‖ ≤
∥∥∥∥∥E

k∑
`=−k

∂2Φ

∂β`∂γ0

∣∣∣∣
θ=θ̃

(β′ − β∗)X0

∥∥∥∥∥
2

.

In order to bound this quantity, we again use the equivalence (2.40) and bound the expected
conditional covariance. Furthermore, Lemma 5 and 6 yield

cov(Z0, Z`Z`+1 | γ̃)
(i)

≤ 2ρ`mix and
∥∥E var(Z0 | γ̃0)X0X

T
0

∥∥
op

(ii)

≤ ce−cη
2

. (2.43)

Here inequality (ii) follows by combining inequality (2.54c) from Lemma 5 with the fact that
var(Z0 | γ̃0) ≤ 1.

‖EX0 cov(Z0, Z`Z`+1 | γ̃)‖2 = sup
‖u‖2=1

E〈X0, u〉 cov(Z0, Z`Z`+1 | γ̃)

≤ sup
‖u‖2=1

E|〈X0, u〉|E
[
| cov(Z0, Z`Z`+1 | γ̃)| | X0

]
(iii)

≤ sup
‖u‖2=1

E|〈X0, u〉|min{ρ|`|mix, (var(Z0 | γ̃0))1/2}

(iv)

≤ min{ sup
‖u‖2=1

√
E〈X0, u〉2ρ|`|mix, sup

‖u‖2=1

√
E〈X0, u〉2 var(Z0 | γ̃0))}

(v)

≤ min{ρ|`|mix

√
‖EX0XT

0 ‖op,
√
‖E var(Z0 | γ̃0)X0XT

0 ‖op}
(vi)

≤ min{ρ|`|mix

√
‖µ∗‖2

2 + σ2, Ce−cη
2}

where step (iii) uses inequality (2.43); step (iv) follows from the Cauchy-Schwarz inequality;
step (v) follows from the definition of the operator norm; and step (vi) uses inequality (2.43)
again.

Putting together the pieces, we find that∥∥∥∥∥E
k∑

`=−k

∂2Φ

∂β`∂γ0

X0

∥∥∥∥∥
2

|β′ − β∗| ≤
k∑

`=−k

‖EX0E[cov(Z0, Z`Z`+1 | γ̃) | X0]‖2 |β′ − β∗|

≤ 4
√
‖µ∗‖2

2 + σ2

(
cm e−cη

2

+
ρmmix

1− ρmix

)
|β′ − β∗|.

again with m = cη2

log(1/ρmix)
, we find that inequality (2.21b) holds with

Lµ,2 = cϕ2(εmix)
√
‖µ∗‖2 + σ2η2e−cη

2
, as claimed.
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Proof of inequality (2.22a)

By the same argument via the mean value theorem, we find that∥∥ ∂
∂β

Qk
2(β | β′, µ′)− ∂

∂β
Qk

2(β | β′, µ∗)
∥∥ ≤ ∣∣∣E k∑

`=−k

∂2Φ

∂γ`∂β0

∣∣∣∣
θ=θ̃

〈µ′ − µ∗, X`〉
σ2

∣∣∣.
Equation (2.40) guarantees that ∂2Φ

∂γ`∂β0
= cov(Z0Z1, Z` | γ). Therefore, by similar arguments

as in the proof of inequalities (2.21), we have

T : =
∣∣∣ k∑
`=−k

E〈µ′ − µ∗, X`〉E[cov(Z0Z1, Z` | γ̃`, β′)|X`]
∣∣∣

≤
∣∣∣ k∑
`=−k

E|〈µ′ − µ∗, X`〉|min{ρ|`|mix, (var(Z` | γ̃`, β′))1/2}
∣∣∣

≤
∣∣∣ k∑
`=−k

min
{
ρ
|`|
mix,

√
E var(Z` | γ̃`, β′)

}√
E〈µ′ − µ∗, X`〉2

∣∣∣
≤
√
‖µ∗‖2

2 + σ2
(
mc e−cη

2

+ 2
k∑

`=m+1

ρ`mix

)
.

where we have used inequality (2.54b) from Lemma 6. Finally, again noting that m = cη2

log(1/ρmix)

yields that the FOS condition holds with Lβ,2 = c
√
‖µ∗‖2 + σ2ϕ2(εmix)η2e−cη

2
, as claimed.

Proof of inequality (2.22b)

By the same mean value argument, we find that

‖ ∂
∂β

Qk
2(β | β′, µ′)− ∂

∂β
Qk

2(β | β∗, µ′)
∥∥ ≤ ∣∣∣E k∑

`=−k

∂2Φ

∂β`∂β0

∣∣∣∣
θ=θ̃

(β′ − β∗)
∣∣∣.

By the exponential family view in equality (2.40) it suffices to control the expected conditional
covariance. Lemma 5 and 6 guarantee that

| cov(Z0Z1, Z`Z`+1 | Xk
−k, γ̃)| ≤ ρ

|`|
mix, and E var(Z0Z1 | γ̃1

0 , β̃) ≤ c
1 + b

1− b e−cη
2

. (2.44)

Furthermore, the Cauchy-Schwarz inequality combined with the bound (2.53a) from Lemma 4
yields

E
∣∣ cov(Z0Z1, Z`Z`+1 | γ̃)

∣∣ ≤√E var(Z0Z1 | γ̃, β̃)

√
E var(Z`Z`+1 | γ̃, β̃)

≤
√
E var(Z0Z1 | γ̃1

0 , β̃)

√
E var(Z`Z`+1 | γ̃`+1

` , β̃)

≤ E var(Z0Z1 | γ̃1
0 , β̃). (2.45)



CHAPTER 2. GUARANTEES FOR THE BAUM-WELCH ALGORITHM 33

Combining the bounds (2.44) and (2.45) yields∣∣∣∣∣
k∑

`=−k

E
∂2Φ

∂β`∂β0

(β′ − β∗)
∣∣∣∣∣ ≤

k∑
`=−k

∣∣E cov(Z0Z1, Z`Z`+1 | γ̃k−k, β̃)
∣∣ |β′ − β∗|

≤
k∑

`=−k

min
{
ρ
|`|
mix,E var(Z0Z1 | γ̃1

0 , β̃)
}
|β′ − β∗|

≤ 2

(
c
1 + b

1− b me−cη
2

+
k∑

l=m+1

ρ`mix

)
|β′ − β∗|

≤ 2c
1 + b

1− bϕ2(εmix)η2e−cη
2|β′ − β∗|

where the final inequality follows by setting m = cη2

log(1/ρmix)
. Therefore, the FOS condition

holds with Lβ,1 = c1−b
1+b

ϕ2(εmix)η2e−cη
2
, as claimed.

Proof of Corollary 2

In order to prove this corollary, it is again convenient to separate the updates on the mean
vectors µ from those applied to the transition parameter β. Recall the definitions of ϕ, ϕn
and εn from equations (2.24) and (2.27a) respectively, as well as ρ̃mix = 1− εmixπmin.

Using Theorem 2 we readily have that given any initialization θ̂0 ∈ Ω, with probability at
least 1− 2δ, we are guaranteed that

‖θ̂T − θ∗‖? ≤ κT‖θ̂0 − θ∗‖? +
ϕn(δ, k) + εn(δ, k) + ϕ(k)

1− κ . (2.46)

In order to leverage the bound (2.46), we need to find appropriate upper bounds on the
quantities ϕn(δ, k), εn(δ, k).

Lemma 1. Suppose that the truncation level satisifes the lower bound

k ≥ log

(
Cεn

δ

) (
log

1

ρ̃mix

)−1

where Cε : = C
ε3mixπ

3
min

. (2.47a)

Then, when the number of observations n satifies the lower bound in the assumptions of the
corollary and the radius is chosen to be r = ‖µ∗‖2

4
, we have

εµn
(
δ, k
)
≤ C0

1

σ

(‖µ∗‖2
2

σ2
+ 1
)3/2

log(k2/δ)

√
k3d log n

n
, and (2.47b)

εβn
(
δ, k
)
≤ C0

1

σ

√
‖µ∗‖2

2

σ2
+ 1

√
k3 log(k2/δ)

n
. (2.47c)
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Lemma 2. Suppose that 1
2

log
(
Cεn/δ)

log(1/ρ̃mix)
≤ k ≤ C

log
(
Cεn/δ)

log(1/ρ̃mix)
with C > 1. Then by choosing

r = ‖µ∗‖2
4

and C1 large enough, we have

ϕn(δ, k) ≤ C1

{√d log2(Cεn/δ)

σn
+

√
‖µ∗‖2

σ

log2(Cεn/δ)

n
+
‖µ∗‖2

σ

√
δ

n

}
. (2.48)

See Appendices 2.9 and 2.9, respectively, for the proofs of these two lemmas.

Note that the set for which k simultaneously satisfies the conditions in Lemma 1 and 2 is
nonempty. Furtheremore, the choice of k is made purely for analysis purposes – it does not
have any consequence on the Using these two lemmas, we can now complete the proof of the
corollary. From the definition (2.31) of κ, under the stated lower bound on η2, we can ensure
that κ ≤ 1

2
. Under this condition, inequality (2.28a) with r = ‖µ∗‖2/4 reduces to showing

that

ϕn(δ, k) + εµn(δ, k) + ϕ(k) ≤ ‖µ
∗‖2

8
. (2.49)

Now any choice of k satisfying both conditions in Lemmas 1 and 2 guarantees that

ϕn(δ, k) + εµn(δ, k) + εβn(δ, k) + ϕ(k) ≤ C

σ
(
‖µ∗‖2

2

σ2
+ 1)3/2

√
d log8(n/δ)

n
. (2.50)

Furthermore, as long as n ≥ C1

‖µ∗‖22σ2 (η2 + 1)3d log8(d/δ) for a sufficiently large C1, we are

guaranteed that the bound (2.49) holds. Substituting the bound (2.50) into inequality (2.46)
completes the proof of the corollary.

2.6 Discussion

In this chapter, we provided general global convergence guarantees for the Baum-Welch
algorithm as well as specific results for a hidden Markov mixture of two isotropic Gaussians.
In contrast to the classical perspective of focusing on the MLE, we focused on bounding
the distance between the Baum-Welch iterates and the true parameter. Under suitable
regularity conditions, our theory guarantees that the iterates converge to an en-ball of the
true parameter, where en represents a form of statistical error. It is important to note that our
theory does not guarantee convergence to the MLE itself, but rather to a ball that contains
the true parameter, and asymptotically the MLE as well. When applied to the Gaussian
mixture HMM, we proved that the Baum-Welch algorithm achieves estimation error that is
minimax optimal up to logarithmic factors. To the best of our knowledge, these are the first
rigorous guarantees for the Baum-Welch algorithm that allow for a large initialization radius.
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2.7 Proof of Proposition 2.3.1

In order to show that the limit limn→∞ EQn(θ | θ′) exists, it suffices to show that the
sequence of functions {EQ1,EQ2, . . . ,EQn} is Cauchy in the sup-norm (as defined previously
in equation (2.15)). In particular, it suffices to show that for every ε > 0 there is a positive
integer N(ε) such that for m,n ≥ N(ε),

‖EQm − EQn‖∞ ≤ ε.

In order to do so, we make use of the previously stated bound (2.17) relating EQn to Qk.
Taking this bound as given for the moment, an application of the triangle inequality yields

‖EQm − EQn‖∞ ≤ ‖EQm −Qk‖∞ + ‖EQn −Qk‖∞ ≤ ε,

the final inequality follows as long as we choose N(ε) and k large enough (roughly proportional
to log(1/ε)).

It remains to prove the claim (2.17). In order to do so, we require an auxiliary lemma:

Lemma 3 (Approximation by truncation). For a Markov chain satisfying the mixing condi-
tion (2.3), we have

sup
θ′∈Ω

sup
x

∑
zi

|p(zi | xn1 ; θ′)− p(zi | xi+ki−k; θ
′)| ≤ Cs2

ε8mixπmin

(
1− εmixπmin

)min{i,n−i,k}
(2.51)

for all i ∈ [0, n], where πmin = minj∈[s],β∈Ωβ π(j; β).

See Section 2.10 for the proof of this lemma.

Using Lemma 3, let us now prove the claim (2.17). Introducing the shorthand notation

h(Xi, zi, θ, θ
′) : = log p(Xi | zi; θ) +

∑
zi−1

p(zi | zi−1; θ′) log p(zi|zi−1, θ),
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we can verify by applying Lemma 3 that

‖EQn −Qk‖∞ (2.52)

=
∣∣∣ sup
θ,θ′

1

n

n∑
i=1

∑
zi

E(p(zi | Xn
1 , θ

′)− p(zi | X i+k
i−k , θ

′))h(Xi, zi, θ, θ
′)
∣∣∣

+
∣∣∣ 1
n

sup
θ,θ′

E
∑
z0

p(z0 | Xn
1 , θ

′) log p(z0; θ)
∣∣∣

≤ sup
θ,θ′

1

n

n∑
i=1

∑
zi

sup
x

∣∣p(zi | xn1 , θ′)− p(zi | xi+ki−k, θ
′)
∣∣ E |h(Xi, zi, θ, θ

′)|+ 1

n
log π−1

min

≤ Cs3

ε8mixπminn

(
2

k∑
i=1

(1− εmixπmin)i + (n− 2k)(1− εmixπmin)k
) [

max
zi∈[s]

E|h(Xi, zi, θ, θ
′)|
]

+
1

n
log π−1

min

≤ Cs3

ε8mixπmin

( 2

nεmixπmin

+
n− 2k

n
(1− εmixπmin)k

) [
max
zi∈[s]

E|h(Xi, zi, θ, θ
′)|
]

+
1

n
log π−1

min

≤ C s4

ε9mixπ
2
min

(
1− εmixπmin

)k
+

1

n

(
log π−1

min +
Cs4

ε10
mixπ

3
min

)
,

using the crude bound

max
zi∈[s]

E|h(Xi, zi, θ, θ
′)| ≤ Emax

zi∈[s]

∣∣ log p(Xi | zi, θ)
∣∣+ s log(πminεmix)−1 ≤ Cs

πminεmix

.

which uses condition (2.16) and where C denotes generic constants which are potentially
different each time they appear.

2.8 Technical details for Corollary 1

In this section, we collect some auxiliary bounds on conditional covariances in hidden Markov
models. These results are used in the proof of Corollary 1.

Lemma 4. For any HMM with observed-hidden states (Xi, Zi), we have

E
[
var(Z0Z1 | Xk

−k)
]
≤ E var(Z0Z1 | X1

0 ) (2.53a)

E
[
var(Z0 | Xk

−k) | X0

]
≤ var(Z0 | X0) (2.53b)

where we have omitted the dependence on the parameters.

Proof. We use the law of total variance, which guarantees that varZ = E
[

var(Z | X)
]

+
varE[Z | X]. Using this decomposition, we have

E[var(Z0 | X1
0 ) | X0] ≤ var(Z0 | X0)

E[var(Z0Z1 | X2
0 ) | X1

0 ] ≤ var(Z0Z1 | X1
0 ).

The result then follows by induction.
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We now show that the expected conditional variance of the hidden state (or pairs thereof)
conditioned on the corresponding observation (pairs of observations) decays exponentially
with the SNR.

Lemma 5. For a 2-state Markov chain with true parameter θ∗, we have for µ ∈ B2

(‖µ∗‖2
4

;µ∗
)

and β ∈ Ωβ ∥∥EX0X
T
0 (var(Z0 | γ0, β))1/2

∥∥
op
≤ c0 e−cη

2

(2.54a)

E var(Z` | γ`, β) ≤ c0 e−cη
2

(2.54b)

E var(Z0Z1 | γ1
0 , β) ≤ c0

1 + b

1− b e−cη
2

. (2.54c)

Proof. By definition of the Gaussian HMM example, we have var(Zi | γi) = 4
(eγi+e−γi )2

. More-

over, following the proof of Corollary 1 in the paper [3], we are guaranteed that E var(Zi | γi) ≤
8e−

η2

32 and ‖EXiX
T
i (var(Zi|γi))1/2‖op ≤ c0e−

η2

32 , from which inequalities (2.54a) and (2.54b)
follow.

We now prove inequality (2.54c) for β ∈ Ωβ and µ ∈ B2

(‖µ∗‖2
4

;µ∗
)
. Note that

1

4
var(Z0Z1 | γ1

0 , β) =
e2γ1 + e−2γ1 + e2γ0 + e−2γ0

[eβ(eγ0+γ1 + e−(γ0+γ1)) + e−β(eγ0−γ1 + e−(γ0−γ1))]
2

≤ e2|β| e2γ1 + e−2γ1 + e2γ0 + e−2γ0

(eγ0+γ1 + e−(γ0+γ1) + eγ0−γ1 + e−(γ0−γ1))2

≤
(

1 + b

1− b

)[
e|γ0|

e2γ0 + e−2γ0
+

e|γ1|

e2γ1 + e−2γ1

]
where γ are now random variables and we used

(eγ0+γ1 + e−(γ0+γ1) + eγ0−γ1 + e−(γ0−γ1))2

≥ e−|γ0|(e−γ0 + eγ0)(e2γ1 + e−2γ1) + e−|γ1|(e−γ1 + eγ1)(e2γ0 + e−2γ0)

≥ (e−|γ0| + e−|γ1|)(e2γ0 + e−2γ0)(e2γ1 + e−2γ1).

It directly follows that

1

4
E var(Z0Z1 | γ1

0 , β) ≤ 2

(
1 + b

1− b

)
E
[

1

eγ0 + e−3γ0
1γ0≥0 +

1

e3γ0 + e−γ0
1γ0≤0

]
≤ 2

(
1 + b

1− b

)
(E[e−γ01γ0≥0] + E[eγ01γ0≤0])

≤ 4

(
1 + b

1− b

)
E[e−γ01γ0≥0]
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where the last inequality follows from symmetry of the random variables Xi. One can then
bound

E[e−γ01γ0≥0] = E e−
‖µ‖2V1
σ2 1V1≥0 ≤ 2e−

η2

32

by employing a similar procedure as in the proof of Corollary 1 in [3]. Inequality (2.54c) then
follows.

The last lemma provides rigorous confirmation of the intuition that the covariance between
any pair of hidden states should decay exponentially in their separation `:

Lemma 6. For a 2-state Markov chain with mixing coefficient εmix and uniform stationary
distribution, we have

max
{

cov(Z0, Z` | γ), cov(Z0Z1, Z`Z`+1 | γ), cov(Z0, Z`Z`+1 | γ)
}
≤ 2ρ`mix (2.55)

with ρmix = 1− εmix for all θ ∈ Ω.

Lemma 6 is a mixing result and its proof is found in Section 2.10.

2.9 Technical details for Corollary 2

In this section we prove Lemmas 1 and 2. In order to do so, we leverage the independent
blocks approach used in the analysis of dependent data (see, for instance, the papers [91, 59]).
For future reference, we state here an auxiliary lemma that plays an important role in both
proofs.

Let {Xi}∞i=−∞ be a sequence sampled from a Markov chain with mixing rate ρmix = 1−εmix,
πmin be the minimum entry of the stationary distribution and ρ̃mix = 1 − εmixπmin. Given
some functions f1 : R2k → Rd and f2 : R→ Rd in some function class F1,F2 respectively, our
goal is to control the difference between the functions

g1(X) : =
1

n

n∑
i=1

f1(X i+k
i−k ), g2(X) : =

1

n

n∑
i=1

f2(Xi) (2.56a)

and their expectation. Defining m1 : = bn/4kc and m2 : = bn/kc, we say that f1 respectively
f2 is (δ, k)-concentrated if

P
[

sup
f∈F1

‖ 1

m1

m1∑
i=1

f1(X̃i;2k)− Ef1(X̃1;2k)‖2 ≥ ε
]
≤ δ

8k
, (2.56b)

P
[

sup
f∈F2

‖ 1

m2

m2∑
i=1

f2(X̃i)− Ef2(X̃1)‖2 ≥ ε
]
≤ δ

2k

where {X̃i;2k}i∈N are a collection of i.i.d. sequences of length 2k drawn from the same Markov

chain and {X̃i}i∈N a collection of i.i.d. variables drawn from the same stationary distribution.

In our notation, {X̃i;2k}i∈N under P are identically distributed as {Xi;2k}i∈N under P0.
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Lemma 7. Consider functions f1, f2 that are (δ, k)-concentrated (2.56b) for a truncation

parameter k ≥ log
(

Cn
π3
minε

3
mixδ

)
(log 1

ρ̃mix
)−1. Then the averaged functions g1, g2 from equa-

tion (2.56a) satisfy the bounds

P
[

sup
g∈F1

‖g1(X)− Eg1(X)‖2 ≥ ε
]
≤ δ and P

[
sup
g∈F2

‖g2(X)− Eg2(X)‖2 ≥ ε
]
≤ δ. (2.57)

Proof. We prove the lemma for functions of the type (f1, g1); the proof for the case (f2, g2)
is very similar. In order to simplify notation, we assume throughout the proof that the
effective sample size n is a multiple of 4k, so that the block size m = n

4k
is integral. By

definition (2.56a), the function g is a function of the sequences {X1+k
1−k , X

2+k
2−k , . . . , X

n+k
n−k}. We

begin by dividing these sequences into blocks. Let us define the subsets of indices

Hj
i = {4k(i− 1) + k + j | 4k(i− 1) + 3k + j}, and

Rj
i = {4k(i− 1)− k + j | 4k(i− 1) + k − 1 + j}.

With this notation, we have the decomposition

g(X) =
1

2


1

2k

2k∑
j=1

1

m

m∑
i=1

f(XHj
i
)︸ ︷︷ ︸

gH
j
(X)

+
1

2k

2k∑
j=1

1

m

m∑
i=1

f(XRji
)︸ ︷︷ ︸

gR
j
(X)

 ,

from which we find that

P
[

sup
g∈F
‖g(X)− Eg(X)‖2 ≤ ε

]
≥ P

( 2k⋂
j=1

{sup
g∈F
‖gHj

(X)− Eg(X)‖2 ≤ ε}

∩ {sup
g∈F
‖gRj(X)− Eg(X)‖2 ≤ ε}

)
(i)

≥ 1− 4k P(sup
g∈F
‖gH1

(X)− Eg(X)‖2 ≥ ε),

where (i) follows using stationarity of the underlying sequence combined with the union
bound.

In order to bound the probability P
[
‖gH1

(X)−Eg(X)‖2 ≥ ε
]
, it is convenient to relate it to

the probability of the same event under the product measure P0 on the blocks {H1
1 , . . . , H

1
m}.

In particular, we have P(‖gH1
(X)− Eg(X)‖2 ≥ ε) ≤ T1 + T2, where

T1 : = P0(‖gH1

(X)− Eg(X)‖2 ≥ ε), and

T2 : = |P(‖gH1

(X)− Eg(X)‖2 ≥ ε)− P0(‖gH1

(X)− Eg(X)‖2 ≥ ε)|.



CHAPTER 2. GUARANTEES FOR THE BAUM-WELCH ALGORITHM 40

By our assumed concentration (2.56b), we have T1 ≤ δ
8k

, and so it remains to show that
T2 ≤ δ

8k
.

Now following standard arguments (e.g., see the papers [59, 91]), we first define

β(k) = sup
A∈σ(S0−∞,S∞k )

|P(A)− P0
−∞ × P∞1 (A)|, (2.58)

where S0
−∞ and S∞k are the σ-algebras generated by the random vector X0

−∞ and X∞k
respectively, and P0

−∞ × P∞1 is the product measure under which the sequences X0
−∞ and

X∞1 are independent. Define Si to be the σ-algebra generated by XHj
i

for i = {1, . . . ,m}; it

then follows by induction that supA∈σ(S1,...,Sm) |P(A)− P0(A)| ≤ mβ(k). An identical relation

holds over the blocks Rj
i .

For our two-state HMM, Lemma 12 implies that

β(k) = |p(x)− p(x∞k )p(x0
−∞)| ≤ |p(x0

−∞ | xnk)− p(x0
−∞)|

≤ |p(z0 | xnk)− p(z0)|
(i)

≤ 3

π3
minε

3
mix

ρkmix =
3

π3
minε

3
mix

e−k log(1/ρmix), (2.59)

where step (i) follows from inequality (2.73). From our assumed lower bound on k, we
conclude that mβ(k) ≤ δ

8k
, which completes the proof.

In the following sections we apply it in order to prove the bounds on the approximation and
sample error of the M -operators.

Proof of Lemma 1

We prove each of the two inequalities in equations (2.47b) and (2.47c) in turn by using
suitable choices of the function f in Lemma 7. Throughout, note that our function class is
parameterized and f ∈ F is equivalent to θ ∈ Ω = B2(r;µ∗)× Ωβ.

Proof of inequality (2.47b): We use the notation from the proof of Lemma 7 and fur-
thermore define the weights wθ(X

i+k−1
i−k ) = p(Zi = 1 | X i+k−1

i−k , θ), as well as the function

f0(X i+k−1
i−k , θ′) = (2wθ′(X

i+k−1
i−k )− 1)Xi. It is then possible to write the EM operator explicitly

as the average

Mµ,k
n (θ′) = arg max

µ∈Ω̃

1

n

[ n∑
i=1

EZi|Xi+k
i−k ,θ

′ log p(Xi | Zi, µ)
]

=
1

n

n∑
i=1

f0(X i+k−1
i−k , θ′).

We are now ready to apply Lemma 7 with the choices f1 = f0, g1(X) = Mµ,k
n (θ). According

to Lemma 7, given that the lower bound on the truncation parameter k holds, we now need
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to show that f0 is (δ, k)-concentrated, that means finding εµn such that

P0

[
sup
θ∈Ω

∥∥ 1

m

m∑
i=1

f0(X̃i;2k, θ
′)− Ef0(X̃i;2k, θ

′)
∥∥

2
≥ εµn

]
≤ δ

8k
,

where P0 denotes the product measure over the independent blocks and m : = m1 = bn/4kc.
Let Xi be the middle element of the (i.i.d. drawn) sequence X̃i;2k and Zi, Vi the corre-

sponding latent and noise variable. We can then write Xi = Zi + Vi where Vi are zero-mean
Gaussian random variables with covariance matrix σ2I.

With a minor abuse of notation, let us use Xi,` to denote `th element in the block

X̃i;2k = (Xi,1, . . . , Xi,2k)
T , and write X̃ = {X̃i;2k}ni=1. In view of Lemma 7, our objective is to

find the smallest scalar εµn such that

P
[

sup
θ∈Ω
‖ 1

m

m∑
i=1

(2wθ(X̃i;2k)− 1)Xi,k − E(2wθ(X̃i;2k)− 1)Xi,k︸ ︷︷ ︸
fθ(X̃i;2k)

‖2 ≥ εµn
]
≤ δ

8k
(2.60)

For each unit norm vector u ∈ Rd, define the random variable

Ṽm(X̃;u) = sup
θ∈Ω

1

m

m∑
i=1

(2wθ(X̃i;2k)− 1)〈Xi,k, u〉 − E(2wθ(X̃i;2k)− 1)〈Xi,k, u〉.

Let {u(1), . . . , u(T )} denote a 1/2-cover of the unit sphere in Rd; by standard arguments, we
can find such a set with cardinality log T ≤ d log 5. Using this covering, we have

sup
θ∈Ω
‖ 1

m

m∑
i=1

fθ(X̃i;2k)‖2 = sup
‖u‖2≤1

Ṽm(X̃;u) ≤ 2 max
j∈[T ]

Ṽm(X̃;u(j)),

where the inequality follows by a discretization argument. Consequently, we have

P
[

sup
θ∈Ω
‖ 1

m

m∑
i=1

fθ(X̃i;2k)‖2 ≥ εµn
]
≤ P

[
max
j∈[T ]

Ṽm(X̃;u(j)) ≥ εµn
2

]
≤ T max

j∈[T ]
P
[
Ṽm(X̃;u(j)) ≥ εµn

2

]
.

The remainder of our analysis focuses on bounding the tail probability for a fixed unit
vector u, in particular ensuring an exponent small enough to cancel the T ≤ ed log 5 pre-factor.
By Lemma 2.3.7 of [74], for any t > 0, we have

PX
[
Ṽm(X̃;u) ≥ t

]
≤ cPX,ε

[
Vm(X̃;u) ≥ t

4

]
,

where Vm(X̃;u) = supθ∈Ω

∣∣ 1
m

∑m
i=1 εi(2wθ(X̃i;2k) − 1)〈Xi,k, u〉

∣∣, and {εi}mi=1 is a sequence of
i.i.d. Rademacher variables.

We now require a sequence of technical lemmas; see Section 2.9 for their proofs. Our first
lemma shows that the variable Vm(X̃;u), viewed as a function of the Rademacher sequence,
is concentrated:
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Lemma 8. For any fixed (X̃, u), we have

Pε
[
Vm(X̃;u) ≥ EεVm(X̃;u) + t

]
≤ 2e

− t2

16L2
m(X̃;u) , (2.61)

where Lm(X̃;u) = 1
m

√∑m
i=1〈Xi,k, u〉2.

Our next lemma bounds the expectation with respect to the Rademacher random vector:

Lemma 9. There exists a universal constant c such that for each fixed (X̃;u), we have

EεVm(X̃;u) ≤ c
‖µ∗‖2

σ2

√
logm

[ 2k∑
`=1

Eε̃‖
1

m

m∑
i=1

ε̃i,`Xi,`〈Xi,k, u〉‖2

]
︸ ︷︷ ︸

Mm(X̃;u)

+Eg
∣∣ 1

m

m∑
i=1

gi,2k+1〈Xi,k, u〉
∣∣

︸ ︷︷ ︸
Nm(X̃;u)

(2.62)

where ε, ε̃ ∈ Rm are random vectors with i.i.d. Rademacher components, and g is a random
vector with i.i.d. N (0, 1) components.

We now bound the three quantities Lm(X̃;u), Mm(X̃;u), and Nm(X̃;u) appearing in the

previous two lemmas. In particular, let us introduce the quantities L′ = cL‖µ∗‖2

(‖µ∗‖22
σ2 + 1

)
,

L′′ = L
√
‖µ∗‖2

2 + σ2 and L =
√

8
1−ρmix

.

Lemma 10. Define the event

E =

{
Lm(X̃;u) ≤ c̃

√
2(‖µ∗‖2

2 + σ2) log 1
δ

m
, Mm(X̃;u) ≤ L′k

√
d logm log k

δ

m

and Nm(X̃;u) ≤ cL′′

√
d log 1

δ

m

}
.

Then we have P
[
E
]
≥ 1− e−c

′ d log 1
δ for m > d and a universal constant c′ > 0 which increases

with the constants c in L′, Nm and c̃ in Lm.

In conjunction, Lemmas 8 and 9 imply that conditionally on the event E , we have

Eε
[
Vm(X̃;u)

]
≤ c
√
‖µ∗‖2

2 + σ2(
‖µ∗‖2

2

σ2
+ 1)k

√
d logm log k

δ

m
.

Note that by assumption on n we also have m ≥ d so that we can combine this bound with
Lemma 10 which yields

T PX
[
Ṽm(X̃;u) ≥ t

]
≤ T PX,ε

[
Vm(X̃;u) ≥ t

4
| E
]

+ T P
[
Ec
]

≤ 2e4d−
(
c
c̃

)2
k2d logm log k

δ + δe4d−c′d

≤ δ,
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where the second inequality follows by setting t/4 = c‖µ∗‖2(
‖µ∗‖22
σ2 + 1)k log(k

δ
)
√

d logm
m

and the

final inequality holds for c′, c and c̃ big enough. After rescaling δ by 8k and setting m = n
4k

,
the result follows after an application of Lemma 7.

Proof of inequality (2.47c): In order to bound |Mβ,k
n (θ)−Mβ,k(θ)|, we need a few extra

steps. First, let us define new weights

vθ(X
i+k−1
i−k ) = p(Z0 = Z1 = 1 | X i+k−1

i−k , θ) + p(Z0 = Z1 = −1 | X i+k−1
i−k , θ),

and also write the update in the form

Mβ,k
n (θ) = arg max

ζ∈Ωζ

{
EZ1|Xi+k

i−k ,θ
log p(Z1 | ζ) +

n∑
i=2

EZii−1|X
i+k
i−k ,θ

log p(Zi | Zi−1, ζ)
}

= arg max
ζ∈Ωζ

{1

2
+

n∑
i=2

EZii−1|X
i+k
i−k ,θ

log p(Zi | Zi−1, ζ)
}

= ΠΩζ

( 1

n

n∑
i=2

vθ(X
i+k−1
i−k )

)
,

where we have reparameterized the transition probabilities with ζ via the equivalences

β = h(ζ) : = 1
2

log
(

ζ
1−ζ

)
. Note that the original EM operator is obtained via the transfor-

mation Mβ,k
n (θ′) = h(Mβ,k

n (θ′)) and we have Mβ,k(θ) = ΠΩζEvθ(X
i+k−1
i−k ) by definition.

Given this set-up, we can now pursue an argument similar to that of inequality (2.47b).
The new weights remain Lipschitz with the same constant—that is, we have the bound
|vθ(X̃i;2k)− vθ′(X̃i;2k)| ≤ L‖θ̃i − θ̃′i‖2. As a consequence, we can write

P
[

sup
θ∈Ω
| 1

m

m∑
i=1

vθ(X̃i;2k)− Evθ(X̃i;2k)| ≥ εβn
]
≤ δ

8k
,

with εβn defined as in the lemma statement. In this case, it is not necessary to perform the
covering step, nor to introduce extra Rademacher variables after the Gaussian comparison
step; consequently, the two constants εβn and εµn differ by a factor of

√
d log n modulo constants.

Applying Lemma 7 then yields a tail bound for the quantity
∣∣ 1
n

∑n
i=1 vθ(X̃i;2k)−Evθ(X̃i;2k)

∣∣
with probability δ. Since projection onto a convex set only decreases the distance, we find
that

P

[
|Mβ,k

n (θ)−Mβ,k(θ)| ≥ C

√
‖µ∗‖2

2 + σ2

σ2

√
k3 log(k2/δ)

n

]
≤ δ.

In order to prove the result, the last step needed is the fact that

1

2

∣∣∣ log
x

1− x − log
y

1− y
∣∣∣ ≤ 1

x̃(1− x̃)
|x− y| ≤ 2

1− b2
|x− y| =: L|x− y|
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for x, y, x̃ ∈ Ωζ . Since Mβ,k
n (θ) ∈ Ωζ we finally arrive at

P
[
|Mβ,k

n (θ)−Mβ,k(θ)| ≥ C(1− b2)

√
‖µ∗‖2

2 + σ2

σ2

√
k3 log

(
k2

δ

)
n

]
≤ δ

and the proof is complete.

Proof of Lemma 2

We need to show that

P
[

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2
? ≥ c1ϕ

2
n(δ, k)

]
≤ δ

with

ϕ2
n(δ, k) =

Cs4

(1− b2)ε10
mixπ

3
min

[ 1

σ

d log2(Cεn/δ)

n
+
‖µ∗‖2

σ

log2(Cεn/δ)

n
+
‖µ∗‖2

2

σ2

δ

n

]
.

We first claim that

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2
? ≤

8‖Qn −Qk
n‖∞

λ
, where λ ≥ 2

3
(1− b2). (2.63)

In Section 2.5. we showed that population operators are strongly concave with parameter at
least λ. We make the added observation that using our parameterization, the sample Q func-
tions Qk

n(· | θ′), Qn(· | θ′) are also strongly concave. This is because the concavity results for
the population operators did not use any property of the covariates in the HMM, in particular
not the expectation operator, and the single term 1

n
E
∑

z0
p(z0 | Xn

1 , β
′) log p(z0; β) = 1

n
log 1

2

is constant for all β ∈ Ωβ. From this λ-strong concavity, the bound (2.63) follows immediately
using the same argumentation as in the proof of Theorem 1.

Given the bound (2.63), the remainder of the proof focuses on bounding the difference
‖Qn −Qk

n‖∞. Recalling the shorthand notation

h(Xi, zi, θ, θ
′) = log p(Xi|zi, θ) +

∑
zi−1

p(zi|zi−1, θ
′) log p(zi|zi−1, θ),
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we use a similar argumentation as in the Proof of Proposition 2.3.1 equation (2.52) to obtain

‖Qn −Qk
n‖∞ =

∣∣∣ sup
θ,θ′∈Ω

1

n

n∑
i=1

∑
zi

(p(zi|Xn
1 , θ

′)− p(zi|X i+k
i−k , θ

′))h(Xi, zi, θ, θ
′)
∣∣∣ (2.64)

+
∣∣∣ sup
θ,θ′∈Ω

1

n

∑
z0

p(z0 | xn1 , θ′) log p(z0 | θ)
∣∣∣

≤ 2Cs3

ε8mixπmin

1

n

[ k∑
i=1

ρ̃imix max
zi∈[s]

∣∣h(Xi, zi, θ, θ
′)
∣∣+ log π−1

min

]
+
Cs3ρ̃kmix

ε8mixπmin

1

n− 2k

n−k∑
i=k

max
zi∈[s]

∣∣h(Xi, zi, θ, θ
′)
∣∣

≤ 2Cs3

ε8mixπminn

[
max

zi∈[s],Xk
1

∣∣ log p(Xi | zi, θ)
∣∣ k∑
i=1

ρ̃imix +
s log(πminεmix)−1

πminεmix

+ log π−1
min

]
︸ ︷︷ ︸

S1

+
Cs3ρ̃kmix

ε8mixπmin

[
Emax
zi∈[s]

∣∣ log p(Xi | zi, θ′)
∣∣+ en−2k(X) + s log(πminεmix)−1

]
where we use maxzi∈[s]

∣∣h(Xi, zi, θ, θ
′)
∣∣ ≤ maxzi∈[s]

∣∣ log p(Xi|zi, θ)
∣∣+ s log(πminεmix)−1, and

en(X) : =
∣∣∣ 1
n

n∑
i=1

max
zi∈[s]

∣∣∣ log p(Xi | zi, θ)
∣∣∣− Emax

zi∈[s]

∣∣∣ log p(Xi | zi, θ)
∣∣∣∣∣∣.

By assumption, we have that Emaxzi∈[s] | log p(Xi | zi, θ)| is bounded by an appropriately
large universal constant. We therefore have with probability one that

S1 ≤
Cs4

ε9mixπ
2
min

k

n
log(εmixπmin)−1.

Putting these together, we find that

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2
? ≤

Cs4

λε9mixπ
2
min

[k
n

log(εmixπmin)−1 + ρ̃kmixen−2k(X)
]
.

Suppose that we can show that

P
(
en(X) ≥ c0

( 1

σ

√
d log2(Cεn/δ)

n
+
‖µ∗‖2

σ

√
log2(Cεn/δ)

n
+
‖µ∗‖2

2

σ2

))
≤ δ, (2.65)

where c0 is a universal constant and Cε = C
ε3mixπ

3
min

. By assumption we have 1
2

log
(
Cn/δ)

log(1/ρ̃mix)
≤ k ≤

C
log
(
Cn/δ)

log(1/ρ̃mix)
so that we obtain

sup
θ∈Ω
‖Mn(θ)−Mk

n(θ)‖2
? ≤ ϕ2

n(δ, k)
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with probability at least 1− δ
3

for an appropriate choice of C.

We now move on to prove the bound (2.65). Observe that we have

en(X) =
1

2nσ2

n∑
i=1

[
max{‖Xi + µ‖2

2, ‖Xi − µ‖2
2} − Emax{‖Xi + µ‖2

2, ‖Xi − µ‖2
2}
]

=
1

2nσ2

n∑
i=1

(
‖Xi‖2

2 − E‖Xi‖2
2

)
+

1

nσ2

n∑
i=1

(
|XT

i µ| − E|XT
i µ|
)
.

Note that we are again dealing with a dependent sequence so that we cannot use usual
Hoeffding type bounds. For some k̃ to be chosen later on, and m = n/k̃ using the proof idea
of Lemma 7 with f2(Xi) = |XT

i µ| and f2(Xi) = ‖Xi‖2
2, we can write

P(en(X) ≥ t

2σ2
) ≤ k̃

(
P0

(
| 1
m

m∑
i=1

‖Xi‖2
2 − E‖Xi‖2

2| ≥
t

2

)
︸ ︷︷ ︸

T1

+ P0

(
| 1
m

m∑
i=1

|XT
i µ| − E|XT

i µ|| ≥
t

4

)
︸ ︷︷ ︸

T2

+mβ(k̃)
)
,

where β(k̃) was previously defined in equation (2.58). We claim that the choices

t : = c1

(
σ

√
d log(k̃/δ)

m
+ σ‖µ∗‖2

√
log(k̃/δ)

m
+ ‖µ∗‖2

2

)
, and k̃ : =

C2 log( 3n
ε3mixπ

3
minδ

)

log 1/ρ̃mix

,

suffice to ensure that P(en(X) ≥ t/(2σ2)) ≤ δ. Notice that the bound (2.59) implies that

mβ(k̃) ≤ cmρk̃mix

ε3mixπ
3
min

≤ δ

3k̃
.

In the sequel we develop bounds on T1 and T2. For T1, observe that since Xi ∼ Ziµ
∗ + εi

where εi is a Gaussian vector with covariance σ2I and Zi independent under P0, standard χ2

tail bounds imply that

P0

[
| 1
m

m∑
i=1

‖Xi‖2
2 − E‖Xi‖2

2| ≥
t

2

]
≤ δ

3k̃
.

Finally, we turn our attention to the term T2. Observe that,

XT
i µ ∼

1

2
N (µTµ∗, σ2‖µ‖2

2) +
1

2
N (−µTµ∗, σ2‖µ‖2

2),
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so that | XT
i µ ∼ |N (µTµ∗, σ2‖µ‖2

2)|. Denote Ui =| XT
i µ |. Letting ε denote a Rademacher

random variable, observe that

E exp(tUi)
(i)

≤ E exp(2tεUi)
(ii)

≤ exp
(
2t2σ2‖µ‖2

2 + 2tµTµ∗
)
,

where (i) follows using symmetrization, and (ii) follows since the random variable εUi is a
Gaussian mixture. Observe that

EUi
(iii)

≤ |µTµ∗|+ σ‖µ‖2

(iv)

≤ 2(σ + ‖µ∗‖2)‖µ∗‖2︸ ︷︷ ︸
M

,

where we have used for (iii) that Ui is a folded normal, and for (iv) that ‖µ− µ∗‖2 ≤ ‖µ∗‖2
4

.

Setting D : = 4σ‖µ∗‖2

√
log(6k̃/δ)

m
observe that t

4
≥ 2M +D for big enough c1. Thus, applying

the Chernoff bound yields

T2 ≤ P0

[
| 1
m

m∑
i=1

Ui − EUi| ≥ 2M +D
]
≤ P0

(
| 1

m

m∑
i=1

Ui |≥M +D
)

≤ 2 inf
t≥0

{
E exp

( t
m

m∑
i=1

Ui −Mt−Dt
)}
,

≤ 2 exp
(
− mD2

8σ2‖µ‖2
2

)
≤ δ

3k̃
.

By combining the bounds on T1 and T2, some algebra shows that our choices of t, k̃ yield the
claimed bound—namely, that P

[
en(X) ≥ t/(2σ2)

]
≤ δ.

Proofs of technical lemmas

In this section, we collect the proofs of various technical lemmas cited in the previous sections.

Proof of Lemma 8

We use the following concentration theorem (e.g., [51]): suppose that the function f : Rn → R
is coordinate-wise convex and L-Lipschitz with respect to the Euclidean norm. Then for any
i.i.d. sequence of variables {Xi}ni=1 taking values in the interval [a, b], we have

P
[
f(X) ≥ Ef(X) + δ

]
≤ e

− δ2

4L2(b−a)2 (2.66)

We consider the process without absolute values (which introduces the factor of two in
the lemma) and see that ε : = (ε1, . . . , εn) is a random vector with bounded entries and that
the supremum over affine functions is convex.
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It remains to show that the function ε 7→ Vm(X̃, u) is Lipschitz with Lm(X̃;u) as follows

∣∣ sup
θ

1

m

m∑
i=1

εifθ(X̃i;2k)− sup
θ

1

m

m∑
i=1

ε′ifθ(X̃i;2k)
∣∣

≤ 1

m
|
m∑
i=1

(εi − ε′i)fθ(X̃i;2k)|

≤ 1

m

√√√√ m∑
i=1

(2wθ̃(X̃i;2k)− 1)2〈Xi,k, u〉2‖ε− ε′‖2

≤ Lm(X̃;u)‖ε− ε′‖2

where θ̃ = arg maxθ∈Ω

∑
i εifθ(X̃i;2k) in the last line and we use that |2wθ(X̃i;2k)− 1| ≤ 1.

Proof of Lemma 9

The proof consists of three steps. First, we observe that the Rademacher complexity is upper
bounded by the Gaussian complexity. Then we use Gaussian comparison inequalities to
reduce the process to a simpler one, followed by a final step to convert it back to a Rademacher
process.

Relating the Gaussian and Rademacher complexity: Let gi ∼ N (0, 1). It is easy to

see that using Jensen’s inequality and the fact that εi|gi| d= gi

Eε sup
θ

1

m

m∑
i=1

εifθ(X̃i;2k) =

√
2

π
Eε sup

θ

1

m

m∑
i=1

εiEg[|gi|]fθ(X̃i;2k)

≤
√

2

π
Eg sup

θ

1

m

m∑
i=1

gifθ(X̃i;2k).

Lipschitz continuity: For θ = (µ, β) define the corresponding effective parameter that is
obtained by treating the observed variables X as fixed

θ̃i : = (γi, β) = (
〈µ,Xi,1〉
σ2

, . . . ,
〈µ,Xi,2k〉

σ2
, β). (2.67)

Now we can use results in the proof of Corollary 1 to see that θ̃i 7→ F (θ̃i; X̃i;2k) : = fθ(X̃i;2k)
is Lipschitz in the Euclidean norm, i.e. there exists an L, only dependent on ρmix such that

|F (θ̃i; X̃i;2k)− F (θ̃′i; X̃i;2k)| ≤ L‖θ̃i − θ̃′i‖2|〈Xi,k, u〉| (2.68)

For this we directly use results (exponential family representation) that were used to show
Corollary 1. We overload notation and write X` : = X1,` and analyze Lipschitz continuity for
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the first block. First note that F (θ̃i, X1;2k) = (2EZk|X2k
1 ,θZk − 1)Xi,k. By Taylor’s theorem,

we then have

|F (θ̃i; X̃i;2k)− F (θ̃′i; X̃i;2k)| = |〈Xi,k, u〉||EZk|X̃i;2k,θZk − EZk|X̃i;2k,θ′Zk|
≤ |〈Xi,k, u〉||EZk|X̃i;2k,(µ,β)Zk − EZk|X̃i;2k,(µ′,β)Zk|
+ |〈Xi,k, u〉||EZk|X̃i;2k,(µ′,β)Zk − EZk|X̃i;2k,(µ′,β′)Zk|

Let us examine each of the summands separately. By the Cauchy-Schwartz inequality and
Lemma 6, we have

|EZk|X̃i;2k,(µ,β)Zk − EZk|X̃i;2k,(µ′,β)Zk| =
1

σ
|

2k∑
`=1

∂2Φ

∂γ`∂γ0

∣∣∣
θ=θ̃

(γ` − γ′`)|

=
∣∣ 2k∑
`=1

cov(Z0, Z` | X̃i;2k, θ̃)(〈µ,X`〉 − 〈µ′, X`〉)
∣∣

≤

√√√√(
2k∑
`=1

4ρ2`
mix)

2k∑
`=1

(γ` − γ′`)2,

as well as

|EZk|X̃i;2k,(µ′,β)Zk − EZk|X̃i;2k,(µ′,β′)Zk| = |
2k∑
`=1

∂2Φ

∂β`∂γ0

∣∣∣
θ=θ̃

(β − β′)|

=
∣∣ 2k∑
`=1

cov(Z0, Z`Z`+1 | X̃i;2k, θ̃)(β − β′)
∣∣

≤ 2

1− ρmix

|β − β′|.

Combining these two bounds yields

|F (θ̃i; X̃i;2k)− F (θ̃′i; X̃i;2k)|2 ≤ 〈Xi,k, u〉2L
( 2k∑
`=1

(γ` − γ′`)2 + (β − β′)2
)

= 〈Xi,k, u〉2L2‖θ̃i − θ̃′i‖2
2

with L2 = 8
(1−ρmix)2

.

Applying the Sudakov-Fernique Gaussian comparison: Let us introduce the short-
hands Xθ = 1

m

∑
i gifθ(X̃i;2k), and

Yθ =
1

m
L
∑
i

( 2k∑
`=1

gi`
〈µ,Xi,`〉
σ2

+ gi,2k+1β
)
〈Xi,k, u〉.
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By construction, the random variable Xθ−X ′θ is a zero-mean Gaussian variable with variance

Eg(Xθ −Xθ′)
2 =

∑
i

(F (θ̃; X̃i;2k)− F (θ̃′; X̃i;2k))
2

≤ L2
∑
i

〈Xi,k, u〉2
( 2k∑
`=1

(γi,` − γ′i,`)2 + (β − β′)2
)

= Eg(Yθ − Yθ′)2 (2.69)

By the Sudakov-Fernique comparison [53],we are then guaranteed that E supθXθ ≤ E supθ Yθ.
Therefore, it is sufficient to bound

Eg sup
θ∈Ω

Yθ = Eg sup
θ

L

σ2n

m∑
i=1

2k∑
`=1

gi`〈µ,Xi,`〉〈Xi,k, u〉︸ ︷︷ ︸
T1

+Eg sup
θ

L

n

m∑
i=1

gi,2k+1β〈Xi,k, u〉︸ ︷︷ ︸
T2

.

Converting back to a Rademacher process: We now convert the term T1 back to
a Rademacher process, which allows us to use sub-exponential tail bounds. We do so by
re-introducing additional Rademacher variables, and then removing the term maxi |gi| via the
Ledoux-Talagrand contraction theorem [53]. Given a Rademacher variable εil independent of

g, note the distributional equivalence εilgil
d
= gi`. Then consider the function φi`(gi`) : = gi`hi`

with hi` : = 〈µ,Xi,`〉〈Xi,k, u〉 for which it is easy to see that

|φi`(gi`, hi`)− φi`(gi`, h′i`)| ≤ |gi`||hi` − h′i`| (2.70)

Applying Theorem 4.12. in Ledoux and Talgrand [53] yields

E sup
θ

1

m

m∑
i=1

2k∑
`=1

εi`gi`〈µ,Xi`〉〈Xi,k, u〉 ≤ Eg‖g‖∞Eε sup
θ

1

m

m∑
i=1

2k∑
`=1

εi`〈µ,Xi,`〉〈Xi,k, u〉.

Putting together the pieces yields the claim (2.62).

Proof of Lemma 10

We prove that the probability of each of the events corresponding to the inequalities is smaller
than 1

3
e−c̃d log( k

δ
).

Bounding Lm: We start by bounding Lm(X̃;u). Note that

1

m

m∑
i=1

〈Xi,k, u〉2 ≤ ‖µ∗‖2
2 +

1

m

m∑
i=1

〈ni,k, u〉2 +
1

m

m∑
i=1

〈µ∗, u〉〈ni,k, u〉
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where the sum
∑m

i=1〈ni,k, u〉2 is sub-exponential random variable with parameters (2
√
mσ2, 4)

so that

P(
1

m

m∑
i=1

〈ni,k, u〉2 − σ2 ≥ c̃2σ2 log(1/δ)) ≤ e−c
′m log 1

δ ≤ e−c
′d log 1

δ

where the last inequality follows since m ≥ d by assumption. Since 〈ni,k, u〉 can be

readily bounded by a sub-Gaussian tailbound it then follows directly that L2
m(X̃;u) ≤

c̃2 2(‖µ∗‖22+σ2) log 1
δ

m
with probability at least 1− 1

3
e−c

′d log( k
δ

) for c′ large enough.

Bounding Nm: In order to bound Nm(X̃;u), we first introduce an extra Rademacher
random variable into its definition; doing so does not change its value (now defined by an
expectation over both g and the Rademacher variables). We now require a result for a product
of the form εgh where g, h are independent Gaussian random variables.

Lemma 11. Let (ε, g, h) be independent random variables, with ε Rademacher, g ∼ N (0, σ2
g),

and h ∼ N (0, σ2
h). Then the random variable Z = εgh is a zero-mean sub-exponential random

variable with parameters (
σ2
gσ

2
h

2
, 1

4
).

Proof. Note that g′ = αh with α = σg
σh

is identically distributed as g. Therefore, we have

gh =
1

α
gg′ =

1

4α
[(g − g′)2 + (g + g′)2]

The random variables g − g′ and g + g′ are independent and therefore (g − g′)2, (g + g′)2 are
sub-exponential with parameters ν2 = 4σ4

g , b = 1
4
. This directly yields

Eeλε[(g+g
′)2−(g−g′)2] ≤ e4λ2σ4

g

for |λ| ≤ 1
b
. Therefore Eeλεgh ≤ e

λ2σ2gσ
2
h

4 , which shows that εgh is sub-exponential with

parameters (
σ2
gσ

2
h

2
, 1

4
).

Returning to the random variableNm(X̃;u), each term εigi,2k+1〈Xi,k, u〉 is a sub-exponential

random variable with mean zero and parameter ν2 = ‖µ∗‖2
2 + σ2

2
. Consequently, there are

universal constants such that Nm(X̃;u) ≤ cLν

√
d log k

δ

m
with probability at least 1− 1

3
e−c

′d log( k
δ

).

Bounding Mm: Our next claim is that with probability at least 1− 1
3
e−c

′d log( k
δ

), we have

Eε‖
1

m

m∑
i=1

εi`Xi,`〈Xi,k, u〉‖2 ≤ (‖µ∗‖2
2 + σ2)

√
d log k

δ

m
, (2.71)
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which then implies that Mm(X̃;u) ≤ c‖µ∗‖2

(‖µ∗‖2
σ2 + 1

)
k

√
d logm log k

δ

m
. In order to establish

this claim, we first observe that by Lemma 11, the random variable εi,`〈Xi,`, u〉〈Xi,k, u〉 is
zero mean, sub-exponential with parameter at most ν2 = (‖µ∗‖2

2 + σ2)2. The bound then
follows by the same argument used to bound the quantity Nm.

2.10 Mixing related results

In the following we use the shorthand notation πθk : = p(zk | xk0, θ) which we refer to the
filtering distribution which is tied to some distribution µ on z0.

Introducing the shorthand notation pµ(xk) : =
∑

zk

∑
zk−1

p(xk | zk)p(zk | zk−1)µ(zk−1),
we define the filter operator

Fiν(zi) : =

∑
zi−1

p(xi | zi)p(zi | zi−1)ν(zi−1)∑
zi

∑
zi−1

p(xi | zi)p(zi | zi−1)ν(zi−1)
=
∑
zi−1

p(xi | zi)p(zi | zi−1)

pν(xi)
ν(zi−1).

where the observations x are fix. Using this notation, the filtering distribution can then be
rewritten in the more compact form πθk = p(zk | xk0, θ) = Fk . . . F1µ. Similarly, we define

Kj|i(zj | zj−1) : =
p(zj | zj−1)p(xj | zj)p(xij+1 | zj)∑
zj
p(zj | zj−1)p(xj | zj)p(xij+1|zj)

, and ν`|i : =
p(xi`+1 | z`)ν(z`)∑
z`
p(xi`+1 | z`)ν(z`)

Note that εmixC0 ≤ p(xi`+1 | z`) ≤ ε−1
mixC0 where

C0 =
∑

zi...z`+1

p(xi | zi)p(zi | zi−1) . . . p(x`+1 | z`+1)π(z`+1)

and therefore by definition of εmix (2.3)

sup
x

supz p(x
i
`+1 | z`)

infz p(xi`+1 | z`)
≤ ε−2

mix. (2.72)

With these definitions, it can be verified (e.g., see Chapter 5 of [75]) that Fi . . . F`+1ν =
νT`+1|iK`+1|i . . . Ki|i, where νTK : =

∫
ν(x′)K(x|x′)dx′. In the discrete setting, this relation

can be written as the row vector ν being right multiplied by the kernel matrix K.

Consequences of mixing

In this technical section we derive several useful consequences of the geometric mixing
condition on the stochastic process Zi.

Lemma 12. For any geometrically ρmix-mixing and time reversible Markov chain {Zi} with
s states, there is a universal constant c such that

sup
z0

∣∣p(z0 | xnk)− p(z0)
∣∣ < c(s+ 1)

π3
minε

3
mix

ρkmix. (2.73)
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Proof. We first prove the following relation

sup
x
|p(zi | xi+k)− p(zi)| ≤ c0

ρkmix

πmin

. (2.74)

Using time reversibility and the definition of mixing (2.4) we obtain

max
x

(p(z0 | xk)− π(z0)) =
∑
zk

(p(z0 | zk)− π(z0))p(zk | xk)

≤ max
zk
|(p(z0 | zk)− π(z0))|

∑
zk

p(zk | xk)

≤ max
zk

∣∣∣p(zk | z0)π(z0)

π(zk)
− π(z0)π(zk)

π(zk)

∣∣∣
≤ π(z0)

π(zk)
max
zk
|p(zk | z0)− π(z0)| ≤ c0ρ

k
mix

πmin

where p(zk | z0) = P (Zk = zk | Z0 = z0) and p(z0 | zk) = P (Z0 = z0 | Zk = zk).
Using this result we can now prove inequality (2.73). By definition, we have

p(z0) =
p(xnk+1 | xk)p(xk)p(z0)

p(xnk+1, xk)
, and p(z0 | xk, xnk+1) =

p(xnk+1 | xk, z0)p(xk | z0)p(z0)

p(xnk+1, xk)

and therefore

|p(z0)− p(z0 | xnk)| ≤ p(xk)p(z0)

p(xnk)
|p(xnk+1 | xk)− p(xnk+1 | xk, z0)|

+
p(xnk+1 | xk, z0)p(z0)

p(xnk+1 | xk)
|p(xk)− p(xk | z0)| (2.75)

In the following we bound each of the two differences. Note that

|p(xnk+1 | xk, z0)− p(xnk+1 | xk)| =
∑
zk

∑
zk+1

p(xnk+1 | zk+1)p(zk+1 | zk)|p(zk | xk, z0)− p(zk | xk)|

≤ sup
zk,xk

|p(zk | xk, z0)− p(zk | xk)|
∑
zk

p(xnk+1 | zk) (2.76)

The last term
∑

zk
p(xnk+1 | zk) is bounded by s for s-state models. Using the bound (2.74),

we obtain

|p(xk | z0)− p(xk)| =
|p(z0 | xk)− π(z0)|p(xk)

π(z0)
≤ p(xk)

π2
min

ρkmix (2.77)
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which yields

|p(zk | xk, z0)− p(zk | xk)| = p(xk | zk)
∣∣∣∣ p(zk | z0)

p(xk | z0)
− π(zk)

p(xk)

∣∣∣∣
≤ p(xk | zk)
p(xk | z0)

(
|p(zk | z0)− π(zk)|+

π(zk)

p(xk)
|p(xk | z0)− p(xk)|

)
≤ p(xk | zk)
p(xk | z0)

(
ρkmix +

1

π2
min

ρkmix

)
≤ 2ρkmix

p(zk | z0)π2
min

≤ 2

π3
minεmix

ρkmix. (2.78)

The last statement is true because one can check that for all t ∈ N we have

min
zk,z0

p(zk | z0) = min
ij

(At)ij ≥ min
ij

(A)ij ≥ εmixπmin

for any stochastic matrix A which satisfies the mixing condition (2.3).
Substituting (2.76) with (2.78) and (2.77) into (2.75), we obtain

|p(z0)− p(z0 | xnk)| ≤
∑

zk
p(xnk+1 | zk)p(z0)∑

zk
p(xnk+1 | zk)p(zk | xk)

2ρkmix

π3
minεmix

+
p(xnk+1 | xk, z0)p(z0)

p(xnk+1 | xk)
ρkmix

πmin

≤
(

2s

π3
minε

3
mix

+
1

ε2mixπmin

)
ρkmix ≤

2s+ 1

π3
minε

3
mix

ρkmix

where we use (2.72) to see that∑
zk
p(xnk+1 | zk)p(zk | xk, z0)∑
zk
p(xnk+1 | zk)p(zk | xk)

≤ maxzk p(x
n
k+1 | zk)

minzk p(x
n
k+1 | zk)

≤ ε−2
mix

and similarly for the first term.

Lemma 13 (Filter stability). For any mixing Markov chain which fulfills condition (2.3),
the following holds

‖Fi . . . F1(ν − ν ′)‖∞ ≤ ε−2
mixρ̃

i
mix‖ν − ν ′‖1

where ρ̃mix = 1− εmixπmin. In particular we have

sup
zi

|p(zi | xi1)− p(zi | xi−n)| ≤ 2ε−2
mixρ̃

i
mix. (2.79)

Proof. Given the mixing assumption (2.3) we can show that Kj|i(x|y) ≥ εpj|i(x) with ε =
εmixπmin for some probability distribution pj|i(·). This is because we can lower bound

Kj|i(zj | zj−1) =
p(zj | zj−1)p(xj | zj)p(xij+1 | zj)∑
zj
p(zj | zj−1)p(xj | zj)p(xij+1 | zj)

≥ εmixπ(zj)p(xj | zj)p(xij+1 | zj)∑
zj

π(zj)

πmin
p(xj | zj)p(xij+1 | zj)︸ ︷︷ ︸

=: εpj|i(zj)
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with ε = εmixπmin. This allows us to define the stochastic matrix

Qj|i =
1

1− ε(Kj|i − εPj|i) or Kj|i = εPj|i + (1− ε)Qj|i.

where (Pj|i)k` = pj|i(`) and for any two probability distributions ν1, ν2 we have (ν1−ν2)TPj|i =
0. Using ρ̃mix = 1− ε we then obtain by induction, Hoelder’s inequality and inequality (2.72)

‖(ν1|i − ν ′1|i)TK1|i . . . Ki|i‖∞

≤
i∏

j=1

(1− ε)‖(ν1|i − ν ′1|i)T ⊗ij=1 Qj|i‖2

≤ ρ̃imix‖ν1|i − ν ′1|i‖2

i∏
j=1

‖QT
j|i‖op ≤ ρ̃imix‖ν1|i − ν ′1|i‖2

≤ ρ̃imix

∥∥∥∥ p(xi2 | ·)ν(·)∑
z1
p(xi2 | z1)ν(z1)

− p(xi2 | ·)ν ′(·)∑
z1
p(xi2 | z1)ν ′(z1)

∥∥∥∥
2

≤ ρ̃imix

[∥∥∥ p(xi2 | ·)∑
z1
p(xi2 | z1)ν(z1)

(ν(·)− ν ′(·))
∥∥∥

2

+
∣∣∣ sup
z1

p(xi2 | z1)
( 1∑

z1
p(xi2 | z1)ν(z1)

− 1∑
z1
p(xi2 | z1)ν ′(z1)

)∣∣∣‖ν ′(·)‖1

]
≤ ρ̃imix

(supz1 p(x
i
2 | z1)

infz1 p(x
i
2 | z1)

)2

‖ν − ν ′‖1 ≤ ε−2
mixρ̃

i
mix‖ν − ν ′‖1,

since Qj|i are stochastic matrices and ‖ν‖2 ≤ ‖ν‖1 ≤ 1 for probability vectors. The second
statement is readily derived by substituting ν(z1) = p(z1) and ν ′(z1) = p(z1 | x1

−n).

Proof of Lemma 3

Recall the shorthand ρ̃mix = 1− εmixπmin. First observe that

sup
zi

|p(zi | xn1 )− p(zi | xi+ki−k)| ≤ |p(zi|xni+1)p(zi|xi1)− p(zi|xi+ki+1)p(zi|xii−k+1)| p(xni+1)

p(xni+1|xi1)p(zi)

+ |A− 1| p(xi+ki+1)

p(xi+ki+1|xii−k+1)

1

p(zi)

where A =
p(xni+1)

p(xni+1|xi1)

(
p(xi+ki+1)

p(xi+ki+1 |xii−k+1)

)−1

. We bound the two terms in the sum separately.

From Lemma 13 we directly obtain the following upper bounds

sup
z,x
|p(zi | xi1)− p(zi | xii−k+1)| ≤ ε−2

mixρ̃
min{i,k}
mix

sup
z,x
|p(zi | xni+1)− p(zi | xi+ki+1)| ≤ ε−2

mixρ̃
max{n−i,k}
mix
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where the latter follows because of reversibility assumption (2.2) of the Markov chain. In-

equality (2.72) can also be used to show that
p(xni+1)

p(xni+1|xi1)
,

p(xi+ki+1)

p(xi+ki+1 |xii−k+1)
≤ ε−2

mix. A proof for a

similar statement is given after inequality (2.80). The first term of the sum is therefore

bounded above by 2
ρ̃
min{i,n−i,k}
mix

πminε
4
mix

.

For the second term, we mainly need to bound |A− 1|. In order to simplify the notation
in the proof, we divide the sequence of values all observed variables in the window i− k, i+ k
around index i, i.e. x

max{i+k,n}
min{i−k,1} , into four disjoint chunks and call them a, b, c, d in chronological

order, explicitly defined as

a := x
max{i−k,1}
min{i−k,1} b := ximax{i−k,1}+1 c := x

min{i+k,n}
i+1 d := x

max{i+k,n}
min{i+k,n}+1.

Note that the definition depends on whether i − k > 1 or i + k < n. Depending on the
combination of i+ k < n and i− k > 1 being true or false,

A =

{
p(d|c)p(a|b)

p(d|a,b,c)p(a|b,c) if i− k > 1, i+ k < n
p(a|b)p(d|a,b,c)
p(a|b,c,d)p(d|c) if i− k > 1, i+ k > n

.

For the other two possible cases, A is an inverse of the above. We demonstrate the main
argument by looking into these two cases in more detail. Observe that the following inequality
holds for the first case

|A− 1| ≤ |p(d | c)− p(d | a, b, c)|
p(d | a, b, c)

p(a | b)
p(a | b, c) +

|p(a | b)− p(a | b, c)|
p(a | b, c)

holds for all x. For the second case there is only an additional conditioning on d for the
second term on the right hand side. In the inverse case that i− k < 1, i+ k > n we have

|A− 1| ≤ |p(d | c)− p(d | a, b, c)|
p(d | c)

p(a | b, c)
p(a | b) +

|p(a | b)− p(a | b, c)|
p(a | b)

and equivalently with an additional conditioning on d for i − k < 1, i + k < n. It is thus
sufficient to consider supx |p(d | c) − p(d | a, b, c)| and supx |p(a | b) − p(a | b, c, d)|. We see
later that this is also the critical quantity to bound for the inverses.

First note that

max
{ p(a | b)
p(a | b, c) ,

p(a | b, c)
p(a | b)

}
≤ ε−2

mix. (2.80)

For the first term we see that for all x we have

p(a | b)
p(a | b, c) =

p(xβα | xiβ+1)

p(xβα | xiβ+1, x
γ
i+1)

=

∑
zβ+1

p(xβα | zβ+1)p(zβ+1 | xiβ+1)∑
zβ+1

p(xβα | zβ+1)p(zβ+1 | xγβ+1)

≤ supz p(x
β
α | zβ+1)

infz p(x
β
α | zβ+1)

≤ ε−2
mix
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where the second inequality holds because of conditional independence of xiβ+1 and xβα given
zβ+1 in an HMM, and the last line holds because of inequality (2.72) and the fact that the
Markov chain is invertible. Observe that the same arguments goes through for the inverse as
well so that inequality (2.80) holds.

Let us now look at the rest of the terms involving differences. For the sake of simplification,
let us introduce the shorthand notation

α : = min{i− k, 1}, β : = max{i− k, 1}, γ : = min{i+ k, n}, and δ : = max{i+ k, n}.

Then we can write xβα = a;xiβ+1 = b;xγi+1 = c;xδγ+1 = d and bound |p(d | c) − p(d | a, b, c)|.
Using Lemma 13 and inequality (2.72), we have the bound

p(d | c)− p(d | a, b, c)
p(d | a, b, c) =

|p(xδγ+1|xγi+1)− p(xδγ+1|xiα, xγi+1)|
p(xδγ+1|xiα, xγi+1)

≤
∑

zγ
p(xδγ+1 | zγ)|p(zγ|xγi+1)− p(zγ|xiα, xγi+1)|∑

zγ
p(xδγ+1|zγ)p(zγ|xγα)

≤ supz p(x
δ
γ+1|zγ)

infz p(xδγ+1|zγ)
∑
zγ

|p(zγ|xγi+1)− p(zγ|xγα)|

≤ Csε−4
mixρ̃

γ−i
mix = Csε−4

mixρ̃
min{n−i,k}
mix .

The same argument applies if the denominator is p(d | c). Analogously, we have that

|p(a | b)− p(a | b, c)|
p(a | b, c) ≤ Csε−4

mixρ̃
i−β+1
mix = Csε−4

mixρ̃
min{k,i}
mix

and the same holds for the case when the denominator is p(a | b) by inequality (2.80).
Note that the additional conditioning on d, does not change the result. Also, considering

the inverses we see that the inequalities still hold.
Putting everything together now yields

|A− 1| ≤ C ′sε−6
mixρ̃

min{n−i,i,k}
mix ,

where C ′ is a generic constant and thus

sup
zi

|p(zi | xn1 )− p(zi | xi+ki−k)| ≤ C
sρ̃

min{i,n−i,k}
mix

πminε8mix

.
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Proof of Lemma 6

The latter inequality is valid in our particular case because

| cov(z0, z` | x0, . . . , xk)| = |
∑
z0,z`

z0z`p(z` | z0, x)p(z0|x)−
∑
z0

z0p(z0|x)
∑
z`

z`p(z`|x)|

= |
∑
z0,z`

z0z`p(z0|x)(p(z`|z0, x)− p(z` | x))|

≤ sup
z`,z0

|p(z`|z0, x)− p(z` | x)|
∑
z0

∑
z`

|z0z`|p(z0 | x)

Let us now show that supz`,z0
∣∣p(z` | z0, x)− p(z` | x)

∣∣ ≤ ρ`mix. Introducing the shorthand
∆(`) = p(z` = 1 | z0 = 1, x)− p(z` = 1 | z0 = −1, x), we first claim that

|∆(1)| ≤ ρmix (2.81)

To establish this fact, note that

∆(1) =

∣∣∣∣ p(x | z` = 1)

p(x | z`−1 = 1)
p(z` = 1 | z`−1 = 1)− p(x | z` = 1)

p(x | z`−1 = −1)
p(z` = 1 | z`−1 = −1)

∣∣∣∣
=

ap

ap+ b(1− p) −
a(1− p)

a(1− p) + bp

=
ab

(ap+ b(1− p))(a(1− p) + bp)
(2p− 1)

where we write a = p(x | z` = 1) and b = p(x | z` = −1). The denominator is minimized at
p = 1 so that inequality (2.81) is shown. The same argument shows that |∆(−1)| ≤ ρmix.

Induction step: Assume that ∆(`− 1) ≤ ρ`−1
mix. It then follows that

|p(z` = 1 | z0 = 1, x)− p(z` = 1 | z0 = −1, x)|
= |
∑
z`−1

p(z` = 1 | z`−1, x)p(z`−1 | z0 = 1, x)− p(z` = 1 | z`−1, x)p(z`−1|z0 = −1, x)|

= ∆(1)∆(`− 1) ≤ ρ`mix

Since

p(z` = 1 | z0 = −1, x)− p(z` = 1 | z0 = 1, x) = −p(z` = −1 | z0 = −1, x) + p(z` = −1 | z0 = 1, x)

we use the shorthand s = p(z0 = 1 | x) to obtain

sup
z`,z0

| p(z` | z0, x)− p(z` | x)|

= sup
b`,b0

p(z` = b` | z0 = b0, x)− [(p(z` = b` | z0 = 1, x)s+ p(z` = b` | z0 = −1, x)(1− s)]

≤ (1− s)|∆(`)| ≤ ρmix
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which proves the bound for cov(Z0, Z1 | γ).

For the two state mixing we define ∆̃(`) = p(z` = 1 | z1z0 = 1, x)−p(z` = 1 | z1z0 = −1, x)

and can readily see that |∆̃(1)| ≤ ρmix and

|p(z`+1z`+2 = 1 | z`z`−1 = 1, x)− p(z`+1z`+2 = 1 | z`z`−1 = −1, x)|
= [p(z`+2 = 1 | z`+1 = 1, x)− p(z`+2 = −1 | z`+1 = −1, x)]∆̃(2)

Using equation (2.81), we obtain

|∆̃(2)| = |p(z1 = 1 | z0 = 1, x)− p(z1 = −1 | z0 = −1, x)|∆̃(1) ≤ ρmix (2.82)

from which it directly follows that

|p(z`+1z`+2 = 1 | z`z`−1 = 1, x)− p(z`+1z`+2 = 1 | z`z`−1 = −1, x)| ≤ ρmix

The rest follows the same arguments as above and the bound for cov(Z0Z1, Z`Z`+1 | γ) in
inequality (2.55) is shown.

Finally, the bound for cov(Z0, Z`Z`+1 | γ) in inequality (2.55) follows in a straightforward
way using the relation (2.82) and induction with equation (2.81), as above.
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Chapter 3

Early stopping of kernel boosting
algorithms

3.1 Introduction

While non-parametric models offer great flexibility, they can also lead to overfitting, and
thus poor generalization performance. For this reason, it is well-understood that procedures
for fitting non-parametric models must involve some form of regularization. When models
are fit via a form of empirical risk minimization, the most classical form of regularization
is based on adding some type of penalty to the objective function. An alternative form of
regularization is based on the principle of early stopping, in which an iterative algorithm is
run for a pre-specified number of steps, and terminated prior to convergence.

While the basic idea of early stopping is fairly old (e.g., [71, 2, 79]), recent years have
witnessed renewed interests in its properties, especially in the context of boosting algorithms
and neural network training (e.g., [60, 23]). Over the past decade, a line of work has yielded
some theoretical insight into early stopping, including works on classification error for boosting
algorithms [7, 30, 42, 55, 89, 92], L2-boosting algorithms for regression [18, 17], and similar
gradient algorithms in reproducing kernel Hilbert spaces (e.g. [21, 20, 78, 89, 64]). A number of
these papers establish consistency results for particular forms of early stopping, guaranteeing
that the procedure outputs a function with statistical error that converges to zero as the
sample size increases. On the other hand, there are relatively few results that actually
establish rate optimality of an early stopping procedure, meaning that the achieved error
matches known statistical minimax lower bounds. To the best of our knowledge, Bühlmann
and Yu [18] were the first to prove optimality for early stopping of L2-boosting as applied
to spline classes, albeit with a rule that was not computable from the data. Subsequent
work by Raskutti et al. [64] refined this analysis of L2-boosting for kernel classes and first
established an important connection to the localized Rademacher complexity; see also the
related work [89, 65, 19] with rates for particular kernel classes.

More broadly, relative to our rich and detailed understanding of regularization via penal-
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ization (e.g., see the books [34, 74, 73, 81] and papers [6, 48] for details), our understanding
of early stopping regularization is not as well developed. Intuitively, early stopping should
depend on the same bias-variance tradeoffs that control estimators based on penalization. In
particular, for penalized estimators, it is now well-understood that complexity measures such
as the localized Gaussian width, or its Rademacher analogue, can be used to characterize their
achievable rates [6, 48, 73, 81]. Is such a general and sharp characterization also possible in
the context of early stopping?

The main contribution of this chapter is to answer this question in the affirmative for
the early stopping of boosting algorithms for a certain class of regression and classification
problems involving functions in reproducing kernel Hilbert spaces (RKHS). A standard way
to obtain a good estimator or classifier is through minimizing some penalized form of loss
functions of which the method of kernel ridge regression [80] is a popular choice. Instead,
we consider an iterative update involving the kernel that is derived from a greedy update.
Borrowing tools from empirical process theory, we are able to characterize the “size” of
the effective function space explored by taking T steps, and then to connect the resulting
estimation error naturally to the notion of localized Gaussian width defined with respect
to this effective function space. This leads to a principled analysis for a broad class of loss
functions used in practice, including the loss functions that underlie the L2-boost, LogitBoost
and AdaBoost algorithms, among other procedures.

The remainder of this chapter is organized as follows. In Section 3.2, we provide background
on boosting methods and reproducing kernel Hilbert spaces, and then introduce the updates
studied in this chapter. Section 3.3 is devoted to statements of our main results, followed by
a discussion of their consequences for particular function classes in Section 3.4. We provide
simulations that confirm the practical effectiveness of our stopping rules, and show close
agreement with our theoretical predictions. In Section 3.5, we provide the proofs of our main
results, with certain more technical aspects deferred to the appendices.

3.2 Background and problem formulation

The goal of prediction is to learn a function that maps covariates x ∈ X to responses y ∈ Y .
In a regression problem, the responses are typically real-valued, whereas in a classification
problem, the responses take values in a finite set. In this chapter, we study both regression
(Y = R) and classification problems (e.g., Y = {−1,+1} in the binary case). Our primary
focus is on the case of fixed design, in which we observe a collection of n pairs of the form
{(xi, Yi)}ni=1, where each xi ∈ X is a fixed covariate, whereas Yi ∈ Y is a random response
drawn independently from a distribution PY |xi which depends on xi. Later in the chapter,
we also discuss the consequences of our results for the case of random design, where the
(Xi, Yi) pairs are drawn in an i.i.d. fashion from the joint distribution P = PXPY |X for some
distribution PX on the covariates.

In this section, we provide some necessary background on a gradient-type algorithm which
is often referred to as boosting algorithm. We also discuss briefly about the reproducing
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kernel Hilbert spaces before turning to a precise formulation of the problem that is studied
in this chapter.

Boosting and early stopping

Consider a cost function φ : R× R→ [0,∞), where the non-negative scalar φ(y, θ) denotes
the cost associated with predicting θ when the true response is y. Some common examples of
loss functions φ that we consider in later sections include:
• the least-squares loss φ(y, θ) : = 1

2
(y − θ)2 that underlies L2-boosting [18],

• the logistic regression loss φ(y, θ) = ln(1+e−yθ) that underlies the LogitBoost algorithm [31,
32], and

• the exponential loss φ(y, θ) = exp(−yθ) that underlies the AdaBoost algorithm [30].
The least-squares loss is typically used for regression problems (e.g., [18, 21, 20, 78, 89, 64]),
whereas the latter two losses are frequently used in the setting of binary classification
(e.g., [30, 55, 32]).

Given some loss function φ, we define the population cost functional f 7→ L(f) via

L(f) : = EY n1
[ 1

n

n∑
i=1

φ
(
Yi, f(xi)

)]
. (3.1)

Note that with the covariates {xi}ni=1 fixed, the functional L is a non-random object. Given
some function space F , the optimal function∗ minimizes the population cost functional—that
is

f ∗ : = arg min
f∈F
L(f). (3.2)

As a standard example, when we adopt the least-squares loss φ(y, θ) = 1
2
(y − θ)2, the

population minimizer f ∗ corresponds to the conditional expectation x 7→ E[Y | x].
Since we do not have access to the population distribution of the responses however,

the computation of f ∗ is impossible. Given our samples {Yi}ni=1, we consider instead some
procedure applied to the empirical loss

Ln(f) : =
1

n

n∑
i=1

φ(Yi, f(xi)), (3.3)

where the population expectation has been replaced by an empirical expectation. For example,
when Ln corresponds to the log likelihood of the samples with φ(Yi, f(xi)) = log[P(Yi; f(xi))],
direct unconstrained minimization of Ln would yield the maximum likelihood estimator.

It is well-known that direct minimization of Ln over a sufficiently rich function class
F may lead to overfitting. There are various ways to mitigate this phenomenon, among

∗As clarified in the sequel, our assumptions guarantee uniqueness of f∗.
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which the most classical method is to minimize the sum of the empirical loss with a penalty
regularization term. Adjusting the weight on the regularization term allows for trade-off
between fit to the data, and some form of regularity or smoothness in the fit. The behavior of
such penalized of regularized estimation methods is now quite well understood (for instance,
see the books [34, 74, 73, 81] and papers [6, 48] for more details).

In this chapter, we study a form of algorithmic regularization, based on applying a
gradient-type algorithm to Ln but then stopping it “early”—that is, after some fixed number
of steps. Such methods are often referred to as boosting algorithms, since they involve
“boosting” or improve the fit of a function via a sequence of additive updates (see e.g.
[66, 30, 16, 15, 67]). Many boosting algorithms, among them AdaBoost [30], L2-boosting [18]
and LogitBoost [31, 32], can be understood as forms of functional gradient methods [55, 32];
see the survey paper [17] for further background on boosting. The way in which the number
of steps is chosen is referred to as a stopping rule, and the overall procedure is referred to as
early stopping of a boosting algorithm.
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Figure 3.1: Plots of the squared error ‖f t − f ∗‖2
n = 1

n

∑n
i=1(f

t(xi) − f ∗(xi))
2 versus the

iteration number t for (a) LogitBoost using a first-order Sobolev kernel (b) AdaBoost using
the same first-order Sobolev kernel K(x, x′) = 1 + min(x, x′) which generates a class of
Lipschitz functions (splines of order one). Both plots correspond to a sample size n = 100.

In more detail, a broad class of boosting algorithms [55] generate a sequence {f t}∞t=0 via
updates of the form

f t+1 = f t − αtgt with gt ∝ arg max
‖d‖F≤1

〈∇Ln(f t), d(xn1 )〉, (3.4)

where the scalar {αt}∞t=0 is a sequence of step sizes chosen by the user, the constraint
‖d‖F ≤ 1 defines the unit ball in a given function class F , ∇Ln(f) ∈ Rn denotes the gradient
taken at the vector

(
f(x1), . . . , f(xn)), and 〈h, g〉 is the usual inner product between vectors
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h, g ∈ Rn. For non-decaying step sizes and a convex objective Ln, running this procedure for
an infinite number of iterations will lead to a minimizer of the empirical loss, thus causing
overfitting. In order to illustrate this phenomenon, Figure 3.1 provides plots of the squared

error ‖f t − f ∗‖2
n : = 1

n

∑n
i=1

(
f t(xi)− f ∗(xi)

)2
versus the iteration number, for LogitBoost in

panel (a) and AdaBoost in panel (b). See Section 3.4 for more details on exactly how these
experiments were conducted.

In the plots in Figure 3.1, the dotted line indicates the minimum mean-squared error ρ2
n

over all iterates of that particular run of the algorithm. Both plots are qualitatively similar,
illustrating the existence of a “good” number of iterations to take, after which the MSE
greatly increases. Hence a natural problem is to decide at what iteration T to stop such that
the iterate fT satisfies bounds of the form

L(fT )− L(f ∗) - ρ2
n and ‖fT − f ∗‖2

n - ρ2
n (3.5)

with high probability. The main results of this chapter provide a stopping rule T for which
bounds of the form (3.5) do in fact hold with high probability over the randomness in the
observed responses.

Moreover, as shown by our later results, under suitable regularity conditions, the ex-
pectation of the minimum squared error ρ2

n is proportional to the statistical minimax risk

inf f̂ supf∈F E[L(f̂)− L(f)], where the infimum is taken over all possible estimators f̂ . Note
that the minimax risk provides a fundamental lower bound on the performance of any esti-
mator uniformly over the function space F . Coupled with our stopping time guarantee (3.5),
we are guaranteed that our estimate achieves the minimax risk up to constant factors. As a
result, our bounds are unimprovable in general (see Corollary 4).

Reproducing Kernel Hilbert Spaces

The analysis of this chapter focuses on algorithms with the update (3.4) when the function
class F is a reproducing kernel Hilbert space H (RKHS, see standard sources [80, 33, 68, 12]),
consisting of functions mapping a domain X to the real line R. Any RKHS is defined by
a bivariate symmetric kernel function K : X × X → R which is required to be positive
semidefinite, i.e. for any integer N ≥ 1 and a collection of points {xj}Nj=1 in X , the matrix
[K(xi, xj)]ij ∈ RN×N is positive semidefinite.

The associated RKHS is the closure of linear span of the form f(·) =
∑

j≥1 ωjK(·, xj),
where {xj}∞j=1 is some collection of points in X , and {ωj}∞j=1 is a real-valued sequence. For

two functions f1, f2 ∈H which can be expressed as a finite sum f1(·) =
∑`1

i=1 αiK(·, xi) and

f2(·) =
∑`2

j=1 βjK(·, xj), the inner product is defined as 〈f1, f2〉H =
∑`1

i=1

∑`2
j=1 αiβjK(xi, xj)

with induced norm ‖f1‖2
H =

∑`1
i=1 α

2
iK(xi, xi). For each x ∈ X , the function K(·, x) belongs

to H , and satisfies the reproducing relation

〈f, K(·, x)〉H = f(x) for all f ∈H . (3.6)
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Moreover, when the covariates Xi are drawn i.i.d. from a distribution PX with domain X
we can invoke Mercer’s theorem which states that any function in H can be represented as

K(x, x′) =
∞∑
k=1

µkφk(x)φk(x
′), (3.7)

where µ1 ≥ µ2 ≥ · · · ≥ 0 are the eigenvalues of the kernel function K and {φk}∞k=1 are
eigenfunctions of K which form an orthonormal basis of L2(X ,PX) with the inner product
〈f, g〉 : =

∫
X f(x)g(x)dPX(x). We refer the reader to the standard sources [80, 33, 68, 12] for

more details on RKHSs and their properties.
Throughout this chapter, we assume that the kernel function is uniformly bounded,

meaning that there is a constant L such that supx∈X K(x, x) ≤ L. Such a boundedness
condition holds for many kernels used in practice, including the Gaussian, Laplacian, Sobolev,
other types of spline kernels, as well as any trace class kernel with trigonometric eigenfunctions.
By rescaling the kernel as necessary, we may assume without loss of generality that L = 1. As
a consequence, for any function f such that ‖f‖H ≤ r, we have by the reproducing relation
that

‖f‖∞ = sup
x
〈f,K(·, x)〉H ≤ ‖f‖H sup

x
‖K(·, x)‖H ≤ r.

Given samples {(xi, yi)}ni=1, by the representer theorem [47], it is sufficient to restrict
ourselves to the linear subspace Hn = span{K(·, xi)}ni=1, for which all f ∈ Hn can be
expressed as

f =
1√
n

n∑
i=1

ωiK(·, xi) (3.8)

for some coefficient vector ω ∈ Rn. Among those functions which achieve the infimum in
expression (3.1), let us define f ∗ as the one with the minimum Hilbert norm. This definition
is equivalent to restricting f ∗ to be in the linear subspace Hn.

Boosting in kernel spaces

For a finite number of covariates xi from i = 1 . . . n, let us define the normalized kernel
matrix K ∈ Rn×n with entries Kij = K(xi, xj)/n. Since we can restrict the minimization of
Ln and L from H to the subspace Hn w.l.o.g., using expression (3.8) we can then write the
function value vectors f(xn1 ) : = (f(x1), . . . , f(xn)) as f(xn1 ) =

√
nKω. As there is a one-to-

one correspondence between the n-dimensional vectors f(xn1 ) ∈ Rn and the corresponding
function f ∈Hn in H by the representer theorem, minimization of an empirical loss in the
subspace Hn essentially becomes the n-dimensional problem of fitting a response vector y
over the set range(K). In the sequel, all updates will thus be performed on the function value
vectors f(xn1 ).
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With a change of variable d(xn1 ) =
√
n
√
Kz we then have

dt(xn1 ) : = arg max
‖d‖H ≤1
d∈range(K)

〈∇Ln(f t), d(xn1 )〉 =

√
nK∇Ln(f t)√

∇Ln(f t)K∇Ln(f t)
.

In this chapter, we study the choice gt = 〈∇Ln(f t), dt(xn1 )〉dt in the boosting update (3.4),
so that the function value iterates take the form

f t+1(xn1 ) = f t(xn1 )− αnK∇Ln(f t), (3.9)

where α > 0 is a constant stepsize choice. Choosing f 0(xn1 ) = 0 ensures that all iterates
f t(xn1 ) remain in the range space of K.

In this chapter we consider the following three error measures for an estimator f̂ :

L2(Pn) norm: ‖f̂ − f ∗‖2
n =

1

n

n∑
i=1

(
f̂(xi)− f ∗(xi)

)2
,

L2(PX) norm: ‖f̂ − f ∗‖2
2 : = E

(
f̂(X)− f ∗(X)

)2
,

Excess risk: L(f̂)− L(f ∗),

where the expectation in the L2(PX)-norm is taken over random covariates X which are

independent of the samples (Xi, Yi) used to form the estimate f̂ . Our goal is to propose

a stopping time T such that the averaged function f̂ = 1
T

∑T
t=1 f

t satisfies bounds of the
type (3.5). We begin our analysis by focusing on the empirical L2(Pn) error, but as we will
see in Corollary 3, bounds on the empirical error are easily transformed to bounds on the
population L2(PX) error. Importantly, we exhibit such bounds with a statistical error term
δn that is specified by the localized Gaussian complexity of the kernel class.

3.3 Main results

We now turn to the statement of our main results, beginning with the introduction of some
regularity assumptions.

Assumptions

Recall from our earlier set-up that we differentiate between the empirical loss function Ln in
expression (3.3), and the population loss L in expression (3.1). Apart from assuming differ-
entiability of both functions, all of our remaining conditions are imposed on the population
loss. Such conditions at the population level are weaker than their analogues at the empirical
level.

For a given radius r > 0, let us define the Hilbert ball around the optimal function f ∗ as

BH (f ∗, r) : = {f ∈H | ‖f − f ∗‖H ≤ r}. (3.10)
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Our analysis makes particular use of this ball defined for the radius C2
H : = 2 max{‖f ∗‖2

H , 32, σ2}
where the effective noise level is defined by

σ : =

min
{
t | max

i=1,...,n
E[e((Yi−f∗(xi))2/t2)] <∞

}
for least squares

4 (2M + 1)(1 + 2CH ) for φ′-bounded losses.
(3.11)

We assume that the population loss is m-strongly convex and M -smooth over BH (f ∗, 2CH ),
meaning that the sandwich inequality

m-M-condition
m

2
‖f − g‖2

n ≤ L(f)− L(g)− 〈∇L(g), f(xn1 )− g(xn1 )〉 ≤ M

2
‖f − g‖2

n

holds for all f, g ∈ BH (f ∗, 2CH ) and all design points {xi}ni=1. In addition, we assume that
the function φ is M -Lipschitz in its second argument over the interval θ ∈ [min

i∈[n]
f ∗(xi) −

2CH ,max
i∈[n]

f ∗(xi)+2CH ]. To be clear, here ∇L(g) denotes the vector in Rn obtained by taking

the gradient of L with respect to the vector g(xn1 ). It can be verified by a straightforward
computation that when L is induced by the least-squares cost φ(y, θ) = 1

2
(y − θ)2, the

m-M -condition holds for m = M = 1. The logistic and exponential loss satisfy this condition
(see supp. material), where it is key that we have imposed the condition only locally on the
ball BH (f ∗, 2CH ).

In addition to the least-squares cost, our theory also applies to losses L induced by scalar
functions φ that satisfy the following condition:

φ′-boundedness max
i=1,...,n

∣∣∣∣∂φ(y, θ)

∂θ

∣∣∣∣
θ=f(xi)

≤ B for all f ∈ BH (f ∗, 2CH ) and y ∈ Y .

This condition holds with B = 1 for the logistic loss for all Y , and B = exp(2.5CH ) for the
exponential loss for binary classification with Y = {−1, 1}, using our kernel boundedness
condition. Note that whenever this condition holds with some finite B, we can always rescale
the scalar loss φ by 1/B so that it holds with B = 1, and we do so in order to simplify the
statement of our results.

Upper bound in terms of localized Gaussian width

Our upper bounds involve a complexity measure known as the localized Gaussian width. In
general, Gaussian widths are widely used to obtain risk bounds for least-squares and other
types of M -estimators. In our case, we consider Gaussian complexities for “localized” sets of
the form

En(δ, 1) : =
{
f − g | f, g ∈H , ‖f − g‖H ≤ 1, ‖f − g‖n ≤ δ

}
. (3.12)
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The Gaussian complexity localized at scale δ is given by

Gn
(
En(δ, 1)

)
: = E

[
sup

g∈En(δ,1)

1

n

n∑
i=1

wig(xi)
]
, (3.13)

where (w1, . . . , wn) denotes an i.i.d. sequence of standard Gaussian variables.
An essential quantity in our theory is specified by a certain fixed point equation that is

now standard in empirical process theory [73, 6, 48, 64]. Let us define the effective noise level

σ : =

min
{
t | max

i=1,...,n
E[e((Yi−f∗(xi))2/t2)] <∞

}
for least squares

4 (2M + 1)(1 + 2CH ) for φ′-bounded losses.
(3.14)

The critical radius δn is the smallest positive scalar such that

Gn(En(δ, 1))

δ
≤ δ

σ
. (3.15)

We note that past work on localized Rademacher and Gaussian complexity [56, 6] guarantees
that there exists a unique δn > 0 that satisfies this condition, so that our definition is sensible.

Upper bounds on excess risk and empirical L2(Pn)-error

With this set-up, we are now equipped to state our main theorem. It provides high-probability
bounds on the excess risk and L2(Pn)-error of the estimator f̄T : = 1

T

∑T
t=1 f

t defined by
averaging the T iterates of the algorithm. It applies to both the least-squares cost function,
and more generally, to any loss function satisfying the m-M -condition and the φ′-boundedness
condition.

Theorem 3. Suppose that the sample size n large enough such that δn ≤ M
m

, and we compute
the sequence {f t}∞t=0 using the update (3.9) with initialization f 0 = 0 and any step size
α ∈ (0,min{ 1

M
,M}]. Then for any iteration T ∈

{
0, 1, . . . b m

8Mδ2n
c
}

, the averaged function

estimate f̄T satisfies the bounds

L(f̄T )− L(f ∗) ≤ CM
( 1

αmT
+
δ2
n

m2

)
, and (3.16a)

‖f̄T − f ∗‖2
n ≤ C

( 1

αmT
+
δ2
n

m2

)
, (3.16b)

where both inequalities hold with probability at least 1− c1 exp(−C2
m2nδ2n
σ2 ).

We prove Theorem 3 in Section 3.5.
A few comments about the constants in our statement: in all cases, constants of the form

cj are universal, whereas the capital Cj may depend on parameters of the joint distribution
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and population loss L. In Theorem 3, we have the explicit value C2 = {m2

σ2 , 1} and C2 is
proportional to the quantity 2 max{‖f ∗‖2

H , 32, σ2}. While inequalities (3.16a) and (3.16b)
are stated as high probability results, similar bounds for expected loss (over the response yi,
with the design fixed) can be obtained by a simple integration argument.

In order to gain intuition for the claims in the theorem, note that apart from factors

depending on (m,M), the first term 1
αmT

dominates the second term δ2n
m2 whenever T . 1/δ2

n.
Consequently, up to this point, taking further iterations reduces the upper bound on the
error. This reduction continues until we have taken of the order 1/δ2

n many steps, at which
point the upper bound is of the order δ2

n.
More precisely, suppose that we perform the updates with step size α = m

M
; then, after a

total number of τ : = 1
δ2n max{8,M} many iterations, the extension of Theorem 3 to expectations

guarantees that the mean squared error is bounded as

E‖f̄ τ − f ∗‖2
n ≤ C ′

δ2
n

m2
, (3.17)

where C ′ is another constant depending on CH . Here we have used the fact that M ≥ m in
simplifying the expression. It is worth noting that guarantee (3.17) matches the best known
upper bounds for kernel ridge regression (KRR)—indeed, this must be the case, since a sharp
analysis of KRR is based on the same notion of localized Gaussian complexity (e.g. [5, 6]) .
Thus, our results establish a strong parallel between the algorithmic regularization of early
stopping, and the penalized regularization of kernel ridge regression. Moreover, as will be
clarified in Section 3.3, under suitable regularity conditions on the RKHS, the critical squared
radius δ2

n also acts as a lower bound for the expected risk, meaning that our upper bounds
are not improvable in general.

Note that the critical radius δ2
n only depends on our observations {(xi, yi)}ni=1 through the

solution of inequality (3.15). In many cases, it is possible to compute and/or upper bound
this critical radius, so that a concrete and valid stopping rule can indeed by calculated in
advance. In Section 3.4, we provide a number of settings in which this can be done in terms
of the eigenvalues {µj}nj=1 of the normalized kernel matrix.

Consequences for random design regression

Thus far, our analysis has focused purely on the case of fixed design, in which the sequence
of covariates {xi}ni=1 is viewed as fixed. If we instead view the covariates as being sampled in

an i.i.d. manner from some distribution PX over X , then the empirical error ‖f̂ − f ∗‖2
n =

1
n

∑n
i=1

(
f(xi)− f ∗(xi)

)2
of a given estimate f̂ is a random quantity, and it is interesting to

relate it to the squared population L2(PX)-norm ‖f̂ − f ∗‖2
2 = E

[
(f̂(X)− f ∗(X))2

]
.

In order to state an upper bound on this error, we introduce a population analogue of the
critical radius δn, which we denote by δn. Consider the set

E(δ, 1) : =
{
f − g | f, g ∈H , ‖f − g‖H ≤ 1, ‖f − g‖2 ≤ δ

}
. (3.18)
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It is analogous to the previously defined set E(δ, 1), except that the empirical norm ‖ · ‖n has
been replaced by the population version. The population Gaussian complexity localized at
scale δ is given by

Gn
(
E(δ, 1)

)
: = Ew,X

[
sup

g∈E(δ,1)

1

n

n∑
i=1

wig(Xi)
]
, (3.19)

where {wi}ni=1 are an i.i.d. sequence of standard normal variates, and {Xi}ni=1 is a second
i.i.d. sequence, independent of the normal variates, drawn according to PX . Finally, the
population critical radius δn is defined by equation (3.19), in which Gn is replaced by Gn.

Corollary 3. In addition to the conditions of Theorem 3, suppose that the sequence {(Xi, Yi)}ni=1

of covariate-response pairs are drawn i.i.d. from some joint distribution P, and we compute
the boosting updates with step size α = m

M
and initialization f 0 = 0. Then the averaged

function estimate f̄T at time T : = b 1
δ2n max{8,M}c satisfies the bound

EX
(
f̄T (X)− f ∗(X)

)2
= ‖f̄T − f ∗‖2

2 ≤ c̃ δ2
n

with probability at least 1− c1 exp(−C2
m2nδ2n
σ2 ) over the random samples.

The proof of Corollary 3 follows directly from standard empirical process theory bounds [6,
64] on the difference between empirical risk ‖f̄T − f ∗‖2

n and population risk ‖f̄T − f ∗‖2
2. In

particular, it can be shown that ‖ · ‖2 and ‖ · ‖n norms differ only by a factor proportion
to δn. Furthermore, one can show that the empirical critical quantity δn is bounded by the
population δn. By combining both arguments the corollary follows. We refer the reader to
the papers [6, 64] for further details on such equivalences.

It is worth comparing this guarantee with the past work of Raskutti et al. [64], who
analyzed the kernel boosting iterates of the form (3.9), but with attention restricted to the
special case of the least-squares loss. Their analysis was based on first decomposing the
squared error into bias and variance terms, then carefully relating the combination of these
terms to a particular bound on the localized Gaussian complexity (see equation (3.20) below).
In contrast, our theory more directly analyzes the effective function class that is explored
by taking T steps, so that the localized Gaussian width (3.19) appears more naturally. In
addition, our analysis applies to a broader class of loss functions.

In the case of reproducing kernel Hilbert spaces, it is possible to sandwich the localized
Gaussian complexity by a function of the eigenvalues of the kernel matrix. Mendelson [56]
provides this argument in the case of the localized Rademacher complexity, but similar
arguments apply to the localized Gaussian complexity. Letting µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0
denote the ordered eigenvalues of the normalized kernel matrix K, define the function

R(δ) =
1√
n

√√√√ n∑
j=1

min{δ2, µj}. (3.20)



CHAPTER 3. EARLY STOPPING OF KERNEL BOOSTING ALGORITHMS 71

Up to a universal constant, this function is an upper bound on the Gaussian width Gn
(
E(δ, 1)

)
for all δ ≥ 0, and up to another universal constant, it is also a lower bound for all δ ≥ 1√

n
.

Achieving minimax lower bounds

In this section, we show that the upper bound (3.17) matches known minimax lower bounds
on the error, so that our results are unimprovable in general. We establish this result for the
class of regular kernels, as previously defined by Yang et al. [88], which includes the Gaussian
and Sobolev kernels as special cases.

The class of regular kernels is defined as follows. Let µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 denote
the ordered eigenvalues of the normalized kernel matrix K, and define the quantity dn : =
argminj=1,...,n{µj ≤ δ2

n}. A kernel is called regular whenever there is a universal constant c
such that the tail sum satisfies

∑n
j=dn+1 µj ≤ c dnδ

2
n. In words, the tail sum of the eigenvalues

for regular kernels is roughly on the same or smaller scale as the sum of the eigenvalues bigger
than δ2

n.
For such kernels and under the Gaussian observation model (Yi ∼ N(f ∗(xi), σ

2)), Yang et
al. [88] prove a minimax lower bound involving δn. In particular, they show that the minimax
risk over the unit ball of the Hilbert space is lower bounded as

inf
f̂

sup
‖f∗‖H ≤1

E‖f̂ − f ∗‖2
n ≥ c`δ

2
n. (3.21)

Comparing the lower bound (3.21) with upper bound (3.17) for our estimator f̄T stopped
after O(1/δ2

n) many steps, it follows that the bounds proven in Theorem 3 are unimprovable
apart from constant factors.

We now state a generalization of this minimax lower bound, one which applies to a
sub-class of generalized linear models, or GLM for short. In these models, the conditional
distribution of the observed vector Y = (Y1, . . . , Yn) given

(
f ∗(x1), . . . , f ∗(xn)

)
takes the form

Pθ(y) =
n∏
i=1

[
h(yi) exp

(yif ∗(xi)− Φ(f ∗(xi))

s(σ)

)]
, (3.22)

where s(σ) is a known scale factor and Φ : R→ R is the cumulant function of the generalized
linear model. As some concrete examples:
• The linear Gaussian model is recovered by setting s(σ) = σ2 and Φ(t) = t2/2.
• The logistic model for binary responses y ∈ {−1, 1} is recovered by setting s(σ) = 1 and

Φ(t) = log(1 + exp(t)).
Our minimax lower bound applies to the class of GLMs for which the cumulant function

Φ is differentiable and has uniformly bounded second derivative |Φ′′| ≤ L. This class includes
the linear, logistic, multinomial families, among others, but excludes (for instance) the Poisson
family. Under this condition, we have the following:
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Corollary 4. Suppose that we are given i.i.d. samples {yi}ni=1 from a GLM (3.22) for some
function f ∗ in a regular kernel class with ‖f ∗‖H ≤ 1. Then running T : = b 1

δ2n max{8,M}c
iterations with step size α = m

M
and f 0 = 0 yields an estimate f̄T such that

E‖f̄T − f ∗‖2
n � inf

f̂
sup

‖f∗‖H ≤1

E‖f̂ − f ∗‖2
n. (3.23)

As always, in the minimax claim (3.23), the infimum is taken over all measurable functions
of the input data and the expectation is taken over the randomness of the response variables
{Yi}ni=1. Since we know that E‖f̄T − f ∗‖2

n - δ2
n, an equivalent way to interpret the the

bound (3.23) is that it asserts that inf f̂ sup‖f∗‖H ≤1 E‖f̂ − f ∗‖2
n % δ2

n. See Section 3.5 for the
proof of this result.

At a high level, the statement in Corollary 4 shows that early stopping prevents us from
overfitting to the data; in particular, using the stopping time T yields an estimate that attains
the optimal balance between bias and variance.

3.4 Consequences for various kernel classes

In this section, we apply Theorem 3 to derive some concrete rates for different kernel spaces
and then illustrate them with some numerical experiments. It is known that the complexity
of an RKHS in association with a distribution over the covariates PX can be characterized by
the decay rate (3.7) of the eigenvalues of the kernel function. In the finite sample setting,
the analogous quantities are the eigenvalues {µj}nj=1 of the normalized kernel matrix K. The
representation power of a kernel class is directly correlated with the eigen-decay: the faster
the decay, the smaller the function class. When the covariates are drawn from the distribution
PX , empirical process theory guarantees that the empirical and population eigenvalues are
close.

Theoretical predictions as a function of decay

In this section, let us consider two broad types of eigen-decay:
• γ-exponential decay: For some γ > 0, the kernel matrix eigenvalues satisfy a decay

condition of the form µj ≤ c1 exp(−c2j
γ), where c1, c2 are universal constants. Examples

of kernels in this class include the Gaussian kernel, which for the Lebesgue measure
satisfies such a bound with γ = 2 (real line) or γ = 1 (compact domain).

• β-polynomial decay: For some β > 1/2, the kernel matrix eigenvalues satisfy a decay
condition of the form µj ≤ c1j

−2β, where c1 is a universal constant. Examples of kernels
in this class include the kth-order Sobolev spaces for some fixed integer k ≥ 1 with
Lebesgue measure on a bounded domain. We consider Sobolev spaces that consist
of functions that have kth-order weak derivatives f (k) being Lebesgue integrable and
f(0) = f (1)(0) = · · · = f (k−1)(0) = 0. For such classes, the β-polynomial decay condition
holds with β = k.
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Given eigendecay conditions of these types, it is possible to compute an upper bound on
the critical radius δn. In particular, using the fact that the function R from equation (3.20)
is an upper bound on the function Gn

(
E(δ, 1)

)
, we can show that for γ-exponentially decaying

kernels, we have δ2
n - (logn)1/γ

n
, whereas for β-polynomial kernels, we have δ2

n - n−
2β

2β+1 up to
universal constants. Combining with our Theorem 3, we obtain the following result:

Corollary 5 (Bounds based on eigendecay). Under the conditions of Theorem 3:

(a) For kernels with γ-exponential eigen-decay, we

E‖f̄T − f ∗‖2
n ≤ c

log1/γ n

n
at T � n

log1/γ n
steps. (3.24a)

(b) For kernels with β-polynomial eigen-decay, we have

E‖f̄T − f ∗‖2
n - n−2β/(2β+1) at T � n2β/(2β+1) steps.. (3.24b)

See Section 3.5 for the proof of Corollary 5.
In particular, these bounds hold for LogitBoost and AdaBoost. We note that similar

bounds can also be derived with regard to risk in L2(Pn) norm as well as the excess risk
L(fT )− L(f ∗).

To the best of our knowledge, this result is the first to show non-asymptotic and optimal
statistical rates for the ‖ · ‖2

n-error when using early stopping LogitBoost or AdaBoost with
an explicit dependence of the stopping rule on n. Our results also yield similar guarantees for
L2-boosting, as has been established in past work [64]. Note that we can observe a similar
trade-off between computational efficiency and statistical accuracy as in the case of kernel
least-squares regression [89, 64]: although larger kernel classes (e.g. Sobolev classes) yield
higher estimation errors, boosting updates reach the optimum faster than for a smaller kernel
class (e.g. Gaussian kernels).

Numerical experiments

We now describe some numerical experiments that provide illustrative confirmations of our
theoretical predictions. While we have applied our methods to various kernel classes, in this
section, we present numerical results for the first-order Sobolev kernel as two typical examples
for exponential and polynomial eigen-decay kernel classes.

Let us start with the first-order Sobolev space of Lipschitz functions on the unit interval
[0, 1], defined by the kernel K(x, x′) = 1 + min(x, x′), and with the design points {xi}ni=1 set
equidistantly over [0, 1]. Note that the equidistant design yields β-polynomial decay of the
eigenvalues of K with β = 1 as in the case when xi are drawn i.i.d. from the uniform measure
on [0, 1]. Consequently we have that δ2

n � n−2/3. Accordingly, our theory predicts that the
stopping time T = (cn)2/3 should lead to an estimate f̄T such that ‖f̄T − f ∗‖2

n - n−2/3.
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In our experiments for L2-Boost, we sampled Yi according to Yi = f ∗(xi) + wi with
wi ∼ N (0, 0.5), which corresponds to the probability distribution P(Y | xi) = N (f ∗(xi); 0.5),
where f ∗(x) = |x − 1

2
| − 1

4
is defined on the unit interval [0, 1]. By construction, the

function f ∗ belongs to the first-order Sobolev space with ‖f ∗‖H = 1. For LogitBoost,

we sampled Yi according to Bin(p(xi), 5) where p(x) = exp(f∗(x))
1+exp(f∗(x))

. In all cases, we fixed

the initialization f 0 = 0, and ran the updates (3.9) for L2-Boost and LogitBoost with the
constant step size α = 0.75. We compared various stopping rules to the oracle gold standard
G, meaning the procedure that examines all iterates {f t}, and chooses the stopping time
G = arg mint≥1 ‖f t−f ∗‖2

n that yields the minimum prediction error. Of course, this procedure
is unimplementable in practice, but it serves as a convenient lower bound with which to
compare.
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Figure 3.2: The mean-squared errors for the stopped iterates f̄T at the Gold standard, i.e.
iterate with the minimum error among all unstopped updates (blue) and at T = (7n)κ (with
the theoretically optimal κ = 0.67 in red, κ = 0.33 in black and κ = 1 in green) for (a)
L2-Boost and (b) LogitBoost.

Figure 3.2 shows plots of the mean-squared error ‖f̄T − f ∗‖2
n over the sample size n

averaged over 40 trials, for the gold standard T = G and stopping rules based on T = (7n)κ

for different choices of κ. Error bars correspond to the standard errors computed from our
simulations. Panel (a) shows the behavior for L2-boosting, whereas panel (b) shows the
behavior for LogitBoost.

Note that both plots are qualitatively similar and that the theoretically derived stopping
rule T = (7n)κ with κ∗ = 2/3 = 0.67, while slightly worse than the Gold standard, tracks
its performance closely. We also performed simulations for some “bad” stopping rules, in
particular for an exponent κ not equal to κ∗ = 2/3, indicated by the green and black curves.
In the log scale plots in Figure 3.3 we can clearly see that for κ ∈ {0.33, 1} the performance is
indeed much worse, with the difference in slope even suggesting a different scaling of the error
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with the number of observations n. Recalling our discussion for Figure 3.1, this phenomenon
likely occurs due to underfitting and overfitting effects. These qualitative shifts are consistent
with our theory.
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Figure 3.3: Logarithmic plots of the mean-squared errors at the Gold standard in blue and
at T = (7n)κ (with the theoretically optimal rule for κ = 0.67 in red, κ = 0.33 in black and
κ = 1 in green) for (a) L2-Boost and (b) LogitBoost.

3.5 Proof of main results

In this section, we present the proofs of our main results. The technical details are deferred
to section 3.7.

In the following, recalling the discussion in Section 3.2, we denote the vector of function val-
ues of a function f ∈H evaluated at (x1, x2, . . . , xn) as θf : = f(xn1 ) = (f(x1), f(x2), . . . f(xn))
∈ Rn, where we omit the subscript f when it is clear from the context. As mentioned in the
main text, updates on the function value vectors θt ∈ Rn correspond uniquely to updates of
the functions f t ∈H . In the following we repeatedly abuse notation by defining the Hilbert
norm and empirical norm on vectors in ∆ ∈ range(K) as

‖∆‖2
H =

1

n
∆TK†∆ and ‖∆‖2

n =
1

n
‖∆‖2

2,

where K† is the pseudoinverse of K. We also use BH (θ, r) to denote the ball with respect to
the ‖ · ‖H -norm in range(K).

Proof of Theorem 3

The proof of our main theorem is based on a sequence of lemmas, all of which are stated
with the assumptions of Theorem 3 in force. The first lemma establishes a bound on the
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empirical norm ‖ ·‖n of the error ∆t+1 : = θt+1 − θ∗, provided that its Hilbert norm is suitably
controlled.

Lemma 14. For any stepsize α ∈ (0, 1
M

] and any iteration t we have

m

2
‖∆t+1‖2

n ≤
1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉. (3.25)

See Section 3.7 for the proof of this claim.
The second term on the right-hand side of the bound (3.25) involves the difference between

the population and empirical gradient operators. Since this difference is being evaluated at
the random points ∆t and ∆t+1, the following lemma establishes a form of uniform control
on this term.

Let us define the set

S : =

{
∆, ∆̃ ∈ Rn | ‖∆‖H ≥ 1, and θ? + ∆, θ? + ∆̃ ∈ BH (θ∗, 2CH )

}
, (3.26)

and consider the uniform bound

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉 ≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

m

c3

‖∆‖2
n for all ∆, ∆̃ ∈ S.

(3.27)

Lemma 15. Let E be the event that bound (3.27) holds. There are universal constants (c1, c2)

such that P[E ] ≥ 1− c1 exp(−c2
m2nδ2n
σ2 ).

See Section 3.7 for the proof of Lemma 15.

Note that Lemma 14 applies only to error iterates with a bounded Hilbert norm. Our
last lemma provides this control for some number of iterations:

Lemma 16. There are constants (C1, C2) independent of n such that for any step size
α ∈

(
0,min{M, 1

M
}
]
, we have

‖∆t‖H ≤ CH for all iterations t ≤ m
8Mδ2n

(3.28)

with probability at least 1− C1 exp(−C2nδ
2
n), where C2 = max{m2

σ2 , 1}.

See Section 3.7 for the proof of this lemma which also uses Lemma 15.

Taking these lemmas as given, we now complete the proof of the theorem. We first
condition on the event E from Lemma 15, so that we may apply the bound (3.27). We then
fix some iterate t such that t < m

8Mδ2n
− 1, and condition on the event that the bound (3.28) in

Lemma 16 holds, so that we are guaranteed that ‖∆t+1‖H ≤ CH . We then split the analysis
into two cases:
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Case 1: First, suppose that ‖∆t+1‖n ≤ δnCH . In this case, inequality (3.16b) holds directly.

Case 2: Otherwise, we may assume that ‖∆t+1‖n > δn‖∆t+1‖H . Applying the bound (3.27)

with the choice (∆̃,∆) = (∆t,∆t+1) yields

〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉 ≤ 4δn‖∆t+1‖n +
m

c3

‖∆t+1‖2
n. (3.29)

Substituting inequality (3.29) back into equation (3.25) yields

m

2
‖∆t+1‖2

n ≤
1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 4δn‖∆t+1‖n +

m

c3

‖∆t+1‖2
n.

Re-arranging terms yields the bound

γm‖∆t+1‖2
n ≤ Dt + 4δn‖∆t+1‖n, (3.30)

where we have introduced the shorthand notation Dt : = 1
2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
, as well as

γ = 1
2
− 1

c3

Equation (3.30) defines a quadratic inequality with respect to ‖∆t+1‖n; solving it and
making use of the inequality (a+ b)2 ≤ 2a2 + 2b2 yields the bound

‖∆t+1‖2
n ≤

cδ2
n

γ2m2
+

2Dt

γm
, (3.31)

for some universal constant c. By telescoping inequality (3.31), we find that

1

T

T∑
t=1

‖∆t‖2
n ≤

cδ2
n

γ2m2
+

1

T

T∑
t=1

2Dt

γm
(3.32)

≤ cδ2
n

γ2m2
+

1

αγmT
[‖∆0‖2

H − ‖∆T‖2
H ]. (3.33)

By Jensen’s inequality, we have

‖f̄T − f ∗‖2
n = ‖ 1

T

T∑
t=1

∆t‖2
n ≤

1

T

T∑
t=1

‖∆t‖2
n,

so that inequality (3.16b) follows from the bound (3.32).
On the other hand, by the smoothness assumption, we have

L(f̄T )− L(f ∗) ≤ M

2
‖f̄T − f ∗‖2

n,

from which inequality (3.16a) follows.
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Proof of Corollary 4

Similar to the proof of Theorem 1 in Yang et al. [88], a generalization can be shown using a
standard argument of Fanos inequality. By definition of the transformed parameter θ = DUα
withK = UTDU , we have for any estimator f̂ =

√
nUT θ that ‖f̂−f ∗‖2

n = ‖θ−θ?‖2
2. Therefore

our goal is to lower bound the Euclidean error ‖θ − θ?‖2 of any estimator of θ?. Borrowing
Lemma 4 in Yang et al. [88], there exists δ/2-packing of the set B = {θ ∈ Rn | ‖D−1/2θ‖2 ≤ 1}
of cardinality M = edn/64 with dn : = arg minj=1,...,n{µj ≤ δ2

n}. This is done through packing
the following subset of B

E(δ) : =
{
θ ∈ Rn |

n∑
j=1

θ2
j

min{δ2, µj}
≤ 1
}
.

Let us denote the packing set by {θ1, . . . , θM}. Since θ ∈ E(δ), by simple calculation, we have
‖θi‖2 ≤ δ.

By considering the random ensemble of regression problem in which we first draw at index
Z at random from the index set [M ] and then condition on Z = z, we observe n i.i.d samples
yn1 := {y1, . . . , yn} from Pθz , Fano’s inequality implies that

P(‖θ̂ − θ?‖2 ≥
δ2

4
) ≥ 1− I(yn1 ;Z) + log 2

logM
.

where I(yn1 ;Z) is the mutual information between the samples Y and the random index Z.
So it is only left for us to control the mutual information I(yn1 ;Z). Using the mixture

representation, P̄ = 1
M

∑M
i=1 Pθi and the convexity of the KullbackLeibler divergence, we have

I(yn1 ;Z) =
1

M

M∑
j=1

‖Pθj , P̄‖KL ≤
1

M2

∑
i,j

‖Pθi , Pθj‖KL.

We now claim that

‖Pθ(y), Pθ′(y)‖KL ≤
nL‖θ − θ′‖2

2

s(σ)
. (3.34)

Since each ‖θi‖2 ≤ δ, triangle inequality yields ‖θi − θj‖2 ≤ 2δ for all i 6= j. It is therefore
guaranteed that

I(yn1 ;Z) ≤ 4nLδ2

s(σ)
.

Therefore, similar to Yang et al. [88], following by the fact that the kernel is regular and

hence s(σ)dn ≥ cnδ2
n, any estimator f̂ has prediction error lower bounded as

sup
‖f∗‖H ≤1

E‖f̂ − f ∗‖2
n ≥ clδ

2
n.

Corollary 4 thus follows using the upper bound in Theorem 3.
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Proof of inequality (3.34): Direct calculations of the KL-divergence yield

‖Pθ(y), Pθ′(y)‖KL =

∫
log(

Pθ(y)

Pθ′(y)
)Pθ(y)dy

=
1

s(σ)

∫ n∑
i=1

[√
nyi〈ui, θ − θ′〉+ Φ(

√
n〈ui, θ′〉)− Φ(

√
n〈ui, θ〉)

]
Pθdy

=
n∑
i=1

Φ(
√
n〈ui, θ′〉)− Φ(

√
n〈ui, θ〉)

s(σ)
+

√
n

s(σ)

∫ n∑
i=1

[
yi〈ui, θ − θ′〉

]
Pθdy.

(3.35)

To further control the right hand side of expression (3.35), we concentrate on expressing∫ ∑n
i=1 yiuiPθdy differently. Leibniz’s rule allow us to inter-change the order of integral and

derivative, so that ∫
dPθ
dθ

dy =
d

dθ

∫
Pθdy = 0. (3.36)

Observe that ∫
dPθ
dθ

dy =

√
n

s(σ)

∫
Pθ ·

n∑
i=1

ui
(
yi − Φ′(

√
n〈ui, θ′〉)

)
dy

so that equality (3.36) yields∫ n∑
i=1

yiuiPθdy =
n∑
i=1

uiΦ
′(
√
n〈ui, θ〉).

Combining the above inequality with expression (3.35), the KL divergence between two
generalized linear models Pθ,Pθ′ can thus be written as

‖Pθ(y), Pθ′(y)‖KL =
1

s(σ)

n∑
i=1

Φ(
√
n〈ui, θ′〉)− Φ(

√
n〈ui, θ〉)−

√
n〈ui, θ′ − θ〉Φ′(

√
n〈ui, θ〉).

(3.37)

Together with the fact that

|Φ(
√
n〈ui, θ′〉)− Φ(

√
n〈ui, θ〉)−

√
n〈ui, θ′ − θ〉Φ′(

√
n〈ui, θ〉)| ≤ nL‖θ − θ′‖2

2.

which follows by assumption on Φ having a uniformly bounded second derivative. Putting
the above inequality with inequality (3.37) establishes our claim (3.34).
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Proof of Corollary 5

The general statement follows directly from Theorem 3. In order to invoke Theorem 3 for
the particular cases of LogitBoost and AdaBoost, we need to verify the conditions, i.e. that
the m-M -condition and φ′-boundedness conditions hold for the respective loss function over
the ball BH (θ∗, 2CH ). The following lemma provides such a guarantee:

Lemma 17. With D : = CH + ‖θ∗‖H , the logistic regression cost function satisfies the
m-M-condition with parameters

m =
1

e−D + eD + 2
, M =

1

4
, and B = 1.

The AdaBoost cost function satisfies the m-M-condition with parameters

m = e−D, M = eD, and B = eD.

See Section 3.7 for the proof of Lemma 17.

γ-exponential decay: If the kernel eigenvalues satisfy a decay condition of the form
µj ≤ c1 exp(−c2j

γ), where c1, c2 are universal constants, the function R from equation (3.20)
can be upper bounded as

R(δ) =

√
2

n

√√√√ n∑
i=1

min{δ2, µj} ≤
√

2

n

√√√√kδ2 +
n∑

j=k+1

c1e−c2j
2 ,

where k is the smallest integer such that c1 exp(−c2k
γ) < δ2. Since the localized Gaussian

width Gn
(
En(δ, 1)

)
can be sandwiched above and below by multiples of R(δ), some algebra

shows that the critical radius scales as δ2
n � n

log(n)1/γσ2 .

Consequently, if we take T � log(n)1/γσ2

n
steps, then Theorem 3 guarantees that the

averaged estimator θ̄T satisfies the bound

‖θ̄T − θ∗‖2
n .

(
1

αm
+

1

m2

)
log1/γ n

n
σ2,

with probability 1− c1exp(−c2m
2 log1/γ n).

β-polynomial decay: Now suppose that the kernel eigenvalues satisfy a decay condition
of the form µj ≤ c1j

−2β for some β > 1/2 and constant c1. In this case, a direct calculation
yields the bound

R(δ) ≤
√

2

n

√√√√kδ2 + c2

n∑
j=k+1

j−2,
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where k is the smallest integer such that c2k
−2 < δ2. Combined with upper bound

c2

∑n
j=k+1 j

−2 ≤ c2

∫
k+1

j−2 ≤ kδ2, we find that the critical radius scales as δ2
n � n−2β/(1+2β).

Consequently, if we take T � n−2β/(1+2β) many steps, then Theorem 3 guarantees that
the averaged estimator θ̄T satisfies the bound

‖θ̄T − θ∗‖2
n ≤

(
1

αm
+

1

m2

)(
σ2

n

)2β/(2β+1)

,

with probability at least 1− c1exp(−c2m
2( n
σ2 )1/(2β+1)).

3.6 Discussion

In this chapter, we have proven non-asymptotic bounds for early stopping of kernel boosting
for a relatively broad class of loss functions. These bounds allowed us to propose simple
stopping rules which, for the class of regular kernel functions [88], yield minimax optimal
rates of estimation. Although the connection between early stopping and regularization has
long been studied and explored in the theoretical literature and applications alike, to the
best of our knowledge, this paper is the first one to establish a general relationship between
the statistical optimality of stopped iterates and the localized Gaussian complexity. This
connection is important, because this localized Gaussian complexity measure, as well as
its Rademacher analogue, are now well-understood to play a central role in controlling the
behavior of estimators based on regularization [73, 6, 48, 81].

There are various open questions suggested by our results. The stopping rules in this
paper depend on the eigenvalues of the empirical kernel matrix; for this reason, they are
data-dependent and computable given the data. However, in practice, it would be desirable to
avoid the cost of computing all the empirical eigenvalues. Can fast approximation techniques
for kernels be used to approximately compute our optimal stopping rules? Second, our current
theoretical results apply to the averaged estimator f̄T . We strongly suspect that the same
results apply to the stopped estimator fT , but some new ingredients are required to extend
our proofs.

3.7 Proof of technical lemmas

Proof of Lemma 14

Recalling that K† denotes the pseudoinverse of K, our proof is based on the linear transfor-
mation

z : = n−1/2(K†)1/2θ ⇐⇒ θ =
√
nK1/2z.
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as well as the new function Jn(z) : = Ln(
√
n
√
Kz) and its population equivalent J (z) : =

EJn(z). Ordinary gradient descent on Jn with stepsize α takes the form

zt+1 = zt − α∇Jn(zt) = zt − α√n
√
K∇Ln(

√
n
√
Kzt). (3.38)

If we transform this update on z back to an equivalent one on θ by multiplying both sides
by
√
n
√
K, we see that ordinary gradient descent on Jn is equivalent to the kernel boosting

update θt+1 = θt − αnK∇Ln(θt).
Our goal is to analyze the behavior of the update (3.38) in terms of the population cost

J (zt). Thus, our problem is one of analyzing a noisy form of gradient descent on the function
J , where the noise is induced by the difference between the empirical gradient operator ∇Jn
and the population gradient operator ∇J .

Recall that the L is M -smooth by assumption. Since the kernel matrix K has been
normalized to have largest eigenvalue at most one, the function J is also M -smooth, whence

J (zt+1) ≤ J (zt) + 〈∇J (zt), dt〉+
M

2
‖dt‖2

2, where dt : = zt+1 − zt = −α∇Jn(zt).

Morever, since the function J is convex, we have J (z∗) ≥ J (zt) + 〈∇J (zt), z∗− zt〉, whence

J (zt+1)− J (z∗) ≤ 〈∇J (zt), dt + zt − z∗〉+
M

2
‖dt‖2

2

= 〈∇J (zt), zt+1 − z∗〉+
M

2
‖dt‖2

2. (3.39)

Now define the difference of the squared errors V t : = 1
2

{
‖zt− z∗‖2

2−‖zt+1− z∗‖2
2

}
. By some

simple algebra, we have

V t =
1

2

{
‖zt − z∗‖2

2 − ‖dt + zt − z∗‖2
2

}
= −〈dt, zt − z∗〉 − 1

2
‖dt‖2

2

= −〈dt, −dt + zt+1 − z∗〉 − 1

2
‖dt‖2

2

= −〈dt, zt+1 − z∗〉+
1

2
‖dt‖2

2.

Substituting back into equation (3.39) yields

J (zt+1)− J (z∗) ≤ 1

α
V t + 〈∇J (zt) +

dt

α
, zt+1 − z∗〉

=
1

α
V t + 〈∇J (zt)−∇Jn(zt), zt+1 − z∗〉,

where we have used the fact that 1
α
≥M by our choice of stepsize α.

Finally, we transform back to the original variables θ =
√
n
√
Kz, using the relation

∇J (z) =
√
n
√
K∇L(θ), so as to obtain the bound

L(θt+1)− L(θ∗) ≤ 1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 〈∇L(θt)−∇Ln(θt), θt+1 − θ∗〉.
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Note that the optimality of θ∗ implies that ∇L(θ∗) = 0. Combined with m-strong convexity,
we are guaranteed that m

2
‖∆t+1‖2

n ≤ L(θt+1)− L(θ∗), and hence

m

2
‖∆t+1‖2

n ≤
1

2α

{
‖∆t‖2

H − ‖∆t+1‖2
H

}
+ 〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉,

as claimed.

Proof of Lemma 15

We split our proof into two cases, depending on whether we are dealing with the least-squares
loss φ(y, θ) = 1

2
(y − θ)2, or a classification loss with uniformly bounded gradient (‖φ′‖∞ ≤ 1).

Least-squares case

The least-squares loss is m-strongly convex with m = M = 1. Moreover, the difference
between the population and empirical gradients can be written as∇L(θ∗+∆̃)−∇Ln(θ∗+∆̃) =
σ
n
(w1, . . . , wn), where the random variables {wi}ni=1 are i.i.d. and sub-Gaussian with parameter

1. Consequently, we have

|〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉| =
∣∣∣∣∣σn

n∑
i=1

wi∆(xi)

∣∣∣∣∣.
Under these conditions, one can show (see [81] for reference) that∣∣∣∣∣σn

n∑
i=1

wi∆(xi)

∣∣∣∣∣ ≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

1

16
‖∆‖2

n, (3.40)

which implies that Lemma 15 holds with c3 = 16.

Gradient-bounded φ-functions

We now turn to the proof of Lemma 15 for gradient bounded φ-functions. First, we claim
that it suffices to prove the bound (3.27) for functions g ∈ ∂H and ‖g‖H = 1 where
∂H : = {f − g | f, g ∈H }. Indeed, suppose that it holds for all such functions, and that we
are given a function ∆ with ‖∆‖H > 1 . By assumption, we can apply the inequality (3.27)
to the new function g : = ∆/‖∆‖H , which belongs to ∂H by nature of the subspace
H = span{K(·, xi)}ni=1.

Applying the bound (3.27) to g and then multiplying both sides by ‖∆‖H , we obtain

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉 ≤ 2δn‖∆‖n + 2δ2
n‖∆‖H +

m

c3

‖∆‖2
n

‖∆‖H
≤ 2δn‖∆‖n + 2δ2

n‖∆‖H +
m

c3

‖∆‖2
n,
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where the second inequality uses the fact that ‖∆‖H > 1 by assumption.
In order to establish the bound (3.27) for functions with ‖g‖H = 1, we first prove it

uniformly over the set {g | ‖g‖H = 1, ‖g‖n ≤ t}, where t > 1 is a fixed radius (of course,
we restrict our attention to those radii t for which this set is non-empty.) We then extend
the argument to one that is also uniform over the choice of t by a “peeling” argument.

Define the random variable

Zn(t) : = sup
∆,∆̃∈E(t,1)

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆〉. (3.41)

The following two lemmas, respectively, bound the mean of this random variable, and its
deviations above the mean:

Lemma 18. For any t > 0, the mean is upper bounded as

EZn(t) ≤ σGn(E(t, 1)), (3.42)

where σ : = 2M + 4CH .

Lemma 19. There are universal constants (c1, c2) such that

P
[
Zn(t) ≥ EZn(t) + α

]
≤ c1 exp

(
− c2nα

2

t2

)
. (3.43)

See Appendices 3.7 and 3.7 for the proofs of these two claims.
Equipped with Lemmas 18 and 19, we now prove inequality (3.27). We divide our

argument into two cases:

Case t = δn: We first prove inequality (3.27) for t = δn. From Lemma 18, we have

EZn(δn) ≤ σGn(E(δn, 1))
(i)

≤ δ2
n, (3.44)

where inequality (i) follows from the definition of δn in inequality (3.15). Setting α = δ2
n in

expression (3.43) yields

P
[
Zn(δn) ≥ 2δ2

n

]
≤ c1 exp

(
−c2nδ

2
n

)
, (3.45)

which establishes the claim for t = δn.

Case t > δn: On the other hand, for any t > δn, we have

EZn(t)
(i)

≤ σGn(E(t, 1))
(ii)

≤ tσ
Gn(E(t, 1))

t
≤ tδn,
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where step (i) follows from Lemma 18, and step (ii) follows because the function u 7→ Gn(E(u,1))
u

is non-increasing on the positive real line. (This non-increasing property is a direct consequence
of the star-shaped nature of ∂H .) Finally, using this upper bound on expression EZn(δn)
and setting α = t2m/(4c3) in the tail bound (3.43) yields

P
[
Zn(t) ≥ tδn +

t2m

4c3

]
≤ c1 exp

(
−c2nm

2t2
)
. (3.46)

Note that the precise values of the universal constants c2 may change from line to line
throughout this section.

Peeling argument Equipped with the tail bounds (3.45) and (3.46), we are now ready to
complete the peeling argument. Let A denote the event that the bound (3.27) is violated for
some function g ∈ ∂H with ‖g‖H = 1. For real numbers 0 ≤ a < b, let A(a, b) denote the
event that it is violated for some function such that ‖g‖n ∈ [a, b], and ‖g‖H = 1. For k =
0, 1, 2, . . ., define tk = 2kδn. We then have the decomposition E = (0, t0) ∪ (

⋃∞
k=0A(tk, tk+1))

and hence by union bound,

P[E ] ≤ P[A(0, δn)] +
∞∑
k=1

P[A(tk, tk+1)]. (3.47)

From the bound (3.45), we have P[A(0, δn)] ≤ c1 exp (−c2nδ
2
n). On the other hand,

suppose that A(tk, tk+1) holds, meaning that there exists some function g with ‖g‖H = 1
and ‖g‖n ∈ [tk, tk+1] such that

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), g〉 > 2δn‖g‖n + 2δ2
n +

m

c3

‖g‖2
n

(i)

≥ 2δntk + 2δ2
n +

m

c3

t2k

(ii)

≥ δntk+1 + 2δ2
n +

m

4c3

t2k+1,

where step (i) uses the ‖g‖n ≥ tk and step (ii) uses the fact that tk+1 = 2tk. This lower bound

implies that Zn(tk+1) > tk+1δn +
t2k+1m

4c3
and applying the tail bound (3.46) yields

P(A(tk, tk+1)) ≤ P(Zn(tk+1) > tk+1δn +
t2k+1m

4c3

) ≤ exp
(
−c2nm

222k+2δ2
n

)
.

Substituting this inequality and our earlier bound (3.45) into equation (3.47) yields

P(E) ≤ c1 exp(−c2nm
2δ2
n),

where the reader should recall that the precise values of universal constants may change from
line-to-line. This concludes the proof of Lemma 15.
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Proof of Lemma 18

Recalling the definitions (3.1) and (3.3) of L and Ln, we can write

Zn(t) = sup
∆,∆̃∈E(t,1)

1

n

n∑
i=1

(φ′(yi, θ
∗
i + ∆̃i)− Eφ′(yi, θ∗i + ∆̃i))∆i

Note that the vectors ∆ and ∆̃ contain function values of the form f(xi)−f ∗(xi) for functions
f ∈ BH (f ∗, 2CH ). Recall that the kernel function is bounded uniformly by one. Consequently,
for any function f ∈ BH (f ∗, 2CH ), we have

|f(x)− f ∗(x)| = |〈f − f ∗, K(·, x)〉H | ≤ ‖f − f ∗‖H ‖K(·, x)‖H ≤ 2CH .

Thus, we can restrict our attention to vectors ∆, ∆̃ with ‖∆‖∞, ‖∆̃‖∞ ≤ 2CH from hereon-
wards.

Letting {εi}ni=1 denote an i.i.d. sequence of Rademacher variables, define the symmetrized
variable

Z̃n(t) : = sup
∆,∆̃∈E(t,1)

1

n

n∑
i=1

εiφ
′(yi, θ

∗
i + ∆̃i) ∆i. (3.48)

By a standard symmetrization argument [74], we have Ey[Zn(t)] ≤ 2Ey,ε[Z̃n(t)]. Moreover,
since

φ′(yi, θ
∗
i + ∆̃i) ∆i ≤

1

2

(
φ′(yi, θ

∗
i + ∆̃i)

)2

+
1

2
∆2
i

we have

EZn(t) ≤ E sup
∆̃∈E(t,1)

1

n

n∑
i=1

εi
(
φ′(yi, θ

∗
i + ∆̃i)

)2
+ E sup

∆∈E(t,1)

1

n

n∑
i=1

εi∆
2
i

≤ 2E sup
∆̃∈E(t,1)

1

n

n∑
i=1

εiφ
′(yi, θ

∗
i + ∆̃i)︸ ︷︷ ︸

T1

+ 4CH E sup
∆∈E(t,1)

1

n

n∑
i=1

εi∆i︸ ︷︷ ︸
T2

,

where the second inequality follows by applying the Rademacher contraction inequality [53],
using the fact that ‖φ′‖∞ ≤ 1 for the first term, and ‖∆‖∞ ≤ 2CH for the second term.

Focusing first on the term T1, since E[εiφ
′(yi, θ

∗
i )] = 0, we have

T1 = E sup
∆̃∈E(t,1)

1

n

n∑
i=1

εi

(
φ′(yi, θ

∗
i + ∆̃i)− φ′(yi; θ∗i )

)
︸ ︷︷ ︸

ϕi(∆̃i)

(i)

≤ ME sup
∆̃∈E(t,1)

1

n

n∑
i=1

εi∆̃i

(ii)

≤
√
π

2
MGn(E(t, 1)),
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where step (i) follows since each function ϕi is M -Lipschitz by assumption; and step (ii)
follows since the Gaussian complexity upper bounds the Rademacher complexity up to a
factor of

√
π
2
. Similarly, we have

T2 ≤
√
π

2
Gn(E(t, 1)),

and putting together the pieces yields the claim.

Proof of Lemma 19

Recall the definition (3.48) of the symmetrized variable Z̃n. By a standard symmetrization
argument [74], there are universal constants c1, c2 such that

P
[
Zn(t) ≥ EZn[t] + c1α

]
≤ c2P

[
Z̃n(t) ≥ EZ̃n[t] + α

]
.

Since {εi}ni=1 are {yi}ni=1 are independent, we can study Z̃n(t) conditionally on {yi}ni=1.
Viewed as a function of {εi}ni=1, the function Z̃n(t) is convex and Lipschitz with respect to
the Euclidean norm with parameter

L2 : = sup
∆,∆̃∈E(t,1)

1

n2

n∑
i=1

(
φ′(yi, θ

∗
i + ∆̃i) ∆i

)2

≤ t2

n
,

where we have used the facts that ‖φ′‖∞ ≤ 1 and ‖∆‖n ≤ t. By Ledoux’s concentration for
convex and Lipschitz functions [52], we have

P
[
Z̃n(t) ≥ EZ̃n[t] + α | {yi}ni=1

]
≤ c3 exp

(
− c4

nα2

t2

)
.

Since the right-hand side does not involve {yi}ni=1, the same bound holds unconditionally over
the randomness in both the Rademacher variables and the sequence {yi}ni=1. Consequently,
the claimed bound (3.43) follows, with suitable redefinitions of the universal constants.

Proof of Lemma 16

We first require an auxiliary lemma, which we state and prove in the following section. We
then prove Lemma 16 in Section 3.7.

An auxiliary lemma

The following result relates the Hilbert norm of the error to the difference between the
empirical and population gradients:
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Lemma 20. For any convex and differentiable loss function L, the kernel boosting error
∆t+1 : = θt+1 − θ∗ satisfies the bound

‖∆t+1‖2
H ≤ ‖∆t‖H ‖∆t+1‖H + α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉. (3.49)

Proof. Recall that ‖∆t‖2
H = ‖θt − θ∗‖2

H = ‖zt − z∗‖2
2 by definition of the Hilbert norm. Let

us define the population update operator G on the population function J and the empirical
update operator Gn on Jn as

G(zt) : = zt − α∇J (
√
n
√
Kzt), and zt+1 : = Gn(zt) = zt − α∇Jn(

√
n
√
Kzt). (3.50)

Since J is convex and smooth, it follows from standard arguments in convex optimization
that G is a non-expansive operator—viz.

‖G(x)−G(y)‖2 ≤ ‖x− y‖2 for all x, y ∈ C. (3.51)

In addition, we note that the vector z∗ is a fixed point of G—that is, G(z∗) = z∗. From these
ingredients, we have

‖∆t+1‖2
H = 〈zt+1 − z∗, Gn(zt)−G(zt) +G(zt)− z∗〉

(i)

≤ ‖zt+1 − z∗‖2‖G(zt)−G(z∗)‖2 +

α〈√n
√
K[∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t)], zt+1 − z∗〉

(ii)

≤ ‖∆t+1‖H ‖∆t‖H + α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉

where step (i) follows by applying the Cauchy-Schwarz to control the inner product, and
step (ii) follows since ∆t+1 =

√
n
√
K(zt+1 − z∗), and the square root kernel matrix

√
K is

symmetric.

Proof of Lemma 16

We now prove Lemma 16. The argument makes use of Lemmas 14 and 15 combined with
Lemma 20.

In order to prove inequality (3.28), we follow an inductive argument. Instead of prov-
ing (3.28) directly, we prove a slightly stronger relation which implies it, namely

max{1, ‖∆t‖2
H } ≤ max{1, ‖∆0‖2

H }+ tδ2
n

4M

γ̃m
. (3.52)

Here γ̃ and c3 are constants linked by the relation

γ̃ : =
1

32
− 1

4c3

= 1/C2
H . (3.53)
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We claim that it suffices to prove that the error iterates ∆t+1 satisfy the inequality (3.52).
Indeed, if we take inequality (3.52) as given, then we have

‖∆t‖2
H ≤ max{1, ‖∆0‖2

H }+
1

2γ̃
≤ C2

H ,

where we used the definition C2
H = 2 max{‖θ∗‖2

H , 32}. Thus, it suffices to focus our attention
on proving inequality (3.52).

For t = 0, it is trivially true. Now let us assume inequality (3.52) holds for some t ≤ m
8Mδ2n

,
and then prove that it also holds for step t+ 1.

If ‖∆t+1‖H < 1, then inequality (3.52) follows directly. Therefore, we can assume without
loss of generality that ‖∆t+1‖H ≥ 1.

We break down the proof of this induction into two steps:
• First, we show that ‖∆t+1‖H ≤ 2CH so that Lemma 15 is applicable.
• Second, we show that the bound (3.52) holds and thus in fact ‖∆t+1‖H ≤ CH .

Throughout the proof, we condition on the event E and E0 := { 1√
n
‖y−E[y | x]‖2 ≤

√
2σ}.

Lemma 15 guarantees that P(Ec) ≤ c1 exp(−c2
m2nδ2n
σ2 ) whereas P(E0) ≥ 1− e−n follows from

the fact that Y 2 is sub-exponential with parameter σ2n and applying Hoeffding’s inequality.
Putting things together yields an upper bound on the probability of the complementary event,
namely

P(Ec ∪ Ec0) ≤ 2c1 exp(−C2nδ
2
n)

with C2 = max{m2

σ2 , 1}.

Showing that ‖∆t+1‖H ≤ 2CH In this step, we assume that inequality (3.52) holds at

step t, and show that ‖∆t+1‖H ≤ 2CH . Recalling that z : = (K†)1/2√
n
θ, our update can be

written as

zt+1 − z∗ = zt − α√n
√
K∇L(θt)− z∗ + α

√
n
√
K(∇Ln(θt)−∇L(θt)).

Applying the triangle inequality yields the bound

‖zt+1 − z∗‖2 ≤ ‖ zt − α
√
n
√
K∇L(θt)︸ ︷︷ ︸

G(zt)

−z∗‖2 + ‖α√n
√
K(∇Ln(θt)−∇L(θt))‖2

where the population update operator G was previously defined (3.50), and observed to be
non-expansive (3.51). From this non-expansiveness, we find that

‖zt+1 − z∗‖2 ≤ ‖zt − z∗‖2 + ‖α√n
√
K(∇Ln(θt)−∇L(θt))‖2,

Note that the `2 norm of z corresponds to the Hilbert norm of θ. This implies

‖∆t+1‖H ≤ ‖∆t‖H + ‖α√n
√
K(∇Ln(θt)−∇L(θt))‖2︸ ︷︷ ︸

: =T
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Observe that because of uniform boundedness of the kernel by one, the quantity T can be
bounded as

T ≤ α
√
n‖∇Ln(θt)−∇L(θt))‖2 = α

√
n

1

n
‖v − Ev‖2,

where we have define the vector v ∈ Rn with coordinates vi : = φ′(yi, θ
t
i). For functions φ

satisfying the gradient boundedness and m −M condition, since θt ∈ BH (θ∗, CH ), each
coordinate of the vectors v and Ev is bounded by 1 in absolute value. We consequently have

T ≤ α ≤ CH ,

where we have used the fact that α ≤ m/M < 1 ≤ CH

2
. For least-squares φ we instead have

T ≤ α

√
n

n
‖y − E[y | x]‖2 =:

α√
n
Y ≤

√
2σ ≤ CH

conditioned on the event E0 := { 1√
n
‖y−E[y | x]‖2 ≤

√
2σ}. Since Y 2 is sub-exponential with

parameter σ2n it follows by Hoeffding’s inequality that P(E0) ≥ 1− e−n.
Putting together the pieces yields that ‖∆t+1‖H ≤ 2CH , as claimed.

Completing the induction step We are now ready to complete the induction step for
proving inequality (3.52) using Lemma 14 and Lemma 15 since ‖∆t+1‖H ≥ 1. We split the
argument into two cases separately depending on whether or not ‖∆t+1‖H δn ≥ ‖∆t+1‖n. In
general we can assume that ‖∆t+1‖H > ‖∆t‖H , otherwise the induction inequality (3.52)
satisfies trivially.

Case 1: When ‖∆t+1‖H δn ≥ ‖∆t+1‖n, inequality (3.27) implies that

〈∇L(θ∗ + ∆̃)−∇Ln(θ∗ + ∆̃), ∆t+1〉 ≤ 4δ2
n‖∆t+1‖H +

m

c3

‖∆t+1‖2
n, (3.54)

Combining Lemma 20 and inequality (3.54), we obtain

‖∆t+1‖2
H ≤ ‖∆t‖H ‖∆t+1‖H + 4αδ2

n‖∆t+1‖H + α
m

c3

‖∆t+1‖2
n

=⇒ ‖∆t+1‖H ≤
1

1− αδ2
n
m
c3

[
‖∆t‖H + 4αδ2

n

]
, (3.55)

where the last inequality uses the fact that ‖∆t+1‖n ≤ δn‖∆t+1‖H .
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Case 2: When ‖∆t+1‖H δn < ‖∆t+1‖n, we use our assumption ‖∆t+1‖H ≥ ‖∆t‖H together
with Lemma 20 and inequality (3.27) which guarantee that

‖∆t+1‖2
H ≤ ‖∆t‖2

H + 2α〈∇L(θ∗ + ∆t)−∇Ln(θ∗ + ∆t), ∆t+1〉
≤ ‖∆t‖2

H + 8αδn‖∆t+1‖n + 2α
m

c3

‖∆t+1‖2
n.

Using the elementary inequality 2ab ≤ a2 + b2, we find that

‖∆t+1‖2
H ≤ ‖∆t‖2

H + 8α

[
mγ̃‖∆t+1‖2

n +
1

4γ̃m
δ2
n

]
+ 2α

m

c3

‖∆t+1‖2
n

≤ ‖∆t‖2
H + α

m

4
‖∆t+1‖2

n +
2αδ2

n

γ̃m
, (3.56)

where in the final step, we plug in the constants γ̃, c3 which satisfy equation (3.53).
Now Lemma 14 implies that

m

2
‖∆t+1‖2

n ≤ Dt + 4‖∆t+1‖nδn +
m

c3

‖∆t+1‖2
n

(i)

≤ Dt + 4

[
γ̃m‖∆t+1‖2

n +
1

4γ̃m
δ2
n

]
+
m

c3

‖∆t+1‖2
n,

where step (i) again uses 2ab ≤ a2 + b2. Thus, we have m
4
‖∆t+1‖2

n ≤ Dt + 1
γ̃m
δ2
n. Together

with expression (3.56), we find that

‖∆t+1‖2
H ≤ ‖∆t‖2

H +
1

2
(‖∆t‖2

H − ‖∆t+1‖2
H ) +

4α

γ̃m
δ2
n

=⇒ ‖∆t+1‖2
H ≤ ‖∆t‖2

H +
4α

γ̃m
δ2
n. (3.57)

Combining the pieces: By combining the two previous cases, we arrive at the bound

max
{

1, ‖∆t+1‖2
H

}
≤ max

{
1, κ2(‖∆t‖H + 4αδ2

n)2, ‖∆t‖2
H +

4M

γ̃m
δ2
n

}
, (3.58)

where κ : = 1
(1−αδ2n mc3 )

and we used that α ≤ min{ 1
M
,M}.

Now it is only left for us to show that with the constant c3 chosen such that γ̃ = 1
32
− 1

4c3
=

1/C2
H , we have

κ2(‖∆t‖H + 4αδ2
n)2 ≤ ‖∆t‖2

H +
4M

γ̃m
δ2
n.

Define the function f : (0, CH ]→ R via f(ξ) : = κ2(ξ+4αδ2
n)2−ξ2− 4M

γ̃m
δ2
n. Since κ ≥ 1, in

order to conclude that f(ξ) < 0 for all ξ ∈ (0, CH ], it suffices to show that argminx∈R f(x) < 0
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and f(CH ) < 0. The former is obtained by basic algebra and follows directly from κ ≥ 1.
For the latter, since γ̃ = 1

32
− 1

4c3
= 1/C2

H , α < 1
M

and δ2
n ≤ M2

m2 it thus suffices to show

1

(1− M
8m

)2
≤ 4M

m
+ 1

Since (4x+ 1)(1− x
8
)2 ≥ 1 for all x ≤ 1 and m

M
≤ 1, we conclude that f(CH ) < 0.

Now that we have established max{1, ‖∆t+1‖2
H } ≤ max{1, ‖∆t‖2

H }+ 4M
γ̃m
δ2
n, the induction

step (3.52) follows. which completes the proof of Lemma 16.

Proof of Lemma 17

Recall that the LogitBoost algorithm is based on logistic loss φ(y, θ) = ln(1 + e−yθ), whereas
the AdaBoost algorithm is based on the exponential loss φ(y, θ) = exp(−yθ). We now
verify the m-M -condition for these two losses with the corresponding parameters specified in
Lemma 17.

m-M-condition for logistic loss

The first and second derivatives are given by

∂φ(y, θ)

∂θ
=
−ye−yθ
1 + e−yθ

, and
∂2φ(y, θ)

(∂θ)2
=

y2

(e−yθ/2 + eyθ/2)2
.

It is easy to check that |∂φ(y,θ)
∂θ
| is uniformly bounded by B = 1.

Turning to the second derivative, recalling that y ∈ {−1,+1}, it is straightforward to
show that

max
y∈{−1,+1}

sup
θ

y2

(e−yθ/2 + eyθ/2)2
≤ 1

4
,

which implies that ∂φ(y,θ)
∂θ

is a 1/4-Lipschitz function of θ, i.e. with M = 1/4.
Our final step is to compute a value for m by deriving a uniform lower bound on the Hessian.

For this step, we need to exploit the fact that θ = f(x) must arise from a function f such
that ‖f‖H ≤ D : = CH + ‖θ∗‖H . Since supxK(x, x) ≤ 1 by assumption, the reproducing
relation for RKHS then implies that |f(x)| ≤ D. Combining this inequality with the fact that
y ∈ {−1, 1}, it suffices to lower the bound the quantity

min
y∈{−1,+1}

min
|θ|≤D

∣∣∣∣∂2φ(y, θ)

(∂θ)2

∣∣∣∣ = min
|y|≤1

min
|θ|≤D

y2

(e−yθ/2 + eyθ/2)2
≥ 1

e−D + eD + 2︸ ︷︷ ︸
m

,

which completes the proof for the logistic loss.
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m-M-condition for AdaBoost

The AdaBoost algorithm is based on the cost function φ(y, θ) = e−yθ, which has first and
second derivatives (with respect to its second argument) given by

∂φ(y, θ)

∂θ
= −ye−yθ, and

∂2φ(y, θ)

(∂θ)2
= e−yθ.

As in the preceding argument for logistic loss, we have the bound |y| ≤ 1 and |θ| ≤ D. By
inspection, the absolute value of the first derivative is uniformly bounded B : = eD, whereas
the second derivative always lies in the interval [m,M ] with M : = eD and m : = e−D, as
claimed.
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Part II

Testing
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Chapter 4

Adaptive Sampling for multiple
testing

4.1 Introduction

For most modern internet companies, wherever there is a metric that can be measured (e.g.,
time spent on a page, click-through rates, conversion of curiousity to a sale), there is almost
always a randomized trial behind the scenes, with the goal of identifying an alternative website
design that provides improvements over the default design. The use of such data-driven
decisions for perpetual improvement is colloquially known as A/B testing in the case of two
alternatives, or A/B/n testing for several alternatives. Given a default configuration and
several alternatives (e.g., color schemes of a website), the standard practice is to divert a
small amount of scientist-traffic to a randomized trial over these alternatives and record the
desired metric for each of them. If an alternative appears to be significantly better, it is
implemented; otherwise, the default setting is maintained. The idea is illustrated in Figure 4.1
in a setting that could be representative for a multiple testing application by a tech company.

At first glance, this procedure seems intuitive and simple. However, in cases where the
aim is to optimize over one particular metric, this common tool suffers from several downsides.
(1) First, whereas some alternatives may be clearly worse than the default, others may only
have a slight edge. If one wishes to minimize the amount of time and resources spent on
this randomized trial the more promising alternatives should intuitively get a larger share
of the traffic than the clearly-worse alternatives. Yet typical A/B/n testing frameworks
allocate traffic uniformly over alternatives. (2) Second, companies often desire to continuously
monitor an ongoing A/B test as they may adjust their termination criteria as time goes by
and possibly stop earlier or later than originally intended. However, just as if you flip a
coin long enough, a long string of heads is eventually inevitable, the practice of continuous
monitoring (without mathematically correcting for it) can easily fool the tester to believe that
a result is statistically significant, when in reality it is not. This is one of the reasons for the
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A B

A/B Testing
Platform

Company

Only recommends new version if evidence is “significant”!
Allows continuous monitoring for equal number of samples

B

Clicked on 
“BUY” 50% 75%

3Figure 4.1: A typical example for an A/B testing framework as used by many tech companies,
where the reward is a purchase and the treatment is an alternative app design

lack of reproducibility of scientific results, an issue recently receiving increased attention from
the public media. (3) Third, the lack of sufficient evidence or an insignificant improvement of
the metric may make it undesirable from a practical or financial perspective to replace the
default. Therefore, when a company runs hundreds to thousands of A/B tests within a year
as illustrated in Figure 4.2 (a), ideally the number of statistically insignificant changes that it
made should be small compared to the total number of changes made. Controlling the false
alarm rate of each individual test at a desired level α however does not achieve this type of
control, also known as controlling the false discovery rate. Of course, it is also desirable to
detect better alternatives (when they exist), and to do so as quickly as possible.

In this chapter, we provide a novel framework that addresses the above shortcomings of
A/B or A/B/n testing. The first concern is tackled by employing recent advances in adaptive
sampling like the pure-exploration multi-armed bandit (MAB) algorithm. For the second
concern, we adopt the notion of any-time p-values for guilt-free continuous monitoring, and
we make the advantages and risks of early-stopping transparent. Finally, we handle the
third issue using recent advances in online false discovery rate (FDR) control. Hence the
combined framework can be described as doubly-sequential (sequences of MAB tests, each
of which is itself sequential) as illustrated in Figure 4.2. Although each of those problems
has been studied in hitherto disparate communities, how to leverage the best of all worlds,
if at all possible, has remained an open problem. The main contributions of this chapter
are in merging these ideas in a combined framework and presenting the conditions under
which it can be shown to yield near-optimal sample complexity, near-optimal best-alternative
discovery rate, as well as FDR control.

While the above concerns raised about A/B/n testing were discussed using the example of
modern internet companies, the same concerns carry forward qualitatively to other domains,
like pharmaceutical companies running sequential clinical trials with a control (often placebo)
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Clicked?     1         1         0         0         1         1 

Assigned
Version:
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Version:
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Test 1
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Test 2
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Test 3

(a) (b)

Figure 4.2: (a) A company possibly conducts many experiments with multiple treatments
over the year. In this example, the “website” experiment aims at finding a version that leads
to more purchases, the “android” experiment is conducted to determine the design with
the highest percentage of new memberships and the “fall catalog” should be represented by
the picture which leads to the biggest number of clicks (b) Our proposed doubly sequential
procedure, where the version that is assigned to the next person depends on previous outcomes,
achieves false discovery control and true discovery guarantees. The outcomes are binary
variables which indicate whether the user took the company preferred action (e.g. “buy”)

and a few treatments (like different doses or drug substances). In a manufacturing or food
production setting, one may be interested in identifying (perhaps cheaper) substitutes for
individual materials without compromising the quality of a product too much. In a government
setting, pilot programs are funded in search of improvements over current programs and it is
desirable from a social welfare standpoint and cost to limit the adoption of ineffective policies.

The remainder of this chapter is organized as follows. In Section 4.2, we lay out the
primary goals of the chapter, and describe a meta-algorithm that combines adaptive sampling
strategies with FDR control procedures. Section 4.3 is devoted to the description of a
concrete procedure, along with some theoretical guarantees on its properties. In Section 4.5,
we describe the results of our extensive experiments on both simulated and real-world data
sets that are available to us, before we conclude with a discussion in Section 4.7.

4.2 Formal experimental setup and a meta-algorithm

In this section we first formalize the setup of a typical A/B/n test and provide a high-
level overview of our proposed combined framework aimed at addressing the shortcomings
mentioned in the introduction. A specific instantiation of this meta-algorithm along with
detailed theoretical guarantees are specified in Section 4.3.

For concreteness, we refer to the system designer, whether a tech company or a phar-
maceutical company, as a (data) scientist. We assume that the scientist needs to possibly
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conduct an infinite number of experiments sequentially, indexed by j. Each experiment has
one default setting, referred to as the control, and K = K(j) alternative settings, called the
treatments or alternatives. The scientist must return one of the K + 1 options that is the
“best” according to some predefined metric, before the next experiment is started. Such a
setup is a simple mathematical model both for clinical trials run by pharmaceutical labs, and
A/B/n testing used at scale by tech companies.

One full experiment consists of steps of the following kind: In each step, the scientist
assigns a new person—who arrives at the website or who enrolls in the clinical trial—to
one of the K + 1 options and obtains a measurable outcome. In practice, the role of the
scientist could be taken by an adaptive algorithm, which determines the assignment at time
step j by careful consideration of all previous outcomes. Borrowing terminology from the
multi-armed bandit (MAB) literature, we refer to each of the K + 1 options as an arm, and
each assignment to arm i is termed “pulling arm i”. For concreteness, we assign the index 0
to the default or control arm, and note that this index is known to the algorithm.

We assume that the observable metric from each pull of arm i = 0, 1, . . . , K corresponds to
an independent draw from an unknown probability distribution with expectation µi. Ideally,
if the means were known, we would use them as scores to compare the arms where higher is
better. In the sequel we use µi? : = max

i=1,...,K
µi to denote the mean of the best arm. We refer

the reader to Table 4.1 for a glossary of the notation used throughout this chapter.

Some desiderata and difficulties

Given the setup above, how can we mathematically describe the guarantees that the companies
might desire from an improved multiple-A/B/n testing framework? Which parts of the puzzle
can be directly transferred from known results, and what challenges remain?

In order to answer the first question, let us adopt terminology from the hypothesis
testing literature and view each experiment as a test of a null hypothesis. Any claim that an
alternative arm is the best is called a discovery, and if such a claim is erroneous then it is
called a false discovery. When multiple hypotheses need to be tested, the scientist needs to
define the quantity it wants to control. While we may desire that the probability of even
a single false discovery—called the family-wise error rate—is small, this is usually far too
stringent for a large and unknown number of tests. For this reason, [11] proposed that it may
be more interesting to control the expected ratio of false discoveries to the total number of
discoveries (called the False Discovery Rate, or FDR for short) or ratio of expected number
of false discoveries to the expected number of total discoveries (called the modified FDR
or mFDR for short). Over the past decades, the FDR and its variants like mFDR have
become standard quantities for multiple testing applications. In the following, if not otherwise
specified, we use the term FDR to denote both measures in order to simplify the presentation.
In Section 4.3, we show that both mFDR and FDR can be controlled for different choices of
procedures.
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Challenges in viewing an MAB instance as a hypothesis test

In our setup, we want to be able to control the FDR at any time in an online manner. Online
FDR procedures were first introduced by Foster and Stine [29], and have since been studied
by other authors (e.g., [1, 41]). A typical online FDR procedure is based on comparing a
valid p-value P j with carefully-chosen levels αj for each hypothesis test∗. We reject the null
hypothesis, represented as Rj = 1, when P j ≤ αj and we set Rj = 0 otherwise.

As mentioned, we want to use adaptive MAB algorithms in each experiment to test each
hypothesis, since they can find a best arm among K + 1 with near-optimal sample complexity.
However the traditional MAB setup does not account for the asymmetry between the arms
as is the case in a testing setup, with one being the default (control) and others being
alternatives (treatments). This is the standard scenario in A/B/n testing applications, as for
example a company might prefer wrong claims that the control is the best (false negative),
rather than wrong claims that an alternative is the best (false positive), simply because new
system-wide adoption of selected alternatives might involve high costs. What would be a
suitable null hypothesis in this hybrid setting? To allow continuous monitoring, is it possible
to define and compute always-valid p-values that are super-uniformly distributed under the
null hypothesis when computed at any time t? (This could be especially challenging given
that the number of samples from each the arm is random, and different for each arm.)

In addition to asymmetry, the practical scientist might have a different incentive than the
ideal outcome for MAB algorithms. In particular, he/she might not want to find the best
alternative if it is not substantially better than the control. Indeed, if the net gain made by
adopting a new alternative is small, it might be offset by the cost of implementing the change
from the existing default choice. By similar reasoning, we may not require identifying the
single best arm if there is a set of arms with similar means that are all larger than the rest.

We propose a sensible null-hypothesis for each experiment which incorporates the approx-
imation and improvement notions as described above and provide an always valid p-value
which can be easily calculated at each time step in the experiment. We show that a slight
modification of the usual LUCB algorithm caters to this specific null-hypothesis while still
maintaining near-optimal sample complexity.

Interaction between MAB and FDR

In order to take advantage of the sample efficiency of best-arm bandit algorithms, it is crucial
to set the confidence levels close to what is needed. Given a user-defined level α, at each
hypothesis j, online FDR procedures automatically output the significance level αj which are
“needed” to guarantee FDR control, based on past decisions.

Can we directly set the MAB confidence levels to the output levels αj from the online
FDR procedure? If we do, our p-values are not independent across different hypotheses
anymore: P j directly depends on the FDR levels αj and each αj in turn depends on past

∗A valid P j must be stochastically dominated by a uniform distribution on [0, 1], which we henceforth
refer to as super-uniformly distributed.
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MAB-FDR meta algorithm

𝛼𝛼𝑗𝑗 𝑅𝑅𝑗𝑗 (𝛼𝛼𝑗𝑗)

Exp j

MAB Test
𝑝𝑝𝑗𝑗 < 𝛼𝛼𝑗𝑗

𝑝𝑝𝑗𝑗 (𝛼𝛼𝑗𝑗)

𝛼𝛼j+1 𝑅𝑅j+1 (𝛼𝛼j+1)

Exp j+1

MAB Test
𝑝𝑝j+1 < 𝛼𝛼j+1

𝑝𝑝j+1 (𝛼𝛼j+1)

Online FDR procedure

……

desired FDR level 𝛼𝛼

Figure 4.3: Diagram of the MAB-FDR meta algorithm designed to achieve online FDR control
along with near-optimal sample complexity. The green arrows symbolize interaction between
the MAB and FDR procedures via the FDR test levels αj and rejection indicator variables
Rj. Notice that the P j-values are now dependent as each αj depends on R1, . . . , Rj−1. The
eyes represent possible continuous monitoring by the scientist.

MAB rejections, thus on past MAB p-values (see Figure 4.3). Does the new interaction
compromise FDR guarantees?

Although known online FDR procedures [29, 41] guarantee FDR control for independent
p-values, this does not hold for dependent p-values in general. Hence FDR control guarantees
cannot simply be obtained out of the box. In particular, it is not a priori obvious that the
introduced dependence between the p-values does not cause problems, i.e. violates necessary
conditions for FDR control type theorems. A key insight that emerges from our analysis is
that an appropriate bandit algorithm actually shapes the p-value distribution under the null
in a good way that allows us to control FDR.

A meta-algorithm

Procedure 1 summarizes our doubly-sequential procedure, with a corresponding flowchart in
Figure 4.3. We will prove theoretical guarantees after instantiating the separate modules.
Note that our framework allows the scientist to plug in their favorite best-arm MAB algorithm
or online FDR procedure. The choice for each of them determines which guarantees can be
proven for the entire setup. Any independent improvement in either of the two parts would
immediately lead to an overall performance boost of the overall framework.
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Procedure 1 MAB-FDR Meta algorithm skeleton

1. The scientist sets a desired FDR control rate α.

2. For each j = 1, 2, . . . :

• Experiment j receives a designated control arm and some number of alternative
arms.

• An online-FDR procedure returns an αj that is some function of the past values
{P `}j−1

`=1.

• An MAB procedure with inputs (a) the control arm and K(j) alternative arms,
(b) confidence level αj, and (c) (optional) a precision ε ≥ 0, is executed and if the
procedure self-terminates, returns a recommended arm.

• Throughout the MAB procedure, an always valid p-value is constructed continuously
for each time t using only the samples collected up to that time from the j-th
experiment: for any t, it is a random variable P j

t ∈ [0, 1] that is super-uniformly
distributed whenever the control-arm is best.

• When the MAB procedure is terminated at time t (either by itself or by a user-
defined stopping criterion that may depend on P j

t ), if the arm with the highest
empirical mean is not the control arm and P j

t ≤ αj, then we return P j := P j
t , and

the control arm is rejected in favor of this empirically best arm.

4.3 A concrete procedure with guarantees

We now take the high-level road map given in Procedure 1, and show that we can obtain
a concrete, practically implementable framework with FDR control and power guarantees.
We first discuss the key modeling decisions we have to make in order to seamlessly embed
MAB algorithms into an online FDR framework. We then outline a modified version of a
commonly used best-arm algorithm, before we finally prove FDR and power guarantees for
the concrete combined procedure.

Defining null hypotheses and constructing p-values

Our first task is to define a null hypothesis for each experiment. As mentioned before, the
choice of the null is not immediately obvious, since we sample from multiple distributions
adaptively instead of independently. In particular, we will generally not have the same
number of samples for all arms. Given a distribution with default mean µ0 and alternative
distributions with means {µi}Ki=1, we propose that the null hypothesis for the j-th experiment
should be defined as

Hj
0 : µ0 ≥ µi − ε for all i = 1, . . . , K. (4.1)
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In words, the null corresponds to there being no alternative arm that is ε-better than the
control arm.

It remains to define a p-value for each experiment that is stochastically dominated by a
uniform random variable under the null; such a p-value is said to be superuniform. In order
to simplify notation below, we omit the index j for the experiment and retain only the index
i for the choice of arms. In order to be able to use a p-value at arbitrary times in the testing
procedure and to allow scientists to monitor the algorithm’s progress in real time, it is helpful
to define an always valid p-value, as previously defined by Johari et al. [43]. An always valid
p-value is a stochastic process {Pt}∞t=1 such that for all fixed and random stopping times T ,
under any distribution P0 over the arm rewards such that the null hypothesis is true, we have

P0(PT ≤ α) ≤ α. (4.2)

When all arms are drawn independently an equal number of times, by linearity of expectation
one can regard the distance of each pair of samples as a random variable drawn i.i.d. from a
distribution with mean µ̃i : = µ0 − µi. We can then view the problem as testing the standard
hypothesis H0 : µ̃i > −ε. However, when the arms are pulled adaptively, a different solution
needs to be found—indeed, in this case, the sample means are not unbiased estimators of
the true means, since the number of times an arm was pulled now depends on the empirical
means of all the arms.

Our strategy is to construct always valid p-values by using the fact that p-values can
be obtained by inverting confidence intervals. To construct always-valid confidence bounds,
we resort to the fundamental concept of the law of the iterated logarithm (LIL), for which
non-asymptotic versions have been recently derived and used for both bandits and testing
problems (see [39], [4]).

To elaborate, define the function

ϕn(δ) =

√
log(1

δ
) + 3 log(log(1

δ
)) + 3

2
log(log(en))

n
. (4.3)

If µ̂i,n is the empirical average of independent samples from a sub-Gaussian distribution, then
it is known (see, for instance, [Theorem 8 45]) that for all δ ∈ (0, 1), we have

max
{
P
( ∞⋃
n=1

{µ̂i,n − µi > ϕn(δ ∧ 0.1)}
)
, P

( ∞⋃
n=1

{µ̂i,n − µi < −ϕn(δ ∧ 0.1)}
)}
≤ δ, (4.4)

where δ ∧ 0.1 : = min{δ, 0.1}.
We are now ready to propose single arm p-values of the form

Pi,t : = sup
{
γ ∈ [0, 1] | µ̂i,ni(t) − ϕni(t)( γ

2K
) ≤ µ̂0,n0(t) + ϕn0(t)(

γ
2
) + ε

}
(4.5)

= sup
{
γ ∈ [0, 1] | LCBi(t) ≤ UCB0(t) + ε

}
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Here we set Pi,t = 1 if the supremum is taken over an empty set. Given these single arm
p-values, the always-valid p-value for the experiment is defined as

Pt : = min
s≤t

min
i=1,...,K

Pi,s. (4.6)

We claim that this procedure leads to an always valid p-value (with proof in Section 4.6).

Proposition 1. The sequence {Pt}∞t=1 defined via equation (4.6) is an always valid p-value.

See Section 4.6 for the proof of this proposition.

Adaptive sampling for best-arm identification

In the traditional A/B testing setting described in the introduction, samples are allocated
uniformly to the different alternatives. But by allocating different numbers of samples to
the alternatives, decisions can be made with the same statistical significance using far fewer
samples. Suppose moreover that there is a unique maximizer i? : = arg max

i=0,1,...,K
µi, so that

∆i : = µi? − µi > 0 for all i 6= i?.

Then for any δ ∈ (0, 1), best-arm identification algorithms for the multi-armed bandit problem
can identify i? with probability at least 1 − δ based on at most†

∑
i 6=i? ∆−2

i log(1/δ) total
samples (see the paper [38] for a brief survey and [77] for an application to clinical trials). In
contrast, if samples are allocated uniformly to the alternatives under the same conditions,
then the most natural procedures require K max

i 6=i?
∆−2
i log(K/δ) samples before returning i?

with probability at least 1− δ.
However, standard best-arm bandit algorithms do not incorporate asymmetry as induced

by null-hypotheses as in definition (4.1) by default. Furthermore, recall that a practical
scientist might desire the ability to incorporate approximation and a minimum improvement
requirement. More precisely, it is natural to consider the requirement that the returned arm ib
satisfies the bounds µib ≥ µ0 +ε and µib ≥ µi?−ε for some ε > 0. For those readers unfamiliar
with best-arm MAB algorithms, it is likely helpful to first grasp the entire framework in the
special ε = 0 throughout, before understanding it in full generality with the complications
introduced by setting ε > 0. In the following we present a modified MAB algorithm based on
the common LUCB algorithm (see [44, 70] and a high-level illustration in Figure 4.4).

Inside the loop of Algorithm 1, we use ht ∈ {0, 1, . . . , K} to denote the current empirically-
best arm, `t to denote the most promising contender among the other arms that has not
yet been sampled enough to be ruled out. The parameter ε ≥ 0 is a slack variable, and
the algorithm is easiest to first understand when ε = 0. We provide a visualization of how
ε affects the stopping condition in Figure 4.5. Step (a) checks if ht is within ε of the true
highest mean, and if it is also at least ε greater than the true mean of the control arm (or

†Here we have ignored some doubly-logarithmic factors.
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Compute 
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�μ1(t),⋯ , �μK(t)
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Figure 4.4: Cartoon of traditional best-arm identification algorithms relying on confidence
bounds: when the stopping criterion is not fulfilled, the best empirical arm at the time and
the runner-up are sampled. The latter is either drawn fewer times than the best empirical
arm (and is thus more uncertain) or has an empirical mean that is only a little bit worse.

Algorithm 1 Best-arm identification with a control arm for confidence δ and precision ε ≥ 0

For all t let ni(t) be the number of times arm i has been pulled up to time t. In addition, for

each arm i let µ̂i(t) = 1
ni(t)

∑ni(t)
τ=1 ri(τ), define

LCBi(t) := µ̂i,ni(t) − ϕni(t)( δ
2K

) and UCBi(t) := µ̂i,ni(t) + ϕni(t)(
δ
2
).

1. Set t = 1 and sample every arm once.

2. Repeat: Compute ht = arg max
i=0,1,...,K

µ̂i(t), and `t = arg max
i=0,1,...,K,i 6=ht

UCBi(t)

(a) If LCB0(t) > UCBi(t)− ε, for all i 6= 0, then output 0 and terminate.
Else if LCBht(t) > UCB`t(t)− ε and LCBht(t) > UCB0(t) + ε, then output ht and
terminate.

(b) If ε > 0, let ut = arg maxi 6=0 UCBi(t) and pull all distinct arms in {0, ut, ht, `t}
once.
If ε = 0, pull arms ht and `t and set t = t+ 1.

is the control arm), terminates with this arm ht. Step (b) ensures that the control arm is
sufficiently sampled when ε > 0. Step (c) pulls ht and `t, reducing the overall uncertainty in
the difference between their two means.
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The following proposition applies to Algorithm 1 run with a control arm indexed by i = 0
with mean µ0 and alternative arms indexed by i = 1, . . . , K with means µi, respectively. Let
ib denote the random arm returned by the algorithm assuming that it exits, and define the
set

S? : = {i? 6= 0 | µi? ≥ max
i=1,...,K

µi − ε and µi? > µ0 + ε}. (4.7)

Note that the mean associated with any index i? ∈ S?, assuming that the set is non-empty,
is guaranteed to be ε-superior to the control mean, and at most ε-inferior to the maximum
mean over all arms.

Proposition 2. The algorithm 1 terminates in finite time with probability one. Furthermore,
suppose that the samples from each arm are independent and sub-Gaussian with scale 1. Then
for any δ ∈ (0, 1) and ε ≥ 0, Algorithm 1 has the following guarantees:

(a) Suppose that µ0 > max
i=1,...,K

µi − ε. Then with probability at least 1 − δ, the algorithm

exits with ib = 0 after taking at most O
(∑K

i=0 ∆̃−2
i log(K log(∆̃−2

i )/δ)
)

time steps with

effective gaps

∆̃0 = (µ0 + ε)− max
j=1,...,K

µj and

∆̃i = (µ0 + ε)− µi.

(b) Otherwise, suppose that the set S? as defined in equation (4.7) is non-empty. Then with
probability at least 1− δ, the algorithm exits with ib ∈ S? after taking at most

Control arm
0 1

Alternative arms

µ⇤

µ⇤ � ✏

2 3 4 5

µ0 + ✏

µ0

0

✏
✏

ltht
…

LCBht

UCBlt

UCB0

Control arm Alternative arms
(a) (b)

Figure 4.5: (a) The means of arms {1, 2, 3} are within ε of the best arm, but only arms {1, 2}
are at least ε better than the control arm 0. Thus, returning any of arms {3, 4, 5} would result
in a false discovery when ε > 0. (b) An example of the stopping condition being critically
met and returning a non-control arm ht. While LCBht > UCB`t − ε is satisfied with some
slack, LCBht > UCB0 + ε is just barely satisfied.
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O
(∑K

i=0 ∆̃−2
i log(K log(∆̃−2

i )/δ)
)

time steps with effective gaps

∆̃0 = min

{
max

j=1,...,K
µj − (µ0 + ε),max{∆0, ε}

}
and

∆̃i = max

{
∆i,min

{
max

j=1,...,K
µj − (µ0 + ε), ε

}}
.

See Section 4.6 for the proof of this claim. Part (a) of Proposition 2 guarantees that when no
alternative arm is ε-superior to the control arm (i.e. under the null hypothesis), the algorithm
stops and returns the control arm after a certain number of samples with probability at least
1− δ, where the sample complexity depends on ε-modified gaps between the means µ0 and
µi. Part (b) guarantees that if there is in fact at least one alternative that is ε-superior to
the control arm (i.e. under the alternative), then the algorithm will find at least one of them
that is at most ε-inferior to the best of all possible arms with the same sample complexity
and probability.

Note that the required number of samples O
(∑K

i=0 ∆̃−2
i log(K log(∆̃−2

i )/δ)
)

in Proposi-

tion 2 is comparable, up to log factors, with the well-known results in [44, 70] for the case

ε = 0, with the modified gaps ∆̃i replacing ∆i = µi? − µi. Indeed, the nearly optimal sample
complexity result of [70] implies that the algorithm terminates under settings (a) and (b)
after at most O(maxj 6=i? ∆−2

j log(K log(∆−2
j )/δ) +

∑
i 6=i? ∆−2

i log(log(∆−2
i )/δ)) samples are

taken.
In our development to follow, we now bring back the index for experiment j, in particular

using P j to denote the quantity P j
T at any stopping time T . Here the stopping time can

either be defined by the scientist, or in an algorithmic manner.

Best-arm MAB interacting with online FDR

After having established null hypotheses and p-values in the context of best-arm MAB
algorithms, we are now ready to embed them into an online FDR procedure. In the following,
we consider p-values for the j-th experiment P j : = P j

Tj
which is just the p-value as defined in

equation (4.6) at the stopping time Tj, which depends on αj.
We denote the set of true null and false null hypotheses up to experiment J as H0(J)

and H1(J) respectively, where we drop the argument whenever it’s clear from the context.
The variable Rj = 1P j≤αj indicates whether a the null hypothesis of experiment j has been
rejected, where Rj = 1 denotes a claimed discovery that an alternative was better than the
control. The false discovery rate (FDR) and modified FDR up to experiment J are then
defined as

FDR(J) : = E
∑

j∈H0
Rj∑J

i=1Ri ∨ 1
and mFDR(J) : =

E
∑

j∈H0
Rj

E
∑J

i=1 Ri + 1
. (4.8)
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Notation Terminology and explanation
MAB (pure exploration for best-arm identification in) multi-armed bandits
FDR(J) expected ratio of # false disc. to # disc. up to experiment J
mFDR(J) the ratio of expected # false discoveries to expected # discoveries
α target for FDR or mFDR control after any number of experiments
BDR(J) the best arm discovery rate (generalization of test power)
εBDR(J) the ε-best arm discovery rate (softer metric than BDR)
LCB,UCB the lower and upper confidence bounds used in the best-arm algorithms
j ∈ N experiment counter (number of MAB instances)
Tj ∈ N stopping time for the j-th experiment

P j
t , Pt ∈ [0, 1] always valid p-value after time t (in experiment j, explicit or implicit)
P j always valid p-value for experiment j at its stopping time Tj
αj ∈ [0, 1] threshold set by the online FDR algorithm for P j, using {pi}j−1

i=1

T (αj) ∈ N stopping time for the j-th experiment, when experiment uses αj
0 the control or default arm
{1, . . . , K} K = K(j) alternatives or treatment arms (experiment j implicit)
i ∈ {0, . . . , K} K + 1 options or “all arms”
i?, ib the best of all arms, and the arm returned by MAB
µi, µ∗ the mean of the i-th arm, and the mean of the best arm
t, ni(t) ∈ N total number of pulls, number of times arm i is pulled up to time t

Table 4.1: A summary of the notation used in this chapter.

Here the expectations are taken with respect to distributions of the arm pulls and the
respective sampling algorithm. In general, it is not true that control of one quantity implies
control of the other. Nevertheless, in the long run (when the law of large numbers is a
good approximation), one does not expect a major difference between the two quantities in
practice.

The set of true nulls H0 thus includes all experiments where Hj
0 is true, and the FDR and

mFDR are well-defined for any number of experiments J , since we often desire to control
FDR(J) or mFDR(J) for all J ∈ N. In order to measure power, we define the ε-best-arm
discovery rate as

εBDR(J) : =
E
∑

j∈H1
Rj1µib≥µi?−ε1µib≥µ0+ε

|H1(J)| (4.9)

We provide a concrete procedure 2 for our doubly sequential framework, where we use
a particular online FDR algorithm due to Javanmard and Montanari [41] known as LORD
(now called LORD 3 in the updated version); the reader should note that other online FDR
procedure could be used to obtain essentially the same set of guarantees. Given a desired
level α, the LORD procedure starts off with an initial “α-wealth” of W (0) < α. Based on an
infinite sequence {γi}∞i=1 that sums to one, and the time of the most recent discovery τj, it
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Figure 4.6: High-level cartoon of a LORD procedure as in [41] based on wealth to provide
some intuition. Note that here, γj represents the fact that αj corresponds to some fraction of
the wealth which depends on j, and is not directly equivalent with the γj in the main text.

uses up a fraction γj−τj of the remaining α-wealth to test. Whenever there is a rejection, we
increase the α-wealth by α−W (0). Figure 4.6 provides a cartoon to illustrate wealth-based
online FDR procedures like LORD introduced in [41]. A feasible choice for a stopping time
in practice is Tj : = min{T (αj),M}, where M is a maximal number of samples the scientist
wants to pull and T (αj) is the stopping time of the best-arm MAB algorithm run at confidence
αj.

Procedure 2 MAB-LORD: best-arm identification with online FDR control

1. Initialize W (0) < α, set τ0 = 0, and choose a sequence {γi} s.t.
∑∞

i=1 γi = 1

2. At each step j, compute αj = γj−τjW (τj) and
W (j + 1) = W (j)− αj +Rj(α−W (0))

3. Output αj and run Algorithm 1 using αj-confidence and stop at a stopping time Tj.

4. Algorithm 1 returns P j and we reject the null hypothesis if P j ≤ αj.

5. Set Rj = 1P j≤αj , τj = τj−1 ∨ jRj, update j = j + 1 and go back to step 2.

The following theorem provides guarantees on mFDR and power for the MAB-LORD
procedure.

Theorem 4 (Online mFDR control for MAB-LORD).
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(a) Procedure 2 achieves mFDR control at level α for stopping times Tj = min{T (αj),M}.

(b) Furthermore, if we set M =∞, Procedure 2 satisfies

εBDR(J) ≥
∑J

j=1 1j∈H1(1− αj)
|H1(J)| . (4.10)

The proof of this theorem can be found in Section 4.6. Note that by the arguments in
the proof of Theorem 4, mFDR control itself is actually guaranteed for any generalized α-
investing procedure [1] combined with any best-arm MAB algorithm. In fact we could use any
adaptive stopping time Tj which depend on the history only via the rejections R1, . . . , Rj−1.
Furthermore, using a modified LORD proposed by Javanmard and Montanari [40], we can
also guarantee FDR control– which can be found in Section 4.4.

It is noteworthy that small values of α do not only guarantee smaller FDR error but also
higher BDR. However, there is no free lunch — a smaller α implies a smaller αj at each
experiment, which in turn causes the best-arm MAB algorithm to employ a larger number of
pulls in each experiment.

4.4 Notes on FDR control

Apart from mFDR for general online FDR procedures, it turns out that we can in fact prove
FDR control for our framework using the specific online FDR procedure called LORD ’15
introduced in [40]. When used in Procedure 2, the only adjustment that needs to be made is
to reset W (j + 1) to α in step 2 after every rejection, yielding αj = αγj−τj for any sequence
{γj}∞j=1 such that

∑∞
j=1 γj = 1. We call the adjusted procedure MAB-LORD’ for short.

Theorem 5 (Online FDR control for MAB-LORD). (a) MAB-LORD’ achieves mFDR and
FDR control at a specified level α for stopping times Tj = min{T (αj),M}.

(b) Furthermore, if we set M =∞, MAB-LORD’ satisfies

εBDR(J) ≥ (1− α)

|H1(J)| . (4.11)

Note that LORD as in [40] is less powerful than in [41] since the values αj in the former
can be much smaller than those in [41], which could in fact exceed the level α. Therefore, for
FDR control we currently do have to sacrifice some power.

Proof. We leverage the proposition that can be obtained from a slightly more careful analysis
of the procedure than in [40].

Proposition 3. If P0(P
j ≤ αj | τj) ≤ αj, i.e. the distribution of the p−values under the

null are superuniform conditioned on the last rejection, using the online LORD’15 procedure
controls the FDR at each t.
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Note that this proposition allows online FDR control for any, possibly dependent, p-
values which are conditionally superuniform. This condition is not equivalent to (4.14) in
general, it is in fact less restrictive since the probability is conditioned only on a function
τ̃j = max{k ≤ j : Rk = 1} of all past rejections. Formally, the sigma algebra induced by
τj−1 is contained in F j−1 and hence P0(P

j ≤ αj | τj−1) ≤ P0(P
j ≤ αj | R1, . . . , Rj) by the

tower property. Finally, utilizing the fact that our p-values are conditionally super-uniform as
proven in Section 4.6, i.e. inequality (4.14) holds, the condition for Proposition 3 is fulfilled
and the proof is complete.

Proof of Proposition 3

Let τ̃i denote the time of the i-th rejection with τ̃0 = 0 (note that this is different from τj).
and define k(t) =

∑t
j=1Rj. Let Hj be the j−th hypothesis that was rejected. We adjust an

argument from [40].
First observe that {k(t) = `} = {τ̃` ≤ t, τ̃`+1 > t} and FDP (t) = FDP (τ̃k(t)) so that

EFDP (t) = EFDP (τk(t)) =
t∑

`=1

E
[∑j∈H0

Rj

`
| k(t) = `

]
P (k(t) = `)

=
t∑

`=1

P (k(t) = `)
∑̀
i=1

E
[1Hi∈H0

`
| k(t) = `

]
=

t∑
`=1

P (k(t) = `)
∑̀
i=1

E
[
E
(∑τ̃i

j=τ̃i−1+1Rj1j∈H0

`
| τ̃0, . . . , τ̃i−1

)
| τ̃` ≤ t, τ̃`+1 > t

]
Since for the LORD ’15 procedure, we have αt = γt−τt , and thus for all positive integers

i, the random variables Rj with j ≥ τ̃i−1 are conditionally independent of τ̃0, . . . , τ̃i−2 given
τ̃i−1. Additionally noting that τ̃i−1 = τj for all j ≥ τ̃i−1 by definition of τ̃ and τ , using
E0(1pj≤αj | τj) ≤ αj we obtain

E
(∑j∈(τ̃i−1,τ̃i]

⋂
j∈H0

Rj

`
| τ̃0, . . . , τ̃i−1

)
= E

(∑τ̃i
j=τ̃i−1+1Rj1j∈H0

`
| τ̃i−1

)
≤
∑τi

j=τi−1+1 1j∈H0E[Rj | τj]
`

≤
∑τi

j=τi−1+1 αj

`
≤ α

`
.

The last inequality follows since between any two rejection times τk, τk+1, we have

τk+1∑
i=τk

αi ≤ α
∞∑
i=1

γi ≤ α.

Since
∑t

`=1 P (k(t) = `) = 1 it follows that FDR control is obtained.
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4.5 Experimental results

In the following, we describe the results of experiments ‡ on both simulated and real-world data
sets to illustrate the properties and guarantees of our procedure described in Section 4.3. In
particular, we show that the mFDR is indeed controlled over time and that MAB-FDR (used
interchangeably with MAB-LORD here) is highly advantageous in terms of sample complexity
and power compared to a straightforward extension of A/B testing that is embedded in online
FDR procedures. Unless otherwise noted, we set ε = 0 in all of our simulations to focus on
the main ideas and keep the discussion concise.

There are two natural frameworks to compare against MAB-FDR. The first, called AB-
FDR or AB-LORD, swaps the MAB part for an A/B (i.e. A/B/n) test (uniformly sampling
all alternatives until termination). The second comparator swaps the online FDR control
for independent testing at α for all hypotheses – we call this MAB-IND. Formally, AB-FDR
swaps step 3 in Procedure 2 with “Output αj and uniformly sample each arm until stopping
time Tj.” while MAB-IND swaps step 4 in Procedure 2 with “The algorithm returns P j and
we reject the null hypothesis if P j ≤ α.”. In order to compare the performances of these
procedures, we ran three sets of simulations using Procedure 2 with ε = 0 and γj = 0.07 log(j∨2)

je
√
log j

as in [41]. The first two sets are on artificial data (Gaussian and Bernoulli draws from sets of
randomly drawn means µi), while the third is based on data from the New Yorker Cartoon
Caption Contest (Bernoulli draws).

Our experiments are run on artificial data with Gaussian/Bernoulli draws and real-world
Bernoulli draws from the New Yorker Cartoon Caption Contest. Recall that the sample
complexity of the best-arm MAB algorithm is determined by the gaps ∆j = µi? − µj . One of
the main relevant differences to consider between an experiment of artificial or real-world
nature is thus the distribution of the means µi for i = 1, . . . , K. The artificial data simulations
are run with a fixed gap between the mean of the best arm µi? and second best arm µ2,
which we denote by ∆ = µi? − µ2. In each experiment (hypothesis), the means of the other
arms are set uniformly in [0, µ2]. For our real-world simulations with the cartoon contest, the
means for the arms in each experiment are not arbitrary but correspond to empirical means
from the caption contest. In addition, the contests actually follow a natural chronological
order (see details below), which makes this dataset highly relevant to our purposes. In all
simulations, 60% of all the hypotheses are true nulls, and their indices are chosen uniformly.

Power and sample complexity

The first set of simulations compares MAB-FDR against AB-FDR. They confirm that the total
number of necessary pulls to determine significance (which we refer to as sample complexity)
is much smaller for MAB-FDR than for AB-FDR. In the MAB-FDR framework, this also
effectively leads to higher power given a fixed truncation time.

‡The code for reproducing all experiments and plots in this chapter is publicly available at
https://github.com/fanny-yang/MABFDR
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Two types of plots are used to demonstrate the superiority of our procedure: for one we
fix the number of arms and plot the εBDR with ε = 0 (which we call BDR for short) for both
procedures over different choices of truncation times M . For the other we fix M and show
how the sample complexity varies with the number of arms. Note that low BDR means that
the bandit algorithm often reaches truncation time before it could stop.

Simulated Gaussian and Bernoulli trials

For the Gaussian draws, we set µi? = 8. The gap to the second best arm is ∆ = 3 so that all
means µi 6=i? are drawn uniformly between Unif ∼ [0, 5]. The number of hypotheses is fixed
to be 500. For Bernoulli draws we choose the maximum mean to be µi? = 0.4, ∆ = 0.3 so
that all means µi 6=i? are drawn uniformly between Unif ∼ [0, 0.1]. The number of hypotheses
is fixed at 50. We display the empirical average over 100 runs where each run uses the
same hypothesis sequence (indicating which hypotheses are true and false) and sequence of
means µi for each hypothesis. The only randomness we average over comes from the random
Gaussian/Bernoulli draws which cause different rejections Rj and αj , so that the randomness
in each draw propagates through the online FDR procedure. The results can be seen in
Figures 4.7 and 4.8.
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Figure 4.7: (a) Power vs. truncation time TS (per hypothesis) for 50 arms and (b) Sample
complexity vs. # arms for truncation time M = 300 for Gaussian draws with fixed µi? = 8,
∆ = 3 over 500 hypotheses with 200 non-nulls, averaged over 100 runs.

The power at any given truncation time is much higher for MAB-FDR than AB-FDR.
This is because the best-arm MAB is more likely to satisfy the stopping criterion before any
given truncation time than the uniform sampling algorithm. The plot in Fig. 4.7(a) suggests
that the actual stopping time of the algorithm is concentrated between 160 and 200 while it
is much more spread out for the uniform algorithm.

The sample complexity plot in Fig. 4.7(b) qualitatively shows how the total number of
necessary arm pulls for AB-FDR increases much faster with the number of arms than for the
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Figure 4.8: (a) Power over truncation time TS (per hypothesis) for 50 arms and (b) Sample
complexity over number of arms for truncation time M = 5000 for Bernoulli draws with fixed
µi? = 0.7, ∆ = 0.3 over 50 hypotheses with 20 non-nulls, averaged over 100 runs.

MAB-FDR, before it plateaus at the truncation time multiplied by the number of hypotheses.
Recall that whenever the best-arm MAB stops before the truncation time in each hypothesis,
the stopping criterion is met, i.e. the best arm is identified with probability at least 1− αj,
so that the power is bound to be close to one whenever Tj = T (αj).

For Bernoulli draws we choose the maximum mean to be µi? = 0.4, ∆ = 0.3 so that all
means µi 6=i? are drawn uniformly between Unif ∼ [0, 0.1]. The number of hypotheses is fixed
at 50. Otherwise the experimental setup is identical to those discussed in the main text for
Gaussians. The plots for Bernoulli data can be found in Fig. 4.8.

The behavior for both Gaussian and Bernoullis are comparable, which is not surprising
due to the choice of the subGaussian LIL bound. However one may notice that the choice
of the gap of ∆ = 3 vs. ∆ = 0.3 drastically increases sample complexity so that the phase
transition for power is shifted to very large TS.

Application to New Yorker captions

In the simulations with real data we consider the crowd-sourced data collected for the New
Yorker Magazine’s Cartoon Caption contest: for a fixed cartoon, captions are shown to
individuals online one at a time and they are asked to rate them as ‘unfunny’, ‘somewhat
funny’, or ‘funny’. We considered 30 contests§ where for each contest, we computed the
fraction of times each caption was rated as either ‘somewhat funny’ or ‘funny’. We treat each
caption as an arm, but because each caption was only shown a finite number of times in the
dataset, we simulate draws from a Bernoulli distribution with the observed empirical mean

§Contest numbers 520-551, excluding 525 and 540 as they were not present. Full dataset and its description
is available at https://github.com/nextml/NEXT-data/.

https://github.com/nextml/NEXT-data/
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computed from the dataset. When considering subsets of the arms in any given experiment,
we always use the captions with the highest empirical means (i.e. if n = 10 then we use the
10 captions that had the highest empirical means in that contest).

Although MAB-FDR still outperforms AB-FDR by a large margin, the plots in Figure 4.9
also show how the power and sample complexity notably differ from our toy simulation, where
we seem to have chosen a rather benign distribution of means - in this setting, the gap ∆ is
much lower, often around ∼ 0.01.
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Figure 4.9: (a) BDR over number of arms, i.e. truncation time per hypothesis for 10 arms and
(b) Sample complexity over number of arms for truncation time M = 130000 for Bernoulli
draws, 30 hypotheses with 12 non-nulls and averaged over 100 runs.

mFDR and FDR control

In this section we use simulations to demonstrate the second part of our meta algorithm
which deals with the control of the false discovery rate or its modified version. Since bandit
algorithms have a very high best-arm discovery guarantee which in practice even exceeds its
theoretical guarantee of at least 1− αj, mFDR and FDR plots on MAB-FDR directly do
not lead to very insightful plots - namely the constant 0 line. However, we can demonstrate
that even under adversarial conditions, i.e. when the P -value under the null is much less
concentrated around one than obtained via the best arm bandit algorithm, mFDR or the
false discovery proportion (FDP) in each run are still controlled at any time t as Theorem 4
guarantees. Albeit not exactly reflecting mFDR control in the case of MAB-FDR but in
fact in an even harder setting, results from these experiments can be regarded as valuable on
their own - it emphasizes the fact that Theorem 4 guarantees mFDR control independent of
the adaptive sampling algorithm and specific choice of p-value as long as it is always valid.

For Figure 4.10, we again consider Gaussian draws with the same settings as described
in 4.5. This time however, for each true null hypothesis we skip the bandit experiment and
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Figure 4.10: (a) Single runs of MAB-LORD (blue) and their average (red) with uniformly
drawn p-values for null hypotheses and Gaussian draws for non-nulls with µi? = 8, ∆ = 3
and TS = 200, 500 hypotheses with 200 true nulls and 30 arms, the desired mFDR level is
α = 0.1 (b) mFDR over different proportions of non-nulls π1, with same settings, averaged
over 80 runs.

directly draw P j ∼ [0, 1] to compare with the significance levels αj from our online FDR
procedure 2. As mentioned above, by Theorem 4, mFDR should still be controlled as it only
requires the p-values to be super-uniform. In Figure 4.10(a) we plot the instantaneous false

discovery proportion (number of false discoveries over total discoveries) FDP(J) =
∑
j∈H0J

Rj∑T
j=1Rj

over the hypothesis index for different runs with the same settings. Apart from fluctuations
in the beginning due to the relatively small denominator, we can observe how the guarantee
for the FDR(J) = E FDP(J), with its empirical value depicted by the red line, transfers to
the control of each individual run (blue lines).

In Figure 4.10, we compare the mFDR (which in fact coincides with the FDR in this
plot) of MAB-FDR using different multiple testing procedures, including MAB-IND and a
Bonferroni type correction. The latter uses a simple union bound and chooses αj such that∑∞

j=1 αj ≤ α and thus trivially allows for any time FWER, and thus FDR control. In our

simulations we use αj = 6α
π2j2

. As expected, Bonferroni is too conservative and barely makes
any rejections whereas the naive MAB-IND approach does not control FDR. LORD avoids
both extremes and controls FDR while having reasonable power.

4.6 Proofs

In this section we provide the proofs of the main results in the chapter.
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Proof of Proposition 1

For any fixed γ ∈ (0, 1), we have the equivalence

µ̂i,ni(t) − ϕni(t)( γ
2K

) > µ̂0,n0(t) + ϕn0(t)(
γ
2
) + ε ⇐⇒ pi,t ≤ γ.

If max
i=1,...,K

µi ≤ µ0 + ε, then we have

P

(
K⋃
i=1

∞⋃
t=1

{
µ̂i,ni(t) − ϕni(t)( γ

2K
) > µ̂0,n0(t) + ϕn0(t)(

γ
2
) + ε

})

= 1− P

(
K⋂
i=1

∞⋂
t=1

{
µ̂i,ni(t) − ϕni(t)( γ

2K
) ≤ µ̂0,n0(t) + ϕn0(t)(

γ
2
) + ε

})

≤ 1− P

(
∞⋂
t=1

{
µ0 ≤ µ̂0,t + ϕt(

γ
2
)
}
∩

K⋂
i=1

∞⋂
t=1

{
µ̂i,ni(t) − ϕni(t)( γ

2K
) ≤ µi

})

≤ P

(
∞⋃
t=1

{
µ0 > µ̂0,t + ϕt(

γ
2
)
})

+
K∑
i=1

P

(
∞⋃
t=1

{
µ̂i,ni(t) − ϕni(t)( γ

2K
) > µi

})
≤ γ

2
+K γ

2K
= γ

by equation (4.4). Thus, we have P
(⋃K

i=1

⋃∞
t=1

{
pi,t ≤ γ

})
≤ γ, which completes the proof.

Proof of Proposition 2

Here we prove that the algorithm 1 terminates in finite time. The technical proof for sample
complexity is moved to Section 4.8. It suffices to argue for δ/2 ≤ 0.1 and we discuss the other
case at the end.

Proof of termination in finite time First we prove by contradiction that the algorithm
terminates in finite time with probability one for the case µ0 ≥ maxi=1,...,K µi − ε.

Assuming that there exist runs for which the algorithm does not terminate, the set of
arms defined by

S := {i : LCB0(t) ≤ UCBi(t)− ε infinitely often (i.o.)}

is necessarily non-empty for these runs. We now show that this assumption yields a contra-
diction so that

P(Algorithm does not terminate) ≤ P(LCB0(t) ≤ max
i=1,...,K

UCBi(t)− ε i.o.) = 0 (4.12)

First take note that by definition of the algorithm, if an arm i is drawn infinitely often
(i.o.), then so is the control arm 0 and we have LCB0(t) → µ0 as well as UCBi(t) → µi as
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t→∞. This follows by the law of large numbers combined with the fact that ϕni(t), ϕn0(t) → 0
as t → ∞, since ϕn → 0 as n → ∞. Since for the null hypothesis we have µ0 > µi − ε, it
follows that LCB0(t) > UCBi(t)− ε for all t ≥ t′ for some t′.

This argument implies that all arms i ∈ S can only be drawn a finite number of times, i.e.
ni(t) <∞ for all i ∈ S. However, the fact that they are not drawn i.o. implies that ht 6= i
and `t 6= i i.o. for all i ∈ S, so that there exists i′ 6∈ S such that maxi∈S UCBi(t) ≤ UCBi′(t)
i.o. By definition of S we then obtain

LCB0(t) ≤ UCBi′(t)− ε i.o. (4.13)

However, since i′ 6∈ S, inequality (4.13) cannot hold and equation (4.12) is proved.
A nearly identical argument to the above shows that the stopping condition is met in

finite time.

Proof of Theorem 4

We now turn to the proof of Theorem 4, splitting our argument into parts (a) and (b),
respectively.

Proof of part (a)

In order for generalized alpha-investing procedures such as LORD to successfully control the
mFDR, it is sufficient that p-values under the null be conditionally super-uniform, meaning
that for all j ∈ H0, we have

P0(P j ≤ αj|F j−1) ≤ αj(R1, . . . , Rj−1) (4.14)

where F j−1 is the σ-field induced by R1, . . . , Rj−1. Note that as long as condition (4.14) is
satisfied, Tj and thus P j could potentially depend on αj , i.e. the rejection indicator variables
R1, . . . , Rj−1 and potentially P 1, . . . , P j−1. See Aharoni and Rosset [1] for further details.

It thus suffices to show that condition (4.14) holds for our definition of p-value in our
framework. We know that by Proposition 1 we have for any random stopping time, thus any
fixed truncation time M , that P0(P

j
T ≤ αj) ≤ αj. We now show that the same bound also

holds for the (αj-dependent) bandit stopping time T (αj), i.e. that P0(P j
T (αj)

≤ αj) ≤ αj.

Under the null hypothesis, the best arm is at most ε better than the control arm, i.e.
µ0 > µi − ε, so that by Proposition 2 we have that with probability ≥ 1 − αj, ib = 0, i.e.
LCB0(t) > UCBi(t) − ε for all i 6= 0. Hence, LCBi(t) − UCB0(t) < ε, and thus, by the
definition of the p-values, P j

i,T (αj)
= 1 for all i with probability ≥ 1− αj. It finally follows

that P0(P j
T (αj)

≤ αj) ≤ αj.
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Putting things together, under the true null hypothesis (omitting the index j ∈ H0 to
simplify notation) we directly have that for any αj

P0(P j
Tj

(αj) ≤ αj) = P0

(
P j
T (αj)

≤ αj
∣∣T (αj) ≤M

)
P0(T (αj) ≤M)

+ P0

(
P j
M ≤ αj

∣∣T (αj) > M
)
P0(T (αj) > M)

≤ αj(P0(T (αj) ≤M) + P0(T (αj) > M)) = αj

for all fixed αj even when the stopping time T (αj) is dependent on αj. This is equivalent to
stating that for any sequence R1, . . . , Rj−1 we have

P0(P j ≤ αj(R1, . . . , Rj−1)|F j−1) = P0(P j
T (αj(R1,...,Rj−1)) ≤ αj(R1, . . . , Rj−1))

≤ αj(R1, . . . , Rj−1)

and the proof is complete.

Proof of part (b)

It suffices to prove that for a single experiment j andM =∞, we have P1(P j
T (αj)

≤ αj) ≥ 1−αj
where P1 is the distribution of a non-null experiment j. First observe that at stopping time
T (αj) of Algorithm 1, either P j

i,T (αj)
≤ αj or P j

i,T (αj)
= 1 for all i. The former event happens

whenever the algorithm exits with ib ∈ S?, i.e. when LCBib(t) ≥ UCB`t(t)− ε holds. Then,
by definition of the p-value in equation (4.6) and `t we must have that P j

ib,T (αj)
≤ αj. As a

consequence, by Proposition 2, we have

P1(P j
T (αj)

≤ αj) ≥ P(P j
T (αj)

≤ αj)

≥ P1(Algorithm 1 exits with ib ∈ S?)
≥ 1− αj

and the proof is complete.

4.7 Discussion

The recent focus in popular media about the lack of reproducibility of scientific results
erodes the public’s confidence in published scientific research. To maintain high standards
of published results and claimed discoveries, simply increasing the statistical significance
standards of each individual experimental work (e.g., reject at level 0.001 rather than 0.05)
would drastically hurt power. We take the alternative approach of controlling the ratio of
false discoveries to claimed discoveries at some desired value (e.g., 0.05) over many sequential
experiments. This means that the statistical significance for validating a discovery changes
from experiment to experiment, and could be larger or smaller than 0.05, requiring less
or more data to be collected. Unlike earlier works on online FDR control, our framework
synchronously interacts with adaptive sampling methods like MABs over uniform sampling to
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make the overall sampling procedure as efficient as possible. We do not know of other works
in the literature combining the benefits of adaptive sampling and FDR control. It should
be clear that any improvement, theoretical or practical, to either online FDR algorithms or
best-arm identification in MAB (or their variants), immediately results in a corresponding
improvement for our MAB-FDR framework.

More general notions of FDR with corresponding online procedures have recently been
developed by Ramdas et al [63]. In particular, they incorporate the notion of memory and a
priori importance of each hypothesis. This could prove to be a valuable extension for our
setting, especially in cases when only the percentage of wrong rejections in the recent past
matters. It would be useful to establish FDR control for these generalized notions of FDR as
well.

There are several directions that could be explored in future work. First, it would be
interesting to extend the MAB aspect (in which each arm is univariate) of our framework
to more general settings. Balasubramani and Ramdas [4] show how to construct sequential
tests for many multivariate nonparametric testing problems, using LIL confidence intervals,
which can again be inverted to provide always valid p-values. It might be of interest to marry
the ideas in our chapter with theirs. For example, the null hypothesis might be that the
control arm has the same (multivariate) mean as other arms (K-sample testing), and under
the alternative, we would like to pick the arm whose mean is furthest away from the control.
A more complicated example could involve dependence, where we observe pairs of arms, and
the null hypothesis is that the rewards in the control arm are independent of the alternatives,
and if the null is false we may want to pick the most correlated arm. The work by Zhao et
al. [93] on tightening LIL-bounds could be practically relevant. Recent work on sequential
p-values by Malek et al. [54] also naturally fit into our framework. Lastly, in this work we
treat samples or pulls from arms as identical from a statistical perspective; it might be of
interest in subsequent work to extend our framework to the contextual bandit setting, in
which the samples are associated with features to aid exploration.

4.8 Proof of sample complexity for Proposition 2

In the sequel we use &,∼ for inequality and equality up to constant factors.
Define i? = arg maxi=0,1,...,K µi (breaking ties arbitrarily) and ni(t) to be the number of

times sample i was drawn until time t. For any i ∈ {0, 1, . . . , K} and η ∈ R we define the
following key quantity

τi(η, ξ) := min{n ∈ N : 2ϕn( δ
2K

) < max{|η − µi|, ξ}} (4.15)

. min
{

(η − µi)−2 log(K log(η − µi)−2)/δ), ξ−2 log(K log(ξ−2)/δ)
}

where we set τi(µi, 0) =∞, but this case does not arise in our analysis.
Let us define the events

Ei =
∞⋂
n=1

{|µ̂i,n − µi| ≤ ϕn( δ
2K

)}.
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By a union bound and the LIL bound in (4.4), we have for δ/2K < 0.1 that

P

(
K⋃
i=0

Eci

)
≤ K + 1

2K
δ ≤ δ

for K ≥ 2. For δ
2K

> 0.1, note that for all δ′ < δ we have ϕn(δ′) ≤ ϕn(δ) so that

P(Eci ) = P(ϕn( δ
2K

) < µ̂i,n − µi)
≤ P(ϕn(0.1) < µ̂i,n − µi) ≤ δ

2K
∀i = 1, . . . , K

Throughout the rest of the proof we assume the events Ei hold.
The following simple lemma regarding the key quantity τi will be used throughout the

proof.

Lemma 21. Fix i ∈ {0, 1, . . . , K} and η > 0. For any t ∈ N, whenever ni(t) ≥ τi(η, ξ) we
have that under the event

⋂
i=0,...,K Ei, we have

UCBi(t) ≤ max{η, µi + ξ} if η ≥ µi

LCBi(t) ≥ min{η, µi − ξ} if η ≤ µi

Proof. Assume ni(t) ≥ τi(η, ξ). If η ≥ µi we have by definition of Ei that

UCBi(t) = µ̂i,ni(t) + ϕni(t)(
δ
2
) ≤ µi + 2ϕni(t)(

δ
2K

) < µi + max{η − µi, ξ}

and if η ≤ µi

LCBi(t) = µ̂i,ni(t) − ϕni(t)( δ
2K

) ≥ µi − 2ϕni(t)(
δ

2K
)

> µi −max{µi − η, ξ} = µi + min{η − µi,−ξ}.

Proof of Proposition 2 (a) µ0 > max
i=1,...,K

µi − ε

At each time t which does not satisfy the stopping condition, arm 0 and arg maxi=1,...,K UCBi(t)
are pulled. Note that by Lemma 21

{n0(t) ≥ τ0(
µ0+( max

i=1,...,K
µi−ε)

2
, 0)} =⇒ LCB0(t) ≥ min{

µ0+( max
i=1,...,K

µi−ε)

2
, µ0} ≥

µ0+( max
i=1,...,K

µi−ε)

2

(4.16)

so that t > n0(t) makes sure that there were enough draws for the particular arm 0 (since
it’s drawn every time). For i 6= 0 we have

{ni(t) ≥ τi(
(µ0+ε)+ max

i=1,...,K
µi

2
, 0)} =⇒ UCBi(t) ≤ max{

(µ0+ε)+ max
i=1,...,K

µi

2
, µi} ≤

(µ0+ε)+ max
i=1,...,K

µi

2
.

(4.17)
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which makes t >
∑K

i=0 ni(t) a necessary condition.

Reversely whenever t >
∑K

i=0 ni(t), for all arms i 6= 0 we have UCBi(t) ≤
(µ0+ε)+ max

i=1,...,K
µi

2
.

In essence, once arm i has been sampled ni(t) times, because of (4.17), it will not be sampled
again - either, because all of the other UCBi(t) satisfy the same upper bound, the algorithm

will have stopped, or, if for some i we have UCBi(t) >
(µ0+ε)+ max

i=1,...,K
µi

2
that will be the arm

that is drawn. Thus,

{t ≥ B1(µ, δ) : = τ0(
µ0+( max

i=1,...,K
µi−ε)

2
, 0) +

K∑
i=1

τi(
(µ0+ε)+ max

i=1,...,K
µi

2
, 0)}

=⇒ {LCB0(t)− UCBi(t) ≥ −ε ∀i 6= 0},

i.e., the stopping condition is met, where the first term accounts for satisfying (4.16), the
second term accounts for satisfying (4.17) for all i 6= 0, and the third term accounts for
satisfying Equation (4.18). Denoting T (δ) as the stopping time of the algorithm, this implies
that with probability at least 1− δ, we have T (δ) ≤ B1(µ, δ) and arm 0 is returned.

Let us now simplify the expression to make it more accessible to the reader and arrive at
the theorem statement. Defining ∆̃i : = max{|η − µi|, ξ} as the effective gap in the definition
of τi(η, ξ) in Equation (4.15), it is straightforward to verify that the effective gap associated
with arm 0 is equal to

∆̃0 ∼ (µ0 + ε)− max
j=1,...,K

µj,

and the effective gap for any other arm i is equal to

∆̃i & (µ0 + ε)− µi.

Using these quantities, we can see that the upper bound B1(µ, δ) scales like

K∑
i=0

∆̃−2
i log(K log(∆̃−2

i )/δ).

Proof of Proposition 2 (b) max
i=1,...,K

µi = µi? > µ0 + ε

At each time t which does not satisfy the stopping condition, arm 0 is pulled. Note again
that by Lemma 21

{n0(t) ≥ τ0( (µi?−ε)+µ0
2

, 0)} =⇒ UCB0(t) ≤ max{ (µi?−ε)+µ0
2

, µ0} ≤
(µi? − ε) + µ0

2
.

The following claim is key to proving this case (where u ∈ (0, 1) be an absolute constant
to be defined later).
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Claim 1. Under the event
⋂
i=0,...,K Ei, for any u ≤ 2

7
and µ̄ ∈ [maxj 6=i? µj, µi? ], we have

|{s ≥ 2
K∑
i=0

τi(µ̄, uε) : LCBhs(s) ≤ µi? − 5
2
uε or UCB`s(s) ≥ µi? + uε}| <

K∑
i=0

τi(µ̄, uε)

(4.18)

The proof of this claim can be found in Section 4.8. Note that for all s we have that

LCBhs(s) ≥ µi? − 5
2
uε and UCB`s(s) ≤ µi? + uε =⇒ LCBhs(s) ≥ UCB`s(s)− ε.

Intuitively the inequality (4.18) thus limits the number of times that for t ≥ 2
∑K

i=0 τi(µ̄, uε),
the criterion LCBhs(s) ≥ UCB`s(s) − ε is not fulfilled. We refer to the times when the
condition on the left hand side of inequality (4.18) is fulfilled, as “good” times.

Applying Claim 1 with µ̄ = maxj 6=i?
µi?+µj

2
and u = µi?−(µ0+ε)

5ε
we then observe that on

the “good” times, we have

LCBht ≥ µi? − 5
2
uε =

µi? + (µ0 + ε)

2
=

(µi? − ε) + µ0

2
+ ε,

so that we directly obtain that with probability at least 1− δ,

T (δ) ≤ B2(µ, δ) : = τ0( (µi?−ε)+µ0
2

, 0) + 3
K∑
i=0

τi(max
j 6=i?

µi?+µj
2

,min{2
7
ε, µi?−(µ0+ε)

5
}).

Let us now simplify the expression. It is straightforward to verify that the effective gap
associated with arm 0 is equal to

∆̃0 & min

{
µi?−(µ0+ε)

2
,max

{
max
j 6=i?

µi?+µj
2
− µ0,

2
7
ε

}}
& min

{
µi? − (µ0 + ε),max{∆0,

4

7
ε}
}

and the effective gap for any other arm i is equal to

∆̃i = max

{
|max
j 6=i?

µi?+µj
2
− µi|,min{2

7
ε, µi?−(µ0+ε)

5
}
}

& max {∆i,min {µi? − (µ0 + ε), ε}}

where we recall that ∆i = µi? − µi if i 6= i?, and ∆i? = µi? − maxj 6=i? µj otherwise.
Using these quantities, the upper bound B2(µ, δ) on the stopping time T (δ) scales like∑K

i=0 ∆̃−2
i log(K log(∆̃−2

i )/δ). This concludes the proof of the proposition.
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Proof of Claim 1

Let µ̄ ∈ [maxj 6=i? µj, µi? ] and τi := τi(µ̄, uε). The following result is a a key ingredient for the
proof of the claim.

Proposition 4. For any time t and u ≤ 1/2,

{
|{s ≤ t : hs = i?}| ≥

K∑
i=0

τi

}
=⇒ {UCB`t(t) ≤ µ̄+ uε} ∩ {LCBht(t) ≥ µ̄− uε}
=⇒ {LCBht(t)− UCB`t(t) ≥ −ε}.

Proof. If hs = i? then some i 6= i? is assigned to `s and UCBi(s) ≤ max{µ̄, µi + uε} ≤ µ̄+ uε
whenever ni(s) ≥ τi(µ̄, uε). Because `s is the highest upper confidence bound, the sum over
all τi represents exhausting all arms (i.e., pigeonhole principle). An analogous result holds
for LCBi?(t).

A direct consequence of Proposition 4 is that even though we don’t know which arm will
be assigned to ht at any given time t, we do know that if ht = i? for a sufficient number of
times, namely

∑K
i=0 τi times, the termination criteria will be met. Thus, assume ht 6= i? and

note that

{ht = i, µi < µi? − 5
2
uε, µ̂i,ni(t) ≥ min{µ̄, µi? − 3

2
uε}}

=⇒ min{µ̄, µi? − 3
2
uε} ≤ µ̂i,ni(t) ≤ µi + ϕni(t)(

δ
2K

)

=⇒ {ni(t) < τi}

where the last line follows from µi + ϕni(t)(
δ

2K
) < min{µ̄, µi + uε} ≤ min{µ̄, µi? − 3

2
uε}

whenever ni(t) ≥ τi. Furthermore, the following Proposition 5, says for t ≥ 2
∑K

i=0 τi we have
that µ̂ht,nht (t) ≥ min{µ̄, µi? − 3

2
uε}.

Proposition 5. For any time t,

{t ≥ 2
K∑
i=0

τi} =⇒ {µ̂ht,nht (t) ≥ min{µ̄, µi? − 3
2
uε}}.

The proof of the proposition can be found in Section 4.8.
Combining this fact with the display immediately above and the observation that some

i = ht, we have that |{s ≥ 2
∑K

i=0 τi : µi? − µhs ≥ 5
2
uε}| < ∑K

i=0 τi. Now, on one of these
times t such that {ht = i, ni(t) ≥ τi, µi? − µi < 5

2
uε}, we have

LCBi(t) = µ̂i,ni(t) − ϕni(t)( δ
2K

) ≥ µi − 2ϕni(t)(
δ

2K
) ≥ min{µ̄, µi − uε} ≥ µi? − 5

2
uε.

The above display with the next proposition completes the proof of Equation 4.18.
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Proposition 6. For any time t,

{t ≥
K∑
i=0

τi} =⇒ { max
i=0,1,...,K

UCBi(t) ≤ µi? + uε}.

Proof. Note that

{UCBi(t) ≥ µi? + uε} =⇒ {µi? + uε ≤ UCBi(t) = µ̂i,ni(t) + ϕni(t)(
δ
2
) ≤ µi + 2ϕni(t)(

δ
2K

)}
=⇒ {ni(t) < τi}

since µi + 2ϕni(t)(
δ

2K
) < max{µ̄, µi + uε} ≤ µi? + uε whenever ni(t) ≥ τi. Now, because

at each time t, the arm arg maxj=0,1,...,K UCBj(t) is pulled because it is either ht or `t, we
conclude that this arm can only be pulled τi times before satisfying UCBi(t) ≤ µi? + uε.

Proof of Proposition 5

The above proposition implies,

{t ≥ 2
K∑
i=0

τi} =⇒
{
|{s ≤ t : hs 6= i?}| ≥

K∑
i=0

τi

}
.

Now consider the event

{ht 6= i?, `t = i} =⇒ µi? ≤ µ̂i?,ni? (t) + ϕni? (t)(
δ
2
) ≤ µ̂i,ni(t) + ϕni(t)(

δ
2
) ≤ µi + 2ϕni(t)(

δ
2K

)

=⇒ {µi? − µi ≤ 2ϕni(t)(
δ

2K
)}

=⇒ {ni(t) < τi} ∪ {ni(t) ≥ τi, µi? − µi ≤ 2ϕni(t)(
δ

2K
)}

=⇒ {ni(t) < τi} ∪ {ni(t) ≥ τi, µi? − µi ≤ max{|µ̄− µi|, uε}}
=⇒ {ni(t) < τi} ∪ {ni(t) ≥ τi, µi? − µi < uε} ∪ {ni(t) ≥ τi, i = i?}

by the definition of τi. Because at each time s ≤ t we have that some i = `s, if |{s ≤ t : hs 6=
i?}| ≥

∑K
i=0 τi, we have that

{t ≥ 2
K∑
i=0

τi} =⇒ {∃i : ni(t) ≥ τi and µi? − µi < uε} ∪ {ni(t) ≥ τi and i = i?}.

We use the fact that such an `t = i 6= i? exists that satisfies µi? − µi < uε to say

∃i 6= i? : µ̂i,ni(t) ≥ µi − ϕni(t)( δ
2K

) ≥ µi −max{µi? − µi, uε}/2 ≥ µi? − 3
2
uε

or `t = i? and

µ̂i?,ni? (t) ≥ µi? − ϕni? (t)(
δ

2K
) ≥ µi? −max{µi? − µ̄, uε}/2 = min{µ̄, µi? − 1

2
uε}.

Because µ̂ht,nht (t) ≥ maxi=0,1,...,K µ̂i,ni(t), the proof of the claim is complete.
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